Journal of Atrtificial Intelligence Research 38 (2010) 6&57 Submitted 01/10; published 08/10

Automatic Induction of Bellman-Error Features
for Probabilistic Planning

Jia-Hong Wu JW@ALUMNI .PURDUE.EDU
Robert Givan GIVAN @PURDUE.EDU
Electrical and Computer Engineering

Purdue University, W. Lafayette, IN 47907 USA

Abstract

Domain-specific features are important in representinglpro structure throughout machine
learning and decision-theoretic planning. In planning;eostate features are provided, domain-
independent algorithms such as approximate value iteratim learn weighted combinations of
those features that often perform well as heuristic esémaf state value (e.g., distance to the
goal). Successful applications in real-world domainsrofequire features crafted by human ex-
perts. Here, we propose automatic processes for learngfgludomain-specific feature sets with
little or no human intervention. Our methods select and addlures that describe state-space re-
gions of high inconsistency in the Bellman equation (st&evBellman error) during approximate
value iteration. Our method can be applied using any relaledafeature hypothesis space and
corresponding learning method for selecting features fo@iming sets of state-value pairs. We
evaluate the method with hypothesis spaces defined by biaitioreal and propositional feature
languages, using nine probabilistic planning domains. Wdavsthat approximate value iteration
using a relational feature space performs at the statheskit in domain-independent stochastic
relational planning. Our method provides the first domaitependent approach that plays Tetris
successfully (without human-engineered features).

1. Introduction

There is a substantial gap in performance between domain-independaners and domain-
specific planners. Domain-specific human input is able to produce viagtieé planners in all
competition planning domains as well as many game applications such as backgarhess, and
Tetris. In deterministic planning, work on TLPLAN (Bacchus & KabanzZg0® has shown that
simple depth-first search with domain-specific human input, in the form of texhlogiic formulas
describing acceptable paths, yields an effective planner for a widetywaf competition domains.
In stochastic planning, feature-based value-function representdtimesbeen used with human-
selected features with great success in applications such as backga®utiom E Barto, 1998;
Tesauro, 1995) and Tetris (Bertsekas & Tsitsiklis, 1996). The ushigatures provided by hu-
man experts is often critical to the success of systems using such valu@fuapproximations.
Here, we consider the problem of automating the transition from domain-éndent planning to
domain-specific performance, replacing the human input with automaticallyeléaomain prop-
erties. We thus study a style of planner that learns from encounteribtgpronstances to improve
performance on subsequently encountered problem instances fraantizedomain.

We focus on stochastic planning using machine-learned value functipresemted as linear
combinations of state-space features. Our goal then is to augment thepaaterepresentation

(©?2010 Al Access Foundation. All rights reserved.

Wu & GIVAN

during planning with new machine-discovered features that facilitate atectegpresentation of the
value function. The resulting learned features can be used in refirgséme value function for
other problem instances from the same domain, allowing amortization of thénigawsts across
solution of multiple problem instances. Note that this property is in contrast tb coagpetition
planners, especially in deterministic planning, which retain no useful infitoméetween prob-
lem instances. Thus, our approach to solving planning problems camgdeleel as automatically
constructing domain-specific planners, using domain-independenideeisn

We learn features that correlate well to the statewise Bellman error of vahetidns encoun-
tered during planning, using any provided feature language with aspmneling learner to select
features from the space. We evaluate this approach using both relamahplopositional feature
spaces. There are other recent approaches to acquiring featuwteshastic planning with sub-
stantial differences from our approach which we discuss in detail itidbe® (Patrascu, Poupart,
Schuurmans, Boutilier, & Guestrin, 2002; Gretton & &baux, 2004; Sanner & Boutilier, 2009;
Keller, Mannor, & Precup, 2006; Parr, Painter-Wakefield, Li, & Littma007). No previous work
has evaluated the selection of relational features by correlation to staielisen error.

Recent theoretical results (Parr et al., 2007) for uncontrolled Mapkovesses show that ex-
actly capturing statewise Bellman error in new features, repeatedly, wiltteemhvergence to the
uncontrolled optimal value for the value function selected by linear-fix@dtpnethods for weight
training. Unfortunately for machine-learning approaches to selectingrésa these results have
not been transferred to approximations of statewise Bellman-error ésafior this case, the results
in the work of Parr et al. (2007) are weaker and do not imply convemyeAlso, none of this the-
ory has been transferred to the controlled case of interest heree wiernnalysis is much more
difficult because the effective (greedy) policy under consideratizing value-function training is
changing.

We consider the controlled case, where no known theoretical propgirtidar to those of Parr
et al. (2007) have been shown. Lacking such theory, our purpdsaedsmonstrate the capability
of statewise Bellman error features empirically, and with rich representatiahsequire machine
learning techniques that lack approximation guarantees. Next, we gieeeaiew of our ap-
proach, introducing Markov decision processes, value functioribnBe error, feature hypothesis
languages and our feature learning methods.

We use Markov decision processes (MDPs) to model stochastic plamublgms. An MDP is
a formal model of a single agent facing a sequence of action choicaesfpre-defined action space,
and transitioning within a pre-defined state space. We assume there is enyingdstationary
stochastic transition model for each available action from which state trarssitemur according to
the agent’s action choices. The agent receives reward after etémh ewoice according to the state
visited (and possibly the action chosen), and has the objective of acdinguda much reward as
possible (possibly favoring reward received sooner, using distmyror averaging over time, or
requiring that the reward be received by a finite horizon).

MDP solutions can be represented as state-value functions assigHingmdzers to states. In-
formally, in MDP solution techniques, we desire a value function that réspiee action transitions
in that “good” states will either have large immediate rewards or have actiailalzle that lead to
other “good” states; this well-known property is formalizedBellman equationthat recursively
characterize the optimal value function (see Section 2). The degree th shigen value function
fails to respect action transitions in this way, to be formalized in the next sediosferred to as
the Bellman errorof that value function, and can be computed at each state.

688

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Intuitively, statewise Bellman error has high magnitude in regions of the state sphich
appear to be undervalued (or overvalued) relative to the action cheiedable. A state with high
Bellman error has a locally inconsistent value function; for example, a statsoissistently labeled
with a low value if it has an action available that leads only to high-value statesafiproach is to
use machine learning to fit new features to such regions of local incamsysiethe current value
function. If the fit is perfect, the new features guarantee we canseptehe “Bellman update”
of the current value function. Repeated Bellman updates, called “valadidel, are known to
converge to the optimal value function. We add the learned features te@sentation and then
train an improved value function, adding the new features to the availabiedeset.

Our method for learning new features and using them to approximate thefualkten here
can be regarded astmosting-styldearning approach. A linear combination of features can be
viewed as a weighted combination of an ensemble of simple hypotheses. &madbature learned
can be viewed as a simple hypothesis selected to match a training distributi@edozn regions
that the previous ensemble is getting wrong (as reflected in high statewise Beltroathroughout
the region). Growth of an ensemble by sequentially adding simple hypotbeksesed to correct
the error of the ensemble so far is what we refer to as “boosting stylefifear

It is important to note that our method scores candidate features by tiomdtathe statewise
Bellman error of the current value functiamyt by minimizing the statewise Bellman error of some
value function found using the new candidate feature. phesfeature-additiorscoring is much
less expensive than scoring that involves retraining weights with the regwrées especially when
being repeated many times for different candidates, relative to the samatoualue function. Our
use ofpre-feature-additiorscoring to select features for the controlled setting enables a much more
aggressive search for new features than the previously evaluastédepture-addition approach
discussed in the work of Patrascu et al. (2002).

Our approach can be considered for selecting features in any fetsception language for
which a learning method exists to effectively select features that matchvsiaitraining data.
We consider two very different feature languages in our empirical atialu Human-constructed
features are typically compactly described using a relational languagfedsuEnglish) wherein the
feature value is determined by the relations between objects in the domain.idékeve consider
a relational feature language, based on domain predicates from thelbasan description. (The
domain description may be written, for example, in a standard planning laegua as PPDDL in
Younes, Littman, Weissman, & Asmuth, 2005.) Here, we take logical formilasefree variable
to represent features that count the number of true instantiations ofrthel#oin the state being
evaluated. For example, the “number of holes” feature that is used in nmetrig €xperiments
(Bertsekas & Tsitsiklis, 1996; Driessens, Ramon, &rfaer, 2006) can be interpreted as counting
the number of empty squares on the board that have some other filled sqbake them. Such
numeric features provide a mapping from states to natural numbers.

In addition to this relational feature language, we consider using a [timpas feature rep-
resentation in our learning structure. Although a propositional reptatsem is less expressive
than a relational one, there exist very effective off-the-shelf legrpaickages that utilize propo-
sitional representations. Indeed, we show that we can reformulateeaturé learning task as a
related classification problem, and use a standard classification tool, k@decee learner C4.5
(Quinlan, 1993), to create binary-valued features. Our reformulaticriassification considers
only the sign, not the magnitude, of the statewise Bellman error, attempting tofésdumes that
characterize the positive-sign regions of the state space (or likewisegadire-sign regions). A

689

Wu & GIVAN

standard supervised classification problem is thus formulated and C4.%iappbed to generate
a decision-tree feature, which we use as a new feature in our valageiumepresentation. This
propositional approach is easier to implement and may be more attractive eheglational one
when there is no obvious advantage in using relational representatiwheaorcomputing the exact
statewise Bellman error for each state is significantly more expensive ttiaratsg its sign. In
our experiments, however, we find that our relational approach pesdsuperior results than our
propositional learner. The relational approach also demonstratesitity tabgeneralize features
between problem sizes in the same domain, an asset unavailable in propbsifyasentations.
We present experiments in nine domains. Each experiment starts with a siogdtant fea-
ture, mapping all states to the same number, forcing also a constant vattierfiuinat makes no
distinctions between states. We then learn domain-specific features ardsifedgn automatically
generated sampled state trajectories, adjusting the weights after eachatexe fe added. We
evaluate the performance of policies that select their actions greedilyeetatthe learned value
functions. We evaluate our learners using the stochastic computer-gdritearal seven plan-
ning domains from the two international probabilistic planning competitions (&sw@h al., 2005;
Bonet & Givan, 2006). Our method provides the first domain-indepanaeproach to playing
Tetris successfully (without human-engineered features). Our reddtieawrner also demonstrates
superior success ratio in the probabilistic planning-competition domains asacednpoth to our
propositional approach and to the probabilistic planners FF-Replam(Yeern, & Givan, 2007)
and FOALP (Sanner & Boutilier, 2006, 2009). Additionally, we show thatgropositional learner
outperforms the work of Patrascu et al. (2002) on the same SysAdmin dexnairated there.

2. Background

Here we present relevant background on the use of Markov Dedfsmresses in planning.

2.1 Markov Decision Processes

We define here our terminology for Markov decision processes. Fora thorough discussion of
Markov decision processes, see the books by Bertsekas and Tsitb#98) (@and Sutton and Barto
(1998). A Markov decision process (MDRY is a tuple(S, A, R, T, sp). Here,S is a finite state
space containing initial statg, and A selects a non-empty finite available action 4ét) for each
states in S. The reward functior? assigns a real reward to each state-action-state {ripte s')
where actioru is enabled in state, i.e.,a is in A(s). The transition probability functioff’ maps
state-action pairés, a) to probability distributions oves, P(.S), wherea is in A(s).

Given discount factab < v < 1 andpolicy ™ mapping each statec S to an action inA(s), the
value functionV’™(s) gives the expected discounted reward obtained from stagdecting action
m(s) at each state encountered and discounting future rewards by a fagtpeotime step. There
is at least one optimal policy* for which V™ (s), abbreviated/*(s), is no less thaiV’"(s) at
every states, for any policyr. The following “Q function” evaluates an actianwith respect to a
future-value functiorl/,

Q(s,a,V) = Z T(s,a,s)[R(s,a,s") +~V(s)].
s'esS

Recursive Bellman equations ugg() to describeV* and V™ as follows. First,V7(s) =
Q(s,7(s), V™). Then,V*(s) = maxgeca(s) Q(s,a,V*). Also usingQ(), we can select an ac-

690

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

tion greedily relative to any value function. The policy Gre@dy selects, at any state the action
arg maxXgec A(s) Q(Su a, V)
Value iteratioriterates the operation

UV)(s) = mj(x) T(s,a,s)[R(s,a,s")+~vV(s)],
acA(s
s'eS

computing the “Bellman updaté? (V') from V', producing a sequence of value functions converging
in the sup-norm td’*, regardless of the initidl” used.

We define thestatewise Bellman erroB(V,s) for a value functionV at a states to be
UV)(s) — V(s). We will be inducing new features based on their correlation to the statewise
Bellman error, or based on the sign of the statewise Bellman error. Thasupdistance of a
value functionV from the optimal value functio* can be bounded using the Bellman error mag-
nitude, which is defined asaxscs |B(V, s)| (e.g., see Williams & Baird, 1993). We use the term
“statewise Bellman error” to emphasize the distinction from the widely usedtfisam Bellman
error”.

We note that computingy(V'), and thus statewise Bellman error, can involve a summation over
the entire state space, whereas our fundamental motivations requiréngveicth summations.

In many MDP problems of interest, the transition matfixs sparse in a way that set of states
reachable in one step with non-zero probability is small, for any curret&. ska such problems,
statewise Bellman error can be computed effectively using an appro@agsentation di’. More
generally, wherf is not sparse in this manner, the sum can be effectively approximatelyaésdalu
by sampling next states according to the distribution represent&d by

2.2 Modeling Goal-oriented Problems

Stochastic planning problems can be goal-oriented, where the objecthatvarig the problem is
to guide the agent toward a designated state region (i.e., the goal regiemo@él such problems
by structuring the reward and transition functiodRsandT" so that any action in a goal state leads
with positive reward to a zero-reward absorbing state, and rewarddsexerywhere else. We
retain discounting to represent our preference for shorter paths tgotle Alternatively, such
problems can be modeled as stochastic shortest path MDPs without disgdgitsekas, 1995).
Our techniques can easily be generalized to formalisms which allow varytitg aosts as well,
but we do not model such variation in this work.

More formally, we define a goal-oriented MDP to be any MDP meeting the follgwion-
straints. Here, we use the variablesnds’ for states inS anda for actions inA(s). We require that
S contain a zero-reward absorbing statg.e., such thaR(L,a,s) = 0andT(L,a, L) = 1forall
s anda. The transition functio” must assign either one or zero to trip(@sa, L), and we call the
region of states for which T'(s, a, L) is onethe goal region The reward function is constrained
so thatR(s, a, s’) is zero unless’ = L. In constructing goal-oriented MDPs from other problem
representations, we may introduce dummy actions to carry out the transitwohsmg | described
here.

2.3 Compactly Represented MDPs

In this work, we consider both propositional and relational state reptasens.

691

Wu & GIVAN

In relational MDPs, the spacesand A(s) for eachs are relationally represented, i.e., there
is a finite set of object®), state predicate®, and action named’ used to define these spaces as
follows. A state facts an applicatiorp(oy, .. ., 0,) Of ann-argument state predicateto object
arguments;, for anyn!. A state is any set of state facts, representing exactly the true facts in that
state. Anaction instance(os, . .., 0,) is an application of am-argument action name toobjects
o, for anyn. The action spacd = (J,. g A(s) is the set of all action instances.

MDPs with compactly represented state and action spaces also use coapgrastentations
for the transition and reward functions. One such compact represenistioe PPDDL planning
language, informally discussed in the next subsection and formally geeserthe work of Younes
et al. (2005).

In propositional problems, the action space is explicitly specified and thesgtate is com-
pactly specified by providing a finite sequence of basic state propertied state attributeswith
Boolean, integer, or real values. A propositional state is then any vettmlues for the state
attributes.

Given arelational MDP, an equivalent propositional MDP can be easilgtcucted by “ground-
ing,” in which an explicit action space is constructed by forming all actiomenapplications and a
set of state attributes is computed by forming all state-predicate applicatiaesgtinoving the use
of the set of objects in the representation.

2.4 Representing PPDDL Planning Problems using MDPs

We discuss how to represent goal-oriented stochastic planning probkfinediin standardized
planning languages such as PPDDL (Younes et al., 2005) as goalearistDPs. We limit our
focus to problems in which the goal regions can be described as (ctm@)rsets of state facts. We
reference and follow the approach used in the work of Fern, YoahGavan (2006) here regarding
converting from planning problems to compactly represented MDPs in a ménatdacilitates gen-
eralization between problem instances. We first discuss several Wifépuesentational issues and
then finally pull that discussion together in a formal definition of the MDP wadyare to represent
any given PPDDL problem instance. We do not consider quantified mdjoinctive goals, but
handling such goals would be an interesting and useful extension of this wo

2.4.1 RANNING DOMAINS AND PROBLEMS

A planning domains a distribution over problem instances sharing the same state predigates
action namesV, and action definitions. Actions can take objects as parameters, andfimexide
by giving discrete finite probability distributions over action outcomes, eethih is specified
using add and delete lists of state facts about the action parameters.

Given a domain definition, each problem instance in the domain specifies aofijéiet setD,
initial states; and goal conditiorG. The initial state is given as a set of state facts and the goal
condition is given as a conjunction of state facts, each constructed feopréklicates iy .

1. Each state predicate has an associated “arity” indicating the numbbjestit relates. The state predicate can be
“applied” to that number of objects from the domain to form a ground statethat can be either true or false in
each state; states are then the different possible ways to select thetedfactta Likewise, each action name has an
associated “arity” that is a natural number indicating the number of oljeetsction will act upon. The action name
can then be “applied” to that number of objects to form a “grounded dction

692

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

2.4.2 PPDDL BPRESENTATION

PPDDL is the standard planning language for the international probabilistioipg competitions.
In PPDDL, a planning domain syntax and a planning problem syntax is defif@ completely
define a planning instance, one has to specify a domain definition and lemprdefinition using
the respective syntax. Conditional effects and quantified precondgi@nallowed in the domain
definition.

In planning competitions, it has been customary to specify planning domapretaging prob-
lem generatorshat accept size parameters as input and then output PPDDL problemcesta
These generators thus specify size-parameterized planning domam#nortant to note, how-
ever, that not all problem generators provided in the recent planoimgetitions specify planning
domains according to the definition used here. In particular, some proldesraors vary the
action set or the state predicates between the instances generated.lalibastdp between the
different problem instances generated by such generators is muehr tbas that required by our
definition, and as such these “domains” are somewhat more like arbitriegtams of planning
problems.

Because our logical language allows generalization between problem§ tdmdge problems
share the same state and action language, we limit our empirical evaluatiortionSeto domains
that were provided with problem generators that specify planning donaairigst defined here,
i.e., without varying the action definitions between instances (or for whicbamesasily code such
a generator). We refer to domains with such generatomla®ing domains with fixed action
definitions

2.4.3 (ENERALIZATION BETWEEN PROBLEMS OFVARYING SIZE

Because the object set varies in size, without bound, across themprivisinces of a domain, there
are infinitely many possible states within the different instances of a singleidoEech MDP we
analyze has a finite state space, and so we model a planning domain as ita sefimf MDPs
for which we are seeking a good policy (in the form of a good value fungtione MDP for each
problem instance

A value function for an infinite set of MDPs is a mapping from the disjoint urdbthe state
spaces of the MDPs to the real numbers. Such a value function can degnesalily as a policy
in any of the MDPs in the set. However, explicit representation of sucHue yanction would
have infinite size. Here, we will use knowledge representation techniquasmpactly represent
value functions over the infinite set of problem instance MDPs for argngdlanning domain. The
compact representation derives from generalization across the doemaihsur approach is funda-
mentally about finding good generalizations between the MDPs within a singlaiptadomain.
Our representation for value functions over planning domains is giviewhe Sections 2.5 and 4.

In this section, we discuss how to represent as a single finite MDP any piagleing problem
instance. However, we note that our objective in this work is to find godaeviunctions for
the infinite collections of such MDPs that represent planning domains.ughout this paper, we
assume that each planning domain is provided along with a means for samglimglexproblems
from the domain, and that the sampling is parameterized by difficulty (genegpedlylem size) so

2. In this paper we consider two candidate representations for featunlgone of these, the relational representation,
is capable of generalizing between problem sizes. For the propositiepr@sentation, we restrict all training and
testing to problem instances of the same size.

693

Wu & GIVAN

that easy example problems can be selected. Although, PPDDL doe®wiotepany such problem
distributions, benchmark planning domains are often provided with probmargtors defining
such distributions: where such generators are available, we use thérathenwise we code our
own distributions over problem instances.

2.4.4 (ENERALIZING BETWEEN PROBLEMS WITH VARYING GOALS

To facilitate generalization between problem instances with different garadisfollowing the work
of Martin and Geffner (2004) and Fern et al. (2006), we translatezRRnstance description into
an MDP where each state specifies not only what is true in the state butla@sthe goal is. Action
transitions in this MDP will never change the “goal”, but the presence afgbal within the state
description allows value functions (that are defined as conditioning ontlgestate) to depend on
the goal as well. The goal region of the MDP will simply be those MDP statesenthe specified
current state information matches the specified goal information.

Formally, in translating PPDDL problem instances into compact MDPs, wetetirécgiven set
of world-state predicateBy, by adding a copy of each predicate indicating the desired state of that
predicate. We name the goal-description copy of a predjcéte prepending the word “goal-" to
the name. The set of all goal-description copies of the predicatBg irs denotedP, and we take
Py U Pg to be the state predicates for the MDP corresponding to the planning instanggvely,
the presence of goaka,b) in a state indicates that the goal condition requires thegfacty) to be
part of the world state. The only use of the goal predicates in construztiognpact MDP from a
PPDDL description is in constructing the initial state, which will have the goatlitimns true for
the goal predicates.

