Automatic Induction of Bellman-Error Features
for Probabilistic Planning
Online Appendix 1

Jia-Hong Wu JW@ALUMNI .PURDUE.EDU
Robert Givan GIVAN @PURDUE.EDU
Electrical and Computer Engineering,

Purdue University, W. Lafayette, IN 47907 USA

1. Additional Pseudo-code and Grammar

In this section, we present additional pseudo-code and feature grafomaur feature-learning
framework as follows:

1. Pseudo-code for our trajectory-based approximate value iteratiéihdpproach is shown in
Figure 1 on page 2.

2. Pseudo-code for drawing training sets by following a policy is showngarE 2 on page 2.

3. Our relational feature grammar is shown in Figure 3 on page 3.

2. Details on the Selection and Modification of Competition Dmains

Every goal-oriented domain with a problem generator from the first corse¢PPC (Younes,
Littman, Weissman, & Asmuth, 2005; Bonet & Givan, 2006) was considinethclusion in our
experiments. For inclusion, we require a planning domain with a fixed actifnitée, as de-
fined in Section 2.4 in the paper, that in addition has only ground conjunabi&kerggions. Four
domains have these properties directly, and we have adapted three nitbeedafmains to have
these properties as we describe in the next paragraph. The resuléotjoseprovides seven IPPC
planning domains for our empirical study. Figure 4 lists the reasons foixttieston of the other
six goal-oriented domains. In addition, four of the domains that we use lnati@n occur in both
competitions in slightly different forms and we evaluate on one version df ehthese four, as
described in Figure 5.

The three domains we adapted for inclusion are as follows. We createxvouproblem gen-
erators for the first IPPC domainsOWERS OFHANOI and HLEWORLD, as none were provided
in the competition. For both these domains, there is only one instance of eachrsirowers of
Hanoi, all instances share the same action set and state predicates,sseuitable problem gen-
erator is straightforward. In Fileworld, a planning domain with a fixed actieiimdion results if
we consider the collection of instances that share the same fixed numbétersf but varying the
number of files. When the number of folders varies, the state predicatesctions change, so that
instances with varying numbers of folders cannot be in the same fixedralgimition planning do-

AVI

Inputs: Feature vectob = (fos- - -, fn), Weight vectorw = (wo, .. ., wy)
Outputs: Weight vectory

1. wl— .

2 for 6+ 1 to Ty

3 (51,...,5m) — draw(Greedyw? - &), Nay).

4. for i —0 to n

5 ni < | {jlfi(s;) # 0} |.

6 w T =l + LY afi(s) U@ F)(s;) - (@ B)(sy)).
7 return w7+t

Notes:

1. Tav and Ny are system parameters.

N

draw(m, n) draws a sequence ofstates followingr.

w

U (V) is the Bellman update df’, as defined in Section 2.1 in the paper.

&

« is the learning rate.

Figure 1: Pseudo-code for approximate value iteration (AVI).

draw

Inputs: Policyr, number of states to be drawn
Outputs: Sequence of statAs

1 s «— MDP initial statesg, A < (), j < 0.

2 for i«—1 to n

3 A— (A;s),j—j+ 1.

4. s < sample next state fromi according tdl'(s, 7(s), -).
5 if s= 1 or j>maximum training trajectory length
6 s < MDRP initial statesg, j < 0.
7 return A.

Figure 2: Pseudo-code for drawing training sets by following a policy.

main under our definitions (preventing natural generalization betwees) sizer our experiments,
we create a suitable domain by coding a problem generator restricted tddluieses.

Furthermore, REWORLD, as written for the competition, is partially propositionalized (for
unknown reasons). First, rather than have a one-argument prethiesgefolder”, the competition
domain has one proposition “hayé-for each folderf. Also, the competition domain duplicates

2

(term) = (variablg | (constant

goal{domain-predicate | correct{domain-predicate

(goal-based-enrichment:

(predicaté (domain-predicate | (goal-based-enrichment

(enriched-predicaje (predicate | (predicate+ | min-(predicat¢ | max<predicate

(atom ::= (enriched-predicate((termy), - - - , (term,)), wheren is the arity
of (enriched-predicaje

(literal) n= (atom) | - (atom

(conjunction = (literal) | (conjunction A (literal)

(feature-expression (conjunction | 3 (variable (feature-expression

Notes:

1. A free variablén a feature expression is a variable that is not inside the scope of a qera@jffor that
variable.

A features a feature-expression with at most one free variable.
(domain-predicateis given by the planning domain definition.
(goal-based-enrichmenis taken to be null for non-goal-oriented planning domains.

ISLE Sl S

-+, min-, and max-, in the production f¢enriched-predicaje can only be applied t¢predicate expressions
of arity 2.

