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Abstract
Grounding is the task of reducing a first-order theory and finite domain to an equivalent

propositional theory. It is used as preprocessing phase in many logic-based reasoning systems. Such
systems provide a rich first-order input language to a user and can rely on efficient propositional
solvers to perform the actual reasoning.

Besides a first-order theory and finite domain, the input for grounders contains in many appli-
cations also additional data. By exploiting this data, the size of the grounder’s output can often
be reduced significantly. A common practice to improve the efficiency of a grounder in this context
is by manually adding semantically redundant information to the input theory, indicating where
and when the grounder should exploit the data. In this paper we present a method to compute
and add such redundant information automatically. Our method therefore simplifies the task of
writing input theories that can be grounded efficiently by current systems.

We first present our method for classical first-order logic (FO) theories. Then we extend it
to FO(ID), the extension of FO with inductive definitions, which allows for more concise and
comprehensive input theories. We discuss implementation issues and experimentally validate the
practical applicability of our method.

1. Introduction

Grounding, or propositionalization, is the task of reducing a first-order theory and finite domain to
an equivalent propositional theory, called a grounding. Grounding is used as a preprocessing phase
in many logic-based reasoning systems. It serves to provide the user with a rich input language,
while enabling the system to rely on efficient propositional solvers to perform the actual reasoning.

Examples of systems that rely on grounding can be found in the area of finite first-order model
generation (Claessen & Sörensson, 2003; McCune, 2003; East, Iakhiaev, Mikitiuk, & Truszczyński,
2006; Mitchell, Ternovska, Hach, & Mohebali, 2006; Torlak & Jackson, 2007; Wittocx, Mariën, &
Denecker, 2008d). Such systems are in turn used as part of theorem provers (Claessen & Sörensson,
2003) and for lightweight software verification (Jackson, 2006). Currently, almost all Answer Set
Programming (ASP) systems rely on grounding as a preprocessing phase (Gebser, Schaub, & Thiele,
2007; Perri, Scarcello, Catalano, & Leone, 2007; Syrjänen, 2000; Syrjänen, 2009). Also in planning
systems (Kautz & Selman, 1996) and relational data mining (Krogel, Rawles, Zelezný, Flach, Lavrac,
& Wrobel, 2003) grounding is frequently used. This large number of applications indicates the
importance of grounding in logic-based reasoning systems and the need to develop efficient grounders.

A basic (naive) grounding method is by instantiating the variables in the input theory by all
possible combinations of domain elements. Grounding in this way is polynomial in the size of the
domain but exponential in the maximum width of a formula in the input theory, and may easily
produce groundings of unwieldy size. Several techniques have been developed to efficiently produce
smaller groundings. There are two main categories of such techniques. In the first, the input theory
is rewritten such that the maximum width of the formulas decreases. Methods like clause splitting
(Schulz, 2002) and partitioning (Ramachandran & Amir, 2005) belong to this category.
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The second type of techniques is applicable when besides the finite domain, additional data is
available. This is often the case in practical model generation problems, such as the ones that are
typical in ASP. In a graph problem the data could be an encoding of the input graph; in the context of
planning, it could be a description of the initial and goal state, etc. Sometimes the data is explicitly
available, e.g., in the form of a database, sometimes it is implicit, e.g., as a set of ground facts in
the input theory. The second type of techniques aims at efficiently computing small groundings by
taking the data into account.

Observe that both types of techniques can be combined in a grounder. In this paper we mainly
focus on a technique of the second category. To explain the intuition underlying our method, consider
the following model generation problem.

Example 1. Let T1 the first-order logic theory over the vocabulary {Edge, Sub}, consisting of the
two sentences

∀u∀v (Sub(u, v) ⊃ Edge(u, v)) (1)
∀x∀y∀z (Sub(x, y) ∧ Sub(x, z) ⊃ y = z), (2)

T1 expresses that Sub is a subgraph of Edge with at most one outgoing edge in each vertex. Com-
puting such a subgraph of a given graph G = 〈V,E〉 can be cast as a model generation problem with
input theory T1 and data G. The data can be represented as a structure Iσ for the subvocabulary
σ1 = {Edge} with domain V and EdgeIσ = E. A solution can be obtained by generating a model
of T1 that expands Iσ with an interpretation of Sub.

Applying the naive grounding algorithm produces |V |2 instantiations of (1) and |V |3 instantia-
tions of (2). By taking the data into account, atoms over ‘Edge’ and ‘=’ can be substituted by their
truth value in Iσ. Simplifying the resulting grounding then eliminates |E| instantiations of (1) and
|V | instantiations of (2). Smart grounding algorithms interleave this substitution and simplification
with the grounding process in order to avoid creating unnecessary parts of the grounding.

Observe that substituting atoms over σ1 and then simplifying still produces a grounding of size
O(|V |3). Indeed, the simplified grounding of (2) is the set of binary clauses ¬Sub(i, j) ∨ ¬Sub(i, k)
such that i, j, k ∈ V and i 6= j. This set has size |V |3 − |V |.

Some grounders apply reasoning on the ground theory to reduce it even further. In the example,
the simplified grounding of (1) consists of the clauses ¬Sub(i, j) such that (i, j) 6∈ E. Since these
are unit clauses, each of them is certainly true in every model of the ground theory. It follows
that each binary clauses ¬Sub(i, j) ∨ ¬Sub(i, k) such that either ¬Sub(i, j) or ¬Sub(i, k) belongs
to the simplified grounding of (1) is certainly true in every model of the ground theory and thus
can be omitted from the simplified grounding of (2). The result is a grounding of size |E ./1=1 E|,
where ./1=1 denotes the natural join matching the first columns. For a sparse graph, |E ./1=1 E| is
much smaller than |V |3. However, since reasoning on the ground theory does not avoid creating all
instantiations of a formula, it does not significantly speed up the grounding process.

One way to avoid a large grounding without relying on reasoning on the ground theory is by
adding redundant information to formulas. This method is frequently used in ASP. For example,

∀x∀y∀z(Edge(x, y) ∧ Sub(x, y) ∧ Edge(x, z) ∧ Sub(x, z) ⊃ y = z) (3)

is equivalent to (2) given (1), but its grounding (without reasoning on the ground theory) is equal
to the one obtained by the kind of reasoning on the ground theory illustrated above. This illustrates
how adding redundant information may sometimes dramatically reduce the size of the grounding.
Since current grounders are optimized to ground formulas like (3) without trying all instances,
grounding may also speed up a lot.

However, manually adding redundancy to formulas has its disadvantages: it leads to more com-
plex and hence, less readable theories. Worse, it might introduce errors. It requires a good under-
standing of the used grounder, since it depends on the grounder what information is beneficial to
add and where. Also, a human developer could easily miss useful information.
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The above motivates a study of automated methods for deriving such redundant information and
of principled ways of adding it to formulas. We develop an algorithm that, given a model generation
problem with input theory T and input data Iσ, derives such redundant information, in the form
of a pair of a symbolic upper and lower bound for each subformula of T . Each of these bounds
is a formula over the vocabulary of Iσ. For instance, for Example 1, our algorithm will compute
Edge(x, y) as upper bound for Sub(x, y), meaning that if Edge(x, y) is not true, then Sub(x, y) is not
true either. We also show how to insert these bounds in the formulas of T . For example, inserting the
upperbound Edge(x, y) for Sub(x, y) and the upperbound Edge(x, z) for Sub(x, z) transforms (2)
into (3).

The rest of this paper is organized as follows. In the next section we recall some notions from
first-order logic (FO) and we introduce the notations used throughout the paper. In Section 3 we
formally define grounding and model generation with additional data. In Section 4 we introduce
upper- and lowerbounds for formulas. We present an any-time algorithm to compute them in the
context of FO input theories. We show how the bounds can be used to rewrite the input theory to
an equivalent theory that has a smaller grounding.

Although many search problems can be cast concisely and naturally as FO model generation
problems, some problems require richer logics than FO. One such logic is FO(ID), an extension
of FO with inductive definitions. Such definitions can be used to represent, e.g., the concept of
reachability in a graph. In Section 5 we extend our rewriting method to FO(ID).

In Section 6 we discuss how to implement our algorithm to compute bounds. As a case study,
we show for one particular grounding algorithm how it can be adapted to exploit bounds directly.
We also present experimental results that indicate the impact of our method on grounding size and
time. We end with related work and conclusions.

The current paper extends our previous work (Wittocx, Mariën, & Denecker, 2008c). Besides
proofs for all main propositions and a more thorough experimental validation, also the following
parts were added:

• The theoretical result stating that our rewriting method certainly yields smaller groundings
(Proposition 23);

• The extension of the rewriting method to FO(ID) (Section 5);

• The section about implementation issues (Section 6).

2. Preliminaries

In this section, we introduce the conventions and notations used in this paper. We assume the reader
is familiar with FO.

2.1 First-Order Logic

A vocabulary Σ is a tuple 〈ΣP ,ΣF ,ΣV 〉 where ΣP , ΣF and ΣV are respectively sets of predicate
symbols, function symbols and variables. We identify constants with zero-arity function symbols.
Abusing notation, we will often leave out ΣV and simply write 〈ΣP ,ΣF 〉 to represent Σ. A vocabulary
σ is a subvocabulary of Σ, denoted σ ⊆ Σ, if σP ⊆ ΣP , σF ⊆ ΣF and σV ⊆ ΣV .

Throughout this paper variables are denoted by lowercase letters, predicate and function symbols
by uppercase letters. Each predicate and function symbol has an associated arity n ∈ N. We often
denote a predicate symbol P by P/n and a function symbol F by F/n to indicate their arities.

Tuples and sets of variables are denoted by x, y, z. A term over Σ is inductively defined by

• A variable x ∈ Σ is a term;

• If F/n is a function symbol of Σ and t1, . . . , tn are terms over Σ, then F (t1, . . . , tn) is a term.
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Wittocx, Mariën, & Denecker

Tuples of terms are denoted by t, t1, t2, . . . . A first-order logic formula over Σ is inductively defined
by

• If P/n is a predicate symbol and t1, . . . , tn are terms, then P (t1, . . . , tn) is a formula.

• If t1 and t2 are two terms, then t1 = t2 is a formula.

• If ϕ and ψ are formulas and x is a variable, then ¬ϕ, ϕ∧ψ, ϕ∨ψ, ∃x ϕ and ∀x ϕ are formulas.

We use ϕ ⊃ ψ, ϕ ≡ ψ and t1 6= t2 as a shorthands for respectively ¬ϕ ∨ ψ, (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ) and
¬(t1 = t2). An atom is a formula of the form P (t) or t1 = t2. A literal is an atom or the negation
of an atom.

An occurrence of a formula ϕ as subformula in a formula ψ is positive, respectively negative, if
it occurs in the scope of an even, respectively odd, number of negations.

For a formula ϕ, we often write ϕ[x] to indicate that x are its free variables. That is, if y ∈ x,
then y occurs in ϕ, but not in the scope of a quantifier ∀y or ∃y in ϕ. For a variable x and a term t,
the formula ϕ[x/t] denotes the result of replacing all free occurrences of x in ϕ by t. This notation
is extended to tuples of variables and terms of the same length. A sentence is a formula without
free variables. A theory is a finite set of sentences.

A Σ-interpretation I consists of a domain D and

• a domain element xI ∈ D for each variable x ∈ ΣV ;

• a relation P I ⊆ Dn for each predicate symbol P/n ∈ ΣP ;

• a function F I : Dn → D for each function symbol F/n ∈ ΣF .

A Σ-structure is an interpretation of only the relation and function symbols of Σ. The restriction
of a Σ-interpretation I to a vocabulary σ ⊆ Σ is denoted by I|σ. Vice versa, I is called an expansion
of I|σ to Σ. For a variable x and domain element d, I[x/d] is the interpretation that assigns d to
x and corresponds to I on all other symbols. This notation is extended to tuples of variables and
domain elements of the same length. An interpretation I is called finite if its domain is finite.

The value tI of a term t in an interpretation I, and the satisfaction relation |= are defined as
usual (e.g., Enderton, 2001). I is called a model of a formula ϕ if I |= ϕ. We denote by T1 |= T2

that every model of theory T1 is also a model of theory T2.
A query is an expression of the form {x | ϕ}, where the free variables of ϕ are among x. A tuple

d of domain elements is an answer to {x | ϕ} in a structure I if I[x/d] |= ϕ. The set of all answers
to {x | ϕ} in I is denoted by {x | ϕ}I .

2.2 Rewriting and Term Normal Form

In this paper we will use the following well-known equivalences to rewrite formulas to logically
equivalent formulas.

1. Moving quantifiers

∀x∀y ϕ ≡ ∀y∀x ϕ (4)
∃x∃y ϕ ≡ ∃y∃x ϕ (5)
∀x (ϕ ∧ ψ) ≡ (∀x ϕ) ∧ (∀x ψ) (6)
∃x (ϕ ∨ ψ) ≡ (∃x ϕ) ∨ (∃x ψ) (7)
∀x (ϕ ∨ ψ) ≡ ϕ ∨ (∀x ψ) if x does not occur free in ϕ (8)
∃x (ϕ ∧ ψ) ≡ ϕ ∧ (∃x ψ) if x does not occur free in ϕ (9)
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2. Moving negations

¬(ϕ ∧ ψ) ≡ (¬ϕ) ∨ (¬ψ) (10)
¬(ϕ ∨ ψ) ≡ (¬ϕ) ∧ (¬ψ) (11)
¬(∀x ϕ) ≡ ∃x (¬ϕ) (12)
¬(∃x ϕ) ≡ ∀x (¬ϕ) (13)

3. Flattening terms

P (t1, . . . , ti, . . . , tn) ≡ ∃x (x = ti ∧ P (t1, . . . , ti−1, x, ti+1, . . . , tn)) (14)

where x does not occur in P (t1, . . . , tn).

To facilitate the presentation, we will sometimes require that formulas are in term normal form
(TNF). We say that a formula ϕ is in TNF, if every atomic subformula of ϕ is of the form P (x),
F (x) = y or x = y, and all negations occur directly in front of atoms. Using (10)–(14), every
formula can be transformed in an equivalent formula in TNF. We say that a theory is in TNF if all
its sentences are.

2.3 SAT

A vocabulary Σ is propositional if ΣF = ∅ and every predicate symbol in ΣP has arity zero. A
propositional theory (PC theory) is a theory over a propositional vocabulary. A propositional clause
is a disjunction of propositional literals. A PC theory is in conjunctive normal form (CNF) if all
its sentences are clauses. The Boolean satisfiability problem (SAT) is the NP-complete problem of
deciding for a PC theory whether it is satisfiable. The NP search problem corresponding to a SAT
problem is the problem of computing a witness of the decision problem in the form of a model of
the theory. SAT solvers typically operate by constructing such a model.

Contemporary SAT solvers exhibit impressive performance. As such, many NP problems can
be solved efficiently by translating them to SAT. For instance, this is done in the areas of model
generation (Claessen & Sörensson, 2003; McCune, 2003), planning (Kautz & Selman, 1996) and
relational data mining (Krogel et al., 2003). Most modern SAT solvers expect a CNF theory as
input, instead of a general PC theory. When the input is a satisfiable theory, they return a model
as a witness to their answer.

3. Model Generation and Grounding

Model generation is the problem of computing a model of a logic theory T , usually in the context
of a given finite domain, typically the Herbrand Universe. A model generator allows to decide the
satisfiability of the theory in the context of this fixed domain. This is useful, e.g., in the context
of lightweight verification (Jackson, 2006). Beyond determining satisfiability, there is a broad class
of problems of which the answers are naturally given by the models of a declarative domain theory.
For example, the model of a theory specifying a scheduling domain typically contains a (correct)
schedule. Thus, a model generator applied to this theory will solve the scheduling problem for
this domain.1 This idea of model generation as a declarative problem solving paradigm has been
pioneered in the area of ASP (Marek & Truszczyński, 1999; Niemelä, 1999). In this area, answers
to a problem are given by the models of an ASP theory.

As mentioned in the introduction, many practical model generation problems contain additional
data besides the input theory and finite domain. This data can be implicit in the input theory. For

1. For a set of problems of this kind, see, e.g., the benchmarks of the ASP-competition (http://dtai.cs.kuleuven.
be/events/ASP-competition).
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example, ASP problems can be split into two parts: a non-ground theory and a list of ground facts.
The latter part essentially represents given data. In other contexts (Mitchell & Ternovska, 2005;
Torlak & Jackson, 2007; Wittocx et al., 2008d), the data is given as a (partial) structure interpreting
part of the vocabulary of the input theory. In this paper we assume without loss of generality that
the data is represented by a structure. In practice, it is often the case that some preprocessing,
e.g., materializing a view on a database, needs to be done before the data is in this format (see also
Section 5.3.2).

3.1 The Model Expansion Search Problem

Model generation with an input theory and input structure is called model expansion. Model ex-
pansion for a logic L, denoted MX(L), is defined as follows.

Definition 1. Let T be an L-theory over a vocabulary Σ, σ a subvocabulary of Σ and Iσ a finite
σ-structure. The model expansion search problem with input 〈T, Iσ〉 is the problem of computing a
Σ-structure M such that M |= T and M |σ = Iσ.

The vocabulary σ is called the input vocabulary of the problem, the vocabulary Σ\σ the expansion
vocabulary. Iσ is called the input structure. We denote by M |=Iσ T that M is a solution to the
model expansion search problem with input 〈T, Iσ〉. Similarly, for a formula ϕ over Σ we denote by
M |=Iσ ϕ that M expands Iσ to Σ and satisfies ϕ.

Observe that if σ = Σ, model expansion reduces to model checking, while if σ = 〈∅, ∅〉, it reduces
to model generation for T with a given finite size. Also, if T is a theory over a vocabulary Σ
containing no function symbols of arity greater than zero, Herbrand model generation for T can be
simulated by model expansion. Indeed, let σ = 〈∅,ΣF 〉, and Iσ the structure with the Herbrand
universe of T such that CIσ = C for every constant C ∈ ΣF .