We use the domain Blocksworld as an example here to illustrate the reformulditéoaame
domain is also used as an example in Fern et al., 2006). The goal conditioBlotksworld
problem can be described as a conjunction of groomdop-of facts. The world-state predicate
on-top-of is in Pyy. As discussed above, this implies that the predigat@l-on-top-ofis in Pg.
Intuitively, one ground instance of that predicageal-on-top-of(b1,b2) means that for a state in
the goal region, the blodil has to be directly on the top of the blobk.

2.4.5 SATES WITH NO AVAILABLE ACTIONS

PPDDL allows the definition of domains where some states do not meet thengitaos for any
action to be applied. However, our MDP formalism requires at least amiéabie action in every
state. In translating a PPDDL problem instance to an MDP we define the adiusitions so
that any action taken in such a “dead” state transitions deterministically to thebaigs | state.
Because we consider such states undesirable in plan trajectories,emb@ge added transitions a
reward of negative one unless the source state is a goal state.

2.4.6 THE RESULTING MDP

We now pull together the above elements to formally describe an MDR= (S, A, R, T, so)
given a PPDDL planning problem instance. As discussed in Section 2.3¢tlseis defined by
specifying the predicates and objects available. The PPDDL descripteaifisp the setsV of
action names an@ of objects, as well as a sé%y, of world predicates. We construct the enriched
setP = Py U P of state predicates and define the state space as all sets of applicatioeseof th
predicates to the objects (. The setA(s) for any states is the set of PPDDL action instances built

694

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

from NV andO for which s satisfies the preconditions, except that if this set is emyty) is the set

of all PPDDL action instances built frod andO. In the latter case, we say the state is “dead.” The
reward functionR is defined as discussed previously in Section 2.2; Rés, a, s') = 1 when the
goal conditionG is true ins, R(s,a,s’) = —1 whens is a non-goal dead state, and zero otherwise.
We defineT (s, a, s’) according to the semantics of PPDDL augmented with the semantics of
from Section 2.2-F (s, a, 1) will be one if s satisfiesG, s is dead, os = |, and zero otherwisg.
Transiting from one state to another never changes the goal conditiongdies in the states given
by predicates iP;. The MDP initial states, is just the PPDDL problem initial statg augmented

by the goal conditionz using the goal predicates frof;. If a propositional representation is
desired, it can be easily constructed directly from this relational reptatsen by grounding.

2.5 Linear Approximation of Value Functions

As many previous authors have done (Patrascu et al., 2002; Sannent8id®, 2009; Bertsekas &
Tsitsiklis, 1996; Tesauro, 1995; Tsitsiklis & Roy, 1997), we addresy lsage compactly rep-
resentedS and/or A by implicitly representing value functions in terms of state-spfegures

f 8 — R. Our features’ must select a real value for each state. We describe two approaches to
representing and selecting such features in Section 4.

Recall from Section 1 that our goal is to learn a value function for a familsetzited MDP
problems. We assume that our state-space features are definedthenosion of the state spaces
in the family.

We represent value functions using a linear combinatiohfeltures extracted from i.e., as
V(s) = Zi’:o w; fi(s), wherefy(s) = 1. Our goal is to find features (each mapping states to real
values) and weights); so thatV closely approximate¥™*. Note that a single set of features and
weight vector defines a value function for all MDPs in which those featare defined.

Various methods have been proposed to select weightsr linear approximations (see, e.g.,
Sutton, 1988 or Widrow & Hoff, 1960). Here, we review and use a ttajgebased approximate
value iteration (AVI) approach. Other training methods can easily be substitAVI constructs a

finite sequence of value functiong', V2, ..., V7, and returns the last one. Each value function
is represented ag’(s) = Zézo wffl-(s). To determine weights*a)f”rl from V#, we draw a set
of training statessy, ss, ..., s, by following policy GreedyV?) in different example problems

sampled from the provided problem distribution at the current level dblpro difficulty. (See
Section 3 for discussion of the control of problem difficulty.) The numléragectories drawn and
the maximum length of each trajectory are parameters of this AVI method. Eoteéning state,

we compute the Bellman updai& 1V ?)(s) from the MDP model of the problem instance. We can
then computeuf+1 from the training states using

Wl = w43 afils) U)(s) - V(). @
J

wherea is the learning rate and; is the number of statesin s, sq, ..., s, for which f;(s) is
non-zero. Weight updates using this weight-update formula descendtitiiert of thel, distance
betweenV? and/(V?) on the training states, with the features first rescaled to normalize the

3. Note that according to our definitions in Section 2.2, the dead statepar¢enhnically “goal states”, but have
negative rewards.

695

Wu & GIVAN

effective learning rate to correct for feature values with rare oeoge in the training sétPseudo-
code for our AVI method and for drawing training sets by following a policgvailable in Online
Appendix 1 (available on JAIR website), on page 2.

Here, we use the greedy policy to draw training examples in order to focuswerpent on the
most relevant states. Other state distributions can be generated that aiased by the current
policy; in particular, another option worth considering, especially if feskearning is stuck, would
be the long random walk distribution discussed in the work of Fern, YawthGivan (2004). We
leave detailed exploration of this issue for future work. For a more sulstaiscussion of the
issues that arise in selecting the training distribution, please see the boakdy &d Barto (1998).
It is worth noting that on-policy training has been shown to converge toytimnal value function
in the closely related reinforcement learning setting using the SARSA algo8imgh, Jaakkola,
Littman, & Szepesvari, 2000).

In general, while AVI often gives excellent practical results, it is a dyegradient-descent
method in an environment that is not convex due to the maximization operationBelinean error
function. As such, there is no guarantee on the quality of the weight vieetod, even in the case
of convergence. Convergence itself is not guaranteed, and, inxperiments, divergent weight
training was in fact a problem that required handling. We note that oturrieaiscovery methods
can be used with other weight-selection algorithms such as approximate lingeaipming, should
the properties of AVI be undesirable for some application.

We have implemented small modifications to the basic weight update rule in ordee Al
effectively in our setting; these are described in Section 5 in Online Appédn@vailable on JAIR
website).

3. Feature-Discovering Value-function Construction

In planning, once state features are provided, domain-independeritiaigs such as AVI can learn
weighted combinations of those features that often perform well as lie@stimates of state value
(e.g., distance to the goal). We now describe methods to select and adedetat describe
state-space regions of high inconsistency in the Bellman equation (statesVis&B error) during
approximate value iteration. Our methods can be applied using any reathfelterre hypothesis
space with a corresponding learning method for selecting features to megahalued function
on a training set of states. Here, we will use the learner to select fedlatamnatch the statewise
Bellman error function.

As noted above, we use a “boosting style” learning approach in finding ¥anctions, iterating
between selecting weights and generating new features by focusing @ellhean error in the
current value function. Our value function representation can be di@as@ weighted ensemble of
single-feature hypotheses. We start with a value function that has orilya fieature, a constant
feature always returning the value one, with initial weight zero. We itefgtibboth retrain the
weights and select new features matching regions of states for whichrteatoweighted ensemble
has high statewise Bellman error.

We take a “learning from small problems” approach and learn featustdrfiproblems with
relatively lower difficulty, and increase problem difficulty over time, as aésed below. Lower
difficulty problems are typically those with smaller state spaces and/or shaties {0 positive

4. In deriving this gradient-descent weight-update formula, eadhrieg; is scaled by; = , /ni giving f/ = r; fi.

696

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Initial feature vector @
Initial weight vector
Initial problem difficulty D

Difficulty at
target level or out
of time?

Yes

A

Learn new feature
correlating to the Bellman
error for states in the
training set, and add it

to . Keep the current
problem difficulty D.

Increase problem
difficulty D. Keep W
and @ .

Select W approximately
minimizing Bellman error
of V=w-o

Reweighted value
Done function J/ =i &

Figure 1: Control flow for feature learning. Boxes with double bordemesent assumed sub-
routines for our method. We assume that the problem distribution is parareeltériz
problem difficulty (such as problem size).

Yes

A

Performance at
current difficulty
meets threshold?

Generate feature
training set

feedback (e.g. goal states). Learning initially in more difficult problems wpidslly lead to
inability to find positive feedback and random-walk behavior; as a resalhileg first in lower
difficulty problems has been found more effective (Martin & Geffne£0voon, Fern, & Givan,
2002). We show experimentally in Section 7 that good value functions fordiffjculty problems
can indeed be learned in this fashion from problems of lower, increa#fiulties.

Our approach relies on two assumed subroutines, and can be instantidiffdrant ways by
providing different algorithms for these subroutines. First, a method fhwselection is assumed,;
this method takes as input a problem domain and a fixed set of featuresglants a weight vector
for a value function for the problem domain using the provided features.inténd this method
to heuristically or approximately minimiz&., Bellman error in its choice of weight vector, but
in practice it may be easier to adjust weights to approxiniat®ellman error. Second, a feature
hypothesis space and corresponding learner are assumed to begroyithe system designer.

The control flow for our approach is shown in Figure 1. Each iteratioa fixed problem
distribution selects weights for the current feature set (using any metterdping to minimize
L., Bellman error) to define a new value functidfh selects a training set of states for feature
learning, then learns a new feature correlating well to the statewise Bellmanoér”, adding
that feature to the feature set. A user-provided performance-tHdeihmction = detects when to
increase the problem difficulty. A formalization of this control flow is giverfrigure 2, in the form
of pseudo-code.

697

Wu & GIVAN

Feature-discovering Value-function Construction

Inputs: Initial feature vecto@o, initial weight vectorw o,
Sequence of problem distributioi% , Do, - - - , Dmay Of increasing difficulty,
Performance threshold function
IIT(D, V) tests the performance of value functigrin distribution D.
Outputs: Feature vectcp , weight vectorw

5%80, W — Wy, d—1

while not (d > max or out of time)
Selectw approximately minimizing Bellman error 6f = w - 3 overDy
if 7(Dg, W - D)
thend — d+1
else
Generate a sequence of training stdtesing D,

Learn new featurg correlating to the Bellman error featufy w - 8,)
for the states i’

© N O g bk wDdh =

(3), @ — (W;0)

N
9. P —
10. return ©, @
Notes:

1. B(.,-) is the statewise-Bellman error function, as defined in Section 2.1.
2. The code for approximate value iteratidvl , shown in Online Appendix 1 (available on JAIR website) on
page 2, is an example implementation of line 3.

3. The code fodraw (Greedy w - 8), Nraining), Shown in Online Appendix 1 on page 2, is an example imple-
mentation of line 7 Nyaining iS the number of states in the feature training set. Duplicated states aresgmov
as specified in Section 3.1.

4. The beam-search code for learning relational featbessn-search-learigscore(-, T, B(w - 3, -))) is an
example implementation of line 8, wheveam-search-learnis shown in figure 3 in Section 3, asdoreis
defined in Section 4.2.

Figure 2: Pseudo-code for learning a set of features.

For the experiments reported in Section 7, we evaluate the following chaicéisef assumed
subroutines. For all experiments we use AVI to select weights for feaeie We evaluate two
choices for the feature hypothesis space and corresponding leameeelational and one proposi-
tional, as described in Section 4.

Separate training sets are drawn for weight selection and for the fdaturéng; the former
will depend on the weight selection method, and is described for AVI in Se2tl, and the latter
is described in this section.

Problem difficulty is increased when sampled performance of the greaity @t the current
difficulty exceeds user-specified performance thresholds. In oanipig-domain experiments, the

698

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

performance parameters measured are success ratio (percentagje tfdt find the goal) and av-
erage successful plan length (the average number of steps to thengwaj all successful trials).
The non-goal-oriented domains of Tetris and SysAdmin use differefarp@nce measures: aver-
age total reward for Tetris and Bellman error for SysAdmin (to facilitate coreqa with Patrascu
etal., 2002).

We also assume a user-provided schedule for problem difficulty ireseagproblems where
difficulty is parameterized by more than one parameter (e.g., size may be egbashy the number
of objects of each type); further domain-independent automation of theaise in difficulty is a
topic for future research. We give the difficulty-increase scheduldgarformance thresholds for
our experiments in the section presenting the experiments, Section 7.

3.1 Training Set Generation

The training set for selection of a new feature is a set of states. The gaiatris constructed by
repeatedly sampling an example problem instance from the problem distriatitios current level
of difficulty, and applying the current greedy policy Greédy to that problem instance to create
a trajectory of states encountered. Every state (removing duplicates)réaoed is added to the
training set. The size of the feature-selection training set and the maximuth lgingach training
trajectory are specified by the user as parameters of the algorithm.

Retaining duplicate states in the training set is another option that can beeareasi®ur pre-
liminary empirical results have not favored this option, but it is certainly whntther exploration.
We note that the goal of finding a near-optimal value function does neissadly make reference
to a state distribution: the most widely used notion of “near-optimal” in the thebiDPs is
the sup-norm distance #6*. Moreover, the state distribution represented by the duplicates in our
training sets is typically the distribution under a badly flawed policy; heedingdikisbution can
prevent correcting Bellman error in critical states that are visited by thisypdiig visited only
rarely. (These states may be, for instance, rarely visited “good exds{ the visited state region
that are being misunderstood by the current value function.) At this painprimary justification
for removing duplicates is the empirical performance we have demonstrasedtiion 7.

Similar reasoning would suggest removing duplicate states in the training sé¥€lfaeight
training, described in Section 2.5. Because there are many large AVI gaais generated in our
experiments, duplicate removal must be carefully handled to control rurftimigistorical reasons,
our experiments shown here do not include duplicate removal for AVI.

A possible problem occurs when the current greedy policy cannoh re@ough states to com-
plete the desired training set. If 200 consecutive trajectories are dréwoulvvisiting a new state
before the desired training set size is reached, the process is modifielbas. At that point,
the method attempts to complete the training set by drawing trajectories usingmravadk (again
using sampled example problems from the current problem distribution)s Iptbcess again leads
to 200 consecutive trajectories without a new state, the method terminatesgssérigeneration
and uses the current training set even though it is smaller than the tamyet siz

3.2 Applicability of the Method

Feature-discovering value-function construction as just describesi mimt require complete access
to the underlying MDP model. Our AVI updates and training set generatmbath based on the
following computations on the model:

699

Wu & GIVAN

1. Given a state the ability to compute the action sé{s).

2. Given a state, actiona € A(s), and value functiori/, the ability to compute thé€)-value

Q(s,a,V).

3. Given a state and actioru € A(s), the ability to draw a state from the next state distribution
defined byT'(s, a, s').

4. Given a state, the ability to compute the features in the selected feature languagerah
any computations on the state required for the selected feature learrexamsples,

(a) in Section 4, we introduce a relational feature language and leaateetjuire knowl-
edge of a set of domain predicates (and their arities) such that each statmijsinctive
set of predicate facts (see Section 2.3),

(b) and, also in Section 4, we describe a propositional feature lanqrahéearner that
require knowledge of a set of propositional state attributes such tHaseste is a truth
assignment to the attributes.

The first three items enable the computation of the Bellman updateandl the last item enables
computation of the estimated value function given the weights and featuremdefias well as the
selection of new features by the feature learner. These requiremerisgimsubstantial access to
the problem model; as a result our method must be considered a modeltdesadue.

A consequence of these requirements is that our algorithm cannot lotlydapplied to the
standard reinforcement learning setting where the only model access asting in the world
without the ability to reset to selected states; in this setting Bellman error compugtatiqrarticular
states cannot necessarily be carried out. It would be possible to octtratnoisy Bellman error
training set in such a model-free setting and it would be appropriate futore tev explore the use
of such a training set in feature learning.

While the PPDDL planning domains studied provide all the information needestfiorp these
computations, our method also applies to domains that are not natural teeejarePPDDL. These
can be analyzed by our method once the above computations can be implerkentiedtance, in
our Tetris experiments in Section 7.2, the underlying model is represenfgaviging hand-coded
routines for the above computations within the domain.

3.3 Analysis

MDP value iteration is guaranteed to converge to the optimal value functiomdumed with

a tabular value-function representation in the presence of discountartséBas, 1995). Although
weight selection in AVI is designed to mimic value iteration, while avoiding a tabaefaessentation,
there is no general guarantee that the weight updates will track valugoiteead thus converge
to the optimal value function. In particular, there may be no weighted combinattif@atures that
represents the optimal value function, and likewise none that represerelliman updaté/(1)
for some value functio” produced by AVI weight training process. Our learning system intresluc
new features to the existing feature ensemble in response to this problemaitiwgtiset used to
select the new feature pairs states with their statewise Bellman error. If tinedefeature exactly
captures the statewise Bellman-error concept (by exactly capturing thiedraet and generalizing

700

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

successfully) then the new feature space will contain the Bellman update ltre function used
to generate the training data.

We aim to find features that approximate the “Bellman error feature,” whighake to be a
function mapping states to their statewise Bellman error. Theoretical prapeft®ellman error
features in the uncontrolled Markov processes (i.e., without the maxtop@rahe Bellman equa-
tion) have recently been discussed in the work of Parr et al. (200®renhe addition of such
features (or close approximations thereof) is proven to reduce the tedigh-norm distance be-
tween the best weight setting and the the true (uncontrolled) Jdfyewvhen linear fixed-point
methods are used to train the weights before feature addition. Prior to tHa(iwdVu & Givan,
2005), and now in parallel to it, we have been empirically exploring thetsfté#cselecting Bellman
error features in the more complex controlled case, leading to the resutsegpere.

It is clear that if we were to simply add the Bellman error feature directly, ahdhe corre-
sponding weight to one, the resulting value function would be the desirkch@eupdate/ (1)
of the current value functio. Adding such features at each iteration would thus give us a way
to conduct value iteration exactly, without enumerating states. But eabhaslded feature would
describe the Bellman error of a value function defined in terms of previauaslgd features, posing
a serious computational cost issue when evaluating the added featupsstitular, each Bellman
error feature for a value functidii can be estimated at any particular state with high confidence by
evaluating the value functiowi at that state and at a polynomial-sized sample of next states for each
action (based on Chernoff bounds).

However, if the value functioy” is based upon a previously added Bellman-error feature, then
each evaluation of” requires further sampling (again, for each possible action) to computieisin
manner, the amount of sampling needed for high confidence growsexjalty with the number of
successive added features of this type. The levels of sampling do lfagisminto one expectation
because of intervening choices between actions, as is often the casgsinméheoretic sampling.
Our feature selection method is an attempt to tractably approximate this exaziteadion method
by learning concise and efficiently computable descriptions of the Bellntan-eature at each
iteration.

Our method can thus be viewed as a heuristic approximation to exact valu@itergxact
value iteration is the instance of our method obtained by using an explicit sthte-table as the
feature representation and generating training sets for feature leammmaning all states — to
obtain exact value iteration we would also omit AVI training but instead sdt eaght to one.

When the feature language and learner can be shown to approximatetdgpligres tightly
enough (so that the resulting approximate Bellman update is a contractionfig.therm), then it is
easy to prove that tightening approximationd/ofwill result if all weights are set to one. However,
for the more practical results in our experiments, we use feature repatisas and learners for
which no such approximation bound relative to explicit features is known.

4. Two Candidate Hypothesis Spaces for Features

In this section we describe two hypothesis spaces for features, a raldié@ture space and a
propositional feature space, along with their respective feature lganmithods. For each of the
two feature spaces, we assume the learner is provided with a trainingstates paired with their
statewise Bellman error values.

701

Wu & GIVAN

Note that these two feature-space-learner pairs lead to two instancassgereral method and
that others can easily be defined by defining new feature spaces maspmnding learners. In this
paper we empirically evaluate the two instances presented here.

4.1 Relational Features

A relational MDP is defined in terms of a set of state predicates. These stdiegies are the basic
elements from which we define a feature-representation language. ,Betowdefine a general-
purpose means of enriching the basic set of state predicates. The gesultinhed predicates
can be used as the predicate symbols in standard first-order predidateVitggthen consider any
formula in that logic with one free variable as a feature, as folfows

A state in a relational MDP is a first-order interpretation. A first-order fdanwith one free
variable is then a function from such states to natural numbers which melpstase to the number
of objects in that state that satisfy the formula. We take such first-ordmufas to be real-valued
features by normalizing to a real number between zero and one—this natiwalizs done by
dividing the feature value by the maximum value that the feature can takeh vwghigpically the
total number of objects in the domain, but can be smaller than this in domains alfjects (and
guantifiers) are typed. A similar feature representation is used in the Wwédwaett (1996).

This feature representation is used for our relational experiments, dlgdiner we describe
in the next subsection only considers existentially quantified conjunctioliterais (with one free
variable) as features. The space of such formulas is thus the effesaiuee space for our relational
experiments.

Example 4.1: Take Blocksworld with the table as an object for exampl&,z, y) is

a predicate in the domain that asserts the bledk on top of the objecy, wherey
may be a block or the table. A possible feature for this domain can be dabeasBg
on(z,y), which is a first-order formula with: as the one free variable. This formula
means that there is some other object immediately below the block ahjedhich
essentially excludes the table object and the block being held by the arny)ifram
the object set described by the feature. kttocks problems, the un-normalized value
of this feature isn for states with no block being held by the arm,»or 1 for states
with a block being held by the arm.

4.1.1 THE ENRICHED PREDICATE SET

More interesting examples are possible with the enriched predicate setthatwdefine. To enrich
the set of state predicatdy we add for each binary predicgtea transitive closure form of that
predicatep+ and predicates mip-and maxp identifying minimal and maximal elements under
that predicate. In goal-based domains, recall that our problem speat®n (from Section 2.4)
includes, for each predicatge a goal version of the predicate called gpab represent the desired
state of the predicatein the goal. Here, we also add a means-ends analysis predicate gotoect-
represenp facts that are present in both the current state and the goal.

So, for objectsr andy, correctp(x,y) is true if and only if bothp(z, y) and goalp(x,y) are
true. p+(x, y) is true of objectst andy connected by a path in the binary relatienThe relation
max-p(x) is true if objectz is a maximal element with respectjpi.e., there exists no other object

5. Generalizations to allow multiple free variables are straightforwardfawt@ear utility at this time.

702

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

y such thap(z, y) is true. The relation mip(x) is true if objectz is a minimal element with respect
to p, i.e., there exists no other objecsuch thap(y, x) is true.

