
Automatic Induction of Bellman-Error Features
for Probabilistic Planning

Online Appendix 1

Jia-Hong Wu JW@ALUMNI .PURDUE.EDU

Robert Givan GIVAN @PURDUE.EDU

Electrical and Computer Engineering,
Purdue University, W. Lafayette, IN 47907 USA

1. Additional Pseudo-code and Grammar

In this section, we present additional pseudo-code and feature grammarfor our feature-learning
framework as follows:

1. Pseudo-code for our trajectory-based approximate value iteration (AVI) approach is shown in
Figure 1 on page 2.

2. Pseudo-code for drawing training sets by following a policy is shown in Figure 2 on page 2.

3. Our relational feature grammar is shown in Figure 3 on page 3.

2. Details on the Selection and Modification of Competition Domains

Every goal-oriented domain with a problem generator from the first or second IPPC (Younes,
Littman, Weissman, & Asmuth, 2005; Bonet & Givan, 2006) was consideredfor inclusion in our
experiments. For inclusion, we require a planning domain with a fixed action definition, as de-
fined in Section 2.4 in the paper, that in addition has only ground conjunctive goal regions. Four
domains have these properties directly, and we have adapted three more ofthe domains to have
these properties as we describe in the next paragraph. The resulting selection provides seven IPPC
planning domains for our empirical study. Figure 4 lists the reasons for the exclusion of the other
six goal-oriented domains. In addition, four of the domains that we use in evaluation occur in both
competitions in slightly different forms and we evaluate on one version of each of these four, as
described in Figure 5.

The three domains we adapted for inclusion are as follows. We created ourown problem gen-
erators for the first IPPC domains TOWERS OFHANOI and FILEWORLD, as none were provided
in the competition. For both these domains, there is only one instance of each size. In Towers of
Hanoi, all instances share the same action set and state predicates, so thata suitable problem gen-
erator is straightforward. In Fileworld, a planning domain with a fixed action definition results if
we consider the collection of instances that share the same fixed number of folders, but varying the
number of files. When the number of folders varies, the state predicates and actions change, so that
instances with varying numbers of folders cannot be in the same fixed-action-definition planning do-

1

AVI

Inputs: Feature vector
−→
Φ = (f0, . . . , fn), weight vector−→w = (w0, . . . , wn)

Outputs: Weight vector−→w

1. −→w 1 ← −→w .

2. for β ← 1 to TAVI

3. (s1, . . . , sm)← draw(Greedy(−→w β ·
−→
Φ), NAVI).

4. for i← 0 to n

5. ni ← | {j|fi(sj) 6= 0} |.

6. wβ+1

i = wβ
i + 1

ni

∑m
j=1

αfi(sj)(U(−→w β ·
−→
Φ)(sj)− (−→w β ·

−→
Φ)(sj)).

7. return −→w TAVI +1.

Notes:

1. TAVI andNAVI are system parameters.

2. draw(π, n) draws a sequence ofn states followingπ.

3. U(V) is the Bellman update ofV , as defined in Section 2.1 in the paper.

4. α is the learning rate.

Figure 1: Pseudo-code for approximate value iteration (AVI).

draw

Inputs: Policyπ, number of states to be drawnn
Outputs: Sequence of states∆

1. s←MDP initial states0, ∆← (), j ← 0.
2. for i← 1 to n

3. ∆← (∆; s), j ← j + 1.
4. s← sample next state fromS according toT (s, π(s), ·).
5. if s = ⊥ or j > maximum training trajectory length
6. s←MDP initial states0, j ← 0.
7. return ∆.

Figure 2: Pseudo-code for drawing training sets by following a policy.

main under our definitions (preventing natural generalization between sizes). For our experiments,
we create a suitable domain by coding a problem generator restricted to threefolders.