We illustrate model expansion by two examples. In the examples in this paper, we often use
many-sorted FO, since this leads to more concise and readable sentences. In many-sorted FO, the
domain of an interpretation is partitioned in sorts (or types), each variable has an associated sort,
each n-ary predicate symbol has an n-tuple of associated sorts and each n-ary function symbol
an associated (n + 1)-tuple of sorts. If I is an interpretation and variable x has associated sort
s, then xI ∈ sI , where sI denotes the set of domain elements of sort s. Similarly, if P/n has
associated sorts (s1, . . . , sn), then P I ⊆ sI1×· · ·×sIn, if F/n has associated sorts (s1, . . . , sn+1), then
F I : sI1 × · · · × sIn → sIn+1. We often denote P by P (s1, . . . , sn) and F by F (s1, . . . , sn) : sn+1 to
indicate their associated sorts.

Example 2 (Graph Colouring). The graph colouring problem is the problem of colouring a given
graph with a given set of colours such that adjacent vertices have different colours. To express this
problem in MX(FO), let V tx and Col be sorts and let σ = 〈{Edge(V tx, V tx)}, ∅〉. The sort Col
denotes the given set of colours, the given graph is represented by V tx and Edge. Let Σ be the
vocabulary 〈σP , {Colour(V tx) : Col}〉 and T the theory that consists of the sentence

∀v1∀v2 (Edge(v1, v2) ⊃ Colour(v1) 6= Colour(v2)).

Then model expansion with input theory T and input vocabulary σ expresses the graph colouring
problem. Indeed, for any M |=Iσ T , ColourM is a proper colouring of the graph represented by Iσ.

Example 3 (SAT). To represent the SAT problem in MX(FO), let σ be a vocabulary containing
the two sorts Atom and Clause, representing the atoms and the clause of the input CNF theory,
and the two predicates PosIn(Atom,Clause) and NegIn(Atom,Clause), to represent the positive,
respectively negative, occurrences of atoms in clauses. The theory given by

∀c ∃a ((PosIn(a, c) ∧ True(a)) ∨ (NegIn(a, c) ∧ ¬True(a)))
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over Σ = 〈σP ∪ {True(Atom)}, ∅〉 expresses the SAT problem: for any M |=Iσ T , the propositional
structure represented by TrueM is a model of the CNF theory represented by Iσ. Indeed, the theory
forces that every clause contains at least one true literal.

As shown by Mitchell and Ternovska (2005), it follows from Fagin’s (1974) theorem that model
expansion for FO captures NP, in the following sense:

• For any fixed T and σ the problem of deciding whether there exists a model of T expanding
an input structure Iσ is in NP.

• Vice versa, for any NP decision problem X on the class of finite σ-structures there is a
vocabulary Σ ⊇ σ and a first-order Σ-theory T such that model expansion with input theory
T expresses X, i.e., Iσ belongs to X iff there exists a Σ-structure M such that M |=Iσ T .

This result proves that any NP problem X can be expressed by an MX(FO) problem, and hence
shows the broad applicability of MX(FO) solvers to solve NP problems.

As illustrated by the examples above, it is the intention that the theory T is an intuitive repre-
sentation of a problem X. Not all NP problems can be represented in a natural manner in MX(FO).
For instance, the problem of deciding whether a graph is connected can be expressed in MX(FO),
but this requires a non-trivial encoding of a fixpoint operator in FO. Model expansion for richer
logics than FO is better suited for such problems. In Section 5 we consider MX for FO(ID), an
extension of FO with inductive definitions.

3.2 Reducing MX(FO) to SAT

For the rest of this paper, let T be a theory over a vocabulary Σ, σ a subvocabulary of Σ and Iσ a
finite σ-structure with domain D.

Since for every FO theory T , deciding whether T has a model expanding Iσ is in NP, this
problem can be reduced to a SAT problem Tprop in polynomial time. However, if we want to find
models of T expanding Iσ by using a SAT solver, we need a method to translate models of Tprop

into models of T . Moreover, if we are interested in finding all models of T expanding Iσ, a one-
to-one correspondence between these models and the models of Tprop is needed. In this paper we
focus on reductions that preserve all models, which is the setting in the ASP paradigm (Marek &
Truszczyński, 1999; Niemelä, 1999).

Let τ be the vocabulary of Tprop. To have a one-to-one correspondence between the models of
T expanding Iσ and the models of Tprop, it should be possible to represent Σ-structures expanding
Iσ by τ -structures. The most natural way to accomplish this is by choosing τ such that it contains
a symbol Pd for every P/n ∈ ΣP and d ∈ Dn, and a symbol Fd,d′ for every F/n ∈ ΣF and
(d, d′) ∈ Dn+1. A τ -structure making Pd, respectively Fd,d′ true then corresponds to a Σ structure
M such that d ∈ PM , respectively FM (d) = d′. In this manner, every Σ-structure expanding Iσ
has a corresponding τ -structure. Vice versa, every τ -structure A satisfying the requirement that
for every function symbol F/n and d ∈ Dn, there is exactly one d′ ∈ D such that Fd,d′ is true
in A, corresponds to a Σ-structure with the same domains as Iσ. That is, there is a one-to-one
correspondence between the τ -structures satisfying for every function symbol F/n and d ∈ Dn the
formula ( ∨

d′∈D

Fd,d′

)
∧

 ∧
d′
1∈D

 ∧
d′
2∈D\d′

1

¬Fd,d′
1
∨ ¬Fd,d′

2

 (15)

and the Σ-structures with domain D.
Denote by Σdom(Iσ) the vocabulary Σ extended with a new constant symbol d for every d ∈ D.

We call these new constants domain constants. Abusing notation, we will denote both domain
elements and their corresponding domain constants by d. For a formula ϕ[x] and a tuple d of
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domain constants, we call ϕ[x/d] an instance of ϕ. For a Σ-interpretation M expanding Iσ and a
formula ϕ containing domain constants, we denote by M |= ϕ that the expansion of M to Σdom(Iσ)

defined by interpreting every domain constant by its corresponding domain element, satisfies ϕ.

Definition 2. Two formulas ϕ1 and ϕ2 over Σdom(Iσ) are Iσ-equivalent if M |=Iσ ϕ1 iff M |=Iσ ϕ2,
for every Σ-interpretation M .

The following are some straightforward results about Iσ-equivalence.

Lemma 3. 1. Two logically equivalent formulas are Iσ-equivalent.

2.
∧
d∈D ϕ[x/d] is Iσ-equivalent to ∀x ϕ[x].

3.
∨
d∈D ϕ[x/d] is Iσ-equivalent to ∃x ϕ[x].

4. If ϕ′ and ψ′ are Iσ-equivalent to respectively ϕ and ψ, then ¬ϕ′, ϕ′ ∧ ψ′, ϕ′ ∨ ψ′, ∃x ϕ′ and
∀x ϕ′ are Iσ-equivalent to respectively ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ∃x ϕ and ∀x ϕ.

5. If ψ is a subformula of ϕ and is Iσ-equivalent to ψ′, then the result of replacing ψ by ψ′ in ϕ
is Iσ-equivalent to ϕ.

A formula is in ground normal form (GNF) if it contains no quantifiers and all its atomic
subformulas are of the form P (d1, . . . , dn), F (d1, . . . , dn) = d or d1 = d2, where d1, . . . , dn, d are
domain constants. A theory is in GNF if all its sentences are in GNF. A GNF theory is essentially
propositional: by replacing in a GNF theory T every atom P (d) by Pd, F (d) = d′ by Fd,d′ , di = dj
by > or ⊥ if, respectively, i = j or i 6= j, and adding the formula (15) for every function symbol F/n
and d ∈ Dn, we obtain a propositional theory Tprop such that the models of T and Tprop correspond.
Also note the similarity between GNF and TNF theories.

Definition 4. A grounding for T with respect to Iσ is a GNF theory Tg over Σdom(Iσ) such that T
and Tg are Iσ-equivalent. Tg is called reduced if it does not contain symbols of σ.

3.2.1 Grounding Algorithms

For the rest of this section, we assume that T is a theory in TNF. As explained in Section 2.2, we can
make this assumption without loss of generality. Below we introduce, as a reference, the grounding
for T with respect to Iσ obtained by the naive grounding algorithm mentioned in the introduction.
We call this grounding the full grounding and define it formally by induction.

Definition 5. The full grounding Grfull(ϕ, Iσ) of a TNF sentence ϕ with respect to Iσ is defined by

Grfull(ϕ) =



ϕ if ϕ is a literal
Grfull(ψ1) ∧Grfull(ψ2) if ϕ is equal to ψ1 ∧ ψ2

Grfull(ψ1) ∨Grfull(ψ2) if ϕ is equal to ψ1 ∨ ψ2∧
d∈D Grfull(ψ[x/d]) if ϕ is equal to ∀x ψ[x]∨
d∈D Grfull(ψ[x/d]) if ϕ is equal to ∃x ψ[x]

(16)

The full grounding for T with respect to Iσ is the theory consisting of the full groundings of all
sentences in T with respect to Iσ.

We denote the full grounding by Grfull(T, Iσ), or by Grfull(T ) if Iσ is clear from the context. It
follows directly from Lemma 3 that Grfull(T, Iσ) is indeed a grounding for T with respect to Iσ. The
size of the full grounding is exponential in the maximal nesting depth of quantifiers in sentences of
T , and polynomial in the domain size of Iσ.
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An inductive definition like (16) can be evaluated in a top-down or bottom-up way. Both ap-
proaches are applied in current grounders. On the one hand, there are grounders that go top-down
through the syntax trees of the sentences in T . When a subformula ϕ of the form ∀x ψ[x], re-
spectively ∃x ψ[x] is reached, the grounding of ψ[x/d] is constructed for every domain constant d,
and then ϕ is replaced by the conjunction, respectively disjunction, of all these groundings. The
grounder of the dlv system (Perri et al., 2007) and the grounders gringo (Gebser et al., 2007) and
GidL (Wittocx, Mariën, & Denecker, 2008b) take this approach.

Other grounders go bottom-up through the syntax trees. For each subformula ϕ[x] a table is
computed consisting of tuples d and corresponding groundings of ϕ[x/d]. These tables are computed
first for atomic formulas and subsequently for compound formulas. For example, let ϕ[x, y, z] be
the formula ψ[x, y] ∧ χ[y, z] and assume the tables for ψ and χ have been computed. Then the
table for ϕ is computed by taking the natural join of the tables for ψ and χ on the value for y, and
constructing the grounding for ϕ[x/dx, y/dy, z/dz] as the (possibly simplified) conjunction of the
groundings for ψ[x/dx, y/dy] and χ[y/dy, z/dz]. Examples of grounders with a bottom-up approach
are lparse (Syrjänen, 2000; Syrjänen, 2009), kodkod (Torlak & Jackson, 2007) and mxg (Mitchell
et al., 2006).

To obtain a reduced grounding for T with respect to Iσ one could first construct the full grounding
and then replace every subformula ϕ over σdom(Iσ) in it by > if Iσ |= ϕ and by ⊥ otherwise. The
result can further be simplified by recursively replacing ⊥∧ ψ by ⊥, >∧ ψ by ψ, etc. The resulting
grounding is the one computed by most current grounding algorithms and is often a lot smaller than
the full grounding. We denote it by Grred(T, Iσ), or by Grred(T ) if Iσ is clear from the context.

Smart grounding algorithms do not use the approach outlined above, but try to avoid creating the
full grounding by substituting ground formulas over the input vocabulary σ as soon as possible. For
example, a grounder with a top-down approach constructs the grounding of ∀x ψ[x], by grounding
all instances ψ[x/d] one by one and then making the conjunction. During this process, all instances
ψ[x/d] that are detected to be certainly true are omitted. As soon as an instance ψ[x/d] is detected
to be certainly false, ⊥ is returned as grounding for ∀x ψ[x].

A grounder using the bottom-up approach can reduce the size of the tables it computes by not
storing tuples that have some default value, e.g., >, as corresponding grounding. In particular, if
ϕ[x] is a formula over σ, it only stores the tuples d such that Iσ 6|= ϕ[x/d]. By reducing the size of
the tables in this way, the reduced grounding can be obtained much more efficiently.

4. Grounding with Bounds

In this section we present our method for reducing grounding size. As mentioned in the introduction,
it is based on computing bounds for subformulas of the input theory T . Each bound for a subformula
ϕ[x] is a formula over the input vocabulary σ. It describes a set of tuples d for which ϕ[x/d] is
certainly true (false) in every model of T expanding any Iσ. The larger the set described by a
bound, the more precise the bound is. Observe that the fact that bounds are formulas over σ means
that they can be evaluated using the given structure Iσ.

In Section 4.1, we formally define bounds. Then we indicate how bounds can be inserted in T
to obtain a new theory T ′. The reduced grounding of T ′ is often a lot smaller than the reduced
grounding of T . The more precise the inserted bounds are, the smaller the grounding of T ′ becomes.
However, we will see that T ′ is in general weaker than T and that additional axioms have to be
added to T ′ to obtain equivalence with T . These additional axioms need to be grounded as well
so that, if we are not careful, the total size of the grounded theory does not decrease at all. In
Section 4.3, we search for sufficient conditions on the bounds to guarantee a smaller grounding.

In Section 4.4, we show how to derive bounds. Our method works in two stages. First, bounds
for all subformulas of T are computed using an any-time algorithm. The longer the algorithm runs,
the more precise bounds are derived. Often, the bounds derived at this stage do not lead to smaller
groundings, for the reason explained in the previous paragraph. In the second stage, bounds that
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satisfy the conditions to guarantee smaller groundings are derived from the ones computed in the
first stage.

4.1 Bounds

We distinguish between two kinds of bounds.

Definition 6. A certainly true bound (ct-bound) over σ with respect to T for a formula ϕ[x] is a
formula ϕct[y] over σ such that y ⊆ x and T |= ∀x (ϕct[y] ⊃ ϕ[x]). Vice versa, a certainly false
bound (cf-bound) over σ with respect to T for ϕ[x] is a formula ϕcf [z] over σ such that z ⊆ x and
T |= ∀x (ϕcf [z] ⊃ ¬ϕ[x]).

We do not mention σ and T if they are clear from the context.
Intuitively, a ct-bound ϕct for ϕ[x] provides for every structure Iσ a lower bound for the set of

tuples for which ϕ is true in every model of T expanding Iσ. Indeed, for every M |=Iσ T we have
that {x | ϕct}Iσ ⊆ {x | ϕ}M . Vice versa, a cf-bound ϕcf provides a lower bound on the set of tuples
for which ϕ is false: {x | ϕcf}Iσ ⊆ {x | ¬ϕ}M for every M |=Iσ T . Observe that the negation of
a ct-bound, respectively cf-bound, gives an upper bound on the set of tuples for which ϕ is false,
respectively true, in at least one model of T expanding Iσ.

Example 4 (Example 1 ctd.). Let ϕ1 be the subformula Sub(x, y) ∧ Sub(x, z) of T1. Then
¬Edge(x, y) ∨ ¬Edge(x, z) is a cf-bound over σ1 with respect to T1 for ϕ1. Indeed, one can de-
rive from (1) that T1 entails

∀x∀y∀z ((¬Edge(x, y) ∨ ¬Edge(x, z)) ⊃ ¬ϕ1) .

Observe that > is a ct-bound for every sentence of T . Indeed, for every sentence ϕ of T , T |= ϕ
and therefore T |= > ⊃ ϕ. Also, ⊥ is a ct-bound as well as a cf-bound for every formula. We call
⊥ the trivial bound. Intuitively, the trivial bound contains no information at all: {x | ⊥}Iσ = ∅ for
every Iσ and x. According to the following definition, it is the least precise bound.

Definition 7. Let ψ[y] and χ[z] be two (ct- or cf-) bounds for ϕ[x]. We say that ψ[y] is more precise
than χ[z] if ∀x (χ[z] ⊃ ψ[y]) is valid.

If ψ is a more precise bound for ϕ[x] than χ, ψ provides a larger lower bound because {x | χ}Iσ ⊆
{x | ψ}Iσ for every Iσ.

Definition 8. A c-map C for T over σ is a mapping from all subformulas ϕ of T to tuples
(Cct(ϕ), Ccf(ϕ)), where Cct(ϕ) and Ccf(ϕ) are respectively a ct- and cf-bound for ϕ over σ with
respect to T .

The notion of precision pointwise extends to c-maps. That is, if C1 and C2 are two c-maps for T ,
then C1 is more precise than C2 iff for every subformula ϕ of T , Cct

1 (ϕ) is more precise than Cct
2 (ϕ)

and Ccf
1 (ϕ) is more precise than Ccf

2 (ϕ).
Let M be a model of T and C a c-map for T over σ. From the definition of ct- and cf-bounds

it follows immediately that for every subformula ϕ[x] of T , both M |= ∀x (Cct(ϕ) ⊃ ϕ) and M |=
∀x (Ccf(ϕ) ⊃ ¬ϕ) hold. We say that a structure satisfies C if it has precisely this property.

Definition 9. Let C be a c-map for T over σ. Then the theory C is defined by

C ={∀x (Cct(ϕ) ⊃ ϕ) | ϕ[x] is a subformula of T}
∪ {∀x (Ccf(ϕ) ⊃ ¬ϕ) | ϕ[x] is a subformula of T}.

A structure I satisfies C if I |= C.
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Clearly, if C is a c-map for T over σ and M |=Iσ T , then M |= C. We call two formulas ϕ[x] and
ψ[x] C-equivalent if {x | ϕ}I = {x | ψ}I for each structure I that satisfies C. Equivalently, ϕ and ψ
are C-equivalent if C |= ∀x (ϕ ≡ ψ).

A c-map is inconsistent if some formula ϕ is both certainly true and false for some tuple, according
to that c-map:

Definition 10. A c-map C for T over σ is inconsistent if ∃x (Cct(ϕ) ∧ Ccf(ϕ)) is valid for some
subformula ϕ[x] of T . A c-map C is Iσ-inconsistent if Iσ |= ∃x (Cct(ϕ)∧Ccf(ϕ)) for some subformula
of T .

Proposition 11. If there exists an Iσ-inconsistent c-map for T over σ, then M 6|=Iσ T for every
M . If there exists an inconsistent c-map for T over σ, then M 6|=Iσ T for every M and Iσ.

