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Abstract

Domain-specific features are important in representing problem structure throughout machine
learning and decision-theoretic planning. In planning, once state features are provided, domain-
independent algorithms such as approximate value iteration can learn weighted combinations of
those features that often perform well as heuristic estimates of state value (e.g., distance to the
goal). Successful applications in real-world domains often require features crafted by human ex-
perts. Here, we propose automatic processes for learning useful domain-specific feature sets with
little or no human intervention. Our methods select and add features that describe state-space re-
gions of high inconsistency in the Bellman equation (statewise Bellman error) during approximate
value iteration. Our method can be applied using any real-valued-feature hypothesis space and
corresponding learning method for selecting features fromtraining sets of state-value pairs. We
evaluate the method with hypothesis spaces defined by both relational and propositional feature
languages, using nine probabilistic planning domains. We show that approximate value iteration
using a relational feature space performs at the state-of-the-art in domain-independent stochastic
relational planning. Our method provides the first domain-independent approach that plays Tetris
successfully (without human-engineered features).

1. Introduction

There is a substantial gap in performance between domain-independent planners and domain-
specific planners. Domain-specific human input is able to produce very effective planners in all
competition planning domains as well as many game applications such as backgammon, chess, and
Tetris. In deterministic planning, work on TLPLAN (Bacchus & Kabanza, 2000) has shown that
simple depth-first search with domain-specific human input, in the form of temporal logic formulas
describing acceptable paths, yields an effective planner for a wide variety of competition domains.
In stochastic planning, feature-based value-function representationshave been used with human-
selected features with great success in applications such as backgammon (Sutton & Barto, 1998;
Tesauro, 1995) and Tetris (Bertsekas & Tsitsiklis, 1996). The usage of features provided by hu-
man experts is often critical to the success of systems using such value-function approximations.
Here, we consider the problem of automating the transition from domain-independent planning to
domain-specific performance, replacing the human input with automatically learned domain prop-
erties. We thus study a style of planner that learns from encountering problem instances to improve
performance on subsequently encountered problem instances from thesame domain.

We focus on stochastic planning using machine-learned value functions represented as linear
combinations of state-space features. Our goal then is to augment the state-space representation
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during planning with new machine-discovered features that facilitate accurate representation of the
value function. The resulting learned features can be used in representing the value function for
other problem instances from the same domain, allowing amortization of the learning costs across
solution of multiple problem instances. Note that this property is in contrast to most competition
planners, especially in deterministic planning, which retain no useful information between prob-
lem instances. Thus, our approach to solving planning problems can be regarded as automatically
constructing domain-specific planners, using domain-independent techniques.

We learn features that correlate well to the statewise Bellman error of value functions encoun-
tered during planning, using any provided feature language with a corresponding learner to select
features from the space. We evaluate this approach using both relationaland propositional feature
spaces. There are other recent approaches to acquiring features instochastic planning with sub-
stantial differences from our approach which we discuss in detail in Section 5 (Patrascu, Poupart,
Schuurmans, Boutilier, & Guestrin, 2002; Gretton & Thiébaux, 2004; Sanner & Boutilier, 2009;
Keller, Mannor, & Precup, 2006; Parr, Painter-Wakefield, Li, & Littman,2007). No previous work
has evaluated the selection of relational features by correlation to statewiseBellman error.

Recent theoretical results (Parr et al., 2007) for uncontrolled Markovprocesses show that ex-
actly capturing statewise Bellman error in new features, repeatedly, will leadto convergence to the
uncontrolled optimal value for the value function selected by linear-fixed-point methods for weight
training. Unfortunately for machine-learning approaches to selecting features, these results have
not been transferred to approximations of statewise Bellman-error features: for this case, the results
in the work of Parr et al. (2007) are weaker and do not imply convergence. Also, none of this the-
ory has been transferred to the controlled case of interest here, where the analysis is much more
difficult because the effective (greedy) policy under consideration during value-function training is
changing.

We consider the controlled case, where no known theoretical propertiessimilar to those of Parr
et al. (2007) have been shown. Lacking such theory, our purpose isto demonstrate the capability
of statewise Bellman error features empirically, and with rich representationsthat require machine
learning techniques that lack approximation guarantees. Next, we give anoverview of our ap-
proach, introducing Markov decision processes, value functions, Bellman error, feature hypothesis
languages and our feature learning methods.

We use Markov decision processes (MDPs) to model stochastic planning problems. An MDP is
a formal model of a single agent facing a sequence of action choices from a pre-defined action space,
and transitioning within a pre-defined state space. We assume there is an underlying stationary
stochastic transition model for each available action from which state transitions occur according to
the agent’s action choices. The agent receives reward after each action choice according to the state
visited (and possibly the action chosen), and has the objective of accumulating as much reward as
possible (possibly favoring reward received sooner, using discounting, or averaging over time, or
requiring that the reward be received by a finite horizon).

MDP solutions can be represented as state-value functions assigning real numbers to states. In-
formally, in MDP solution techniques, we desire a value function that respects the action transitions
in that “good” states will either have large immediate rewards or have actions available that lead to
other “good” states; this well-known property is formalized inBellman equationsthat recursively
characterize the optimal value function (see Section 2). The degree to which a given value function
fails to respect action transitions in this way, to be formalized in the next section, is referred to as
theBellman errorof that value function, and can be computed at each state.
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Intuitively, statewise Bellman error has high magnitude in regions of the state space which
appear to be undervalued (or overvalued) relative to the action choicesavailable. A state with high
Bellman error has a locally inconsistent value function; for example, a state isinconsistently labeled
with a low value if it has an action available that leads only to high-value states. Our approach is to
use machine learning to fit new features to such regions of local inconsistency in the current value
function. If the fit is perfect, the new features guarantee we can represent the “Bellman update”
of the current value function. Repeated Bellman updates, called “value iteration”, are known to
converge to the optimal value function. We add the learned features to our representation and then
train an improved value function, adding the new features to the available feature set.

Our method for learning new features and using them to approximate the valuefunction here
can be regarded as aboosting-stylelearning approach. A linear combination of features can be
viewed as a weighted combination of an ensemble of simple hypotheses. Each new feature learned
can be viewed as a simple hypothesis selected to match a training distribution focused on regions
that the previous ensemble is getting wrong (as reflected in high statewise Bellman error throughout
the region). Growth of an ensemble by sequentially adding simple hypothesesselected to correct
the error of the ensemble so far is what we refer to as “boosting style” learning.

It is important to note that our method scores candidate features by correlation to the statewise
Bellman error of the current value function,not by minimizing the statewise Bellman error of some
value function found using the new candidate feature. Thispre-feature-additionscoring is much
less expensive than scoring that involves retraining weights with the new feature, especially when
being repeated many times for different candidates, relative to the same current value function. Our
use ofpre-feature-additionscoring to select features for the controlled setting enables a much more
aggressive search for new features than the previously evaluated post-feature-addition approach
discussed in the work of Patrascu et al. (2002).

Our approach can be considered for selecting features in any feature-description language for
which a learning method exists to effectively select features that match state-value training data.
We consider two very different feature languages in our empirical evaluation. Human-constructed
features are typically compactly described using a relational language (such as English) wherein the
feature value is determined by the relations between objects in the domain. Likewise, we consider
a relational feature language, based on domain predicates from the basicdomain description. (The
domain description may be written, for example, in a standard planning language such as PPDDL in
Younes, Littman, Weissman, & Asmuth, 2005.) Here, we take logical formulas of one free variable
to represent features that count the number of true instantiations of the formula in the state being
evaluated. For example, the “number of holes” feature that is used in many Tetris experiments
(Bertsekas & Tsitsiklis, 1996; Driessens, Ramon, & Gärtner, 2006) can be interpreted as counting
the number of empty squares on the board that have some other filled squares above them. Such
numeric features provide a mapping from states to natural numbers.

In addition to this relational feature language, we consider using a propositional feature rep-
resentation in our learning structure. Although a propositional representation is less expressive
than a relational one, there exist very effective off-the-shelf learning packages that utilize propo-
sitional representations. Indeed, we show that we can reformulate our feature learning task as a
related classification problem, and use a standard classification tool, the decision-tree learner C4.5
(Quinlan, 1993), to create binary-valued features. Our reformulation toclassification considers
only the sign, not the magnitude, of the statewise Bellman error, attempting to learnfeatures that
characterize the positive-sign regions of the state space (or likewise the negative-sign regions). A
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standard supervised classification problem is thus formulated and C4.5 is then applied to generate
a decision-tree feature, which we use as a new feature in our value-function representation. This
propositional approach is easier to implement and may be more attractive than the relational one
when there is no obvious advantage in using relational representation, orwhen computing the exact
statewise Bellman error for each state is significantly more expensive than estimating its sign. In
our experiments, however, we find that our relational approach produces superior results than our
propositional learner. The relational approach also demonstrates the ability to generalize features
between problem sizes in the same domain, an asset unavailable in propositional representations.

We present experiments in nine domains. Each experiment starts with a single,constant fea-
ture, mapping all states to the same number, forcing also a constant value function that makes no
distinctions between states. We then learn domain-specific features and weights from automatically
generated sampled state trajectories, adjusting the weights after each new feature is added. We
evaluate the performance of policies that select their actions greedily relative to the learned value
functions. We evaluate our learners using the stochastic computer-game Tetris and seven plan-
ning domains from the two international probabilistic planning competitions (Younes et al., 2005;
Bonet & Givan, 2006). Our method provides the first domain-independent approach to playing
Tetris successfully (without human-engineered features). Our relational learner also demonstrates
superior success ratio in the probabilistic planning-competition domains as compared both to our
propositional approach and to the probabilistic planners FF-Replan (Yoon, Fern, & Givan, 2007)
and FOALP (Sanner & Boutilier, 2006, 2009). Additionally, we show that our propositional learner
outperforms the work of Patrascu et al. (2002) on the same SysAdmin domainevaluated there.

2. Background

Here we present relevant background on the use of Markov DecisionProcesses in planning.

2.1 Markov Decision Processes

We define here our terminology for Markov decision processes. For a more thorough discussion of
Markov decision processes, see the books by Bertsekas and Tsitsiklis (1996) and Sutton and Barto
(1998). A Markov decision process (MDP)M is a tuple(S,A,R, T, s0). Here,S is a finite state
space containing initial states0, andA selects a non-empty finite available action setA(s) for each
states in S. The reward functionR assigns a real reward to each state-action-state triple(s, a, s′)
where actiona is enabled in states, i.e.,a is in A(s). The transition probability functionT maps
state-action pairs(s, a) to probability distributions overS, P(S), wherea is inA(s).

Given discount factor0 ≤ γ < 1 andpolicyπ mapping each states ∈ S to an action inA(s), the
value functionV π(s) gives the expected discounted reward obtained from states selecting action
π(s) at each state encountered and discounting future rewards by a factor of γ per time step. There
is at least one optimal policyπ∗ for which V π∗

(s), abbreviatedV ∗(s), is no less thanV π(s) at
every states, for any policyπ. The following “Q function” evaluates an actiona with respect to a
future-value functionV ,

Q(s, a, V ) =
∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV (s′)].

Recursive Bellman equations useQ() to describeV ∗ and V π as follows. First,V π(s) =
Q(s, π(s), V π). Then,V ∗(s) = maxa∈A(s)Q(s, a, V ∗). Also usingQ(), we can select an ac-
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tion greedily relative to any value function. The policy Greedy(V ) selects, at any states, the action
arg maxa∈A(s)Q(s, a, V ).

Value iterationiterates the operation

U(V )(s) = max
a∈A(s)

∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV (s′)],

computing the “Bellman update”U(V ) fromV , producing a sequence of value functions converging
in the sup-norm toV ∗, regardless of the initialV used.

We define thestatewise Bellman errorB(V, s) for a value functionV at a states to be
U(V )(s) − V (s). We will be inducing new features based on their correlation to the statewise
Bellman error, or based on the sign of the statewise Bellman error. The sup-norm distance of a
value functionV from the optimal value functionV ∗ can be bounded using the Bellman error mag-
nitude, which is defined asmaxs∈S |B(V, s)| (e.g., see Williams & Baird, 1993). We use the term
“statewise Bellman error” to emphasize the distinction from the widely used “sup-norm Bellman
error”.

We note that computingU(V ), and thus statewise Bellman error, can involve a summation over
the entire state space, whereas our fundamental motivations require avoiding such summations.
In many MDP problems of interest, the transition matrixT is sparse in a way that set of states
reachable in one step with non-zero probability is small, for any current state. In such problems,
statewise Bellman error can be computed effectively using an appropriate representation ofT . More
generally, whenT is not sparse in this manner, the sum can be effectively approximately evaluated
by sampling next states according to the distribution represented byT .

2.2 Modeling Goal-oriented Problems

Stochastic planning problems can be goal-oriented, where the objective ofsolving the problem is
to guide the agent toward a designated state region (i.e., the goal region). We model such problems
by structuring the reward and transition functionsR andT so that any action in a goal state leads
with positive reward to a zero-reward absorbing state, and reward is zero everywhere else. We
retain discounting to represent our preference for shorter paths to thegoal. Alternatively, such
problems can be modeled as stochastic shortest path MDPs without discounting (Bertsekas, 1995).
Our techniques can easily be generalized to formalisms which allow varying action costs as well,
but we do not model such variation in this work.

More formally, we define a goal-oriented MDP to be any MDP meeting the following con-
straints. Here, we use the variabless ands′ for states inS anda for actions inA(s). We require that
S contain a zero-reward absorbing state⊥, i.e., such thatR(⊥, a, s) = 0 andT (⊥, a,⊥) = 1 for all
s anda. The transition functionT must assign either one or zero to triples(s, a,⊥), and we call the
region of statess for which T (s, a,⊥) is onethe goal region. The reward function is constrained
so thatR(s, a, s′) is zero unlesss′ = ⊥. In constructing goal-oriented MDPs from other problem
representations, we may introduce dummy actions to carry out the transitions involving⊥ described
here.

2.3 Compactly Represented MDPs

In this work, we consider both propositional and relational state representations.
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In relational MDPs, the spacesS andA(s) for eachs are relationally represented, i.e., there
is a finite set of objectsO, state predicatesP , and action namesN used to define these spaces as
follows. A state factis an applicationp(o1, . . . , on) of ann-argument state predicatep to object
argumentsoi, for anyn1. A state is any set of state facts, representing exactly the true facts in that
state. Anaction instancea(o1, . . . , on) is an application of ann-argument action name ton objects
oi, for anyn. The action spaceA =

⋃

s∈S A(s) is the set of all action instances.

MDPs with compactly represented state and action spaces also use compact representations
for the transition and reward functions. One such compact representation is the PPDDL planning
language, informally discussed in the next subsection and formally presented in the work of Younes
et al. (2005).

In propositional problems, the action space is explicitly specified and the statespace is com-
pactly specified by providing a finite sequence of basic state properties called state attributes, with
Boolean, integer, or real values. A propositional state is then any vectorof values for the state
attributes.

Given a relational MDP, an equivalent propositional MDP can be easily constructed by “ground-
ing,” in which an explicit action space is constructed by forming all action-name applications and a
set of state attributes is computed by forming all state-predicate applications, thus removing the use
of the set of objects in the representation.

2.4 Representing PPDDL Planning Problems using MDPs

We discuss how to represent goal-oriented stochastic planning problems defined in standardized
planning languages such as PPDDL (Younes et al., 2005) as goal-oriented MDPs. We limit our
focus to problems in which the goal regions can be described as (conjunctive) sets of state facts. We
reference and follow the approach used in the work of Fern, Yoon, and Givan (2006) here regarding
converting from planning problems to compactly represented MDPs in a manner that facilitates gen-
eralization between problem instances. We first discuss several difficult representational issues and
then finally pull that discussion together in a formal definition of the MDP we analyze to represent
any given PPDDL problem instance. We do not consider quantified and/or disjunctive goals, but
handling such goals would be an interesting and useful extension of this work.

2.4.1 PLANNING DOMAINS AND PROBLEMS

A planning domainis a distribution over problem instances sharing the same state predicatesPW ,
action namesN , and action definitions. Actions can take objects as parameters, and are defined
by giving discrete finite probability distributions over action outcomes, each of which is specified
using add and delete lists of state facts about the action parameters.

Given a domain definition, each problem instance in the domain specifies a finiteobject setO,
initial statesi and goal conditionG. The initial state is given as a set of state facts and the goal
condition is given as a conjunction of state facts, each constructed from the predicates inPW .

1. Each state predicate has an associated “arity” indicating the number of objects it relates. The state predicate can be
“applied” to that number of objects from the domain to form a ground state fact that can be either true or false in
each state; states are then the different possible ways to select the true state facts. Likewise, each action name has an
associated “arity” that is a natural number indicating the number of objectsthe action will act upon. The action name
can then be “applied” to that number of objects to form a “grounded action”.
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2.4.2 PPDDL REPRESENTATION

PPDDL is the standard planning language for the international probabilistic planning competitions.
In PPDDL, a planning domain syntax and a planning problem syntax is defined. To completely
define a planning instance, one has to specify a domain definition and a problem definition using
the respective syntax. Conditional effects and quantified preconditionsare allowed in the domain
definition.

In planning competitions, it has been customary to specify planning domains byprovidingprob-
lem generatorsthat accept size parameters as input and then output PPDDL problem instances.
These generators thus specify size-parameterized planning domains. Itis important to note, how-
ever, that not all problem generators provided in the recent planning competitions specify planning
domains according to the definition used here. In particular, some problem generators vary the
action set or the state predicates between the instances generated. The relationship between the
different problem instances generated by such generators is much looser than that required by our
definition, and as such these “domains” are somewhat more like arbitrary collections of planning
problems.

Because our logical language allows generalization between problems onlyif those problems
share the same state and action language, we limit our empirical evaluation in Section 7 to domains
that were provided with problem generators that specify planning domainsas just defined here,
i.e., without varying the action definitions between instances (or for which wecan easily code such
a generator). We refer to domains with such generators asplanning domains with fixed action
definitions.

2.4.3 GENERALIZATION BETWEEN PROBLEMS OFVARYING SIZE

Because the object set varies in size, without bound, across the problem instances of a domain, there
are infinitely many possible states within the different instances of a single domain. Each MDP we
analyze has a finite state space, and so we model a planning domain as an infinite set of MDPs
for which we are seeking a good policy (in the form of a good value function), one MDP for each
problem instance2.

A value function for an infinite set of MDPs is a mapping from the disjoint unionof the state
spaces of the MDPs to the real numbers. Such a value function can be used greedily as a policy
in any of the MDPs in the set. However, explicit representation of such a value function would
have infinite size. Here, we will use knowledge representation techniquesto compactly represent
value functions over the infinite set of problem instance MDPs for any given planning domain. The
compact representation derives from generalization across the domains, and our approach is funda-
mentally about finding good generalizations between the MDPs within a single planning domain.
Our representation for value functions over planning domains is given below in Sections 2.5 and 4.

In this section, we discuss how to represent as a single finite MDP any singleplanning problem
instance. However, we note that our objective in this work is to find good value functions for
the infinite collections of such MDPs that represent planning domains. Throughout this paper, we
assume that each planning domain is provided along with a means for sampling example problems
from the domain, and that the sampling is parameterized by difficulty (generally, problem size) so

2. In this paper we consider two candidate representations for features; only one of these, the relational representation,
is capable of generalizing between problem sizes. For the propositional representation, we restrict all training and
testing to problem instances of the same size.
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that easy example problems can be selected. Although, PPDDL does not provide any such problem
distributions, benchmark planning domains are often provided with problem generators defining
such distributions: where such generators are available, we use them, and otherwise we code our
own distributions over problem instances.