We formally define the feature grammar in Online Appendix 1 (available on JfdBsite) on
page 3.

Example 4.1 (cont.):The featuredy correcton(z, y) means that: is stacked on top of
some objecy both in the current state and in the goal state. The featyen+(z, y)
means that in the current staieis directly above some objegti.e., there is a sequence

of onrelations traversing a path betweeandy, inclusively. The feature magn+(x)
means that is the table object when all block-towers are placed on the table, since the
table is the only object that is not any other object. The feature mam+(z) means

that there is no other object on topfi.e., x is clear.

4.2 Learning Relational Features

We select first-order formulas as candidate features using a beach sétr a beam widthl”. We
present the pseudo-code for beam search in Figure 3. The séantshwath basic features derived
automatically from the domain description and repeatedly derives new eaedahtures from the
best scoringV features found so far, adding the new features as candidates guiddealy the
best scoringV features at all times. After new candidates have been added a fixeddiépibs,
the best scoring feature found overall is selected to be added to thefuakt®n representation.
Candidate features are scored for the beam search by their corrétatitmBellman error feature
as formalized below.

Specifically, we score each candidate featfingith its correlation coefficient to the Bellman

error featureB(V, -) as estimated by a training set. The correlation coefficient between functions
¢ and¢’ is defined agorr-coef(¢, ¢/) = E{d’(s)‘i”“”;ﬁ{?“)w{"”(s)}. Instead of using a known
distribution to compute this value, we use the states in the training sahd compute a sampled
version by using the following equations to approximate the true expectatsord the true standard

deviationo of any random variable:

Ba {X(2)} = Als‘ S X(),

s'eAg

oxa — \/ml, S (X() — BX(s)))2
s s’'ENg

Er{9(s)¢'(s)} — En{o(s)} Ea{¢'(s)}

corr-coef-sampled ¢, ¢', Ag) =)
0¢,As T A

The scoring function for feature selection is then a regularized versithe @orrelation coefficient
between the feature and the target function

scorg f, As, ¢) = |corr-coef-sampled, ¢, Ay)|(1 — AdeptH(f)),

where the “depth” of a feature is the depth in the beam search at whicktibdicurs, and is a
parameter of the learner representing the degree of regularizationdviasls low-depth features).

703

Wu & GIVAN

beam-search-learn

Inputs: Feature scoring functidscore: features— [0, 1]
Outputs: New featurg
System parameters:WW: Beam width

max;. Max number of beam-search iterations
A: Degree of regularization, as defined in Section 4.2

1. I — the set of basic features, as defined in Section 4.2.
2. d—1,F « 1.

3. repeat

4, Set beanB to the highest scoringy’ candidates i
5. Candidate feature sét«— B.

6. for each candidat¢, € B

7. for each candidaté, € (BUI), fo # fi

8. F = F Ucombing fi, f2).

9. d—d+1.

10. until (d > maxy) or (highest score so far (1 — A\d)).
11. return the maximum scoring featurge F.

Notes:

1. Feature scoring functiofscore(f) is used to rank candidates in lines 4 and 11. A discussion of a sample
scoring function, used in our relational experiments, is given in Sectian 4

2. Candidate scores can be cached after cafisciare, so that no candidate is scored twice.
3. Thevalug1 — Ad) is the largest score a feature of degtban have.

Figure 3: Pseudo-code for beam search.

The valuescore(f, Ag, B(V, -)) is then the score of how well a featufecorrelates to the Bell-
man error feature. Note that our features are non-negative, budtitidoe well correlated to the
Bellman error (which can be negative), and that the presence of tacbfsature in our represen-
tation allows a non-negative feature to be shifted automatically as needed.

It remains only to specify which features in the hypothesis space will bsidered initial, or
basic, features for the beam search, and to specify a means forumimsfrmore complex features
from simpler ones for use in extending the beam search. We first takéatieepsedicate s&P in
a domain and enricl? as described in Section 4.1. After this enrichmenfPofwe take as basic
features the existentially quantified applications of (possibly negated) statieates to variables
with zero or one free variabie A grammar for basic features is defined as follows.

6. If the domain distinguishes any objects by naming them with constantdlomethese constants as arguments to the
predicates here as well.

704

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Definition: A basic featuras an existentially quantifiedliteral) expression with at
most one free variable (see Figure 3 in Online Appendix 1, available dR dfbsite,
on page 3).

A feature with no free variables is treated technically as a one-freeblarfaature where that
variable is not used; this results in a “binary” feature value that is eithreraethe total number of
objects, because instantiating the free variable different ways alwayks in the same truth value.
We assume throughout that every existential quantifier is automatically renansy from every
other variable in the system. We can also take as basic features any htowiteg features that
may be available, but we do not add such features in our experiments img@sip order to clearly
evaluate our method’s ability to discover domain structure on its own.

At each stage in the beam search we add new candidate features (geth@liti best scoring
features from the previous stage). The new candidate featuresatedaas follows. Any feature in
the beam is combined conjunctively with any other, or with any basic feafine method of com-
bination of two features is described in Figure 4. This figure shows eterainistic pseudo-code
for combining two input features, such that any way of making the nordetestic choices results
in a new candidate feature. The pseudo-code refers to the featomelésrf; and f; describing the
two features. In some places, these formulas and others are written witfrékeerariable exposed,
as f1(x) and fo(y). Also substitution for that variable is notated by replacing it in the notation, as
in fi(z).

The combination is by conjoining the feature formulas, as shown in line 2 of&#jthowever,
there is additional complexity resulting from combining the two free variabldpassibly equating
bound variables between the two features. The two free variables age eghated (by substitu-
tion) or one is existentially quantified before the combination is done, in line 1ltolwo pairs
of variables, chosen one from each contributing feature, may alsousdeslj with the resulting
quantifier at the front, as described in line 3. Every such combinationréesta candidate.

This beam-search construction can lead to logically redundant feat@atearéhin some cases
syntactically redundant as well. We avoid syntactically redundant featirthe end of the beam
search by selecting the highest scoring feature that is not already iaahed set. Logical redun-
dancy that is not syntactic redundancy is more difficult to detect. We avoi such redundancy
automatically by using ordering during the beam search to reduce theagienesf symmetric ex-
pressions such ag A ¢ andy A ¢. However, testing logical equivalence between features in our
language is NP-hard (Chandra & Merlin, 1977), so we do not deplayngptete equivalence test
here.

Example 4.2: Assume we have two basic featueesp(z, z) and3w q(y, w). The set
of the possible candidates that can be generated by combining these twedeae:
When line 3 in Figure 4 runs zero times,

1. @ 32 p(z, 2)) A Gw a(y, w)), from 3z f1 () A fo(y)

2. @z p(z,2)) A By Fw q(y, w)), from f1(z) A Jyf2(y), and

3. @z p(z, 2)) A Gw q(z,w)), from fi(x) A fa(x)
and when line 3 runs one time,

4. Ju ((3z p(u, 2)) A (A(y, u))), from equatinge andw in item 1 above,

5. Ju 3z p(z,u)) A (Q(y,w)), from equatinge andz in item 1 above,

705

Wu & GIVAN

combine

Inputs: Featureg; (z), f2(y)
Outputs: Set of featurels), }

return the set of all features; that can result from:

1. Perform one of
a. f1 = (E|$)f1 (CC)
b. fo = (3y) f2(v)

C. fo = fo(z)
2. o1 = fiA fa
3. Perform the following variable equating step zero, one, or two times:

a. Letv be a variable occurring ifiy ando; .
Let e; be the expression of the for(@v)¢; (v) that occurs irv;

b. Letw be a variable occurring i, ando.
Let e; be the expression of the for(8w)¢2(w) that occurs i,

c. Letu be a new variable, not usedadn
d. oo = replacee; with ¢ (u) and replaces with ¢o(u) in oy
e.o; = (Ju)oy

Notes:

1. The choice between 1a, 1b, and 1c, the choice of number of iterafistep 3, and the choices ef ande-
in steps 3a and 3b are all non-deterministic choices.

2. Any feature that can be produced by any run of this non-determimikgarithm is included in the set of
features that is returned lmpmbine

3. Itis assumed thaf; and f> have no variables in common, by renaming if necessary before thiatape

Figure 4: A non-deterministic algorithm for combining two feature formulas.

6. Ju (p(z,u) A Gw q(u,w))), from equating: andy in item 2 above,
7. Ju (p(z,uw) A 3y q(y,w))), from equating: andw in item 2 above, and
8. Ju (p(z,u) A (q(x,u))), from equating: andw in item 3 above.

The first three are computed using cases la, 1b, and 1c, respeciitelyemaining
five derive from the first three by equating bound variables fifgrand f-.

Features generated at a deptlin this language can easily require enumeratingketliples
of domain objects. Since the cost of this evaluation grows exponentially Ayitie bound the

706

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

maximum number of quantifiers in scope at any point in any feature formujadad refuse to
consider any feature violating this bound.

The valuedV, A, d, andq are the parameters controlling the relational learner we evaluate in
this paper. How we set these parameters is discussed further in thémexp@t setup description
in Section 6.

We provide a brief discussion on the motivations for our feature combinat&ihod. First, we
note that additive combination of features can represent disjunctiorsanfrés$; hence, we only
consider conjunction during feature combination. Here, we have chos@onjoin” features in
multiple ways, varying the handling/combining of the free and bound varialdlesdo not believe
our choice to be uniquely effective, but provide it as an example realizafithe proposed feature-
discovery architecture.

Any choice of feature representation and combination method must trabetaféen the cost
of evaluation of more choices and the potential gain in quality of the selecatarés. Here, we
have chosen to limit individual features to conjunction; effectively, weeHenited the features to
Horn clauses over the predicates and their negations, with univariale.hea

4.3 Propositional Features

Here we discuss a second candidate hypothesis space for featingsayropositional represen-
tation. We use decision trees to represent these propositional feafumstailed discussion of
classification using decision trees can be found in the book by Mitchell7j199 decision tree is
a binary tree with internal nodes labeled by binary tests on states, edgésdldpes” and “no”
representing results of the binary tests, and leaves labeled with classes (ase, either zero or
one). A path through the tree from the root to a leaf with |dbdéntifies a labeling of some set of
states—each state consistent with the state-test results on the path is vidalelead by the tree.
In this way, a decision tree with real number labels at the leaves is viewedamtpall states with
real numbers, and is thus a feature.

We learn decision trees from training sets of labeled states using the weihkd.5 algorithm
(Quinlan, 1993). This algorithm induces a tree greedily matching the trairategfdom the root
down. We use C4.5 to induce new features—the key to our algorithm is hovomgruct suitable
training sets for C4.5 so that the induced features are useful in redBeilgan error.

We include as possible state tests for the decision trees we induce evandegdopredicate
applicatio from the state predicates, as well as every previously selected detiséofeature
(each of which is a binary test because all leaf labels are zero or one).

4.4 Learning Propositional Features

To construct binary features, we use only the sign of the “Bellman eeatufe,” not the magni-
tude. The sign of the statewise Bellman error at each state serves as ationdut whether the
state is undervalued or overvalued by the current approximation, atviehasrespect to exactly
representing the Bellman update of the current value function. If we aanifg@d a collection of

“undervalued” states as a new feature, then assigning an approp&itiegweight to that feature

7. Representing the disjunction of overlapping features using additivibioation can be done with a third feature
representing the conjunction, using inclusion/exclusion and a negatightves the conjunction.

8. A grounded predicate application is a predicate applied to the appropuateer of objects from the problem in-
stance.

707

Wu & GIVAN

will increase their value. Similarly, identifying “overvalued” states with a neatfire and assigning
a negative weight will decrease their value. We note that the domains céshime generally too
large for state-space enumeration, so we will need classification learngenéalize the notions
of overvalued and undervalued across the state space from traiténgf sample states.

To enable our method to ignore states that are approximately convergedsosed states with
statewise Bellman error near zero from either training set. Specifically, @atherstates with neg-
ative statewise Bellman error, we discard any state with such error clogerddhan the median
within that set; we do the same among the states with positive statewise Bellmanhdorerso-
phisticated methods for discarding training data near the intended boucatatye considered in
future research; these will often introduce additional parameters to thedettere, we seek an
initial and simple evaluation of our overall approach. After this discardiveydefineX, to be
the set of all remaining training pairs with states having positive statewise Betiman andX
likewise those with negative statewise Bellman error.

We then useZ, as the positive examples and as the negative examples for a supervised
classification algorithm; in our case, C4.5 is used. The hypothesis spadadsification the space
of decision trees built with tests selected from the primitive attributes definingt#te space and
goal; in our case, we also use previously learned features that as@ddnees over these attributes.
The concept resulting from supervised learning is then treated as aeatwvd for our linear ap-
proximation architecture, with an initial weight of zero.

Our intent, ideally, is to develop an approximately optimal value function. Swalua function
can be expected to have Bellman error at many states, if not every stateydrplow state-wise
error in some states does not contribute to high sup-norm Bellman errordi§harding training
states with low statewise Bellman error reflects our tolerance of such lonbaimv some threshold
representing the degree of approximation sought. Note that the technitightion for selecting
features based upon Bellman error focuses on reducing the supBellman error; given this
motivation, we are not as interested in finding the exact boundary betpastive and negative
Bellman error as we are in identifying which states have large magnitude Belhmair{so that that
large-magnitude error can be addressed by feature addition).

We observe that there is limited need to separately learn a feature maichimye to the
following representability argument. Consider a binary featirand its complemenf’, so that
exactly one ofF andF is true in each state. Given the presence of a constant feature in theefeatu
set, addingF or I to the feature set yields the same set of representable value functisigmiiag
weightw to F has the same effect as assigning weight to ' and addingy to the weight of the
constant feature).

4.5 Discussion

We discuss below the generalization capability, learning time, and heuristicrdkeofeur feature
learning method.

4.5.1 (ENERALIZATION ACROSSVARYING DOMAIN SIZES

The propositional feature space described above varies in size astihenof objects in a relational
domain is varied. As a result, features learned at one domain size arenaatly meaningful (or
even necessarily defined) at other domain sizes. The relational appabave is, in contrast, able
to generalize naturally between different domains sizes. Our experinept# ion the ability of

708

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

the propositional technique to learn within each domain size directly, but datteonpt to use that
approach for learning from small problems to gain performance in lagg@gms. This is a major
limitation in producing good results for large domains.

4.5.2 LEARNING TIME

The primary motivation for giving up generalization over domain sizes inraodemploy a propo-
sitional approach is that the resulting learner can use highly efficientheffhelf classification
algorithms. The learning times reported in Section 7 show that our propositanaer learns new
features orders of magnitude faster than the relational learner.

4.5.3 HEURISTICELEMENTS OF THEMETHOD

As mentioned earlier, our algorithm heuristically approximates the repeatktioadof Bellman
error features to a linear value-function approximation in order to cartyalue iteration. Also
as mentioned earlier, value iteration itself is guaranteed to converge to the logaimafunction.
However, due to the scale of problems we target, heuristic approximatiensauired. We discuss
the motivations for each heuristic approximation we employ briefly here.

First, we do not compute exact Bellman error features. Instead, we ugenmadearning to fit
a training set of sample states and their Bellman error values. The selectiuis trhining set is
done heuristically, using trajectories drawn from the current greetigypdOur use of on-policy
selection of training data is loosely motivated by on-policy convergenagtsder reinforcement
learning (Singh et al., 2000), and serves to focus training on reletatets (See Section 3.1.)

Second, for the relational instance of our feature framework, the lseanch method we use to
select the highest scoring relational feature (with the best fit to the Bellmar) s ad-hoc, greedy,
and severely resource bounded. The fit obtained to the Bellman erwmely peuristic. We provide
our heuristic method for this machine learning problem only as an exampleyainttend future
research to provide better relational learners and resulting better pjapeiformance. Heuristic
elements of the current method are further discussed in Appendix A.3.workr here can be
viewed as providing a reduction from stochastic planning to structuredimealgarning of numeric
functions. (See Section 3.)

Third, for the propositional instance of our feature framework,, thea£4.5 selects hypothe-
ses greedily. Also, our reduction to C4.5 classification relies on an explieratce of approxi-
mation in the form of the threshold used to filter training data with near-zero Belérmar. The
motivation for this approximation tolerance is to focus the learner on high Belmran states and
allow the method to ignore “almost converged” states. (See Section 4.4.)

Fourth, fundamental to this work is the use of a linear approximation of the vahction and
gradient-descent-based weight selection (in this case AVI). Thesexapation methods are a key
approach to handling large state spaces and create the need for thstoxery. Our AVI method
includes empirically motivated heuristic methods for controlling step size andchigmges in the
weights. (See Section 5 in Online Appendix 1, available on JAIR website.)

Fifth, we rely on human input to select the sequence of problem difficultiesusntered during
feature discovery as well as the performance thresholds at whickeprabfficulty increases. We
believe this aspect of the algorithm can be automated in future reseaeehS€stion 3.)

709

Wu & GIVAN

5. Related Work

Automatic learning of relational features for approximate value-functipresentation has surpris-
ingly not been frequently studied until quite recently, and remains pooudenstood. Here, we
review recent work that is related on one or more dimensions to our catirbu

5.1 Feature Selection Based on Bellman Error Magnitude

Feature selection based on Bellman error has recently been studied incthr@rotled (policy-
evaluation) context in the work of Keller et al. (2006) and Parr et al0T20with attribute-value
or explicit state spaces rather than relational feature representatieasuré selection based on
Bellman error is further compared to other feature selection methods in tloatooléed context
both theoretically and empirically in the work of Parr, Li, Taylor, Painter-éfetd, and Littman
(2008).

Here, we extend this work to the controlled decision-making setting and stediydbrporation
of relational learning and the selection of appropriate knowledge reyptason for value functions
that generalize between problems of different sizes within the same domain.

The main contribution of the work of Parr et al. (2007) is formally showingtlie uncontrolled
case of policy evaluation, that using (possibly approximate) Bellman-feratures “provably tight-
ens approximation error bounds,” i.e., that adding an exact Bellmanfeature provably reduces
the (weightedl,-norm) distance from the optimal value function that can be achieved by optimiz
ing the weights in the linear combination of features. This result is extendeavaaker form to
approximated Bellman-error features, again for the uncontrolled cémelinfitation to the uncon-
trolled case is a substantial difference from the setting of our work. The treitperiments shown
use explicit state-space representations, and the technique learns latebmew set of features
for each policy evaluation conducted during policy iteration. In contrastyethod accumulates
features during value iteration, at no point limiting the focus to a single poliagyns@ucting a
new feature set for each policy evaluation is a procedure more amendiblenal analysis than
retaining all learned features throughout value iteration because thg pelitg implicitly consid-
ered during value iteration (the greedy policy) is potentially changing thmouty However, when
using relational feature learning, the runtime cost of feature learningtisrdly too high to make
constructing new feature sets repeatedly practically feasible.

Parr et al. (2007) builds on the prior work by Keller et al. (2006) that atsidied the uncon-
trolled setting. That work provides no theoretical results nor any gefraraework, but provides
a specific approach to using Bellman error in attribute value representétibage a state is repre-
sented as a real vector) in order to select new features. The apgmaaddes no apparent leverage
on problems where the state is not a real vector, but a structured lodiegdrietation, as is typical
in planning benchmarks.

5.2 Feature Discovery via Goal Regression

Other previous methods (Gretton & Hiiaux, 2004; Sanner & Boutilier, 2009) find useful features
by first identifying goal regions (or high reward regions), then idemgyadditional regions by re-
gressing through the action definitions from previously identified regidhs. principle exploited
is that when a given state feature indicates value in the state, then being ableaee that feature
in one step should also indicate value in a state. Regressing a feature defimitiogh the action

710

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

definitions yields a definition of the states that can achieve the feature inemeRepeated regres-
sion can then identify many regions of states that have the possibility of tranisgionder some
action sequence to a high-reward region.

Because there are exponentially many action sequences relative to pidm, ldrere can be
exponentially many regions discovered in this way, as well as an expaliantizase in the size of
the representation of each region. Both exponentials are in terms of theenofimegression steps
taken. To control this exponential growth in the number of features cereidregression has been
implemented with pruning optimizations that control or eliminate overlap betweé&nseghen it
can be detected inexpensively as well as dropping of unlikely paths.etaywwithout a scoring
technique (such as the fit to the Bellman-error used in this paper) to sedtotds, regression still
generates a very large number of useless new features. The cumestlgffective regression-based
first-order MDP planner, described in the work of Sanner and Bouti#€09), is only effective
when disallowing overlapping features to allow optimizations in the weight cortipataret clearly
most human-designed feature sets in fact have overlapping features.

Our inductive technique avoids these issues by considering only compgmtgsented features,
selecting those which match sampled statewise Bellman error training data. Vibepestensive
empirical comparison to the First-Order Approximate Linear Programming icgo&ir(FOALP)
from the work of Sanner and Boutilier (2009) in our empirical results. @upirical evaluation
yields stronger results across a wide range of probabilistic planninghberks than the goal-
regression approach as implemented in FOALP (although aspects of ttoacipgs other than the
goal-regression candidate generation vary in the comparison as well).

Regression-based approaches to feature discovery are relatednethod of fitting Bellman
error in that both exploit the fact that states that can reach valuable stagtshemselves be valu-
able, i.e. both seek local consistency. In fact, regression from tHecgnae viewed as a special
case of iteratively fitting features to the Bellman error of the current valaetion. Depending
on the exact problem formulation, for aky the Bellman error for thé-step-to-go value function
will be non-zero (or otherwise nontrivially structured) at the regiontates that reach the goal first
in k + 1 steps. Significant differences between our Bellman error approathegnession-based
feature selection arise for states which can reach the goal with diffprehabilities at different
horizons. Our approach fits the magnitude of the Bellman error, and ssnwaothly consider the
degree to which each state reaches the goal at each horizon. Oaaep@atso immediately gen-
eralizes to the setting where a useful heuristic value function is providedebautomatic feature
learning, whereas the goal-regression approach appears to rggainegions to begin regression.
In spite of these issues, we believe that both approaches are apfgamdavaluable and should be
considered as important sources of automatically derived features e futuk.