Proof. Let C be an Iσ-inconsistent c-map for T over σ and ϕ[x] a subformula of T such that Iσ |=
∃x (Cct(ϕ) ∧ Ccf(ϕ)). Then there exists a tuple of domain elements d such that Iσ[x/d] |= Cct(ϕ)
and Iσ[x/d] |= Ccf(ϕ). Assume towards a contradiction that M |=Iσ T . Then M |= C, and hence
M [x/d] |= Cct(ϕ) ⊃ ϕ and M [x/d] |= Ccf(ϕ) ⊃ ¬ϕ. Since M |σ = Iσ, it follows that M [x/d] |= ϕ and
M [x/d] |= ¬ϕ. This is a contradiction.

To prove the second statement, let C be an inconsistent c-map for T over σ. Then C is a also an
Iσ-inconsistent c-map for every σ-structure Iσ. As such, for any Iσ there is no model of T expanding
Iσ.

4.2 C-Transformation

For the rest of this section, fix a c-map C for T over σ. We now show how to insert the bounds of C
into the sentences of T . This insertion is based on the following lemma.

Lemma 12. Let ϕ[x] be a subformula of T . Then ϕ is C-equivalent to ϕ∨Cct(ϕ) and to ϕ∧¬Ccf(ϕ).

Proof. We have to prove that C |= ∀x (ϕ ≡ (ϕ ∨ Cct(ϕ))) and C |= ∀x (ϕ ≡ (ϕ ∧ ¬Ccf(ϕ))). The
former immediately follows from the fact that C |= ∀x (Cct(ϕ) ⊃ ϕ), the latter from the fact that
C |= ∀x (Ccf(ϕ) ⊃ ¬ϕ) .

As a corollary of lemma 12 we have the following lemma.

Lemma 13. Let ψ be a sentence of T and ϕ a subformula of ψ. If ψ′ is the result of replacing
the subformula ϕ in ψ by ϕ ∨ Cct(ϕ), by ϕ ∧ ¬Ccf(ϕ) or by (ϕ ∧ ¬Ccf(ϕ)) ∨ Cct(ϕ), then M |= ψ iff
M |= ψ′ for every M that satisfies C.

Observe that if Cct(ϕ) = Ccf(ϕ) = ⊥, then both ϕ∨Cct(ϕ) and ϕ∧¬Ccf(ϕ) are logically equivalent
to ϕ. Hence, in this case the sentence ψ′ in Lemma 13 is essentially the sentence ψ. Intuitively,
adding trivial bounds to a sentence ψ does not change the sentence at all.

The bounds assigned by C can be “inserted” in T by applying the transformation of Lemma 13
to all subformulas of T . The result is called a c-transformation of T , and is formally defined as
follows.

Definition 14 (c-transformation). A c-transformation of a subformula ϕ of T with respect to C,
denoted C〈ϕ〉, is the formula (ϕ′ ∧ ¬Ccf(ϕ)) ∨ Cct(ϕ) where ϕ′ is defined by

ϕ′ :=



ϕ if ϕ is an atom
¬C〈ψ〉 if ϕ is equal to ¬ψ
C〈ψ〉 ∧ C〈χ〉 if ϕ is equal to ψ ∧ χ
C〈ψ〉 ∨ C〈χ〉 if ϕ is equal to ψ ∨ χ
∃x C〈ψ〉 if ϕ is equal to ∃x ψ
∀x C〈ψ〉 if ϕ is equal to ∀x ψ

233



Wittocx, Mariën, & Denecker

A c-transformation C〈T 〉 of T with respect to C consists of a c-transformation with respect to C of
every sentence of T .

From Lemma 13, we derive the following.

Lemma 15. T and C〈T 〉 are C-equivalent.

In general T and C〈T 〉 are not logically equivalent. C〈T 〉 may have models that do not satisfy C,
and therefore cannot be models of T . For example, let C be the c-map that assigns (>,⊥) to every
sentence and (⊥,⊥) to every other subformula of T . Then all sentences in C〈T 〉 are of the form
ϕ∨> and hence C〈T 〉 simplifies to >, which is in general not equivalent to T . To obtain from C〈T 〉
a theory that is equivalent to T , we must add C.

Theorem 16. If C is a c-map for T over σ and C the theory defined in Definition 9, then C〈T 〉 ∪ C
is equivalent to T .

Proof. Let M be a model of T . Then M |= C, and because of Lemma 13, M |= C〈T 〉 ∪ C. On the
other hand, if M |= C〈T 〉 ∪ C, then by Lemma 13, M |= T .

Corollary 17. If C is a c-map for T over σ, then T and C〈T 〉 ∪ C are Iσ-equivalent for any σ-
structure Iσ.

4.3 Atom-Based and Atom-Equal C-Maps

Corollary 17 implies that we can compute a grounding for T with respect to Iσ by first computing
a c-map C for T over σ and then grounding C〈T 〉 ∪ C. This approach is beneficial if the reduced
grounding of C〈T 〉 ∪ C is smaller than the reduced grounding of T , and can be constructed at least
as fast. In general these conditions are not satisfied. The more precise c-map C is, the smaller the
reduced grounding of C〈T 〉 becomes, but the larger the reduced grounding of C is:

Proposition 18. If C1 is more precise than C2, then Grred(C1〈T 〉) is smaller than Grred(C2〈T 〉).
Moreover, every subformula that occurs in Grred(C1〈T 〉) also occurs in Grred(C2〈T 〉).

Proof. (Sketch) Let ϕ[x] be a subformula of T and d a tuple of domain elements. It suffices to
show that if C2〈ϕ〉[x/d] is replaced by >, respectively ⊥, when grounding, then this is also the case
for C1〈ϕ〉[x/d]. This can be proven by induction. For the base case, assume ϕ is an atom. Then
C2〈ϕ〉[x/d] is the formula ((ϕ ∧ ¬Ccf

2 (ϕ)) ∨ Cct
2 (ϕ))[x/d]. If this formula is replaced by > or ⊥ when

grounding, there are three possibilities: ϕ is a formula over σ, Iσ[x/d] |= Cct
2 (ϕ) or Iσ[x/d] |= Ccf

2 (ϕ).
Since C1 is more precise than C2, Iσ[x/d] |= Cct

2 (ϕ) implies Iσ[x/d] |= Cct
1 (ϕ) and Iσ[x/d] |= Ccf

2 (ϕ)
implies Iσ[x/d] |= Ccf

1 (ϕ). We conclude that if C2〈ϕ〉[x/d] is replaced by > or ⊥ when grounding,
then this is also the case for C1〈ϕ〉[x/d]. The inductive case is similar.

Proposition 19. If C1 is more precise than C2, then Grred(C1) is larger than Grred(C2).

Proof. (Sketch) Every sentence in C1 is of the form ∀x (Cct
1 (ϕ) ⊃ ϕ) or ∀x (Ccf

1 (ϕ) ⊃ ¬ϕ). The
number of instances of Cct

1 (ϕ) ⊃ ϕ in the reduced grounding of C1 is equal to the number of d such
that Iσ[x/d] |= Cct

1 (ϕ). Similarly for Ccf
1 (ϕ) ⊃ ¬ϕ. Since C2 is less precise than C1, the number

of instances in Grred(C2) of the corresponding sentences ∀x (Cct
2 (ϕ) ⊃ ϕ) and ∀x (Ccf

2 (ϕ) ⊃ ¬ϕ) is
smaller.

A c-map that is useful to reduce grounding size should therefore not be too precise, in order to
avoid a large theory Grred(C), but still be precise enough to decrease the size of Grred(C〈T 〉). In
this section, we present sufficient conditions to ensure these properties. We first define a class of
c-maps that “avoid” a blow-up of Grred(C) by ensuring C can be replaced by an equivalent, smaller
and easy-to-find theory CA. As such, Grred(C) can be replaced by the smaller theory Grred(CA). In
the class we present, CA is a subset of C, namely the set of sentences in C that stem from the atomic
subformulas of T :
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Definition 20. Define the theory CA by

CA ={∀x (Cct(ϕ) ⊃ ϕ) | ϕ[x] is an atomic subformula of T}
∪ {∀x (Ccf(ϕ) ⊃ ¬ϕ) | ϕ[x] is an atomic subformula of T}.

We call C atom-based if CA |= C.

Example 5 (Example 1 ctd.). Let C2 be the c-map that assigns (⊥,¬(Edge(x, y) ∧ Edge(x, z)))
to Sub(x, y) ∧ Sub(x, z) and (⊥,⊥) to every other subformula. C2 is not atom-based, since (C2)A is
equivalent to >, while C2 contains the sentence

∀x∀y∀z (¬(Edge(x, y) ∧ Edge(x, z)) ⊃ ¬(Sub(x, y) ∧ Sub(x, z))). (17)

Let C3 be the c-map that assigns (⊥,¬Edge(x, y)) to Sub(x, y), (⊥,¬Edge(x, z)) to Sub(x, z) and
corresponds to C2 on all other subformulas of T1. C3 is atom-based. Indeed, (C3)A consists of the
(equivalent) sentences

∀x∀y (¬Edge(x, y) ⊃ ¬Sub(x, y)) (18)
∀x∀z (¬Edge(x, z) ⊃ ¬Sub(x, z)) (19)

and C3 consists of the sentences (17), (18) and (19). Both (18) and (19) imply (17), and therefore,
(C3)A |= C3.

Clearly, a c-map assigning (⊥,⊥) to every non-atomic subformula of T is an example of an atom-
based c-map. As such, any c-map can be transformed into an atom-based one by replacing every
bound assigned to a non-atomic subformula by ⊥. In the next section, we show how to compute
more interesting atom-based c-maps.

Observe that Grred(CA) contains only unit clauses. Combining the definition of atom-based
c-map and Theorem 16 immediately gives the following result.

Proposition 21. Let C be an atom-based c-map for T over σ. Then T and C〈T 〉∪CA are equivalent,
and hence Iσ-equivalent for every σ-structure Iσ.

To obtain small groundings using bounds, it is important that the information in the bounds is
exploited wherever possible. In particular, if a ct- or cf-bound ψ is assigned to an atom P (x), then a
similar bound should be assigned to every other atom of the form P (y). We call a c-map atom-equal
if it has exactly this property for all atomic subformulas of T . That is, C is atom-equal if it assigns
essentially the same bounds to atomic subformulas over the same predicate or function symbol:

Definition 22. A c-map C for a TNF theory T over σ is atom-equal if for every predicate symbol
P/n there exist formulas ϕct

P [x1, . . . , xn] and ϕcf
P [x1, . . . , xn] such that for every atom P (y1, . . . , yn)

that occurs in T , Cct(P (y1, . . . , yn)) is equal to ϕct
P [x1/y1, . . . , xn/yn] and Ccf(P (y1, . . . , yn)) is equal

to ϕcf
P [x1/y1, . . . , xn/yn], and similarly for function symbols.

Note that if no predicate or function symbol occurs more than once in a theory T , then every
c-map for T is atom-equal.

Example 6 (Example 1 ctd.). Let T2 be the theory obtained by adding the sentence ∃w Sub(w,w)
to T1. The only predicate that occurs more than once in T2 is the predicate Sub. Let C4 be a c-map
for T2 that assigns the following bounds to the atomic subformulas of T2 over Sub: (⊥,¬Edge(u, v))
to Sub(u, v), (⊥,¬Edge(x, y)) to Sub(x, y), (⊥,¬Edge(x, z)) to Sub(x, z) and (⊥,¬Edge(w,w)) to
Sub(w,w). Then C4 is atom-equal. Indeed, if we take ϕct

Sub = ⊥ and ϕcf
Sub = ¬Edge(x1, x2), then

the conditions of Definition 22 are satisfied for predicate Sub.

235



Wittocx, Mariën, & Denecker

For an atom-equal c-map C, CA in general contains many equivalent sentences. For example,
for the c-map C4 as in Example 6, (C4)A contains amongst others, the equivalent sentences (18)
and (19). It also contains ∀w ¬Edge(w,w) ⊃ ¬Sub(w,w), which is implied by (18). As a result,
if C is an atom-equal c-map, grounding CA in a naive way yields a grounding that contains several
formulas more than once. In the following proposition, we assume this redundancy is removed. In
other words, we assume a grounding algorithm for CA that never adds the same GNF formula more
than once to the grounding. This can be accomplished by grounding instead of CA the sentences
∀x (ϕctb

P ⊃ P (x)) and ∀x (ϕcfb
P ⊃ ¬P (x)) for every predicate symbol P , where ϕctb

P and ϕcfb
P are as

in Definition 22, and similarly for function symbols.

Proposition 23. Let C be an atom-based, atom-equal c-map for a TNF theory T . If T has a model
expanding Iσ, then Grred(C〈T 〉 ∪ CA) is at most as large as Grred(T ).

In the proof, we denote the size of a theory Tg by |Tg|.

Proof. The outline of this proof is as follows. First, we show that every subformula that occurs
in Grred(C〈T 〉), occurs in Grred(T ). Then, we prove that no atom occurring in Grred(CA) occurs
in Grred(C〈T 〉). Next, we show that every atom occurring in Grred(CA) occurs at least once in
Grred(T ). Since we assumed Grred(CA) does not contain any formula more than once, it follows that
|Grred(C〈T 〉)| ≤ |Grred(T )| − |Grred(CA)|, which concludes the proof.

We can directly apply Proposition 18 to show that every subformula of Grred(C〈T 〉) occurs in
Grred(T ): if C′ is the trivial c-map, then Grred(T ) is equal to Grred(C′〈T 〉), and clearly C is more
precise than C′.

We now show that none of the atoms occurring in Grred(CA) occur in Grred(C〈T 〉). Let P (d)
be an atom occurring in Grred(C〈T 〉). Then there is an atomic subformula P (x) of T such that
d 6∈ {x | Cct(P (x))}Iσ and d 6∈ {x | Ccf(P (x))}Iσ . Because C is atom-equal, it follows that for any
subformula P (y) occurring in T , neither d ∈ {y | Cct(P (y))}Iσ nor d ∈ {y | Ccf(P (y))}Iσ . Therefore
P (d) does not occur in Grred(CA).

It remains to show that every atom that occurs in Grred(CA) also occurs in Grred(T ). Let M be a
model of Grred(T ). Such a model exists because we assumed that T has a model expanding Iσ. Let
P (d) be an atom that does not occur in Grred(T ). If P is a predicate of the input vocabulary, then
P (d) does not occur in Grred(CA) either. If on the other hand, P is in the expansion vocabulary, then
the structure M ′ obtained from M by swapping the truth value of P (d) is also a model of Grred(T ).
Since Grred(C〈T 〉 ∪ CA) is Iσ-equivalent to Grred(T ) and P 6∈ σ, it follows that M |= Grred(CA) and
M ′ |= Grred(CA). Because Grred(CA) only contains unit clauses, we conclude that P (d) does not
occur in Grred(CA).

We now have the following algorithm to create a small grounding for T with respect to Iσ: first
compute an atom-based, atom-equal c-map C for T over σ (We will present an algorithm for this in
Section 4.4). If C is Iσ-inconsistent, output ⊥ and stop. Else, output Grred(C〈T 〉 ∪ CA).

It follows from Propositions 11 and 21 that the result of this algorithm is indeed a grounding for
T with respect to Iσ. Observe that the first step of this algorithm is independent of Iσ. If one has
to solve several model expansion problems with a fixed input theory T and input vocabulary σ, but
varying Iσ, it suffices to compute C only once.

To perform the last step of the algorithm, one could apply any off-the-shelf grounder on input
C〈T 〉 ∪ CA.

4.4 Computing Bounds

We now present an algorithm to compute a (non-trivial) c-map C. It is based on our work on
approximate reasoning for FO (Wittocx, Mariën, & Denecker, 2008a). In general the resulting c-
map is neither atom-based nor atom-equal, but an atom-based, atom-equal c-map can be derived
from it.
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4.4.1 Refining C-Maps

Constructing a non-trivial c-map can be done by starting from the least precise c-map, i.e., the one
that assigns (⊥,⊥) to every subformula of T , and then gradually refining it. Each refinement step
consists of three operations:

1. Choose a subformula ϕ of T .

2. Compute from the current c-map C a new ct-bound ϕrct or cf-bound ϕrcf for ϕ. Below, we
elaborate on this step: we present six different ways to obtain new ct- or cf-bounds, called
refinement bounds, from T and C. If the sentences of T are represented by their “syntax trees”,
each node corresponds to a subformula of T . Bottom-up refinement bounds are bounds for a
node computed by considering the bounds assigned by C to its children. Vice versa, top-down
refinement bounds are computed by looking at the parents and siblings of a node. Axiom
refinement bounds are bounds for the roots, i.e., for the sentences of T , while input, copy and
functional refinement bounds are in practice mainly bounds for atomic subformulas of T .

3. Substitute Cct(ϕ) by Cct(ϕ) ∨ ϕrct, respectively Ccf(ϕ) by Ccf(ϕ) ∨ ϕrcf .

According to the following lemma, a refinement step yields a new bound for ϕ that is more precise
than the one assigned by C.

Lemma 24. If ψ and χ are two ct-bounds for ϕ with respect to T , then ψ ∨χ is also a ct-bound for
ϕ. Moreover, ψ ∨ χ is more precise than ψ and more precise than χ. The same holds for cf-bounds.

Proof. Let ψ and χ be two ct-bounds for ϕ[x]. By definition, T |= ∀x (ψ ⊃ ϕ) and T |= ∀x (χ ⊃ ϕ).
Therefore T |= ∀x ((ψ ∨ χ) ⊃ ϕ), which proves that ψ ∨ χ is a ct-bound for ϕ. Since |= ψ ⊃ (ψ ∨ χ)
and |= χ ⊃ (ψ ∨ χ), ψ ∨ χ is a more precise bound than ψ and χ. The proof for cf-bounds is
similar.

We conclude that repeatedly applying refinement steps leads to a more and more precise c-map.
The resulting algorithm is an any-time algorithm. In Section 6 we will discuss a stop criterion for
the algorithm. We will also give examples where it can reach a fixpoint, and examples where it
cannot.

We now present the different ways to obtain refinement bounds.

Input Refinement Let ϕ[x] be a formula over the input vocabulary σ. Since T |= ∀x (ϕ[x] ⊃ ϕ[x])
and T |= ∀x (¬ϕ[x] ⊃ ¬ϕ[x]), it is clear that ϕ[x] is a ct-bound and ¬ϕ[x] a cf-bound for ϕ[x]. We
call these input refinement ct- and cf-bounds.

Axiom Refinement If ϕ is a sentence of T , then > is an axiom refinement ct-bound for ϕ. This
refinement bound states that a sentence of T is true in every model of T .