Furthermore, FILEWORLD, as written for the competition, is partially propositionalized (for
unknown reasons). First, rather than have a one-argument predicate“have-folder”, the competition
domain has one proposition “have-f ” for each folderf . Also, the competition domain duplicates

2

〈term〉 ::= 〈variable〉 | 〈constant〉

〈goal-based-enrichment〉 ::= goal-〈domain-predicate〉 | correct-〈domain-predicate〉

〈predicate〉 ::= 〈domain-predicate〉 | 〈goal-based-enrichment〉

〈enriched-predicate〉 ::= 〈predicate〉 | 〈predicate〉+ | min-〈predicate〉 | max-〈predicate〉

〈atom〉 ::= 〈enriched-predicate〉 (〈term1〉, · · · , 〈termn〉), wheren is the arity
of 〈enriched-predicate〉

〈literal〉 ::= 〈atom〉 | ¬ 〈atom〉

〈conjunction〉 ::= 〈literal〉 | 〈conjunction〉 ∧ 〈literal〉

〈feature-expression〉 ::= 〈conjunction〉 | ∃ 〈variable〉 〈feature-expression〉

Notes:

1. A free variablein a feature expression is a variable that is not inside the scope of a quantifier (∃) for that
variable.

2. A featureis a feature-expression with at most one free variable.

3. 〈domain-predicate〉 is given by the planning domain definition.

4. 〈goal-based-enrichment〉 is taken to be null for non-goal-oriented planning domains.

5. +, min-, and max-, in the production for〈enriched-predicate〉, can only be applied to〈predicate〉 expressions
of arity 2.

6. Arity is extended to enriched predicates as follows:

(a) + produces an enriched predicate of arity 2.

(b) min- and max- produce enriched predicates of arity 1.

(c) goal-〈predicate〉 and correct-〈predicate〉 have the same arity as〈predicate〉.

Figure 3: A grammar for our relational feature language.

and renames each action for each folder rather than take a folder objectas an action argument (again
for unknown reasons). Finally, the competition domain contains an apparent bug because it does
not give types to the objects, so it is possible to file a folder in itself. Becausewe study relational
generalization here, we have constructed the obvious lifted version of thisdomain with object types;
we include the PPDDL source as Section 4 of this appendix. We call the resulting domain LIFTED-
FILEWORLD3.

Finally, for BOXWORLD, we modify the problem generator so that the goal region is always
a ground conjunctive expression by replacing the goal “all boxes mustbe at their destinations”

3

with a conjunction of specific box location goals. We call the resulting domain CONJUNCTIVE-
BOXWORLD.

3. Parameterization of Our Methods

Here we describe our choice of parameters for our methods. Where possible, parameterization is
done once, to apply identically to all experiments, as described here. There are some choices made
once for each domain, and these are described in the subsection dedicated to each domain. The
primary choices that must be made in a domain-specific way control learning from small problems:
we must specify for each domain the performance threshold at which difficulty will be increased
(as shown in Figure 1 in the paper) as well as the sequence of difficulties tobe considered (in cases
where there is more than one parameter controlling problem size). We deferto future research the
topic of automated control of problem difficulty when learning from small problems. We currently
make these choices by experimentation with the domain; our experience with such experimentation
suggests that these choices can successfully be automated in the future.

3.1 Trajectory Termination

Training sets for both feature learning and for AVI weight update are drawn by drawing trajectories
based on the current greedy policy in problems drawn from the problem distribution at the current
level of difficulty, as detailed in Sections 3 and 2.5 in the paper. It is an important and somewhat in-
dependent research topic to automatically recognize when such a trajectory is not making progress,
e.g., by recognizing dead-end regions of states and/or lack of progress towards the goal. Any such
research can be plugged into our methods directly by terminating all training trajectories when they
fail an appropriate test.

Here, we do not address this issue in any sophisticated way, but terminate trajectories whenever
one of three conditions holds:

1. a goal state is reached,

2. a dead-end state is reached,

3. the trajectory contains 1,000 steps.