6. Arity is extended to enriched predicates as follows:

(@) + produces an enriched predicate of arity 2.
(b) min- and max- produce enriched predicates of arity 1.
(c) goal{predicatg¢ and correctfpredicate have the same arity gpredicate.

Figure 3: A grammar for our relational feature language.

and renames each action for each folder rather than take a folder abjeiaction argument (again
for unknown reasons). Finally, the competition domain contains an apgdawgrbecause it does
not give types to the objects, so it is possible to file a folder in itself. Becavsstudy relational
generalization here, we have constructed the obvious lifted version afdiiain with object types;
we include the PPDDL source as Section 4 of this appendix. We call thikimgsdomain LIFTED-
FILEWORLD3.

Finally, for BoxwoRLD, we modify the problem generator so that the goal region is always
a ground conjunctive expression by replacing the goal “all boxes gt their destinations”

3

with a conjunction of specific box location goals. We call the resulting dom&RNJONCTIVE-
BOXWORLD.

3. Parameterization of Our Methods

Here we describe our choice of parameters for our methods. Whesiélgogparameterization is
done once, to apply identically to all experiments, as described heree &reesome choices made
once for each domain, and these are described in the subsection dédicasech domain. The
primary choices that must be made in a domain-specific way control leamngimgsinall problems:
we must specify for each domain the performance threshold at whichuttiffiwill be increased
(as shown in Figure 1 in the paper) as well as the sequence of difficultiesdonsidered (in cases
where there is more than one parameter controlling problem size). Wetddtgure research the
topic of automated control of problem difficulty when learning from smalbfgms. We currently
make these choices by experimentation with the domain; our experience witkxquerimentation
suggests that these choices can successfully be automated in the future.

3.1 Trajectory Termination

Training sets for both feature learning and for AVI weight update aavdiby drawing trajectories
based on the current greedy policy in problems drawn from the probismibdtion at the current
level of difficulty, as detailed in Sections 3 and 2.5 in the paper. It is an impioaited somewhat in-
dependent research topic to automatically recognize when such a trajeatot making progress,
e.g., by recognizing dead-end regions of states and/or lack of psogneards the goal. Any such
research can be plugged into our methods directly by terminating all trainjegtees when they
fail an appropriate test.

Here, we do not address this issue in any sophisticated way, but termajettdries whenever
one of three conditions holds:

1. a goal state is reached,
2. adead-end state is reached,

3. the trajectory contains 1,000 steps.

Domain name IPPC version | Reason for exclusion

Colored blocksworld | IPPC1 Goal region is not a ground conjunction

Drive IPPC2 Uses predicates with three or more arguments
Elevators IPPC2 Uses predicates with three or more arguments
Pitchcatch IPPC2 Action definition not fixed throughout domain
Schedule IPPC2 Action definition not fixed throughout domain
Random IPPC2 Action definition not fixed throughout domain

Figure 4: Reasons for excluding some planning competition domains froexperiments.

. . Version)
Domain name |Differences used Reason for choice
Many small differences
— IPPC2 addemptyhand, on-table(x),
andclear(x) o
Blocksworld — IPPC2 removes table object IPPC1 IPPC2 version inaccuracy
— IPPC2 adds actiongick-up-from-table, allowson(z, x)
put-down, pick-tower,
put-tower-on-block, andput-tower-down
—IPPC2 allowon(z, =)
Exploding blocksNo generator in IPPC1 IPPC2 |Problem generator in IPPC2
Tireworld No generator in IPPC1 IPPC2 |Problem generator in IPPC2
Zenotravel No generator in IPPC1 IPPC2 |Problem generator in IPPC2

Figure 5: Differences between IPPC1 and IPPC2 versions of plardontains present in both
competitions, which version is used in our experimental evaluation, and why.

3.2 Training Set Sizes

Each feature-learning training set across all our relational-learnipgriements is drawn to be
20,000 states by the method described in Section 3 in the paper. Becapssitiwoal feature
learning is faster than relational feature learning, we are able to allow @D@fates in propo-
sitional feature learning training sets in th&TRis and S'SADMIN experiments, but still only
20,000 states in the planning domains.

Throughout all experiments, each AVI weight-update training set is mitayvcollecting the
states from 30 trajectories.

3.3 Learning Rate for Weight Updates in AVI

As discussed in Section 2.5 in the paper, we adjust the weights of ourd@pjted value functions
using AVI. We use a search-then-converge schedule for the learaiegf this iterative gradient
descent method throughout our experiments (see Darken & Moodg);19%ecifically, we set the

learning rate in AVI to % wherek is the number of AVI iterations already executed.