Bottom-Up Refinement For a compound subformula ϕ, depending on its structure, Table 1
gives the bottom-up refinement ct-bound ϕrct and cf-bound ϕrcf for ϕ with respect to C. It is rather
straightforward to obtain these formulas. For instance, the formula in the bottom-right of the table
indicates that if ϕ is the formula ψ ∨ χ, then ϕ is certainly false for those tuples for which both ψ
and χ are certainly false. Or, more formally, if both T |= Ccf(ψ) ⊃ ¬ψ and T |= Ccf(χ) ⊃ ¬χ, then
T |= Ccf(ψ) ∧ Ccf(χ) ⊃ ¬(ψ ∨ χ).

Top-Down Refinement In the case of top-down refinements, the bounds of a formula ψ are used
to construct refinement bounds for one of its direct subformulas ϕ (i.e., ϕ is one of ψ’s children
in the syntax tree). The top-down refinement ct-bounds ϕrct and cf-bounds ϕrcf for ϕ are given in
Table 2. In this table, the tuple y denotes the free variables of ψ that do not occur in ϕ and x′

denotes a new variable. We illustrate some of these refinement bounds. For further explanation why
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ϕ ϕrct ϕrcf

¬ψ Ccf(ψ) Cct(ψ)
∀x ψ ∀x Cct(ψ) ∃x Ccf(ψ)
∃x ψ ∃x Cct(ψ) ∀x Ccf(ψ)
ψ ∧ χ Cct(ψ) ∧ Cct(χ) Ccf(ψ) ∨ Ccf(χ)
ψ ∨ χ Cct(ψ) ∨ Cct(χ) Ccf(ψ) ∧ Ccf(χ)

Table 1: Bottom-up refinement bounds

ψ ϕrct

¬ϕ Ccf(ψ)
∀x ϕ Cct(ψ)
∃x ϕ Cct(ψ) ∧ ∀x′ (x 6= x′ ⊃ Ccf(ϕ)[x/x′])

ϕ ∧ χ or χ ∧ ϕ ∃y Cct(ψ)
ϕ ∨ χ or χ ∨ ϕ ∃y (Cct(ψ) ∧ Ccf(χ))

ψ ϕrcf

¬ϕ Cct(ψ)
∀x ϕ Ccf(ψ) ∧ ∀x′ (x 6= x′ ⊃ Cct(ϕ)[x/x′])
∃x ϕ Ccf(ψ)

ϕ ∧ χ or χ ∧ ϕ ∃y (Ccf(ψ) ∧ Cct(χ))
ϕ ∨ χ or χ ∨ ϕ ∃y Ccf(ψ)

Table 2: Top-down refinement bounds
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these bounds are in a certain sense the most precise ones that can be obtained, we refer to our work
on approximate reasoning (Wittocx et al., 2008a).

Let ψ be the formula ∀x P (x, y). Recall that intuitively, the ct-bound Cct(ψ) indicates for which
domain elements d, ∀x P (x, d) is certainly true. For such a d and an arbitrary d′ ∈ D, P (d′, d)
must be true. Hence, Cct(ψ) is a ct-bound for ϕ. Indeed, since x does not occur free in Cct(ψ),
T |= ∀x∀y (Cct(ψ) ⊃ P (x, y)) follows from T |= ∀y (Cct(ψ) ⊃ ∀x P (x, y)).

Now let ψ be the formula P (x) ∧ Q(x, y). If we know that P (d1) ∧ Q(d1, d2) is certainly false,
but Q(d1, d2) is certainly true, then P (d1) must be certainly false. Hence, ∃y Ccf(ψ) ∧ Cct(χ) is a
cf-bound for P (x).

Let ψ be the formula ∃x P (x, y) and assume that ∃x P (x, dy) is certainly true, but for all d′x,
except dx, P (d′x, dy) is certainly false. Then we can conclude that P (dx, dy) must be true. This is
precisely what is expressed by the formula Cct(ψ) ∧ ∀x′ (x 6= x′ ⊃ Ccf(ϕ)[x/x′]).

Functional Refinement If ϕ[x, y] is the formula F (x) = y, functional refinement bounds for ϕ
take into account that F is a function. The functional refinement ct-bound ϕrct and cf-bound ϕrcf

are given by:
ϕrct := ∀y′ (y′ 6= y ⊃ Ccf(ϕ)[y/y′])

ϕrcf := ∃y′ (Cct(ϕ)[y/y′] ∧ y 6= y′)

where y′ is a new variable. Informally, the first of these formulas indicates that F (x) is certainly
equal to y if for every y′ 6= y, F (x) is certainly not equal to y′. The second one says that F (x) is
certainly not equal to y if F (x) is certainly equal to y′ for some y′ 6= y.

Copy Refinement Let ϕ[x1, . . . , xn] and ψ[y1, . . . , ym] be two formulas such that ϕ[x1/z, . . . , xn/z]
and ψ[y1/z, . . . , ym/z] are the same, modulo a renaming of their non-free variables. That is, ϕ and
ψ have exactly the same syntax tree, but their variables may differ. Denote by E(ϕ,ψ) the set of all
equalities xi = yj such that for some occurrence of xi in ϕ, yj occurs in the corresponding position
in ψ. Then the formula ∃y1 . . . ∃ym (Cct(ψ) ∧

∧
E(ϕ,ψ)) is a copy refinement ct-bound for ϕ and

the formula ∃y1 . . . ∃ym (Ccf(ψ) ∧
∧
E(ϕ,ψ)) is a copy refinement cf-bound for ϕ. We also say that

these are the copy-refinement bounds from ψ to ϕ.

Example 7. Let ϕ be the formula P (x1, x1)∧∀s Q(x2, s) and ψ the formula P (y1, y2)∧∀t Q(y2, t).
Because ϕ[x1/z, x2/z] is equal to ψ[y1/z, y2/z] modulo the renaming of s by t, these formulas satisfy
the requirement for copy refinement. The set E(ϕ,ψ) is given by {x1 = y1, x1 = y2, x2 = y2} and
hence,

∃y1∃y2 (Cct(ψ) ∧ x1 = y1 ∧ x1 = y2 ∧ x2 = y2)

is a copy refinement ct-bound for ϕ. Observe that if Cct(ψ) does not contain bounded occurrences
of x1 or x2, this formula is equivalent to the simpler formula Cct(ψ)[y1/x1, y2/x1] ∧ x1 = x2.

One-Step Refinements We call ϕrct (ϕrcf) a refinement ct-bound (cf-bound) for ϕ with respect to
C if it is an input, axiom, bottom-up, top-down, functional or copy refinement ct-bound (cf-bound)
for ϕ with respect to C. Lemma 25 states that a refinement ct-bound (cf-bound) is indeed a ct-bound
(cf-bound).

Lemma 25. If ϕrct is a refinement ct-bound for ϕ with respect to C, then it is a ct-bound for ϕ.
Similarly for cf-bounds.

Proof. The proof consists of a simple analysis of all cases. We proved some of the cases when we
introduced input, bottom-up and top-down refinement. The proof of the other cases is similar.

Definition 26. Let C be a c-map for T over σ, ϕ a subformula of T , ϕrct a refinement ct-bound and
ϕrcf a refinement cf-bound for ϕ with respect to C. An assignment Cr that corresponds to C, except
that it assigns Cr(ϕ) = (Cct(ϕ) ∨ ϕrct, Ccf(ϕ)) or Cr(ϕ) = (Cct(ϕ), Ccf(ϕ) ∨ ϕrcf) is called a one-step
refinement of C.
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From Lemma 24 and 25 we obtain the following result.

Proposition 27. Every one-step refinement of a c-map for T over σ is a c-map for T over σ.

As already mentioned at the beginning of this section, one can compute a c-map for T over σ by
first assigning (⊥,⊥) to every subformula of T and then repeatedly applying one-step refinements.
We call this nondeterministic any-time algorithm the refinement algorithm.

Example 8 (Example 1 ctd.). Figure 1 shows a possible run of the refinement algorithm for input
T and σ. Here, the sentences of T1 are represented by their syntax trees. The numbers indicate at
which step the bounds are refined. The trivial bounds are not shown.

In step (1), ct-bound ⊥ for the first sentence is replaced by ⊥ ∨ > using axiom refinement. Of
course, this new bound can be simplified to >. For all following steps, the figure shows simplified
bounds. In step (2) and (3) the bounds of subformula Edge(u, v) are refined by input refinement.
Then, top-down refinement is used to set the ct-bound of ¬Sub(u, v) ∨ Edge(u, v) to >. Next, by
top-down refinement, ¬Edge(u, v) becomes the ct-bound for ¬Sub(u, v) and then the cf-bound for
Sub(u, v).

In a similar way, the cf-bound y 6= z is derived for subformula Sub(x, y) ∧ Sub(x, z) (step (7)
– (12)). Then, by copy refinement, the cf-bounds for Sub(x, y) becomes ∃u∃v (¬Edge(u, v) ∧ u =
x ∧ v = y), wich simplifies to ¬Edge(x, y). Likewise, after simplification, ¬Edge(x, z) is the copy
refinement cf-bound for Sub(x, z). Finally, two steps of bottom-up refinement are used to set the
ct-bound of ¬(Sub(x, y) ∧ Sub(x, z)) to y 6= z ∨ ¬Edge(x, y) ∨ ¬Edge(x, z).

At this step, a fixpoint is reached: every one-step refinement that can be performed yields a
bound that is logically equivalent to the one it tries to refine.

Example 9. Consider a simplified planning problem, where actions should be scheduled such that
if an action ap is a precondition of an action a0, then ap is performed at an earlier time point than
a0. This problem is described by the theory T3, consisting of the sentence

∀a0∀ap∀t0 Prec(ap, a0) ∧Do(a0, t0) ⊃ (∃tp tp < t0 ∧Do(ap, tp)).

From this sentence, it follows that if a chain of i actions must be executed before a0 can be executed,
then a0 cannot be executed before the ith timepoint. Therefore, for any i > 0, the following formula
is a cf-bound for Do(a0, t0) over σ2 = {Prec,<}:

∃a1 · · · ∃ai (Prec(a1, a0) ∧ . . . ∧ Prec(ai, ai−1)) ∧ ¬∃t1 · · · ∃ti (t1 < t0 ∧ . . . ∧ ti < ti−1).

Denote this formula by χi. For any n > 0 and a sufficient number of steps, the refinement algorithm
can derive that ψn := χ1 ∨ . . . ∨ χn is a cf-bound for Do(a0, t0). Clearly, for n1 6= n2, ψn1 is not
logically equivalent to ψn2 . This indicates that the refinement algorithm will not reach a fixpoint
for input T3 and σ2.

As shown by the examples, there are several issues concerning the practical implementation of
the refinement algorithm.

1. Due to the non-deterministic nature of the algorithm, a heuristic is needed to choose which
bounds to refine and which kind of refinement to apply. A reasonable choice is to first apply
all possible axiom and input refinements. Then, top-down refinement for formula ϕ is applied
only if a bound for its parent or one of its siblings in the syntax tree has recently been refined.
Similarly, bottom-up refinement is applied if a bound for one of ϕ’s children has been refined.
Such a strategy was used in Example 1.

2. The bounds should be simplified at regular time points, i.e., they should be replaced by equiv-
alent but smaller formulas. If bounds are not simplified, they can only grow in size, rapidly
leading to formulas of unwieldy size. A simplification algorithm is discussed in Section 6.
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(15) cf: y 6= z∨
¬Edge(x, y) ∨ ¬Edge(x, z)

(16) ct: y 6= z∨
¬Edge(x, y) ∨ ¬Edge(x, z)

¬

∀u, v

Sub(u, v)

Edge(u, v)

∀x, y, z

Sub(x, y) Sub(x, z)

y = z

∨

∨

(3) cf: ¬Edge(u, v)

(6) cf: ¬Edge(u, v)

(1) ct: ⊥ ∨>

(4) ct: >

(7) ct: >

(10) ct: >

(2) ct: Edge(u, v)(5) ct: ¬Edge(u, v)

(11) ct: y 6= z ¬

∧(12) cf: y 6= z

(14) cf: ¬Edge(x, z)(13) cf: ¬Edge(x, y)

(8) ct: y = z

(9) cf: y 6= z

Figure 1: Refining a c-map
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Wittocx, Mariën, & Denecker

3. To be able to detect that a fixpoint has been reached, one needs to find out that two bounds
are equivalent. In general this is undecidable. To detect a fixpoint in at least some cases, one
could use an FO theorem prover (and restrict its running time).

In case a fixpoint cannot be reached or detected, another stop criterion is needed. For example,
one could restrict the number of one-step refinements, or the total time the refinement algo-
rithm can use. Another stop criterion, and a simple fixpoint check are discussed in Section 6.

4.4.2 Extracting an Atom-Based and Atom-Equal C-Map

The c-maps obtained by the refinement algorithm are in general neither atom-based nor atom-equal.
To derive from an arbitrary c-map C an atom-equal c-map that is at least as precise as C, we first
collect for each predicate P all bounds that are assigned to occurrences of P in the theory. Then the
disjunction of these bounds is assigned as new bound to each occurrence of P . Because all bounds
assigned to atoms over P are then essentially the same, we have an atom-equal c-map. We now
present this method more formally:

Definition 28. Let C be a c-map for a TNF theory T and P/n a predicate. Let P (x11, . . . , x1n),
. . . , P (xm1, . . . , xmn) be all occurrences of P in T and let y1, . . . , yn be n new variables. Denote by
ϕict, respectively ϕicf , the formulas

∃x′i1 · · · ∃x′in (Cct(P (xi1, . . . , xin))[xi1/x′i1, . . . , xin/x
′
in] ∧ y1 = x′i1 ∧ . . . ∧ yn = x′in)

and

∃x′i1 · · · ∃x′in (Ccf(P (xi1, . . . , xin))[xi1/x′i1, . . . , xin/x
′
in] ∧ y1 = x′i1 ∧ . . . ∧ yn = x′in),

where the variables x′ij are new variables. The ct-copy closure of P (xk1, . . . , xkn) with respect to
C is the disjunction

∨
1≤i≤m ϕ

i
ct[y1/xk1, . . . , yn/xkn]. The cf-copy closure of P (xk1, . . . , xkn) is the

formula
∨

1≤i≤n ϕ
i
cf [y1/xk1, . . . , yn/xkn]. The copy-closure for atoms of the form F (x) = y is defined

similarly.

We denote the ct-copy closure of an atom ϕ by copyCct(ϕ), and its cf-copy closure by copyCcf(ϕ).

Definition 29. The copy-closure of C is the c-map that assigns (copyCct(ϕ), copyCcf(ϕ)) to every
atomic subformula ϕ of T , and corresponds to C on all other subformulas.

Example 10. Let T4 be the theory consisting of the sentences ∀x (P (x) ⊃ R(x)) and ∀y (Q(y) ⊃
R(y)) and let C5 be a c-map over σ3 = {P,R} that assigns (P (x),⊥) to R(x) and (Q(y),⊥) to R(y).
The copy-closure of C5 assigns

((∃x′ (P (x′) ∧ x′ = x)) ∨ (∃x′ (Q(x′) ∧ x′ = x)), (∃x′ (⊥ ∧ x′ = x)) ∨ (∃x′ (⊥ ∧ x′ = x)))

to R(x). These bounds simplify to (P (x) ∨ Q(x),⊥). Likewise, the copy-closure of C5 assigns to
R(y) bounds that simplify to (P (y) ∨Q(y),⊥).

Proposition 30. The copy-closure of a c-map is an atom-equal c-map.

Proof. This follows immediately from the definition of atom-equal c-map since for every predicate
symbol P (or function symbol F ), the same bounds, namely the formulas

∨
1≤i≤n ϕ

i
ct and

∨
1≤i≤n ϕ

i
cf

mentioned in definition 28, are assigned to every atom over P (respectively F ).

Recall that a c-map C is atom-based if C is implied by CA, i.e., by all sentences in C that stem from
bounds for atomic subformulas of T . A method to derive an atom-based c-map from an arbitrary
c-map is based on the following observation. Let C be a c-map for T over σ and let ϕ[x] be the
subformula χ ∧ ψ of T . If Cct(ϕ) is the formula Cct(χ) ∧ Cct(ψ), i.e., it is the bottom-up refinement
ct-bound for ϕ with respect to C, then T |= ∀x (Cct(ϕ) ⊃ ϕ) is implied by T |= ∀x (Cct(χ) ⊃ χ)
and T |= ∀x (Cct(ψ) ⊃ ψ). It is easy to check that the same property holds for all other bottom-up
refinement bounds:
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Lemma 31. Let C be a c-map for T over σ and ϕ[x] a subformula of T , and let ϕrct and ϕrcf be the
bottom-up refinement bounds for ϕ with respect to C. If S is the set of direct subformulas of ϕ, i.e.,
its children in the syntax tree, and T ′ is the theory given by

T ′ := {∀y Cct(ψ) ⊃ ψ | ψ[y] ∈ S} ∪ {∀y Ccf(ψ) ⊃ ¬ψ | ψ[y] ∈ S},

then T ′ |= ∀x ϕrct ⊃ ϕ and T ′ |= ∀x ϕrcf ⊃ ¬ϕ.

Definition 32. A c-map C for T is called a bottom-up c-map if for every non-atomic subformula
ϕ of T , Cct(ϕ) is the bottom-up ct-refinement bound for ϕ with respect to C, and Ccf(ϕ) is the
bottom-up cf-refinement bound for ϕ with respect to C.

The next proposition follows directly from Lemma 31.

Proposition 33. A bottom-up c-map C is atom-based.

Observe that a bottom-up c-map C for T is completely determined by the bounds it assigns to
the atomic subformulas of T . Hence, given a c-map, one can derive a bottom-up c-map from it by
retaining the bounds for the atomic subformulas and then computing the corresponding bottom-up
c-map. We conclude that we can derive an atom-based, atom-equal c-map from an arbitrary c-map
by deriving an atom-based c-map from its copy-closure.

Example 11 (Example 1 ctd.). Let C6 be the fixpoint shown in Figure 1. This c-map is atom-equal
(and equivalent to its copy-closure). The bottom-up c-map derived from C6 is shown in Figure 2.
Observe that this c-map is less precise than C6. For instance, the cf-bound assigned by C6 to the
conjunction Sub(x, y) ∧ Sub(x, z) is a disjunction of two bounds, namely bound y 6= z, obtained by
top-down refinement, and bound ¬Edge(x, y)∨¬Edge(x, z), obtained by bottom-up refinement. In
the c-map of Figure 2, only the latter bound is present.