2.4.4 GENERALIZING BETWEEN PROBLEMS WITH VARYING GOALS

To facilitate generalization between problem instances with different goals,and following the work
of Martin and Geffner (2004) and Fern et al. (2006), we translate a PPDDL instance description into
an MDP where each state specifies not only what is true in the state but also what the goal is. Action
transitions in this MDP will never change the “goal”, but the presence of that goal within the state
description allows value functions (that are defined as conditioning only onthe state) to depend on
the goal as well. The goal region of the MDP will simply be those MDP states where the specified
current state information matches the specified goal information.

Formally, in translating PPDDL problem instances into compact MDPs, we enrich the given set
of world-state predicatesPW by adding a copy of each predicate indicating the desired state of that
predicate. We name the goal-description copy of a predicatep by prepending the word “goal-” to
the name. The set of all goal-description copies of the predicates inPW is denotedPG, and we take
PW ∪PG to be the state predicates for the MDP corresponding to the planning instance. Intuitively,
the presence of goal-p(a,b) in a state indicates that the goal condition requires the factp(a, b) to be
part of the world state. The only use of the goal predicates in constructinga compact MDP from a
PPDDL description is in constructing the initial state, which will have the goal conditions true for
the goal predicates.

We use the domain Blocksworld as an example here to illustrate the reformulation (the same
domain is also used as an example in Fern et al., 2006). The goal condition in aBlocksworld
problem can be described as a conjunction of groundon-top-of facts. The world-state predicate
on-top-of is in PW . As discussed above, this implies that the predicategoal-on-top-of is in PG.
Intuitively, one ground instance of that predicate,goal-on-top-of(b1,b2), means that for a state in
the goal region, the blockb1 has to be directly on the top of the blockb2.

2.4.5 STATES WITH NO AVAILABLE ACTIONS

PPDDL allows the definition of domains where some states do not meet the preconditions for any
action to be applied. However, our MDP formalism requires at least one available action in every
state. In translating a PPDDL problem instance to an MDP we define the action transitions so
that any action taken in such a “dead” state transitions deterministically to the absorbing⊥ state.
Because we consider such states undesirable in plan trajectories, we give these added transitions a
reward of negative one unless the source state is a goal state.

2.4.6 THE RESULTING MDP

We now pull together the above elements to formally describe an MDPM = (S,A,R, T, s0)
given a PPDDL planning problem instance. As discussed in Section 2.3, thesetS is defined by
specifying the predicates and objects available. The PPDDL description specifies the setsN of
action names andO of objects, as well as a setPW of world predicates. We construct the enriched
setP = PW ∪ PG of state predicates and define the state space as all sets of applications of these
predicates to the objects inO. The setA(s) for any states is the set of PPDDL action instances built
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fromN andO for whichs satisfies the preconditions, except that if this set is empty,A(s) is the set
of all PPDDL action instances built fromN andO. In the latter case, we say the state is “dead.” The
reward functionR is defined as discussed previously in Section 2.2; i.e.,R(s, a, s′) = 1 when the
goal conditionG is true ins,R(s, a, s′) = −1 whens is a non-goal dead state, and zero otherwise.
We defineT (s, a, s′) according to the semantics of PPDDL augmented with the semantics of⊥
from Section 2.2—T (s, a,⊥) will be one if s satisfiesG, s is dead, ors = ⊥, and zero otherwise.3

Transiting from one state to another never changes the goal condition description in the states given
by predicates inPG. The MDP initial states0 is just the PPDDL problem initial statesi augmented
by the goal conditionG using the goal predicates fromPG. If a propositional representation is
desired, it can be easily constructed directly from this relational representation by grounding.

2.5 Linear Approximation of Value Functions

As many previous authors have done (Patrascu et al., 2002; Sanner & Boutilier, 2009; Bertsekas &
Tsitsiklis, 1996; Tesauro, 1995; Tsitsiklis & Roy, 1997), we address very large compactly rep-
resentedS and/orA by implicitly representing value functions in terms of state-spacefeatures
f : S → R. Our featuresf must select a real value for each state. We describe two approaches to
representing and selecting such features in Section 4.

Recall from Section 1 that our goal is to learn a value function for a family ofrelated MDP
problems. We assume that our state-space features are defined acrossthe union of the state spaces
in the family.

We represent value functions using a linear combination ofl features extracted froms, i.e., as
Ṽ (s) =

∑l
i=0wifi(s), wheref0(s) = 1. Our goal is to find featuresfi (each mapping states to real

values) and weightswi so thatṼ closely approximatesV ∗. Note that a single set of features and
weight vector defines a value function for all MDPs in which those features are defined.

Various methods have been proposed to select weightswi for linear approximations (see, e.g.,
Sutton, 1988 or Widrow & Hoff, 1960). Here, we review and use a trajectory-based approximate
value iteration (AVI) approach. Other training methods can easily be substituted. AVI constructs a
finite sequence of value functionsV 1, V 2, . . . , V T , and returns the last one. Each value function
is represented asV β(s) =

∑l
i=0w

β
i fi(s). To determine weightswβ+1

i from V β , we draw a set
of training statess1, s2, . . . , sn by following policy Greedy(V β) in different example problems
sampled from the provided problem distribution at the current level of problem difficulty. (See
Section 3 for discussion of the control of problem difficulty.) The number of trajectories drawn and
the maximum length of each trajectory are parameters of this AVI method. For each training states,
we compute the Bellman updateU(V β)(s) from the MDP model of the problem instance. We can
then computewβ+1

i from the training states using

w
β+1
i = w

β
i +

1

ni

∑

j

αfi(sj)(U(V β)(sj)− V
β(sj)), (1)

whereα is the learning rate andni is the number of statess in s1, s2, . . . , sn for which fi(s) is
non-zero. Weight updates using this weight-update formula descend the gradient of theL2 distance
betweenV β andU(V β) on the training states, with the features first rescaled to normalize the

3. Note that according to our definitions in Section 2.2, the dead states are now technically “goal states”, but have
negative rewards.
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effective learning rate to correct for feature values with rare occurrence in the training set.4 Pseudo-
code for our AVI method and for drawing training sets by following a policy isavailable in Online
Appendix 1 (available on JAIR website), on page 2.

Here, we use the greedy policy to draw training examples in order to focus improvement on the
most relevant states. Other state distributions can be generated that are not biased by the current
policy; in particular, another option worth considering, especially if feature learning is stuck, would
be the long random walk distribution discussed in the work of Fern, Yoon, and Givan (2004). We
leave detailed exploration of this issue for future work. For a more substantial discussion of the
issues that arise in selecting the training distribution, please see the book by Sutton and Barto (1998).
It is worth noting that on-policy training has been shown to converge to the optimal value function
in the closely related reinforcement learning setting using the SARSA algorithm(Singh, Jaakkola,
Littman, & Szepesvari, 2000).

In general, while AVI often gives excellent practical results, it is a greedy gradient-descent
method in an environment that is not convex due to the maximization operation in theBellman error
function. As such, there is no guarantee on the quality of the weight vectorfound, even in the case
of convergence. Convergence itself is not guaranteed, and, in our experiments, divergent weight
training was in fact a problem that required handling. We note that our feature-discovery methods
can be used with other weight-selection algorithms such as approximate linear programming, should
the properties of AVI be undesirable for some application.

We have implemented small modifications to the basic weight update rule in order to use AVI
effectively in our setting; these are described in Section 5 in Online Appendix 1 (available on JAIR
website).

3. Feature-Discovering Value-function Construction

In planning, once state features are provided, domain-independent algorithms such as AVI can learn
weighted combinations of those features that often perform well as heuristic estimates of state value
(e.g., distance to the goal). We now describe methods to select and add features that describe
state-space regions of high inconsistency in the Bellman equation (statewise Bellman error) during
approximate value iteration. Our methods can be applied using any real-valued-feature hypothesis
space with a corresponding learning method for selecting features to match areal-valued function
on a training set of states. Here, we will use the learner to select featuresthat match the statewise
Bellman error function.

As noted above, we use a “boosting style” learning approach in finding value functions, iterating
between selecting weights and generating new features by focusing on theBellman error in the
current value function. Our value function representation can be viewed as a weighted ensemble of
single-feature hypotheses. We start with a value function that has only a trivial feature, a constant
feature always returning the value one, with initial weight zero. We iteratively both retrain the
weights and select new features matching regions of states for which the current weighted ensemble
has high statewise Bellman error.

We take a “learning from small problems” approach and learn features first in problems with
relatively lower difficulty, and increase problem difficulty over time, as discussed below. Lower
difficulty problems are typically those with smaller state spaces and/or shorter paths to positive

4. In deriving this gradient-descent weight-update formula, each featurefi is scaled byri =
q

n

ni

, giving f ′

i = rifi.
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Figure 1: Control flow for feature learning. Boxes with double bordersrepresent assumed sub-
routines for our method. We assume that the problem distribution is parameterized by
problem difficulty (such as problem size).

feedback (e.g. goal states). Learning initially in more difficult problems will typically lead to
inability to find positive feedback and random-walk behavior; as a result learning first in lower
difficulty problems has been found more effective (Martin & Geffner, 2004; Yoon, Fern, & Givan,
2002). We show experimentally in Section 7 that good value functions for high difficulty problems
can indeed be learned in this fashion from problems of lower, increasing difficulties.

Our approach relies on two assumed subroutines, and can be instantiated indifferent ways by
providing different algorithms for these subroutines. First, a method of weight selection is assumed;
this method takes as input a problem domain and a fixed set of features, andselects a weight vector
for a value function for the problem domain using the provided features. We intend this method
to heuristically or approximately minimizeL∞ Bellman error in its choice of weight vector, but
in practice it may be easier to adjust weights to approximateL2 Bellman error. Second, a feature
hypothesis space and corresponding learner are assumed to be provided by the system designer.

The control flow for our approach is shown in Figure 1. Each iteration ata fixed problem
distribution selects weights for the current feature set (using any method attempting to minimize
L∞ Bellman error) to define a new value functionV , selects a training set of states for feature
learning, then learns a new feature correlating well to the statewise Bellman error of V , adding
that feature to the feature set. A user-provided performance-threshold function τ detects when to
increase the problem difficulty. A formalization of this control flow is given inFigure 2, in the form
of pseudo-code.
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Feature-discovering Value-function Construction

Inputs: Initial feature vector
−→
Φ 0, initial weight vector−→w 0,

Sequence of problem distributionsD1, D2, · · · , Dmax of increasing difficulty,
Performance threshold functionτ .
//τ(D,V ) tests the performance of value functionV in distributionD.

Outputs: Feature vector
−→
Φ , weight vector−→w

1.
−→
Φ ←

−→
Φ 0, −→w ← −→w 0, d← 1

2. while not (d > max or out of time)

3. Select−→w approximately minimizing Bellman error ofV = −→w ·
−→
Φ overDd

4. if τ(Dd,
−→w ·
−→
Φ)

5. then d← d+ 1

6. else

7. Generate a sequence of training statesT usingDd

8. Learn new featuref correlating to the Bellman error featureB(−→w ·
−→
Φ , ·)

for the states inT

9.
−→
Φ ← (

−→
Φ; f), −→w ← (−→w ; 0)

10. return
−→
Φ ,−→w

Notes:

1. B(·, ·) is the statewise-Bellman error function, as defined in Section 2.1.

2. The code for approximate value iterationAVI , shown in Online Appendix 1 (available on JAIR website) on
page 2, is an example implementation of line 3.

3. The code fordraw(Greedy(−→w ·

−→

Φ), Ntraining), shown in Online Appendix 1 on page 2, is an example imple-
mentation of line 7.Ntraining is the number of states in the feature training set. Duplicated states are removed
as specified in Section 3.1.

4. The beam-search code for learning relational featuresbeam-search-learn(score(·, T, B(−→w ·

−→

Φ , ·))) is an
example implementation of line 8, wherebeam-search-learnis shown in figure 3 in Section 3, andscoreis
defined in Section 4.2.

Figure 2: Pseudo-code for learning a set of features.

For the experiments reported in Section 7, we evaluate the following choices for the assumed
subroutines. For all experiments we use AVI to select weights for featuresets. We evaluate two
choices for the feature hypothesis space and corresponding learner, one relational and one proposi-
tional, as described in Section 4.

Separate training sets are drawn for weight selection and for the featurelearning; the former
will depend on the weight selection method, and is described for AVI in Section 2.5, and the latter
is described in this section.

Problem difficulty is increased when sampled performance of the greedy policy at the current
difficulty exceeds user-specified performance thresholds. In our planning-domain experiments, the
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performance parameters measured are success ratio (percentage of trials that find the goal) and av-
erage successful plan length (the average number of steps to the goal among all successful trials).
The non-goal-oriented domains of Tetris and SysAdmin use different performance measures: aver-
age total reward for Tetris and Bellman error for SysAdmin (to facilitate comparison with Patrascu
et al., 2002).

We also assume a user-provided schedule for problem difficulty increases in problems where
difficulty is parameterized by more than one parameter (e.g., size may be measured in by the number
of objects of each type); further domain-independent automation of the increase in difficulty is a
topic for future research. We give the difficulty-increase schedules and performance thresholds for
our experiments in the section presenting the experiments, Section 7.

3.1 Training Set Generation

The training set for selection of a new feature is a set of states. The training set is constructed by
repeatedly sampling an example problem instance from the problem distributionat the current level
of difficulty, and applying the current greedy policy Greedy(V ) to that problem instance to create
a trajectory of states encountered. Every state (removing duplicates) encountered is added to the
training set. The size of the feature-selection training set and the maximum length of each training
trajectory are specified by the user as parameters of the algorithm.

Retaining duplicate states in the training set is another option that can be considered. Our pre-
liminary empirical results have not favored this option, but it is certainly worthfurther exploration.
We note that the goal of finding a near-optimal value function does not necessarily make reference
to a state distribution: the most widely used notion of “near-optimal” in the theory of MDPs is
the sup-norm distance toV ∗. Moreover, the state distribution represented by the duplicates in our
training sets is typically the distribution under a badly flawed policy; heeding thisdistribution can
prevent correcting Bellman error in critical states that are visited by this policy, but visited only
rarely. (These states may be, for instance, rarely visited “good exits” from the visited state region
that are being misunderstood by the current value function.) At this point, our primary justification
for removing duplicates is the empirical performance we have demonstrated inSection 7.

Similar reasoning would suggest removing duplicate states in the training sets for AVI weight
training, described in Section 2.5. Because there are many large AVI training sets generated in our
experiments, duplicate removal must be carefully handled to control runtime;for historical reasons,
our experiments shown here do not include duplicate removal for AVI.

A possible problem occurs when the current greedy policy cannot reach enough states to com-
plete the desired training set. If 200 consecutive trajectories are drawn without visiting a new state
before the desired training set size is reached, the process is modified asfollows. At that point,
the method attempts to complete the training set by drawing trajectories using random walk (again
using sampled example problems from the current problem distribution). If this process again leads
to 200 consecutive trajectories without a new state, the method terminates training-set generation
and uses the current training set even though it is smaller than the target size.

3.2 Applicability of the Method

Feature-discovering value-function construction as just described does not require complete access
to the underlying MDP model. Our AVI updates and training set generation are both based on the
following computations on the model:
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1. Given a states the ability to compute the action setA(s).

2. Given a states, actiona ∈ A(s), and value functionV , the ability to compute theQ-value
Q(s, a, V ).

3. Given a states and actiona ∈ A(s), the ability to draw a state from the next state distribution
defined byT (s, a, s′).

4. Given a states, the ability to compute the features in the selected feature language ons and
any computations on the state required for the selected feature learner. Asexamples,

(a) in Section 4, we introduce a relational feature language and learner that require knowl-
edge of a set of domain predicates (and their arities) such that each state isa conjunctive
set of predicate facts (see Section 2.3),

(b) and, also in Section 4, we describe a propositional feature languageand learner that
require knowledge of a set of propositional state attributes such that each state is a truth
assignment to the attributes.

The first three items enable the computation of the Bellman update ofs and the last item enables
computation of the estimated value function given the weights and features defining it as well as the
selection of new features by the feature learner. These requirements amount to substantial access to
the problem model; as a result our method must be considered a model-basedtechnique.

A consequence of these requirements is that our algorithm cannot be directly applied to the
standard reinforcement learning setting where the only model access is viaacting in the world
without the ability to reset to selected states; in this setting Bellman error computations for particular
states cannot necessarily be carried out. It would be possible to construct a noisy Bellman error
training set in such a model-free setting and it would be appropriate future work to explore the use
of such a training set in feature learning.

While the PPDDL planning domains studied provide all the information needed to perform these
computations, our method also applies to domains that are not natural to represent in PPDDL. These
can be analyzed by our method once the above computations can be implemented. For instance, in
our Tetris experiments in Section 7.2, the underlying model is represented byproviding hand-coded
routines for the above computations within the domain.

3.3 Analysis

MDP value iteration is guaranteed to converge to the optimal value function if conducted with
a tabular value-function representation in the presence of discounting (Bertsekas, 1995). Although
weight selection in AVI is designed to mimic value iteration, while avoiding a tabular representation,
there is no general guarantee that the weight updates will track value iteration and thus converge
to the optimal value function. In particular, there may be no weighted combinationof features that
represents the optimal value function, and likewise none that represents the Bellman updateU(V )
for some value functionV produced by AVI weight training process. Our learning system introduces
new features to the existing feature ensemble in response to this problem: the training set used to
select the new feature pairs states with their statewise Bellman error. If the learned feature exactly
captures the statewise Bellman-error concept (by exactly capturing the training set and generalizing
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successfully) then the new feature space will contain the Bellman update of the value function used
to generate the training data.

We aim to find features that approximate the “Bellman error feature,” which we take to be a
function mapping states to their statewise Bellman error. Theoretical properties of Bellman error
features in the uncontrolled Markov processes (i.e., without the max operator in the Bellman equa-
tion) have recently been discussed in the work of Parr et al. (2007), where the addition of such
features (or close approximations thereof) is proven to reduce the weightedL2-norm distance be-
tween the best weight setting and the the true (uncontrolled) valueV ∗, when linear fixed-point
methods are used to train the weights before feature addition. Prior to that work (in Wu & Givan,
2005), and now in parallel to it, we have been empirically exploring the effects of selecting Bellman
error features in the more complex controlled case, leading to the results reported here.

It is clear that if we were to simply add the Bellman error feature directly, and set the corre-
sponding weight to one, the resulting value function would be the desired Bellman updateU(V )
of the current value functionV . Adding such features at each iteration would thus give us a way
to conduct value iteration exactly, without enumerating states. But each such added feature would
describe the Bellman error of a value function defined in terms of previouslyadded features, posing
a serious computational cost issue when evaluating the added features. In particular, each Bellman
error feature for a value functionV can be estimated at any particular state with high confidence by
evaluating the value functionV at that state and at a polynomial-sized sample of next states for each
action (based on Chernoff bounds).

However, if the value functionV is based upon a previously added Bellman-error feature, then
each evaluation ofV requires further sampling (again, for each possible action) to compute. Inthis
manner, the amount of sampling needed for high confidence grows exponentially with the number of
successive added features of this type. The levels of sampling do not collapse into one expectation
because of intervening choices between actions, as is often the case in decision-theoretic sampling.
Our feature selection method is an attempt to tractably approximate this exact value iteration method
by learning concise and efficiently computable descriptions of the Bellman-error feature at each
iteration.