3.4 Parametrization of the Relational Algorithm

There are various parameters in the feature construction proces#ddsa this section, including
the beam-width1, the beam-search depth linditthe regularization paramet&yand the bound on
the maximum number of quantifiers in scapeChanges to these parameters affect the quality of the
constructed features by changing the feature-space regions eganoth the number of candidate
features considered, as well as changing the preferences eghiiesscoring the features. The
selection of these parameters further affects the choice of the sizetofddeaining set, as in
practice fewer training examples can be considered when the numberdiflate features grows.

5

Throughout all our experiments we choddé to be 60,d to be 5, and\ to be 0.03 for all
domains. We setto 1 for the planning competition domains (settiynigp 2 does not resultin a noted
improvement in the performance in these domains when using the above et results in
a substantial and occasionally intolerable runtime cost), and weteé for TETRIS. These severe
limits on ¢ are necessary to control the expense of searching the feature $fzeehowever that
there is implicit quantification in the transitive-closure predicates and min/madicates in the
extended predicate set defining the feature space, in addition to the expéatifiers limited by;.
See Section 4.1 in the paper for discussion of the extended predicate set.

3.5 Parametrization of the Propositional Algorithm

Our propositional feature learning algorithm is already well defined iniGed.4 in the paper,
except for how to setup the underlying C4.5 learner (Quinlan, 1993us&¢he default parameters
for C4.5, except for the following: we use the gain criterion instead of #ie gatio criterion. We
allow the trees to grow from a node without any restriction on the minimum nunflmsjects in
the resulting branchésThe pruning confidence level is set to 0.9.

4. PPDDL Source for Lifted-Fileworld3

The PPDDL source for IETED-FILEWORLD3 with a problem size of 10 files.

(define (domain file-world)

(:requirenents :typing
:di sjunctive-preconditions
:negative-preconditions
:conditional -effects
:probabilistic-effects
»uni versal - precondi tions)

(:types file folder)

(:predicates (has-type ?p - file)
(goes-in ?p - file ?f - folder)
(filed ?p - file)
(have ?f - folder))
(:constants FO F1 F2 - folder)

(:action get-type
:paraneters (?p - file)
:precondition (and (not (has-type ?p)))
;effect (and (has-type ?p)
(probabilistic
0. 333 (goes-in ?p FO)

1. The default C4.5 parameter requires at least 2 branches frpmoale to contain at least 2 objects.

0. 333 (goes-in ?p F1)
0.334 (goes-in ?p F2))))

(:action get-folder
»parameters (?f - folder)
:precondition (and (forall (?x -folder) (not (have ?x))))
.effect (have ?f))

(:action file-F
:paranmeters (?p - file ?f - folder)
:precondition (and (have ?f) (has-type ?p)
(goes-in ?p ?f))
.effect (filed ?p))

(:action return-fol der
:parameters (?f - folder)
:precondition (have ?f)
.effect (not (have ?f)))

)

(define (problemfile-prob)
(:domain file-world)
(:objects p0O pl p2 p3 p4 p5 p6 p7 p8 p9)
(:goal (and (filed p0) (filed pl) (filed p2) (filed p3)
(filed p4) (filed p5) (filed p6) (filed p7)
(filed p8) (filed p9)))

5. Modifications to the Weight Update Rule in AVI

Scaling step-size during AVI For the complex domains addressed in this paper, simple gradi-
ent descent has many potential pitfalls. One such pitfall is that the Bellmansemface may be
extremely steep at some points. Because the weight changes in AVI a@fwoal to the gradi-
ent, arbitrarily large gradients result in arbitrarily large single-step waighhges that are rarely
desirable (and can also cause floating-point overflow). There issdamilal literature on dynami-
cally adjusting step size during gradient descent (Jacobs, 1988; i&dohnston, 1992; Harris,
Chabries, & Bishop, 1986; Mathews & Xie, 1993); however, gradiesicent is not the main topic
of this paper and so we resort only to a simple work-around for arbitriitye gradients: rather
than step proportional to the gradient, we compress the unboundeddpaxssible step sizes to a
finite interval using a sigmoidal function, as described next. Large gredieere are due to large
statewise Bellman error averages over the training set, as can be seantigiag the weight up-
date equation, Equation 1, in Section 2.5 in the paper. Here we compressvieight updates by
a sigmoidal scaling of the average statewise Bellman error, as descriipegljoin the next three
equations:

Bug = = S UV)(s) ~ V()
1

k= 1+ exp(—4(1 - |Bavg|/TSCa|e))
wt =l + Fu% > _afils))UV)(s;) = VP(s))