For the c-map in Figure 2, the c-transformation of Sub(x, y) ∧ Sub(x, z) is given by

((Sub(x, y) ∧ Edge(x, y)) ∧ (Sub(x, z) ∧ Edge(x, z))) ∧ (Edge(x, y) ∧ Edge(x, z)).

This formula contains repeated constraints Edge(x, y) and Edge(x, z) on the variables x, y and z.
In general bottom-up c-maps produce many such repetitions. These could easily be eliminated to
speed up the grounding process, but it depends on the used grounding algorithm which ones are
best deleted.

5. Inductive Definitions

Although all NP problems can be cast as MX(FO) problems, modelling such problems using pure
FO can be extremely complex. In practice, modelling is often enhanced considerably by using
extensions of FO with constructs such as inductive definitions, subsorts, aggregates, partial functions
and arithmetic. For this enriched language we have implemented the model generator idp (Wittocx
et al., 2008b; Wittocx & Mariën, 2008).2

In this paper we focus on grounding of the extension of FO with inductive definitions. It is
well-known that in arbitrary domains, inductively definable concepts such as “reachability” are not
FO-expressible. In finite domains however, they can be encoded (e.g., by encoding the fixpoint
construction), but the process is tedious and leads to large theories. In this section we will extend
the refinement algorithm to FO(ID) (Denecker, 2000; Denecker & Ternovska, 2008). This language
extends FO with a construct for representing some of the most common types of inductive defini-
tions: monotone induction and non-monotone induction such as induction over a well-founded order
and iterated inductive definitions. Such definitions have many applications in real-life computa-
tional problems, e.g., in planning problems or problems involving reachability or dynamic systems
(Denecker & Ternovska, 2008, 2007). At the same time, FO(ID) is also an integration of FO and
logic programming.

2. idp can be downloaded from http://dtai.cs.kuleuven.be/krr/software.html
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cf: ¬Edge(x, y) ∨ ¬Edge(x, z)

ct: ¬Edge(x, y) ∨ ¬Edge(x, z)

¬

∀u, v

Sub(u, v)

Edge(u, v)

∀x, y, z

Sub(x, y) Sub(x, z)

y = z

∨

∨

cf: ¬Edge(u, v)

cf: ¬Edge(u, v)

ct: >

ct: >

ct: Edge(u, v)ct: ¬Edge(u, v)

¬

∧

cf: ¬Edge(x, z)cf: ¬Edge(x, y)

ct: y = z

cf: y 6= z

ct: y = z ∨ ¬Edge(x, y) ∨ ¬Edge(x, z)

ct: ∀x∀y∀z (y = z ∨ ¬Edge(x, y) ∨ ¬Edge(x, z))

Figure 2: A bottom-up c-map
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5.1 Three-Valued Structures

While FO(ID) has a standard two-valued semantics, three-valued structures are used in the formal
semantics of definitions. Indeed, an inductive definition defines a set by describing how to construct
it. In the semantics, the intermediate stages of the construction are recorded by three-valued sets,
representing for any object whether it belongs to the set or not, or whether this has not yet been
derived. We therefore recall the basic concepts of three-valued logic.

We denote the truth values true, false and unknown by respectively t, f and u. A three-valued
Σ-interpretation Ĩ consists of a domain D and

• a domain element xĨ ∈ D for each variable x;

• a function P Ĩ : Dn → {t, f,u} for each predicate symbol P/n;

• a function F Ĩ : Dn → D for each function symbol F/n.

If P Ĩ(d) 6= u for every tuple d of domain elements and predicate symbol P , then Ĩ is two-valued:
it corresponds to the interpretation I that assigns d ∈ P I iff P Ĩ(d) = t for every predicate P and
corresponds to Ĩ on all other symbols.

The truth order ≤ on the set of truth values is induced by f < u < t, the precision order ≤p is
induced by u <p f and u <p t. These orders are extended to three-valued Σ-structures: if Ĩ and J̃
correspond on ΣF , then we define

• Ĩ ≤ J̃ iff P Ĩ(d) ≤ P J̃(d) for every d and P ;

• Ĩ ≤p J̃ iff P Ĩ(d) ≤p P J̃(d) for every d, P .

Observe that two-valued structures are maximally precise three-valued structures. On the other
hand, the least precise three-valued structure assigns P Ĩ(d) = u for every d and P .

We define the truth value Ĩ(ϕ) of a formula ϕ in a three-valued interpretation Ĩ with domain D
by the standard Kleene semantics:

• Ĩ(P (t1, . . . , tn)) := P Ĩ(tĨ1, . . . , t
Ĩ
n);

• Ĩ(ϕ1 ∨ ϕ2) := lub≤{Ĩ(ϕ1), Ĩ(ϕ2)};

• Ĩ(ϕ1 ∧ ϕ2) := glb≤{Ĩϕ1, Ĩ(ϕ2)};

• Ĩ(∃x ϕ) := lub≤{Ĩ[x/d](ϕ) | d ∈ D};

• Ĩ(∀x ϕ) := glb≤{Ĩ[x/d](ϕ) | d ∈ D}.

An atom of the form P (d), where d is a tuple of domain constants, is called a domain atom. For
a truth value v and a domain atom P (d), we denote by Ĩ[P (d)/v] the interpretation that assigns
v to P (d) and corresponds to Ĩ on all other symbols. This notation is extended to sets of domain
atoms.

5.2 Inductive Definitions

An FO(ID) theory is a set of FO sentences and definitions. A definition ∆ is a finite set of rules of
the form3

∀x (P (x)← ϕ),

3. Usually, nested terms are allowed as arguments of P , but to facilitate the presentation, we only allow variables as
arguments in this paper.
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where P is a predicate and ϕ an FO formula. The free variables of ϕ should be among x. P (x) is
called the head of the rule, ϕ the body. Predicates that occur in the head of a rule of ∆ are called
defined predicates of ∆. The set of all defined predicates of ∆ is denoted Def(∆). All other symbols
are called open with respect to ∆. The set of open symbols of ∆ is denoted by Open(∆).

Observe that an FO(ID) theory has the appearance of an FO theory augmented with a collection
of logic programs. As illustrated by Denecker and Ternovska (2008), this entails that FO(ID)’s
definitions can not only be used to represent mathematical concepts, but also for the sort of common
sense knowledge that is often represented by logic programs, such as (local forms of) the closed world
assumption, inheritance, exceptions, defaults, causality, etc.

The semantics of definitions is given by their well-founded model (Van Gelder, Ross, & Schlipf,
1991). As argued by Denecker and Ternovska (2008), the well-founded semantics correctly formalizes
the semantics of all of the above mentioned types of inductive definitions in mathematics. We borrow
the presentation of this semantics from Denecker and Vennekens (2007).

Definition 34. Let ∆ be a definition and Ĩ a three-valued structure. A well-founded induction for
∆ above Ĩ is a sequence 〈J̃ξ〉0≤ξ≤α of three-valued structures such that

1. J̃0 assigns P J̃0(d) = u, if P is a defined predicate and corresponds to Ĩ on the open symbols;

2. For each limit ordinal λ ≤ α, J̃λ = lub≤p{J̃ξ | ξ < λ};

3. For every ordinal ξ, J̃ξ+1 relates to J̃ξ in one of the following ways:

(a) J̃ξ+1 = J̃ξ[P (d)/t] for some domain atom P (d) such that P J̃ξ(d) = u and for some rule
∀x (P (x)← ϕ) in ∆, J̃ξ[x/d](ϕ) = t.

(b) J̃ξ+1 = J̃ξ[U/f], where U is a set of domain atoms, such that for each P (d) ∈ U , P J̃ξ(d) =
u and for all rules ∀x (P (x)← ϕ) in ∆, J̃ξ+1[x/d](ϕ) = f.

Intuitively, (a) says that a domain atom P (d) can be made true if there is a rule with P (x)
as head and body ϕ such that ϕ[x/d] is already true. On the other hand (b) explains that P (d)
can be made false if there is no possibility of making a corresponding body true, except by circular
reasoning. The set U , commonly called an unfounded set, is a witness to this: making all atoms in
U false also makes all corresponding bodies false.

A well-founded induction is called terminal if it cannot be extended anymore. The limit of a
terminal well-founded induction is its last element. Denecker and Vennekens (2007) show that each
terminal well-founded induction for ∆ above Ĩ has the same limit, which corresponds to the well-
founded model of ∆ extending Ĩ|Open(∆), and is denoted by wfm∆(Ĩ). The well-founded model is
three-valued in general.

A two-valued structure I satisfies a definition ∆ if I = wfm∆(I). An FO(ID) theory T is a
finite set of FO sentences and definitions. I satisfies T if it satisfies all definitions and sentences
in T . If ∆ is a definition over Σ and J a Σ|Open(∆)-structure, there exists at most one expansion
I of J to Σ such that I |= ∆. A definition is called total if for any Σ|Open(∆)-structure J there
is precisely one expansion I of J to Σ that satisfies ∆. Intuitively, total definitions correspond to
well-formed definitions: for every defined predicate P , they define for each tuple of domain elements
whether d belongs to the relation denoted by P or not. If a definition is not total, this typically
indicates an error. Hence in practice, all definitions that occur in MX(FO(ID)) specifications are
total. For example, this is the case for all MX(FO(ID)) specifications used in the second ASP-
competition (Denecker, Vennekens, Bond, Gebser, & Truszczyński, 2009). In general, checking
whether a definition is total is undecidable. However, there are several broad and easily recognizable
classes of total definitions. For example, all monotone and stratified definitions are total.

We give some examples of definitions and MX(FO(ID)) problems.
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Example 12. Definition ∆1 defines relation TC to be the transitive closure of relation R.

∆1 =
{

∀x∀y (TC(x, y)← R(x, y)).
∀x∀y (TC(x, y)← ∃z (TC(x, z) ∧ TC(z, y))).

}
Example 13. To cast the problem of finding a Hamiltonian path in a given graph as an MX(FO(ID))
problem, let

σ = 〈{Edge/2}, ∅〉
Σ = {σP ∪ {Ham/2, Reached/1}, {Start/0}〉.

Predicate Ham represents the edges that form the path and Reached the vertices that are in the
path. The constant Start represents the first vertex of the path. Let T be the theory

∀v1∀v2 (Ham(v1, v2) ⊃ Edge(v1, v2)).
∀v1∀v2∀v3 (Ham(v1, v2) ∧Ham(v1, v3) ⊃ v2 = v3).
∀v1∀v2∀v3 (Ham(v1, v3) ∧Ham(v2, v3) ⊃ v1 = v2).
∀v ¬Ham(v, Start).
∀v Reached(v).{

∀v (Reached(v)← v = Start).
∀v (Reached(v)← ∃w (Reached(w) ∧Ham(w, v))).

}
.

Then model expansion for input structure T and input vocabulary σ expresses the Hamiltonian path
problem: in every model M |=Iσ T , the collection of edges (v1, v2) ∈ HamM forms a Hamiltonian
path in the graph represented by EdgeIσ .

A well-known concept that we will use later on in this section is the completion of a definition.
The completion of a definition ∆ is an FO theory that is weaker than ∆, and is defined as follows.

Definition 35. The completion of a definition ∆ is the FO theory that contains for every P ∈ Def(∆)
the sentence

∀x (P (x) ≡ ((x = y1 ∧ ϕ1) ∨ . . . ∨ (x = yn ∧ ϕn))),

where ∀y1 (P (y1)← ϕ1), . . . , ∀yn (P (yn)← ϕn) are the rules in ∆ with P in the head.

We denote the completion of ∆ by Comp(∆). Clearly, every body of a rule in ∆ occurs in
Comp(∆). If T is a theory then we denote by Comp(T ) the result of replacing in T all definitions
by their completion. The following result states that the completion of T is weaker than T .

Theorem 36 (Denecker & Ternovska, 2008). ∆ |= Comp(∆) and T |= Comp(T ) for every definition
∆ and FO(ID) theory T .

The SAT(ID) problem is the problem of deciding whether a given propositional FO(ID) theory
is satisfiable. Currently there exist three SAT(ID) solvers. IDsat (Pelov & Ternovska, 2005) works
by translating a SAT(ID) problem into an equivalent SAT problem and then calls a SAT solver.
MidL (Mariën, Wittocx, & Denecker, 2007) and MiniSAT(ID) (Mariën, Wittocx, Denecker, &
Bruynooghe, 2008) take a native approach. Mariën (2009) provides details on the specific form
of propositional FO(ID) theories accepted by these solvers, and a method to transform arbitrary
propositional FO(ID) theories into this form.

5.3 Grounding Inductive Definitions

Like MX(FO) problems, MX(FO(ID)) problems can be reduced to SAT(ID) problems by grounding.
In this section we extend grounding and the refinement algorithm of Section 4 to FO(ID). Without
loss of generality (Mariën, Gilis, & Denecker, 2004), we assume that none of the predicates of the
input vocabulary σ is defined by a definition in T , and no predicate is defined by more than one
definition. Moreover, we assume that every rule body is in TNF.
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5.3.1 Full and Reduced Grounding

Let T be an FO(ID) theory. As for FO, a grounding Tg for T with respect to Iσ is a propositional
FO(ID) theory that is Iσ-equivalent to T . We extend the notion of full and reduced grounding to
definitions.

Definition 37. The full grounding of a rule ∀x P (x) ← ϕ with respect to Iσ is the set {P (d) ←
Grfull(ϕ[x/d]) | d ∈ Dn}, where n is the number of variables in x. Similarly, the reduced grounding
of ∀x (P (x) ← ϕ) is the set {P (d) ← Grred(ϕ[x/d]) | d ∈ Dn}. The full (reduced) grounding of a
definition ∆ is the union of the full (reduced) groundings of all rules in ∆.

The full (reduced) grounding of an FO(ID) theory T is the set of the full (reduced) groundings
of all sentences and definitions in T .

5.3.2 Definitions Depending Only on σ

We say that a definition ∆ depends on expansion symbols if Open(∆) 6⊆ σ. If ∆ does not depend on
expansion symbols, then the interpretation of every predicate in Def(∆) is the same in every model
M of T expanding Iσ. Indeed, for such a definition and any M |=Iσ T , M |Open(∆) is completely
determined by Iσ. Therefore also wfm∆(M) only depends on Iσ.

The deductive database literature describes several algorithms to compute wfm∆(M) for a def-
inition that does not depend on expansion symbols. Most of them are only defined for definitions
where every rule body is a conjunction of atoms. But some of them, such as the Rete algorithm
(Forgy, 1982) and the semi-naive evaluation technique (Ullman, 1988), can easily be adapted to
handle full FO bodies.

Assume ∆ is a definition that does not depend on expansion symbols. Let τ be the vocabulary
〈σP ∪Def(∆), σF 〉 and Iτ the τ -structure such that Iτ |σ = Iσ and Iτ |= ∆. Then clearly, M |=Iσ T
iff M |=Iτ T for any structure M . However, a grounding for T \∆ with respect to τ can be obtained
more efficiently, since Grred(T \∆, Iτ ) is necessarily smaller than Grred(T, Iσ). Indeed, T \ ∆ is a
subtheory of T , and Grred(T \∆, Iτ ) does not contain symbols of Def(∆), while Grred(T, Iσ) does.

Observe also that the set of c-maps for T over τ is a superset of the set of c-maps for T over σ,
since the bounds assigned by the former c-maps are formulas over τ , instead of only over σ. As such,
c-maps computed by the refinement algorithm for T over τ might yield more efficient grounding
compared to c-maps computed for T over σ.

5.3.3 Bounds for Definitions

We now extend the refinement algorithm to FO(ID).

Definition 38. A formula ϕ is a subformula of an FO(ID) theory T if it is a subformula of a sentence
in T or a subformula of a rule body in a definition of T . A c-map for T over σ is an assignment of
a ct- and cf-bound over σ to every subformula of T .

Note that a c-map does not assign bounds to heads of rules in a definition.
Our strategy to compute a c-map for an FO(ID) theory T is simple: construct the completion of

T and apply the refinement algorithm on Comp(T ) to obtain a c-map C for Comp(T ). The restriction
of C to the subformulas of T is a c-map for T . Indeed, every subformula ϕ of T occurs in Comp(T )
and since T |= Comp(T ), Comp(T ) |= ∀x (Cct(ϕ) ⊃ ϕ) and Comp(T ) |= ∀x (Ccf(ϕ) ⊃ ¬ϕ), also
T |= ∀x (Cct(ϕ) ⊃ ϕ) and T |= ∀x (Ccf(ϕ) ⊃ ¬ϕ).

In order to use a c-map for grounding, we lift the definition of c-transformation to FO(ID)
theories.

Definition 39. Let C be a c-map for a theory T and ∆ a definition in T . The c-transformation
of a rule ∀x (P (t) ← ϕ) of ∆ is given by ∀x (P (t) ← C〈ϕ〉). The c-transformation C〈∆〉 of a
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definition ∆ is the set of c-transformations of rules in ∆. The c-transformation of T is the set of the
c-transformations of the formulas and definitions in T .

We also lift the notion of C-equivalence to definitions.

Definition 40. Two definitions ∆1 and ∆2 are C-equivalent if for every structure I that satisfies C,
I |= ∆1 iff I |= ∆2.

However, Lemma 15 does not hold for FO(ID) theories: for a definition ∆, C〈∆〉 is not necessarily
C-equivalent to ∆.

Example 14. Let σ be the empty vocabulary and T the theory

P

{P ← P}.

This theory is unsatisfiable because the definition {P ← P} has only one model, in which P is false.
This contradicts the sentence in T . Clearly, > is a ct-bound for P . If C is a c-map for T over σ
assigning (>,⊥) to P , then C〈{P ← P}〉 = {P ← (P ∧ ¬⊥) ∨ >}, which is equivalent to {P ← >}.
This definition has only a model that assigns true to P . Since this model also satisfies C, we conclude
that {P ← P} and C〈{P ← P}〉 are not C-equivalent.

Definition 41. Let ∆ a definition of T . We call c-map C for T ∆-tolerant if C〈∆〉 and ∆ are
C-equivalent. We call C T -tolerant if it is ∆-tolerant for every definition ∆ of T .

