
Journal of Artificial Intelligence Research 39 (2010) 483-532 Submitted 04/10; published 10/10

Kalman Temporal Differences

Matthieu Geist matthieu.geist@supelec.fr

Olivier Pietquin olivier.pietquin@supelec.fr

IMS research group
Supélec
Metz, France

Abstract

Because reinforcement learning suffers from a lack of scalability, online value (and Q-)
function approximation has received increasing interest this last decade. This contribu-
tion introduces a novel approximation scheme, namely the Kalman Temporal Differences
(KTD) framework, that exhibits the following features: sample-efficiency, non-linear ap-
proximation, non-stationarity handling and uncertainty management. A first KTD-based
algorithm is provided for deterministic Markov Decision Processes (MDP) which produces
biased estimates in the case of stochastic transitions. Than the eXtended KTD framework
(XKTD), solving stochastic MDP, is described. Convergence is analyzed for special cases
for both deterministic and stochastic transitions. Related algorithms are experimented on
classical benchmarks. They compare favorably to the state of the art while exhibiting the
announced features.

1. Introduction

Optimal control of stochastic dynamic systems is a trend of research with a long history. The
machine learning response to this recurrent problem is the Reinforcement Learning (RL)
paradigm (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998; Sigaud & Buffet, 2010). In
this general paragon, an artificial agent learns an optimal control policy through interactions
with the dynamic system (also considered as its environment). After each interaction, the
agent receives an immediate scalar reward information and the optimal policy it searches
for is the one that maximizes the cumulative reward over the long run.

Traditionally the dynamic system to be controlled is modeled as a Markov Decision
Process (MDP). An MDP is a tuple {S, A, P,R, γ}, where S is the state space, A the
action space, P : s, a ∈ S × A → p(.|s, a) ∈ P(S) the family of transition probabilities,
R : S×A×S → R the bounded reward function, and γ the discount factor (weighting long-
term rewards). According to these definitions, the system stochastically steps from state to
state conditionally on the actions the agent performed. To each transition (si, ai, si+1) is
associated an immediate reward ri. A policy π : S → A is a mapping from states to actions
which drives the action selection process of the agent. The optimal policy π∗ is the one that
maximizes the cumulative reward over the long term.

This cumulative reward is locally estimated by the agent as a so-called value (respectively
Q-) function associating an expected cumulative reward to each state (respectively state-
action pair). The optimal policy is therefore the one that maximizes these functions for each
state or state-action pair. Many RL algorithms aim at estimating one of these functions so as
to infer the optimal policy. In the more challenging cases, the search for the optimal policy

c©2010 AI Access Foundation. All rights reserved.

Geist & Pietquin

is done online, while controlling the system. This requires a trial and error process and a
dilemma between immediate exploitation of the currently learnt policy and exploration to
improve the policy then occurs.

In this context, a fair RL algorithm should address some important features:

• allowing online learning;

• handling large or even continuous state spaces;

• being sample-efficient (learning a good control policy from as few interactions as pos-
sible);

• dealing with non-stationarity (even if the system is stationary, controlling it while
learning the optimal policy induces non-stationarities; other good reasons to prefer
tracking to convergence are given in Sutton, Koop, & Silver, 2007);

• managing uncertainty (which is a useful information for handling the dilemma between
exploration and exploitation);

• handling non-linearities (to deal with the max operator of the Bellman optimality
equation and for compact function representations such as neural networks).

All these aspects are rarely addressed at the same time by state-of-the-art RL algorithms.
We show that the proposed Kalman Temporal Differences (KTD) framework (Geist, Pietquin,
& Fricout, 2009a) addresses all these issues. It is based on the Kalman filtering paradigm
and uses an approximation scheme, namely the Unscented Transform (UT) of Julier and
Uhlmann (2004), to approximate the value function. Originally the Kalman (1960) fil-
tering paradigm aims at tracking the hidden state (modeled as a random variable) of a
non-stationary dynamic system through indirect observations of this state. The idea under-
lying KTD is to cast value function approximation into a filtering problem, so as to benefit
from intrinsic advantages of Kalman filtering: online second order learning, uncertainty
estimation and non-stationarity handling. The UT is used to deal with non-linearities in
a derivative-free fashion, which notably allows deriving a second-order value iteration-like
algorithm (namely KTD-Q).

1.1 Formalism

The value function V π of a given policy π associates to each state the expected discounted
cumulative reward for starting in this state and then following π:

V π(s) = E[
∞∑
i=0

γiri|s0 = s, π] (1)

where ri is the reward observed at time i. The Q-function adds a degree of freedom for the
choice of the first action:

Qπ(s, a) = E[
∞∑
i=0

γiri|s0 = s, a0 = a, π] (2)

484

Kalman Temporal Differences

Reinforcement learning aims at finding (through interactions) the policy π∗ which maximises
the value function for every state:

π∗ = argmax
π

(V π) (3)

Despite the partial order (value functions are vectors), this maximum exists (Puterman,
1994). Two schemes (among others) can lead to the solution. First, policy iteration implies
learning the value function of a given policy, then improving the policy, the new one being
greedy respectively to the learnt value function. It requires solving the Bellman evaluation
equation (given here for the value function and the Q-function):

V π(s) = Es′|s,π(s)

[
R(s, π(s), s′) + γV π(s′)

]
, ∀s ∈ S (4)

Qπ(s, a) = Es′|s,a
[
R(s, a, s′) + γQπ(s′, π(s′))

]
, ∀s, a ∈ S ×A (5)

The expectations depend on the transition probability conditioned on current state-action
pair, the action being given by the policy in the case of value function evaluation. The second
scheme, called value iteration, aims at directly finding the optimal policy. It requires solving
the Bellman optimality equation (given here for the Q-function):

Q∗(s, a) = Es′|s,a

[
R(s, a, s′) + γ max

b∈A
Q∗(s′, b)

]
, ∀s, a ∈ S ×A (6)

A parametric representation of either the value or the Q-function is supposed to be
available (possible representations are discussed hereafter) and Temporal Differences (TD)
algorithms are considered. TD algorithms form a class of online methods which consist in
correcting the representation of the value (or Q-) function according to the so-called TD
error δi made on it. Although the formal definition of the TD error depends on the algorithm
(see Section 1.2), it can be intuitively defined as the difference between the predicted reward
according to the current estimate of the value or Q-function and the actual observed reward
at time step i. Most of TD algorithms can be generically written as:

θi = θi−1 + Kiδi (7)

In this expression, θi−1 is the latest estimate of the value function (or of the set of parameters
defining it), θi is an updated representation given an observed transition, δi is the TD error,
and Ki is a gain indicating the direction in which the representation of the target function
should be corrected.

If the state space S and the action space A are finite and small enough, an exact
description of the value function is possible, and θ is a vector with as many components as
the state (-action) space (tabular representation). In the case of large state and/or action
spaces, approximation is necessary. A classical choice in RL is the linear parameterization,
that is the value function is approximated by:

V̂θ(s) =
p∑

j=1

wjφj(s) = φ(s)T θ (8)

485

Geist & Pietquin

where (φj)1≤j≤p is a set of basis functions, which should be defined beforehand, and the
weights wj are the parameters:

θ =
(
w1 . . . wp

)T and φ(s) =
(
φ1(s) . . . φp(s)

)T (9)

Many function approximation algorithms require such a representation to ensure conver-
gence (Tsitsiklis & Roy, 1997; Schoknecht, 2002), or even to be applicable (Bradtke &
Barto, 1996; Boyan, 1999; Geramifard, Bowling, & Sutton, 2006). Other representations
are possible such as neural networks where θ is the set of synaptic weights (usually resulting
in a nonlinear dependency of the value function to its parameters).

Adopting this generic point of view, the problem addressed in this paper can be stated
as: given a representation of the value function (or of the Q-function) summarized by the
parameter vector θ and given a Bellman equation to be solved, what is the “best” gain K?
Some state-of-the-art answers to this question are given in the following section.

1.2 State of the Art

This paper focuses on online methods. Standard RL algorithms such as TD evaluation,
SARSA and Q-Learning (Sutton & Barto, 1998) share the same features and a unified view
based on Equation (7) is adopted in the following. In this equation, the term δi is the TD
error. Suppose that at step i a transition (si, ai, ri, si+1, ai+1) is observed. For TD-like RL
algorithms, that is algorithms aiming at evaluating the value function of a given policy π,
the TD error is:

δi = ri + γV̂θi−1
(si+1)− V̂θi−1

(si) (10)

For SARSA-like algorithms, that is algorithms which aim at evaluating the Q-function of a
given policy π, the TD error is:

δi = ri + γQ̂θi−1
(si+1, ai+1)− Q̂θi−1

(si, ai) (11)

Finally, for Q-learning-like algorithms, that is algorithms which aim at computing the op-
timal Q-function Q∗, the TD error is:

δi = ri + γ max
b∈A

Q̂θi−1
(si+1, b)− Q̂θi−1

(si, ai) (12)

The type of temporal difference determines the Bellman equation to be solved (evaluation
equation for (10-11), optimality equation for (12)), and thus if the algorithm belongs to the
policy iteration or value iteration family.

The gain Ki is specific to each algorithm. The most common are reviewed here. For TD,
SARSA and Q-learning (for example, see Sutton & Barto, 1998), the gain can be written
as

Ki = αiei (13)

where αi is a classical learning rate in stochastic approximation theory which should satisfy:

∞∑
i=0

αi =∞ and
∞∑
i=0

α2
i <∞ (14)

486

Kalman Temporal Differences

and ei is a unitary vector which is zero everywhere except in the component corresponding
to state si (or to state-action (si, ai)) where it is equal to one (Kronecker function). These
algorithms have been modified to consider so-called eligibility traces (again, see Sutton and
Barto), and the gain is then written as

Ki = αi

i∑
j=1

λi−jej (15)

where λ is the eligibility factor. Informally, this approach keeps memory of trajectories in
order to propagate updates to previously visited states.

These algorithms have also been extended to take into account approximate representa-
tion of the value function (Sutton & Barto, 1998), and are called direct algorithms (Baird,
1995). Without eligibility traces, the gain is written as

Ki = αi∇θi−1
V̂θi−1

(si) (16)

where ∇θi−1
V̂θi−1

(si) is the gradient following the parameter vector of the parameterized
value function in the current state. This gain corresponds to a stochastic gradient descent
according to the cost function ‖V π − V̂θ‖2. As V π(si) is not known nor directly observable,
it is replaced by ri + γV̂θ(si+1). This general approach is known as bootstrapping (Sutton
& Barto, 1998). The value function can be replaced straightforwardly by the Q-function
in this gain. The direct algorithms have also been extended to take into account eligibility
traces, which leads to the following gain:

Ki = αi

i∑
j=1

λi−j∇θi−1
V̂θi−1

(sj) (17)

Another well known approach is the set of residual algorithms (Baird, 1995), for which the
gain is obtained through the minimization of the L2-norm of the Bellman residual (i.e.,
the difference between the left side and the right side of the Bellman equation, possibly for
sampled transitions) using a stochastic gradient descent:

Ki = αi∇θi−1

(
V̂θi−1

(si)− γV̂θi−1
(si+1)

)
(18)

The next reviewed approach is the (recursive form of the) Least-Squares Temporal Dif-
ferences (LSTD) algorithm of Bradtke and Barto (1996), which is only defined for a linear
parameterization (8) and for which the gain is defined recursively:

Ki =
Ci−1φ(si)

1 + (φ(si)− γφ(si+1))T Ci−1φ(si)
(19)

Ci = Ci−1 −
Ci−1φ(si)(φ(si)− γφ(si+1))T Ci−1

1 + (φ(si)− γφ(si+1))T Ci−1φ(si)
(20)

where φ(s) is defined in (9) and for which the matrix C0 must be initialized. LSTD also seeks
to minimize the L2-norm of the Bellman residual, however using a least-squares approach
rather than a gradient descent and using the instrumental variable concept (Söderström

487

Geist & Pietquin

& Stoica, 2002) to cope with stochasticity of transitions1. This algorithm has also been
extended to eligibility traces (for details, see Boyan, 1999).

The last reviewed approach, which is certainly the closest to this contribution, is the
Gaussian Process Temporal Differences (GPTD) algorithm of Engel (2005). A linear pa-
rameterization Vθ(s) = φ(s)T θ is assumed2 and the following statistical generative model
(obtained from the Bellman evaluation equation) is considered:

r1
...
ri

 =


1 −γ 0 . . .
0 1 −γ 0
...

. −γ
0 . . . 0 1


φ(s1)T

...
φ(si)T

 θ +

n1
...
ni

 (21)

By assuming that the noise nj is white (and therefore centered), Gaussian and of variance σj ,
and that the prior over parameters follows a normal distribution, the posterior distribution
of (θ|r1, . . . , ri) can be analytically computed. Moreover, by using the Sherman-Morrison
formula, a recursive algorithm satisfying the Widrow-Hoff update rule (7) can be obtained
(assuming a prior P0):

Ki =
Pi−1(φ(si)− γφ(si+1))

σ2
i + (φ(si)− γφ(si+1))T Pi−1(φ(si)− γφ(si+1))

(22)

Pi = Pi−1 −
Pi−1(φ(si)− γφ(si+1))(φ(si)− γφ(si+1))T Pi−1

σ2
i + (φ(si)− γφ(si+1))T Pi−1(φ(si)− γφ(si+1))

(23)

Alternatively, GPTD (with parametric representation) can be seen as the linear least-
squares solution of the L2 Bellman residual minimization.

Only the most classical value function approximation algorithms have been presented,
however many other exist. Nevertheless, to our knowledge none of them presents all the
features argued before as being desirable. Most of them assumes linearity, at least to
ensure convergence (Tsitsiklis & Roy, 1997; Schoknecht, 2002) and sometime even to be
applicable (Bradtke & Barto, 1996; Boyan, 1999; Geramifard et al., 2006). Some other
algorithms do not assume linearity, as residual ones (Baird, 1995), however they are not
often practical (eg., a value iteration-like residual algorithm is proposed by Baird, but this
method requires computing the gradient of the max operator). Some of these methods are
more sample efficient than others. Generally speaking, second order approaches tend to be
more efficient than first order one, and LSTD is usually recognized as being a sample efficient
approach. Algorithms which use a learning rate can partially cope with non-stationarity, by
using an adaptive learning rate for example. However the LSTD approach is known to not

1. This point of view is historical. Since then, it has been shown that LSTD actually minimizes the distance
between the value function and the projection onto the hypothesis space of its image through the Bellman
operator (Lagoudakis & Parr, 2003).