Our method can thus be viewed as a heuristic approximation to exact value iteration. Exact
value iteration is the instance of our method obtained by using an explicit state-value table as the
feature representation and generating training sets for feature learningcontaining all states — to
obtain exact value iteration we would also omit AVI training but instead set each weight to one.

When the feature language and learner can be shown to approximate explicit features tightly
enough (so that the resulting approximate Bellman update is a contraction in theL∞ norm), then it is
easy to prove that tightening approximations ofV ∗ will result if all weights are set to one. However,
for the more practical results in our experiments, we use feature representations and learners for
which no such approximation bound relative to explicit features is known.

4. Two Candidate Hypothesis Spaces for Features

In this section we describe two hypothesis spaces for features, a relational feature space and a
propositional feature space, along with their respective feature learning methods. For each of the
two feature spaces, we assume the learner is provided with a training set ofstates paired with their
statewise Bellman error values.
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Note that these two feature-space-learner pairs lead to two instances of our general method and
that others can easily be defined by defining new feature spaces and corresponding learners. In this
paper we empirically evaluate the two instances presented here.

4.1 Relational Features

A relational MDP is defined in terms of a set of state predicates. These state predicates are the basic
elements from which we define a feature-representation language. Below, we define a general-
purpose means of enriching the basic set of state predicates. The resulting enriched predicates
can be used as the predicate symbols in standard first-order predicate logic. We then consider any
formula in that logic with one free variable as a feature, as follows5.

A state in a relational MDP is a first-order interpretation. A first-order formula with one free
variable is then a function from such states to natural numbers which maps each state to the number
of objects in that state that satisfy the formula. We take such first-order formulas to be real-valued
features by normalizing to a real number between zero and one—this normalization is done by
dividing the feature value by the maximum value that the feature can take, which is typically the
total number of objects in the domain, but can be smaller than this in domains whereobjects (and
quantifiers) are typed. A similar feature representation is used in the work of Fawcett (1996).

This feature representation is used for our relational experiments, but the learner we describe
in the next subsection only considers existentially quantified conjunctions ofliterals (with one free
variable) as features. The space of such formulas is thus the effectivefeature space for our relational
experiments.

Example 4.1: Take Blocksworld with the table as an object for example,on(x, y) is
a predicate in the domain that asserts the blockx is on top of the objecty, wherey
may be a block or the table. A possible feature for this domain can be described as∃y
on(x, y), which is a first-order formula withx as the one free variable. This formula
means that there is some other object immediately below the block objectx, which
essentially excludes the table object and the block being held by the arm (if any) from
the object set described by the feature. Forn blocks problems, the un-normalized value
of this feature isn for states with no block being held by the arm, orn − 1 for states
with a block being held by the arm.

4.1.1 THE ENRICHED PREDICATE SET

More interesting examples are possible with the enriched predicate set that we now define. To enrich
the set of state predicatesP , we add for each binary predicatep a transitive closure form of that
predicatep+ and predicates min-p and max-p identifying minimal and maximal elements under
that predicate. In goal-based domains, recall that our problem representation (from Section 2.4)
includes, for each predicatep, a goal version of the predicate called goal-p to represent the desired
state of the predicatep in the goal. Here, we also add a means-ends analysis predicate correct-p to
representp facts that are present in both the current state and the goal.

So, for objectsx andy, correct-p(x,y) is true if and only if bothp(x, y) and goal-p(x,y) are
true. p+(x, y) is true of objectsx andy connected by a path in the binary relationp. The relation
max-p(x) is true if objectx is a maximal element with respect top, i.e., there exists no other object

5. Generalizations to allow multiple free variables are straightforward but of unclear utility at this time.
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y such thatp(x, y) is true. The relation min-p(x) is true if objectx is a minimal element with respect
to p, i.e., there exists no other objecty such thatp(y, x) is true.

We formally define the feature grammar in Online Appendix 1 (available on JAIRwebsite) on
page 3.

Example 4.1 (cont.):The feature∃y correct-on(x, y) means thatx is stacked on top of
some objecty both in the current state and in the goal state. The feature∃y on+(x, y)
means that in the current state,x is directly above some objecty, i.e., there is a sequence
of on relations traversing a path betweenx andy, inclusively. The feature max-on+(x)
means thatx is the table object when all block-towers are placed on the table, since the
table is the only object that is noton any other object. The feature min-on+(x) means
that there is no other object on top ofx, i.e.,x is clear.

4.2 Learning Relational Features

We select first-order formulas as candidate features using a beam search with a beam widthW . We
present the pseudo-code for beam search in Figure 3. The search starts with basic features derived
automatically from the domain description and repeatedly derives new candidate features from the
best scoringW features found so far, adding the new features as candidates and keeping only the
best scoringW features at all times. After new candidates have been added a fixed depthd times,
the best scoring feature found overall is selected to be added to the value-function representation.
Candidate features are scored for the beam search by their correlationto the Bellman error feature
as formalized below.

Specifically, we score each candidate featuref with its correlation coefficient to the Bellman
error featureB(V, ·) as estimated by a training set. The correlation coefficient between functions

φ andφ′ is defined ascorr-coef(φ, φ′) = E{φ(s)φ′(s)}−E{φ(s)}E{φ′(s)}
σφσφ′

. Instead of using a known

distribution to compute this value, we use the states in the training set∆s and compute a sampled
version by using the following equations to approximate the true expectationE and the true standard
deviationσ of any random variableX:

E∆s
{X(s)} =

1

|∆s|

∑

s′∈∆s

X(s′),

σX,∆s
=

√

1

|∆s|

∑

s′∈∆s

(X(s′)− E{X(s)})2,

corr-coef-sampled(φ, φ′,∆s) =
E∆s
{φ(s)φ′(s)} − E∆s

{φ(s)}E∆s
{φ′(s)}

σφ,∆s
σφ′,∆s

.

The scoring function for feature selection is then a regularized version of the correlation coefficient
between the feature and the target functionφ

score(f,∆s, φ) = |corr-coef-sampled(f, φ,∆s)|(1− λdepth(f)),

where the “depth” of a feature is the depth in the beam search at which it first occurs, andλ is a
parameter of the learner representing the degree of regularization (biastowards low-depth features).
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beam-search-learn

Inputs: Feature scoring functionfscore: features→ [0, 1]

Outputs: New featuref

System parameters:W : Beam width
maxd: Max number of beam-search iterations
λ: Degree of regularization, as defined in Section 4.2

1. I ← the set of basic features, as defined in Section 4.2.
2. d← 1, F ← I.
3. repeat
4. Set beamB to the highest scoringW candidates inF .
5. Candidate feature setF ← B.
6. for each candidatef1 ∈ B
7. for each candidatef2 ∈ (B ∪ I), f2 6= f1

8. F = F ∪ combine(f1, f2).

9. d← d+ 1.
10. until (d > maxd) or (highest score so far≥ (1− λd)).
11. return the maximum scoring featuref ∈ F .

Notes:

1. Feature scoring functionfscore(f) is used to rank candidates in lines 4 and 11. A discussion of a sample
scoring function, used in our relational experiments, is given in Section 4.2.

2. Candidate scores can be cached after calls tofscore, so that no candidate is scored twice.

3. The value(1 − λd) is the largest score a feature of depthd can have.

Figure 3: Pseudo-code for beam search.

The valuescore(f,∆s, B(V, ·)) is then the score of how well a featuref correlates to the Bell-
man error feature. Note that our features are non-negative, but canstill be well correlated to the
Bellman error (which can be negative), and that the presence of a constant feature in our represen-
tation allows a non-negative feature to be shifted automatically as needed.

It remains only to specify which features in the hypothesis space will be considered initial, or
basic, features for the beam search, and to specify a means for constructing more complex features
from simpler ones for use in extending the beam search. We first take the state predicate setP in
a domain and enrichP as described in Section 4.1. After this enrichment ofP , we take as basic
features the existentially quantified applications of (possibly negated) state predicates to variables
with zero or one free variable6. A grammar for basic features is defined as follows.

6. If the domain distinguishes any objects by naming them with constants, we allow these constants as arguments to the
predicates here as well.
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Definition: A basic featureis an existentially quantified〈literal〉 expression with at
most one free variable (see Figure 3 in Online Appendix 1, available on JAIR website,
on page 3).

A feature with no free variables is treated technically as a one-free-variable feature where that
variable is not used; this results in a “binary” feature value that is either zero or the total number of
objects, because instantiating the free variable different ways always results in the same truth value.
We assume throughout that every existential quantifier is automatically renamed away from every
other variable in the system. We can also take as basic features any human-provided features that
may be available, but we do not add such features in our experiments in this paper in order to clearly
evaluate our method’s ability to discover domain structure on its own.

At each stage in the beam search we add new candidate features (retaining theW best scoring
features from the previous stage). The new candidate features are created as follows. Any feature in
the beam is combined conjunctively with any other, or with any basic feature.The method of com-
bination of two features is described in Figure 4. This figure shows non-deterministic pseudo-code
for combining two input features, such that any way of making the non-deterministic choices results
in a new candidate feature. The pseudo-code refers to the feature formulasf1 andf2 describing the
two features. In some places, these formulas and others are written with theirfree variable exposed,
asf1(x) andf2(y). Also substitution for that variable is notated by replacing it in the notation, as
in f1(z).

The combination is by conjoining the feature formulas, as shown in line 2 of Figure 4; however,
there is additional complexity resulting from combining the two free variables and possibly equating
bound variables between the two features. The two free variables are either equated (by substitu-
tion) or one is existentially quantified before the combination is done, in line 1. Upto two pairs
of variables, chosen one from each contributing feature, may also be equated, with the resulting
quantifier at the front, as described in line 3. Every such combination feature is a candidate.

This beam-search construction can lead to logically redundant features that are in some cases
syntactically redundant as well. We avoid syntactically redundant features at the end of the beam
search by selecting the highest scoring feature that is not already in the feature set. Logical redun-
dancy that is not syntactic redundancy is more difficult to detect. We avoid some such redundancy
automatically by using ordering during the beam search to reduce the generation of symmetric ex-
pressions such asφ ∧ ψ andψ ∧ φ. However, testing logical equivalence between features in our
language is NP-hard (Chandra & Merlin, 1977), so we do not deploy a complete equivalence test
here.

Example 4.2:Assume we have two basic features∃z p(x, z) and∃w q(y, w). The set
of the possible candidates that can be generated by combining these two features are:
When line 3 in Figure 4 runs zero times,

1. (∃x ∃z p(x, z)) ∧ (∃w q(y, w)), from∃xf1(x) ∧ f2(y)

2. (∃z p(x, z)) ∧ (∃y ∃w q(y, w)), from f1(x) ∧ ∃yf2(y), and

3. (∃z p(x, z)) ∧ (∃w q(x,w)), from f1(x) ∧ f2(x)

and when line 3 runs one time,

4. ∃u ((∃z p(u, z)) ∧ (q(y, u))), from equatingx andw in item 1 above,

5. ∃u (∃x p(x, u)) ∧ (q(y, u)), from equatingx andz in item 1 above,
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combine

Inputs: Featuresf1(x), f2(y)

Outputs: Set of features{o1}

return the set of all featureso1 that can result from:

1. Perform one of

a. f1 = (∃x)f1(x)

b. f2 = (∃y)f2(y)

c. f2 = f2(x)

2. o1 = f1 ∧ f2

3. Perform the following variable equating step zero, one, or two times:

a. Letv be a variable occurring inf1 ando1.
Let e1 be the expression of the form(∃v)φ1(v) that occurs ino1

b. Letw be a variable occurring inf2 ando1.
Let e2 be the expression of the form(∃w)φ2(w) that occurs ino1

c. Letu be a new variable, not used ino1

d. o2 = replacee1 with φ1(u) and replacee2 with φ2(u) in o1

e. o1 = (∃u)o2

Notes:

1. The choice between 1a, 1b, and 1c, the choice of number of iterationsof step 3, and the choices ofe1 ande2

in steps 3a and 3b are all non-deterministic choices.

2. Any feature that can be produced by any run of this non-deterministicalgorithm is included in the set of
features that is returned bycombine.

3. It is assumed thatf1 andf2 have no variables in common, by renaming if necessary before this operation.

Figure 4: A non-deterministic algorithm for combining two feature formulas.

6. ∃u (p(x, u) ∧ (∃w q(u,w))), from equatingz andy in item 2 above,

7. ∃u (p(x, u) ∧ (∃y q(y, u))), from equatingz andw in item 2 above, and

8. ∃u (p(x, u) ∧ ( q(x, u))), from equatingz andw in item 3 above.

The first three are computed using cases 1a, 1b, and 1c, respectively. The remaining
five derive from the first three by equating bound variables fromf1 andf2.

Features generated at a depthk in this language can easily require enumerating allk-tuples
of domain objects. Since the cost of this evaluation grows exponentially withk, we bound the
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maximum number of quantifiers in scope at any point in any feature formula toq, and refuse to
consider any feature violating this bound.

The valuesW , λ, d, andq are the parameters controlling the relational learner we evaluate in
this paper. How we set these parameters is discussed further in the experimental setup description
in Section 6.

We provide a brief discussion on the motivations for our feature combinationmethod. First, we
note that additive combination of features can represent disjunctions of features7; hence, we only
consider conjunction during feature combination. Here, we have chosento “conjoin” features in
multiple ways, varying the handling/combining of the free and bound variables. We do not believe
our choice to be uniquely effective, but provide it as an example realization of the proposed feature-
discovery architecture.

Any choice of feature representation and combination method must trade offbetween the cost
of evaluation of more choices and the potential gain in quality of the selected features. Here, we
have chosen to limit individual features to conjunction; effectively, we have limited the features to
Horn clauses over the predicates and their negations, with univariate heads.

4.3 Propositional Features

Here we discuss a second candidate hypothesis space for features, using a propositional represen-
tation. We use decision trees to represent these propositional features.A detailed discussion of
classification using decision trees can be found in the book by Mitchell (1997). A decision tree is
a binary tree with internal nodes labeled by binary tests on states, edges labeled “yes” and “no”
representing results of the binary tests, and leaves labeled with classes (inour case, either zero or
one). A path through the tree from the root to a leaf with labell identifies a labeling of some set of
states—each state consistent with the state-test results on the path is viewed aslabeledl by the tree.
In this way, a decision tree with real number labels at the leaves is viewed as labeling all states with
real numbers, and is thus a feature.

We learn decision trees from training sets of labeled states using the well known C4.5 algorithm
(Quinlan, 1993). This algorithm induces a tree greedily matching the training data from the root
down. We use C4.5 to induce new features—the key to our algorithm is how weconstruct suitable
training sets for C4.5 so that the induced features are useful in reducingBellman error.

We include as possible state tests for the decision trees we induce every grounded predicate
application8 from the state predicates, as well as every previously selected decision-tree feature
(each of which is a binary test because all leaf labels are zero or one).

4.4 Learning Propositional Features

To construct binary features, we use only the sign of the “Bellman error feature,” not the magni-
tude. The sign of the statewise Bellman error at each state serves as an indication of whether the
state is undervalued or overvalued by the current approximation, at least with respect to exactly
representing the Bellman update of the current value function. If we can identify a collection of
“undervalued” states as a new feature, then assigning an appropriate positive weight to that feature

7. Representing the disjunction of overlapping features using additive combination can be done with a third feature
representing the conjunction, using inclusion/exclusion and a negative weight on the conjunction.

8. A grounded predicate application is a predicate applied to the appropriatenumber of objects from the problem in-
stance.
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will increase their value. Similarly, identifying “overvalued” states with a new feature and assigning
a negative weight will decrease their value. We note that the domains of interest are generally too
large for state-space enumeration, so we will need classification learning togeneralize the notions
of overvalued and undervalued across the state space from training sets of sample states.

To enable our method to ignore states that are approximately converged, wediscard states with
statewise Bellman error near zero from either training set. Specifically, among the states with neg-
ative statewise Bellman error, we discard any state with such error closer tozero than the median
within that set; we do the same among the states with positive statewise Bellman error. More so-
phisticated methods for discarding training data near the intended boundarycan be considered in
future research; these will often introduce additional parameters to the method. Here, we seek an
initial and simple evaluation of our overall approach. After this discarding,we defineΣ+ to be
the set of all remaining training pairs with states having positive statewise Bellmanerror, andΣ−

likewise those with negative statewise Bellman error.
We then useΣ+ as the positive examples andΣ− as the negative examples for a supervised

classification algorithm; in our case, C4.5 is used. The hypothesis space for classification the space
of decision trees built with tests selected from the primitive attributes defining thestate space and
goal; in our case, we also use previously learned features that are decision trees over these attributes.
The concept resulting from supervised learning is then treated as a new feature for our linear ap-
proximation architecture, with an initial weight of zero.

Our intent, ideally, is to develop an approximately optimal value function. Such avalue function
can be expected to have Bellman error at many states, if not every state; however, low state-wise
error in some states does not contribute to high sup-norm Bellman error. Our discarding training
states with low statewise Bellman error reflects our tolerance of such low error below some threshold
representing the degree of approximation sought. Note that the technical motivation for selecting
features based upon Bellman error focuses on reducing the sup-normBellman error; given this
motivation, we are not as interested in finding the exact boundary betweenpositive and negative
Bellman error as we are in identifying which states have large magnitude Bellman error (so that that
large-magnitude error can be addressed by feature addition).

We observe that there is limited need to separately learn a feature matchingΣ− due to the
following representability argument. Consider a binary featureF and its complementF , so that
exactly one ofF andF is true in each state. Given the presence of a constant feature in the feature
set, addingF or F to the feature set yields the same set of representable value functions (assigning
weightw to F has the same effect as assigning weight−w to F and addingw to the weight of the
constant feature).

4.5 Discussion

We discuss below the generalization capability, learning time, and heuristic elements of our feature
learning method.

4.5.1 GENERALIZATION ACROSSVARYING DOMAIN SIZES

The propositional feature space described above varies in size as the number of objects in a relational
domain is varied. As a result, features learned at one domain size are not generally meaningful (or
even necessarily defined) at other domain sizes. The relational approach above is, in contrast, able
to generalize naturally between different domains sizes. Our experiments report on the ability of
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the propositional technique to learn within each domain size directly, but do not attempt to use that
approach for learning from small problems to gain performance in large problems. This is a major
limitation in producing good results for large domains.

4.5.2 LEARNING TIME

The primary motivation for giving up generalization over domain sizes in order to employ a propo-
sitional approach is that the resulting learner can use highly efficient, off-the-shelf classification
algorithms. The learning times reported in Section 7 show that our propositional learner learns new
features orders of magnitude faster than the relational learner.

4.5.3 HEURISTIC ELEMENTS OF THEMETHOD

As mentioned earlier, our algorithm heuristically approximates the repeated addition of Bellman
error features to a linear value-function approximation in order to carry out value iteration. Also
as mentioned earlier, value iteration itself is guaranteed to converge to the optimal value function.
However, due to the scale of problems we target, heuristic approximations are required. We discuss
the motivations for each heuristic approximation we employ briefly here.

First, we do not compute exact Bellman error features. Instead, we use machine learning to fit
a training set of sample states and their Bellman error values. The selection ofthis training set is
done heuristically, using trajectories drawn from the current greedy policy. Our use of on-policy
selection of training data is loosely motivated by on-policy convergence results for reinforcement
learning (Singh et al., 2000), and serves to focus training on relevant states. (See Section 3.1.)