Effective regression requires a compact declarative action modehvgmot always availabfe
The inductive technique we present does not require even a PDDInactidel, as the only deduc-
tive component is the computation of the Bellman error for individual states. rApresentation
from which this statewise Bellman error can be computed is sufficient for ttisigue. In our em-
pirical results we show performance for our planner on Tetris, wherentdel is represented only
by giving a program that, given any state as input, returns the expliditstee distribution for that
state. FOALP is inapplicable to such representations due to dependetagicath deductive rea-

9. For example, in the Second International Probabilistic Planning Competitie regression-based FOALP planner
required human assistance in each domain in providing the needed diorieaimation even though the standard
PDDL model was provided by the competition and was sulfficient for estoér planner.

711

Wu & GIVAN

soning. We believe the inductive and deductive approaches to inatimgptogical representation
are both important and are complementary.

The goal regression approach is a special case of the more gepemadeh of generating can-
didate features by transforming currently useful features. Othersidivatbeen considered include
abstraction, specialization, and decomposition (Fawcett, 1996). Rhsmattuman-defined con-
cept transformations dates back at least to the landmark Al program AMig[& Lenat, 1982).
Our work uses only one means of generating candidate features: askaarh of logical formulas
in increasing depth. This means of candidate generation has the advaiségeagly favoring con-
cise and inexpensive features, but may miss more complex but veryataaiseful features. But
our approach directly generalizes to these other means of generataigatarfeatures. What most
centrally distinguishes our approach from all previous work leveragjioy feature transformations
is the use of statewise Bellman error to score candidate features. FOAhRHS& Boutilier, 2006,
2009) uses no scoring function, but includes all non-pruned catedidatures in the linear program
used to find an approximately optimal value function; the Zenith system (Favi&96) uses a
scoring function provided by an unspecified “critic.”

5.3 Previous Scoring Functions for MDP Feature Selection

A method, from the work of Patrascu et al. (2002), selects featurestbyating and minimizing
the L, error of the value function that results from retraining the weights with thdidate feature
included. L erroris used in that work instead of Bellman error because of the diffiotitgtraining
the weights to minimize Bellman error. Because our method focuses on fitting tineaBeerror
of the current approximation (without retraining with the new feature), dids/this expensive
retraining computation during search and is able to search a much largeefepace effectively.
While the work of Patrascu et al. (2002) contains no discussion of retdtiopresentation, the;
scoring method could certainly be used with features represented ingeeliigic; no work to date
has tried this (potentially too expensive) approach.

5.4 Other Related Work
We include discussion of additional, more distantly related research direaAppendix A, di-
vided into the following subsections:

1. Other relevant feature selection methods (Fahlman & Lebiere, 1996ff8t¢recup, 1997,
1998; Rivest & Precup, 2003; Mahadevan & Maggioni, 2007; Pe20k7);

2. Structural model-based and model-free solution methods for Marlasioe processes, in-
cluding

(a) Relational reinforcement learning (RRL) systemzdidski, DeRaedt, & Driessens,
2001; Driessens & Peroski, 2004; Driessens et al., 2006),

(b) Policy learning via boosting (Kersting & Driessens, 2008),

(c) Fitted value iteration (Gordon, 1995), and

(d) Exact value iteration methods in first-order MDPs (Boutilier, Reiter, &d2r2001;
Holldobler & Skvortsova, 2004; Kersting, Van Otterlo, & De Raedt, 2004)

712

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

3. Inductive logic programming algorithms (Muggleton, 1991; Quinlan, 18@@alic & Bratko,
1997);

4. Approximate policy iteration for relational domains (Fern et al., 2006), aidhscussion on
relational decision-list-policy learners (Khardon, 1999; Martin & Geffr2004; Yoon et al.,
2002);

5. Automatic extraction of domain knowledge (Veloso, Carbonell, PeremaRo Fink, &
Blythe, 1995; Kambhampati, Katukam, & Qu, 1996; Estlin & Mooney, 199% &d.ong,
1998; Gerevini & Schubert, 1998).

6. Experimental Setting

We present experiments in nine stochastic planning domains, including lvedindreriented and
goal-oriented domains. We use Pentium 4 Xeon 2.8GHz machines with 3GB mdmdiris sec-
tion, we give a general overview of our experiments before givingléeteesults and discussion for
individual domains in Section 7. Here, first, we briefly discuss the seleofiemaluation domains
in Section 6.1. Second, in Section 6.2 we set up an evaluation of our reldtanare learner by
comparison to variants that replace key aspects of the algorithm with racldoice to determine
their importance. Additional details, including many experimental parametergsettian be found
in Online Appendix 1 (available on JAIR website) in Section 3.

6.1 Domains Considered

In all the evaluation domains below, it is necessary to specify a discattot fawhen modeling the
domain as an MDP with discounting. The discount factor effectively spsdifie tradeoff between
the goals of reducing expected plan length and increasing success rat@ot a parameter of our
method, but of the domain being studied, and our feature-learning methdaecapplied for any
choice ofy. Here, for simplicity, we choose to be 0.95 throughout all our experiments. We note
that this is the same discount factor used in tkeASDMIN domain formalization that we compare
to from the previous work by Patrascu et al. (2002).

6.1.1 TETRIS

In Section 7.2 we evaluate the performance of both our relational andgtimmal learners using
the stochastic computer-game&TRIS, a reward-oriented domain where the goal of a player is to
maximize the accumulated reward. We compare our results to the performaacebof hand-
crafted features, and the performance of randomly selected features.

6.1.2 RANNING COMPETITION DOMAINS

In Section 7.3, we evaluate the performance of our relational learnewém ggal-oriented plan-
ning domains from the two international probabilistic planning competitions (§PP@unes et al.,
2005; Bonet & Givan, 2006). For comparison purposes, we evatagerformance of our proposi-
tional learner on two of the seven domains (BEKswoRLDand a variant of BXxwWORLD described
below). Results from these two domains illustrate the difficulty of learninguipedpositional fea-
tures in complex planning domains. We also compare the results of our relgtlanaer with
two recent competition stochastic planners FF-Replan (Yoon et al., 28d7@ALP (Sanner &

713

Wu & GIVAN

Boutilier, 2006, 2009) that have both performed well in the planning compeditid-inally, we
compare our results to those obtained by randomly selecting relationaldeatunl tuning weights
for them. For a complete description of, and PPDDL source for, the dornaet; please see the
work of Younes et al. (2005) and Bonet and Givan (2006).

Every goal-oriented domain with a problem generator from the first arnsktPPC was con-
sidered for inclusion in our experiments. For inclusion, we require a pigroomain with fixed
action definitions, as defined in Section 2.4, that in addition has only groumdrective goal re-
gions. Four domains have these properties directly, and we have adagtednore of the domains
to have these properties:

1. In BoxwoRLD, we modify the problem generator so that the goal region is always adrou
conjunctive expression. We call the resulting doma@NGUNCTIVE-BOXWORLD.

2. In FHLEWORLD, we construct the obvious lifted version, and create a problem genegato
stricted to three folders because in this domain the action definitions vary wittuther of
folders. We call the resulting domain#TED-FILEWORLD3.

3. In TOwERS OFHANOI, we create our own problem generator.

The resulting selection provides seven IPPC planning domains for ourieabgitudy. We provide
detailed discussions on the adapted domains in Section 2 of Online Apperaliaitbble on JAIR
website), as well as discuss the reasons for the exclusion of domains.

6.1.3 SrsADMIN

We conclude our experiments by comparing our propositional learner \piavéous method by Pa-
trascu et al. (2002), using the the sanvs&DMIN domain used for evaluation there. This empirical
comparison on the 8sADMIN domain is shown in Section 7.4.

6.2 Randomized Variants of the Method

Our major contribution is the introduction and evaluation of a feature learmargework in the
controlled setting based on scoring with Bellman-error (BE Scoring). @unirical work instan-
tiates this framework with a relational feature-learning algorithm of our delsased on greedy
beam-search. Here, we compare the performance of this instance fodmawork with variants
that replace key aspects with randomized choice, illustrating the relative tamgerof those fea-
tures. In the two random-choice experiments, we adapt our method in dhe @fllowing two
ways:

1. Labeling the training states with random scores instead of Bellman EomesscThe target
value in our feature training set is a random number from -1 to 1. Thisitigois called
“Random Scorinl

2. Narrowing the beam during search randomly rather than greedilylisWmate scoring dur-
ing the beam search, instead using random selection to narrow the bdgrat the end of
the beam search is scoring used to select the best resulting candidatalgdhithm is called
“Random Beam Narrowirig

714

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

The original algorithm, which labels training data with Bellman error and naztbe beam greed-
ily rather than randomly, is calledGreedy Beam Search/BE Scoring our plots. For these
comparisons, we only consider the relational feature representatidhataiis where our beam
search method is used. Experiments with the two variants introduced hesenped below in
Sections 7.2.4 and 7.3.4, show that our original method selects featurgeifam much better
than randomly selected features, and that the greediness in the beamisefien (but not always)
important in achieving good performance.

7. Experimental Results

We present experimental results fae RIS, planning competition domains, and SADMIN in this
section, starting with an introduction on the structure of our result pregamta

7.1 How to Read Our Results

The task of evaluating a feature-learning planning system is subtle andecoripis is particularly
a factor in the relational case because generalization between prob&nasizlearning from small
problems must be evaluated. The resulting data is extensive and hightystdyaequiring some
training of the reader to understand and interpret. Here we introduce tealer the structure of
our results.

In experiments with the propositional learning (or with randomly selectedagsitipnal fea-
tures), the problem size never varies within one run of the learnerubedhe propositional repre-
sentation from Section 4.3 cannot generalize between sizes. We ruaratesgxperiment for each
size considered. Each experiment is two independent trials; each trigl with a single trivial
feature and repeatedly adds features until a termination condition is met. eaftbrfeature addi-
tion, AVI is used to select the weights for combining the features to form aValuction, and the
performance of that value function is measured (by sampling the perfomudithe greedy policy).
We then compute the average (of the two trials) of the performance as @ofun€ the number
of features used. Since this results in a single line plot of performanceftagi@gon of number
of features, several different fixed-problem-size learners casob®ared on one figure, with one
line for each, as is done for example in Figures 7 and 14. The perfoemapasure used varies
appropriately with the domain as presented below.

We study the ability of relational representation from Section 4.1 to genelairecen sizes.
This study can only be properly understood against the backdrop dbtkehart in Figure 1. As
described in this flowchart, one trial of the learner will learn a sequehtEatures and encounter
a sequence of increasing problem difficulties. One iteration of the leailieeither add a new
featureor increase the problem difficulty (depending on the current performanieeither case,
the weights are then retrained by AVI and a performance measuremeatreftiiting greedy policy
is taken. Because different trials may increase the size at differertspoia cannot meaningfully
average the measurements from two trials. Instead, we present two mogeperials separately
in two tables, such as the Figures 5 and 12. For the first trial, we alsonpriggesame data a
second time as a line plot showing performance as a function of numbeatafds, where problem
size changes are annotated along the line, such as the plots in Figure4d ®. avote that success
ratio generally increases along the line when features are added,llbuvffi@n problem size is
increased. (In ETRIS, however, we measure “rows erased” rather than success ratidraavel

715

Wu & GIVAN

erased” generally increases with either the addition of a new feature adth#éon of new rows to
the available grid.)

To interpret the tables showing trials of the relational learner, it is usefiddas on the first
two rows, labeled “# of features” and “Problem difficulty.” These roteken together, show the
progress of the learner in adding features and and increasing preldentach column in the table
represents the result in the indicated problem size using the indicated naofribarned features.
From one column to the next, there will be a change in only one of these rdwise-performance
of the policy shown in a column is high enough, it will be the problem difficulty thereases, and
otherwise it will be the number of features that increases. Further atlithge subtlety in inter-
preting these tables, we note that when several adjacent columns stneasumber of features,
we sometimes splice out all but two of these columns to save space. Thugriflseatures are
added consecutively at one problem size, with slowly increasing peaioce, we may show only
the first and last of these columns at that problem size, with a consejgugmin the number of
features between these columns. We likewise sometimes splice out columnsevieeal consec-
utive columns increase problem difficulty. We have found that these gpdicint only save space
but increase readability after some practice reading these tables.

Performance numbers shown in each column (success ratio and agkmadength, or number
of rows erased, for #TRIS) refer to the performance of the weight-tuned policy resulting for that
feature set at that problem difficulty. We also show in each column thempegihce of that value
function (without re-tuning weights) on the target problem size. Thusshesv quality measures
for each policy found during feature learning on both the currentlprolsize at that point and on
the target problem size, to illustrate the progress of learning from smallgms on the target size
via generalization.

We do not study here the problem of deciding when to stop adding featunstead, in both
propositional and relational experiments, trials are stopped by experimedtgnent when addi-
tional results are too expensive for the value they are giving in evalutitinglgorithm. However,
we do not stop any trials when they are still improving unless unacceptafglare consumption
has occurred.

Also, in each trial, the accumulated real time for the trial is measured and sktogath point
during the trial. We use real time rather than CPU time to reflect non-CPU aotsas paging due
to high memory usage.

7.2 Tetris

We now present experimental results f&TRIS.

7.2.1 O/ERVIEW OF TETRIS

The game ETRISis played in a rectangular board area, usually of gize< 20, that is initially
empty. The program selects one of the seven shapes uniformly at rambtine player rotates and
drops the selected piece from the entry side of the board, which pilesontemaining fragments
of the pieces that were placed previously. In our implementation, wheaeidrrow of squares
is occupied by fragments of pieces, that row is removed from the boardragments on top of
the removed row are moved down one row; a reward is also received avi@v is removed. The
process of selecting locations and rotations for randomly drawn piecgmges until the board
is “full” and the new piece cannot be placed anywhere in the boamRTS is stochastic since

716

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

the next piece to place is always randomly drawn, but this is the only sticlkedésment in this
game. ETRISIis also used as an experimental domain in previous MDP and reinforceraamnkg
research (Bertsekas & Tsitsiklis, 1996; Driessens et al., 2006). #f ériman-selected features is
described in the book by Bertsekas and Tsitsiklis (1996) that yields g gerformance when
used in weighted linearly approximated value functions. We cannot fainhpaoe our performance
in this domain to probabilistic planners requiring PPDDL input because we foawmd no natural
PPDDL definition for TETRIS.

Our performance metric for TRIS is the number of rows erased averaged over 10,000 trial
games. The reward-scaling parametgge (defined in Section 5 in Online Appendix 1 on page 8)
is selected to be 1.

7.2.2 TETRISRELATIONAL FEATURE LEARNING RESULTS

We represent theATRIS grid using rows and columns as objects. We use three primitive predicates:
fill (¢,), meaning that the square on colummow r is occupiedpelow(r;,), meaning that row

r1 is directly below rowry; andbeside ¢y, c2), meaning that column; is directly to the left of
columne,. The quantifiers used in our relationat TR1S hypothesis space are typed using the types
“row” and “column”.

There are also state predicates representing the piece about to dvaguehofor efficiency
reasons our planner computes state value as a function only of the grithenoext piece. This
limitation in value-function expressiveness allows a significantly cheapén&e-backup compu-
tation. The one-step lookahead in greedy policy execution provides imm@e$oning about the
piece being dropped, as that piece will be in the grid in all the next states.

We conduct our relational HTRIS experiments on a 10-column;row board, withn initially
set to 5 rows. Our threshold for increasing problem difficulty by adding @w is a score of at
least1l5 + 20(n — 5) rows erased. The target problem size for these experiments is 20 Ttwes.
results for the relational HTRIS experiments are given in Figures 5 and 6 and are discussed below.

7.2.3 TETRISPROPOSITIONALFEATURE LEARNING RESULTS

For the propositional learner, we describe treTRIs state with 7 binary attributes that represent
which of the 7 pieces is currently being dropped, along with one additionatybattribute for each
grid square representing whether that square is occupied. The radjaetationships between the
grid squares are represented only through the procedurally cotied dgnamics. Note that the
number of state attributes depends on the size of #1ERTS grid, and learned features will only
apply to problems of the same grid size. As a result, we show separate fesghtected problem
sizes.

We evaluate propositional feature learning in 10-coluneTAis grids of four different sizes: 5
rows, 7 rows, 9 rows, and 20 rows. Results from these four trialshangrstogether in Figure 7 and
the average accumulated time required to reach each point on Figure Wisishéigure 8. These
results are discussed below.

7.2.4 BU/ALUATING THE IMPORTANCE OFBELLMAN-ERRORSCORING AND GREEDY
BEAM-SEARCH INTETRIS

Figure 9 compares our original algorithm with alternatives that vary froomieither training set
scoring or greediness of beam search, as discussed in Section 6tBe Bwo alternatives, we use

717

Wu & GIVAN

Trial #1

of features 0 1 2 3 11 11 12 17 17 18 18 18 18 18 18
Problem difficulty 55 5 5 5 6 6 6 7 7 8 9 10 15 20

Score 0.205 1.0 3.0 18 31 32 35 55 56 80 102 121 234 316

Accumulated time (Hr.)
Target size score

Trial #2

00 2 4252 20 21 24 39 42 46 50 57 65 111178
0313 1.4 1.8 178 238 261 176 198 211 217 221 220 268 317

of features

Problem difficulty
Score

Accumulated time (Hr.)
Target size score

0 1 8 8 12 12 14 14 15 15 16 16 17 26 26 27 27 28 29 33
55 5 6 6 7 7 11 11 12 12 13 13 13 14 14 17 17 17 17
0.20.6 16 28 36 53 56 133 136 151 156 167 168 175 192 210 238 A5P4U
0.024 15 15 27 29 39 66 76 87 97 103 110 211 220 236 276 295 318 408
0.3 1.7 104 113 108 116 130 192 196 199 206 211 211 219 225 2182B233 231

Figure 5: TETRIS performance (averaged over 10,000 games). Score is shown irgavenas
erased, and problem difficulty is shown in the number of rows on #erTs board. The
number of columns is always 10. Difficulty increases when the average &greater
than 15+20*(-5), wheren is the number of rows in thedTRrIS board. Target problem
size is 20 rows. Some columns are omitted as discussed in Section 7.1.

Tetris, Relational, Trial 1

8 350

S 300 10x20Q

250

g 2 10x15X

5 200

o 150

o 10x10%

g 1007 10x7

0 5o 10x6 10x6

2 10xE W
O c c IV\ IY\ T T T T T

0 2 4 6 8 10 12 14 16 18

Figure 6: Plot of the

Number of Features

average number of lines erased over 10,80&E games after each run of

AVI training during the learning of relational features (trial 1). Verticakeknindicate
difficulty increases (in the number of rows), as labeled along the plot.

718

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Tetris, Propositional

Average Rows Erased
00}

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Number of Features

| —8—10x5 —%—10x7 ——10x9 —e—10x20|

Figure 7: Plot of the average number of lines erased in 10,80RTS games after each iteration
of AVI training during the learning of propositional features, averagest two trials.

Tetris, Propositional
160
140
120
100
80
60
40
20
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of Features

Accumulated Time (Hr.)

—B—10x5 —%—10x7 ——10x9 —9—10><20‘

Figure 8: Plot of the accumulated time required to reach each point in Figakeiaged over two
trials.

the same schedule used for the original Greedy Beam Search/BE Salganghm in TETRIS by
starting with thel0 x 5 problem size. However, the performance of these two alternatives és nev
good enough to increase the problem size.

7.2.5 B/ALUATING HUMAN-DESIGNED FEATURES INTETRIS

In addition to evaluating our relational and propositional feature learmipgoach, we also evaluate
how the human-selected features described in the book by Bertsekasitsiklis (1996) perform
in selected problem sizes. For each problem size, we start from all iseiglo and use our AVI

719

Wu & GIVAN

Impact of Greedy Beam Search and BE Scoring

Average Rows Erased

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of Relational Features

—&— Greedy Beam Search/BE Scoring (original algorithm)
—B— Random Scoring (variant 1)
—»— Random Beam Narrowing (variant 2)

Figure 9: Plot of the average number of lines erased in 10,@A&1E games for relational features
learned from the original algorithm and the two alternatives as discussggttion 6.2.
For Random Scoring and Random Beam Narrowing, the results aragagover two
independent trials. Trials of these two variants are terminated when they faibke
progress for several feature additions. For comparison purpinse®ne of the original
Greedy Beam Search/BE Scoring method is shown, reaching the thréshdlticulty
increase after eleven feature additions (trial two did even better).

|10 x 510 x 7] 10 x 9] 10 x 20

Average rows erased, Trial L 19 86 267 | 17,954
Average rows erased, Trial 2 19 86 266 | 18,125

Figure 10: The average number of lines erased in 10,080RTS games for the best weighted
combination of human features found in each of two trials of AVI and fomblam
sizes.

process described in Section 2.5 to train the weights for all 21 featureshenpiérformance appears
to converge. We change the leaming ratéom 155 10 13r5; as human-designed features
require a larger step-size to converge rapidly. The human-desigagdds are normalized to a
value between 0 and 1 here in our experiments. We run two independésitdrieach problem size

and report the performance of the best-performing weight vectodfoueach trial, in Figure 10.

7.2.6 FEERFORMANCECOMPARISONBETWEEN DIFFERENTAPPROACHES TOTETRIS

Several general trends emerge from the resultsrrTs. First of all, the addition of new learned
features is almost always increasing the performance of the resulting patiey (on the current
size and on the target size), until a best performance point is reathedsuggests we are in fact

720

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

‘ Relational‘ Prop.10 x 5 ‘ Propl0 x 7‘ Prop10 x 9 ‘ Propl0 x 20

Average_: feature Iearnm% 167 44 50 60 44
time (Min.)
Figure 11: Table for the average feature learning time for relational espbpitional approaches.

selecting useful features. We also find clear evidence of the ability oketh&anal representation
to usefully generalize between problem sizes: substantial performadesatoped on the target
problem size without ever training directly in that size.