2. Actually, Engel’s work is more general. It models the value function itself as a Gaussian process and
uses a dictionary method to obtain a sparse representation (without this procedure, the value function
would be represented as a vector with as many components as visited states). However, if this dictionary
method is used in a preprocessing step, the Gaussian process nonparametric representation reduces to
the proposed parametric linear representation, basis functions being kernels. Constructing the parame-
terization automatically and online is surely of interest, but the proposed point of view makes further
comparisons easier.

488

Kalman Temporal Differences

take into account non-stationarity (which explains that it is almost never used in optimistic
policy iteration or incremental actor-critic schemes), see for example the work of Phua
and Fitch (2007). Many recent approaches for handling the dilemma between exploration
and exploitation use some uncertainty information (eg., see Dearden, Friedman, & Russell,
1998 or Strehl, Li, Wiewiora, Langford, & Littman, 2006). However, as far as we know,
very few algorithms allow providing uncertainty information within a value approximation
context, and among them is the GPTD framework of Engel (2005). However, contrary to
this contribution the effective use of this information is left for future work. Like LSTD,
GPTD algorithms are sample efficient but they do not handle non-stationarity3. Yet, GPTD
and KTD frameworks share some similarities, this is discussed throughout this paper. The
motivation behind KTD is to handle all these aspects at the same time.

1.3 Paper Outline

The next section introduces an alternative point of view of value function approximation
and introduces informally Kalman filtering and the state-space representation, upon which
our contribution is built.

Determinism of MDP is assumed in Section 3 and the general Kalman Temporal Dif-
ferences framework is derived. Deterministic transitions are to be linked to a white noise
assumption which is necessary to KTD derivation. It is then specialized using an approxima-
tion scheme, the Unscented Transform (UT) of Julier and Uhlmann (2004) to derive a family
of practical algorithms. In Section 4, a colored noise model initially introduced by Engel,
Mannor, and Meir (2005) is used to extend the KTD framework to the case of stochas-
tic transitions. An eXtended KTD (XKTD) framework is proposed, and its combination
with off-policy learning is discussed. Convergence is analysed in Section 5. Under white
noise assumption, it is shown that KTD minimizes a weighted square Bellman residual.
Under colored noise assumption, it is shown that XKTD indeed performs a least-squares
supervised learning associating state values to observed Monte Carlo returns of cumulative
rewards. This is the same solution as LSTD(1), which is an unbiased estimator of the value
function. Section 6 shows how to compute uncertainty about value estimates from this
framework and introduces a form of active learning scheme which aims at improving speed
of convergence of KTD-Q, the KTD value iteration-like algorithm. The proposed framework
is then experimented and compared to state of the art RL algorithms. Each experiment is
a classic RL benchmark which aims at highlighting a specific features of KTD. Last section
discusses position of the proposed framework to other related approaches and offers some
perspectives.

2. An Alternative Point of View

The previous section presented the standard vision of the reinforcement learning problem
and of its formulation under the MDP framework. Here an alternative point of view is
introduced.

3. LSTD and GPTD could certainly be extended to the non-stationary case, for example by introducing
some forgetting factor. However, this is not how they have been designed initially, and the aim of this
paper is not to provide LSTD nor GPTD variations.

489

Geist & Pietquin

2.1 Informal Idea

In this paper, a novel approach based on an alternative point of view is proposed. A
stochastic dynamic system is seen as possessing underlying value functions V ∈ RS and
state-action value functions Q ∈ RS×A that an agent can observe by interacting with the
system. When an agent takes an action, it provokes a state change and the generation of a
reward. This reward is actually a local observation of the set of underlying value functions
ruling the behavior of the system. From a sequence of such observations, the agent can
infer information about any of the value functions. A good estimate of the value function
V̂ (s) (resp. state-action value function Q̂(s, a)) is given by the conditional expectation over
all possible trajectories of V (s) (resp. Q(s, a)) given the sequence of observed rewards:

V̂i(s) = E[V (s)|r1, . . . , ri] (24)

Q̂i(s, a) = E[Q(s, a)|r1, . . . , ri] (25)

Interacting with the system therefore becomes a mean to generate observations that
helps estimating value functions which are hidden properties of the system. From these value
function estimates, the followed policy can be modified to move towards the optimal policy.
It is also legitimate to adopt a behavior that allows gathering meaningful observations which
relates to the exploration versus exploitation dilemma.

Two special cases of value functions are the one associated to the followed policy π
and the one associated to the optimal policy π∗. The rest of this paper concentrates on
estimating these two particular value functions or associated Q-functions.

Equations (24) and (25) are not solvable in the general case but inferring hidden variables
from observations is typically treated by Kalman filtering in the signal processing and
optimal control communities. Value functions will be considered as generated by a set of
parameters and the search is for the optimal set of hidden parameters θ∗ that provides the
best estimate of the value function (see Section 3.1). In the following, Kalman filtering is
first introduced and a method casting (state-action) value function approximation into the
Kalman filtering framework and using Bellman equations to build a so-called state-space
representation of the problem is proposed.

2.2 Kalman Filtering

Originally, the Kalman (1960) filtering paradigm aims at tracking the hidden state X (mod-
eled as a random vector) of a non-stationary dynamic system through indirect observations
{Y1, . . . , Yi} of this state. To do so, at time i − 1 the algorithm computes a prediction of
the state (X̂i|i−1) and observation (Ŷi|i−1) at time i, knowing analytically how states evolve
and generate observations as clarified below. After the actual next observation Yi is known
(at time i), the state prediction is corrected to obtain the state estimate X̂i|i using the
observation prediction error (ei = Yi− Ŷi|i−1) according to the following Windrow-Hoff-like
equation:

X̂i|i = X̂i|i−1 + Ki(Yi − Ŷi|i−1) = X̂i|i−1 + Kiei (26)

where Ki is the Kalman gain which will be further described hereafter. In the original work
of Kalman, the linear form of equation (26) is a constraint: adopting a statistical point of
view, the goal of the Kalman filter is to recursively compute the best linear estimate X̂i of

490

Kalman Temporal Differences

the state at time i given the sequence of observations {Y1, . . . , Yi}. Kalman considers the
best estimate to be the one that minimizes the quadratic cost function

Ji(X̂) = E[‖Xi − X̂‖2|Y1, . . . , Yi] (27)

To compute the optimal gain Ki under the constraints (26) and (27), several assumptions
are made.

First, the evolution of the system is supposed to be ruled by a so-called evolution equation
or process equation (using the possibly non-stationary fi function) which is known:

Xi+1 = fi(Xi) + vi (28)

Equation (28) links the next state Xi+1 with the current one Xi and vi is a random noise
usually named evolution noise or process noise modeling the uncertainty in the evolution.

Second, observations are supposed to be linked to states by another known function gi

used in the typically called observation equation or sensing equation:

Yi = gi(Xi) + wi (29)

Equation (29) relates the current observation Yi to the current state Xi and wi is a random
noise usually named observation noise modeling the uncertainty induced by the noisy obser-
vation. This noise together with the process noise are at the origin of the state estimation
problem (estimating the current state from history of observations).

Equations (28) and (29) provide the so-called state-space description of the system. The
major assumptions of Kalman is that vi and wi are additive, white and independent noises
of variance Pv and Pw respectively, meaning that:

E[vi] = E[wi] = 0 (30)
E[vi · wj] = 0 ∀i, j (31)

E[vj · vi] = E[wj · wi] = 0 ∀i 6= j (32)

Given these assumptions and the constrains (26) and (27) and adopting a statistical
point of view, the Kalman filter algorithm provides the optimal quantities X̂i|i−1, Ŷi|i−1 and
Ki:

X̂i|i−1 = E[Xi|Y1, . . . , Yi−1] = E[fi−1(Xi−1) + vi−1|Y1, . . . , Yi−1]

= E[fi−1(Xi−1)|Y1, . . . , Yi−1] = E[fi−1(X̂i−1|i−1)], (33)

Ŷi|i−1 = E[Yi|Y1, . . . , Yi−1] = E[gi(Xi) + wi|Y1, . . . , Yi−1]

= E[gi(Xi)|Y1, . . . , Yi−1] = E[gi(X̂i−1|i−1)], (34)

Ki = PXeiP
−1
ei

. (35)

where PXei = E[(Xi − X̂i|i−1)ei|Y1, . . . , Yi−1] and Pei = cov(ei|Y1, . . . , Yi−1).
It is not in the scope of this paper to provide the complete development leading to these

general results which are provided by Kalman (1960). Yet, Section 3 will provide further
developments in the specific case of RL.

491

Geist & Pietquin

Several important comments can be made at this stage. First, no specific assumption
has been made about the distributions of the noises v and w except that they have a zero-
mean and known variances (Pv and Pw). Given this, the Kalman filter provides the best
linear estimator (in the sense that the estimator’s update rule is linear) of the system’s state
which may not be optimal. Yet, if these two noises have Gaussian distributions, they are
totally described by their mean and variance. In this specific case, the linear estimate is
thus the optimal estimate and the Kalman filter algorithm provides the optimal solution.
In this paper, the Gaussian assumption is never made and only the best linear estimator is
considered.

Second, no linear assumption has been made concerning functions fi and gi. Although
Kalman (1960) provides exact solutions to the estimation problem in the case of linear
state-space equations, only quantities involved in (33), (34) and (35) are required. There
exists approximation schemes to estimate these quantities even in the case of non-linear
equations. Extended Kalman filters and the unscented transform (see Section 3.2.2) are
such schemes.

Finally, Kalman filtering should not be mistaken for Bayesian filtering. Bayesian fil-
tering would consist in computing the complete posterior distribution of the state given
the observations. Kalman filtering only focuses on the first and second moments of this
distribution (mean and variance) with a constrained linear update. In the case of Gaussian
distributions, Bayesian filtering reduces to Kalman filtering but is more complex in the
general case. In this paper, only Kalman filtering is considered.

2.3 State-space Formulation for the Value Function Evaluation Problem

Before providing the general framework, underlying ideas are introduced through the value
function V π(s) evaluation problem. As providing some uncertainty information about es-
timates is considered as a desired feature, a statistical point of view is adopted and the
parameter vector θ is modeled as a set of random variables. Another desired feature is
to track the solution rather than converging to it. This suggests adopting some evolution
model for the value function (through the parameters). However, dynamics of the value
function are hard to model, as they depend on whether the dynamic system to be con-
trolled is non-stationary or the value function evaluation takes place in a generalized policy
iteration scheme4. Here a heuristic evolution model following the Occam razor principle is
adopted and parameters evolution is modeled as a random walk:

θi = θi−1 + vi (36)

In this equation, θi is the (true) parameter vector at time i and vi is the evolution noise. It
is assumed white (that is centered, and at two different time steps, noises are independent),
but no hypothesis is done about its distribution. The parameter vector θi is thus a random
process. As it is stationary (because E[θi] = E[θi−1]), it should not harm the case where the
value function is stationary. On the other hand, it should allow tracking a non-stationary
value function (even if this evolution model is not the true one, which cannot anyway be
obtained in the general case).

4. Each time the policy is improved, the associated value function changes too. Therefore, the value function
to be learnt is non-stationary.

492

Kalman Temporal Differences

Another issue is to link what is observed (the reward) to what needs to be inferred (the
parameter vector representing the value function). The Bellman evaluation equation is a
good candidate to produce such an observation model:

ri = V π(si)− γV π(si+1) (37)

However, the solution of the Bellman equation does not necessarily lie in the hypothesis
space (the set of functions which can be represented by the parameter vector, for a given
representation). Therefore there is some inductive bias ni, which is modeled here as a
centered noise:

ri = V̂θi
(si)− γV̂θi

(si+1) + ni (38)

Notice again that no Gaussian assumption is made about the distribution of this noise.
Evolution and observation models can be summarized in the following “state-space for-

mulation”: {
θi = θi−1 + vi

ri = V̂θi
(si)− γV̂θi

(si+1) + ni

(39)

This is a model of value function approximation. It is assumed that there exists some
parameter random process θi which generates the rewards through the Bellman evaluation
equation, these observations being noisy due to some inductive bias and to the fact that
a “sampled” Bellman equation is used instead of the true one. States and actions can be
considered here as exogenous variables which are part of the definition of the observation
model at time i. Estimating the value function reduces here to the estimation of this
hidden random process. It can be addressed by Bayesian filtering, which aims at estimating
the whole distribution of θi conditioned on past observed rewards. In this paper a more
restrictive point of view is adopted, the Kalman filtering one, and only mean and variance
of this distribution are estimated with a restriction to linear update rules.

3. KTD: the Deterministic Case

From now on and through the rest of this section the focus is on deterministic Markov
decision processes. Transitions become deterministic and Bellman equations (4-6) simplify
as follows:

V π(s) = R(s, π(s), s′) + γV π(s′), ∀s (40)
Qπ(s, a) = R(s, a, s′) + γQπ(s′, π(s′)), ∀s, a (41)
Q∗(s, a) = R(s, a, s′) + γ max

b∈A
Q∗(s′, b), ∀s, a (42)

In this section are provided the derivation of the most general KTD algorithm as well as
specializations to practical implementations.