Second, for the relational instance of our feature framework, the beam-search method we use to
select the highest scoring relational feature (with the best fit to the Bellman error) is ad-hoc, greedy,
and severely resource bounded. The fit obtained to the Bellman error is purely heuristic. We provide
our heuristic method for this machine learning problem only as an example, andwe intend future
research to provide better relational learners and resulting better planning performance. Heuristic
elements of the current method are further discussed in Appendix A.3. Ourwork here can be
viewed as providing a reduction from stochastic planning to structured machine learning of numeric
functions. (See Section 3.)

Third, for the propositional instance of our feature framework,, the learner C4.5 selects hypothe-
ses greedily. Also, our reduction to C4.5 classification relies on an explicit tolerance of approxi-
mation in the form of the threshold used to filter training data with near-zero Bellman error. The
motivation for this approximation tolerance is to focus the learner on high Bellmanerror states and
allow the method to ignore “almost converged” states. (See Section 4.4.)

Fourth, fundamental to this work is the use of a linear approximation of the value function and
gradient-descent-based weight selection (in this case AVI). These approximation methods are a key
approach to handling large state spaces and create the need for featurediscovery. Our AVI method
includes empirically motivated heuristic methods for controlling step size and signchanges in the
weights. (See Section 5 in Online Appendix 1, available on JAIR website.)

Fifth, we rely on human input to select the sequence of problem difficulties encountered during
feature discovery as well as the performance thresholds at which problem difficulty increases. We
believe this aspect of the algorithm can be automated in future research. (See Section 3.)
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5. Related Work

Automatic learning of relational features for approximate value-function representation has surpris-
ingly not been frequently studied until quite recently, and remains poorly understood. Here, we
review recent work that is related on one or more dimensions to our contribution.

5.1 Feature Selection Based on Bellman Error Magnitude

Feature selection based on Bellman error has recently been studied in the uncontrolled (policy-
evaluation) context in the work of Keller et al. (2006) and Parr et al. (2007), with attribute-value
or explicit state spaces rather than relational feature representations. Feature selection based on
Bellman error is further compared to other feature selection methods in the uncontrolled context
both theoretically and empirically in the work of Parr, Li, Taylor, Painter-Wakefield, and Littman
(2008).

Here, we extend this work to the controlled decision-making setting and study the incorporation
of relational learning and the selection of appropriate knowledge representation for value functions
that generalize between problems of different sizes within the same domain.

The main contribution of the work of Parr et al. (2007) is formally showing, for the uncontrolled
case of policy evaluation, that using (possibly approximate) Bellman-errorfeatures “provably tight-
ens approximation error bounds,” i.e., that adding an exact Bellman error-feature provably reduces
the (weightedL2-norm) distance from the optimal value function that can be achieved by optimiz-
ing the weights in the linear combination of features. This result is extended in aweaker form to
approximated Bellman-error features, again for the uncontrolled case. The limitation to the uncon-
trolled case is a substantial difference from the setting of our work. The limited experiments shown
use explicit state-space representations, and the technique learns a completely new set of features
for each policy evaluation conducted during policy iteration. In contrast, our method accumulates
features during value iteration, at no point limiting the focus to a single policy. Constructing a
new feature set for each policy evaluation is a procedure more amenable toformal analysis than
retaining all learned features throughout value iteration because the policy being implicitly consid-
ered during value iteration (the greedy policy) is potentially changing throughout. However, when
using relational feature learning, the runtime cost of feature learning is currently too high to make
constructing new feature sets repeatedly practically feasible.

Parr et al. (2007) builds on the prior work by Keller et al. (2006) that also studied the uncon-
trolled setting. That work provides no theoretical results nor any general framework, but provides
a specific approach to using Bellman error in attribute value representations(where a state is repre-
sented as a real vector) in order to select new features. The approach provides no apparent leverage
on problems where the state is not a real vector, but a structured logical interpretation, as is typical
in planning benchmarks.

5.2 Feature Discovery via Goal Regression

Other previous methods (Gretton & Thiébaux, 2004; Sanner & Boutilier, 2009) find useful features
by first identifying goal regions (or high reward regions), then identifying additional regions by re-
gressing through the action definitions from previously identified regions.The principle exploited
is that when a given state feature indicates value in the state, then being able toachieve that feature
in one step should also indicate value in a state. Regressing a feature definition through the action
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definitions yields a definition of the states that can achieve the feature in one step. Repeated regres-
sion can then identify many regions of states that have the possibility of transitioning under some
action sequence to a high-reward region.

Because there are exponentially many action sequences relative to plan length, there can be
exponentially many regions discovered in this way, as well as an exponential increase in the size of
the representation of each region. Both exponentials are in terms of the number of regression steps
taken. To control this exponential growth in the number of features considered, regression has been
implemented with pruning optimizations that control or eliminate overlap between regions when it
can be detected inexpensively as well as dropping of unlikely paths. However, without a scoring
technique (such as the fit to the Bellman-error used in this paper) to select features, regression still
generates a very large number of useless new features. The currentlymost effective regression-based
first-order MDP planner, described in the work of Sanner and Boutilier (2009), is only effective
when disallowing overlapping features to allow optimizations in the weight computation. Yet clearly
most human-designed feature sets in fact have overlapping features.

Our inductive technique avoids these issues by considering only compactlyrepresented features,
selecting those which match sampled statewise Bellman error training data. We provide extensive
empirical comparison to the First-Order Approximate Linear Programming technique (FOALP)
from the work of Sanner and Boutilier (2009) in our empirical results. Ourempirical evaluation
yields stronger results across a wide range of probabilistic planning benchmarks than the goal-
regression approach as implemented in FOALP (although aspects of the approaches other than the
goal-regression candidate generation vary in the comparison as well).

Regression-based approaches to feature discovery are related to our method of fitting Bellman
error in that both exploit the fact that states that can reach valuable statesmust themselves be valu-
able, i.e. both seek local consistency. In fact, regression from the goal can be viewed as a special
case of iteratively fitting features to the Bellman error of the current value function. Depending
on the exact problem formulation, for anyk, the Bellman error for thek-step-to-go value function
will be non-zero (or otherwise nontrivially structured) at the region of states that reach the goal first
in k + 1 steps. Significant differences between our Bellman error approach and regression-based
feature selection arise for states which can reach the goal with differentprobabilities at different
horizons. Our approach fits the magnitude of the Bellman error, and so cansmoothly consider the
degree to which each state reaches the goal at each horizon. Our approach also immediately gen-
eralizes to the setting where a useful heuristic value function is provided before automatic feature
learning, whereas the goal-regression approach appears to requiregoal regions to begin regression.
In spite of these issues, we believe that both approaches are appropriate and valuable and should be
considered as important sources of automatically derived features in future work.

Effective regression requires a compact declarative action model, which is not always available9.
The inductive technique we present does not require even a PDDL action model, as the only deduc-
tive component is the computation of the Bellman error for individual states. Any representation
from which this statewise Bellman error can be computed is sufficient for this technique. In our em-
pirical results we show performance for our planner on Tetris, where the model is represented only
by giving a program that, given any state as input, returns the explicit next state distribution for that
state. FOALP is inapplicable to such representations due to dependence onlogical deductive rea-

9. For example, in the Second International Probabilistic Planning Competition, the regression-based FOALP planner
required human assistance in each domain in providing the needed domaininformation even though the standard
PDDL model was provided by the competition and was sufficient for eachother planner.
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soning. We believe the inductive and deductive approaches to incorporating logical representation
are both important and are complementary.

The goal regression approach is a special case of the more general approach of generating can-
didate features by transforming currently useful features. Others thathave been considered include
abstraction, specialization, and decomposition (Fawcett, 1996). Research on human-defined con-
cept transformations dates back at least to the landmark AI program AM (Davis & Lenat, 1982).
Our work uses only one means of generating candidate features: a beamsearch of logical formulas
in increasing depth. This means of candidate generation has the advantageof strongly favoring con-
cise and inexpensive features, but may miss more complex but very accurate/useful features. But
our approach directly generalizes to these other means of generating candidate features. What most
centrally distinguishes our approach from all previous work leveragingsuch feature transformations
is the use of statewise Bellman error to score candidate features. FOALP (Sanner & Boutilier, 2006,
2009) uses no scoring function, but includes all non-pruned candidate features in the linear program
used to find an approximately optimal value function; the Zenith system (Fawcett, 1996) uses a
scoring function provided by an unspecified “critic.”

5.3 Previous Scoring Functions for MDP Feature Selection

A method, from the work of Patrascu et al. (2002), selects features by estimating and minimizing
theL1 error of the value function that results from retraining the weights with the candidate feature
included.L1 error is used in that work instead of Bellman error because of the difficultyof retraining
the weights to minimize Bellman error. Because our method focuses on fitting the Bellman error
of the current approximation (without retraining with the new feature), it avoids this expensive
retraining computation during search and is able to search a much larger feature space effectively.
While the work of Patrascu et al. (2002) contains no discussion of relational representation, theL1

scoring method could certainly be used with features represented in predicate logic; no work to date
has tried this (potentially too expensive) approach.

5.4 Other Related Work

We include discussion of additional, more distantly related research directions as Appendix A, di-
vided into the following subsections:

1. Other relevant feature selection methods (Fahlman & Lebiere, 1990; Utgoff & Precup, 1997,
1998; Rivest & Precup, 2003; Mahadevan & Maggioni, 2007; Petrik,2007);

2. Structural model-based and model-free solution methods for Markov decision processes, in-
cluding

(a) Relational reinforcement learning (RRL) systems (Džeroski, DeRaedt, & Driessens,
2001; Driessens & Ďzeroski, 2004; Driessens et al., 2006),

(b) Policy learning via boosting (Kersting & Driessens, 2008),

(c) Fitted value iteration (Gordon, 1995), and

(d) Exact value iteration methods in first-order MDPs (Boutilier, Reiter, & Price, 2001;
Holldobler & Skvortsova, 2004; Kersting, Van Otterlo, & De Raedt, 2004);
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3. Inductive logic programming algorithms (Muggleton, 1991; Quinlan, 1996; Karalic & Bratko,
1997);

4. Approximate policy iteration for relational domains (Fern et al., 2006), witha discussion on
relational decision-list-policy learners (Khardon, 1999; Martin & Geffner, 2004; Yoon et al.,
2002);

5. Automatic extraction of domain knowledge (Veloso, Carbonell, Perez, Borrajo, Fink, &
Blythe, 1995; Kambhampati, Katukam, & Qu, 1996; Estlin & Mooney, 1997; Fox & Long,
1998; Gerevini & Schubert, 1998).

6. Experimental Setting

We present experiments in nine stochastic planning domains, including both reward-oriented and
goal-oriented domains. We use Pentium 4 Xeon 2.8GHz machines with 3GB memory. In this sec-
tion, we give a general overview of our experiments before giving detailed results and discussion for
individual domains in Section 7. Here, first, we briefly discuss the selectionof evaluation domains
in Section 6.1. Second, in Section 6.2 we set up an evaluation of our relational feature learner by
comparison to variants that replace key aspects of the algorithm with randomchoice to determine
their importance. Additional details, including many experimental parameter settings, can be found
in Online Appendix 1 (available on JAIR website) in Section 3.

6.1 Domains Considered

In all the evaluation domains below, it is necessary to specify a discount factorγ when modeling the
domain as an MDP with discounting. The discount factor effectively specifies the tradeoff between
the goals of reducing expected plan length and increasing success rate.γ is not a parameter of our
method, but of the domain being studied, and our feature-learning method can be applied for any
choice ofγ. Here, for simplicity, we chooseγ to be 0.95 throughout all our experiments. We note
that this is the same discount factor used in the SYSADMIN domain formalization that we compare
to from the previous work by Patrascu et al. (2002).

6.1.1 TETRIS

In Section 7.2 we evaluate the performance of both our relational and propositional learners using
the stochastic computer-game TETRIS, a reward-oriented domain where the goal of a player is to
maximize the accumulated reward. We compare our results to the performance of a set of hand-
crafted features, and the performance of randomly selected features.

6.1.2 PLANNING COMPETITION DOMAINS

In Section 7.3, we evaluate the performance of our relational learner in seven goal-oriented plan-
ning domains from the two international probabilistic planning competitions (IPPCs) (Younes et al.,
2005; Bonet & Givan, 2006). For comparison purposes, we evaluatethe performance of our proposi-
tional learner on two of the seven domains (BLOCKSWORLDand a variant of BOXWORLD described
below). Results from these two domains illustrate the difficulty of learning useful propositional fea-
tures in complex planning domains. We also compare the results of our relational planner with
two recent competition stochastic planners FF-Replan (Yoon et al., 2007) and FOALP (Sanner &
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Boutilier, 2006, 2009) that have both performed well in the planning competitions. Finally, we
compare our results to those obtained by randomly selecting relational features and tuning weights
for them. For a complete description of, and PPDDL source for, the domainsused, please see the
work of Younes et al. (2005) and Bonet and Givan (2006).

Every goal-oriented domain with a problem generator from the first or second IPPC was con-
sidered for inclusion in our experiments. For inclusion, we require a planning domain with fixed
action definitions, as defined in Section 2.4, that in addition has only ground conjunctive goal re-
gions. Four domains have these properties directly, and we have adaptedthree more of the domains
to have these properties:

1. In BOXWORLD, we modify the problem generator so that the goal region is always a ground
conjunctive expression. We call the resulting domain CONJUNCTIVE-BOXWORLD.

2. In FILEWORLD, we construct the obvious lifted version, and create a problem generator re-
stricted to three folders because in this domain the action definitions vary with thenumber of
folders. We call the resulting domain LIFTED-FILEWORLD3.

3. In TOWERS OFHANOI, we create our own problem generator.

The resulting selection provides seven IPPC planning domains for our empirical study. We provide
detailed discussions on the adapted domains in Section 2 of Online Appendix 1 (available on JAIR
website), as well as discuss the reasons for the exclusion of domains.

6.1.3 SYSADMIN

We conclude our experiments by comparing our propositional learner with aprevious method by Pa-
trascu et al. (2002), using the the same SYSADMIN domain used for evaluation there. This empirical
comparison on the SYSADMIN domain is shown in Section 7.4.

6.2 Randomized Variants of the Method

Our major contribution is the introduction and evaluation of a feature learning framework in the
controlled setting based on scoring with Bellman-error (BE Scoring). Our empirical work instan-
tiates this framework with a relational feature-learning algorithm of our design based on greedy
beam-search. Here, we compare the performance of this instance of ourframework with variants
that replace key aspects with randomized choice, illustrating the relative importance of those fea-
tures. In the two random-choice experiments, we adapt our method in one ofthe following two
ways:

1. Labeling the training states with random scores instead of Bellman Error scores. The target
value in our feature training set is a random number from -1 to 1. This algorithm is called
“Random Scoring.”

2. Narrowing the beam during search randomly rather than greedily. We eliminate scoring dur-
ing the beam search, instead using random selection to narrow the beam; only at the end of
the beam search is scoring used to select the best resulting candidate. This algorithm is called
“Random Beam Narrowing.”
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The original algorithm, which labels training data with Bellman error and narrows the beam greed-
ily rather than randomly, is called “Greedy Beam Search/BE Scoring” in our plots. For these
comparisons, we only consider the relational feature representation, asthat is where our beam
search method is used. Experiments with the two variants introduced here, presented below in
Sections 7.2.4 and 7.3.4, show that our original method selects features thatperform much better
than randomly selected features, and that the greediness in the beam search is often (but not always)
important in achieving good performance.

7. Experimental Results

We present experimental results for TETRIS, planning competition domains, and SYSADMIN in this
section, starting with an introduction on the structure of our result presentation.

7.1 How to Read Our Results

The task of evaluating a feature-learning planning system is subtle and complex. This is particularly
a factor in the relational case because generalization between problem sizes and learning from small
problems must be evaluated. The resulting data is extensive and highly structured, requiring some
training of the reader to understand and interpret. Here we introduce to thereader the structure of
our results.

In experiments with the propositional learning (or with randomly selected propositional fea-
tures), the problem size never varies within one run of the learner, because the propositional repre-
sentation from Section 4.3 cannot generalize between sizes. We run a separate experiment for each
size considered. Each experiment is two independent trials; each trial starts with a single trivial
feature and repeatedly adds features until a termination condition is met. Aftereach feature addi-
tion, AVI is used to select the weights for combining the features to form a value function, and the
performance of that value function is measured (by sampling the performance of the greedy policy).
We then compute the average (of the two trials) of the performance as a function of the number
of features used. Since this results in a single line plot of performance as afunction of number
of features, several different fixed-problem-size learners can becompared on one figure, with one
line for each, as is done for example in Figures 7 and 14. The performance measure used varies
appropriately with the domain as presented below.

We study the ability of relational representation from Section 4.1 to generalizebetween sizes.
This study can only be properly understood against the backdrop of theflowchart in Figure 1. As
described in this flowchart, one trial of the learner will learn a sequence of features and encounter
a sequence of increasing problem difficulties. One iteration of the learnerwill either add a new
featureor increase the problem difficulty (depending on the current performance). In either case,
the weights are then retrained by AVI and a performance measurement of the resulting greedy policy
is taken. Because different trials may increase the size at different points, we cannot meaningfully
average the measurements from two trials. Instead, we present two independent trials separately
in two tables, such as the Figures 5 and 12. For the first trial, we also present the same data a
second time as a line plot showing performance as a function of number of features, where problem
size changes are annotated along the line, such as the plots in Figures 6 and13. Note that success
ratio generally increases along the line when features are added, but falls when problem size is
increased. (In TETRIS, however, we measure “rows erased” rather than success ratio, and“rows
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erased” generally increases with either the addition of a new feature or theaddition of new rows to
the available grid.)

To interpret the tables showing trials of the relational learner, it is useful tofocus on the first
two rows, labeled “# of features” and “Problem difficulty.” These rows, taken together, show the
progress of the learner in adding features and and increasing problemsize. Each column in the table
represents the result in the indicated problem size using the indicated numberof learned features.
From one column to the next, there will be a change in only one of these rows—if the performance
of the policy shown in a column is high enough, it will be the problem difficulty that increases, and
otherwise it will be the number of features that increases. Further addingto the subtlety in inter-
preting these tables, we note that when several adjacent columns increase the number of features,
we sometimes splice out all but two of these columns to save space. Thus, if several features are
added consecutively at one problem size, with slowly increasing performance, we may show only
the first and last of these columns at that problem size, with a consequentjump in the number of
features between these columns. We likewise sometimes splice out columns whenseveral consec-
utive columns increase problem difficulty. We have found that these splicings not only save space
but increase readability after some practice reading these tables.

Performance numbers shown in each column (success ratio and averageplan length, or number
of rows erased, for TETRIS) refer to the performance of the weight-tuned policy resulting for that
feature set at that problem difficulty. We also show in each column the performance of that value
function (without re-tuning weights) on the target problem size. Thus, weshow quality measures
for each policy found during feature learning on both the current problem size at that point and on
the target problem size, to illustrate the progress of learning from small problems on the target size
via generalization.

We do not study here the problem of deciding when to stop adding features. Instead, in both
propositional and relational experiments, trials are stopped by experimenter judgment when addi-
tional results are too expensive for the value they are giving in evaluatingthe algorithm. However,
we do not stop any trials when they are still improving unless unacceptable resource consumption
has occurred.