We find that the best performance of learned propositional featuresds lower than that of
learned relational features in all problem sizes shown here, eventlzolagger feature training set
size and many more learned features are used for the propositionababprThis suggests that
the rich relational representation indeed is able to better capture the dynamiesris than the
propositional representation.

We find that the performance of using random feature==EnrRIiisis significantly worse than that
of using learned features, demonstrating that our performance improtemdeature learning are
due to useful feature selection (using Bellman error), not simply due teasarg the number of
features.

Our learned relational feature performancd@nx 20 TETRIS is far worse than that obtained
by using the human-selected features with AVI in the same size. HowevEs,»n5 TETRIS the
relational feature performance is close to that of the human-desigriedeeal he human-designed
features are engineered to perform well in tlhex 20 TETRIShence some concepts that are useful
in performing well in smaller problem sizes may not exist in these features.

7.2.7 TIME TO LEARN EACH FEATURE

In Figure 11 we show the average time required to learn a relational featagropositional feature
in TETRIS.

The time required to learn a relational feature is significantly longer thandbatred to learn
a propositional feature, even though for the propositional appro&ariger feature training set size
is being used.

7.2.8 GOMPARISON TOPREVIOUS TETRIS-SPECIFICLEARNERS

In evaluating domain-independent techniques amAis, we must first put aside the strong perfor-
mance already shown many times in the literature for domain-dependent t@efoig that domain.
Then, we must face the problem that there are no published domain-irtEgeomparison points
in order to define a state-of-the-art target to surpass. For the latigleprpwe provide a baseline
from two different approaches to random feature selection, and #retvour targeted feature se-
lection dramatically improves on random selection. For the former problem, ciedm below a
discussion of the domain-specific elements of key previous publisheltisreaUTETRIS.

There have been many previodemain-specifiefforts at learning to play ETRIS (Bertsekas
& Tsitsiklis, 1996; Szita & Lorincz, 2006; Lagoudakis, Parr, & Littman, 206arias & Van Roy,
2004, Kakade, 2001). Typically, these provide human-crafted dodependent features, and de-
ploy domain-independent machine learning techniques to combine these$e@fien by tuning

721

Wu & GIVAN

weights for a linear combination). As an example, a domain-specific feaburging the number
of covered up “holes” in the board is frequently used. This feature issgy derived by human
reasoning about the rules of the game, such as realizing that such reiffiault to fill by later
action and can lead to low scores. In all prior work, the selection of thtsifeds by hand, not by
an automated feature-selection process (such as our scoring datorréo Bellman error). Other
frequently used domain-specific features include “column height” anfetdifice in height of ad-
jacent columns”, again apparently selected as relevant by human irgsdnout the rules of the
game.

The key research question we address, then, is whether usefukfeaan be derived automati-
cally, so that a decision-making situation like RIS can be approached by a domain-independent
system without human intervention. Our method is provided only a domain-statesentation us-
ing primitive horizontal and vertical positional predicates, and a singlstaohfeature. To our
knowledge, before this research there is no published evaluationeor13 that does not rely
on domain-specific human inputs such as those just discussed. As epmatg@erformance on
TETRISis much weaker than that achieved by domain-specific systems such agistasted.

7.3 Probabilistic Planning Competition Domains

Throughout the evaluations of our learners in planning domains, welogeeplan-length cutoff of
1000 steps when evaluating success ratio during the iterative learniegtofés, to speed learning.
We use a longer cutoff of 2000 steps for the final evaluation of policiesdmparison with other
planners and for all evaluations on the target problem size. The resgalithg parameterscaie
(defined in Section 5 in Online Appendix 1 on page 8) is selected to be 1 thwatithe planning
domains.

For domains with multi-dimensional problem sizes, it remains an open reggatdikem on how
to change problem size in different dimensions automatically to increasaulfiffituring learning.
Here, in GONJUNCTIVE-BOXWORLD and ZENOTRAVEL, we hand-design the sequence of increas-
ing problem sizes.

As discussed in Section 6.1.2, we evaluate our feature learners in a te&ei probabilis-
tic planning competition domains. In the following paragraphs, we providdl aifcussion of
BLockswoORLD and CONJUNCTIVE-BOXWORLD, with abbreviated results for the other five do-
mains. We provide a full discussion of the other five domains in Appendix B.

Our relational feature learner finds useful value-function feature®ln of these domains
(BLOCKSWORLD, CONJUNCTIVE-BOXWORLD, TIREWORLD, and LFTED-FILEWORLD3). In the
other three domains &NOTRAVEL, EXPLODING BLOCKSWORLD, and TOWERS OFHANOI), our
relational feature learner makes progress in representing a usefiHdize value function for the
training sizes, but fails to find features that generalize well to problemsggtaizes.

7.3.1 BLOCKSWORLD

In the probabilistic, non-reward version of BckswoRLD from the first IPPC, the actiomsckup
andputdown have a small probability of placing the handled block on the table object instead
the selected destination.

For our relational learner, we start with 3 blocks problems. We increase/f blocks ton + 1
blocks whenever the success ratio excegflsand the average successful plan length is less than
30(n — 2). The target problem size is 20 blocks. Results are shown in Figuresd1P3an

722

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Trial #1

of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 100 1 1 09 1 1 1 0.97
Plan length 89 45 20 133 19 33 173 395
Accumulated time (Hr.) 0.5 1.0 15 22 33 39 10 36
Target size SR 0O O O O 098 096 0.98 0.97
Target size Slen. - - = = 761 724 754 745
Trial #2

of features 0 1 2 2 3 3 3 3
Problem difficulty 3 3 3 4 4 5 10 15
Success ratio 1 1 1 094 1 1 1 0.96
Plan length 80 48 19 125 17 34 167 386
Accumulated time (Hr.) 0.5 1.0 14 20 33 38 94 33
Target size SR 0O O O O 097 098 098 0.98
Target size Slen. - - = = 768 750 770 741

Figure 12: B.ockswoRLD performance (averaged over 600 problems) for relational learner. W
add one feature per column until success ratio exceddand average successful plan
length is less thaB0(n — 2), for n blocks, and then increase problem difficulty for the
next column. Plan lengths shown are successful trials only. Probleroudtitis are
measured in number of blocks, with a target problem size of 20 blocks. Solmans
are omitted as discussed in Section 7.1.

For our propositional learner, results for problem sizes of 3, 4, 8,1&nblocks are shown in
Figure 14.

Our relational learner consistently finds value functions with perfectear-perfect success
ratio up to 15 blocks. This performance compares very favorably to tentRRL (Driessens
et al., 2006) results in the deterministic 8cKSWORLD, where goals are severely restricted to, for
instance, singl©N atoms, and the success ratio performance of around 0.9 for three to tés blo
(for the singleON goal) is still lower than that achieved here. Our results LwBKSWORLD show
the average plan length is far from optimal. We have observed large pddtethe induced value
function: state regions where all states are given the same value so thatdy policy wanders.
This is a problem that merits further study to understand why featureindutoes not break such
plateaus. Separately, we have studied the ability of local search to kueaksuch plateaus (Wu,
Kalyanam, & Givan, 2008).

The performance on the target size clearly demonstrates successftdljgation between sizes
for the relational representation.

The propositional results demonstrate the limitations of the propositional teagerding lack
of generalization between sizes. While very good value functions candoeed for the small
problem sizes (3 and 4 blocks), slightly larger sizes of 5 or 10 bloclderahe method ineffective.
In 10 block problems, the initial random greedy policy cannot be improeedise it never finds

723

Wu & GIVAN

Blocksworld, Relational, Trial 1

o 1 3 blocks 3 b!\f)ck& 3 blgckf 4.5, 10 block
& 0.05 . ' X 15 block:
5 O
1%} 4 blocks
g 09
@
03l
T N—
04
< 0 1 2 3
=y
400 -
3 >l<15 block:
300
o
HUEJ 200 - %
%) 4 blocks 10 block:
¢ C

§ 100 3 block S— —
> T 30block 3 blocNS blocks
w0y > © 4 blocks

0 1 2 3

Number of Features

Figure 13: B.OCKSWORLD success ratio and average successful plan length (averagedOfver 6
problems) for the first trial from Figure 12 using our relational learner.

the goal. In addition, these results demonstrate that learning additionakfeatce a good policy
is found can degrade performance, possibly because AVI perfoorsevin the higher dimensional
weight space that results.

7.3.2 GONJUNCTIVE-BOXWORLD

The probabilistic, non-reward version ofoBwoRLD from the first IPPC is similar to the more
familiar Logistics domain used in deterministic planning competitions, except thatmicit con-
nectivity graph for the cities is defined. In Logistics, airports and ait@ialy an important role
since it is not possible to move trucks from one airport (and the locatioase to it) to an-
other airport (and the locations adjacent to it). I0BVORLD, it is possible to move all the boxes
without using the aircraft since the cities may all be connected with trucksoutke stochastic
element introduced into this domain is that when a truck is being moved fromityrie another,
there is a small chance of ending up in an unintended city. As describectiini®6é.1, we use
CONJUNCTIVE-BOXWORLD, a modified version of BXWORLD, in our experiments.

We start with 1-box problems in our relational learner and increasefrooxes ton + 1 boxes
whenever the success ratio exceeds 0.9 and the average sucpkssfehgth is better thaBon.
All feature-learning problem difficulties use 5 cities. We use two targeblpro sizes: 15 boxes

724

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Blocksworld, Propositional

o ,
T 08 +— ' -+ \A/a\,s
04
9 0.6
(0]
8
S 04
« —— '
0.2 Se——X— H———___
ey ‘a3 s —X
0 = & & = = = = = & = —
0 2 4 6 8 10
450

Successful Plan Length
N
a1
o

Accumulated Time (Hr.)

A A
yay =Y [~

0 2 4 6 8 10
Number of Features

—2— 3 blocks —+—4 blocks —>—5 blocks —8— 10 blocks

Figure 14: B oCcKSWORLD performance success ratio and average successful plan length (ave
aged over 600 problems), and accumulated run-time for our propositéarakr, aver-
aged over two trials.

725

Wu & GIVAN

Trial #1

of features 0 1 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 10 11 12 13 15
Success ratio 0697 1 1 1 1 1 1 1 1 1 1

Plan length 226 84 23 37 44 54 77 80 313 87 92
Accumulated time (Hr.) 7.2 10 13 14 16 21 42 49 57 65 84
Target size #1 SR 098 1 1 1 1 1 1 1 1 1 1

Target size #1 Slen. 1056 359 93 91 90 92 90 92 355 90 91
Target size #2 SR 0.16 0.90 0.97 0.97 0.96 0.98 0.96 0.98 0.90 0.98 0.96
Target size #2 Slen. 1583 996 238 230 233 244 240 238 1024 240 239
Trial #2

of features 0 1 2 2 2 2 2 2 2 2 2 2
Problem difficulty 1 1 1 2 3 5 9 10 11 12 13 15
Success ratio 097 1 1 1 1 1 1 1 1 100 1 1
Plan length 235 85 24 34 43 54 72 299 80 310 84 91
Accumulatedtime (Hr) 7.3 11 14 16 18 23 39 45 51 60 68 86
Target size #1 SR 09 1 1 1 1 1 1 1 1 1 1 1
Target size #1 Slen. 1019 365 90 91 91 92 89 359 89 363 90 90
Target size #2 SR 0.19 0.9 0.97 0.97 0.98 0.98 0.97 0.92 0.98 0.91 0.97 0.96

Target size #2 Slen. 1574 982 226 230 233 233 242 1006 231 1026 240 233

Figure 15: @NJUNCTIVE-BOXwORLD performance (averaged over 600 problems). We add one
feature per column until success ratio is greater thamand average successful plan
length is less thaB0n, for n boxes, and then increase problem difficulty for the next
column. Problem difficulty is shown in number of boxes. Throughout themieg
process the number of cities is 5. Plan lengths shown are successfubtiglsTwo
target problem sizes are used. Target problem size #1 has 15 buk8é<iies. Target
problem size #2 has 10 boxes and 10 cities. Some columns are omitted asetisicus
Section 7.1.

and 5 cities, and 10 boxes and 10 cities. Relational learning results ava shBigures 15 and 16,
and results for the propositional learner on 5 cities with 1, 2, or 3 boxeshawn in Figures 17.

In interpreting the ©NJUNCTIVE-BOXWORLD results, it is important to focus on the average
successful plan-length metric. IndBJUNCTIVE-BOXWORLD problems, random walk is able to
solve the problem nearly always, but often with very long pl&nsThe learned features enable
more direct solutions as reflected in the average plan-length metric.

Only two relational features are required for significantly improved parémce in the problems
we have tested. Unlike the other domains we evaluate, for hheiGNCTIVE-BOXWORLD domain

10. We note that, oddly, the IPPC competition domain used here has aamngitions prohibiting moving a box away
from its destination. These preconditions bias the random walk automatioallyds the goal. For consistency with
the competition results, we retain these odd preconditions, although thesmngitions are not necessary for good
performance for our algorithm.

726

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Conjuctive-Boxworld, 5 Cities, Relational, Trial 1

.% N 1bo 1,2,3,5, 10,-and 15 boxes
e [
0
4 <
8
O 0.95-
>
2 T Ne—
T N—
0 T
0 1 2
250
< ¢ 1 box
2 200 \
)
|
[
S 150
o
=
@ 100
0 15 boxes
o] box §<) 10 boxes
S 50 5 boxes «
n W 2 boxes
1 box
0
0 1 2

Number of Features

Figure 16: (NJUNCTIVE-BOXWORLD success ratio and average successful plan length (averaged
over 600 problems) for the first trial using our relational learner.

the learned features are straightforwardly describable in English. rBhésfature counts how many
boxes are correctly at their target city. The second feature countsramy boxes are on trucks.

We note the lack of any features rewarding trucks for being in the “rigta€e (resulting in
longer plan lengths due to wandering on value-function plateaus). 8atlrés can easily be writ-
ten in our knowledge representation (e.g. count the trucks located atthdiesre the destinations
for some package on the truck), but require quantification over both aiti@packages. The severe
limitation on quantification currently in our method for efficiency reasonsgmsvconsideration of
these features at this point. It is also worth noting that regression-liestede discovery, as stud-
ied in the work of Gretton and Tébaux (2004) and Sanner and Boutilier (2009), can be expected
to identify such features regarding trucks by regressing the goalghrthe action of unloading
a package at the destination. Combining our Bellman-error-based methodegitssion-based
methods is a promising future direction.

Nevertheless, our relational learner discovers two concise and fsafures that dramatically
reduce plan length relative to the initial policy of random walk. This is a sigmiticsuccess for
automated domain-independent induction of problem features.

727

Wu & GIVAN

Conjunctive-Boxworld, Propositional

1 R?\\'; .
2 08 ﬁ\
©
o
@ 0.6
8
%)
0.2
0
0 2 4 6 8 10
£ 500
g 450 % Se——%——
5 4001 \ W
E 350 + > —5¢
o ggg’ M
S \'—Xi'
7 200 L ——
O 150 \
(&
8 100 Y/A\\.r .
” 501 u\ﬁ/ﬁ\ﬁ___ﬁ—g
O T T T T T
0 2 4 6 8 10
450
= 400
< 350 - /
(0]
£ 300
|_
- 250 -
g
© 200 /
5
g 150
>
8 100 - /
<
50
0,
0 2 4 6 8 10
Number of Features
—A—1 box ——2 box —>— 3 box

Figure 17: @NJUNCTIVE-BOXwORLD performance (averaged over 600 problems) and accumu-
lated run-time for propositional learner, averaged over two trials. Tirout the learn-
ing process the number of cities is 5.

728

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

One trial of the relational feature learner irO@JUNCTIVE-BOXWORLD takes several days,
even though we have fixed the number of cities for the training problemseatifies. New tech-
niques are required for improving the efficiency of feature learningreeive can provide results
for training in larger numbers of cities. Our results here demonstrate thatitient representation
and learning methods adequately manage small city graphs even with ladgargaer numbers of
boxes to deliver, and that the resulting value functions successfulbraiere to 10-city problems.

In this domain, a well known weakness of AVl is apparent. While AVI ofteorkg in practice,
there is no theoretical guarantee on the quality of the weight vector fop®Y/ btraining. (Al-
ternatively, an approximate linear programming step could replace AVI trpioiprovide a more
expensive but perhaps more robust weight selection.) In theJGNCTIVE-BOXWORLD results,
AVI training goes astray when selecting weights in the 12 box domain size ihIlri&s a result,
the selected weights overemphasize the first feature, neglecting thelgeature. This is revealed
in the data shown because the plan-length performance degrades aighiffor that one column
of data. When AVI is repeated at the next problem size (13 boxesjli gedormance is restored.
A similar one-column degradation of plan length occurs in trial 2 at the 10abdxl2-box sizes.

For our propositional experiments in thedSJUNCTIVE-BOXWORLD, we note that, generally,
adding learned propositional features degrades the success-faenaace relative to the initial
random walk policy by introducing ineffective loops into the greedy politlge resulting greedy
policies find the goal in fewer steps than random walk, but generally paynacceptable drop in
success ratio to do so. The one exception is the policy found for ongflatems using just two
propositional features, which significantly reduces plan length whileepr®sy success ratio. Still,
this result is much weaker than that for our relational feature language.

These problems get more severe as problem size increases, with 8sbteops suffering severe
degradation in success rate with only modest gains in successful plah.leAtso please note
that accumulated runtime for these experiments is very large, especiallybimx Broblems. AVI
training is very expensive for policies that do not find the goal. Computiegtiedy policy at each
state in a long trajectory requires considering each action, and the nufrdogilable actions can
be quite large in this domain. For these reasons, the propositional teclimigpisevaluate at sizes
larger than three boxes.

7.3.3 YMMARY RESULTS FROMADDITIONAL DOMAINS

In Figures 18 to 20, we present summary results from five additionalapilidtic planning do-
mains. For detailed results and full discussion of these domains, pleaseesrdix B. From the
summary results, we can see that our feature learning approachsfutigdmds features that per-
form well across increasing problem sizes in two of these five domairgWORLD and LIFTED-
FILEWORLD3. In the other three domains EXOTRAVEL, TOWERS OFHANOI, and EXPLODING
BLOCKSWORLD), feature learning is able to make varying degrees of progress onsiialli prob-
lem sizes, but that progress (sometimes quite limited) does not generalizesvgedk increases.

7.3.4 BY/ALUATING THE RELATIVE IMPORTANCE OFBELLMAN -ERRORSCORING AND
GREEDY BEAM-SEARCH IN GOAL-ORIENTED DOMAINS

Figure 21 compares our original algorithm with alternatives that vary ftam either training set
scoring or greediness of beam search, as discussed in Sectiont6eacRdrial of each variant, we
generate a greedy policy for each domain using feature selection withialational representation

729

Wu & GIVAN

Tireworld, Trial 1

1
o 09 4, 5 nodes 6 nodes 20, 33.9 nodes
s 4 nodes 4 nopdes :
S Ot 9 10 node
x 0.8 o 6 nodes 9nodes '
()
0.7
8
S 06
n 0.5 ¢4 nodes
N——
O/!_/ T T T T T
0 1 2 3 4 5
S 6
= 20, 30 nodes
g s ?
c 4 nodes
< 44
o 3 |4 node 4 nodes 9, 10 nodes
"3 6, 9 nodes
0 2
8 4,5, 6 nodes
o 1
@
0
0 1 2 3 4 5
Number of Features
Zenotravel, Trial 1
1
o . .
= 3 cities, 1 person, 1 aircraft
c 08 -+
0
Q 06 :
o . = . = o .
5 0.4 3 cmes,%eople, 2 aircraft 3 cities, 2 peoplejreraft
/_/
- 0 1 2 3 4 5 6 7 8 9
D> 500
c
3 400 " -
p i 3 cities, 2 people, 2 aircraft 3 cities, 2 people, 2 aircraft
5]
o 300
S . —
E 200 {-3cities; t person, 1aircraft
O
S 100
®
0

4

5 6 7 8 9

Number of Features

Figure 18: Summary results fonREWORLD and ZENOTRAVEL. For full discussion and detailed

results, please see Appendix B.

730

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Success Ratio

Successful Plan Length

Success Ratio

Successful Plan Length

Figure 19: Summary results forxBLODING BLOCKSWORLD and TOWERS OFHANOI

Exploding Blocksworld, Trial 1

3 blocks
4

3 blocks,

3 blocks

3 glocks

4 blocks

B 4 blocks

10

71' blocks

3 blocks

3 blocks

3 blocks

4 5 6
Number of Features

10

Tower of Hanoi, Trial 1

0.8 1
0.6

2 discs
4

/1

0.4

o

4 discg

0.2 1

/3 discs

4 discs

A

5 discs

»
»

X

4 5 6

/oy

o
20 35

50

40

30
20

10

3 discs

2 discs
3

o

4 discs
A

3

4
Number of Features

5

. For full

discussion and detailed results, please see Appendix B.

731

Wu & GIVAN

Lifted-Fileworld3, Trial 1

i) . i ')) '
&5 1 1 file],\)flle lglle 1 aEd 2 file - 14 to iG file 16£Ies 8
" 2 to 14 file! 16 to 20 file:
0
80.951
T N—
0 T T T T T T T T
0 1 2 3 4 5 6 7

< 60
g) 14 fil
o . iles '
EI 21(3) files
3 o ¥ e
o : les 16 files files|
c 11tesp B3l
@ = 10 files
o 20 -
3 &1 file L
g S el 3

0 ‘ ‘ o1 file ‘ ‘ ‘ ‘

0 1 2 3 4 5 6 7

Number of Features

Figure 20: Summary results forikTED-FILEWORLD3. For full discussion and detailed results,
please see Appendix B.