3.1 The General Framework

A very general point of view is adopted now. A transition is generically noted as:

ti =


(si, si+1)
(si, ai, si+1, ai+1)
(si, ai, si+1)

(43)

493

Geist & Pietquin

given that the aim is the value function evaluation, the Q-function evaluation or the Q-
function optimization (in other words, the direct evaluation of the optimal Q-function).
Similarly, for the same cases, the following shortcuts hold:

gti(θi) =


V̂θi

(si)− γV̂θi
(si+1)

Q̂θi
(si, ai)− γQ̂θi

(si+1, ai+1)
Q̂θi

(si, ai)− γ maxb∈A Q̂θi
(si+1, b)

(44)

Then all TD errors can be written generically as

δi = ri − gti(θi) (45)

A statistical point of view is adopted. As said before, the original Kalman (1960) filter
paradigm aims at tracking the hidden state (modeled as a random variable) of a non-
stationary dynamic system through indirect observations of this state. The idea behind
KTD is to express value function approximation as a filtering problem: the parameters are
the hidden state to be tracked (modeled as random variables following a random walk),
the observation being the reward linked to the parameters through a Bellman equation.
The problem at sight can then be stated in a so-called state-space formulation (this term
comes from Kalman filtering literature and should not be confused with the state space of
an MDP): {

θi = θi−1 + vi

ri = gti(θi) + ni

(46)

This expression is fundamental for the proposed framework. Using the vocabulary of
Kalman filtering, the first equation is the evolution equation, it specifies that the real
parameter vector follows a random walk which expectation corresponds to the optimal es-
timate of the value function. The evolution noise vi is white, independent and of variance
matrix Pvi (to be chosen by the practitioner, this is further discussed in section 7). Notice
that this equation is not an update of the parameters (addressed later), but model their
natural evolution over time, according to the Kalman filtering paradigm described in Sec-
tion 2.2; notably this allows handling non-stationarity of the targeted value function. The
second equation is the observation equation, it links the observed transition to the value
(or Q-) function through a Bellman equation, see (44). The observation noise ni is sup-
posed white, independent and of (scalar) variance Pni (also to be chosen by the practitioner
and further discussed in section 7). Notice that this mandatory assumption does not hold
for stochastic MDP, that is why deterministic transitions are supposed here. More details
about this assumption and its consequences are given in Section 4. Given deterministic
transitions, this model noise arises because the solution of the Bellman equation does not
necessarily exists in the hypothesis space induced by the parameterization. Notice that the
choice of the nature of the approximator (choice of the structure of a neural network, of
basis functions for linear parameterization, etc.) is an important topic in reinforcement
learning and more generally in machine learning. Nevertheless, it is not addressed here,
and it has to be chosen by the practitioner.

494

Kalman Temporal Differences

3.1.1 Minimized Cost Function

An objective could be to estimate the whole distribution of parameters conditioned on
past observed rewards, which can be addressed by Bayesian filtering. However, it is a
difficult problem in the general case. Here a more simple objective is chosen: estimating the
(deterministic) parameter vector which minimizes the expectation over “true” parameters of
the mean-squared error conditioned on past observed rewards. The idea is that information
is provided by observed transitions and associated rewards, and that knowing the mean of
the posterior distribution should be enough. The associated cost can be written as:

Ji(θ) = E
[
‖θi − θ‖2|r1:i

]
with r1:i = r1, . . . , ri (47)

Notice that if θi is a random vector (of which distribution is not known), θ is a deterministic
vector. Generally speaking, the optimal solution or minimum mean square error (MMSE)
estimator is the conditional expectation5:

argmin
θ

Ji(θ) = θ̂i|i = E [θi|r1:i] (48)

However, except in specific cases, this estimator is not analytically computable. Instead,
the aim is here to find the best linear estimator of θi. It can be written in a form quite
similar to equation (7):

θ̂i|i = θ̂i|i−1 + Kir̃i (49)

In Equation (49), θ̂i|i is the estimate of θi at time i and θ̂i|i−1 = E[θi|r1:i−1] is its prediction
according to past observed rewards r1:i−1, given the evolution equation. For a random walk
model the following holds (recall that the evolution noise is white):

θ̂i|i−1 = E [θi−1 + vi|r1:i−1] = E [θi−1|r1:i−1]

= θ̂i−1|i−1 (50)

The innovation
r̃i = ri − r̂i|i−1 (51)

is the difference between the actual observed reward ri and its prediction r̂i|i−1 based on
the previous estimate of the parameter vector and the observation equation (recall that the
observation noise is also white):

r̂i|i−1 = E [ri|r1:i−1] = E [gti(θi) + ni|r1:i−1]

= E [gti(θi)|r1:i−1] (52)

Note that the innovation r̃i is not exactly the temporal difference defined in Equation (45),
which is a random variable through its dependency to the random vector θi. It is its
expectation conditioned on past observed data: r̃i = E[δi|r1:i].

5. This is quite intuitive, the best deterministic estimator (in a least-squares sens) of a random variable is
its mean.

495

Geist & Pietquin

3.1.2 Optimal Gain

Using classical equalities, the cost function can be rewritten as the trace of the matrix
variance of parameters error:

Ji(θ) = E
[
‖θi − θ‖2|r1:i

]
= E

[
(θi − θ)T (θi − θ)|r1:i

]
= trace

(
E
[
(θi − θ)(θi − θ)T |r1:i

])
(53)

Recall that we restrict ourselves to the class of linear (and unbiased) estimators depicted
in Eq. (49). Therefore, the cost function Ji(θ̂i|i) should be considered, and the unknown is
the gain Ki:

Ji(θ̂i|i) = trace
(
cov

(
θi − θ̂i|i|r1:i

))
(54)

A first step to the computation of the optimal gain is to express the conditioned covariance
over parameters as a function of the gain Ki. A few more notations are first introduced
(recall also (51), the definition of the innovation):

θ̃i|i = θi − θ̂i|i and θ̃i|i−1 = θi − θ̂i|i−1

Pi|i = cov
(
θ̃i|i|r1:i

)
and Pi|i−1 = cov

(
θ̃i|i−1|r1:i−1

)
Pri = cov (r̃i|r1:i−1) and Pθri

= E
[
θ̃i|i−1r̃i|r1:i−1

] (55)

The various estimators being unbiased, the covariance can be expanded as follows:

Pi|i = cov
(
θi − θ̂i|i|r1:i

)
= cov

(
θi −

(
θ̂i|i−1 + Kir̃i

)
|r1:i−1

)
= cov

(
θ̃i|i−1 −Kir̃i|r1:i−1

)
Pi|i = Pi|i−1 − Pθri

KT
i −KiP

T
θri

+ KiPriK
T
i (56)

The optimal gain can thus be obtained by zeroing the gradient with respect to Ki of the
trace of this matrix.

First note that the gradient being linear, for three matrices of ad hoc dimensions A,
B and C (that is products ABAT and ACT are well defined), B being symmetric, the
following algebraic identities hold:

∇A

(
trace

(
ABAT

))
= 2AB (57)

∇A

(
trace

(
ACT

))
= ∇A

(
trace

(
CAT

))
= C (58)

and thus using Equation (56) and previous identities:

∇Ki

(
trace

(
Pi|i
))

= 0

⇔ 2KiPri − 2Pθri
= 0

⇔ Ki = Pθri
P−1

ri
(59)

496

Kalman Temporal Differences

Using Equations (56) and (59), the covariance matrix Pi|i can be recursively computed as
follows:

Pi|i = Pi|i−1 −KiPriK
T
i (60)

Recall that no Gaussian assumption has been made to derive these equations. Nevertheless,
under Gaussian (and linear) assumptions, the optimal update is actually linear6 (for exam-
ple, see Chen, 2003). Please also notice that this variance matrix encodes the uncertainty
over parameter estimates, and not the intrinsic uncertainty of the considered MDP (it is
not the variance of the random process from which the value function is the mean).

3.1.3 General Algorithm

The most general KTD algorithm can now be derived. It breaks down in three stages. The
first step consists in computing predicted quantities θ̂i|i−1 and Pi|i−1. These predictions
being made from past estimates, the algorithm has to be initialized with priors θ̂0|0 and P0|0.
Recall that for a random walk model, Equation (50) holds, and the predicted covariance
can also be computed analytically:

Pi|i−1 = cov
(
θ̃i|i−1|r1:i−1

)
= cov

(
θ̃i−1|i−1 + vi|r1:i−1

)
= Pi−1|i−1 + Pvi (61)

(recall that Pvi is the problem-dependent variance matrix of the evolution noise, to be
chosen by the practitioner).

The second step is to compute some statistics of interest. It will be specialized for
each algorithm in Section 3.2. The first statistic to compute is the prediction r̂i|i−1 (52).
The second statistic to compute is the covariance between the parameter vector and the
innovation:

Pθri
= E

[
(θi − θ̂i|i−1)(ri − r̂i|i−1)|r1:i−1

]
(62)

However, from the state-space model (46), ri = gti(θi) + ni, and the observation noise is
centered and independent, so

Pθri
= E

[
(θi − θ̂i|i−1)(gti(θi)− r̂i|i−1)|r1:i−1

]
(63)

The last statistic to compute is the covariance of the innovation, which can be written as
(using again the characteristics of the observation noise):

Pri = E
[
(ri − r̂i|i−1)

2|r1:i−1

]
= E

[
(gti(θi)− r̂i|i−1 + ni)2|r1:i−1

]
= E

[
(gti(θi)− r̂i|i−1)

2|r1:i−1

]
+ Pni (64)

(recall that Pni is the variance of the observation noise).

6. In other words, in this case, the Kalman filtering solution is actually the Bayesian filtering solution.

497

Geist & Pietquin

The third and last step of the algorithm is the correction step. It consists in computing
the gain (59), correcting the predicted parameter vector (49) and updating the associated
covariance matrix (60) accordingly. The proposed general framework is summarized in
Algorithm 1. Notice the similarity between the correction equation (θ̂i|i = θ̂i−1|i−1 +Ki(ri−
r̂i|i−1)) and the Widrow-Hoff equation where the approximated value is corrected in the
direction of the error (the innovation is indeed the TD error). The gain Ki can be seen as
a set of adaptive learning rates.

Algorithm 1: General KTD algorithm

Initialization: priors θ̂0|0 and P0|0 ;

for i← 1, 2, . . . do

Observe transition ti and reward ri ;

Prediction step;
θ̂i|i−1 = θ̂i−1|i−1;
Pi|i−1 = Pi−1|i−1 + Pvi ;

Compute statistics of interest ;
r̂i|i−1 = E[gti(θi)|r1:i−1] ;

Pθri
= E

[
(θi − θ̂i|i−1)(gti(θi)− r̂i)|r1:i−1

]
;

Pri = E
[
(gti(θi)− r̂i|i−1)2|r1:i−1

]
+ Pni ;

Correction step;
Ki = Pθri

P−1
ri

;
θ̂i|i = θ̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 −KiPriK
T
i ;

3.2 Specializations

The main difficulty in applying KTD is to compute the statistics of interest r̂i|i−1, Pθri

and Pri (for which statistics θ̂i|i−1 and Pi|i−1 are necessary). First, the value function
evaluation in the case of a linear parameterization is considered. The related Bellman
equation is (40). In this case an analytical derivation is possible. Then an approximation
scheme, the unscented transform (UT) of Julier and Uhlmann (2004), is introduced. It
allows solving the same problem for a nonlinear parameterization. Q-function evaluation
and direct optimization follow.

3.2.1 KTD-V: Linear Parameterization

Here the linear parameterization of equation (8) is adopted, that is V̂θ(s) = φ(s)T θ. The
state-space formulation (46) can thus be rewritten as:{

θi = θi−1 + vi

ri = (φ(si)− γφ(si+1))
T θi + ni

(65)

498

Kalman Temporal Differences

Notice that as the problem at sight is the evaluation of a deterministic policy, no action has
to be observed. The policy being fixed, the MDP reduces to a valued Markov chain. To
shorten notations, Hi is defined as:

Hi = φ(si)− γφ(si+1) (66)

As the observation equation is linear, the statistics of interest can be derived analytically.
The prediction is:

r̂i|i−1 = E [gti(θi)|r1:i−1]

= E
[
HT

i θi|r1:i−1

]
= HT

i E [θi|r1:i−1]

= HT
i θ̂i|i−1 (67)

The covariance between the parameter vector and the innovation can also be computed
analytically:

Pθri
= E

[
θ̃i|i−1

(
gti(θi)− r̂i|i−1

)
|r1:i−1

]
= E

[
θ̃i|i−1H

T
i θ̃i|i−1|r1:i−1

]
= E

[
θ̃i|i−1θ̃

T
i|i−1|r1:i−1

]
Hi

= Pi|i−1Hi (68)

The covariance of the innovation is derived analytically as well:

Pri = E
[(

gti(θi)− r̂i|i−1

)2 |r1:i−1

]
+ Pni

= E

[(
HT

i θ̃i|i−1

)2
|r1:i−1

]
+ Pni

= HT
i Pi|i−1Hi + Pni (69)

The optimal gain can thus be defined algebraically and recursively:

Ki =
Pi|i−1Hi

HT
i Pi|i−1Hi + Pni

(70)

The KTD-V approach for linear parameterization is summarized in Algorithm 2.
Notice that this gain shares similarities with the gain (19) of the LSTD algorithm

(Bradtke & Barto, 1996), which is not a surprise. LSTD is based on a least-squares
minimization (however with the introduction of instrumental variables in order to han-
dle stochastic transitions), and the Kalman filter can be seen as a stochastic generalization
of the least-squares method. This gain shares also similarities with GPTD. Actually, if
the process noise is set to 0 (that is Pvi = 0), then KTD-V with linear parameterization

499

Geist & Pietquin

Algorithm 2: KTD-V: linear parameterization

Initialization: priors θ̂0|0 and P0|0 ;

for i← 1, 2, . . . do

Observe transition (si, si+1) and reward ri ;

Prediction step;
θ̂i|i−1 = θ̂i−1|i−1;
Pi|i−1 = Pi−1|i−1 + Pvi−1 ;

Compute statistics of interest ;
r̂i|i−1 = HT

i θ̂i|i−1 ;
Pθri

= Pi|i−1Hi;
Pri = HT

i Pi|i−1Hi + Pni ;
/* where Hi = φ(si)− γφ(si+1) */

Correction step;
Ki = Pθri

P−1
ri

;
θ̂i|i = θ̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 −KiPriK
T
i ;

and GPTD are the same algorithm7, see Equation (22). This is not a surprise: under a
linear and Gaussian hypothesis, state-space (65) with zero evolution noise is equivalent to
the statistical generative model (21). An alternative point of view is that both approaches
provide the least-squares solution to the L2 Bellman residual minimization.

Although linear parameterization is widely used, one can be interested in using a non-
linear one (for optimal basis function search or more compact function representation for
instance). Another case of interest (addressed later) is to handle the max operator which is
inherent to the Bellman optimality equation. This is how the proposed approach notably
differs from Engel’s framework. Basically, the issue of computing the statistics of interest for
KTD can be stated as the following problem: given the mean and covariance of a random
variable (θ̂i|i−1 and Pi|i−1 for KTD), how can the mean and covariance of a nonlinear (and
perhaps non-differentiable) mapping (gti for KTD) of this random variable be computed?
The following section presents the unscented transform, which is an approximation scheme
designed to handle such a problem.