Also, in each trial, the accumulated real time for the trial is measured and shownat each point
during the trial. We use real time rather than CPU time to reflect non-CPU costs such as paging due
to high memory usage.

7.2 Tetris

We now present experimental results for TETRIS.

7.2.1 OVERVIEW OF TETRIS

The game TETRIS is played in a rectangular board area, usually of size10 × 20, that is initially
empty. The program selects one of the seven shapes uniformly at randomand the player rotates and
drops the selected piece from the entry side of the board, which piles onto any remaining fragments
of the pieces that were placed previously. In our implementation, whenevera full row of squares
is occupied by fragments of pieces, that row is removed from the board and fragments on top of
the removed row are moved down one row; a reward is also received when a row is removed. The
process of selecting locations and rotations for randomly drawn pieces continues until the board
is “full” and the new piece cannot be placed anywhere in the board. TETRIS is stochastic since
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the next piece to place is always randomly drawn, but this is the only stochastic element in this
game. TETRIS is also used as an experimental domain in previous MDP and reinforcement learning
research (Bertsekas & Tsitsiklis, 1996; Driessens et al., 2006). A setof human-selected features is
described in the book by Bertsekas and Tsitsiklis (1996) that yields very good performance when
used in weighted linearly approximated value functions. We cannot fairly compare our performance
in this domain to probabilistic planners requiring PPDDL input because we have found no natural
PPDDL definition for TETRIS.

Our performance metric for TETRIS is the number of rows erased averaged over 10,000 trial
games. The reward-scaling parameterrscale(defined in Section 5 in Online Appendix 1 on page 8)
is selected to be 1.

7.2.2 TETRIS RELATIONAL FEATURE LEARNING RESULTS

We represent the TETRISgrid using rows and columns as objects. We use three primitive predicates:
fill (c, r), meaning that the square on columnc, row r is occupied;below(r1, r2), meaning that row
r1 is directly below rowr2; andbeside(c1, c2), meaning that columnc1 is directly to the left of
columnc2. The quantifiers used in our relational TETRIShypothesis space are typed using the types
“row” and “column”.

There are also state predicates representing the piece about to drop; however, for efficiency
reasons our planner computes state value as a function only of the grid, not the next piece. This
limitation in value-function expressiveness allows a significantly cheaper Bellman-backup compu-
tation. The one-step lookahead in greedy policy execution provides implicit reasoning about the
piece being dropped, as that piece will be in the grid in all the next states.

We conduct our relational TETRIS experiments on a 10-column,n-row board, withn initially
set to 5 rows. Our threshold for increasing problem difficulty by adding one row is a score of at
least15 + 20(n − 5) rows erased. The target problem size for these experiments is 20 rows.The
results for the relational TETRIS experiments are given in Figures 5 and 6 and are discussed below.

7.2.3 TETRIS PROPOSITIONALFEATURE LEARNING RESULTS

For the propositional learner, we describe the TETRIS state with 7 binary attributes that represent
which of the 7 pieces is currently being dropped, along with one additional binary attribute for each
grid square representing whether that square is occupied. The adjacency relationships between the
grid squares are represented only through the procedurally coded action dynamics. Note that the
number of state attributes depends on the size of the TETRIS grid, and learned features will only
apply to problems of the same grid size. As a result, we show separate resultsfor selected problem
sizes.

We evaluate propositional feature learning in 10-column TETRIS grids of four different sizes: 5
rows, 7 rows, 9 rows, and 20 rows. Results from these four trials are shown together in Figure 7 and
the average accumulated time required to reach each point on Figure 7 is shown in Figure 8. These
results are discussed below.

7.2.4 EVALUATING THE IMPORTANCE OFBELLMAN -ERRORSCORING AND GREEDY

BEAM-SEARCH IN TETRIS

Figure 9 compares our original algorithm with alternatives that vary from iton either training set
scoring or greediness of beam search, as discussed in Section 6.2. For the two alternatives, we use
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Trial #1

# of features 0 1 2 3 11 11 12 17 17 18 18 18 18 18 18
Problem difficulty 5 5 5 5 5 6 6 6 7 7 8 9 10 15 20
Score 0.2 0.5 1.0 3.0 18 31 32 35 55 56 80 102 121 234 316
Accumulated time (Hr.) 0.0 2 4.2 5.2 20 21 24 39 42 46 50 57 65 111 178
Target size score 0.3 1.3 1.4 1.8 178 238 261 176 198 211 217 221 220 268 317

Trial #2

# of features 0 1 8 8 12 12 14 14 15 15 16 16 17 26 26 27 27 28 29 33
Problem difficulty 5 5 5 6 6 7 7 11 11 12 12 13 13 13 14 14 17 17 17 17
Score 0.2 0.6 16 28 36 53 56 133 136 151 156 167 168 175 192 210 238 251 240 241
Accumulated time (Hr.) 0.0 2.4 15 15 27 29 39 66 76 87 97 103 110 211 220 236 276 295 318 408
Target size score 0.3 1.7 104 113 108 116 130 192 196 199 206 211 211 219 225 218 231231 233 231

Figure 5: TETRIS performance (averaged over 10,000 games). Score is shown in average rows
erased, and problem difficulty is shown in the number of rows on the TETRIS board. The
number of columns is always 10. Difficulty increases when the average score is greater
than 15+20*(n-5), wheren is the number of rows in the TETRIS board. Target problem
size is 20 rows. Some columns are omitted as discussed in Section 7.1.

Tetris, Relational, Trial 1
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Figure 6: Plot of the average number of lines erased over 10,000 TETRIS games after each run of
AVI training during the learning of relational features (trial 1). Vertical lines indicate
difficulty increases (in the number of rows), as labeled along the plot.
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Tetris, Propositional
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Figure 7: Plot of the average number of lines erased in 10,000 TETRIS games after each iteration
of AVI training during the learning of propositional features, averagedover two trials.
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Figure 8: Plot of the accumulated time required to reach each point in Figure 7, averaged over two
trials.

the same schedule used for the original Greedy Beam Search/BE Scoringalgorithm in TETRIS by
starting with the10 × 5 problem size. However, the performance of these two alternatives is never
good enough to increase the problem size.

7.2.5 EVALUATING HUMAN -DESIGNEDFEATURES IN TETRIS

In addition to evaluating our relational and propositional feature learning approach, we also evaluate
how the human-selected features described in the book by Bertsekas andTsitsiklis (1996) perform
in selected problem sizes. For each problem size, we start from all weights zero and use our AVI
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Impact of Greedy Beam Search and BE Scoring
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Figure 9: Plot of the average number of lines erased in 10,000 TETRISgames for relational features
learned from the original algorithm and the two alternatives as discussed inSection 6.2.
For Random Scoring and Random Beam Narrowing, the results are averages over two
independent trials. Trials of these two variants are terminated when they failto make
progress for several feature additions. For comparison purposes,trial one of the original
Greedy Beam Search/BE Scoring method is shown, reaching the thresholdfor difficulty
increase after eleven feature additions (trial two did even better).

10× 5 10× 7 10× 9 10× 20

Average rows erased, Trial 1 19 86 267 17,954
Average rows erased, Trial 2 19 86 266 18,125

Figure 10: The average number of lines erased in 10,000 TETRIS games for the best weighted
combination of human features found in each of two trials of AVI and four problem
sizes.

process described in Section 2.5 to train the weights for all 21 features untilthe performance appears
to converge. We change the learning rateα from 3

1+k/100 to 30
1+k/100 as human-designed features

require a larger step-size to converge rapidly. The human-designed features are normalized to a
value between 0 and 1 here in our experiments. We run two independent trials for each problem size
and report the performance of the best-performing weight vector found in each trial, in Figure 10.

7.2.6 PERFORMANCECOMPARISONBETWEEN DIFFERENTAPPROACHES TOTETRIS

Several general trends emerge from the results on TETRIS. First of all, the addition of new learned
features is almost always increasing the performance of the resulting tuned policy (on the current
size and on the target size), until a best performance point is reached.This suggests we are in fact
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Relational Prop.10× 5 Prop.10× 7 Prop.10× 9 Prop.10× 20

Average feature learning
time (Min.)

167 44 52 60 44

Figure 11: Table for the average feature learning time for relational and propositional approaches.

selecting useful features. We also find clear evidence of the ability of the relational representation
to usefully generalize between problem sizes: substantial performance isdeveloped on the target
problem size without ever training directly in that size.

We find that the best performance of learned propositional features is much lower than that of
learned relational features in all problem sizes shown here, even though a larger feature training set
size and many more learned features are used for the propositional approach. This suggests that
the rich relational representation indeed is able to better capture the dynamicsin TETRIS than the
propositional representation.

We find that the performance of using random features in TETRIS is significantly worse than that
of using learned features, demonstrating that our performance improvements in feature learning are
due to useful feature selection (using Bellman error), not simply due to increasing the number of
features.

Our learned relational feature performance in10 × 20 TETRIS is far worse than that obtained
by using the human-selected features with AVI in the same size. However, in10 × 5 TETRIS the
relational feature performance is close to that of the human-designed features. The human-designed
features are engineered to perform well in the10× 20 TETRIS hence some concepts that are useful
in performing well in smaller problem sizes may not exist in these features.

7.2.7 TIME TO LEARN EACH FEATURE

In Figure 11 we show the average time required to learn a relational featureor a propositional feature
in TETRIS.

The time required to learn a relational feature is significantly longer than that required to learn
a propositional feature, even though for the propositional approach alarger feature training set size
is being used.

7.2.8 COMPARISON TOPREVIOUS TETRIS-SPECIFICLEARNERS

In evaluating domain-independent techniques on TETRIS, we must first put aside the strong perfor-
mance already shown many times in the literature for domain-dependent techniques on that domain.
Then, we must face the problem that there are no published domain-independent comparison points
in order to define a state-of-the-art target to surpass. For the latter problem, we provide a baseline
from two different approaches to random feature selection, and showthat our targeted feature se-
lection dramatically improves on random selection. For the former problem, we include below a
discussion of the domain-specific elements of key previous published results on TETRIS.

There have been many previousdomain-specificefforts at learning to play TETRIS (Bertsekas
& Tsitsiklis, 1996; Szita & Lorincz, 2006; Lagoudakis, Parr, & Littman, 2002; Farias & Van Roy,
2004; Kakade, 2001). Typically, these provide human-crafted domain-dependent features, and de-
ploy domain-independent machine learning techniques to combine these features (often by tuning

721



WU & G IVAN

weights for a linear combination). As an example, a domain-specific feature counting the number
of covered up “holes” in the board is frequently used. This feature is plausibly derived by human
reasoning about the rules of the game, such as realizing that such holes are difficult to fill by later
action and can lead to low scores. In all prior work, the selection of this feature is by hand, not by
an automated feature-selection process (such as our scoring of correlation to Bellman error). Other
frequently used domain-specific features include “column height” and “difference in height of ad-
jacent columns”, again apparently selected as relevant by human reasoning about the rules of the
game.

The key research question we address, then, is whether useful features can be derived automati-
cally, so that a decision-making situation like TETRIS can be approached by a domain-independent
system without human intervention. Our method is provided only a domain-state representation us-
ing primitive horizontal and vertical positional predicates, and a single constant feature. To our
knowledge, before this research there is no published evaluation on TETRIS that does not rely
on domain-specific human inputs such as those just discussed. As expected, our performance on
TETRIS is much weaker than that achieved by domain-specific systems such as thosejust cited.

7.3 Probabilistic Planning Competition Domains

Throughout the evaluations of our learners in planning domains, we use alower plan-length cutoff of
1000 steps when evaluating success ratio during the iterative learning of features, to speed learning.
We use a longer cutoff of 2000 steps for the final evaluation of policies for comparison with other
planners and for all evaluations on the target problem size. The reward-scaling parameterrscale

(defined in Section 5 in Online Appendix 1 on page 8) is selected to be 1 throughout the planning
domains.

For domains with multi-dimensional problem sizes, it remains an open researchproblem on how
to change problem size in different dimensions automatically to increase difficulty during learning.
Here, in CONJUNCTIVE-BOXWORLD and ZENOTRAVEL, we hand-design the sequence of increas-
ing problem sizes.

As discussed in Section 6.1.2, we evaluate our feature learners in a total ofseven probabilis-
tic planning competition domains. In the following paragraphs, we provide a full discussion of
BLOCKSWORLD and CONJUNCTIVE-BOXWORLD, with abbreviated results for the other five do-
mains. We provide a full discussion of the other five domains in Appendix B.

Our relational feature learner finds useful value-function features infour of these domains
(BLOCKSWORLD, CONJUNCTIVE-BOXWORLD, TIREWORLD, and LIFTED-FILEWORLD3). In the
other three domains (ZENOTRAVEL, EXPLODING BLOCKSWORLD, and TOWERS OFHANOI), our
relational feature learner makes progress in representing a useful fixed-size value function for the
training sizes, but fails to find features that generalize well to problems of larger sizes.

7.3.1 BLOCKSWORLD

In the probabilistic, non-reward version of BLOCKSWORLD from the first IPPC, the actionspickup
andputdown have a small probability of placing the handled block on the table object insteadof on
the selected destination.

For our relational learner, we start with 3 blocks problems. We increase fromn blocks ton+ 1
blocks whenever the success ratio exceeds0.9 and the average successful plan length is less than
30(n− 2). The target problem size is 20 blocks. Results are shown in Figures 12 and 13.
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Trial #1

# of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 1.00 1 1 0.95 1 1 1 0.97
Plan length 89 45 20 133 19 33 173 395
Accumulated time (Hr.) 0.5 1.0 1.5 2.2 3.3 3.9 10 36
Target size SR 0 0 0 0 0.98 0.96 0.98 0.97
Target size Slen. – – – – 761 724 754 745

Trial #2

# of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 1 1 1 0.94 1 1 1 0.96
Plan length 80 48 19 125 17 34 167 386
Accumulated time (Hr.) 0.5 1.0 1.4 2.0 3.3 3.8 9.4 33
Target size SR 0 0 0 0 0.97 0.98 0.98 0.98
Target size Slen. – – – – 768 750 770 741

Figure 12: BLOCKSWORLD performance (averaged over 600 problems) for relational learner. We
add one feature per column until success ratio exceeds0.9 and average successful plan
length is less than30(n − 2), for n blocks, and then increase problem difficulty for the
next column. Plan lengths shown are successful trials only. Problem difficulties are
measured in number of blocks, with a target problem size of 20 blocks. Somecolumns
are omitted as discussed in Section 7.1.

For our propositional learner, results for problem sizes of 3, 4, 5, and 10 blocks are shown in
Figure 14.

Our relational learner consistently finds value functions with perfect or near-perfect success
ratio up to 15 blocks. This performance compares very favorably to the recent RRL (Driessens
et al., 2006) results in the deterministic BLOCKSWORLD, where goals are severely restricted to, for
instance, singleON atoms, and the success ratio performance of around 0.9 for three to ten blocks
(for the singleON goal) is still lower than that achieved here. Our results in BLOCKSWORLD show
the average plan length is far from optimal. We have observed large plateaus in the induced value
function: state regions where all states are given the same value so that thegreedy policy wanders.
This is a problem that merits further study to understand why feature-induction does not break such
plateaus. Separately, we have studied the ability of local search to break out of such plateaus (Wu,
Kalyanam, & Givan, 2008).

The performance on the target size clearly demonstrates successful generalization between sizes
for the relational representation.

The propositional results demonstrate the limitations of the propositional learner regarding lack
of generalization between sizes. While very good value functions can be induced for the small
problem sizes (3 and 4 blocks), slightly larger sizes of 5 or 10 blocks render the method ineffective.
In 10 block problems, the initial random greedy policy cannot be improved because it never finds
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Blocksworld, Relational, Trial 1

0.8

0.85

0.9

0.95

1

0 1 2 3

S
u

cc
es

s 
R

at
io

3 blocks 3 blocks 3 blocks

4 blocks

4, 5, 10 blocks

15 blocks

0

0

100

200

300

400

0 1 2 3

Number of Features

S
u

cc
es

sf
u

l P
la

n
 L

en
g

th

3 blocks
3 blocks 3 blocks

4 blocks

4 blocks
5 blocks

10 blocks

15 blocks

Figure 13: BLOCKSWORLD success ratio and average successful plan length (averaged over 600
problems) for the first trial from Figure 12 using our relational learner.

the goal. In addition, these results demonstrate that learning additional features once a good policy
is found can degrade performance, possibly because AVI performs worse in the higher dimensional
weight space that results.

7.3.2 CONJUNCTIVE-BOXWORLD

The probabilistic, non-reward version of BOXWORLD from the first IPPC is similar to the more
familiar Logistics domain used in deterministic planning competitions, except that anexplicit con-
nectivity graph for the cities is defined. In Logistics, airports and aircraft play an important role
since it is not possible to move trucks from one airport (and the locations adjacent to it) to an-
other airport (and the locations adjacent to it). In BOXWORLD, it is possible to move all the boxes
without using the aircraft since the cities may all be connected with truck routes. The stochastic
element introduced into this domain is that when a truck is being moved from one city to another,
there is a small chance of ending up in an unintended city. As described in Section 6.1, we use
CONJUNCTIVE-BOXWORLD, a modified version of BOXWORLD, in our experiments.

We start with 1-box problems in our relational learner and increase fromn boxes ton+1 boxes
whenever the success ratio exceeds 0.9 and the average successfulplan length is better than30n.
All feature-learning problem difficulties use 5 cities. We use two target problem sizes: 15 boxes
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Blocksworld, Propositional
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Figure 14: BLOCKSWORLD performance success ratio and average successful plan length (aver-
aged over 600 problems), and accumulated run-time for our propositionallearner, aver-
aged over two trials.
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Trial #1

# of features 0 1 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 10 11 12 13 15
Success ratio 0.97 1 1 1 1 1 1 1 1 1 1
Plan length 226 84 23 37 44 54 77 80 313 87 92
Accumulated time (Hr.) 7.2 10 13 14 16 21 42 49 57 65 84
Target size #1 SR 0.98 1 1 1 1 1 1 1 1 1 1
Target size #1 Slen. 1056 359 93 91 90 92 90 92 355 90 91
Target size #2 SR 0.16 0.90 0.97 0.97 0.96 0.98 0.96 0.98 0.90 0.98 0.96
Target size #2 Slen. 1583 996 238 230 233 244 240 238 1024 240 239

Trial #2

# of features 0 1 2 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 9 10 11 12 13 15
Success ratio 0.97 1 1 1 1 1 1 1 1 1.00 1 1
Plan length 235 85 24 34 43 54 72 299 80 310 84 91
Accumulated time (Hr.) 7.3 11 14 16 18 23 39 45 51 60 68 86
Target size #1 SR 0.96 1 1 1 1 1 1 1 1 1 1 1
Target size #1 Slen. 1019 365 90 91 91 92 89 359 89 363 90 90
Target size #2 SR 0.19 0.9 0.97 0.97 0.98 0.98 0.97 0.92 0.98 0.91 0.97 0.96
Target size #2 Slen. 1574 982 226 230 233 233 242 1006 231 1026 240 233

Figure 15: CONJUNCTIVE-BOXWORLD performance (averaged over 600 problems). We add one
feature per column until success ratio is greater than0.9 and average successful plan
length is less than30n, for n boxes, and then increase problem difficulty for the next
column. Problem difficulty is shown in number of boxes. Throughout the learning
process the number of cities is 5. Plan lengths shown are successful trialsonly. Two
target problem sizes are used. Target problem size #1 has 15 boxes and 5 cities. Target
problem size #2 has 10 boxes and 10 cities. Some columns are omitted as discussed in
Section 7.1.

and 5 cities, and 10 boxes and 10 cities. Relational learning results are shown in Figures 15 and 16,
and results for the propositional learner on 5 cities with 1, 2, or 3 boxes are shown in Figures 17.