In the following, we say that a formula occurs positively (negatively) in a definition ∆ if it occurs
positively (negatively) in a body of a rule in ∆.

Proposition 42. Let ∆ be a definition of a theory T . Then a c-map C for T over σ is ∆-tolerant
if for every subformula ϕ of ∆ that contains a predicate P ∈ Def(∆), the following hold:

1. If ∆ is not total, then Cct(ϕ) = Ccf(ϕ) = ⊥.

2. If ϕ occurs positively in ∆ and P occurs positively in ϕ, then Cct(ϕ) = ⊥.

3. If ϕ occurs negatively in ∆ and P occurs negatively in ϕ, then Ccf(ϕ) = ⊥.

Note that the c-map of Example 14 violates the second condition. We will prove Proposition 42
by inductively constructing for any structure I that satisfies C, a sequence of three-valued structures
that is a well-founded induction above I for both ∆ and C〈∆〉. If I |= ∆, we show that a terminal
sequence with this property can be constructed, proving that I also satisfies C〈∆〉. If I 6|= ∆, a
sequence with this property can be constructed such that its last element is not less precise than I.
This shows that I does not satisfy C〈∆〉 either. To construct a well-founded induction for both ∆
and C〈∆〉, we prove that each step that extends a well-founded induction for ∆ is also a valid step
to extend it for C〈∆〉. Step (3a) in Definition 34 is covered by Lemma 43, step (3b) by Lemma 44.

Lemma 43. Let I be a structure that satisfies a c-map C for T over σ and let J̃ ≤p I be a three-
valued interpretation such that J̃ |σ is two-valued. Then J̃(ϕ) ≤p J̃(C〈ϕ〉) for every subformula ϕ of
T .

Proof. We prove this lemma by induction. First assume ϕ[x] is an atom. Then C〈ϕ〉 is the formula
(ϕ∧¬Ccf(ϕ))∨Cct(ϕ). If J̃(ϕ) = u, then clearly J̃(C〈ϕ〉) ≥p J̃(ϕ). If J̃(ϕ) = f, then J̃(Cct(ϕ)) must
be false, since I |= C. Therefore J̃(C〈ϕ〉) = f. If on the other hand, J̃(ϕ) = t, then J̃(Ccf(ϕ)) = f
and hence, J̃(C〈ϕ〉) = t.

The inductive cases are all very similar to the base case. We prove one of them. Assume ϕ is
the formula ψ ∨ χ. Then C〈ϕ〉 is the formula ((C〈ψ〉 ∨ C〈χ〉) ∧ ¬Ccf(ϕ)) ∨ Cct(ϕ). If J̃(ϕ) = f, then
J̃(ψ) = J̃(χ) = f, and by induction J̃(C〈ψ〉) = J̃(C〈χ〉) = f. Since also J̃(Cct(ϕ)) = f, we conclude
that J̃(C〈ϕ〉) = f. If on the other hand J̃(ϕ) = t, then J̃(Ccf(ϕ)) = f. Also J̃(ψ) = t or J̃(χ) = t,
and therefore J̃(C〈ψ〉) = t or J̃(C〈χ〉) = t. Hence J̃(C〈ϕ〉) = t.
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Lemma 44. Let ∆ be a definition of T and C a c-map for T over σ that satisfies the three conditions
of Proposition 42. Let I be a structure that satisfies C and J̃ ≤p I a three-valued interpretation such
that J̃ |σ is two-valued. If U is a set of domain atoms defined in ∆ and unknown in J̃ , then for every
subformula ϕ of ∆ such that J̃ [U/f](ϕ) 6= u, the following hold:

• J̃ [U/f](ϕ) ≤ J̃ [U/f](C〈ϕ〉) if ϕ occurs negatively in ∆;

• J̃ [U/f](ϕ) ≥ J̃ [U/f](C〈ϕ〉) if ϕ occurs positively in ∆;

Proof. Denote H̃ := J̃ [U/f]. If J̃(ϕ) 6= u, the result follows immediately from Lemma 43.
We prove the case where J̃(ϕ) = u by induction. Assume that ϕ is an atom P (x). Since J̃(ϕ) = u

and H̃(ϕ) 6= u, we know that P (xJ̃) ∈ U and H̃(ϕ) = f. Therefore H̃(C〈ϕ〉) = H̃((ϕ ∧ ¬Ccf(ϕ)) ∨
Cct(ϕ)) = H̃(Cct(ϕ)). If ϕ occurs negatively in ∆, then we have to prove that H̃(ϕ) ≤ H̃(C〈ϕ〉).
Since H̃(ϕ) = f, this inequality holds regardless the value of Cct(ϕ) and Ccf(ϕ) in H̃. If on the
other hand, ϕ occurs positively, we have to prove that H̃(ϕ) ≥ H̃(C〈ϕ〉). Since H̃(ϕ) = f and
H̃(C〈ϕ〉) = H̃(Cct(ϕ)), this inequality can only hold if H̃(Cct(ϕ)) = f. Because the conditions on C
ensure that Cct(ϕ) = ⊥, we can conclude that indeed H̃(Cct(ϕ)) = f.

We omit the inductive cases, since they are very similar to the base case.

Proof of Proposition 42. Let I be a structure that satisfies C. We have to prove that I |= ∆ iff
I |= C〈∆〉. If ∆ is not total, the proof is trivial, since then ∆ and C〈∆〉 are equivalent.

Now assume that ∆ is total and let 〈J̃ξ〉0≤ξ≤α be a well-founded induction for both ∆ and C〈∆〉
above I. We will prove that if J̃α is not two-valued, and J̃α <p I, there exists a J̃α+1 such that
〈J̃ξ〉0≤ξ≤α+1 is again a well-founded induction for ∆ and C〈∆〉. Also observe that if λ is a limit
ordinal and 〈J̃ξ〉0≤ξ<λ is a well-founded induction for both ∆ and C〈∆〉, then the same holds for
〈J̃ξ〉0≤ξ≤λ.

This is sufficient to conclude the proof. Indeed, if I |= ∆, we can keep on extending the sequence
until we end up in I, and derive that I |= C〈∆〉. If I 6|= ∆, then we will eventually extend the
well-founded induction with a structure J̃α+1 6≤p I. But then, the well-founded model of C〈∆〉 will
also be more precise than J̃α+1, which shows that I 6|= C〈∆〉.

Assume that J̃α is not two-valued and J̃α <p I. Because ∆ is total, there exists a J̃α+1 such
that 〈J̃ξ〉0≤ξ≤α+1 is a well-founded induction for ∆. We have to prove that it is also a well-founded
induction for C〈∆〉. There are two possibilities:

• J̃α+1 = J̃α[P (d)/t] for some domain atom P (d) and there is a rule ∀x (P (x) ← ϕ) in ∆
such that J̃α[x/d](ϕ) = t. By Lemma 43, also J̃α[x/d](C〈ϕ〉) = t. Hence, 〈J̃ξ〉0≤ξ≤α+1 is a
well-founded induction for C〈∆〉.

• J̃α+1 = J̃α[U/f] and for every P (d) ∈ U and rule ∀x (P (x) ← ϕ) in ∆, J̃α+1[x/d](ϕ) = f.
By Lemma 44, we conclude that also J̃α+1[x/d](C〈ϕ〉) = f. Therefore, 〈J̃ξ〉0≤ξ≤α+1 is a well-
founded induction for C〈∆〉.

From Proposition 42 we derive the following procedure to compute a T -tolerant c-map for a
theory T . First compute a c-map C for T that is not necessarily T -tolerant. Then, for every
definition ∆ of T and every subformula ϕ of ∆, replace Cct(ϕ) and Ccf(ϕ) by ⊥, if this is required
to satisfy the conditions of Proposition 42.

We conclude that the following algorithm produces a correct grounding for FO(ID) theory T :

1. Compute a c-map C for T over σ.

2. If C is inconsistent with respect to Iσ, output ⊥ and stop.

3. Else, derive an atom-based, T-tolerant c-map C′ from C.

4. Output Grred(C′〈T 〉 ∪ C′A), using any off-the-shelf grounder for FO(ID).
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6. Implementation and Experiments

So far we have focussed mostly on grounding size. Proposition 23 guaranteed that grounding with
bounds produces smaller groundings. In this section we are concerned with the efficiency and
practical implementation of grounding with bounds. A first issue was mentioned at the end of
Section 4.4.2: an atom-based c-map C computed by the refinement algorithm contains many repeated
constraints on variables. To ground C〈T 〉 efficiently, such repetitions should be avoided as much as
possible. Secondly, an efficient grounder consults bounds as soon as possible. In particular, it
should use bounds to avoid unnecessary instantiations of variables, rather than to remove these
instantiations afterwards. As a case study, we will show in detail how to adapt a basic “top-down
style” grounding algorithm to efficiently exploit bounds. We sketch how the same principles can be
applied for a “bottom-up style” grounder.

In the second part of this section we discuss some aspects of implementing the refinement algo-
rithm. As we mentioned in Section 4.4.1, there are several issues concerning the practical imple-
mentation of this algorithm. In particular, a method to simplify bounds is needed, as well as a good
stop criterion. We show how these issues can be addressed by representing bounds as first-order
binary decision diagrams.

Finally, we report on our implementation, called GidL, of the refinement and grounding algo-
rithm. We present experimental results that show the impact of using bounds on grounding size and
time.

6.1 Case Study: Top-Down Grounding with Bounds

For the rest of this section, assume T is in TNF and fix an Iσ-consistent, atom-based c-map C for T
over σ. We call a formula of the form ϕ∨ψ or ∃x ϕ a disjunctive formula. Vice versa, a conjunctive
formula is a formula of the form ϕ ∧ ψ or ∀x ϕ.

We now present a simple “top-down style” grounding algorithm that exploits bounds without
constructing C〈T 〉 ∪ CA explicitly. The algorithm is shown in Algorithm 1. Basically, it consults
the bounds assigned by C whenever it substitutes the free variables of a formula ϕ[x] by domain
constants d. If according to the bounds, ϕ[x/d] is certainly true, i.e., Iσ[x/d] |= Cct(ϕ), then the
grounding of ϕ[x/d] is not computed. Instead, the algorithm then proceeds as if ϕ[x/d] is equal
to >. Similarly if ϕ[x/d] is certainly false. In this way, the algorithm avoids creating unnecessary
instantiations. One can check that if C is the trivial c-map, Algorithm 1 reduces to a straightforward
top-down style grounding algorithm that produces Grfull(T ).

Line 1 of Algorithm 1 checks whether one of the sentences of T is certainly false. If this is the
case, then clearly T is unsatisfiable (cf. Definition 10), and this can be reported immediately. Before
a sentence is grounded, line 4 checks whether this sentence is certainly true according to C. Only
sentences that are not certainly true are grounded. Observe that both checks are simple syntactic
checks and can be executed in constant time.

Function groundConj gets as input a formula ϕ[x] and returns a grounding for ∀x ϕ[x]. In
particular, if ϕ is a sentence, then the result of applying groundConj to ϕ is a grounding for ϕ.

In groundConj, universal quantifiers are implicitly pushed inside conjunctions. That is, if ϕ[x]
is a conjunction ψ1 ∧ . . . ∧ ψn, then for every i ∈ [1, n], the grounding of ∀x ψi is computed by
applying groundConj to ψi. The conjunction of these groundings is returned as grounding for ∀x ϕ.
According to equivalence (6) of Section 2.2, this transformation yields an equivalent formula.

Function groundConj only consults the c-map when variables are substituted by domain con-
stants or when the input formula is an atom. As such, groundConj ignores (“eliminates”) the bounds
assigned to conjunctive formulas. As we mentioned at the end of Section 4.4.2, this is important to
avoid repeated constraints on a variable.

In groundConj(ϕ[x]), only those substitutions ϕ[x/d] for which Iσ[x/d] 6|= Cct(ϕ) are grounded
(see, e.g., line 12). Indeed, the other substitutions yield a formula that is certainly true in all models
of T expanding Iσ, and can therefore be omitted from the ground conjunction C that is computed.
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Algorithm 1: Ground with Bounds
Input: T , σ, Iσ and C
Output: A grounding Tg for T with respect to Iσ
if Ccf(ϕ) = > for some sentence ϕ of T then return ⊥;1

Tg := ∅;2

// Ground all sentences of T
for every sentence ϕ of T do3

if Cct(ϕ) 6= > then Add groundConj(ϕ) to Tg;4

// Ground all definitions of T
for every definition ∆ of T do5

Add groundDef(∆) to Tg;6

// Add the grounding of CA
for every atomic subformula ϕ[x] of T do7

for every d such that Iσ[x/d] |= Cct(ϕ) do8

Add ϕ[x/d] to Tg;9

for every d such that Iσ[x/d] |= Ccf(ϕ) do10

Add ¬ϕ[x/d] to Tg;11

return Tg;12

Function groundConj(ϕ[x])

C := ∅;1

switch ϕ[x] do2

case ϕ is a literal3

for all d such that Iσ 6|= Cct(ϕ)[x/d] do4

if Iσ |= Ccf(ϕ)[x/d] then return ⊥;5

else Add ϕ[x/d] to C;6

case ϕ = ∀y ψ[x, y]7

return groundConj(ψ[x, y]);8

case ϕ =
∧
i ψi9

C :=
⋃
i groundConj(ψi);10

case ϕ is a disjunctive formula11

for all d such that Iσ 6|= Cct(ϕ)[x/d] do12

if Iσ |= Ccf(ϕ)[x/d] then return ⊥;13

else Add groundDisj(ϕ[x/d]) to C;14

return
∧
C;15
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Function groundDisj(ϕ[x])

D := ∅;1

switch ϕ[x] do2

case ϕ is a literal3

for all d such that Iσ 6|= Ccf(ϕ)[x/d] do4

if Iσ |= Cct(ϕ)[x/d] then return >;5

else Add ϕ[x/d] to D;6

case ϕ = ∃y ψ[x, y]7

return groundDisj(ψ[x, y]);8

case ϕ =
∨
i ψi9

D :=
⋃
i groundDisj(ψi);10

case ϕ is a conjunctive formula11

for all d such that Iσ 6|= Ccf(ϕ)[x/d] do12

if Iσ |= Cct(ϕ)[x/d] then return >;13

else Add groundConj(ϕ[x/d]) to D;14

return
∨
D;15

Function groundDef(∆)

∆g := ∅;1

for every rule ∀x (P (x)← ϕ[y]) in ∆ do2

z := x \ y;3

for every d such that Iσ 6|= Ccf(ϕ[y/d]) do4

if Iσ |= Cct(ϕ[y/d]) then ϕg := >;5

else ϕg := groundConj(ϕ[y/d]);6

n := the number of variables in z;7

Add P (x)[y/d, z/d
′
]← ϕg to ∆g for every d

′ ∈ Dn;8

return ∆g;9
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Before ϕ[x/d] is grounded, it is checked whether this substitution yields a formula that is certainly
false (see, e.g., line 13). If this is the case, the whole conjunction C will certainly be false, and
therefore ⊥ is returned immediately. Observe that implicitly the formula Cct(ϕ) ∨ (¬Ccf(ϕ) ∧ ϕ) is
grounded. Hence the correctness of groundConj follows from Lemma 13.

Function groundDisj is dual to groundConj. On input ϕ[x], it returns a grounding for ∃x ϕ[x].
It implicitly pushes existential quantifiers through disjunctions and eliminates the bounds assigned
to disjunctive formulas.

Function groundDef returns a grounding for its input definition ∆. It grounds the rules of ∆
one-by-one. For each rule ∀x (P (x) ← ϕ[y]), only those substitutions ϕ[y/d] that are possibly true
are tried (line 4). If ϕ[y/d] is certainly true, it is replaced by > (line 5).

In lines 7-11 of Algorithm 1, the theory CA is grounded. Recall that this is necessary to obtain
a grounding that is Iσ-equivalent to T (see Proposition 21). Observe that if C is the trivial c-map,
no output is produced when lines 7-11 are executed.

The computationally expensive steps in Algorithm 1 are the steps where the truth values in Iσ
of (some of the) bounds assigned by C are computed. For large bounds, these steps can become
infeasible. Indeed, the expression complexity of FO is PSPACE-complete (Stockmeyer, 1974). As
such, grounding with too complex bounds may take more time and space than constructing the
full grounding and simplifying it afterwards. The stop criterion of Section 6.2.3 for the refinement
algorithm is designed to avoid too complex bounds. Our experiments in Section 6.3 show that
carefully restricting the complexity of the bounds leads to faster grounding.

We stress that Algorithm 1 is just one example of a grounding algorithm that exploits bounds.4

The principle of consulting bounds as soon as possible can be applied to adapt other grounding
algorithms as well. For example, recall that a bottom-up style grounder starts by storing all instances
of atomic subformulas of T in a table. To exploit bounds efficiently, a bottom-up grounder should
consult the bounds while constructing these tables and leave out, e.g., all instances that are certainly
false. As such, it avoids unnecessary large tables, which in turn improves the speed of the subsequent
grounding steps.

6.2 Implementing the Refinement Algorithm and Querying Bounds

In this section we discuss some aspects of implementing the refinement algorithm. As mentioned
above, applying a simplification method for first-order formulas to simplify the bounds at regular
time points is essential for a good implementation. One can use Goubault’s (1995) method for this
purpose. To this end, the bounds need to be represented by first-order binary decision diagrams.
We show in this section that such a representation can be applied without too much overhead when
applying one-step refinements. Moreover, using binary decision diagrams leads to extra benefits:
we obtain a cheap equivalence check for bounds and an elegant algorithm to query bounds, which
is needed to implement Algorithm 1. At the end of this section we discuss a stop criterion for the
refinement algorithm and we discuss an implementation.

6.2.1 First-Order Binary Decision Trees and Diagrams

We borrow the definition of first-order BDDs from Goubault (1995). Let ϕ, ψ1 and ψ2 be three
formulas. The ternary if-then-else operator is denoted by “_”, and defined by ϕ _ ψ1;ψ2 :=
(ϕ ∧ ψ1) ∨ (¬ϕ ∧ ψ2). The formula ϕ _ ψ1;ψ2 is also represented by the graph shown in Figure 3.