7. Once again, GPTD is more general than linear parameterization, the gain (22) being refereed to as
“parametric GPTD” by Engel (2005). Nevertheless, the non-parametric approach of GPTD actually
constructs online a kernel-based linear parameterization. At the end of learning, or if the parameter-
ization is constructed in a preprocessing step, this non-parametric representation reduces to a linear
parametric representation. As the focus of this paper is how to learn parameters of a representation and
not the representation itself (which we totally recognize as being a problem of importance), GPTD is
always considered in its parametric form in this article.

500

Kalman Temporal Differences

3.2.2 The Unscented Transform

Let’s abstract from RL and Kalman filtering and consider the problem of non-linear mapping
of a random variable. Let X be a random vector, and let Y be a mapping of X. The problem
is to compute the mean and covariance of Y knowing the mapping and the first and second
order moments of X. If the mapping is linear, the relation between X and Y can be written
as Y = AX where A is a matrix of ad hoc dimension (that is number of row of Y times
number of rows of X). In this case, required mean and covariance can be analytically
computed as E[Y] = AE[X] and E[Y Y T] = AE[XXT]AT . This result has been used to
derive the KTD-V algorithm of Section 3.2.1.

If the mapping is nonlinear, the relation between X and Y can be written as:

Y = f(X) (71)

A first solution would be to approximate the nonlinear mapping by a first order Taylor
expansion around E[X]. This leads to the following approximations of the mean and co-
variance of Y :

E[Y] ≈ f (E[X]) (72)

E[Y Y T] ≈ (∇f (E[X]))E[XXT] (∇f (E[X]))T (73)

This approach is the basis of Extended Kalman Filtering (EKF) (for example, see Simon,
2006), which has been extensively studied and used in past decades. However it has some
limitations. First it cannot handle non-derivable nonlinearities, and thus cannot handle
the Bellman optimality equation (6) because of the max operator. It requires to compute
the gradient of the mapping f , which can be quite difficult even if possible (eg., neural
networks). It also supposes that the nonlinear mapping is locally linearizable in order to
have a good approximation, which is unfortunately not always the case and can lead to
quite bad results, as exemplified by Julier and Uhlmann (2004).

The basic idea of unscented transform is that it is easier to approximate an arbitrary
random vector (with samples) than an arbitrary nonlinear function. Its principle is to sample
deterministically a set of so-called sigma-points from the expectation and the covariance of
X. The images of these points through the nonlinear mapping f are then computed, and
they are used to approximate statistics of interest. It shares similarities with Monte-Carlo
methods, however here the sampling is deterministic and requires less samples to be drawn,
nonetheless guaranteeing a given accuracy (Julier & Uhlmann, 2004).

The original unscented transform is now described more formally (some variants have
been introduced since then, the basic principle being the same). Let n be the dimension of
X. A set of 2n + 1 so-called “sigma-points” is computed as follows:

x(0) = X̄ j = 0 (74)

x(j) = X̄ +
(√

(n + κ)PX

)
j

1 ≤ j ≤ n (75)

x(j) = X̄ −
(√

(n + κ)PX

)
j−n

n + 1 ≤ j ≤ 2n (76)

as well as associated weights:

w0 =
κ

n + κ
and wj =

1
2 (n + κ)

∀j > 0 (77)

501

Geist & Pietquin

where X̄ is the mean of X, PX is its variance matrix, κ is a scaling factor which controls
the sampling spread, and (

√
(n + κ)PX)j is the jth column of the Cholesky decomposition

of the matrix (n + κ)PX . Then the image through the mapping f is computed for each of
these sigma-points:

y(j) = f(x(j)), 0 ≤ j ≤ 2n (78)

The set of sigma-points and their images can finally be used to approximate first and second
order moments of Y , and even PXY , the covariance matrix between X and Y :

Ȳ ≈ ȳ =
2n∑

j=0

wjy
(j) (79)

PY ≈
2n∑

j=0

wj

(
y(j) − ȳ

)(
y(j) − ȳ

)T
(80)

PXY ≈
2n∑

j=0

wj

(
x(j) − X̄

)(
y(j) − ȳ

)T
(81)

Thanks to the unscented transform, it is possible to address the value function evalua-
tion problem with nonlinear parameterization, the random vector X being in this case the
parameter vector, and its nonlinear mapping Y the predicted reward.

3.2.3 KTD-V: Nonlinear Parameterization

In this section a generic parameterization of the value function V̂θ is considered: it can be
a neural network (Bishop, 1995), a semi-parametric kernel representation (Geist, Pietquin,
& Fricout, 2008), or any function representation of interest, as long as it can be described
by a set of p parameters. The general state-space formulation (46) can thus be written as:{

θi = θi−1 + vi

ri = V̂θi
(si)− γV̂θi

(si+1) + ni

(82)

The problem is still to compute the statistics of interest, which becomes tractable with the
unscented transform. The first thing to compute is the set of sigma-points from known
statistics θ̂i|i−1 and Pi|i−1 as well as the associated weights using Equations (74-77), as
described in Section 3.2.2:

Θi|i−1 =
{

θ̂
(j)
i|i−1, 0 ≤ j ≤ 2p

}
(83)

W = {wj , 0 ≤ j ≤ 2p} (84)

Then the images of these sigma-points are computed (a predicted reward for each of the
sampled parameter vectors), using the observation function of state-space model (82), which
is linked to the Bellman evaluation equation (40):

Ri|i−1 =
{

r̂
(j)
i|i−1 = V̂

θ̂
(j)
i|i−1

(si)− γV̂
θ̂
(j)
i|i−1

(si+1), 0 ≤ j ≤ 2p

}
(85)

502

Kalman Temporal Differences

The sigma-points and their images being computed, the statistics of interest can be approx-
imated by:

r̂i|i−1 ≈
2p∑

j=0

wj r̂
(j)
i|i−1 (86)

Pri ≈
2p∑

j=0

wj

(
r̂
(j)
i|i−1 − r̂i|i−1

)2
+ Pni (87)

Pθri
≈

2p∑
j=0

wj

(
θ̂
(j)
i|i−1 − θ̂i|i−1

)(
r̂
(j)
i|i−1 − r̂i|i−1

)
(88)

As the unscented transform is no longer an approximation for linear mapping, this formula-
tion is still valid for value function evaluation with linear function approximation. KTD-V
with nonlinear function approximation is summarized in Algorithm 3. Notice that such
a general parameterization cannot be taken into account in GPTD nor LSTD. It is pos-
sible with direct algorithms (TD with function approximation), however there is a risk of
divergence. This is illustrated in Section 7.

3.2.4 KTD-SARSA

This section focuses on the Q-function evaluation of a fixed given policy. The associated
algorithm is called KTD-SARSA, which can be misleading. Indeed, SARSA is sometime
understood as a Q-function evaluation algorithm associated with an optimistic policy itera-
tion scheme (eg., ε-greedy policy). Here the focus is on the Q-function evaluation problem,
and the control part is left apart. For a general parameterization Q̂θ, and considering the
Bellman evaluation equation (41), the state-space model (46) can be rewritten as:{

θi = θi−1 + vi

ri = Q̂θi
(si, ai)− γQ̂θi

(si+1, ai+1) + ni

(89)

For a fixed policy, the value function evaluation on the state space induced Markov chain8 is
quite similar to the Q-function evaluation on the state-action space induced Markov chain.
It is thus straightforward to extend KTD-V to Q-function evaluation. Recall that for a linear
parameterization, the unscented transform leads to an exact computation of statistics of
interest, and thus in this case Algorithm 3 (KTD-V) is equivalent to Algorithm 2. That
is why only the sigma-point formulation of KTD-SARSA is given, also summarized in
Algorithm 3.

LSTD and GPTD have also been generalized to the Q-function evaluation (see respec-
tively Lagoudakis & Parr, 2003 and Engel, 2005). However, once again, these approaches
cannot handle a nonlinear parameterization, contrary to KTD-SARSA. Notice also that
if the parameterization is linear and the process noise is zero, KTD-SARSA is the same
algorithm as GPTD for Q-function evaluation (this is a direct extension of the equiva-
lence between GPTD and KTD-V with linear parameterization and zero process noise, see
Sec. 3.2.1).

8. For a fixed policy, the MDP reduces to a Markov chain.

503

Geist & Pietquin

Algorithm 3: KTD-V, KTD-SARSA and KTD-Q

Initialization: priors θ̂0|0 and P0|0 ;

for i← 1, 2, . . . do

Observe transition ti =


(si, si+1) (KTD-V)

(si, ai, si+1, ai+1) (KTD-SARSA)

(si, ai, si+1) (KTD-Q)

and reward ri ;

Prediction Step;
θ̂i|i−1 = θ̂i−1|i−1;
Pi|i−1 = Pi−1|i−1 + Pvi ;

Sigma-points computation ;
Θi|i−1 =

{
θ̂
(j)
i|i−1, 0 ≤ j ≤ 2p

}
(from θ̂i|i−1 and Pi|i−1);

W = {wj , 0 ≤ j ≤ 2p } ;
Ri|i−1 =

{
r̂
(j)
i|i−1 = V̂

θ̂
(j)
i|i−1

(si)− γV̂
θ̂
(j)
i|i−1

(si+1), 0 ≤ j ≤ 2p
}

(KTD-V){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γQ̂
θ̂
(j)
i|i−1

(si+1, ai+1), 0 ≤ j ≤ 2p
}

(KTD-SARSA){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γ maxb∈A Q̂
θ̂
(j)
i|i−1

(si+1, b), 0 ≤ j ≤ 2p
}

(KTD-Q)

;

Compute statistics of interest ;
r̂i|i−1 =

∑2p
j=0 wj r̂

(j)
i|i−1;

Pθri
=
∑2p

j=0 wj(θ̂
(j)
i|i−1 − θ̂i|i−1)(r̂

(j)
i|i−1 − r̂i|i−1);

Pri =
∑2p

j=0 wj

(
r̂
(j)
i|i−1 − r̂i|i−1

)2
+ Pni ;

Correction step;
Ki = Pθri

P−1
ri

;
θ̂i|i = θ̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 −KiPriK
T
i ;

3.2.5 KTD-Q

This section focuses on the Q-function optimization, that is on finding an approximate
solution to the Bellman optimality equation (42). A general parameterization Q̂θ is adopted.
The state-space model (46) can be specialized as follows:{

θi = θi−1 + vi

ri = Q̂θi
(si, ai)− γ maxb∈A Q̂θi

(si+1, b) + ni

(90)

Here linear and nonlinear parameterizations are not distinguished, because of the non-
linearities induced by the max operator. It is tricky to handle, especially because of its
non-differentiability.

504

Kalman Temporal Differences

Hopefully, as it approximates the random variable rather than the mapping, the un-
scented transform is a derivative-free approximation. Given the general KTD algorithm
introduced in Section 3.1.3 and the unscented transform described in Section 3.2.2, it is
possible to derive KTD-Q, the KTD algorithm for Q-function direct optimization. One has
first to compute the set of sigma-points associated with the parameter vector, as in equa-
tions (83-84). Then the mapping of these sigma-points through the observation equation of
state-space model (90), which contains the max operator, is computed:

Ri|i−1 =
{

r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γ max
b∈A

Q̂
θ̂
(j)
i|i−1

(si+1, b), 0 ≤ j ≤ 2p
}

(91)

Then, as usual, the sigma-points and their images are used to compute the statistics of
interest, as in equations (86-88). The proposed KTD-Q is summarized in Algorithm 3.

Notice that even if the parameterization is linear, there is no LSTD nor GPTD equivalent
to this algorithm. Actually, as linearity of the observation model is a mandatory assumption
for the derivation of these algorithms, the Bellman optimality operator cannot be taken
into account. As far as we know, KTD-Q is one of the first second order value iteration-like
algorithms. Choi and Van Roy (2006) propose a linear least-squares based bootstrapping
approach (to be discussed in Section 8) which can be used in a Q-learning-like setting.
Yu and Bertsekas (2007) also introduce a least-squares-based Q-learning. However, it is
designed for optimal stopping problems (which is a restrictive class of MDP) and it is
not truly online (to update the representation given a new observation, all the followed
trajectory are explicitly required). Roughly speaking, this algorithm is fitted-Q with a
least-squares for the supervised learning part and for which a new transition is added to
the learning basis at each iteration. Its computational complexity is cubic9, which is higher
than the square complexity of KTD, as shown in the next section.

3.3 Algorithmic Complexity

Let p be the number of parameters. The unscented transform involves a Cholesky decom-
position of which computational complexity is O(p3) in general. However, as the variance
update (60) is a rank one update, the Cholesky decomposition can be perfomed in O(p2)
(eg., see Gill, Golub, Murray, & Saunders, 1974). The different algorithms imply to evaluate
2p + 1 times the gti function at each time-step. For KTD-V or KTD-SARSA and a general
parameterization, each evaluation is bounded by O(p). For KTD-Q, the maximum over
actions has to be computed. The notation A represents the cardinality of action space if fi-
nite, the computational complexity of the algorithm used to search the maximum otherwise
(eg., the number of samples times the evaluation complexity for Monte Carlo). Then each
evaluation is bounded by O(pA). Remaining operations are basic linear algebra, and are
thus bounded by O(p2). Therefore the global computational complexity (per iteration) of
KTD-V and KTD-SARSA is O(p2), and KTD-Q is in O(Ap2). As the mean and variance
matrix of parameters have to be maintained, the memory complexity is O(p2). Although
comparable to LSTD or GPTD complexity, this is higher than many other RL algorithms
which have a linear complexity. Nevertheless, most of value function approximation ap-
proaches assume a linear parameterization. KTD does not make this hypothesis (even to

9. However, the paper proposes some heuristics which reduce this complexity.

505

Geist & Pietquin

analyse convergence, as shown in Section 5.1) and so allows much more compact represen-
tations for the value function. Thus the quadratic complexity is a problem with important
counterparts.

4. KTD: the Stochastic Case

The KTD framework presented so far assumes deterministic transitions. If it is not the
case, the observation noise ni cannot be assumed as white (since it would include the MDP
stochasticity as well as the inductive bias), whereas it is a necessary condition for KTD
derivation. First it is shown that using KTD in a stochastic MDP involves a bias. Then a
colored noise model is introduced to alleviate this problem, and it is used to extend KTD.
The problem caused by off-policy learning, which prevents the derivation of an XKTD-Q
algorithm, is also discussed.