7
J

In our experiments, we use this approach to compuiifig! rather than the direct approach given
by Equation 1. The scaling facter will be close to one unless the average statewise Bellman
error B,,, grows large, and thus significant differences between the direcbagipand the scaled
approach appear only in that case. The sigmoidal function is a someviditaaiy choice here;
any bounded, smooth, monotone function that is linear for a scalable+ggauh near the origin
will suffice. The domain-specific parametey.qe represents the reward scaling of the problem
domain. We note that any MDP problem can be rescaled by multiplying all dswar the same
positive scalar with consequent rescaling of the value of any policyyastate by the same scalar.
Our method here is not invariant to this rescaling and thus requires adeamtbmain parameter
to represent the reward scaling. We selegtie using trial-and-error in each domain by starting
from rscae = 1, which suffices for all domains we evaluate here except SysAdmin,emierus
rscale = 10. We leave for future research the topic of automatically, possibly dynamidialting
the value of the reward scaling parameter.

Sign restriction in weight adjustment Another pitfall in using gradient descent with complex
gradient surfaces is that dramatic increases in error can result fnenstep of weight update. In
our AVI setting, this can result in dramatic drops in the success rate of sh#ing greedy policy.
Because in goal-oriented domains a useful gradient is computed onlysfrooessful trajectories,
such dramatic drops in success rate can result in an uninformative mr&die which AVI often
cannot recover. Various mechanisms can be designed for detectmgtédrarops in policy quality
during AVI and revisiting the weight updates that lead to them; here we foolyson revisiting

8

weight updates that change the sign of a weight, and only when the immediegaliirrg policy
performs much worse than the policy before the weight update.

It is fairly intuitive that weight updates changing the sign of a weight aréquaarly suspect.

If the weight for a feature has been tuned to a positive value, it is hihpdfecause that feature
has been seen to correlate to the desired value function; however, this imehednplies that

the negation of that feature anti-correlates with the desired value. Chatingirgign of a weight

is a form of rejecting previous training regarding the entire direction of theitapce of the cor-

responding feature. Empirically, we have found that AVl on complexresusfaces often makes
damaging mistakes by stepping too far in weight update to the degree thatrnhef sideature is

reversed and the resulting policy is suddenly severely degraded.

In our experiments in goal-oriented planning problems, we implement a meghimidetect
and avoid weight sign changes that must be avoided to preserve patilitygas follows. First, we
define a method for empirically comparing policies: we say that a palicitests as significantly
better” than a policyrs if Student’s t-test confirms the hypothesis that the success ratg iefat
most 0.9 times the success raterfwith significance 0.025 based upon 100 sample trajectories of
each. Second, each time we construct an AVI training set by drawingtggs, we measure the
success rate of the policy Greddi) used over the trajectories drawn to create the training set—we
call this the training success rate of the value funciionif the training success of the current value
function V5 is lower than the training success of the previous value fundtignve then test if the
the policy Greedgl;) tests as significantly better than the policy Gre@dy. If so, we reconsider
any weight sign changes (including changes to or from zero) madegdinénintervening weight
update as follows. Suppose tHatis described by weights” andV; by weightsw?*!. For each
weightw; that changed sign fromf to wf“, we test if reversing the update of just that weight,
usingwiﬂ in place ofwf“, yields a greedy policy that tests significantly better than Gréédy
Any such weights that yield significant improvements when theii -iteration updates are reversed
are then restored to thei-iteration values and their sign is locked for the remainder of this run of
AVI. In other words, any future weight update to that weight which watlidnge the sign of that
weight is replaced with no change to that weight.

References

Bonet, B., & Givan, R. (2006). Non-deterministic planning track of the@idfernational planning
competition. Website. http://www.ldc.usb.ve/ bonet/ipc5/.

Darken, C., & Moody, J. (1992). Towards faster stochastic gradieatch. IPAdvances in Neural
Information Processing Systemspp. 1009-1016.

Harris, R., Chabries, D., & Bishop, F. (1986). A variable step (VS)pé&ue filter algorithm.IEEE
Transactions on Acoustics, Speech, and Signal Proces3#(®), 309— 316.

Jacobs, R. (1988). Increased rates of convergence througtinigaate adaptationNeural Net-
works 1, 295-307.

Kwong, R., & Johnston, E. (1992). A variable step size LMS algoritHEBEE Transactions on
Signal Processingd0(7), 1633—-1642.

Mathews, V., & Xie, Z. (1993). A stochastic gradient adaptive filter withdient adaptive step size.
IEEE Transactions on Signal Processjdd(6), 2075-2087.

9

Quinlan, J. R. (1993)C4.5: Programs for Machine Learningviorgan Kaufmann.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first godistic track of the
international planning competitiodournal of Artificial Intelligence ResearcB4, 851-887.

10