Domain name IPPC version Reason for exclusion

Colored blocksworld IPPC1 Goal region is not a ground conjunction
Drive IPPC2 Uses predicates with three or more arguments
Elevators IPPC2 Uses predicates with three or more arguments
Pitchcatch IPPC2 Action definition not fixed throughout domain
Schedule IPPC2 Action definition not fixed throughout domain
Random IPPC2 Action definition not fixed throughout domain

Figure 4: Reasons for excluding some planning competition domains from ourexperiments.

4

Domain name Differences
Version
used Reason for choice

Blocksworld

Many small differences
– IPPC2 addsemptyhand, on-table(x),

andclear(x)

– IPPC2 removes table object

– IPPC2 adds actions:pick-up-from-table ,

put-down, pick-tower,

put-tower-on-block, andput-tower-down

– IPPC2 allowson(x, x)

IPPC1
IPPC2 version inaccuracy
allowson(x, x)

Exploding blocksNo generator in IPPC1 IPPC2 Problem generator in IPPC2

Tireworld No generator in IPPC1 IPPC2 Problem generator in IPPC2

Zenotravel No generator in IPPC1 IPPC2 Problem generator in IPPC2

Figure 5: Differences between IPPC1 and IPPC2 versions of planningdomains present in both
competitions, which version is used in our experimental evaluation, and why.

3.2 Training Set Sizes

Each feature-learning training set across all our relational-learning experiments is drawn to be
20,000 states by the method described in Section 3 in the paper. Because propositional feature
learning is faster than relational feature learning, we are able to allow 200,000 states in propo-
sitional feature learning training sets in the TETRIS and SYSADMIN experiments, but still only
20,000 states in the planning domains.

Throughout all experiments, each AVI weight-update training set is drawn by collecting the
states from 30 trajectories.

3.3 Learning Rate for Weight Updates in AVI

As discussed in Section 2.5 in the paper, we adjust the weights of our approximated value functions
using AVI. We use a search-then-converge schedule for the learningrate of this iterative gradient
descent method throughout our experiments (see Darken & Moody, 1992); specifically, we set the
learning rateα in AVI to 3

1+k/100
, wherek is the number of AVI iterations already executed.

3.4 Parametrization of the Relational Algorithm

There are various parameters in the feature construction process described in this section, including
the beam-widthW , the beam-search depth limitd, the regularization parameterλ, and the bound on
the maximum number of quantifiers in scopeq. Changes to these parameters affect the quality of the
constructed features by changing the feature-space regions searched and the number of candidate
features considered, as well as changing the preferences expressed in scoring the features. The
selection of these parameters further affects the choice of the size of feature training set, as in
practice fewer training examples can be considered when the number of candidate features grows.

5

Throughout all our experiments we chooseW to be 60,d to be 5, andλ to be 0.03 for all
domains. We setq to 1 for the planning competition domains (settingq to 2 does not result in a noted
improvement in the performance in these domains when using the above parameters, but results in
a substantial and occasionally intolerable runtime cost), and we setq to 2 for TETRIS. These severe
limits on q are necessary to control the expense of searching the feature space. Note however that
there is implicit quantification in the transitive-closure predicates and min/max predicates in the
extended predicate set defining the feature space, in addition to the explicitquantifiers limited byq.
See Section 4.1 in the paper for discussion of the extended predicate set.

3.5 Parametrization of the Propositional Algorithm

Our propositional feature learning algorithm is already well defined in Section 4.4 in the paper,
except for how to setup the underlying C4.5 learner (Quinlan, 1993). Weuse the default parameters
for C4.5, except for the following: we use the gain criterion instead of the gain ratio criterion. We
allow the trees to grow from a node without any restriction on the minimum number of objects in
the resulting branches1. The pruning confidence level is set to 0.9.

4. PPDDL Source for Lifted-Fileworld3

The PPDDL source for LIFTED-FILEWORLD3 with a problem size of 10 files.