In interpreting the CONJUNCTIVE-BOXWORLD results, it is important to focus on the average
successful plan-length metric. In CONJUNCTIVE-BOXWORLD problems, random walk is able to
solve the problem nearly always, but often with very long plans10. The learned features enable
more direct solutions as reflected in the average plan-length metric.

Only two relational features are required for significantly improved performance in the problems
we have tested. Unlike the other domains we evaluate, for the CONJUNCTIVE-BOXWORLD domain

10. We note that, oddly, the IPPC competition domain used here has action preconditions prohibiting moving a box away
from its destination. These preconditions bias the random walk automatically towards the goal. For consistency with
the competition results, we retain these odd preconditions, although these preconditions are not necessary for good
performance for our algorithm.
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Conjuctive-Boxworld, 5 Cities, Relational, Trial 1
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Figure 16: CONJUNCTIVE-BOXWORLD success ratio and average successful plan length (averaged
over 600 problems) for the first trial using our relational learner.

the learned features are straightforwardly describable in English. The first feature counts how many
boxes are correctly at their target city. The second feature counts howmany boxes are on trucks.

We note the lack of any features rewarding trucks for being in the “right” place (resulting in
longer plan lengths due to wandering on value-function plateaus). Such features can easily be writ-
ten in our knowledge representation (e.g. count the trucks located at citiesthat are the destinations
for some package on the truck), but require quantification over both citiesand packages. The severe
limitation on quantification currently in our method for efficiency reasons prevents consideration of
these features at this point. It is also worth noting that regression-basedfeature discovery, as stud-
ied in the work of Gretton and Thiébaux (2004) and Sanner and Boutilier (2009), can be expected
to identify such features regarding trucks by regressing the goal through the action of unloading
a package at the destination. Combining our Bellman-error-based method withregression-based
methods is a promising future direction.

Nevertheless, our relational learner discovers two concise and useful features that dramatically
reduce plan length relative to the initial policy of random walk. This is a significant success for
automated domain-independent induction of problem features.
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Conjunctive-Boxworld, Propositional
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Figure 17: CONJUNCTIVE-BOXWORLD performance (averaged over 600 problems) and accumu-
lated run-time for propositional learner, averaged over two trials. Throughout the learn-
ing process the number of cities is 5.
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One trial of the relational feature learner in CONJUNCTIVE-BOXWORLD takes several days,
even though we have fixed the number of cities for the training problems at five cities. New tech-
niques are required for improving the efficiency of feature learning before we can provide results
for training in larger numbers of cities. Our results here demonstrate that thecurrent representation
and learning methods adequately manage small city graphs even with larger and larger numbers of
boxes to deliver, and that the resulting value functions successfully generalize to 10-city problems.

In this domain, a well known weakness of AVI is apparent. While AVI often works in practice,
there is no theoretical guarantee on the quality of the weight vector found by AVI training. (Al-
ternatively, an approximate linear programming step could replace AVI training to provide a more
expensive but perhaps more robust weight selection.) In the CONJUNCTIVE-BOXWORLD results,
AVI training goes astray when selecting weights in the 12 box domain size in Trial 1. As a result,
the selected weights overemphasize the first feature, neglecting the second feature. This is revealed
in the data shown because the plan-length performance degrades significantly for that one column
of data. When AVI is repeated at the next problem size (13 boxes), good performance is restored.
A similar one-column degradation of plan length occurs in trial 2 at the 10-boxand 12-box sizes.

For our propositional experiments in the CONJUNCTIVE-BOXWORLD, we note that, generally,
adding learned propositional features degrades the success-rate performance relative to the initial
random walk policy by introducing ineffective loops into the greedy policy.The resulting greedy
policies find the goal in fewer steps than random walk, but generally pay an unacceptable drop in
success ratio to do so. The one exception is the policy found for one-boxproblems using just two
propositional features, which significantly reduces plan length while preserving success ratio. Still,
this result is much weaker than that for our relational feature language.

These problems get more severe as problem size increases, with 3-box problems suffering severe
degradation in success rate with only modest gains in successful plan length. Also please note
that accumulated runtime for these experiments is very large, especially for 3-box problems. AVI
training is very expensive for policies that do not find the goal. Computing the greedy policy at each
state in a long trajectory requires considering each action, and the number of available actions can
be quite large in this domain. For these reasons, the propositional techniqueis not evaluate at sizes
larger than three boxes.

7.3.3 SUMMARY RESULTS FROMADDITIONAL DOMAINS

In Figures 18 to 20, we present summary results from five additional probabilistic planning do-
mains. For detailed results and full discussion of these domains, please seeAppendix B. From the
summary results, we can see that our feature learning approach successfully finds features that per-
form well across increasing problem sizes in two of these five domains, TIREWORLD and LIFTED-
FILEWORLD3. In the other three domains (ZENOTRAVEL, TOWERS OFHANOI, and EXPLODING

BLOCKSWORLD), feature learning is able to make varying degrees of progress on fixedsmall prob-
lem sizes, but that progress (sometimes quite limited) does not generalize wellas size increases.

7.3.4 EVALUATING THE RELATIVE IMPORTANCE OFBELLMAN -ERRORSCORING AND

GREEDY BEAM-SEARCH IN GOAL-ORIENTED DOMAINS

Figure 21 compares our original algorithm with alternatives that vary fromit on either training set
scoring or greediness of beam search, as discussed in Section 6.2. For each trial of each variant, we
generate a greedy policy for each domain using feature selection within ourrelational representation
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Figure 18: Summary results for TIREWORLD and ZENOTRAVEL. For full discussion and detailed
results, please see Appendix B.
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Exploding Blocksworld, Trial 1
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Figure 19: Summary results for EXPLODING BLOCKSWORLD and TOWERS OFHANOI. For full
discussion and detailed results, please see Appendix B.
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Lifted-Fileworld3, Trial 1
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Figure 20: Summary results for LIFTED-FILEWORLD3. For full discussion and detailed results,
please see Appendix B.

(alternating AVI training, difficulty increase, and feature generation as inthe original algorithm).
During each trial, in each domain, we select the best performing policy, running the algorithm until
the target problem difficulty is reached or there is no improvement for at least three feature additions;
in the latter case generating at least nine features. We evaluate each greedy policy acquired in this
manner, measuring the average target-problem-size performance in eachdomain, and average the
results of two trials. The results are shown in Figure 21.

In no domain does the alternative Random Scoring perform comparably to the original Greedy
Beam Search/BE Scoring, with the exception of three domain/size combinationswhere both learners
perform very poorly (ZENOTRAVEL, 10-block EXPLODING BLOCKSWORLD, and 5-disc TOWERS

OF HANOI). The alternative Random Beam Narrowing is sometimes adequate to replacethe original
approach, but in some domains, greedy beam search is critical to our performance.

7.3.5 COMPARISON TOFF-REPLAN AND FOALP

We compare the performance of our learned policies to FF-Replan and FOALP on each of the
PPDDL evaluation domains used above. We use the problem generators provided by the planning
competitions to generate 30 problems for each tested problem size except for TOWERS OFHANOI
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Domain BW Box Box Tire Zeno EX-BW EX-BW TOH TOH File
Size 20 (15,5) (10,10) 30 (10,2,2) 5 10 4 5 30

Greedy Beam/BE Scoring (orig.) SR 0.98 1 0.98 0.92 0.11 0.34 0.03 0.51 0.00 1
Greedy Beam/BE Scoring (orig.) SLen.748 90 235 5 1137 6 23 4 14 65

Random Scoring (var. 1) SR 0 0.99 0.21 0.67 0.05 0.27 0.01 0.24 0.03 1
Random Scoring (var. 1) SLen. – 946 1582 6 910 6 12 13 26 215

Random Beam Narrowing (var. 2) SR 0.01 1 0.99 0.91 0.13 0.35 0.02 0.25 0.01 1
Random Beam Narrowing (var. 2) SLen.258 90 242 6 1127 8 19 38 84 250

Random walk SR 0 0.97 0.18 0.18 0.06 0.13 0 0.09 0.00 1
Random walk SLen. – 1038 1579 6 865 4 – 14 14 251

Figure 21: Target-problem-size performance (averaged over 600 problems) for relational features
learned from the original algorithm and the two alternatives as discussed inSection 6.2,
and from random walk, averaged over the best results of two independent trials for each
target problem size.

and LIFTED-FILEWORLD3, where there is one fixed problem for each problem size. We evaluate
the performance of each planner 30 times for each problem, and report inFig. 22 the success ratio
of each planner in each problem size (averaged over all attempts). Our policies, learned from the
two independent trials shown above, are indicated as RFAVI #1 and RFAVI #2. Each planner has a
30-minute time limit for each attempt. The average time required to finish a successful attempt for
the largest problem size in each domain is reported in Figure 23.

For each of the two trials of our learner in each domain, we evaluate here thepolicy that per-
formed the best in the trial on the (first) target problem size. (Here, a “policy” is a set of features
and a corresponding weight vector learned by AVI during the trial.) Performance is measured by
success rate, with ties broken by plan length. Any remaining ties are brokenby taking the later
policy in the trial from those that are tied. In each case, we consider that policy to be the “policy
learned from the trial.”

The results show that our planner’s performance is incomparable with thatof FF-Replan (win-
ning in some domains, losing in others) and generally dominates that of FOALP.

RFAVI performs the best of the planners in larger BLOCKSWORLD, CONJUNCTIVE-
BOXWORLD, and TIREWORLD problems. RFAVI is essentially tied with FF-Replan in performance
in L IFTED-FILEWORLD3. RFAVI loses to FF-Replan in the remaining three domains, EXPLODING

BLOCKSWORLD, ZENOTRAVEL, and TOWERS OFHANOI. Reasons for the difficulties in the last
three domains are discussed above in the sections presenting results for those domains. We note that
FOALP does not have a learned policy in ZENOTRAVEL, EXPLODING BLOCKSWORLD, TOWERS

OF HANOI, and LIFTED-FILEWORLD3.

RFAVI relies on random walk to explore plateaus of states not differentiated by the selected
features. This reliance frequently results in long plan lengths and at times results in failure. We
have recently reported elsewhere on early results from ongoing work remedying this problem by
using search in place of random walk (Wu et al., 2008).

The RFAVI learning approach is very different from the non-learningonline replanning used
by FF-Replan, where the problem is determinized, dropping all probability parameters. It is an
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15 blocks BW 20 blocks BW 25 blocks BW 30 blocks BW

RFAVI #1 1 (483) 1 (584) 0.85 (1098) 0.75 (1243)
RFAVI #2 1.00 (463) 1.00 (578) 0.85 (1099) 0.77 (1227)
FF-Replan 0.93 (52) 0.91 (71) 0.7 (96) 0.23 (118)
FOALP 1 (56) 0.73 (73) 0.2 (96) 0.07 (119)

(10BX,5CI)Box (10BX,10CI)Box (10BX,15CI)Box (15BX,5CI)Box (20BX,20CI)Box

RFAVI #1 1 (76) 0.97 (225) 0.93 (459) 1 (90) 0.82 (959)
RFAVI #2 1 (75) 0.97 (223) 0.93 (454) 1 (90) 0.82 (989)
FF-Replan 1 (70) 0.98 (256) 0.93 (507) 1 (88) 0.35 (1069)
FOALP 1 (35) 0.70 (257) 0.28 (395) 0.99 (56) 0.0 (711)

20 nodes Tire 30 nodes Tire 40 nodes Tire (10CI,2PR,2AT)Zeno

RFAVI #1 0.87 (5) 0.85 (7) 0.98 (6) 0.06 (1240)
RFAVI #2 0.85 (4) 0.84 (7) 0.97 (6) 0.07 (1252)
FF-Replan 0.76 (2) 0.73 (3) 0.83 (3) 1 (99)
FOALP 0.92 (4) 0.90 (5) 0.91 (5) N/A

5 blocks EX-BW 10 blocks EX-BW 4 discs TOH 5 discs TOH 30 files Lifted-File

RFAVI #1 0.25 (8) 0.02 (30) 0.43 (4) 0 (–) 1 (65)
RFAVI #2 0.25 (8) 0.01 (35) 0.47 (4) 0 (–) 1 (65)
FF-Replan 0.91 (7) 0.45 (20) 0.57 (3) 0.37 (7) 1 (66)
FOALP N/A N/A N/A N/A N/A

Figure 22: Comparison of our planner (RFAVI) against FF-Replan andFOALP. Success ratio for a
total of 900 attempts (30 attempts for TOWERS OFHANOI and LIFTED-FILEWORLD3)
for each problem size is reported, followed by the average successful plan length in
parentheses. The two rows for RFAVI map to two learning trials shown in the paper.

30 BW (20,20) BX 40 Tire (10,2,2) Zeno10 EX-BW 5 TOH 30 Files

RFAVI #1 106s 83s 1s 51s 2s – 1s
RFAVI #2 105s 86s 0s 51s 3s – 1s
FF-Replan 872s 739s 0s 1s 8s 3s 10s
FOALP 16s 173s 24s N/A N/A N/A N/A

Figure 23: Average runtime of the successful attempts, from the results shown in Figure 22, on the
largest problem size for each domain.
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important topic for future research to try to combine the benefits obtained by these very different
planners across all domains.

The dominance of RFAVI over FOALP in these results implies that RFAVI is at the state of the
art among first-order techniques — those that work with the problem in lifted form and use lifted
generalization. Although FOALP uses first-order structure in feature representation, the learned
features are aimed at satisfying goal predicates individually, not as a whole. We believe that the
goal-decomposition technique can sometimes work well in small problems but does not scale well
to large problems.

In these comparisons, it should also be noted that FOALP does not read PPDDL domain descrip-
tions directly, but requires human-written domain axioms for its learning, unlikeour completely
automatic technique (requiring only a few numeric parameters characterizingthe domain). This
requirement for human-written domain axioms is one of the reasons why FOALP did not compete
in some of the competition domains and does not have a learned policy for some of the domains
tested here.

In CONJUNCTIVE-BOXWORLD11, we note that FF-Replan uses an “all outcomes” problem de-
terminization that does not discriminate between likely and unlikely outcomes of truck-movement
actions. As a result, plans are frequently selected that rely on unlikely outcomes (perhaps choosing
to move a truck to an undesired location, relying on the unlikely outcome of “accidentally” moving
to the desired location). These plans will usually fail, resulting in repeated replanning until FF luck-
ily selects the high-likelihood outcome or plan execution happens to get the desired low-likelihood
outcome. This behavior is in effect similar to the behavior our learned value function exhibits be-
cause, as discussed in Section 7.3.2, our learner failed to find any feature rewarding appropriate
truck moves. Both planners result in long plan lengths due to many unhelpfultruck moves. How-
ever, our learned policy conducts the random walk of trucks much more efficiently (and thus more
successfully) than the online replanning of FF-Replan, especially in the larger problem sizes. We
believe even more dramatic improvements will be available with improved knowledgerepresenta-
tion for features.

7.4 SysAdmin

A full description of the SYSADMIN domain is provided in the work of Guestrin, Koller, and Parr
(2001). Here, we summarize that description. In the SYSADMIN domain, machines are connected
in different topologies. Each machine might fail at each step, and the failure probability depends on
the number of failed machines connected to it. The agent works toward minimizingthe number of
failed machines by rebooting machines, with one machine rebooted at each time step. For a problem
with n machines and a fixed topology, the dynamic state space can be sufficiently described byn
propositional variables, each representing the on/off status of a certainmachine.

We test this domain for the purpose of direct comparison of the performance of our proposi-
tional techniques to the published results in the work of Patrascu et al. (2002). We test exactly the
topologies evaluated there and measure the performance measure reported there, sup-norm Bellman
error.

We evaluate our method on the exact same problems (same MDPs) used for evaluation in the
work of Patrascu et al. (2002) for testing this domain. Two different kinds of topologies are tested:

11. We hand-convert the nested universal quantifiers and conditional effects in the originalBOXWORLD domain definition
to an equivalent form without universal quantifiers and conditional effects to allow FF-Replan to read the domain.

735



WU & G IVAN

S

Cycle Topology

S

3-legs Topology

Figure 24: Illustration of the two topologies in the SYSADMIN domain (10 nodes). Each node
represents a machine. The “S” label indicates a server machine, as specified in the work
of Patrascu et al. (2002).

3-legs and cycle. The “3-legs” topology has three three-node legs (each a linear sequence of three
connected nodes) each connected to a single central node at one end.The “cycle” topology arranges
the ten nodes in one large cycle. There are 10 nodes in each topology. These two topologies
are illustrated in Figure 24. The target of learning in this domain is to keep as many machines
operational as possible, so the number of operating machines directly determines the reward for
each step. Since there are only 10 nodes and the basic features are justthe on/off statuses of the
nodes, there are a total of 1024 states. The reward-scaling parameterrscale(defined in Section 5 in
Online Appendix 1, available on JAIR website, on page 8) is selected to be 10.

The work by Patrascu et al. (2002) usesL∞ (sup norm) Bellman error as the performance
measurement in SYSADMIN . Our technique, as described above, seeks to reduce mean Bellman
error more directly thanL∞ Bellman error. We report theL∞ Bellman error, averaged over two
trials, in Figure 25. Also included in Figure 25 are the results shown in the work of Patrascu et al.
(2002). We select the best result shown there (from various algorithmicapproaches) from the 3-legs
and cycle topologies shown in their paper. These correspond to the “d-o-s” setting for the cycle
topology and the “d-x-n setting” for the 3-legs topology, in the terminology ofthat paper.

Both topologies show that our algorithm reduces theL∞ Bellman error more effectively per
feature as well as more effectively overall than the experiments previously reported in the work of
Patrascu et al. (2002). Both topologies also show Bellman error eventuallydiverges as AVI cannot
handle the complexity of the error function as dimensionality increases. Our algorithm can still
achieve low Bellman error by remembering and restoring the best-performingweighted feature set
once weakened performance is detected.

We note that our superior performance in reducing Bellman error could bedue entirely or in
part to the use of AVI for weight training instead of approximate linear programming (ALP), the
method used by Patrascu et al. However, no such systematic superiority is known for AVI over ALP,
so these results suggest superior performance of the feature learningitself.
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Figure 25:L∞ Bellman error for the SYSADMIN domain (10 nodes) for two topologies. Values for
the results from the work of Patrascu et al. (2002) are taken from Figure 2 and 3 of the
work of Patrascu et al. (2002).