Definition 45 (Goubault, 1995). FO binary decision trees (BDTs) and kernels are defined by
simultaneous induction:

• An atom is a kernel;

4. The question whether top-down grounders can be made more efficient than bottom-up grounders is outside the
scope of this paper, and still undecided.
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Figure 3: Graph representation of the formula ϕ _ ψ1;ψ2

• If ϕ is a BDT and x a variable, then ∃x ϕ is a kernel;

• > and ⊥ are BDTs;

• If ϕ is a kernel and ψ1 and ψ2 are BDTs, then ϕ _ ψ1;ψ2 is a BDT.

Observe that the graph representation of a BDT is a tree whose nodes are atoms or existentially
quantified BDTs.

Goubault (1995) showed that for every FO formula ϕ there exists a BDT ϕ′ such that ϕ and ϕ′

are equivalent. In an actual implementation, sharing, reducing and ordering are applied to obtain
a simplified and compact representation of BDTs. Such representations are called reduced ordered
binary decision diagrams (BDDs). Sharing means that isomorphic subtrees are stored at the same
address in memory. Reducing involves exhaustively replacing subtrees of the form ϕ _ ψ;ψ by ψ. A
BDT ϕ is ordered if the kernels appear in some fixed order on every path in the graph representation
of ϕ.

As mentioned above, there are several important benefits of using BDDs to represent bounds for
a formula:

• An implementation of the refinement algorithm using BDDs allows us to use the simplification
algorithm for BDDs of Goubault (1995).

• As explained in Section 4.4, to detect that the refinement algorithm has reached a fixpoint,
one needs to check the equivalence of bounds. Often, the BDDs representing two equivalent
formulas will be equal.5 Hence, a cheap (but necessarily incomplete) equivalence check for two
bounds consists of checking the syntactic equality of the two BDDs representing them. Since
equal BDDs are stored at the same address, this check is done in constant time.

• As we will show in Section 6.2.2, querying a bound ϕ[x], i.e., finding all tuples d such that
Iσ[x/d] |= ϕ, can easily be implemented directly on a BDD representation of ϕ. Querying a
bound is one of the main operations performed by a grounding algorithm that exploits bounds
directly (such as Algorithm 1).

On the other hand, using BDDs does not result in too much overhead when computing a c-map. If
ϕ, ψ and χ[x, y] are represented by BDDs, then a BDD representing ¬ϕ, ∃x ϕ, ∀x ϕ, ϕ ∧ ψ, ϕ ∨ ψ
and χ[x/x′, y] can be computed efficiently (Bryant, 1986; Goubault, 1995). This implies that every
one-step refinement on a c-map C can be implemented efficiently, even if the bounds assigned by C
are BDDs.

6.2.2 Querying a Bound

In Algorithm 1, the main operation performed on a bound ϕ[x] is querying: finding tuples d of
domain constants such that Iσ |= ϕ[x/d]. Finding a tuple d such that Iσ 6|= ϕ[x/d] corresponds
to querying ¬ϕ. We now show that querying a bound ϕ[x] can be done directly on the BDD
representation by a simple backtracking algorithm.

5. For propositional BDDs, this is always the case.
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Figure 4: A BDD representing the formula (P (x) ∧Q(x, y)) ∨ (¬P (x) ∧R(x))

The idea is to traverse the BDD, starting from the root, and trying to end up in the leaf >. At
each inner node ψ[y] _ ψ1;ψ2, the free variables in that node are replaced by domain constants dy.
If Iσ |= ψ[y/dy], the algorithm continues via ψ1, otherwise via ψ2. If it ends up in ⊥, it backtracks.
If on the other hand, it ends up in >, the performed substitutions constitute an answer for ϕ.

Function query implements the sketched query algorithm. It gets a bound ϕ[x] as input and
returns a substitution [x/d] such that Iσ |= ϕ[x/d]. If no such substitution exists, it returns FAIL.
This algorithm can easily be adapted to return all answers to ϕ[x] instead of just one.

Function query(ϕ[x])

if ϕ = > then return the empty substitution;1

else if ϕ = ψ[y] _ ψ1;⊥ then2

for every tuple d such that Iσ |= ψ[y/d] do3

θ := query(ψ1[y/d]);4

if θ 6= FAIL then return θ ∪ [y/d]5

else if ϕ = ψ[y] _ ⊥;ψ2 then6

for every tuple d such that Iσ 6|= ψ[y/d] do7

θ := query(ψ2[y/d]);8

if θ 6= FAIL then return θ ∪ [y/d]9

else if ϕ is of the form ψ[y] _ ψ1;ψ2 then10

for every tuple d ∈ D|y| do11

if Iσ |= ψ[y/d] then θ := query(ψ1[y/d]);12

else θ := query(ψ2[y/d]);13

if θ 6= FAIL then return θ ∪ [y/d]14

return FAIL;15

In lines 3 and 7, the algorithm needs to find tuples d such that respectively Iσ |= ψ[y/d] and
Iσ 6|= ψ[y/d]. If ψ[y] is an atom P (y), this can be implemented by consulting the table P Iσ . If ψ is
a kernel ∃x χ[x, y], function query can be applied recursively to find the tuples. Indeed, any answer
(d′, d) to χ[x, y] provides a tuple d such that Iσ |= ψ[y/d]. Vice versa, Iσ 6|= ψ[y/d] if χ[x, y/d] has
no answer.

We illustrate the query algorithm on an example.

Example 15. Let ϕ[x, y] be the BDD shown in figure 4, and let {a, b} be the domain of Iσ,
P Iσ = {b}, RIσ = {} and QIσ = {(b, b)}. To find an answer for ϕ[x, y], the query algorithm starts
at the root P (x). Since none of its children are equal to ⊥, every domain constant is tried. Assume
domain constant a is tried first. Because a 6∈ P Iσ , the algorithm continues with node R(a) _ >;⊥.
Because the “else” child of this node is ⊥ and a 6∈ RIσ , the algorithm returns to the root and tries
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domain element b. Since b ∈ P Iσ , it goes to node Q(b, y) _ >;⊥. Since the “else” child of this node
is ⊥, the algorithm tries those substitutions d for y such that (b, y/d) ∈ QIσ . Thus, y is substituted
by b. Finally, answer [x/b, y/b] is returned.

6.2.3 A Stop Criterion for the Refinement Algorithm

As shown in Section 4.4, the c-map refinement algorithm does not reach a fixpoint on certain inputs.
Also, even in the case a fixpoint can be found, computing it may take a long time, and the bounds
assigned by the fixpoint can be so complex that querying becomes very inefficient. Using such
bounds may severely slow down grounding. This indicates the need for a good stop criterion.

Simple Stop Criteria A very simple stop criterion limits the number of one-step refinements
that may be performed to a given maximum number m. This m may depend on the theory T . For
instance, m can be set to C × (number of subformulas in T ), where C is some fixed constant.

A slightly less naive technique, which can be combined with the previous, limits the “complexity”
of the bounds by putting a fixed upper bound N on the number of nodes the BDD representation
of a bound may have. If a one-step refinement would lead to a new bound with more nodes than N ,
this refinement is not performed. As this limits the number of applicable one-step refinements, the
probability of reaching a fixpoint increases.

Stop Criteria via Estimators The experiments we present in Section 6.3 indicate that there
exist appropriate values for C and N that produce positive results on most of the examples. Still,
on some problems, grounding slows down severely, while the size of the produced grounding does
not decrease. One of these problems is the following clique problem (entry 6 in Table 4).

Example 16. Recall that a clique is a maximally connected graph. Let

σ = 〈{Edge/2}, ∅〉,
Σ = 〈σP ∪ {Clique/1}, ∅〉

and T the theory

∀x∀y (Clique(x) ∧ Clique(y) ⊃ (x = y ∨ Edge(x, y))).
∀x ((∀y (Clique(y) ∧ x 6= y ⊃ Edge(x, y))) ⊃ Clique(x)).

If EdgeIσ is symmetric, i.e., Iσ represents an undirected graph, a model of T expanding Iσ is a clique
in Iσ that is not contained in a strictly larger clique in Iσ. Within a small number of iterations,
the refinement algorithm finds for Clique(x) the ct-bound ∀x′ x 6= x′ ⊃ Edge(x, x′). This formula
expresses that Clique(x) is certainly true in every solution if x is directly connected to every other
vertex in the input graph. Clearly, for most graphs, no vertex satisfies this condition. So, for most
graphs, ⊥ would be an equally precise ct-bound, but would allow much faster querying.

The situation is worse for the cf-bound for Clique(x). Since for an undirected graph, every
single vertex is a clique, and thus occurs in at least one of the solutions, the cf-bound is necessarily
unsatisfiable with respect to T . Yet, our implementation of the refinement algorithm came up with
∃x′ (¬Edge(x, x′) ∧ x 6= x′ ∧ (∀x′′ (x′ 6= x′′ ⊃ Edge(x′, x′′)))) as cf-bound. The query algorithm
outlined above takes cubic time in the number of vertices to find out that no x satisfies this formula.

To avoid the problems illustrated by the example above, one could estimate the reward of a
bound versus the cost of evaluating it. Recall that more precise bounds yield smaller grounding
sizes. Therefore, the reward of a bound ψ is dictated by its precision. Given Iσ, it is possible to
find a good estimate for the number of answers to ψ in Iσ (Demolombe, 1980), which is in turn a
measure for the precision of ψ. For a fixed query algorithm, one can also estimate the cost cost(ψ)
of computing an answer in Iσ to a query ψ. In the following, we assume that the reward of a bound
is a positive real number, and its cost a strictly positive real number.

257



Wittocx, Mariën, & Denecker

Given the reward and the cost of bounds, the complexity of a bound ψ can be limited by
restricting the ratio

r(ψ) :=
cost(ψ)

reward(ψ) + 1
.

If a one-step refinement would replace a bound ψ1 by ψ2, but r(ψ1) < r(ψ2), then this refinement
is not performed. Clearly, for all bounds ψ assigned by a c-map C computed according to this
restriction, r(ψ) ≤ r(⊥) holds. Observe that to apply this restriction, an input structure Iσ is
needed. However, the obtained bounds are independent of Iσ.

It is beyond the scope of this paper to describe in detail estimators for the reward and cost of
bounds. The fairly naive estimator used for the experiments in the next section assigns ratios of
the order O(|DIσ |), respectively O(|DIσ |3), to the ct-bound, respectively cf-bound, mentioned in
Example 16. As such, if |DIσ | is large enough, these bounds will be avoided.

6.2.4 Implementation of the Refinement Algorithm

Our implementation of the refinement algorithm, including the heuristic for choosing refinement
bounds (Section 4.4.1) and stop criterion, is presented by Algorithm 6. The algorithm maintains a
queue Q of one-step refinements that will be applied. Each of these is represented by a tuple 〈r, ϕ〉,
where r is the type of the refinement, e.g., axiom refinement, and ϕ the formula on which r will be
applied.

Algorithm 6: Refinement Algorithm
Q := ∅; C := the trivial c-map for T ;1

for all sentences ϕ of T do Q.push(〈axiom, ϕ〉);2

for all subformulas ϕ of T over σ do3

Q.push(〈ct-input, ϕ〉); Q.push(〈cf-input, ϕ〉);4

while Q 6= ∅ and the maximum number of refinements is not reached do5

〈r, ϕ〉 := Q.pop();6

if r is a ct-refinement then7

ψ := the r-refinement bound for ϕ with respect to C;8

ψ := simplify(Cct(ϕ) ∨ ψ);9

if ψ 6= Cct(ϕ) and ψ is not too complex then10

Cct(ϕ) := ψ;11

for all 〈r, χ〉 such that the r-refinement bound for χ contains Cct(ϕ) do12

Q.push(〈r, χ〉);13

else14

. . . // Similar code for cf-refinements15

return C;16

As explained in Section 4.4.1, our implementation starts by scheduling all possible axiom- and
input-refinements. If in a later stage a bound is changed (line 11), then all refinement bounds that
contain this bound are scheduled to be applied (line 13). For example, assume that T contains the
formula ϕ ∧ ψ and that the ct-bound of ϕ is refined. Then bottom-up ct-refinement for ϕ ∧ ψ is
scheduled since the bottom-up ct-refinement bound for that formula is given by Cct(ϕ) ∧ Cct(ψ),
which contains Cct(ϕ). For the same reason also top-down cf-refinement for ψ is scheduled.

The algorithm applies all scheduled refinements, unless the maximum number of refinement steps
is reached (line 5). The other part of the discussed stop criterion is applied in line 10. If the newly
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computed bound ψ is too complex, i.e., its BDD representation contains too many nodes or the ratio
r(ψ) is above a certain threshold, ψ is not used.

If BDDs are used to represent the bounds assigned by C, line 8 can be implemented in linear time
in the size of C. If we use Goubault’s simplification algorithm for BDDs for implementing line 9,
the worst case complexity of this step is non-elementary in the size of Cct(ϕ) ∨ ψ (Goubault, 1995).
The estimators we used to implement line 10 take linear time in the size of ψ. It may seem that the
complexity of the simplification method limits the practical applicability of Algorithm 6. However,
since large BDDs usually do not pass the test in line 10, the simplification method is rarely applied
on large BDDs. In the experiments of the next section, the running time of the refinement algorithm
is negligible compared to the running time of the grounding algorithm.

6.3 Experiments

We implemented Algorithm 1 and Algorithm 6, using BDDs to represent bounds. The resulting
grounder is called GidL. In this section, we present experiments, obtained with GidL, that show
the impact of using bounds on grounding size and time.

As input for GidL, we used 37 benchmark problems, mainly taken from Asparagus.6 The details
about the experiments are available at http://dtai.cs.kuleuven.be/krr/software.html. We
used four different versions of GidL:

GidLnb: Assigns 〈ϕ,¬ϕ〉 as bound to every atomic subformula ϕ over the input vocabulary, and
〈⊥,⊥〉 to every other subformula. As such, it creates the reduced grounding of the input
theory.

GidLbu: Assigns 〈ϕ,¬ϕ〉 as bound to every atomic subformula ϕ over the input vocabulary and
then applies bottom-up refinements to obtain a bottom-up c-map.

GidLmn: Limits the refinement algorithm to 4×(number of subformulas in T ) one-step refinements
and allows a maximum of 4 internal nodes in each BDD used to represent the bounds. Ac-
cording to previous experiments (Wittocx et al., 2008b), this is the best setting when limiting
the number of nodes.

GidLr: Limits the refinement algorithm to 4× (number of subformulas in T ) one-step refinements.
It limits the complexity of the derived bounds by estimating the number of answers and the
cost, as described in the previous section.

In Table 3, the influence of bounds on the grounding size is shown. The second and third column
show the ratio of the grounding size obtained with GidLmn and GidLr compared to Grred(T ). For
GidLnb and GidLbu, this ratio is always equal to 1. When interpreting Table 3, it is important to
note that small reductions in grounding size are not important. The reason being that all reductions
that can be obtained by the refinement algorithm are also obtained by applying unit propagation
on the grounding (see Section 7 for a discussion). Since there exist very efficient implementations
of unit propagation, it is not beneficial to let the refinement algorithm find small reductions at a
relatively high cost. We see that both GidLmn and GidLr reduce the grounding size with more than
50% in around 30% of the benchmarks. In 7, respectively 6, of the benchmarks there is a spectacular
reduction of more than 95%.

More important than reductions in size are reductions in grounding time. Table 4 shows the
running times of the different versions of GidL, and (between brackets) the ratio of the running
time to the running time of GidLnb. The running time of the refinement algorithm is included (it
never took more than 0.02 seconds). A time-out (###) of 600 seconds was used.

On many benchmarks, the reduction in grounding time with respect to GidLnb is due to the
reduction in grounding size. Yet there are also several benchmarks where time decreases a lot, while

6. http://asp.haiti.cs.uni-potsdam.de/
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there is almost no reduction in size. This is mostly due to the creation of a bottom-up c-map, as can
be seen from the running times of GidLbu. Applying bottom-up refinements leads to the assignment
of non-trivial bounds to non-atomic subformulas. This allows for earlier pruning by a top-down style
grounder, and hence faster grounding.

From Table 4, we can see that GidLmn performs quite well. On half of the benchmarks, it is
more than 44% faster than GidLnb. It is also more than 20% faster than GidLbu on half of the
benchmarks. There are some outliers however. On benchmarks 6 and 11, it is far slower than GidLbu,
while not producing a significantly smaller grounding. This indicates the use of a complex bound
with relatively small reward. Compared to GidLmn, GidLr is faster and more robust, indicating
that using estimators for the reward and cost of bounds pays off in most cases. In only two of the
benchmarks, our naive estimator makes a wrong guess. In benchmark 1, a bound with high cost
and no reward is allowed, in benchmark 7, a bound with low cost and high reward is not allowed by
GidLr. It is part of future work to implement improved estimators.

We conclude from our experiments that grounding with bounds is applicable in practice. It often
leads to smaller grounding sizes on standard benchmark problems, and if the bounds are carefully
restricted, it yields a significant speed up. Since the time to compute bounds is small compared to
the overall grounding time, computing them is essentially for free.

In general, a smaller grounding does not necessarily lead to faster propositional model generation.
For example, grounding size (and time) increases when symmetry breaking formulas are added, but
these formulas may drastically improve the overall solving time (Torlak & Jackson, 2007). Another
example are clause-learning SAT solvers: the clauses learnt by these solvers are redundant, but
may improve the solving time by orders of magnitude. The question arises whether our method of
grounding with bounds may lead to slower overall model generation time compared to grounding
without bounds. This is not the case. The experiments above show that in general, grounding with
bounds is faster than grounding without bounds. Since grounding with bounds also produces smaller
groundings, the subsequent initialization phase of the SAT solver is executed faster. If T1 and T2

are two groundings obtained by grounding the same input theory and structure with, respectively
without bounds, it can be shown7 that the typical simplification steps applied in this initialization
phase transform T1 and T2 in exactly the same simplified theory T3. Thus, after initialization, the
SAT solver is applied on exactly the same theory, whether or not the grounder used bounds. It
follows that in general, the overall model generation time does not increase when bounds are applied
while grounding.

7. Related Work

In the previous sections we described a method to obtain fast and compact grounding. Several such
methods have been described in the literature. Some of them are — like ours — preprocessing
techniques that rewrite the input theory. Other techniques involve reasoning on the propositional
level. In this section we provide an overview. We indicate which ones can be applied to improve
GidL. We also give an overview of existing grounders.