(alternating AVI training, difficulty increase, and feature generation akénoriginal algorithm).
During each trial, in each domain, we select the best performing policgimgrthe algorithm until
the target problem difficulty is reached or there is no improvement for sitfleieee feature additions;
in the latter case generating at least nine features. We evaluate eagi godiey acquired in this
manner, measuring the average target-problem-size performance idaaain, and average the
results of two trials. The results are shown in Figure 21.

In no domain does the alternative Random Scoring perform comparablg twitfinal Greedy
Beam Search/BE Scoring, with the exception of three domain/size combinatiens both learners
perform very poorly (ENOTRAVEL, 10-block EXPLODING BLOCKSWORLD, and 5-disc DWERS
OF HANOI). The alternative Random Beam Narrowing is sometimes adequate to réyganeinal
approach, but in some domains, greedy beam search is critical to dompance.

7.3.5 GOMPARISON TOFF-REPLAN AND FOALP

We compare the performance of our learned policies to FF-Replan and FF@A each of the
PPDDL evaluation domains used above. We use the problem generatoideprby the planning
competitions to generate 30 problems for each tested problem size excépiviERSs OFHANOI

732

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Domain |[BW| Box | Box |Tire| Zeno [EX-BW|EX-BW|TOH|TOH|File

Size 20 |(15,5)(10,10) 30 |(10,2,2 5 10 4 5 |30
Greedy Beam/BE Scoring (orig.) SR |0.98 1 0.98 |0.92 0.11 | 0.34 | 0.03 |0.51{0.00| 1
Greedy Beam/BE Scoring (orig.) SLen.748| 90 | 235 | 5 | 1137 6 23 4 | 14 |65
Random Scoring (var. 1) SR 0 | 0.99| 0.21 |0.67] 0.05 | 0.27 0.01 |0.24|0.03| 1
Random Scoring (var. 1) SLen. — | 946 | 1582 | 6 910 6 12 13 | 26 |215
Random Beam Narrowing (var. 2) SR|{0.01] 1 0.99 (091 0.13 | 0.35 | 0.02 [0.25/0.01| 1
Random Beam Narrowing (var. 2) SLer258| 90 | 242 | 6 | 1127 8 19 38 | 84 250
Random walk SR 0 [0.97| 0.18 (0.18 0.06 | 0.13 0 0.09|0.00| 1
Random walk SLen. — 11038| 1579 | 6 | 865 4 - 14 | 14 |251

Figure 21: Target-problem-size performance (averaged over @dfepns) for relational features
learned from the original algorithm and the two alternatives as discus$&xttion 6.2,
and from random walk, averaged over the best results of two indepetréals for each
target problem size.

and LFTED-FILEWORLD3, where there is one fixed problem for each problem size. We evaluate
the performance of each planner 30 times for each problem, and repég iB2 the success ratio

of each planner in each problem size (averaged over all attempts). dlicieg, learned from the

two independent trials shown above, are indicated as RFAVI #1 and REAVEach planner has a
30-minute time limit for each attempt. The average time required to finish a sugcagsmpt for

the largest problem size in each domain is reported in Figure 23.

For each of the two trials of our learner in each domain, we evaluate hepoliog that per-
formed the best in the trial on the (first) target problem size. (Here, kcYfias a set of features
and a corresponding weight vector learned by AVI during the trial.) dPerdnce is measured by
success rate, with ties broken by plan length. Any remaining ties are binkéaking the later
policy in the trial from those that are tied. In each case, we consider dfiay po be the “policy
learned from the trial.”

The results show that our planner’s performance is incomparable witbhftR&t-Replan (win-
ning in some domains, losing in others) and generally dominates that of FOALP.

RFAVI performs the best of the planners in large.d®@KSWORLD, CONJUNCTIVE-
BoxwoORLD, and TTIREWORLD problems. RFAVI is essentially tied with FF-Replan in performance
in LIFTED-FILEWORLD3. RFAVI loses to FF-Replan in the remaining three domain® U DING
BLOCKSWORLD, ZENOTRAVEL, and TOWERS OFHANOI. Reasons for the difficulties in the last
three domains are discussed above in the sections presenting resulbséddimains. We note that
FOALP does not have a learned policy iEMOTRAVEL, EXPLODING BLOCKSWORLD, TOWERS
OF HANOI, and LFTED-FILEWORLD3.

RFAVI relies on random walk to explore plateaus of states not differedtiayethe selected
features. This reliance frequently results in long plan lengths and at tiregkisrén failure. We
have recently reported elsewhere on early results from ongoing wankdying this problem by
using search in place of random walk (Wu et al., 2008).

The RFAVI learning approach is very different from the non-learrongjne replanning used
by FF-Replan, where the problem is determinized, dropping all probabditsrpeters. It is an

733

Wu & GIVAN

15 blocks BW 20 blocks BW 25 blocks BW 30 blocks BW
RFAVI#1 | 1 (483) 1(584) 0.85 (1098) 0.75 (1243)
RFAVI #2 | 1.00 (463) 1.00 (578) 0.85 (1099) 0.77 (1227)
FF-Replan 0.93 (52) 0.91 (71) 0.7 (96) 0.23 (118)
FOALP 1(56) 0.73 (73) 0.2 (96) 0.07 (119)

(10BX,5Cl)Box (10BX,10Cl)Box (10BX,15Cl)Box (15BX,5(Bpx (20BX,20CI)Box
RFAVI#1 | 1(76) 0.97 (225) 0.93 (459) 1(90) 0.82 (959)
RFAVI#2 | 1 (75) 0.97 (223) 0.93 (454) 1 (90) 0.82 (989)
FF-Replan 1 (70) 0.98 (256) 0.93 (507) 1(88) 0.35 (1069)
FOALP 1(35) 0.70 (257) 0.28 (395) 0.99 (56) 0.0 (711)

20 nodes Tire 30 nodes Tire 40 nodes Tire\ (10ClI,2PR,2AT)Zeno
RFAVI #1 | 0.87 (5) 0.85(7) 0.98 (6) 0.06 (1240)
RFAVI#2 | 0.85 (4) 0.84 (7) 0.97 (6) 0.07 (1252)
FF-Replan 0.76 (2) 0.73(3) 0.83(3) 1(99)
FOALP 0.92 (4) 0.90 (5) 0.91 (5) N/A

5 blocks EX-BW 10 blocks EX-BW 4 discs TOH 5 discs TOH | 30 files Lifted-File
RFAVI #1 | 0.25 (8) 0.02 (30) 0.43 (4) 0(-) 1 (65)
RFAVI#2 | 0.25 (8) 0.01 (35) 0.47 (4) 00> 1 (65)
FF-Replan 0.91 (7) 0.45 (20) 0.57 (3) 0.37 (7) 1 (66)
FOALP N/A N/A N/A N/A N/A

Figure 22: Comparison of our planner (RFAVI) against FF-ReplanFDALP. Success ratio for a

total of 900 attempts (30 attempts fooWERS OFHANOI and LFTED-FILEWORLD3)
for each problem size is reported, followed by the average suctgdafulength in
parentheses. The two rows for RFAVI map to two learning trials shown inaperp

| 30 BW/(20,20) BX] 40 Tire| (10,2,2) Zen¢10 EX-BW/|5 TOH| 30 Files

RFAVI #1 | 106s 83s 1s 51s 2s - 1s
RFAVI #2 | 105s 86s Os 51s 3s - 1s
FF-Replan| 872s 739s Os 1s 8s 3s 10s
FOALP 16s 173s 24s N/A N/A N/A N/A
Figure 23: Average runtime of the successful attempts, from the resolisish Figure 22, on the

largest problem size for each domain.

734

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

important topic for future research to try to combine the benefits obtainedelsg tery different
planners across all domains.

The dominance of RFAVI over FOALP in these results implies that RFAVI isasthate of the
art among first-order techniques — those that work with the problem in liied ind use lifted
generalization. Although FOALP uses first-order structure in featyseesentation, the learned
features are aimed at satisfying goal predicates individually, not asokewhVe believe that the
goal-decomposition technique can sometimes work well in small problems bsindbscale well
to large problems.

In these comparisons, it should also be noted that FOALP does notP&HdlPdomain descrip-
tions directly, but requires human-written domain axioms for its learning, uwnlikecompletely
automatic technique (requiring only a few numeric parameters characteti@ndomain). This
requirement for human-written domain axioms is one of the reasons why P@#l_not compete
in some of the competition domains and does not have a learned policy for $ahedomains
tested here.

In CONJUNCTIVE-BoxwoRLD!, we note that FF-Replan uses an “all outcomes” problem de-
terminization that does not discriminate between likely and unlikely outcomesak-tnovement
actions. As a result, plans are frequently selected that rely on unlikelgmet (perhaps choosing
to move a truck to an undesired location, relying on the unlikely outcome oidectally” moving
to the desired location). These plans will usually fail, resulting in repeaptdmeing until FF luck-
ily selects the high-likelihood outcome or plan execution happens to get thediksv-likelihood
outcome. This behavior is in effect similar to the behavior our learned vahuibn exhibits be-
cause, as discussed in Section 7.3.2, our learner failed to find anyefeatarding appropriate
truck moves. Both planners result in long plan lengths due to many unhéipélid moves. How-
ever, our learned policy conducts the random walk of trucks much mbeeeatly (and thus more
successfully) than the online replanning of FF-Replan, especially in therlaroblem sizes. We
believe even more dramatic improvements will be available with improved knowlegigesenta-
tion for features.

7.4 SysAdmin

A full description of the SSADMIN domain is provided in the work of Guestrin, Koller, and Parr
(2001). Here, we summarize that description. In thesSDMIN domain, machines are connected
in different topologies. Each machine might fail at each step, and thedaihobability depends on
the number of failed machines connected to it. The agent works toward minintingumber of
failed machines by rebooting machines, with one machine rebooted at eachefimEar a problem
with n machines and a fixed topology, the dynamic state space can be sufficiesthjbdd byn
propositional variables, each representing the on/off status of a ceréainine.

We test this domain for the purpose of direct comparison of the perforenaicur proposi-
tional techniques to the published results in the work of Patrascu et aR)20& test exactly the
topologies evaluated there and measure the performance measuredrdpEmgesup-norm Bellman
error.

We evaluate our method on the exact same problems (same MDPSs) usedli@tien in the
work of Patrascu et al. (2002) for testing this domain. Two differentkioictopologies are tested:

11. We hand-convert the nested universal quantifiers and condiéffeets in the originaBoxwoRLD domain definition
to an equivalent form without universal quantifiers and conditiorfakés to allow FF-Replan to read the domain.

735

Wu & GIVAN

Cycle Topolog 3-legs Topolog

Figure 24: lllustration of the two topologies in ther SADMIN domain (10 nodes). Each node
represents a machine. The “S” label indicates a server machine, @#espieahe work
of Patrascu et al. (2002).

3-legs and cycle. The “3-legs” topology has three three-node legh gelinear sequence of three
connected nodes) each connected to a single central node at ofigheridycle” topology arranges
the ten nodes in one large cycle. There are 10 nodes in each topologge TWo topologies
are illustrated in Figure 24. The target of learning in this domain is to keep ag maahines
operational as possible, so the number of operating machines directlyndetsrthe reward for
each step. Since there are only 10 nodes and the basic features dhe josfoff statuses of the
nodes, there are a total of 1024 states. The reward-scaling paragtddefined in Section 5 in
Online Appendix 1, available on JAIR website, on page 8) is selected to.be 10

The work by Patrascu et al. (2002) usks, (sup norm) Bellman error as the performance
measurement in SSADMIN. Our technique, as described above, seeks to reduce mean Bellman
error more directly tharl.., Bellman error. We report thé,, Bellman error, averaged over two
trials, in Figure 25. Also included in Figure 25 are the results shown in th& aefdPatrascu et al.
(2002). We select the best result shown there (from various algorigyppimaches) from the 3-legs
and cycle topologies shown in their paper. These correspond to thes*detting for the cycle
topology and the “d-x-n setting” for the 3-legs topology, in the terminologthaf paper.

Both topologies show that our algorithm reduces thg Bellman error more effectively per
feature as well as more effectively overall than the experiments préyiceorted in the work of
Patrascu et al. (2002). Both topologies also show Bellman error eventliaghges as AVI cannot
handle the complexity of the error function as dimensionality increases. I@owmitam can still
achieve low Bellman error by remembering and restoring the best-perfomsigipted feature set
once weakened performance is detected.

We note that our superior performance in reducing Bellman error couttlibesntirely or in
part to the use of AVI for weight training instead of approximate linear gning (ALP), the
method used by Patrascu et al. However, no such systematic superiorioya kor AVI over ALP,
so these results suggest superior performance of the feature le@snihg

736

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Bellman Error

Bellman Error

SysAdmin, 3-Legs Topology
33 12

¥

12

8 91011121314 1516 17 18
Number of Features

‘—e—S—Iegs, Learned—8— 3-legs, Patrascu

34567

SysAdmin, Cycle Topology
2542

1 2 3 456 7 8 9101112131415161718192021222324252627283%30
Number of Features

——o— Cycle, Learned—8—Cycle, Patrasc#

19 20 21 22 23 24 25 26 27 28 29 30

Figure 25: L., Bellman error for the 8sAbmIN domain (10 nodes) for two topologies. Values for
the results from the work of Patrascu et al. (2002) are taken from &@and 3 of the
work of Patrascu et al. (2002).

7.5 Demonstration of Generalization Across Problem Sizes

An asset of the relational feature representation presented in this igaibet learned relational
features are applicable to any problem size in the same domain. In sectiovehéye discussed

737

Wu & GIVAN

Target problem sizes 410 x 20 Tetris

15 blocks BW (15 box, 5 city) B)Yj 30 nodes TiriSO files Lifted-File

Intermediate problem sized0 x 10 Tetris| 10 blocks BW (10 box, 5 city) BX| 15 nodes Tire10 files Lifted-File
Generalize from target size 55 1(171) 1(76) 0.88 (4) 1(25)
Learn in intermediate siz 119 1(170) 1(188) 0.89 (4) 1(25)
Random walk 0.1 0(-) 0.97 (893) 0.29 (6) 1(88)

Figure 26: Performance in intermediate-sized problems by generalizatioa.shéiv here the
performance of value functions learned in target problem sizes whalnated on
intermediate-sized problems, to demonstrate generalization between sizesonio
parison, also on intermediate-sized problems, we show the performamakieffunc-
tions learned directly in the intermediate size as well as the performance difman
walk. Generalization results and intermediate size learning results argesaratwo
trials. For TETRIS, average accumulated rows erased are shown. For the goal-oriented
domains, success ratio and successful plan length (in parentheset)oam for each
domain.

the modeling of a planning domain as an infinite set of MDPs, one for eadiiepnanstance in

the domain. Over this infinite set of MDPs, a feature vector plus a weighowdefines a single
value function that is well defined for every problem instance MDP. Herediscuss the ques-
tion of whether our framework can find a single feature/weight vector auatibn that generalizes
good performance across problem sizes, i.e., for the value furictaefined by such combination,
whether Greedy/) performs similarly well in different problem sizes.

Throughout Section 7, we have demonstrated the direct application oktkdeature/weight
vectors to target problem sizes, (without retraining of weights)—thesdtseare shown in the
target-size lines in the result tables for each domain.HmRIS, BLOCKSWORLD, CONJUNCTIVE-
BOXWORLD, TIREWORLD, and LUFTED-FILEWORLD3, the target-size lines demonstrate direct
successful generalization to target sizes even when the currefgpreizes is significantly smaller.
(In the other domains, there was either no notion of problem siggA®MIN), or insufficient plan-
ning progress to significantly increase problem size when learning fineai problems (KpPLOD-
ING BLOCKSWORLD, ZENOTRAVEL, and TOWERS OFHANOI).)

In this subsection, we consider the generalization from (larger) taizes 80 selected inter-
mediate sizes in these five domains. Specifically, we take the weight vectbfeatnre vectors
resulting from the end of the trials (i.e. with weight vector retrained at thetasiges), and apply
directly to selected intermediate problem sizes without weight retraining. Edritils that termi-
nate before learning reaches the target problemSizee take the weights and features that result
in the best performing policy at the terminating problem sizes. The gendiatizasults are shown
in Figure 26; for comparison, that table also shows the performance sathe intermediate-sized
problems of the value function that was learned directly at the that sizeglhasithe performance
of random walk on that size.

12. Note that one of the trials inENRIS terminates before reaching target size due to non-improving perfmena
and the two trials in LFTED-FILEWORLD3 terminate as target-size performance already reaches optimalitg befor
learning reaches the target size. Still, although a few of the value funatiereslearned at smaller sizes than the
target size, all of the value functions evaluated for generalization waredd at significantly larger sizes than the
intermediate evaluation size.

738

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

In each domain shown the random walk result is much weaker than theagjeaton result,
showing the presence of generalization of learned value functionssaproblem sizes. In the
four goal-oriented planning domains, applying the value functions leamtbeé target sizes equals
the performance achieved by value functions learned directly in the inteataeeailzes (with better
performance in ONJUNCTIVE-BOXWORLD). In TETRIS, however, the generalization result does
not match the result of learning in the intermediate size. We note that in some d@os@iution
strategy is invariant with respect to the problem size (e.g. destroying@atdowers to form correct
ones in BockswoRLD). For some domains the best plan/strategy may change dramatically with
size. For example, inATRIS, a larger number of rows in the board allows strategies that temporary
stack uncompleted rows, but smaller number of rows favors strategiesthatete rows as quickly
as possible. Thus one should not necessarily expect generalizatiogelnedomain sizes in every
domain—this conclusion can be expected to hold whether we are consitleiggneralization of
value functions or of policies.

We have included a discussion of policy-based generalization in the relargdsection (Ap-
pendix A.4), focusing on our previous work on approximate policy iteratitmwever, we note that
policies that generalize between problems of different sizes are no mégsesowell defined than
value functions which generalize between such problems. In our pseiBliwork, we defined
policies that select actions for states of any domain size; in this work weedefine functions that
assign numeric values to states of any domain size. None of this work ¢eesdmding a good
or optimal policy or value function; as far as we know, some problems adrad gompact value
functions, some admit good compact policies, some admit both, and some.neither

8. Discussion and Future Research

We have presented a general framework for automatically learning statefunctions by feature-
discovery and gradient-based weight training. In this framework, wedily select features from
a provided hypothesis space (which is a parameter of the method) to bedamowith Bellman
error features, and use AVI to find weights to associate with these feature

We have proposed two different candidate hypothesis spaces tardea One of these two
spaces is a relational one where features are first-order formulasvetinee-variable, and a beam-
search process is used to greedily select a hypothesis. The othéndsisspace we have consid-
ered is a propositional feature representation where features asededoees. For this hypothesis
space, we use a standard classification algorithm C4.5 (Quinlan, 199@ildalfeature that best
correlates with the sign of the statewise Bellman error, instead of using batlythend magnitude.

The performance of our feature-learning planners is evaluated usthgéward-oriented and
goal-oriented planning domains. We have demonstrated that our relatlanakp represents the
state-of-the-art for feature-discovering probabilistic planning tealesgOur propositional planner
does not perform as well as our relational planner, and cannotajeesbetween problem instances,
suggesting that knowledge representation is indeed critical to the sumfcéssture-discovering
planners.

Although we present results for a propositional feature-learningoagprand a relation feature-
learning approach, the knowledge representation difference is nonthaifference between the
approaches. Historically, our propositional approach was originalhc&wed as a reduction to
classification learning, and so does not attempt to capture the magnitudeBelitnan error during

739

Wu & GIVAN

feature selection, but rather focuses only the sign of the error. lmasinour relational approach
counts objects in order to match the magnitude of the Bellman error.

Because of this difference, we cannot attribute all of the performaiffezathces between the
approaches to the knowledge representation choice. Some differameEformance could be due
to the choice to match sign only in the propositional feature selection. A po$sibie experiment
to identify the sources of performance variation would use a propositiepetsentation involving
regression trees (Dzeroski, Todorovski, & Urbancic, 1995) to capghie magnitude of the error.
This representation might possibly perform somewhat better than the detriserepresentation
shown here, but of course would still not enable the generalization batsiges that the relational
feature learner exhibits.

Bellman-error reduction is of course just one source of guidance thdtt rbi followed in
feature discovery. During our experiments in the IPPC planning domaiading that in many
domains the successful plan length achieved is much longer than optimal discwesed above in
Section 7.3.5. A possible remedy other than deploying search as in oimysevork (Wu et al.,
2008) is to learn features targeting the dynamics inside plateaus, and ssddhtires in decision-
making when plateaus are encountered.

Acknowledgments

This material is based upon work supported in part by the National Screnoelation under Grant
No. 0905372.

Appendix A. Other Related Work
A.1 Other Feature Selection Approaches

A.1.1 FEATURE SELECTION VIA CONSTRUCTIVEFUNCTION APPROXIMATION

Automatic feature extraction in sequential decision-making has been studtesiwork of Utgoff
and Precup (1997), via constructive function approximation (Utgoff&Bp, 1998). This work can
be viewed as a forerunner of our more general framework, limited toggitipnal representations,
binary-valued features, and new features that are single-literalsatenof old features by con-
junction. Also in the work of Rivest and Precup (2003) a variant ofc@ds-Correlation (Fahlman
& Lebiere, 1990), a constructive neural network algorithm, is combinigd TiD-learning to learn
value functions in reinforcement learning. Cascade-Correlation inecrathe adds hidden units
to multi-layered neural networks, where each hidden unit is essentiallgtaréebuilt upon a set
of numerically-valued basic features. Our work provides a framewerlernlizing those prior ef-
forts into a reduction to supervised learning, with explicit reliance on the Balkeneor signal, so
that any feature hypothesis space and corresponding learner ateployed. In particular, we
demonstrate our framework on both binary propositional features ugirtgds the learner and rich
numeric-valued relational features using a greedy beam-searchrle@wmenork provides the first
evaluation of automatic feature extraction in benchmark planning domaingtseveral planning
competitions.