7.5 Demonstration of Generalization Across Problem Sizes

An asset of the relational feature representation presented in this paperis that learned relational
features are applicable to any problem size in the same domain. In section 2.4,we have discussed
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Target problem sizes 10 × 20 Tetris 15 blocks BW (15 box, 5 city) BX 30 nodes Tire30 files Lifted-File
Intermediate problem sizes10 × 10 Tetris 10 blocks BW (10 box, 5 city) BX 15 nodes Tire10 files Lifted-File

Generalize from target size 55 1 (171) 1 (76) 0.88 (4) 1 (25)
Learn in intermediate size 119 1 (170) 1 (188) 0.89 (4) 1 (25)
Random walk 0.1 0 (–) 0.97 (893) 0.29 (6) 1 (88)

Figure 26: Performance in intermediate-sized problems by generalization. We show here the
performance of value functions learned in target problem sizes when evaluated on
intermediate-sized problems, to demonstrate generalization between sizes. For com-
parison, also on intermediate-sized problems, we show the performance ofvalue func-
tions learned directly in the intermediate size as well as the performance of random
walk. Generalization results and intermediate size learning results are averages of two
trials. For TETRIS, average accumulated rows erased are shown. For the goal-oriented
domains, success ratio and successful plan length (in parentheses) are shown for each
domain.

the modeling of a planning domain as an infinite set of MDPs, one for each problem instance in
the domain. Over this infinite set of MDPs, a feature vector plus a weight vector defines a single
value function that is well defined for every problem instance MDP. Herewe discuss the ques-
tion of whether our framework can find a single feature/weight vector combination that generalizes
good performance across problem sizes, i.e., for the value functionV defined by such combination,
whether Greedy(V ) performs similarly well in different problem sizes.

Throughout Section 7, we have demonstrated the direct application of learned feature/weight
vectors to target problem sizes, (without retraining of weights)—these results are shown in the
target-size lines in the result tables for each domain. In TETRIS, BLOCKSWORLD, CONJUNCTIVE-
BOXWORLD, TIREWORLD, and LIFTED-FILEWORLD3, the target-size lines demonstrate direct
successful generalization to target sizes even when the current problem sizes is significantly smaller.
(In the other domains, there was either no notion of problem size (SYSADMIN ), or insufficient plan-
ning progress to significantly increase problem size when learning from small problems (EXPLOD-
ING BLOCKSWORLD, ZENOTRAVEL, and TOWERS OFHANOI).)

In this subsection, we consider the generalization from (larger) target sizes to selected inter-
mediate sizes in these five domains. Specifically, we take the weight vectors and feature vectors
resulting from the end of the trials (i.e. with weight vector retrained at the target sizes), and apply
directly to selected intermediate problem sizes without weight retraining. For the trials that termi-
nate before learning reaches the target problem sizes12, we take the weights and features that result
in the best performing policy at the terminating problem sizes. The generalization results are shown
in Figure 26; for comparison, that table also shows the performance on thesame intermediate-sized
problems of the value function that was learned directly at the that size, as well as the performance
of random walk on that size.

12. Note that one of the trials in TETRIS terminates before reaching target size due to non-improving performance,
and the two trials in LIFTED-FILEWORLD3 terminate as target-size performance already reaches optimality before
learning reaches the target size. Still, although a few of the value functionswere learned at smaller sizes than the
target size, all of the value functions evaluated for generalization were learned at significantly larger sizes than the
intermediate evaluation size.
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In each domain shown the random walk result is much weaker than the generalization result,
showing the presence of generalization of learned value functions across problem sizes. In the
four goal-oriented planning domains, applying the value functions learnedin the target sizes equals
the performance achieved by value functions learned directly in the intermediate sizes (with better
performance in CONJUNCTIVE-BOXWORLD). In TETRIS, however, the generalization result does
not match the result of learning in the intermediate size. We note that in some domains, solution
strategy is invariant with respect to the problem size (e.g. destroying incorrect towers to form correct
ones in BLOCKSWORLD). For some domains the best plan/strategy may change dramatically with
size. For example, in TETRIS, a larger number of rows in the board allows strategies that temporary
stack uncompleted rows, but smaller number of rows favors strategies thatcomplete rows as quickly
as possible. Thus one should not necessarily expect generalization between domain sizes in every
domain—this conclusion can be expected to hold whether we are consideringthe generalization of
value functions or of policies.

We have included a discussion of policy-based generalization in the relatedwork section (Ap-
pendix A.4), focusing on our previous work on approximate policy iteration. However, we note that
policies that generalize between problems of different sizes are no more or less well defined than
value functions which generalize between such problems. In our previous API work, we defined
policies that select actions for states of any domain size; in this work we define value functions that
assign numeric values to states of any domain size. None of this work guarantees finding a good
or optimal policy or value function; as far as we know, some problems admit good compact value
functions, some admit good compact policies, some admit both, and some neither.

8. Discussion and Future Research

We have presented a general framework for automatically learning state-value functions by feature-
discovery and gradient-based weight training. In this framework, we greedily select features from
a provided hypothesis space (which is a parameter of the method) to best correlate with Bellman
error features, and use AVI to find weights to associate with these features.

We have proposed two different candidate hypothesis spaces for features. One of these two
spaces is a relational one where features are first-order formulas with one free-variable, and a beam-
search process is used to greedily select a hypothesis. The other hypothesis space we have consid-
ered is a propositional feature representation where features are decision trees. For this hypothesis
space, we use a standard classification algorithm C4.5 (Quinlan, 1993) to build a feature that best
correlates with the sign of the statewise Bellman error, instead of using both thesign and magnitude.

The performance of our feature-learning planners is evaluated using both reward-oriented and
goal-oriented planning domains. We have demonstrated that our relational planner represents the
state-of-the-art for feature-discovering probabilistic planning techniques. Our propositional planner
does not perform as well as our relational planner, and cannot generalize between problem instances,
suggesting that knowledge representation is indeed critical to the successof feature-discovering
planners.

Although we present results for a propositional feature-learning approach and a relation feature-
learning approach, the knowledge representation difference is not theonly difference between the
approaches. Historically, our propositional approach was originally conceived as a reduction to
classification learning, and so does not attempt to capture the magnitude of theBellman error during
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feature selection, but rather focuses only the sign of the error. In contrast, our relational approach
counts objects in order to match the magnitude of the Bellman error.

Because of this difference, we cannot attribute all of the performance differences between the
approaches to the knowledge representation choice. Some differencesin performance could be due
to the choice to match sign only in the propositional feature selection. A possiblefuture experiment
to identify the sources of performance variation would use a propositionalrepresentation involving
regression trees (Dzeroski, Todorovski, & Urbancic, 1995) to capture the magnitude of the error.
This representation might possibly perform somewhat better than the decision-tree representation
shown here, but of course would still not enable the generalization between sizes that the relational
feature learner exhibits.

Bellman-error reduction is of course just one source of guidance that might be followed in
feature discovery. During our experiments in the IPPC planning domains, we find that in many
domains the successful plan length achieved is much longer than optimal, as wediscussed above in
Section 7.3.5. A possible remedy other than deploying search as in our previous work (Wu et al.,
2008) is to learn features targeting the dynamics inside plateaus, and use these features in decision-
making when plateaus are encountered.
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Appendix A. Other Related Work

A.1 Other Feature Selection Approaches

A.1.1 FEATURE SELECTION VIA CONSTRUCTIVEFUNCTION APPROXIMATION

Automatic feature extraction in sequential decision-making has been studied inthe work of Utgoff
and Precup (1997), via constructive function approximation (Utgoff & Precup, 1998). This work can
be viewed as a forerunner of our more general framework, limited to propositional representations,
binary-valued features, and new features that are single-literal extensions of old features by con-
junction. Also in the work of Rivest and Precup (2003) a variant of Cascade-Correlation (Fahlman
& Lebiere, 1990), a constructive neural network algorithm, is combined with TD-learning to learn
value functions in reinforcement learning. Cascade-Correlation incrementally adds hidden units
to multi-layered neural networks, where each hidden unit is essentially a feature built upon a set
of numerically-valued basic features. Our work provides a framework generalizing those prior ef-
forts into a reduction to supervised learning, with explicit reliance on the Bellman error signal, so
that any feature hypothesis space and corresponding learner can bedeployed. In particular, we
demonstrate our framework on both binary propositional features using C4.5 as the learner and rich
numeric-valued relational features using a greedy beam-search learner. Our work provides the first
evaluation of automatic feature extraction in benchmark planning domains fromthe several planning
competitions.

While the work of Utgoff and Precup (1997) implicitly relies on Bellman error, there is no
explicit construction of a Bellman error training set or discussion of selecting features to correlate
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to Bellman error. For instance, their work focuses first on refining a current feature for which weight
updates are converging poorly (high variance in weight updates), whereas our work focuses first on
finding a feature that correlates to statewise Bellman error, regardless ofwhether that feature refines
any current feature. In addition, their work selects features online whilethe weights of the current
features are being adjusted, so there is no stationary target value function for which the Bellman
error is considered in the selection of the next new feature. In contrast,our work separates weight
training and new feature selection completely. (These differences are perhaps in part due to the
reinforcement learning setting used in Utgoff & Precup, 1997, as opposed to the planning setting of
our work.)

The selection of hidden unit feature in Cascade-Correlation (Fahlman & Lebiere, 1990) is based
on the covariance between feature values and errors of the output units. For output units that are
estimating a value function, with training data providing the Bellman update of that value function,
the output unit error is just Bellman error. Thus, the hidden units learned inthe work of Rivest
and Precup (2003) are approximations of Bellman-error features just as our learned features are, al-
though this is not made explicit in that work. By making the goal of capturing Bellman error explicit
here, we provide a general reduction that facilitates the use of any learning method to capture the
resulting feature-learning training sets. In particular, we are able to naturally demonstrate general-
ization across domain sizes in several large domains, using a relational feature learner. In contrast,
the single test domain in the work of Rivest and Precup (2003) has a small fixed size. Nonetheless,
that work is an important precursor to our approach.

A.1.2 FEATURE CONSTRUCTION VIA SPECTRAL ANALYSIS

Feature-learning frameworks for value functions based upon spectral analysis of state-space con-
nectivity are presented in the work of Mahadevan and Maggioni (2007)and Petrik (2007). In these
frameworks, features are eigenvectors of connectivity matrices constructed from random walk (Ma-
hadevan & Maggioni, 2007) or eigenvectors of probabilistic transition matrices (Petrik, 2007). Such
features capture aspects of long-term problem behaviours, as opposed to the short-term behaviours
captured by the Bellman-error features. Bellman-error reduction requires iteration to capture long-
term behaviors.

Reward functions are not considered at all during feature construction in the work of Mahade-
van and Maggioni (2007); but in the work of Petrik (2007), reward functions are incorporated in the
learning of Krylov basis features, an variant of our Bellman error features (Parr et al., 2008), to com-
plement the eigenvector features. However, even in Petrik’s framework, reward is only incorporated
in features used for policy evaluation rather than in the controlled environment we consider.

Essential to our work here is the use of machine learning in factored representations to handle
very large statespaces and to generalize between problems of differentsizes. Both of these spectral
analysis frameworks are limited in this respect (at least at the current stateof development). The ap-
proach by Petrik (2007) is presented only for explicit statespaces, whilea factorization approach for
scaling up to large discrete domains is proposed in the work of Mahadevan and Maggioni (2007). In
that approach, features are learned for each dimension in the factorization, independent of the other
dimensions. We believe the assumption of independence between the dimensions is inappropriate
in many domains, including the benchmark planning domains considered in our work. The Ma-
hadevan and Maggioni factorization approach also suffers the same drawbacks as our propositional
approach: the solution has to be recomputed for problems of different sizes in the same domain and
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so lacks the flexibility to generalize between problems of different sizes provided by our relational
approach.

A.2 Structural Model-based and Model-free Solution Methods for Markov Decision
Processes

A.2.1 RELATIONAL REINFORCEMENTLEARNING

In the work of Ďzeroski et al. (2001), a relational reinforcement learning (RRL) system learns
logical regression trees to represent Q-functions of target MDPs. This work is related to ours since
both use relational representations and automatically construct functions that capture state value.
In addition to the Q-function trees, a policy tree learner is also introduced in the work of Ďzeroski
et al. (2001) that finds policy trees based on the Q-function trees. We donot learn an explicit policy
description and instead use only greedy policies for evaluation.

The logical expressions in RRL regression trees are used as decision points in computing the
value function (or policy) rather than as numerically valued features for linear combination, as in our
method. Generalization across problem sizes is achieved by learning policytrees; the learned value
functions apply only to the training problem sizes. To date, the empirical results from this approach
have failed to demonstrate an ability to represent the value function usefully infamiliar planning
benchmark domains. While good performance is shown for simplified goals such as placing a
particular block A onto a particular block B, the technique fails to capture the structure in richer
problems such as constructing particular arrangements of Blocksworld towers. RRL has not been
entered into any of the international planning competitions. These difficulties representing complex
relational value functions persist in extensions to the original RRL work (Driessens & Ďzeroski,
2004; Driessens et al., 2006), where again only limited applicability is shown tobenchmark planning
domains such as those used in our work.

A.2.2 POLICY LEARNING VIA BOOSTING

In the work of Kersting and Driessens (2008), a boosting approach is introduced to incrementally
learn features to represent stochastic policies. This is a policy-iteration variant of our feature-
learning framework, and clearly differs from our work as policy representations are learned instead
of value function representations. Using the regression tree learner TILDE (Blockeel & De Raedt,
1998), the feature learner demonstrated advantages against previousRRL work in the task of accom-
plishing on(A,B) in a 10-block problem. Applicability to a simple continuous domain (the corridor
world) is also demonstrated. As in the line of RRL work, only limited applicability to benchmark
planning domains is shown here. One probable source of this limited applicabilityis the model-free
reinforcement-learning setting where the system does not model the problem dynamics explicitly.

A.2.3 FITTED VALUE ITERATION

Gordon (1995) has presented a method of value iteration calledfitted value iterationthat is suitable
for very large state spaces but does not require direct feature selection. Instead, the method relies on
a provided kernel function measuring similarity between states. Selection of this kernel function can
be viewed as a kind of feature selection, as the kernel identifies which stateaspects are significant
in measuring similarity. To our knowledge, techniques from this class have not been applied to
large relational planning problems like those evaluated in this paper. We do note that selection of
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a single relational kernel for all domains would measure state similarity in a domain-independent
manner and thus we believe such a kernel could not adapt to the individual domains the way our
work here does. Thus we would expect inferior performance from such an approach; however, this
remains to be investigated. Selection of domain-specific kernels for stochastic planning domains,
automatically, is also yet to be explored.

A.2.4 EXACT VALUE ITERATION IN FIRST-ORDERMDPS

Previous work has used lifted techniques to exactly solve first-order MDPs by reformulating exact
solution techniques from explicit MDPs, such as value iteration. Boutilier et al. (2001) and Holl-
dobler and Skvortsova (2004) have independently used two differentfirst-order languages (situation
calculus and fluent calculus, respectively) to define first-order MDPs. In both works, the Bell-
man update procedure in value iteration is reformulated using the respectivecalculus, resulting in
two first-order dynamic-programming methods: symbolic dynamic programming (SDP), and first-
order value iteration (FOVI). Only a simple boxworld example with human-assisted computation is
demonstrated in the SDP work, but the method serves as a basis for FOALP (Sanner & Boutilier,
2009), which replaces exact techniques with heuristic approximation in order to scale the techniques
to benchmark planning domains. Application of FOVI on planning domains is onlydemonstrated
on the colored blocksworld benchmark, and is limited to under 10 blocks (Holldobler, Karabaev, &
Skvortsova, 2006).

In the work of Kersting et al. (2004), constraint logic programming is usedto define a relational
value iteration method. MDP components, such as states, actions, and rewards, are first abstracted
to form a Markov decision program, a lifted version of an MDP. A relationalBellman operation
(ReBel) is then used to define updates of Q-values and state values. Empirical study of the ReBel
approach has been limited to 10-step backups from single-predicate goalsin the blocksworld and
logistics domains.

Exact techniques suffer from difficulty in representing the full complexityof the state-value
function for arbitrary goals in even mildly complex domains. These previous works serve to illus-
trate the central motivation for using problem features to compactly approximate the structure of a
complex value function, and thus to motivate the automatic extraction of featuresas studied in this
work.

A.3 Comparison to Inductive Logic Programming Algorithms

The problem of selecting a numeric function on relational states to match the Bellman-error training
set is a “first-order regression” problem for which there are some available systems described in the
Inductive logic programming (ILP) literature (Quinlan, 1996; Karalic & Bratko, 1997).

It is important to note that most ILP work has studied the learning ofclassifierson relational
data (Muggleton, 1991), but here we are concerned with learningnumeric functionson relational
data (such as our states). The latter problem is called “first-order regression” within the ILP lit-
erature, and has received less study than relational classification. Here, we choose to design our
own proof-of-concept relational learner for our experiments ratherthan use one of the few previous
systems. Separate work is needed to compare the utility of this relational learner with previous
regression systems; our purpose here is to demonstrate the utility of Bellman-error training data
for finding decision-theoretic value-function features. Our simple learner here suffices to create
state-of-the-art domain-independent planning via automatic feature selection.
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ILP classification systems often proceed either from general to specific,or from specific to
general, in seeking a concept to match the training data. For regression, however, there is no such
easy ordering of the numeric functions to be searched. We design insteada method that searches
a basic logical expression language from simple expressions to more complex expressions, seeking
good matches to the training data. In order to control the branching factor,while still allowing more
complex expressions to be considered, we heuristically build long expressions out of only those
short expressions that score best. In other words, we use a beam search of the space of expressions.

There are several heuristic aspects to our method. First, we define a heuristic set of basic ex-
pressions from which our search begins. Second, we define an heuristic method of combining
expressions to build more complex expressions. These two heuristic elementsare designed so that
any logical formula without disjunction, with one free variable, can be built by repeated combina-
tion from the basic expressions. Finally, the assumption that high-scoring expressions will be built
only out of high-scoring parts is heuristic (and often not true). This critical heuristic assumption
makes it likely that our learner will often miss complex features that match the training data well.
There is no known method that guarantees tractably finding such features.

A.4 Approximate Policy Iteration for Relational Domains

Our planners use greedy policies derived from learned value functions. Alternatively, one can di-
rectly learn representations for policies. The policy-tree learning in the work of Džeroski et al.
(2001), discussed previously in Appendix A.2.1, is one such example. Recent work uses a rela-
tional decision-list language to learn policies for small example problems that generalize well to
perform in large problems (Khardon, 1999; Martin & Geffner, 2004; Yoon et al., 2002). Due to
the inductive nature of this line of work, however, the selected policies occasionally contain severe
flaws, and no mechanism is provided for policy improvement. Such policy improvement is quite
challenging due to the astronomically large highly structured state spaces andthe relational policy
language.

In the work of Fern et al. (2006), an approximate version of policy iteration addressing these
issues is presented. Starting from a base policy, approximate policy iterationiteratively generates
training data from an improved policy (using policy rollout) and then uses the learning algorithm in
the work of Yoon et al. (2002) to capture the improved policy in the compact decision-list language
again. Similar to our work, the learner in the work of Fern et al. (2006) aims totake a flawed
solution structure and improve its quality using conventional MDP techniques (in that case, finding
an improved policy with policy rollout) and machine learning. Unlike our work, inthe work of Fern
et al. (2006) the improved policies are learned in the form of logical decision lists. Our work can be
viewed as complementary to this previous work in exploring the structured representation of value
functions where that work explored the structured representation of policies. Both approaches are
likely to be relevant and important to any long-term effort to solve structured stochastic decision-
making problems.

We note that feature-based representation, as considered here and generally in the MDP liter-
ature, is used to represent value functions rather than policies. Compactrepresentation of policies
can be done via value functions (with greedy execution) or more directly, for example, using deci-
sion lists. The previous API work just discussed uses a direct representation for policies, and never
uses any compact representation of value functions. Instead, sampling of value functions is used in
the policy evaluation step of policy iteration.
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One can imagine a different and novel approach to API in which the compact feature-based
representation is used for value functions, with greedy execution as the policy representation. In
that approach, feature discovery similar to what we explore here for value iteration could be de-
signed to assist the policy evaluation phase of the policy iteration. We leave further development
and evaluation of that idea to future work. We expect the two approachesto API, as well as our
current approach to value iteration, to have advantages and disadvantages that vary with the domain
in ways that have yet to be well understood. Some domains have natural compact direct policy
representations (“run if you see a tarantula”), whereas others are naturally compactly represented
via value functions (“prefer restaurants with good review ratings”). Research in this area must
eventually develop means to combine these compact representations effectively.