4.1 Stochastic Transitions and Bias

One can ignore this problem and use the cost function (47) linked to state-space model (46)
with stochastic transitions. However, similarly to approaches minimizing a squared Bellman
residual, such as residual algorithms of Baird (1995), this cost function is biased. More
precisely, it is biased relatively to stochasticity of transitions (parameters and transitions
are different sources of randomness). Additionally, this cost function being biased, the
estimator minimizing it (that is θ̂i|i) is biased too.

Theorem 1. If the reward function only depends on the current state-action pair, and not
on the transiting state, then when used on a stochastic Markov decision process, the cost
function (47) is biased (relatively to stochasticity of transitions), its bias being given by:

‖Ki‖2E
[

cov
s′|si,ai

(ri − gti(θ)) |r1:i−1

]
=


‖Ki‖2E

[
covs′|si,π(si) (ri + γVθ(s′)) |r1:i−1

]
‖Ki‖2E

[
covs′|si,π(si) (ri + γQθ(s′, π(s′))) |r1:i−1

]
‖Ki‖2E

[
covs′|si,ai

(ri + γ maxa∈A Qθ(s′, a)) |r1:i−1

]
(92)

It is clear that this bias is zero for deterministic transitions.

Proof. The assumption that the reward does not depend on the transiting state is made for
technically simplifying the demonstration, because of the conditioning of the cost function
on past observed rewards. Yet it is done without loss of generality. Under this hypothesis,
the state-space model to be considered for a stochastic MDP is:{

θi = θi−1 + vi

ri = Es′|si,ai
[gti(θi)] + ni

(93)

with ti now defined as the random quantity ti = (si, ai, s
′). Notice that the observation

equation (minus the noise) is the Bellman equation for stochastic transitions. The difference
with state-space model (46) is that transitions are no more sampled but averaged. The
associated cost function is:

Ji(θ) = trace
(
Pi|i
)

= trace
(
Pi|i−1 − Pθri

KT
i −KiPT

θri
−KiPriK

T
i

)
(94)

506

Kalman Temporal Differences

Calligraphic letters denote the same for state-space model (93) than notations (55) for
state-space model (46), eg.:

Pθri
= E

[
θ̃i|i−1r̃i|r1:i−1

]
with r̃i = ri − r̂i|i−1 = ri − E

[
Es′|si,ai

[gti(θi)] |r1:i−1

]
(95)

Notice that the prediction of the reward is unbiased, thus the same holds for the innovation:

Es′|si,ai

[
r̂i|i−1

]
= r̂i|i−1 and Es′|si,ai

[
r̃i|i−1

]
= r̃i|i−1 (96)

The term Pi|i−1 does not depend on transiting state s′ and the term Pθri
is linear in the

innovation, so they are unbiased:

Es′|si,ai

[
Pi|i−1

]
= Pi|i−1 and Es′|si,ai

[Pθri
] = Pθri

(97)

This is not the case for the variance of the innovation:

Es′|si,ai
[Pri] = Es′|si,ai

[
E
[
r̃2
i |r1:i−1

]]
= E

[
Es′|si,ai

[
r̃2
i

]
|r1:i−1

]
= E

[
r̃2i |r1:i−1

]
+ E

[
Es′|si,ai

[
r̃2
i

]
−
(
Es′|si,ai

[r̃i]
)2 |r1:i−1

]
= Pri + E

[
cov

s′|si,ai
(r̃i) |r1:i−1

]
(98)

Thus the bias (Es′|si,ai
[Ji(θ)]− Ji(θ)) can be computed:

Es′|si,ai
[Ji(θ)]− Ji(θ) = Es′|si,ai

[
trace

(
Ki (Pri − Pri) KT

i

)]
= trace(KiK

T
i)Es′|si,ai

[Pri − Pri]

= KT
i Ki

(
Es′|si,ai

[Pri]− Pri

)
= ‖Ki‖2E

[
cov

s′|si,ai

(ri − gti(θ)) |r1:i−1

]
(99)

Notice that neither Vθ(si) nor Qθ(si, ai) depends on the transiting state s′. Thus this proves
the result as expressed in Theorem 1.

This bias is quite similar to the one arising from the minimization of a square Bellman
residual. The result of Theorem 2 (see Section 5) even strengthen this parallel. A solution
could be to introduce an auxiliary filter to remove this bias, similarly to introduction of an
auxiliary function made by Antos, Szepesvári, and Munos (2008). However extension of this
work is not straightforward. Another approach could be to estimate this bias online so as
to remove it, similarly to what is done by Jo and Kim (2005) for least-mean square filtering.
However the Kalman filter is a much more complex framework than the least-squares filter,
especially when combined with unscented transform. Another interesting perspective could
be to introduce a colored observation noise as done by Engel (2005) in a Bayesian context
for Gaussian process-based algorithms. This last approach is presented and used to extend
KTD next.

507

Geist & Pietquin

4.2 A Colored Noise Model

First the focus is on value function evaluation. Extension to Q-function evaluation is
straightforward, and Q-function optimization is discussed later, because of its off-policy
aspect (the learnt policy is not the behaviorial one). The Bellman evaluation equation to
be solved is Equation (4): it has just been shown that directly using KTD in a stochas-
tic problem induces a bias in the minimized cost function. A colored noise model which
was first proposed by Engel et al. (2005) (the basis of the so-called Monte-Carlo GPTD
algorithm) is first presented, before being adapted to extend the KTD framework.

The policy being fixed for evaluation, the MDP reduces in a valued Markov chain of
probability transition pπ(.|s) = p(.|s, π(s)) and of reward Rπ(s, s′) = R(s, π(s), s′). The
value function can be defined as the expectation (over all possible trajectories) of the fol-
lowing discount return random process:

Dπ(s) =
∞∑
i=0

γiRπ(si, si+1)|s0 = s, si+1 ∼ pπ(.|si) (100)

This equation naturally leads to a Bellman-like anti-causal recurrence:

Dπ(s) = Rπ(s, s′) + γDπ(s′), s′ ∼ pπ(.|s) (101)

This random process can also be broken down in its mean plus a zero mean residual.
However by definition its mean is the value function V π(s) = E[Dπ(s)], so by writing
∆V π(s) the residual:

Dπ(s) = E[Dπ(s)] + (Dπ(s)− E[Dπ(s)]) = V π(s) + ∆V π(s) (102)

Substituting Equation (102) into Equation (101), the reward can be expressed as a function
of the value plus a noise:

Rπ(s, s′) = V π(s)− γV π(s′) + N(s, s′) (103)

the noise being defined as:

N(s, s′) = ∆V π(s)− γ∆V π(s′) (104)

As done by Engel et al. (2005), the residuals are supposed to be independent, which leads
to a colored noise model. This assumption is really strong, as transitions are likely to
render residuals dependent, however despite this some convergence guarantees are given in
Section 5.

Recall the observation equation of the state-space formulation (46): ri = gti(θi)+ni. In
the KTD framework, the observation noise ni is assumed white, which is necessary for the
algorithm derivation. In the eXtended Kalman Temporal Differences (XKTD) framework,
the colored noise model (104) is used instead.

The residual being centered and assumed independent, this noise is indeed a moving
average (MA) noise (here the sum of two white noises):

ni = −γui + ui−1, ui ∼ (0, σ2
i) (105)

Notice that the white noise ui is centered with variance σ2
i , nevertheless no assumption is

made about its distribution (particularly no Gaussian assumption).

508

Kalman Temporal Differences

4.3 Extending KTD

It is quite easy to use an autoregressive (AR) process noise in a Kalman filter by extending
the evolution equation (for example, see Simon, 2006). However, as far as we know, the
case of an MA observation noise has never been addressed before in the literature, whereas
it is necessary to extend KTD. Notice that this noise model is taken into account in a quite
different way in the GPTD framework. Basically, it is done using the partitioned matrix
inversion formula, which is not possible here due to the lack of linearity assumption.

4.3.1 eXtended Kalman Temporal Differences

Rederiving KTD in the case of an MA noise as done in Section 3.1 would be quite difficult.
Instead, it is proposed here to express the scalar MA noise ni as a vectorial AR noise. This
allows extending state-space model (46) to a new one for which Algorithm 1 applies rather
directly. Let ωi be an auxiliary random variable. Scalar MA noise (105) is equivalent to
the following vectorial AR noise:(

ωi

ni

)
=
(

0 0
1 0

)(
ωi−1

ni−1

)
+
(

1
−γ

)
ui (106)

Indeed, from this vectorial AR noise, ni = ωi−1 − γui and ωi = ui, so ni = −γui + ui−1

which is the correct MA model. The noise u′i =
(
ui −γui

)T is also centered and its variance
matrix is:

Pu′i
= σ2

i

(
1 −γ
−γ γ2

)
(107)

This new noise formulation having been defined, it is now possible to extend the state-
space formulation (46): {

xi = Fxi−1 + v′i
ri = gti(xi)

(108)

The parameter vector is now extended with the vectorial AR noise
(
ωi ni

)T :

xT
i =

(
θT
i ωi ni

)
(109)

Notice that as the observation noise ni is now a part of the extended parameter vector,
it is also estimated. The evolution matrix F takes into account the structure of the MA
observation noise. Let p be the number of parameters and Ip the identity matrix of size p,
the evolution matrix is written by bloc (0 denotes a zero p× 1 column vector):

F =

 Ip 0 0
0T 0 0
0T 1 0

 (110)

The process noise vi is also extended to take into account the MA observation noise. It is
still centered, however its variance matrix is extended using the variance matrix Pu′i

(107):

Pv′i
=

Pvi 0 0
0T σ2

i −γσ2
i

0T −γσ2
i γ2σ2

i

 (111)

509

Geist & Pietquin

The observation equation remains the same:

ri = gti(xi) = gti(θi) + ni (112)

However now the observation noise is a part of the evolution equation, and it has to be
estimated.

Using this new state-space formulation, a general XKTD algorithm can be derived. It
is summarized in Algorithm 4. It is rather similar to Algorithm 1 with two slight changes:
the state-space to be considered is now given by Equation (108) and prediction of mean
and covariance of the extended random vector xi is done using the evolution matrix F
(which is the identity for KTD). Notice that the computational complexity is the same for
both algorithms, as the parameter vector is extended with only two scalars. As for KTD,
XKTD can be specialized to XKTD-V (value function evaluation) and XKTD-SARSA (Q-
function evaluation). The reasoning is the same as in Section 3.2 and practical approaches
are given in Algorithm 5. Yet, specialization to XKTD-Q is not straightforward because of
its off-policy nature, as explained in section 4.3.2.

Recall that KTD with zero process noise and linear parameterization is the same algo-
rithm as GPTD (see Sec. 3.2.1). Actually, the same holds for XKTD with zero process noise
and linear parameterization and MC-GPTD (the algorithm obtained using the same colored
noise model in the GPTD framework, however in a different manner, see Engel et al., 2005).
This can be easily (but lengthly) checked by expanding XKTD equations in the linear case.
Once again, MC-GPTD can certainly be extended to handle non-stationarities, even if it is
less natural than for XKTD, but it cannot handle nonlinear parameterization. From this
point of view, XKTD extends MC-GPTD.

Algorithm 4: General XKTD algorithm

Initialization: priors x̂0|0 and P0|0 ;

for i← 1, 2, . . . do

Observe transition ti and reward ri ;

Prediction step;
x̂i|i−1 = F x̂i−1|i−1;
Pi|i−1 = FPi−1|i−1F

T + Pv′i
;

Compute statistics of interest (using UT);
r̂i|i−1 = E[gti(θi) + ni|r1:i−1] ;
Pxri

= E
[
(xi − x̂i|i−1)(gti

(θi) + ni − r̂i|i−1)|r1:i−1

]
;

Pri = E
[
(gti(θi) + ni − r̂i|i−1)2|r1:i−1

]
;

Correction step;
Ki = PxriP

−1
ri

;
x̂i|i = x̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 −KiPriK
T
i ;

510

Kalman Temporal Differences

Algorithm 5: XKTD-V and XKTD-SARSA

Initialization: priors x̂0|0 =
(
θ̂T
0|0 0 0

)T
and P0|0 ;

for i← 1, 2, . . . do

Observe transition ti =

{
(si, si+1) (XKTD-V)

(si, ai, si+1, ai+1) (XKTD-SARSA)
and reward ri ;

Prediction Step;
x̂i|i−1 = F x̂i−1|i−1;
Pi|i−1 = FPi−1|i−1F

T + Pv′i
;

Sigma-points computation ;
Xi|i−1 =

{
x̂(j)

i|i−1, 0 ≤ j ≤ 2p + 4
}

(from x̂i|i−1 and Pi|i−1);
W = {wj , 0 ≤ j ≤ 2p + 4 } ;

/* notice that (x̂(j)
i|i−1)

T =
(
(θ̂(j)

i|i−1)
T ω̂

(j)
i|i−1 n̂

(j)
i|i−1

)
*/

Ri|i−1 =
{

r̂
(j)
i|i−1 = V̂

θ̂
(j)
i|i−1

(si)− γV̂
θ̂
(j)
i|i−1

(si+1) + n̂
(j)
i|i−1, 0 ≤ j ≤ 2p + 4

}
(XKTD-V){

r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γQ̂
θ̂
(j)
i|i−1

(si+1, ai+1) + n̂
(j)
i|i−1, 0 ≤ j ≤ 2p + 4

}
(XKTD-SARSA)

;

Compute statistics of interest ;
r̂i|i−1 =

∑2p+4
j=0 wj r̂

(j)
i|i−1;

Pxri =
∑2p+4

j=0 wj(x̂
(j)
i|i−1 − x̂i|i−1)(r̂

(j)
i|i−1 − r̂i|i−1);

Pri =
∑2p+4

j=0 wj

(
r̂
(j)
i|i−1 − r̂i|i−1

)2
;

Correction step;
Ki = PxriP

−1
ri

;
x̂i|i = x̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 −KiPriK
T
i ;

4.3.2 XKTD and Off-policy Learning

Off-policy learning is the problem of learning the value of one policy (the target policy)
while following another one (the behavior policy). KTD-Q (or more generally Q-learning-
like algorithms) is an example of off-policy learning: the behavior policy is any sufficiently
exploratory policy while the learnt policy is the optimal one. More generally, off-policy
learning is of interest, for example to reuse previous trajectories or if the behavioral policy
cannot be controlled.