(define (domain file-world)
(:requirements :typing

:disjunctive-preconditions
:negative-preconditions
:conditional-effects
:probabilistic-effects
:universal-preconditions)

(:types file folder)

(:predicates (has-type ?p - file)
(goes-in ?p - file ?f - folder)
(filed ?p - file)
(have ?f - folder))

(:constants F0 F1 F2 - folder)

(:action get-type
:parameters (?p - file)
:precondition (and (not (has-type ?p)))
:effect (and (has-type ?p)

(probabilistic
0.333 (goes-in ?p F0)

1. The default C4.5 parameter requires at least 2 branches from any node to contain at least 2 objects.

6

0.333 (goes-in ?p F1)
0.334 (goes-in ?p F2))))

(:action get-folder
:parameters (?f - folder)
:precondition (and (forall (?x -folder) (not (have ?x))))
:effect (have ?f))

(:action file-F
:parameters (?p - file ?f - folder)
:precondition (and (have ?f) (has-type ?p)

(goes-in ?p ?f))
:effect (filed ?p))

(:action return-folder
:parameters (?f - folder)
:precondition (have ?f)
:effect (not (have ?f)))

)

(define (problem file-prob)
(:domain file-world)
(:objects p0 p1 p2 p3 p4 p5 p6 p7 p8 p9)
(:goal (and (filed p0) (filed p1) (filed p2) (filed p3)

(filed p4) (filed p5) (filed p6) (filed p7)
(filed p8) (filed p9)))

)

7

5. Modifications to the Weight Update Rule in AVI

Scaling step-size during AVI For the complex domains addressed in this paper, simple gradi-
ent descent has many potential pitfalls. One such pitfall is that the Bellman error surface may be
extremely steep at some points. Because the weight changes in AVI are proportional to the gradi-
ent, arbitrarily large gradients result in arbitrarily large single-step weightchanges that are rarely
desirable (and can also cause floating-point overflow). There is a substantial literature on dynami-
cally adjusting step size during gradient descent (Jacobs, 1988; Kwong & Johnston, 1992; Harris,
Chabries, & Bishop, 1986; Mathews & Xie, 1993); however, gradientdescent is not the main topic
of this paper and so we resort only to a simple work-around for arbitrarilylarge gradients: rather
than step proportional to the gradient, we compress the unbounded spaceof possible step sizes to a
finite interval using a sigmoidal function, as described next. Large gradients here are due to large
statewise Bellman error averages over the training set, as can be seen by examining the weight up-
date equation, Equation 1, in Section 2.5 in the paper. Here we compress large weight updates by
a sigmoidal scaling of the average statewise Bellman error, as described formally in the next three
equations:

Bavg =
1

n

∑

j

(U(V β)(sj)− V β(sj))

κ =
1

1 + exp(−4(1− |Bavg|/rscale))

wβ+1

i = wβ
i + κ

1

ni

∑

j

αfi(sj)(U(V β)(sj)− V β(sj))

In our experiments, we use this approach to computingwβ+1 rather than the direct approach given
by Equation 1. The scaling factorκ will be close to one unless the average statewise Bellman
errorBavg grows large, and thus significant differences between the direct approach and the scaled
approach appear only in that case. The sigmoidal function is a somewhat arbitrary choice here;
any bounded, smooth, monotone function that is linear for a scalable-sizedregion near the origin
will suffice. The domain-specific parameterrscale represents the reward scaling of the problem
domain. We note that any MDP problem can be rescaled by multiplying all rewards by the same
positive scalar with consequent rescaling of the value of any policy at any state by the same scalar.
Our method here is not invariant to this rescaling and thus requires a hand-set domain parameter
to represent the reward scaling. We selectrscale using trial-and-error in each domain by starting
from rscale = 1, which suffices for all domains we evaluate here except SysAdmin, where we us
rscale = 10. We leave for future research the topic of automatically, possibly dynamically, finding
the value of the reward scaling parameter.