7.1 Methods to Optimize Grounding

Derivation of Bounds To our knowledge, the methods proposed in the literature to derive bounds
are less general than the one we presented in this paper. This is illustrated by Table 5, where we show
for several grounders the impact of manually adding redundant information. For all the grounders
in this table except GidL, manually adding redundancy may have a serious impact. For some
grounders, the need to add redundancy can sometimes be avoided by writing the input theory in a
specific format. For example, the grounder gringo (Gebser et al., 2007) uses a syntactic check to
derive bounds: it derives that predicate q of the input vocabulary is a bound for predicate p if p

7. The exact formulation and the proof of the property are beyond the scope of this paper.
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Nr Benchmark name GidLmn GidLr

1 15puzzle 1.00 1.00
2 Battleship 0.89 1.00
3 Blocked N-queens 0.02 0.02
4 Blocksworld 0.33 0.33
5 Bounded spanningtree 0.12 0.12
6 Clique 1.00 1.00
7 Hierarchical clustering 0.03 0.72
8 Graph colouring 1.00 1.00
9 Debugging 0.86 1.00

10 Fastfood 1.00 1.00
11 FO-hamcircuit 0.94 0.99
12 Golomb ruler 0.54 1.00
13 Graph partitioning 0.94 1.00
14 Algebraic groups 0.99 1.00
15 Hamiltonian circuit 0.01 0.01
16 Tower of Hanoi 1.00 1.00
17 Knighttour 0.00 0.00
18 Labyrinth 0.99 0.99
19 Magic series 1.00 1.00
20 Maze generation 0.90 0.90
21 Mirror puzzle 1.00 1.00
22 Missionaries 0.03 0.03
23 N-queens 1.00 1.00
24 Pigeonhole 1.00 1.00
25 Disjunctive scheduling 0.83 0.83
26 Slitherlink 0.04 0.04
27 Social golfer 1.00 1.00
28 Sokoban 0.59 0.59
29 Solitaire 1.00 0.73
30 Spanningtree 0.06 0.06
31 Sudoku 0.75 0.75
32 Tarski 1.00 1.00
33 Toughnut 0.00 0.00
34 Train scheduling 0.25 0.25
35 Waterbucket 0.36 0.36
36 Weight bounded dominating set 1.00 1.00
37 Wire routing 0.92 0.99

Average 0.66 0.70

# < 1.00 24 20
# < 0.50 12 11
# < 0.05 7 6

Table 3: Impact of bounds on grounding size
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Nr GidLnb GidLbu GidLmn GidLr

1 6.13 2.00 (0.33) 2.07 (0.34) 5.73 (0.93)
2 0.19 0.18 (0.95) 0.16 (0.84) 0.17 (0.89)
3 9.66 10.83 (1.12) 2.22 (0.23) 2.67 (0.28)
4 22.33 16.76 (0.75) 5.80 (0.26) 5.80 (0.26)
5 8.52 8.52 (1.00) 3.01 (0.35) 1.16 (0.14)
6 3.13 3.73 (1.19) 51.77 (16.54) 3.73 (1.19)
7 0.32 0.34 (1.06) 0.05 (0.16) 0.31 (0.97)
8 2.57 2.71 (1.05) 2.69 (1.05) 2.72 (1.06)
9 0.30 0.30 (1.00) 0.48 (1.60) 0.47 (1.57)

10 ### ### (1.00) 17.59 (0.03) 16.52 (0.03)
11 ### 5.87 (0.01) 37.86 (0.06) 6.06 (0.01)
12 14.05 3.54 (0.25) 4.13 (0.29) 3.40 (0.24)
13 0.03 0.04 (1.33) 0.03 (1.00) 0.02 (0.67)
14 9.68 9.58 (0.99) 11.20 (1.16) 9.60 (0.99)
15 70.75 71.50 (1.01) 2.56 (0.04) 1.81 (0.03)
16 2.32 1.83 (0.79) 1.96 (0.84) 1.83 (0.79)
17 12.22 10.35 (0.85) 0.06 (0.00) 0.10 (0.01)
18 8.80 8.83 (1.00) 8.83 (1.00) 8.73 (0.99)
19 1.83 1.76 (0.96) 1.79 (0.98) 1.81 (0.99)
20 2.77 2.80 (1.01) 0.51 (0.18) 0.17 (0.06)
21 0.12 0.11 (0.92) 0.12 (1.00) 0.10 (0.83)
22 17.4 18.08 (1.04) 2.29 (0.13) 2.68 (0.15)
23 4.62 4.60 (1.00) 4.62 (1.00) 4.64 (1.00)
24 4.92 5.01 (1.02) 4.90 (1.00) 4.90 (1.00)
25 151.15 151.66 (1.00) 172.50 (1.14) 171.54 (1.13)
26 0.25 0.13 (0.52) 0.02 (0.08) 0.02 (0.08)
27 5.47 5.47 (1.00) 5.37 (0.98) 5.41 (0.99)
28 2.78 2.66 (0.96) 1.57 (0.56) 1.54 (0.55)
29 0.43 0.43 (1.00) 0.46 (1.07) 0.49 (1.14)
30 6.86 6.79 (0.99) 0.59 (0.09) 0.57 (0.08)
31 ### 2.34 (0.00) 1.07 (0.00) 1.06 (0.00)
32 4.42 4.53 (1.02) 3.67 (0.83) 3.64 (0.82)
33 4.23 4.23 (1.00) 0.53 (0.13) 0.53 (0.13)
34 4.06 2.14 (0.53) 0.65 (0.16) 0.47 (0.12)
35 3.16 3.07 (0.97) 1.76 (0.56) 2.04 (0.65)
36 1.45 1.42 (0.98) 0.03 (0.02) 0.03 (0.02)
37 0.06 0.06 (1.00) 0.08 (1.33) 0.08 (1.33)

Total 2186.98 974.20 (0.45) 355.00 (0.16) 272.55 (0.12)
Avg. gain 12 % 0 % 40%

Median gain 0 % 44 % 33%

(For GidLmn and GidLr, the time to compute the bounds is included.)

Table 4: Impact of bounds on grounding time
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constr redun defin
gringo 76.33 1.59 0.60

dlv 339.37 4.23 2.81
lparse 63.25 0.78 63.58
psgrnd 44.79 0.72 n/a

gidl 0.26 0.42 n/a

Table 5: Grounding times (in seconds) for the Hamiltonian circuit problem with an input graph of
200 nodes and 1800 edges. Encoding constr uses a constraint to state that each edge in
the cycle should be an edge of the graph. Encoding redun adds redundancy to include this
bound in all rules and constraints. Encoding defin contains no redundancy, but limits the
possible edges in the cycle to the edges in the graph while defining the search space for the
cycle.

is defined by a choice rule of the form, e.g., {p(X)} :- q(X). However, if this rule is replaced by
{p(X)} :- dom(X), where dom denotes the domain, and the constraint :- p(X),not q(X),dom(X)
is added, q is still a bound for p, but this is not detected by gringo, as can be seen in Table 5.

The grounder of the dlv system (Perri et al., 2007) may derive bounds by reasoning on the
propositional level. As we explain below, the order in which rules and constraints are grounded is of
crucial importance for such a method to pay off. Since dlv grounds rules before constraints, using
a constraint to state that q is a bound for p does not improve grounding time.

Propagation on the Propositional Level One of the techniques to produce smaller groundings
consists of applying a constraint propagation method on the ground theory Tg and replacing by
>, respectively ⊥, every ground literal that is derived to be true, respectively false. The resulting
theory is then simplified. This technique is applied by the grounder psgrnd (East et al., 2006), which
uses unit propagation (Davis & Putnam, 1960) and complete one-atom lookahead (Li & Anbulagan,
1997) as propagation methods. The latter is performed once the grounding is finished, the former
is triggered each time a unit clause is added to the grounding. If an inconsistency is detected by
unit propagation, the grounding process is terminated immediately. Observe that this technique
yields small groundings but does not improve grounding speed, except for the (rare) case where the
propagation method detects an inconsistency during grounding. Indeed, it does not avoid computing
all ground instances of the formulas in the input theory.

If a propositional constraint propagation method is applied while the grounding is being con-
structed, the derived information could be used to refine bounds. For instance, if unit-propagation
derives that the domain atom P (d1, . . . , dn) is true, then x1 = d1 ∧ . . . ∧ xn = dn is a ct-bound for
P (x1, . . . , xn). These bounds could be used to speed up the construction of the rest of the grounding.
For this method to be effective, however, some careful fine-tuning of the order in which sentences
are grounded is required. It may even be necessary to alternatingly compute partial groundings of
different sentences. To the best of our knowledge, this process has not been worked out or imple-
mented with unit-propagation or one-atom lookahead as underlying propagation method. On the
other hand, most ASP grounders apply it for the following limited propagation method: if all rules
defining a predicate P are grounded, it is concluded that a domain atom P (d) is certainly true if
it occurs in a ground rule of the form P (d) ← >, and certainly false if it does not occur in the
head of any ground rule. In this case, a good grounding order can be derived from the dependency
graph of the input theory (e.g., Cadoli & Schaerf, 2005; Perri et al., 2007). In GidL, this strategy
is implemented for grounding definitions.

Sharing A second technique is called sharing and consists of detecting subformulas in the ground
theory Tg that occur more than once. If such a subformula ϕ is detected, all its occurrences in Tg

are replaced by a new atom P , and the sentence P ≡ ϕ is added. If ϕ is a large formula and occurs
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often in Tg, this may result in a significant grounding size reduction. Also, sharing improves the
propagation in SAT solvers.

Shlyakhter, Sridharan, Seater, and Jackson (2003) present an algorithm to detect identical sub-
formulas on the first-order level, Torlak and Jackson (2007) for the propositional level. In GidL,
we implemented a simple sharing technique using dynamic programming. We adapted function
groundConj so that instead of returning a conjunction

∧
C, it creates a new atom P , adds the

sentence P ≡
∧
C to the grounding, and returns P . If groundConj is applied multiple times on

the same input ϕ, the same predicate P is returned each time, but P ≡
∧
C is added only once.

Function groundDisj is adapted in a similar fashion.

Clause splitting Clause splitting is a well-known rewriting technique applied in MACE style
model generation (McCune, 2003). It consists of splitting a first-order clause

∀x∀y∀z (ϕ1[x, z1] ∨ ϕ2[y, z2]) (20)

where x 6∈ z2, y 6∈ z1 and z = z1 ∪ z2 into two new clauses

∀x∀z1 (ϕ1[x, z1] ∨ S(z1 ∩ z2)) (21)
∀y∀z2 (¬S(z1 ∩ z2) ∨ ϕ2[y, z2]). (22)

Here, S is a new predicate symbol. The full grounding of (20) is of the size O(|D|3), while the full
grounding of (21) and (22) has only size O(|D|2).

If sharing is implemented by adapting the functions groundConj and groundDisj as explained
above, the effect of clause splitting can be obtained by moving quantifiers according to the equiv-
alences (4), (5), (8) and (9) of Section 2.2. For instance, we can apply equivalences (4) and (8) to
replace (20) by ∀x∀z (ϕ1∨(∀y ϕ2)). Grounding the latter while applying sharing has the same effect
as clause splitting. Similarly, the grounding size of ∃x∃y∃z (ϕ1[x, z1] ∧ ϕ2[y, z2]) can be reduced by
replacing this formula by ∃x∃z (ϕ1 ∧ (∃y ϕ2)).

The simple heuristic to guide clause splitting described by Claessen and Sörensson (2003) can
directly be applied to choose which quantifiers to move inside. We conclude that clause splitting
could easily be incorporated in GidL.

Database Techniques Several techniques for optimizing querying in databases can be used to
optimize grounding. Examples are join-ordering strategies, backjumping and indexing techniques.

One of the most basic techniques to improve grounding speed consists of reordering (long) con-
junctions or disjunctions of literals to speed up grounding. Which order is best depends on the
grounding algorithm. Different strategies are described by, e.g, Leone, Perri, and Scarcello (2001),
Syrjänen (1998, 2009) and in the database literature (Garcia-Molina, Ullman, & Widom, 2000).
There is no problem implementing a similar technique in GidL. Also, reordering the nodes in the
BDD representation of the bounds could optimize querying. It is part of future work to investigate
such reordering strategies for BDDs.

One of the important methods in the dlv grounder is the use of a backjumping technique (Perri
et al., 2007) to efficiently find all instances of a conjunction ϕ1 ∧ . . . ∧ ϕn that are possibly true,
given (an overestimation of) the possibly true instances of each of the conjuncts ϕi. In GidL, this
backjumping technique is applied to implement line 12 of function groundDisj. Indeed, if ϕ is
the formula ϕ1 ∧ . . . ∧ ϕn, then line 12 amounts to finding all possible instances of ϕ, while the
cf-bounds for ϕ1, . . . , ϕn provide an overestimation of the possibly true instances of these conjuncts.
Similarly, the backjumping technique is applied to improve line 12 of groundConj, where all possibly
false instances of a disjunction are calculated.

Catalano, Leone, and Perri (2008) present an adaptation of indexing strategies for grounding.

Partition-Based Reasoning Ramachandran and Amir (2005) describe a sophisticated grounding
technique that can reduce the grounding size of FO theories, depending on the availability of some
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graphical structure in these theories. This technique is not directly applicable in our case, since it
produces groundings that are not necessarily Iσ-equivalent to the input theory. The only guarantee
is that the ground theory is satisfiable iff the input problem is satisfiable.

7.2 Grounders

A non-native approach to ground an MX(FO(ID)) problem consists of first translating it to an
equivalent normal logic program under the well-founded semantics. This translation is described
by Mariën et al. (2004). Next, a (slightly adapted) grounder for ASP is used to ground the logic
program. This is the approach taken by MXidL (Mariën, Wittocx, & Denecker, 2006).

The first native grounding algorithm for MX(FO) and MX(FO(ID)) was described by Patter-
son, Liu, Ternovska, and Gupta (2007). It is based on relational algebra and takes a “bottom-up
approach” (see Section 3.2.1). To construct a grounding of a sentence ϕ, it first creates all possible
groundings of the atomic subformulas. Then it combines these groundings using relational algebra
operations, working its way up the syntax tree. Finally, a grounding for ϕ is obtained. Mitchell
et al. (2006) report on an implementation, called mxg, of the algorithm.

kodkod (Torlak & Jackson, 2007) is an MX grounder for a syntactic variant of FO. Like mxg,
it works in a bottom-up way. It represents intermediate groundings by (sparse) matrices. One
of the features of kodkod is that it allows a user to give part of a solution to an MX problem
as a three-valued structure. Specifically, the user can force that some atoms P (d), where P is an
expansion predicate, are certainly true (or certainly false). kodkod then takes advantage of this
information to produce smaller groundings. GidL also allows for a three-valued structure as input.
When applying the refinement algorithm, the set of tuples d for which the user indicates that P
should be true is then used as initial ct-bound for P instead of ⊥. Similarly for the cf-bound. This
leads to more efficient and compact groundings.

mace (McCune, 2003) and paradox (Claessen & Sörensson, 2003) are finite model generators
for FO. They work by choosing a domain and grounding the input theory to SAT. If the resulting
grounding is unsatisfiable, the domain size is increased and the process is repeated. The grounding
algorithm in mace and paradox basically constructs the full grounding and simplifies it afterwards.
Small groundings are obtained by first rewriting the input theory using, e.g., clause splitting. Also
methods that build the grounding incrementally are applied in these systems to avoid recomputing
every grounding from scratch.

East et al. (2006) developed the grounder psgrnd for MX(PSpb). PSpb is a fragment of FO(ID),
extended with pseudo-boolean constraints. As explained above, psgrnd performs reasoning on the
ground theory to reduce memory usage and grounding size. The experiments performed by East
et al. (2006) show that carefully designed data structures are of key importance to build an efficient
grounder.

ASP grounders take as input a normal logic program and transform it into an equivalent ground
normal logic program. As such, these grounders do not deal with (deeply) nested formulas. Cur-
rently, there are three ASP grounders: lparse (Syrjänen, 2000; Syrjänen, 2009), gringo (Gebser
et al., 2007) and the grounding component of dlv (Perri et al., 2007). All of them use techniques
from database theory to perform grounding efficiently.

Finally, we mention the grounder spec2SAT (Cadoli & Schaerf, 2005). Its input theories are
in the np-spec language, a language with Datalog-like syntax and semantics based on model mini-
mality. The grounding algorithm implemented in spec2SAT is basically a simplified version of the
grounding algorithm of dlv.

It would be interesting to compare the efficiency of the above mentioned grounders experimen-
tally. However, it is currently not possible to conduct such an experiment in a scientifically fair way.
There are several reasons for this. First, all grounders have a different input language, making it
impossible to run them on the same input. Also, there are several output languages for grounders.
A richer output language leads to more compact and fast grounding. For instance, for some prob-
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lems, lparse’s output size is necessarily cubic in the input domain size, while GidL’s output format
allows for quadratic size. Thirdly, even if the input and output languages of all grounders were the
same, an expert could easily manipulate experiments by carefully choosing his modelling style. For
example, if he does not manually add bounds to the input theories, GidL has an advantage. If
bodies of rules are not ordered, dlv is more likely to produce good results. Etc. Finally, because
of the large amount of data processed by grounders, carefully designed data structures and an opti-
mized implementation of the core grounding algorithm is very important to achieve fast grounding
(East et al., 2006). However, several of the above mentioned grounders are not yet optimized in that
sense. As such, it is difficult to derive conclusions about grounding algorithms by experimentally
comparing the efficiency of current implementations of these algorithms.

8. Conclusions

We presented a method to compute for a given theory, upper and lower bounds for all subformulas
of that theory. We showed how these bounds can be used for efficiently creating small groundings
in the context of Model Expansion for FO and FO(ID). Our method frees a user from manually
discovering bounds and adding them to a theory.

We presented a top-down style grounding algorithm that incorporates bounds. We discussed
implementation issues and showed by experiments that our method works in practice: on many
benchmark problems, it leads to significant reductions in grounding size and time.

Future work includes the extension of our algorithm to compute bounds for richer logics, such as,
e.g., extensions of FO with aggregates and arithmetic. On the implementation side, we plan to use
more sophisticated estimators to evaluate whether a computed bound is beneficial for grounding.
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