While the work of Utgoff and Precup (1997) implicitly relies on Bellman errogréhis no
explicit construction of a Bellman error training set or discussion of selgétiatures to correlate

740

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

to Bellman error. For instance, their work focuses first on refining eeatifeature for which weight
updates are converging poorly (high variance in weight updatesyeat®ur work focuses first on
finding a feature that correlates to statewise Bellman error, regardledeedier that feature refines
any current feature. In addition, their work selects features online \heleveights of the current
features are being adjusted, so there is no stationary target value fufatiowhich the Bellman
error is considered in the selection of the next new feature. In contrastyork separates weight
training and new feature selection completely. (These differences dnapgsein part due to the
reinforcement learning setting used in Utgoff & Precup, 1997, as aaptosthe planning setting of
our work.)

The selection of hidden unit feature in Cascade-Correlation (Fahlmarb&tes 1990) is based
on the covariance between feature values and errors of the output Eait®utput units that are
estimating a value function, with training data providing the Bellman update of #ha¢ ¥unction,
the output unit error is just Bellman error. Thus, the hidden units learndloeinvork of Rivest
and Precup (2003) are approximations of Bellman-error featuresgustrdearned features are, al-
though this is not made explicit in that work. By making the goal of capturidtya error explicit
here, we provide a general reduction that facilitates the use of anyirigamethod to capture the
resulting feature-learning training sets. In particular, we are able toalgtdemonstrate general-
ization across domain sizes in several large domains, using a relationakfézarner. In contrast,
the single test domain in the work of Rivest and Precup (2003) has a sxedlldize. Nonetheless,
that work is an important precursor to our approach.

A.1.2 FEATURE CONSTRUCTION VIA SPECTRALANALYSIS

Feature-learning frameworks for value functions based upon spaotlysis of state-space con-
nectivity are presented in the work of Mahadevan and Maggioni (2808dPetrik (2007). In these
frameworks, features are eigenvectors of connectivity matrices catetrfrom random walk (Ma-
hadevan & Maggioni, 2007) or eigenvectors of probabilistic transition nestiieetrik, 2007). Such
features capture aspects of long-term problem behaviours, asezpfmothe short-term behaviours
captured by the Bellman-error features. Bellman-error reduction esjitération to capture long-
term behaviors.

Reward functions are not considered at all during feature constnuctithe work of Mahade-
van and Maggioni (2007); but in the work of Petrik (2007), rewamttions are incorporated in the
learning of Krylov basis features, an variant of our Bellman error feat(Parr et al., 2008), to com-
plement the eigenvector features. However, even in Petrik's framewaiard is only incorporated
in features used for policy evaluation rather than in the controlled envinostweconsider.

Essential to our work here is the use of machine learning in factoredsexgegions to handle
very large statespaces and to generalize between problems of difeent Both of these spectral
analysis frameworks are limited in this respect (at least at the currenb$tieelopment). The ap-
proach by Petrik (2007) is presented only for explicit statespaces, avfaletorization approach for
scaling up to large discrete domains is proposed in the work of Mahadedaviaggioni (2007). In
that approach, features are learned for each dimension in the fatitorjzadependent of the other
dimensions. We believe the assumption of independence between the dirséasi@ppropriate
in many domains, including the benchmark planning domains considered inavkr whe Ma-
hadevan and Maggioni factorization approach also suffers the sawbakks as our propositional
approach: the solution has to be recomputed for problems of differestisizhe same domain and

741

Wu & GIVAN

so lacks the flexibility to generalize between problems of different sizesdwd by our relational
approach.

A.2 Structural Model-based and Model-free Solution Methods for Markov Decision
Processes

A.2.1 RELATIONAL REINFORCEMENTLEARNING

In the work of Dxeroski et al. (2001), a relational reinforcement learning (RRL}jesydearns
logical regression trees to represent Q-functions of target MDFs.Widrk is related to ours since
both use relational representations and automatically construct funct@aneathture state value.
In addition to the Q-function trees, a policy tree learner is also introducectiwdink of DZzeroski
et al. (2001) that finds policy trees based on the Q-function trees. Wetdearn an explicit policy
description and instead use only greedy policies for evaluation.

The logical expressions in RRL regression trees are used as decasids ip computing the
value function (or policy) rather than as numerically valued features featinombination, as in our
method. Generalization across problem sizes is achieved by learning peéisy the learned value
functions apply only to the training problem sizes. To date, the empiricdtsdsam this approach
have failed to demonstrate an ability to represent the value function usefutiyniiar planning
benchmark domains. While good performance is shown for simplified goals &l placing a
particular block A onto a particular block B, the technique fails to capturettietare in richer
problems such as constructing particular arrangements of Blockswored4oWRRL has not been
entered into any of the international planning competitions. These difficuiesenting complex
relational value functions persist in extensions to the original RRL workefens & [Zeroski,
2004, Driessens et al., 2006), where again only limited applicability is shobrtchmark planning
domains such as those used in our work.

A.2.2 PoLICY LEARNING VIA BOOSTING

In the work of Kersting and Driessens (2008), a boosting approacltregliced to incrementally
learn features to represent stochastic policies. This is a policy-iteratiwantaf our feature-
learning framework, and clearly differs from our work as policy repreations are learned instead
of value function representations. Using the regression tree learhBET(Blockeel & De Raedt,
1998), the feature learner demonstrated advantages against pieiRbuwgork in the task of accom-
plishing on(A,B) in a 10-block problem. Applicability to a simple continuous domeia ¢orridor
world) is also demonstrated. As in the line of RRL work, only limited applicability todmenark
planning domains is shown here. One probable source of this limited applicébility model-free
reinforcement-learning setting where the system does not model the prdipteamics explicitly.

A.2.3 HTTED VALUE ITERATION

Gordon (1995) has presented a method of value iteration détled value iteratiorthat is suitable
for very large state spaces but does not require direct featurdiseldastead, the method relies on
a provided kernel function measuring similarity between states. Selectiois &Etimel function can
be viewed as a kind of feature selection, as the kernel identifies whichesagets are significant
in measuring similarity. To our knowledge, techniques from this class havbea®m applied to
large relational planning problems like those evaluated in this paper. Wetddhat selection of

742

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

a single relational kernel for all domains would measure state similarity in a dangependent
manner and thus we believe such a kernel could not adapt to the indididrains the way our
work here does. Thus we would expect inferior performance froch am approach; however, this
remains to be investigated. Selection of domain-specific kernels for stachsmning domains,
automatically, is also yet to be explored.

A.2.4 EXACT VALUE ITERATION IN FIRST-ORDERMDPS

Previous work has used lifted techniques to exactly solve first-orderdMiyReformulating exact
solution techniques from explicit MDPs, such as value iteration. Boutiliel. ¢2@01) and Holl-
dobler and Skvortsova (2004) have independently used two différstabrder languages (situation
calculus and fluent calculus, respectively) to define first-order MDIRsboth works, the Bell-
man update procedure in value iteration is reformulated using the respeaiibvgus, resulting in
two first-order dynamic-programming methods: symbolic dynamic programmibg)Sand first-
order value iteration (FOVI). Only a simple boxworld example with human-gssomputation is
demonstrated in the SDP work, but the method serves as a basis for FGahRef & Boutilier,
2009), which replaces exact techniques with heuristic approximation @n todcale the techniques
to benchmark planning domains. Application of FOVI on planning domains is aenyonstrated
on the colored blocksworld benchmark, and is limited to under 10 blocks (btiéd Karabaev, &
Skvortsova, 2006).

In the work of Kersting et al. (2004), constraint logic programming is usetfine a relational
value iteration method. MDP components, such as states, actions, andgeararfirst abstracted
to form a Markov decision program, a lifted version of an MDP. A relatid®ellman operation
(ReBel) is then used to define updates of Q-values and state values. Eihgiuidy of the ReBel
approach has been limited to 10-step backups from single-predicateigdaé¢sblocksworld and
logistics domains.

Exact techniques suffer from difficulty in representing the full complegitthe state-value
function for arbitrary goals in even mildly complex domains. These previarksiserve to illus-
trate the central motivation for using problem features to compactly approitme structure of a
complex value function, and thus to motivate the automatic extraction of featsigtsdied in this
work.

A.3 Comparison to Inductive Logic Programming Algorithms

The problem of selecting a numeric function on relational states to match the Redima training
set is a “first-order regression” problem for which there are somiéada systems described in the
Inductive logic programming (ILP) literature (Quinlan, 1996; Karalic & 8@ 1997).

It is important to note that most ILP work has studied the learninglagsifierson relational
data (Muggleton, 1991), but here we are concerned with leamimngeric function®n relational
data (such as our states). The latter problem is called “first-ordersstgné within the ILP lit-
erature, and has received less study than relational classificatioe, Werchoose to design our
own proof-of-concept relational learner for our experiments ratiear use one of the few previous
systems. Separate work is needed to compare the utility of this relational rlegtheprevious
regression systems; our purpose here is to demonstrate the utility of Bellnaartraining data
for finding decision-theoretic value-function features. Our simple lednmees suffices to create
state-of-the-art domain-independent planning via automatic featureiselec

743

Wu & GIVAN

ILP classification systems often proceed either from general to spegifitom specific to
general, in seeking a concept to match the training data. For regressioevdr, there is no such
easy ordering of the numeric functions to be searched. We design irssteathod that searches
a basic logical expression language from simple expressions to more cogmplessions, seeking
good matches to the training data. In order to control the branching fadiie, still allowing more
complex expressions to be considered, we heuristically build long expmessut of only those
short expressions that score best. In other words, we use a baech séthe space of expressions.

There are several heuristic aspects to our method. First, we defingisticeset of basic ex-
pressions from which our search begins. Second, we define arstieunethod of combining
expressions to build more complex expressions. These two heuristic eleaneilssigned so that
any logical formula without disjunction, with one free variable, can be byiltdpeated combina-
tion from the basic expressions. Finally, the assumption that high-scoqorgssions will be built
only out of high-scoring parts is heuristic (and often not true). This afitieuristic assumption
makes it likely that our learner will often miss complex features that match théngadata well.
There is no known method that guarantees tractably finding such features

A.4 Approximate Policy Iteration for Relational Domains

Our planners use greedy policies derived from learned value fusctitbernatively, one can di-
rectly learn representations for policies. The policy-tree learning in thd wbDZeroski et al.
(2001), discussed previously in Appendix A.2.1, is one such exampleeriRevork uses a rela-
tional decision-list language to learn policies for small example problems émaraglize well to
perform in large problems (Khardon, 1999; Martin & Geffner, 2004piY et al., 2002). Due to
the inductive nature of this line of work, however, the selected policieasiaoally contain severe
flaws, and no mechanism is provided for policy improvement. Such policy weprent is quite
challenging due to the astronomically large highly structured state spacéisearadational policy
language.

In the work of Fern et al. (2006), an approximate version of policy itematiddressing these
issues is presented. Starting from a base policy, approximate policy iteitatiatively generates
training data from an improved policy (using policy rollout) and then uses #railgg algorithm in
the work of Yoon et al. (2002) to capture the improved policy in the compaaisbn-list language
again. Similar to our work, the learner in the work of Fern et al. (2006) aintake a flawed
solution structure and improve its quality using conventional MDP technidoidisat case, finding
an improved policy with policy rollout) and machine learning. Unlike our workhimwork of Fern
et al. (2006) the improved policies are learned in the form of logical detists. Our work can be
viewed as complementary to this previous work in exploring the structuredseptation of value
functions where that work explored the structured representationliofgso Both approaches are
likely to be relevant and important to any long-term effort to solve strudtgtechastic decision-
making problems.

We note that feature-based representation, as considered hererandlly in the MDP liter-
ature, is used to represent value functions rather than policies. Conepaesentation of policies
can be done via value functions (with greedy execution) or more direotlgxample, using deci-
sion lists. The previous API work just discussed uses a direct ragegimn for policies, and never
uses any compact representation of value functions. Instead, samplialyi® functions is used in
the policy evaluation step of policy iteration.

744

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

One can imagine a different and novel approach to API in which the canfipaitire-based
representation is used for value functions, with greedy execution astlty pepresentation. In
that approach, feature discovery similar to what we explore here foe veeration could be de-
signed to assist the policy evaluation phase of the policy iteration. We lesherfwevelopment
and evaluation of that idea to future work. We expect the two approdoh&BI, as well as our
current approach to value iteration, to have advantages and disaglsittat vary with the domain
in ways that have yet to be well understood. Some domains have natunphcbdirect policy
representations (“run if you see a tarantula”), whereas others tugatha compactly represented
via value functions (“prefer restaurants with good review ratings”).seRech in this area must
eventually develop means to combine these compact representationseifecti

A.5 Automatic Extraction of Domain Knowledge

There is a substantial literature on learning to plan using methods other teah réjpresentation
of a value function or a reactive policy, especially in the deterministic planiitie@ture. These
techniques are related to ours in that both acquire domain specific kn@wedglanning experi-
ence in the domain. Much of this literature targets control knowledge fdicpkar search-based
planners (Estlin & Mooney, 1997; Kambhampati et al., 1996; Veloso et @5)] and is distant
from our approach in its focus on the particular planning technology asddn the limitation to
deterministic domains. It is unclear how to generalize this work to value-functostruction or
probabilistic domains.

However, the broader learning-to-plan literature also contains workluging declarative
learned domain knowledge that could well be exploited during featuredisgdor value func-
tion representation. In the work of Fox and Long (1998), a pre-msing module called TIM is
able to infer useful domain-specific and problem-specific structureb, asityping of objects and
state invariants, from descriptions of domain definition and initial states. Wiaitetimvariants are
targeted in that work to improving the planning efficiency of a Graphplaadp&nner, we suggest
that future work could exploit these invariants in discovering featunegdioie function representa-
tion. Similarly, in the work of Gerevini and Schubert (1998), DISCOPLARrs state constraints
from the domain definition and initial state in order to improve the performan8&®ibased plan-
ners; again, these constraints could be incorporated in a featuré $kargur method but have not
to date.

Appendix B. Results and Discussions for Five Probabilistic Rnning Competition
Domains

In Section 7.3, we have presented the results of our relational andgitiopal feature learners for
BLoCKsSWORLD and GONJUNCTIVE-BOXWORLD. Here we present the results of our relational
feature learner for the following five probabilistic planning competition domal&EWORLD,
ZENOTRAVEL, EXPLODING BLOCKSWORLD, TOWERS OFHANOI, and LFTED-FILEWORLD3.

B.1 Tireworld

We use the TREWORLD domain from the second IPPC. The agent needs to drive a vehicle throug
a graph from the start node to the goal node. When moving from one toaaie adjacent node,
the vehicle has a certain chance of suffering a flat tire (while still arriagnthe adjacent node).

745

Wu & GIVAN

Trial #1

of features o 1 2 3 3 3 4 4 5 5 5 5
Problem difficulty 4 4 4 4 5 6 6 9 9 10 20 30
Success ratio 0.52 0.81 0.84 0.86 0.86 0.84 0.88 0.85 0.86 0.86 0.91 0.91
Plan length 4 3 4 2 2 2 3 3 4 4 5 5
Accumulated time (Hr) 0.3 3.1 12 17 18 18 19 21 22 23 29 36
Target size SR 0.17 0.53 0.81 0.83 0.83 0.82 0.90 0.91 0.91 0.91 0.92 0.92
Target size Slen. 5 4 9 5 4 4 6 6 6 6 5 6
Trial #2

of features o 1 2 3 3 3 4 4 4 4

Problem difficulty 4 4 4 4 5 6 6 10 20 30

Success ratio 0.52 0.81 0.85 0.86 0.93 0.81 0.89 0.85 0.86 0.88

Plan length 4 3 3 2 3 2 3 4 4 5

Accumulated time (Hr) 0.5 3.7 6.9 10 11 11 12 14 18 24

Target size SR 0.19 0.49 0.80 0.82 0.91 0.62 0.92 0.91 0.90 0.88

Target size Slen. 7 3 9 4 5 2 5 5 6 6

Figure 27: TREWORLD performance (averaged over 600 problems) for relational learneaddf
one feature per column until success ratio exceefs and average successful plan
length is less thadn, for n nodes, and then increase problem difficulty for the next
column. Plan lengths shown are successful trials only. Problem difficalasieasured
in number of nodes, with a target problem size of 30 nodes. Some columpsiitted
as discussed in Section 7.1.

The flat tire can be replaced by a spare tire, but only if there is suchra Spapresent in the node
containing the vehicle, or if the vehicle is carrying a spare tire. The vehaiepick up a spare
tire if it is not already carrying one and there is one present in the nadaioing the vehicle. The
default setting for the second-IPPC problem generator for this domfireda problem distribution
that includes problems for which there is no policy achieving the goal withghitity one. Such
problems create a tradeoff between goal-achievement probability aedtedmumber of steps to
the goal. How strongly our planner favors goal achievement versars shjectories to the goal is
determined by the choice of the discount factor made in Section 6.1.

We start with 4-node problems in our relational learner and increase sirowdes ton + 1
nodes whenever the success ratio exceeds 0.85 and the averaggs&uqdan length is better than
4n steps. The target problem size is 30 nodes. The results are shown ied-iguand 27.

In TIREWORLD, our relational learner again is able to find features that generalize watb®
problems. Our learner achieves a success ratio of about 0.9 on 3(@raalems. It is unknown
whether any policy can exceed this success ratio on this problem distriphbovever, neither
comparison planner, FOALP nor FF-Replan, finds a higher sucatsgolicy.

We note that some improvements in success rate in this domain will necessarigdutated
with increases in plan length because success-rate improvements maytbepdtiedeviations to
acquire spare tires.

746

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Trial #1

of features 0 1 1 2 3 4 5 6 7 8 9
Problem difficulty 3,1,1 31,1 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2 3,2,2
Success ratio 0.79 0.8 0.59 0.52 0.54 0.55 0.54 0.52 0.56 0.53 0.55
Plan length 253 255 413 440 437 450 411 440 426 428 451
Accumulated time (Hr))0.75 1.7 34 71 11 15 19 25 30 36 41
Target size SR 0.06 0.08 0.09 0.09 0.12 0.11 0.10 0.08 0.11 0.08 0.12
Target size Slen. 916 1024 1064 1114 1050 1125 1111 1115 1061 1174 1195
Trial #2

of features 0 1 2 2 3 4 5 6 7 8 9
Problem difficulty 3,1,13,1,13,11 3,2,2 3,2,2 32,2 3,22 3,22 32,2 3,2,2 3,2,2
Success ratio 0.77 0.79 0.80 0.55 0.55 0.50 0.53 0.12 0.12 0.12 0.10
Plan length 262 254 233 391 425 415 422 O 0 0 0
Accumulated time (Hr)) 1.3 2.3 33 53 89 13 17 22 29 36 43
Target size SR 0.05 0.10 0.10 0.09 0.09 0.08 0.10 0.02 0.02 0.02 0.01
Target size Slen. 814 1008 1007 1067 1088 1014 1078 O 0 0 0

Figure 28: ZNOTRAVEL performance (averaged over 600 problems) for relational learnee. T
problem difficulty shown in this table lists the numbers of cities, travelers, &oh#,
with a target problem size of 10 cities, 2 travelers, and 2 aircraft. We addaature
per column until success ratio excedds, and then increase problem difficulty for the
next column. Plan lengths shown are successful trials only.

B.2 Zenotravel

We use the ENOTRAVEL domain from the second IPPC. The goal of this domain is to fly all trav-
elers from their original location to their destination. Planes have (finitgeragiscrete) fuel levels,
and need to be re-fuelled when the fuel level reaches zero to corftyinge Each available activity
(boarding, debarking, flying, zooming, or refueling) is divided into twages, so that an activity
X is modelled as two actions start-X and finish-X. Each finish-X activity hdsighj probability

of doing nothing. Once a “start” action is taken, the corresponding “firastion must be taken
(repeatedly) until it succeeds before any conflicting action can be dtarkés structure allows the
failure rates on the “finish” actions to simulate action costs (which were reat esplicitly in the
problem representation for the competition). A plane can be moved betwesgiolts by flying or
zooming. Zooming uses more fuel than flying, but has a higher sucoaisallity.

We start with a problem difficulty of 3 cities, 1 traveler, and 1 aircraft using relational
feature learner. Whenever the success ratio exde8dw/e increase the numberof travelers and
aircraft by 1 if the number of cities is no less th@am — 2, and increase the number of cities by one
otherwise. The target problem size is 10 cities, 2 travelers, and 2 &rZeNOTRAVEL results for
the relational learner are shown in Figures 18 and 28.

747

Wu & GIVAN

The relational learner is unable to find features that enable AVI to actiiewhreshold success
rate (0.8) for 3 cities, 2 travelers, and 2 aircraft, although 9 relatioa#iifes are learned. The trials
were stopped because no improvement in performance was achiegeddoal iterations of feature
addition. Using a broader seard¥ (= 160, ¢ = 3, andd = 3) we are able to find better features
and extend the solvable size to several cities with success rate 0.9 (ot Bace as all results in
this paper use the same search parameters, but reported in Wu & Gian), But the runtime also
increases dramatically, to weeks. We believe the speed and effectwefitbe relational learning
needs to be improved to excel in this domain, and a likely major factor is improvedl&dge
representation for features so that key concepts EN@TRAVEL are easily represented.

Trial two in Figure 28 shows a striking event where adding a single netwrieto a useful value
function results in a value function for which the greedy policy cannottiredgoal at all, so that
the success ratio degrades dramatically immediately. Note that in this small prsizienabout
ten percent of the problems are trivial, in that the initial state satisfies the gfiat.the addition
of the sixth feature in trial two, these are the only problems the policy can.sohis reflects the
unreliability of our AVI weight-selection technique more than any aspectiofeature discovery:
after all, AVI is free to assign a zero weight to this new feature, but doesAdditional study of
the control of AVI and/or replacement of AVI by linear programming methigsdadicated by this
phenomenon; however, this is a rare event in our extensive experiments

B.3 Exploding Blocksworld

We also use EPLODING BLoCckswoORLDfrom the second IPPC to evaluate our relational planner.
This domain differs from the normal Blocksworld largely due to the blocksrtgacertain proba-
bility of being “detonated” when they are being put down, destroying ¢bjeeneath (but not the
detonating block). Blocks that are already detonated once will not beate again. The goal
state in this domain is described in tower fragments, where the fragmentst@eneoally required

to be on the table. Destroyed objects cannot be picked up, and bloakstdanput down on de-
stroyed objects (but a destroyed object can still be part of the goal ifiebessary relationships
were established before or just as it was destroyed).