Using a colored observation noise results in a memory effect, similarly to what happens
with eligibility traces for more classical TD algorithms (Sutton & Barto, 1998). As clas-
sical eligibility-trace algorithms, XKTD applied to off-policy learning should fail because
it includes some effect of multi-step transitions, which are contaminated by the behavior
policy and not compensated for in any way. For a discussion about off-policy learning and

511

Geist & Pietquin

memory effects, see for example the work of Precup, Sutton, and Singh (2000). The link
of this memory effect to Monte Carlo (and to eligibility traces when the eligibility factor
is set to 1) is shown in the convergence analysis of Section 5. Here it is analyzed through
XKTD equations by showing that parameters are updated according to all past temporal
differences errors, and not only the current one.

To show this, a first step is to expand the prediction equation:

x̂i|i−1 = F x̂i−1|i−1

⇔

 θ̂i|i−1

ω̂i|i−1

n̂i|i−1

 =

 θ̂i−1|i−1

0
ω̂i−1|i−1

 (113)

Let ĝti be defined as:
ĝti = E[gti(θi)|r1:i−1] (114)

In the KTD framework, ĝti is actually the predicted reward. However, it is not the case in
the XKTD framework, because the estimated noise has also to be taken into account. The
predicted reward can be expanded using Eq. (113):

r̂i|i−1 = E[gti(θi) + ni|r1:i−1]

= ĝti + n̂i|i−1

= ĝti + ω̂i−1|i−1 (115)

A blockwise notation is adopted for the Kalman gain:

Ki =

Kθi

Kωi

Kni

 (116)

This being stated, the correction equation can be expanded:

x̂i|i = x̂i|i−1 + Kir̃i

⇔

 θ̂i|i
ω̂i|i
n̂i|i

 =

 θ̂i−1|i−1

0
ω̂i−1|i−1

+

Kθi

Kωi

Kni

(ri − ĝti − ω̂i−1|i−1

)
(117)

From the last equation a general update of the parameters can be derived:

θ̂i|i = θ̂i−1|i−1 + Kθi

(
ri − ĝti −Kwi−1 r̃i−1

)
(118)

The parameters are thus updated according to the temporal difference error at time i,
δi = ri− ĝti , and to the innovation at time i− 1, r̃i−1, which is itself (by recurrence) a com-
bination of TD error at time i−1 and of innovation at time i−2, etc. This update equation
highlights the memory effect of XKTD which prevents its use in an off-policy learning sce-
nario. Notably, this prevents the derivation of a XKTD-Q algorithm. A solution to combine
off-policy learning and the colored noise could be to use some importance sampling scheme,
a well known approach of the Monte Carlo literature which allows estimating quantities
linked to a distribution using samples drawn from another distribution.

512

Kalman Temporal Differences

5. Convergence Analysis

This section provides a convergence analysis for both KTD (deterministic MDPs) and
XKTD (stochastic MDPs).

5.1 Deterministic Case

First a convergence analysis of the KTD algorithm is provided for deterministic MDP. It
leads to a result similar to the one of residual algorithms (Baird, 1995), that is the min-
imization of the squared Bellman residual. This theorem makes some strong assumptions
(actually the same as the GPTD framework, however without the linear hypothesis). How-
ever, it is important to remark that even if these hypotheses are not satisfied, the cost
function (47) is still minimized. The aim of this result is to link KTD to more classic RL
algorithms.

Theorem 2. Under the assumptions that posterior and noise distributions are Gaussian
and that the prior is Gaussian too (of mean θ0 and variance P0), than the Kalman Tem-
poral Differences algorithm (white observation noise assumption) minimizes the following
regularized empirical cost function:

Ci(θ) =
i∑

j=0

1
Pnj

(
rj − gtj (θ)

)2 + (θ − θ0)
T P−1

0 (θ − θ0) (119)

Proof. First notice that KTD is indeed a specific form of Sigma-Point Kalman Filter
(SPKF). According to van der Merwe (2004, ch. 4.5), under the given assumptions, the
SPKF estimator (and thus the KTD one) is the maximum a posteriori (MAP) estimator:

θ̂i|i = θ̂MAP
i = argmax

θ
p(θ|r1:i) (120)

By applying the Bayes rule, the posterior distribution p(θ|r1:i) can be written as the (nor-
malized) product of the likelihood p(r1:i|θ) and of the prior distribution p(θ):

p(θ|r1:i) =
p(r1:i|θ)p(θ)

p(r1:i)
(121)

The normalization factor p(r1:i) does not depend on parameters, MAP thus reduces to
likelihood times prior:

θ̂i|i = argmax
θ

p(r1:i|θ)p(θ) (122)

Recall that, for KTD, the observation noise is assumed white. Therefore, the joint
likelihood is the product of local likelihoods:

θ̂i|i = argmax
θ

p(r1:i|θ)p(θ) = argmax
θ

i∏
j=1

p(rj |θ)p(θ) (123)

Moreover, noise and prior are supposed to be Gaussian, thus:

rj |θ ∼ N
(
gtj (θ), Pnj

)
and θ ∼ N (θ0, P0) (124)

513

Geist & Pietquin

On the other hand, maximizing a product of densities is equivalent to minimizing the sum
of the negatives of their logarithms:

θ̂i|i = − argmin
θ

 i∑
j=1

ln(p(rj |θ)) + ln(p(θ))

 (125)

Under the Gaussian assumption, distributions are as follows:

p(rj |θ) =
1√

2πPnj

exp

(
−1

2
(rj − gtj (θ))

2

Pnj

)
(126)

and p(θ) =
1

(2π)
p
2 |P0|

1
2

exp
(
−1

2
(θ − θ0)

T P−1
0 (θ − θ0)

)
(127)

Consequently:

θ̂i|i = argmin
θ

 i∑
j=1

1
Pnj

(
rj − gtj (θ)

)2 + (θ − θ0)
T P−1

0 (θ − θ0)

 (128)

This proves the result.

Some remarks of importance have to be made. First, the memoryless channel assumption
does not hold for stochastic MDPs. Moreover, the form of the minimized cost function (119)
strengthens the parallel drawn in Section 4.1 between KTD and squared Bellman residual
minimization. Second, the chosen observation noise variance Pni allows weighting samples.
The evolution noise variance does not appear directly in the minimized cost function, nev-
ertheless it empirically influences convergence and tracking abilities of the algorithm. For
example, it helps handling non-stationarity and avoiding local minima. The prior P0 acts
as a regularization terms, this can be of help to choose it. Notice that such a regularization
term also appears in the recursive form of the LSTD algorithm (eg., see Kolter & Ng, 2009).
Finally, it can be shown (again, see van der Merwe, 2004, ch. 4.5) that an SPKF (and thus
KTD) update is indeed an online form of a modified Gauss-Newton method, which is ac-
tually a variant of natural gradient descent. In this case, the Fisher information matrix
is P−1

i|i , the inverse of the variance matrix of random parameters. The natural gradient
approach has been shown to be quite efficient for direct policy search (Kakade, 2001) and
actor-critics (Peters, Vijayakumar, & Schaal, 2005), so it lets envision good empirical re-
sults for KTD. This is experimented in Section 7. KTD is perhaps the first reinforcement
learning value (and Q-) function approximation algorithm (in a pure critic sense) involving
natural gradient.

5.2 Stochastic Case

Here a convergence analysis is provided for XKTD in stochastic MDPs. Again, this theorem
makes some strong assumptions, without harming the minimization of the cost function (47)
when they are not satisfied.

514

Kalman Temporal Differences

Theorem 3. Assume that posterior and noise distribution are Gaussian, as well as prior
distribution (of mean θ0 and variance P0). Then XKTD estimator minimizes the (weighted
and regularized) square error linking state values to Monte Carlo returns:

Ci(θ) =
i∑

j=1

1
σ2

j−1

V̂θ(sj)−
i∑

t=j

γt−jrt

2

+ (θ − θ0)
T P−1

0 (θ − θ0) (129)

Proof. Here again the result of van der Merwe (2004, ch. 4.5) is used. The corresponding
proof is made for a random walk evolution model (that is the identity evolution matrix),
however it can be easily extended to a linear evolution model. It can thus be applied to
state-space model (108):

x̂i|i = x̂MAP
i = argmax

x
p(x|r1:i) (130)

State-space model (108) being equivalent to state-space model (46) with the MA noise (105),
the same holds for the (non-extended) parameter vector:

θ̂i|i = argmax
θ

p(θ|r1:i) = argmin
θ

(− ln(p(θ|r1:i))) (131)

By applying the Bayes rule, the posterior distribution p(θ|r1:i) is the (normalized) product
of likelihood p(r1:i|θ) and prior p(θ):

p(θ|r1:i) =
p(r1:i|θ)p(θ)

p(r1:i)
(132)

The normalization factor p(r1:i) does not depend on parameters, MAP therefore reduces to
likelihood times prior:

θ̂i|i = argmax
θ

p(r1:i|θ)p(θ) (133)

However, as the observation noise is no longer white, it is not possible to express the joint
likelihood as the product of local likelihoods. Nevertheless, the joint likelihood is still
computable. For this, a few notations are introduced. Let Vi(θ), Ri and Ni be the following
i× 1 vectors:

Vi(θ) =
(
V̂θ(s1) V̂θ(s2) . . . V̂θ(si)

)T
(134)

Ri =
(
r1 r2 . . . ri

)T (135)

Ni =
(
n1 n2 . . . ni

)T (136)

Let Hi be the i× i bidiagonal matrix defined as:

Hi =


1 −γ 0 . . .
0 1 −γ 0
...

. −γ
0 . . . 0 1

 (137)

515

Geist & Pietquin

It is easy to check that its inverse is given by:

H−1
i =


1 γ . . . γi−1

0 1 γ . . .
...

. γ
0 . . . 0 1

 (138)

Eventually, let ΣNi = E[NiN
T
i] be the variance matrix of noise Ni, which takes into account

the coloration. Given the definition of noise ni (105), its a tridiagonal matrix given by:

ΣNi =


σ2

0 + γ2σ2
1 −γσ2

1 0 . . .

−γσ2
1 σ1 + γ2σ2

2 −γσ2
2

...
...

. −γσ2
i−1

0 . . . −γσ2
i−1 σ2

i−1 + γ2σ2
i

 (139)

As the noise is Gaussian, the likelihood is Gaussian too, and colored because of the obser-
vation noise. Its distribution is:

r1:i|θ ∼ N (Ri −HiVi(θ),ΣNi) (140)

Maximizing MAP is equivalent to minimizing the negative of its logarithm, so given the
distribution (140) the XKTD estimator satisfies:

θ̂i|i = argmin
θ

(
(Ri −HiVi(θ))T Σ−1

Ni
(Ri −HiVi(θ) + (θ − θ0)

T P−1
0 (θ − θ0))

)
(141)

The noise variance can be rewritten according to Hi and to a diagonal matrix containing
the residual variances:

ΣNi = HiΣiHT
i with Σi = diag(σ2

0, . . . , σ
2
i−1) (142)

Using this last equation, the XKTD estimator can be rewritten as:

θ̂i|i = argmin
θ

(
(Ri −HiVi(θ))T Σ−1

Ni
(Ri −HiVi(θ)) + (θ − θ0)

T P−1
0 (θ − θ0)

)
= argmin

θ

(
(Ri −HiVi(θ))T (HiΣiHT

i)−1(Ri −HiVi(θ)) + (θ − θ0)
T P−1

0 (θ − θ0)
)

= argmin
θ

(
(H−1

i Ri − Vi(θ))T Σ−1
i (H−1

i Ri − Vi(θ)) + (θ − θ0)
T P−1

0 (θ − θ0)
)

(143)

Given the inverse (138) of the Hi matrix, this last equation proves the result.

This result shows that under some (strong) assumptions, XKTD minimizes the square
error linking state values to Monte Carlo returns, which strengthens the discussion about the
inability of XKTD to be used in an off-policy learning scenario of Section 4.3.2. As for KTD,
residuals’ variance weights the samples, and the prior acts as a regularization term, which
can help to choose it. An important fact is that this result shows that actually, under the
assumption that residuals variance is constant (that is σ2

j = σ2), XKTD minimizes the same

516

Kalman Temporal Differences

cost-function as (the recursive version of) LSTD(1), the eligibility traces-based extension of
LSTD with and eligibility factor of 1 (see Boyan, 1999 for a proof that LSTD(1) minimizes
cost-function (129)). As a consequence, XKTD is asymptotically an unbiased value function
estimator, as LSTD(1)10.

6. An Active Learning Scheme

The parameters being modeled as random variables, and the value (or Q-) function being
a function of these parameters, it is a random variable for a given state (or state-action
pair). It is first shown how to compute its expectation and the associated uncertainty
thanks to the unscented transform. The dilemma between exploration and exploitation
should benefit from such uncertainty information. Few approaches in the literature allows
handling the value function approximation problem as well as computing uncertainty over
values meantime. The work of Engel (2005) is such an approach, however the effective use
of the obtained uncertainty information is left for future work. Here is a proposed form of
active learning which is a sort of totally explorative policy in the context of KTD-Q. This
contribution is shown to effectively speed up learning in Section 7.

6.1 Computing Uncertainty over Values

Let V̂θ be the approximated value function parameterized by the random vector θ of mean
θ̄ and variance matrix Pθ. Let V̄θ(s) and σ̂2

Vθ
(s) be the associated mean and variance for

a given state s. In order to propagate the uncertainty from the parameters to the value
function, a first step is to compute the sigma-points associated to the parameter vector
Θ = {θ(j), 0 ≤ j ≤ 2p} as well as corresponding weights W = {wj , 0 ≤ j ≤ 2p} from θ̄ and
Pθ, as described in Section 3.2. Then the images of these sigma-points are computed for
the given state s using the parameterized value function :

Vθ(s) =
{

V̂
(j)
θ (s) = V̂θ(j)(s), 0 ≤ j ≤ 2p

}
(144)

Knowing these images and corresponding weights, it is possible to compute the statistics of
interest, namely mean and variance of the approximated value function:

V̄θ(s) =
2p∑

j=0

wj V̂
(j)
θ (s) and σ̂2

Vθ
(s) =

2p∑
j=0

wj

(
V̂

(j)
θ (s)− V̄θ(s)

)2
(145)

Thus, for a given representation of the value function and a random parameter vector, the
uncertainty can be propagated to the value function. Figure 1 illustrates the uncertainty
computation. Extension to Q-function is straightforward. The complexity (both computa-
tional and in memory) is here again quadratic. So, as at each time-step i an estimate θ̂i|i
and the associated variance Pi|i are known, uncertainty information can be computed in
the KTD framework.