A.5 Automatic Extraction of Domain Knowledge

There is a substantial literature on learning to plan using methods other than direct representation
of a value function or a reactive policy, especially in the deterministic planningliterature. These
techniques are related to ours in that both acquire domain specific knowledge via planning experi-
ence in the domain. Much of this literature targets control knowledge for particular search-based
planners (Estlin & Mooney, 1997; Kambhampati et al., 1996; Veloso et al., 1995), and is distant
from our approach in its focus on the particular planning technology usedand on the limitation to
deterministic domains. It is unclear how to generalize this work to value-function construction or
probabilistic domains.

However, the broader learning-to-plan literature also contains work producing declarative
learned domain knowledge that could well be exploited during feature discovery for value func-
tion representation. In the work of Fox and Long (1998), a pre-processing module called TIM is
able to infer useful domain-specific and problem-specific structures, such as typing of objects and
state invariants, from descriptions of domain definition and initial states. While these invariants are
targeted in that work to improving the planning efficiency of a Graphplan based planner, we suggest
that future work could exploit these invariants in discovering features for value function representa-
tion. Similarly, in the work of Gerevini and Schubert (1998), DISCOPLANinfers state constraints
from the domain definition and initial state in order to improve the performance ofSAT-based plan-
ners; again, these constraints could be incorporated in a feature search like our method but have not
to date.

Appendix B. Results and Discussions for Five Probabilistic Planning Competition
Domains

In Section 7.3, we have presented the results of our relational and propositional feature learners for
BLOCKSWORLD and CONJUNCTIVE-BOXWORLD. Here we present the results of our relational
feature learner for the following five probabilistic planning competition domains: TIREWORLD,
ZENOTRAVEL, EXPLODING BLOCKSWORLD, TOWERS OFHANOI, and LIFTED-FILEWORLD3.

B.1 Tireworld

We use the TIREWORLD domain from the second IPPC. The agent needs to drive a vehicle through
a graph from the start node to the goal node. When moving from one nodeto an adjacent node,
the vehicle has a certain chance of suffering a flat tire (while still arrivingat the adjacent node).
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Trial #1

# of features 0 1 2 3 3 3 4 4 5 5 5 5
Problem difficulty 4 4 4 4 5 6 6 9 9 10 20 30
Success ratio 0.52 0.81 0.84 0.86 0.86 0.84 0.88 0.85 0.86 0.86 0.91 0.91
Plan length 4 3 4 2 2 2 3 3 4 4 5 5
Accumulated time (Hr.) 0.3 3.1 12 17 18 18 19 21 22 23 29 36
Target size SR 0.17 0.53 0.81 0.83 0.83 0.82 0.90 0.91 0.91 0.91 0.92 0.92
Target size Slen. 5 4 9 5 4 4 6 6 6 6 5 6

Trial #2

# of features 0 1 2 3 3 3 4 4 4 4
Problem difficulty 4 4 4 4 5 6 6 10 20 30
Success ratio 0.52 0.81 0.85 0.86 0.93 0.81 0.89 0.85 0.86 0.88
Plan length 4 3 3 2 3 2 3 4 4 5
Accumulated time (Hr.) 0.5 3.7 6.9 10 11 11 12 14 18 24
Target size SR 0.19 0.49 0.80 0.82 0.91 0.62 0.92 0.91 0.90 0.88
Target size Slen. 7 3 9 4 5 2 5 5 6 6

Figure 27: TIREWORLD performance (averaged over 600 problems) for relational learner. We add
one feature per column until success ratio exceeds0.85 and average successful plan
length is less than4n, for n nodes, and then increase problem difficulty for the next
column. Plan lengths shown are successful trials only. Problem difficultiesare measured
in number of nodes, with a target problem size of 30 nodes. Some columns are omitted
as discussed in Section 7.1.

The flat tire can be replaced by a spare tire, but only if there is such a spare tire present in the node
containing the vehicle, or if the vehicle is carrying a spare tire. The vehicle can pick up a spare
tire if it is not already carrying one and there is one present in the node containing the vehicle. The
default setting for the second-IPPC problem generator for this domain defines a problem distribution
that includes problems for which there is no policy achieving the goal with probability one. Such
problems create a tradeoff between goal-achievement probability and expected number of steps to
the goal. How strongly our planner favors goal achievement versus short trajectories to the goal is
determined by the choice of the discount factor made in Section 6.1.

We start with 4-node problems in our relational learner and increase fromn nodes ton + 1
nodes whenever the success ratio exceeds 0.85 and the average successful plan length is better than
4n steps. The target problem size is 30 nodes. The results are shown in Figures 18 and 27.

In TIREWORLD, our relational learner again is able to find features that generalize well tolarge
problems. Our learner achieves a success ratio of about 0.9 on 30 nodeproblems. It is unknown
whether any policy can exceed this success ratio on this problem distribution; however, neither
comparison planner, FOALP nor FF-Replan, finds a higher success-rate policy.

We note that some improvements in success rate in this domain will necessarily be associated
with increases in plan length because success-rate improvements may be dueto path deviations to
acquire spare tires.
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Trial #1

# of features 0 1 1 2 3 4 5 6 7 8 9
Problem difficulty 3,1,1 3,1,1 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2
Success ratio 0.79 0.8 0.59 0.52 0.54 0.55 0.54 0.52 0.56 0.53 0.55
Plan length 253 255 413 440 437 450 411 440 426 428 451
Accumulated time (Hr.) 0.75 1.7 3.4 7.1 11 15 19 25 30 36 41
Target size SR 0.06 0.08 0.09 0.09 0.12 0.11 0.10 0.08 0.11 0.08 0.12
Target size Slen. 916 1024 1064 1114 1050 1125 1111 1115 1061 1174 1195

Trial #2

# of features 0 1 2 2 3 4 5 6 7 8 9
Problem difficulty 3,1,1 3,1,1 3,1,1 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2
Success ratio 0.77 0.79 0.80 0.55 0.55 0.50 0.53 0.12 0.12 0.12 0.10
Plan length 262 254 233 391 425 415 422 0 0 0 0
Accumulated time (Hr.) 1.3 2.3 3.3 5.3 8.9 13 17 22 29 36 43
Target size SR 0.05 0.10 0.10 0.09 0.09 0.08 0.10 0.02 0.02 0.02 0.01
Target size Slen. 814 1008 1007 1067 1088 1014 1078 0 0 0 0

Figure 28: ZENOTRAVEL performance (averaged over 600 problems) for relational learner. The
problem difficulty shown in this table lists the numbers of cities, travelers, and aircraft,
with a target problem size of 10 cities, 2 travelers, and 2 aircraft. We add one feature
per column until success ratio exceeds0.8, and then increase problem difficulty for the
next column. Plan lengths shown are successful trials only.

B.2 Zenotravel

We use the ZENOTRAVEL domain from the second IPPC. The goal of this domain is to fly all trav-
elers from their original location to their destination. Planes have (finite-range, discrete) fuel levels,
and need to be re-fuelled when the fuel level reaches zero to cont inueflying. Each available activity
(boarding, debarking, flying, zooming, or refueling) is divided into two stages, so that an activity
X is modelled as two actions start-X and finish-X. Each finish-X activity has a (high) probability
of doing nothing. Once a “start” action is taken, the corresponding “finish” action must be taken
(repeatedly) until it succeeds before any conflicting action can be started. This structure allows the
failure rates on the “finish” actions to simulate action costs (which were not used explicitly in the
problem representation for the competition). A plane can be moved between locations by flying or
zooming. Zooming uses more fuel than flying, but has a higher success probability.

We start with a problem difficulty of 3 cities, 1 traveler, and 1 aircraft usingour relational
feature learner. Whenever the success ratio exceeds0.8, we increase the numbern of travelers and
aircraft by 1 if the number of cities is no less than5n− 2, and increase the number of cities by one
otherwise. The target problem size is 10 cities, 2 travelers, and 2 aircraft. ZENOTRAVEL results for
the relational learner are shown in Figures 18 and 28.
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The relational learner is unable to find features that enable AVI to achievethe threshold success
rate (0.8) for 3 cities, 2 travelers, and 2 aircraft, although 9 relational features are learned. The trials
were stopped because no improvement in performance was achieved forseveral iterations of feature
addition. Using a broader search (W = 160, q = 3, andd = 3) we are able to find better features
and extend the solvable size to several cities with success rate 0.9 (not shown here as all results in
this paper use the same search parameters, but reported in Wu & Givan, 2007), but the runtime also
increases dramatically, to weeks. We believe the speed and effectiveness of the relational learning
needs to be improved to excel in this domain, and a likely major factor is improved knowledge
representation for features so that key concepts for ZENOTRAVEL are easily represented.

Trial two in Figure 28 shows a striking event where adding a single new feature to a useful value
function results in a value function for which the greedy policy cannot findthe goal at all, so that
the success ratio degrades dramatically immediately. Note that in this small problemsize, about
ten percent of the problems are trivial, in that the initial state satisfies the goal.After the addition
of the sixth feature in trial two, these are the only problems the policy can solve. This reflects the
unreliability of our AVI weight-selection technique more than any aspect of our feature discovery:
after all, AVI is free to assign a zero weight to this new feature, but does not. Additional study of
the control of AVI and/or replacement of AVI by linear programming methodsis indicated by this
phenomenon; however, this is a rare event in our extensive experiments.

B.3 Exploding Blocksworld

We also use EXPLODING BLOCKSWORLD from the second IPPC to evaluate our relational planner.
This domain differs from the normal Blocksworld largely due to the blocks having certain proba-
bility of being “detonated” when they are being put down, destroying objects beneath (but not the
detonating block). Blocks that are already detonated once will not be detonated again. The goal
state in this domain is described in tower fragments, where the fragments are not generally required
to be on the table. Destroyed objects cannot be picked up, and blocks cannot be put down on de-
stroyed objects (but a destroyed object can still be part of the goal if thenecessary relationships
were established before or just as it was destroyed).

We start with 3-block problems using our relational learner and increase fromn blocks ton+ 1
blocks whenever the success ratio exceeds 0.7. The target problem sizes are 5 and 10 blocks.
EXPLODING BLOCKSWORLD results for the relational learner are shown in Figures 19 and 29.
The results in EXPLODING BLOCKSWORLD are not good enough for the planner to increase the
difficulty beyond 4-block problems, and while the results show limited generalization to 5-block
problems, there is very little generalization to 10-block problems.

Our performance in this domain is quite weak. We believe this is due to the presence of many
dead-end states that are reachable with high probability. These are the states where either the table
or one of the blocks needed in the goal has been destroyed, before theobject in question achieved the
required properties. Our planner can find meaningful and relevant features: the planner discovers
that it is undesirable to destroy the table, for instance. However, the resulting partial understand-
ing of the domain cannot be augmented by random walk (as it is in some other domains such as
BLOCKSWORLD and CONJUNCTIVE-BOXWORLD) to enable steady improvement in value, lead-
ing to the goal; random walk in this domain invariably lands the agent in a dead end. Very short
successful plan length, low probability of reaching the goal, and (not shown here) very high unsuc-
cessful plan length (caused by wandering in a dead end region) suggest the need for new techniques
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Trial #1

# of features 0 1 2 3 4 5 6 7 7 8 9 10
Problem difficulty 3 3 3 3 3 3 3 3 4 4 4 4
Success ratio 0.56 0.58 0.56 0.63 0.56 0.68 0.62 0.71 0.4 0.45 0.43 0.44
Plan length 1 2 1 2 1 1 2 2 4 5 4 5
Accumulated time (Hr.) 0.6 1.4 2.2 3.1 4.2 5.9 8.7 11 12 20 28 38
Target size #1 SR 0.12 0.12 0.14 0.22 0.20 0.31 0.16 0.34 0.33 0.31 0.31 0.29
Target size #1 Slen. 3 3 3 5 4 6 9 6 6 5 5 5
Target size #2 SR 0 0 0 0.00 0.00 0.03 0 0.02 0.03 0.02 0.02 0.01
Target size #2 Slen. – – – 10 4 24 – 19 26 23 22 15

Trial #2

# of features 0 1 2 3 4 5 5 6 7 8 9
Problem difficulty 3 3 3 3 3 3 4 4 4 4 4
Success ratio 0.56 0.56 0.55 0.63 0.55 0.75 0.45 0.45 0.43 0.42 0.36
Plan length 1 2 1 2 1 2 4 5 5 4 4
Accumulated time (Hr.) 0.6 1.3 2.1 2.9 3.7 4.6 5.3 14 22 31 39
Target size #1 SR 0.14 0.15 0.12 0.18 0.17 0.33 0.31 0.32 0.31 0.28 0.30
Target size #1 Slen. 4 3 4 6 4 6 6 6 6 5 5
Target size #2 SR 0 0 0 0.01 0.00 0.02 0.01 0.01 0.02 0.01 0.01
Target size #2 Slen. – – – 19 18 26 27 15 21 15 18

Figure 29: EXPLODING BLOCKSWORLDperformance (averaged over 600 problems) for relational
learner. Problem difficulties are measured in number of blocks. We add one feature per
column until success ratio exceeds0.7, and then increase problem difficulty for the next
column. Plan lengths shown are successful trials only. Target problem size #1 has 5
blocks, and target problem size #2 has 10 blocks.

aimed at handling dead-end regions to handle this domain. These results demonstrate that our tech-
nique relies on random walk (or some other form of search) so that the learned features need not
completely describe the desired policy.

B.4 Towers of Hanoi

We use the domain TOWERS OFHANOI from the first IPPC. In this probabilistic version of the well-
known problem, the agent can move one or two discs simultaneously, but there is a small probability
of going to a dead-end state on each move, and this probability depends on whether the largest disc
has been moved and which type of disc move (one or two at a time) is being used. We note that
there is only one planning problem in each problem size here.

It is important to note that 100% success rate is generally unachievable in thisdomain due to
the unavoidable dead-end states.
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Trial #1

# of features 0 1 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 2 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.70 0.75 0.11 0.44 0.73 0 0 0 0 0 0.51 0 0 0
Plan length 4 2 43 26 4 – – – – – 4 – – –
Accumulated time (Hr.) 0.0 0.0 0.1 0.2 0.3 0.4 0.5 1.1 1.2 2.1 2.2 2.3 18 53
Target size #1 SR 0.07 0.15 0.01 0.08 0.03 0 0 0 0 0 0.52 0.53 0 0.43
Target size #1 Slen. 13 9 90 95 37 – – – – – 4 4 – 4
Target size #2 SR 0.00 0 0 0 0.00 0 0 0 0 0 0 0 0 0
Target size #2 Slen. 11 – – – 107 – – – – – – – – –

Trial #2

# of features 0 0 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 3 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.71 0.23 0.14 0.42 0.75 0 0 0 0 0 0.53 0 0 0
Plan length 4 12 37 25 4 – – – – – 4 – – –
Accumulated time (Hr.) 0.0 0.0 0.2 0.3 0.3 0.4 0.5 1.1 1.9 2.3 2.6 2.7 6 16
Target size #1 SR 0.1 0.09 0.0 0.09 0.03 0 0 0 0 0 0.49 0 0 0
Target size #1 Slen. 14 11 105 95 41 – – – – – 4 – – –
Target size #2 SR 0.00 0.1 0 0 0.00 0 0 0 0 0 0 0 0 0
Target size #2 Slen. 16 29 – – 107 – – – – – – – – –

Figure 30: TOWERS OFHANOI performance (averaged over 600 problems) for relational learner.
We add one feature per column until success ratio exceeds0.7n−1 for n discs, and then
increase problem difficulty for the next column. Plan lengths shown are successful trials
only. Problem difficulties are measured in number of discs, with a target problem size #1
of 4 discs and size #2 of 5 discs. Some columns are omitted as discussed in Section 7.1.

We start with the 2-disc problem in our relational learner and increase the problem difficulty
fromn discs ton+1 discs whenever the success ratio exceeds0.7n−1. The target problem sizes are
4 and 5 discs. TOWERS OFHANOI results for the relational learner are shown in Figures 19 and 30.

The learner is clearly able to adapt to three- and four-disc problems, achieving around 50%
success rate on the four disc problem in both trials. The optimal solution for the four disc problem
has success rate 75%. This policy uses single disc moves until the large discis moved and then
uses double disc moves. Policies that use only single disc moves or only double disc moves can
achieve success rates of 64% and 58%, respectively, on the four discproblem. The learned solution
occasionally moves a disc in a way that does not get closer to the goal, reducing its success.

Unfortunately, the trials show that an increasing number of new features are needed to adapt
to each larger problem size, and in our trials even 38 total features are not enough to adapt to the
five-disc problem. Thus, we do not know if this approach can extend even to five discs. Moreover,
the results indicate poor generalization between problem sizes.

We believe it is difficult for our learner (and for humans) to represent agood value function
across problem sizes. Humans deal with this domain by formulating a good recursive policy, not by
establishing any direct idea of the value of a state. Finding such a recursive policy automatically is
an interesting open research question outside the scope of this paper.
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B.5 Lifted-Fileworld3

As described in Section 6.1, we use the domain LIFTED-FILEWORLD3, which is a straightforwardly
lifted form of FILEWORLD from the first IPPC, restricted to three folders. To reach the goal of filing
all files, an action needs to be taken for each file to randomly determine which folder that file should
go into. There are actions for taking out a folder, putting a file in that folder, and returning the folder
to the cabinet. The goal is reached when all files are correctly filed in the targeted folders.

We note that both FILEWORLD and LIFTED-FILEWORLD3 are very benign domains. There
are no reachable dead ends and very few non-optimal actions, each ofwhich is directly reversible.
Random walk solves this domain with success rate one even for thirty files. The technical challenge
posed then is to minimize unnecessary steps so as to minimize plan length. The optimalpolicy
solves then-file problem with between2n+1 and2n+5 steps, depending on the random file types
generated.

Rather than preset a plan-length threshold for increasing difficulty (as afunction ofn), here we
adopt a policy of increasing difficulty whenever the method fails to improve plan length by adding
features. Specifically, if the success ratio exceeds 0.9 and one featureis added without improving
plan length, we remove that feature and increase problem difficulty instead.13

We start with 1 file problems in our relational learner and increase fromn files ton + 1 files
whenever the performance does not improve upon feature addition. Thetarget problem size is 30
files. LIFTED-FILEWORLD3 results for the relational learner are shown in Figures 20 and 31.

The results show that our planner acquires an optimal policy for the 30-filetarget size problem
after learning four features, in each of the two trials. The results in this domain again reveal the
weakness of our AVI weight-selection method. Although four features are enough to define an opti-
mal policy, as problem difficulty increases, AVI often fails to find the weightassignment producing
such a policy. When this happens, further feature addition can be triggered, as in trial 1. In this
domain, the results show that such extra features do not prevent AVI from finding good weights on
subsequent iterations, as the optimal policy is recovered again with the larger feature set. Nonethe-
less, here is another indication that improved performance may be available via work on alternative
weight-selection approaches, orthogonal to the topic of feature selection.
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