We start with 3-block problems using our relational learner and increaserf blocks ton + 1
blocks whenever the success ratio exceeds 0.7. The target problesnasez 5 and 10 blocks.
EXPLODING BLOCKSWORLD results for the relational learner are shown in Figures 19 and 29.
The results in EPLODING BLOCKSWORLD are not good enough for the planner to increase the
difficulty beyond 4-block problems, and while the results show limited genatadiz to 5-block
problems, there is very little generalization to 10-block problems.

Our performance in this domain is quite weak. We believe this is due to the peesEmany
dead-end states that are reachable with high probability. These arettdwevelteere either the table
or one of the blocks needed in the goal has been destroyed, befolgelaein question achieved the
required properties. Our planner can find meaningful and relevahiriss: the planner discovers
that it is undesirable to destroy the table, for instance. However, théingspartial understand-
ing of the domain cannot be augmented by random walk (as it is in some otimgtirdosuch as
BLockswORLD and GONJUNCTIVE-BOXWORLD) to enable steady improvement in value, lead-
ing to the goal; random walk in this domain invariably lands the agent in a dehd\@my short
successful plan length, low probability of reaching the goal, and (ratslnere) very high unsuc-
cessful plan length (caused by wandering in a dead end region)stuggeneed for new techniques

748

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Trial #1

of features o 1 2 3 4 5 6 7 7 8 9 10
Problem difficulty 3 3 3 3 3 3 3 3 4 4 4 4
Success ratio 0.56 0.58 0.56 0.63 0.56 0.68 0.62 0.71 0.4 0.45 0.43 0.44
Plan length 1 2 1 2 1 1 2 2 4 5 4 5

Accumulated time (Hr) 0.6 1.4 22 3.1 42 59 87 11 12 20 28 38
Target size #1 SR 0.12 0.12 0.14 0.22 0.20 0.31 0.16 0.34 0.33 0.31 0.31 0.29
Target size #1 Slen. 3 3 3 5 4 6 9 6 6 5 5 5

Target size #2 SR O O O 0.000.000.03 0 0.020.030.020.020.01
Target size #2 Slen. - - =10 4 24 - 19 26 23 22 15
Trial #2

of features o 1 2 3 4 5 5 6 7 8 9
Problem difficulty 3 3 3 3 3 3 4 4 4 4 4
Success ratio 0.56 0.56 0.55 0.63 0.55 0.75 0.45 0.45 0.43 0.42 0.36
Plan length 1 2 1 2 1 2 4 5 5 4 4

Accumulated time (Hr)) 0.6 1.3 2.1 29 37 46 53 14 22 31 39
Target size #1 SR 0.14 0.15 0.12 0.18 0.17 0.33 0.31 0.32 0.31 0.28 0.30
Target size #1 Slen. 4 3 4 6 4 6 6 6 6 5 5
Target size #2 SR O O O 0.010.000.020.010.010.020.010.01
Target size #2 Slen. - - =19 18 26 27 15 21 15 18

Figure 29: EXPLODING BLOCKSWORLD performance (averaged over 600 problems) for relational
learner. Problem difficulties are measured in number of blocks. We aglfeature per
column until success ratio exceddlg, and then increase problem difficulty for the next
column. Plan lengths shown are successful trials only. Target probiEn#$ has 5
blocks, and target problem size #2 has 10 blocks.

aimed at handling dead-end regions to handle this domain. These resultsstieteothat our tech-
nique relies on random walk (or some other form of search) so that theekkéeatures need not
completely describe the desired policy.

B.4 Towers of Hanoi

We use the domain@weRs oFHANOI from the first IPPC. In this probabilistic version of the well-
known problem, the agent can move one or two discs simultaneously, beligteesmall probability
of going to a dead-end state on each move, and this probability dependeetimwthe largest disc
has been moved and which type of disc move (one or two at a time) is being \W&edote that
there is only one planning problem in each problem size here.

It is important to note that 100% success rate is generally unachievable gothigin due to
the unavoidable dead-end states.

749

Wu & GIVAN

Trial #1

of features 0 1 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 2 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.70 0.75 0.11 044 073 0 O O O O 051 0o O O
Plan length 4 2 43 26 4 - - - - - 4 - - -
Accumulated time (Hr) 0.0 00 01 02 03 04 05 11 12 21 22 23 18 53
Target size #1 SR 0.07 0.15 001 008 003 0 O O O O 052 053 0 043
Target size #1 Slen. 13 9 99 9% 337 - - - - - 4 4 - 4
Target size #2 SR 0.00 O 0 0O 000 0 0 O O O o 0 0 O
Target size #2 Slen. 1 - - - 107 - - - - - = - - -
Trial #2

of features 0 0 1 2 3 3 4 5 6 7 8 8 20 38
Problem difficulty 2 3 3 3 3 4 4 4 4 4 4 5 5 5
Success ratio 0.71 0.23 014 042 075 0 0O O O O 053 0 0 O
Plan length 4 12 37 25 4 - - - - - 4 - - -
Accumulated time (Hr) 0.0 00 02 03 03 04 05 11 19 23 26 27 6 16
Target size #1 SR 01 009 00 009 003 0 O O O O 049 0O O O
Target size #1 Slen. 14 11 105 9% 41 - - - - — 4 - - -
Target size #2 SR 0.00 01 O 0O 00O O 0 0 O O oO 0O 0 O
Target size #2 Slen. 16 29 - - 107 - - - - - - - - =

Figure 30: TowerRs oFHANOI performance (averaged over 600 problems) for relational learner.
We add one feature per column until success ratio exc@&ds' for » discs, and then
increase problem difficulty for the next column. Plan lengths shown axeessful trials
only. Problem difficulties are measured in number of discs, with a targblgrosize #1
of 4 discs and size #2 of 5 discs. Some columns are omitted as discussetion 3ec

We start with the 2-disc problem in our relational learner and increasertiem difficulty
fromn discs ton + 1 discs whenever the success ratio excéeds . The target problem sizes are
4 and 5 discs. DWERS OFHANOI results for the relational learner are shown in Figures 19 and 30.

The learner is clearly able to adapt to three- and four-disc problemgvauip around 50%
success rate on the four disc problem in both trials. The optimal solutionddotir disc problem
has success rate 75%. This policy uses single disc moves until the large disved and then
uses double disc moves. Policies that use only single disc moves or onliedbisb moves can
achieve success rates of 64% and 58%, respectively, on the foyprdidem. The learned solution
occasionally moves a disc in a way that does not get closer to the goatimgdls success.

Unfortunately, the trials show that an increasing number of new featueesegded to adapt
to each larger problem size, and in our trials even 38 total features aemoogh to adapt to the
five-disc problem. Thus, we do not know if this approach can extenad ®vive discs. Moreover,
the results indicate poor generalization between problem sizes.

We believe it is difficult for our learner (and for humans) to represegv@d value function
across problem sizes. Humans deal with this domain by formulating a goadirezpolicy, not by
establishing any direct idea of the value of a state. Finding such a reepaicy automatically is
an interesting open research question outside the scope of this paper.

750

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

B.5 Lifted-Fileworld3

As described in Section 6.1, we use the doma#mTED-FILEWORLD3, which is a straightforwardly
lifted form of FILEwORLD from the first IPPC, restricted to three folders. To reach the goal offilin
all files, an action needs to be taken for each file to randomly determine vahéitgr that file should
go into. There are actions for taking out a folder, putting a file in that fokeat returning the folder
to the cabinet. The goal is reached when all files are correctly filed in thetéat folders.

We note that both EEWORLD and LFTED-FILEWORLD3 are very benign domains. There
are no reachable dead ends and very few non-optimal actions, eadtticbfis directly reversible.
Random walk solves this domain with success rate one even for thirty filese€hnical challenge
posed then is to minimize unnecessary steps so as to minimize plan length. The qatical
solves the:-file problem with betweefin + 1 and2n + 5 steps, depending on the random file types
generated.

Rather than preset a plan-length threshold for increasing difficulty fi@sction ofn), here we
adopt a policy of increasing difficulty whenever the method fails to improve lglagth by adding
features. Specifically, if the success ratio exceeds 0.9 and one feaadded without improving
plan length, we remove that feature and increase problem difficulty instead

We start with 1 file problems in our relational learner and increase fidites ton + 1 files
whenever the performance does not improve upon feature additiontafdet problem size is 30
files. LIFTED-FILEWORLD3 results for the relational learner are shown in Figures 20 and 31.

The results show that our planner acquires an optimal policy for the 3tfdet size problem
after learning four features, in each of the two trials. The results in this toaggin reveal the
weakness of our AVI weight-selection method. Although four featuregaough to define an opti-
mal policy, as problem difficulty increases, AVI often fails to find the wemggignment producing
such a policy. When this happens, further feature addition can be teigigas in trial 1. In this
domain, the results show that such extra features do not prevent@wilfinding good weights on
subsequent iterations, as the optimal policy is recovered again with the feagiere set. Nonethe-
less, here is another indication that improved performance may be availabenk on alternative
weight-selection approaches, orthogonal to the topic of feature selection

References

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to expesssls control knowledge for
planning.Artificial Intelligence 116, 123-191.

Bertsekas, D. P. (1995pynamic Programming and Optimal ContréAthena Scientific.
Bertsekas, D. P., & Tsitsiklis, J. N. (1998Yeuro-Dynamic ProgrammingAthena Scientific.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-ordi@gical decision trees.
Artificial Intelligence 101, 285-297.

Bonet, B., & Givan, R. (2006). Non-deterministic planning track of the@id@ernational planning
competition. Website. http://www.ldc.usb.ve/ bonet/ipc5/.

13. It is possible to specify a plan-length threshold function for triggeinegease in difficulty in this domain, as we
have done in other domains. We find that this domain is quite sensitive to ¢dfeedf that function, and in the end
it must be chosen to trigger difficulty increase only when further feaddition is fruitless at the current difficulty.
So, we have directly implemented that automatic method for triggering diffimcrease.

751

Wu & GIVAN

Trial #1

of features 0 1 2 3 3 4 4 4 4 4 4 4 4 4 55567 7 77
Problem difficulty 1 1 1 1 2 2 3 4 8 10 11 12 13 14 1415161616 18 19 20
Success ratio 11111111 1 11111111111 11
Plan length 14 8 4 3 7 6 9 11 21 25 30 29 31 49 37355537 37 41 43 45
Accumulated time (Hr)0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 2.4 3.8 4.85.97.389 10 13 1591871 49 62
Target size SR 111000 012002001 1 1 1 221111 1 11
Target size Slen. 25113487 - - - — 87 82 91 88 93 65 90 91 6591 6565 65 111 65
Trial #2

of features 0 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Problem difficulty 1 1 1 1 2 2 3 4 5 8 9 10 14 151617181920 23 24 25
Success ratio 1 1 1 1 1 1 1 1 1111 1 1111111 1 1
Plan length 14 8 4 3 7 6 9 12 14 21 23 25 33 35 6265414349 91 53 55
Accumulated time (Hr)0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.6 253.13.99.0 11 13 19 27 3GB@466 74
Target size SR 1 1 1 0 0 0 009 1 1 12 2 212 1 1211111 11
Target size Slen. 2511358 - — - — 85 88 82 82 91 96 87 91 93 97 65 65 107 82 65

Figure 31: LFTED-FILEWORLD3 performance (averaged over 600 problems) for relational
learner. We add one feature per column until success ratio exceedsdoa@@ding one
extra feature does not improve plan length, and then increase probligulgiffor the
next column (after removing the extra feature). Plan lengths shown ecessful trials
only. Problem difficulties are measured in number of files, with a targetgmobize of
30 files. Some columns are omitted as discussed in Section 7.1.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programmindifet-order MDPs.
In Proceedings of the Seventeenth International Joint Conference orcidttlfitelligence
pp. 690-700.

Chandra, A., & Merlin, P. (1977). Optimal implementation of conjunctive tpsein relational data
bases. IrProceedings of the Ninth Annual ACM Symposium on Theory of Comppfing
77-90.

Davis, R., & Lenat, D. (1982)Knowledge-Based Systems in Artificial IntelligenbcGraw-Hill,
New York.

Driessens, K., & Beroski, S. (2004). Integrating guidance into relational reinforceneanhing.
Machine Learning57, 271-304.

Driessens, K., Ramon, J., &&&ner, T. (2006). Graph kernels and gaussian processes faomala
reinforcement learningMachine Learning64, 91-119.

Dzeroski, S., DeRaedt, L., & Driessens, K. (2001). Relational reiefoent learning.Machine
Learning 43, 7-52.

Dzeroski, S., Todorovski, L., & Urbancic, T. (1995). Handling reahbers in ILP: A step towards
better behavioural clones. Froceedings of the Eighth European Conference on Machine
Learning pp. 283—-286.

752

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Estlin, T. A., & Mooney, R. J. (1997). Learning to improve both efficieaogl quality of planning.
In Proceedings of the Fifteenth International Joint Conference on Atrtificialligence pp.
1227-1232.

Fahiman, S., & Lebiere, C. (1990). The cascade-correlation learngmitecture. InAdvances in
Neural Information Processing System$p. 524 — 532.

Farias, V. F., & Van Roy, B. (2004). Tetris: A study of randomized ¢a@ist sampling. IrProba-
bilistic and Randomized Methods for Design Under Uncertaityringer-Verlag.

Fawcett, T. (1996). Knowledge-based feature discovery for etrafuéunctions. Computational
Intelligence 12(1), 42—-64.

Fern, A., Yoon, S., & Givan, R. (2004). Learning domain-specifictiagriknowledge from random
walks. InProceedings of the Fourteenth International Conference on AutomdgethiAg
and Schedulingpp. 191-199.

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration withadiqy language bias:
Solving relational Markov decision processésurnal of Artificial Intelligence Research5,
75-118.

Fox, M., & Long, D. (1998). The automatic inference of state invariantslih Dournal of Artificial
Intelligence Researcl9, 367—421.

Gerevini, A., & Schubert, L. (1998). Inferring state constraints famdm-independent planning.
In Proceedings of the Fifteenth National Conference on Artificial Intelligeppe905—-912.

Gordon, G. (1995). Stable function approximation in dynamic programmimgrdceedings of the
Twelfth International Conference on Machine Learnipp. 261-268.

Gretton, C., & Thébaux, S. (2004). Exploiting first-order regression in inductive pdigction.
In Proceedings of the Twentieth Conference on Uncertainty in Artificial Inteltigeop. 217—
225.

Guestrin, C., Koller, D., & Parr, R. (2001). Max-norm projections factbred MDPs. IProceed-
ings of the Seventeenth International Joint Conference on Avrtificial Ingeltig pp. 673—680.

Holldobler, S., Karabaev, E., & Skvortsova, O. (2006). FluCaP: Arista search planner for
first-order MDPs.Journal of Artificial Intelligence Research7, 419-439.

Holldobler, S., & Skvortsova, O. (2004). A logic-based approach twadyic programming. In
Proceedings of the Workshop on “Learning and Planning in MarkovcBsses—Advances
and Challenges” at the Nineteenth National Conference on Artificial Inteitbgepp. 31-36.

Kakade, S. (2001). A natural policy gradient. Amvances in Neural Information Processing
Systems 14op. 1531-1538.

Kambhampati, S., Katukam, S., & Qu, VY. (1996). Failure driven dynamichezmtrol for partial
order planners: An explanation based approdatificial Intelligence 88(1-2), 253-315.

Karalic, A., & Bratko, I. (1997). First order regressiddachine Learning26, 147—-176.

Keller, P., Mannor, S., & Precup, D. (2006). Automatic basis functiorsttaction for approxi-
mate dynamic programming and reinforcement learnindg?rbteedings of the Twenty-Third
International Conference on Machine Learnjmp. 449-456.

753

Wu & GIVAN

Kersting, K., Van Otterlo, M., & De Raedt, L. (2004). Bellman goes relatiolraProceedings of
the Twenty-First International Conference on Machine Learnppy 465-472.

Kersting, K., & Driessens, K. (2008). Non-parametric policy gradieAtsunified treatment of
propositional and relational domains. Pnoceedings of the Twenty-Fifth International Con-
ference on Machine learningp. 456—-463.

Khardon, R. (1999). Learning action strategies for planning domairtdicial Intelligence 1131-
2), 125-148.

Lagoudakis, M. G., Parr, R., & Littman, M. L. (2002). Least-squares puglin reinforcement
learning for control. IFSETN 02: Proceedings of the Second Hellenic Conference ,qupAl
249-260.

Mahadevan, S., & Maggioni, M. (2007). Proto-value functions: A Lajala framework for learn-
ing representation and control in Markov decision procesdesrnal of Machine Learning
Research8, 2169-2231.

Martin, M., & Geffner, H. (2004). Learning generalized policies frotarming examples using
concept language#\pplied Intelligence20, 9-19.

Mitchell, T. M. (1997).Machine Learning McGraw-Hill.
Muggleton, S. (1991). Inductive logic programmingew Generation Computing(4), 295-318.

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., & Littman, M. (2008). A&nalysis of linear
models, linear value-function approximation, and feature selection fdoreeament learning.
In Proceedings of the Twenty-Fifth International Conference on Machiaenirg, pp. 752—
759.

Parr, R., Painter-Wakefield, C., Li, L., & Littman, M. (2007). Analyzingtfiea generation for
value-function approximation. IRroceedings of the Twenty-Fourth International Conference
on Machine Learningpp. 737—-744.

Patrascu, R., Poupart, P., Schuurmans, D., Boutilier, C., & GuestrinQG2)2Greedy linear value-
approximation for factored Markov decision processes.Pioceedings of the Eighteenth
National Conference on Atrtificial Intelligencpp. 285-291.

Petrik, M. (2007). An analysis of Laplacian methods for value functigor@gamation in MDPs.
In Proceedings of the twentith International Joint Conference on Atrtificitlligence pp.
2574-2579.

Quinlan, J. R. (1993)C4.5: Programs for Machine LearnindgMorgan Kaufmann.

Quinlan, J. R. (1996). Learning first-order definitions of functiafmirnal of Artificial Intelligence
Researchb, 139-161.

Rivest, F., & Precup, D. (2003). Combining TD-learning with cascamteetation networks. In
Proceedings of the Twentieth International Conference on Machineniregipp. 632—639.

Sanner, S., & Boutilier, C. (2006). Practical linear value-approximatiohrtigues for first-order
MDPs. InProceedings of the Twenty-Second Conference on Uncertainty in Attifitadli-
gencepp. 409-417.

Sanner, S., & Boutilier, C. (2009). Practical solution techniques for-dirder MDPs. Atrtificial
Intelligence 1735-6), 748—788.

754

AUTOMATIC INDUCTION OF BELLMAN -ERRORFEATURES FORPROBABILISTIC PLANNING

Singh, S., Jaakkola, T., Littman, M., & Szepesvari, C. (2000). Convergeesults for single-step
on-policy reinforcement-learning algorithmiglachine Learning38(3), 287—308.

Sutton, R. S. (1988). Learning to predict by the methods of temporatelifbesMachine Learning
3, 9-44.

Sutton, R. S., & Barto, A. G. (1998Reinforcement Learning: An IntroductioMIT Press.

Szita, I., & Lorincz, A. (2006). Learning tetris using the noisy crossapy method. Neural
Computation18, 2936—2941.

Tesauro, G. (1995). Temporal difference learning and TD-Gamm@ommunications of the ACM
38(3), 58-68.

Tsitsiklis, J., & Roy, B. V. (1997). An analysis of temporal-differenceriag with function ap-
proximation.|EEE Transactions on Automatic Contrdi2(5), 674—690.

Utgoff, P. E., & Precup, D. (1997). Relative value function approxinmatidech. rep., University
of Massachusetts, Department of Computer Science.
Utgoff, P. E., & Precup, D. (1998). Constuctive function approximationMotoda, & Liu (Eds.),

Feature Extraction, Construction, and Selection: A Data-Mining Perspeagbip. 219-235.
Kluwer.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, 998). Integrating planning
and learning: The PRODIGY architectudaurnal of Experimental and Theoretical A1),
81-120.

Widrow, B., & Hoff, Jr, M. E. (1960). Adaptive switching circuitstRE WESCON Convention
Record 96-104.

Williams, R. J., & Baird, L. C. (1993). Tight performance bounds on dyegolicies based on
imperfect value functions. Tech. rep., Northeastern University.

Wu, J., & Givan, R. (2007). Discovering relational domain featurespfmbabilistic planning.
In Proceedings of the Seventeenth International Conference on AutorfRkteding and
Schedulingpp. 344-351.

Wu, J., Kalyanam, R., & Givan, R. (2008). Stochastic enforced hill-climbindg’roceedings of the
Eighteenth International Conference on Automated Planning and Schgdpin396—403.

Wu, J., & Givan, R. (2005). Feature-discovering approximate valuatiter methods. IfProceed-
ings of the Symposium on Abstraction, Reformulation, and Approximain321-331.

Yoon, S., Fern, A., & Givan, R. (2002). Inductive policy selection fiest-order MDPs. InPro-
ceedings of the Eighteenth Conference on Uncertainty in Artificial Intelliggox 568-576.

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A baseline fatjbilistic planning. IrPro-
ceedings of the Seventeenth International Conference on Automatadrigjaand Schedul-
ing, pp. 352-358.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first podistic track of the
international planning competitiodournal of Artificial Intelligence ResearcB4, 851-887.

755