An important remark has to be made here. The estimated variance provides some
information about the uncertainty about estimates, however it does not take into account

10. Notice that if LSTD(1) and KTD minimize the same cost function, they do it in a different way, thus
they provide the same estimates only asymptotically.

517

Geist & Pietquin

Figure 1: Uncertainty computation.

the stochasticity of the MDP. It will get lower as the number of samples increases. Roughly
speaking, it can be seen as an indirect and generalized counting of the number of visits of
a given state or state-action pair. Even in a stochastic MDP, it will vanish to zero as the
number of samples grows to infinity: it is an estimate of the uncertainty over the estimated
value function, not the variance of the stochastic process from which the value function is
the expectation.

6.2 A Form of Active Learning

A simple active learning scheme using this uncertainty information is provided here. KTD-
Q (determinism of transitions is assumed here) is an off-policy algorithm: it learns the
optimal policy π∗ while following a different behaviorial policy b. A natural question is to
know what behaviorial policy to choose in order to speed up learning. A piece of response
is given here.

Let i be the current temporal index. The system is in a state si, and the agent has
to choose an action ai. The considered algorithm being KTD-Q, the estimates θ̂i−1|i−1

and Pi−1|i−1 are available. They can be used to approximate the uncertainty of the Q-
function parameterized by θi−1 in the state si and for any action a. Let σ2

Qθi−1
(si, a) be

the corresponding variance. The action ai is chosen according to the following random
behaviorial policy:

b(ai|si) =
σQθi−1

(si, ai)∑
a∈A σQθi−1

(si, a)
(146)

A totally explorative policy is obtained, in the sense that it favorises less certain actions.
This is a way among others to use the available uncertainty information, nevertheless it is
shown in Section 7 to be quite efficient compared to a uniformly random behaviorial policy.
However, how to use wisely this variance information in the more general dilemma between
exploration and exploitation is still an open perspective.

7. Experiments

This section provides a set of classical RL benchmarks aiming at comparing KTD and
variants to state-of-the-art algorithms and at highlighting its different aspects. “Atomic”
benchmarks have been chosen in order to highlight separately unitary properties of KTD
(see Table 1), which should have been quite complex on a more difficult task. Compared
algorithms are TD, SARSA and Q-learning with function approximation as well as (recursive

518

Kalman Temporal Differences

(non)stationarity (non)linearity uncertainty sample efficiency stochasticity

Tsitsiklis chain X

Boyan chain X X X

maze X

inverted pendulum X X X

Table 1: Experiments and highlighted properties.

form of) LSTD and (MC-) GPTD. For the sake of reproducibility, all parameter values are
provided for each experiment. Their extensions to eligibility traces are not considered
here, as LSTD performs better than TD(λ) and varying λ has small effect on LSTD(λ)
performances, according to Boyan (1999).

7.1 Choosing KTD Parameters

In order to use the (X)KTD framework, parameters have to be chosen: the variance of the
observation noise (or the variance of residuals for XKTD), the priors and the variance of
the process noise. As they are less common and perhaps less intuitive than the choice of a
learning rate for example, they are discussed here. The evolution noise for KTD and the
residual for XKTD translate the confidence the practitioner has in the ability of the chosen
parameterization to represent the true value function. If it is known in advance that the
value function lies in the hypothesis space (which is the case for example in the tabular
case), the corresponding variance can be chosen very small (but never zero for numerical
stability reasons). Another way to choose these variances is to interpret them through their
weighting of samples, see Eq. (119) and (129). The prior θ0 should be initialized to a value
close to the one the user thinks to be optimal, or to a default value, for example the zero
vector. The prior P0 quantifies the certainty the user has in the prior θ0, the lower the less
certain. Another way to interpret these priors is to consider them as regularization terms, as
shown in Eq. (119) and (129). How to choose the process noise variance is an open question.
If some knowledge about non-stationarity is available, it can be used to choose this matrix.
However, such a knowledge is generally difficult to obtain beforehand. In this article, a
process noise of the form Pvi = ηPθi−1|i−1

is used, with η � 1 a small positive constant.
Such an artificial process noise emphasizes recent observed data, the window of emphasized
observations being quantified by η. Other artificial process noise can be chosen, see the
work of van der Merwe (2004, ch. 3.5.2) for a quick survey. In the following, parameters
are chosen by trial and error (for all algorithms). They’re perhaps not the best ones, but
orders of magnitude are correct.

7.2 Tsitsiklis Chain

This first experiment aims at illustrating the ability of KTD to handle nonlinear parame-
terizations and its convergence property. It consists in a 3 states valued Markov chain first
proposed by Tsitsiklis and Roy (1997). State i transits to state i with probability 0.5 and to
state i− 1 with probability 0.5 too (state 1 transiting to state 1 or 3 with equi-probability).
The reward is always zero, therefore the optimal value function is zero. This chain is very
simple, however a nonlinear parameterization which causes TD with function approxima-
tion divergence is considered. Let ε = 0.05, let I be the 3 × 3 identity matrix and M the

519

Geist & Pietquin

3× 3 matrix defined as:

M =

1 1
2

3
2

3
2 1 1

2
1
2

3
2 1

 (147)

The value function is parameterized by a single scalar θ, its parameterization is given as
(notice that here V̂θ is a 3× 1 vector):

V̂θ = exp ((M + εI) θ) V0 with V0 =
(
10 −7 −3

)T (148)

This parameterization has been proposed by Tsitsiklis and Roy (1997) to illustrate the
possible divergence of TD in the case of nonlinear parameterization. The optimal parameter
is obviously θ∗ = −∞.

Figure 2: Tsitsiklis chain.

KTD is compared to TD with function approximation. LSTD and GPTD are not
considered here, as they are unable to handle a nonlinear parameterization. For TD, the
learning rate is chosen equal to αi = 2.10−3 and the initial parameter is set to θ0 = 0.
For KTD, priors are set to θ0 = 0 and P0 = 10. The observation noise variance is set to
Pni = 10−3. The process noise described in Section 7.2 is used with η = 10−1. Results
are depicted in Figure 2 which shows the parameter estimates in function of the number
of observed transitions. TD estimates diverge, as expected. KTD handles the nonlinear
parameterization and converges toward the good value (despite stochasticity of transitions).

7.3 Boyan Chain

In this section KTD and XKTD are compared to two other second order value function ap-
proximation algorithms, namely (recursive) LSTD and (parametric) MC-GPTD on a simple
valued Markov chain, the Boyan (1999) chain. The objective is threefold: showing sam-
ple efficiency, demonstrating the bias removal (of XKTD compared to KTD) and showing
non-stationarity handling.

520

Kalman Temporal Differences

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

er
ro

r

number of episodes

LSTD
MC-GPTD

KTD
XKTD

Figure 3: Boyan chain.

The Boyan chain is a 13-state Markov chain where state s0 is an absorbing state, s1

transits to s0 with probability 1 and a reward of -2, and si transits to either si−1 or si−2,
2 ≤ i ≤ 12, each with probability 0.5 and reward -3. The feature vector φ(s) for states
s12, s8, s4 and s0 are respectively [1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T and [0, 0, 0, 1]T . The
feature vectors for other states are obtained by linear interpolation. The approximated
value function is thus V̂θ(s) = θT φ(s). The optimal value function is exactly linear in
these features, and the corresponding optimal parameter vector is θ∗1 = [−24,−16,−8, 0]T .
To measure the quality of each algorithm the normalized Euclidian distance between the
current parameter vector estimate and the optimal one 1

‖θ∗‖‖θ − θ∗‖ is computed. Notice
that as the parameterization is linear, it is the same as measuring the error between the
true and the estimated value functions, up to a scaling factor. The discount factor γ is set
to 1 in this episodic task. For all algorithms, the prior is set to P0|0 = I where I is the
identity matrix. Choosing the same prior should be fair, as it yields to choose the same
regularization term for all algorithms. For MC-GPTD and KTD variations, the residual
variance (observation noise for KTD) is set to σ2

i = 10−3 (Pni = 10−3). For KTD variations,
the process noise covariance is set to an RLS (recursive least-squares)-like adaptive process
noise as described in Section 7.1, that is Pvi = ηPθi−1|i−1

where Pθi−1|i−1
denotes the variance

over parameters, and η � 1 is a small positive constant, chosen here equal to 10−2. Choosing
these parameters requires some practice, but no more than choosing a learning rate for other
algorithms. For all algorithms the initial parameter vector is set to zero. To experiment
non-stationarity handling, a change in the MDP is simulated by multiplying the rewards
by ten from the 70th episode (rewards become −20 and −30 instead of −2 and −3). The
optimal value function is still linear in the feature vectors, and the optimal parameter vector
is θ∗2 = 10θ∗1 after the MDP change. Learning is done over 140 episodes, and results are
averaged over 300 trials. Results are presented in Figure 3.

Before the MDP change, KTD variations and MC-GPTD converge faster than LSTD
(and equally well). XKTD, as well as LSTD and MC-GPTD, is unbiased, contrary to
KTD. Thus XKTD does the job it has been designed for, that is removing the bias due to
stochastic transitions. After the MDP change, both LSTD and MC-GPTD fail to track the
value function. KTD manages to do it, but it is still biased. XKTD tracks the value function
without being biased. GPTD results are not presented here for the sake of readability.

521

Geist & Pietquin

However, its behavior is the same as KTD one before the MDP change, and it fails to track
the value function after the rewards switch (much like MC-GPTD). This experiment shows
that XKTD performs as well as KTD, however without the bias problem, which was the
motivation for introducing this new algorithm. It is sample-efficient and it tracks the value
function rather than converging to it (non-stationarity handling). It can be argued that
some forgetting factors can be added to LSTD or GPTD. However it is more naturally
done in the KTD framework, which moreover exhibits some other interesting aspects as
illustrated in the next sections.

7.4 Simple Maze

With the KTD framework, the parameters are modelled as random variables. Being a
function of the parameters, the approximated value (or Q-) function is a random function.
It is thus possible to compute a variance associated to the value of each state as shown in
Section 6.1. It is a necessary condition to handle the exploration-exploitation dilemma in a
value (or Q-) function approximation context. In this section the uncertainty information
which can be obtained from the KTD framework is illustrated on a simple maze problem.

The 2d continuous state space is the unit square: (x, y) ∈ [0, 1]2. Actions are to move
left, right, up or down, the magnitude being of 0.05 in each case. The reward is +1 if the
agent leaves the maze in y = 1 and x ∈ [38 , 5

8], −1 if the agent leaves the maze in y = 1 and
x ∈ [0, 3

8 [∪]58 , 1], and 0 elsewhere. The algorithm is KTD-V. The parameterization is a set
of 9 equispaced Gaussian kernels (centered in {0, 0.5, 1} × {0, 0.5, 1}) and with a standard
deviation of 0.5. The forgetting factor γ is set to 0.9. The agent starts in a random position
(x0, y0) with x0 sampled from a Gaussian distribution, x0 ∼ N (1

2 , 1
8), and y0 sampled from

a uniform distribution, y0 ∼ U[0,0.05]. The behaviorial policy for which the value function
is learnt is going up with probability 0.9, and go in one of the three other directions with
probability 0.1

3 . The initial parameter vector is set to zero, the prior to P0|0 = 10I, and the
noise covariances to Pni = 1 and Pvi = 0I.

The value function is learnt quite well, however this is not the point here. The objective
is to illustrate the value function uncertainty. The learning is done over 30 episodes, and
results are given in Figure 4, which shows the standard deviation of the approximated value
function over the state space. Considering the x-axis, the uncertainty is lower in the middle
than in the border. This is explained by the fact that learning trajectories occur more
frequently in the center of the domain. Considering the y-axis, the uncertainty is lower
near the upper bound (y = 1) than near the lower bound (y = 0). This is explained by
the fact that retro-propagated values are less certain. Thus the uncertainty information
computed by KTD-V is meaningful on this simple example, and it should be useful to
speed up learning, eg., for exploration/exploitation dilemma. Another application example
is given in the Section 6.2 and is experimented in Section 7.5. GPTD also provides a
meaningful uncertainty information (Engel, Mannor, & Meir, 2003). However, as far as we
know, it has never been used practically. Most likely, such uncertainty information cannot
be derived from LSTD (the main reason for this belief is that the matrix maintained by
LSTD is not symmetric, therefore it cannot be interpreted as a variance matrix).

522

Kalman Temporal Differences

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x position

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

y
 p

o
si

ti
o
n

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Figure 4: Simple maze, uncertainty illustration.

7.5 Inverted Pendulum

The last experiment is the inverted pendulum as described by Lagoudakis and Parr (2003).
The goal is here to compare two value-iteration-like algorithms, namely KTD-Q and Q-
learning, which aim at learning directly the optimal policy. LSTD and GPTD cannot be
considered here: as they are unable to handle nonlinearities (the nonlinearity being the max
operator here), they cannot be used with the Bellman optimality operator. The proposed
active learning-like scheme is also experimented: it uses the uncertainty computed by KTD
to speed up convergence.

This task requires balancing a pendulum of unknown length and mass at the upright
position by applying forces to the cart it is attached to. Three actions are allowed: left
force (-1), right force (+1), or no force (0). The associated state space consists in vertical
angle ϕ and angular velocity ϕ̇ of the pendulum. Deterministic transitions are computed
according to physical dynamics of the system, and depends on the current action a:

ϕ̈ =
g sin(ϕ)− βmlϕ̇2sin(2ϕ)/2− 50β cos(ϕ)a

4l/3− βml cos2(ϕ)
(149)

where g is the gravity constant, m and l the mass and the length of the pendulum, M the
mass of the cart, and β = 1

m+M . A zero reward is given as long as the angular position is
in [−π

2 , π
2]. Otherwise, the episode ends and a reward of −1 is given. The parameterization

is composed of a constant term and a set of 9 equispaced Gaussian kernels (centered in
{−π

4 , 0, π
4 } × {−1, 0, 1} and with a standard deviation of 1) for each action. Thus there is

a set of 30 basis functions. The discount factor γ is set to 0.95.