Sign restriction in weight adjustment Another pitfall in using gradient descent with complex
gradient surfaces is that dramatic increases in error can result from one step of weight update. In
our AVI setting, this can result in dramatic drops in the success rate of the resulting greedy policy.
Because in goal-oriented domains a useful gradient is computed only fromsuccessful trajectories,
such dramatic drops in success rate can result in an uninformative gradient from which AVI often
cannot recover. Various mechanisms can be designed for detecting dramatic drops in policy quality
during AVI and revisiting the weight updates that lead to them; here we focusonly on revisiting

8

weight updates that change the sign of a weight, and only when the immediately resulting policy
performs much worse than the policy before the weight update.

It is fairly intuitive that weight updates changing the sign of a weight are particularly suspect.
If the weight for a feature has been tuned to a positive value, it is hopefully because that feature
has been seen to correlate to the desired value function; however, this immediately implies that
the negation of that feature anti-correlates with the desired value. Changingthe sign of a weight
is a form of rejecting previous training regarding the entire direction of the importance of the cor-
responding feature. Empirically, we have found that AVI on complex error surfaces often makes
damaging mistakes by stepping too far in weight update to the degree that the sign of a feature is
reversed and the resulting policy is suddenly severely degraded.

In our experiments in goal-oriented planning problems, we implement a mechanism to detect
and avoid weight sign changes that must be avoided to preserve policy quality, as follows. First, we
define a method for empirically comparing policies: we say that a policyπ1 “tests as significantly
better” than a policyπ2 if Student’s t-test confirms the hypothesis that the success rate ofπ2 is at
most 0.9 times the success rate ofπ1 with significance 0.025 based upon 100 sample trajectories of
each. Second, each time we construct an AVI training set by drawing trajectories, we measure the
success rate of the policy Greedy(V) used over the trajectories drawn to create the training set—we
call this the training success rate of the value functionV . If the training success of the current value
functionV2 is lower than the training success of the previous value functionV1, we then test if the
the policy Greedy(V1) tests as significantly better than the policy Greedy(V2). If so, we reconsider
any weight sign changes (including changes to or from zero) made during the intervening weight
update as follows. Suppose thatV1 is described by weightswβ andV2 by weightswβ+1. For each
weightwi that changed sign fromwβ

i to wβ+1

i , we test if reversing the update of just that weight,
usingwβ

i in place ofwβ+1

i , yields a greedy policy that tests significantly better than Greedy(V2).
Any such weights that yield significant improvements when theirβ+1-iteration updates are reversed
are then restored to theirβ-iteration values and their sign is locked for the remainder of this run of
AVI. In other words, any future weight update to that weight which wouldchange the sign of that
weight is replaced with no change to that weight.

References

Bonet, B., & Givan, R. (2006). Non-deterministic planning track of the 2006 international planning
competition. Website. http://www.ldc.usb.ve/ bonet/ipc5/.

Darken, C., & Moody, J. (1992). Towards faster stochastic gradientsearch. InAdvances in Neural
Information Processing Systems 4, pp. 1009–1016.

Harris, R., Chabries, D., & Bishop, F. (1986). A variable step (VS) adaptive filter algorithm.IEEE
Transactions on Acoustics, Speech, and Signal Processing, 34(2), 309– 316.

Jacobs, R. (1988). Increased rates of convergence through learning rate adaptation.Neural Net-
works, 1, 295–307.

Kwong, R., & Johnston, E. (1992). A variable step size LMS algorithm.IEEE Transactions on
Signal Processing, 40(7), 1633–1642.

Mathews, V., & Xie, Z. (1993). A stochastic gradient adaptive filter with gradient adaptive step size.
IEEE Transactions on Signal Processing, 41(6), 2075–2087.

9

Quinlan, J. R. (1993).C4.5: Programs for Machine Learning. Morgan Kaufmann.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first probabilistic track of the
international planning competition.Journal of Artificial Intelligence Research, 24, 851–887.

10