7.5.1 Learning the Optimal Policy

First, algorithms ability to learn an optimal policy is compared. For Q-learning, the learning
rate is set to αi = α0

n0+1
n0+i with α0 = 0.5 and n0 = 200, according to Lagoudakis and Parr

523

Geist & Pietquin

(2003). For KTD-Q, the parameters are set to P0|0 = 10I, Pni = 1 and Pvi = 0I. For
all algorithms the initial parameter vector is set to zero. Training samples are collected
online with random episodes. The agent starts in a randomly perturbed state close to the
equilibrium (0, 0) and then follows a policy that selects actions uniformly at random. The
average length of such episodes was about 10 steps, and both algorithms learnt from the
same trajectories. Results are summarized in Figure 5.

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

st
ep

s

number of episodes

KTD-Q
Q-learning

Figure 5: Inverted pendulum, optimal policy learning.

For each trial, learning is done over 1000 episodes. Every 50 episodes, learning is freezed
and the current policy is evaluated. For this, the agent is randomly initialized in a state
close to the equilibrium and the greedy policy is followed until the end of episode; this
is repeated 100 times and averaged. Performance is measured as the number of steps in
an episode. Maximum number of steps for one episode is bounded by 3000 steps, which
corresponds to 5 minutes of balancing the pole without failure. Results in Figure 5 are
averaged over 100 trials and presented in a semi-log scale.

KTD-Q learns an optimal policy (that is balancing the pole for the maximum number of
steps) asymptotically and near-optimal policies are learnt after only a few tens of episodes.
The results of KTD-Q are comparable to the ones of the LSPI algorithm (see Lagoudakis
& Parr, 2003, Fig. 16). With the same number of learning episodes, Q-learning with the
same linear parameterization fails to learn a policy which balances the pole for more than a
few tens of time steps. Similar results for Q-learning are obtained by Lagoudakis and Parr
(2003).

7.5.2 A Form of Active Learning

The parameters being random variables, as explained in Section 6 and illustrated in Sec-
tion 7.4, the parameterized Q-function is a random function, and the KTD framework allows
computing a variance associated to the value of each state. Here is proposed an experiment
which aims at using this uncertainty information to speed up the learning. The learning
is still done from random trajectories. However, the form of active learning described in
Section 6 is considered now. The environment is initialized randomly as before. When the
system is in a given state, the standard deviation of the Q-function is computed for each

524

Kalman Temporal Differences

action. These deviations are normalized, and the new action is sampled randomly accord-
ing to the probabilities weighted by the deviations. Thus, an uncertain action will be more
likely sampled. The average length of such episodes was about 11 steps, which does not
differ much from uniformly random transitions. Consequently this can only slightly help to
improve speed of convergence (at most 10%, much less than the real improvement which is
about 100%). Results are summarized in Figure 6.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

st
ep

s

number of episodes

KTD-Q
Q-learning

active KTD-Q

Figure 6: Inverted pendulum, random and active learning.

For each trial, learning is done over 300 episodes. Less episodes are considered to show
the speed up of convergence, however both versions of KTD perform as well asymptotically.
Every 25 episodes, learning is freezed and the current policy is evaluated as before. Per-
formance is measured as the number of steps of an episode, again for a maximum of 3000
steps. Results in Figure 6 are averaged over 100 trials. Notice that the scale is no longer
logarithmic. It compares KTD-Q with informed transitions (“active” KTD-Q) to KTD-Q
with uniformly random learning policy and Q-learning. When comparing the two versions
of KTD-Q, it is clear that sampling actions according to uncertainty speeds up convergence.
It is almost doubled in the first 100 episodes: for example, a performance of 1500 is obtained
after only 25 episodes with active-KTD, whereas it needs about 50 episodes for the basic
KTD. Thus the uncertainty information available thanks to the KTD framework can be
quite useful for reinforcement learning.

8. Discussion and Perspectives

In this section the proposed framework is discussed and linked to some related approaches.
Some perspectives are also given.

8.1 Discussion

Approaches related to the KTD framework have been proposed previously. Engel (2005)
proposes a Gaussian process approach to value function approximation. As explained before,
its principle is to model the value function as a Gaussian process and to adopt a generative
model linked to the Bellman evaluation equation. Links between Engel’s approach and the

525

Geist & Pietquin

proposed one have been discussed throughout the paper. Particularly, with a linear param-
eterization and a zero process noise KTD-V reduces to GPTD and XKTD-V to MC-GPTD.
However, KTD framework handle non-stationarities (even if we recognize that GPTD could
probably be extended to handle them too) and more importantly it handles non-linearities
in a derivative-free manner, which allows considering nonlinear parameterizations and the
Bellman optimality operator. Engel’s framework allows constructing automatically and
online a kernel-based linear parameterization, which is an advantage compared to the pro-
posed framework. However, it can be easily incorporated in it (see Geist et al., 2008 where
it is used in a preprocessing step, using it online is not more difficult). As Kalman fil-
tering is strongly linked to least-squares minimization (in the linear case, the former is a
generalization of the later), the proposed approach shares similarities with LSTD (Bradtke
& Barto, 1996). However, it does not take into account the instrumental variables con-
cept (Söderström & Stoica, 2002), which is used to handle stochastic transitions (in the
KTD framework, it is done thanks to the colored noise model). Moreover, it has been
shown in Section 5.2 that XKTD-V (with linear parameterization and no evolution noise)
converges to the same solution as LSTD(1). Choi and Van Roy (2006) introduced a Kalman
filter designed to handle fixed-point approximation in the case of linear parameterization.
It can be roughly seen as a bootstrapping version of the proposed KTD-V. Instead of the
observation equation of state-space model (65), the following observation equation is used:
ri + γφ(si+1)T θ̂i−1|i−1 = φ(si)T θi + ni. In other words, the reward is not considered as the
observation, but an approximation of the value function is used to compute a “pseudo”-
observation ri + γφ(si+1)T θ̂i−1|i−1. The update of the parameters θ is made so as to match
the value function of the current state to this pseudo-observation (bootstrapping approach).
Alternatively, it can be seen as a linear least-squares variation of the classic TD with func-
tion approximation algorithm (which combines bootstrapping and gradient descent). Phua
and Fitch (2007) use a bank of classical Kalman filters to learn the parameters of a piece-
wise linear parameterization of the value function. It can be roughly seen as a special case
of the proposed approach, however differences exist: not one filter but a bank is used and
the parameterization is piecewise linear, which is exploited to develop specificities of the
algorithm (notably concerning the parameters update) while the proposed approach does
not make any assumption about the value function.

The proposed framework presents some interesting aspects. First, it does not suppose
stationarity. An immediate application is to take into account non-stationary MDP (Geist,
Pietquin, & Fricout, 2009b), as exemplified in Section 7.3. An even more interesting appli-
cation is the control case. For instance, LSTD algorithm is known not to well behave when
combined with an optimistic policy iteration scheme (ε-greedy policy for example, see Phua
& Fitch, 2007), because of the non-stationarities induced by the fact that control and learn-
ing are interlaced. Similarly, Bhatnagar, Sutton, Ghavamzadeh, and Lee (2008) prefer TD
to LSTD as the actor of the incremental natural actor-critic approach they propose, despite
the fact that it is less sample efficient. Kalman filtering and thus proposed approaches are
robust to non-stationarity (to a certain extent). Quite few approaches aiming at approx-
imating the value function take this non-stationary problem into account, the algorithm
of Phua and Fitch (2007) being one of them. Another related approach (designed to cope
with interlacing of control and learning in an actor-critic context) is the two-timescale

526

Kalman Temporal Differences

stochastic approximation (for example, see Konda & Tsitsiklis, 2003 or Bhatnagar et al.,
2008).

Second, as KTD models parameters as a random vector, it is possible to compute uncer-
tainty information about values, as explained in Section 6.1 and illustrated in Section 7.4.
It has been used to derive a form of active learning (Sections 6.2 and 7.5), however this un-
certainty information could be useful to deal with the more general problem of the dilemma
between exploration and exploitation, following idea of what is done by Dearden et al. (1998)
or by Strehl et al. (2006). The point is that, as far as we know, rather few approaches allows
dealing with value function approximation and value uncertainty in the same time. One of
these approaches is the GPTD framework of Engel (2005), however the effective use of the
available uncertainty information is left for future work in the original publications and has
not been developed so far. It should also be noticed that without a probabilistic or statis-
tical approach of the value function approximation problem such uncertainty information
would be more difficult to obtain.

Third, KTD also allows handling nonlinearities. It has been explicitly used for KTD-Q
(the max operator being a severe nonlinearity), which is illustrated in Section 7.5. Nonlinear
parameterization can be considered too, as illustrated in Section 7.2. A nonlinear parame-
terization has also been used by Geist et al. (2008) combined with a preliminary version of
KTD-Q. Moreover, nonlinear parameterization should allow more compact representation
of the value function approximator, which could somehow alleviate the square complexity
of the proposed framework.

KTD shares a drawback with other square Bellman residual minimization-based al-
gorithms (which it is indeed according to Theorem 2): the value estimates are biased
if transitions of the dynamic system are not deterministic, as illustrated in Section 7.3.
Different algorithms propose various methods to cope with this problem. For residual al-
gorithms (Baird, 1995), which consist in minimizing the square Bellman residual using a
gradient descent, it is proposed to use double sampling in order to obtain an unbiased
estimator. This approach has two major drawbacks: it needs a generative model, and it
is sample inefficient. For the LSTD algorithm (Bradtke & Barto, 1996), which consists
in minimizing the Bellman residual with a least-squares approach, an instrumental vari-
able (Söderström & Stoica, 2002) is used to enforce unbiasedness of the estimator. Such an
approach is not easy to extend to nonlinearity or non-stationarity (and thus online control).
Another and generic approach to remove this sort of bias has been proposed by Antos et al.
(2008). It consists in introducing an auxiliary function (in add to the value function) which
role is to remove the bias. The resulting optimization problem is no longer quadratic, it con-
sists in two interlocked square problems. When used with a linear function approximator, it
reduces to the LSTD algorithm, and it has been used with a neural network-based function
approximator by Schneegaß, Udluft, and Martinetz (2007). The GPTD framework (Engel,
2005) uses a colored noise model which has been adapted to extend the KTD framework.

8.2 Conclusion and Perspectives

A Kalman-filter-based Temporal Differences framework has been introduced to cope with
a number of problems at the same time: online learning, sample efficiency, non-stationarity
and non-linearity handling as well as providing uncertainty information. Being actually a

527

Geist & Pietquin

square-Bellman-minimization-based approach, the original framework cannot handle stochas-
tic transitions. It has thus been extended using a colored observation noise model. A con-
vergence analysis has been provided for both deterministic and stochastic cases. Finally,
various aspects of the proposed approach have been experimentally demonstrated on clas-
sical reinforcement learning benchmarks. Section 7.2 shows the ability to converge with
nonlinear parameterizations, Section 7.3 shows that the colored noise induces a unbiased
version of KTD and its ability to handle non-stationarities, Section 7.4 illustrates available
uncertainty information and Section 7.5 shows the value-iteration-like KTD-Q algorithm
as well as the learning speed-up obtained thanks to the proposed active learning scheme.
State-of-the-art algorithms were also considered, and KTD compares favorably to them.

The KTD framework presents some interesting perspectives. First, XKTD was shown
to effectively remove the bias. As noticed by Engel (2005, ch. 4.5), other noise models can
be envisioned (by analogy to LSTD(λ) for example), however what noise models to choose
and how to incorporate them to the KTD framework are still open questions. More theo-
retical insights on the bias caused by the use of KTD on stochastic problems can also be
useful. Also, an interesting perspective to address the off-policy problem when considering
a colored noise is to combine XKTD with importance sampling. Another interesting per-
spective is to adapt the eligibility traces principle to the proposed framework in order to fill
the gap between KTD (local update) and XKTD (global update by its relation to Monte
Carlo) (Geist & Pietquin, 2010a).

Second, this KTD framework should be naturally extended to the partially observable
case. Indeed, inferring the state of a system given past observations is a problem which can
benefit from Bayesian filtering of which formalism is close to the one proposed. It is well
known that a partially observable MDP (POMDP) can be expressed as an MDP of which
states are distributions over states of the POMDP. If these distributions can be estimated
(by using a filtering approach for example), they should be naturally taken into account by
KTD: parameterization is already a function of the distribution over parameters, it can be
extended to be a function of the distribution over states in the same manner.

KTD framework handles well nonlinearities. An interesting perspective could be to use
it with a neural network based representation for the value (or Q-) function, which let hope
a more compact representation. This way, it can probably be easier to address real world
problems, for which scaling up is mandatory.

Another difficulty can be the choice of the different parameters, which are problem-
dependent. First it should be noticed that choosing this type of parameters is not more
difficult than choosing learning rates for example, it is just less usual in the RL community.
Concerning a more automatic choice of parameters, the adaptive filtering literature can
help (Goodwin & Sin, 2009). A form of adaptive evolution noise has been used in the
experimental part of this paper, however many other solutions can be envisioned.

As said before, KTD could be an interesting alternative to TD as the actor part of the
incremental natural actor-critic algorithms of Bhatnagar et al. (2008). Some preliminary
works on using KTD in an actor-critic architecture are provided by Geist and Pietquin
(2010c). Talking about natural gradient, a parallel has been drawn between the KTD
framework and natural gradient descent in Section 5.1, and this could benefit from more
theoretical insights.

528

Kalman Temporal Differences

The value uncertainty available from this framework has been used for a form of active
learning scheme, and it is planned to be used to address the more general problem of
the dilemma between exploration and exploitation, either by adapting existing approaches
designed for the tabular case (Geist & Pietquin, 2010b) or by developing new methods.

Unscented Kalman filtering, on which this work is based, can be linked to nonlinear least-
squares problems solved using a statistical linearization approach (Geist & Pietquin, 2010e).
Underlying ideas can be used to extend the LSTD algorithm to nonlinear parameterizations
as well as to the Bellman optimality operator (Geist & Pietquin, 2010d).

Finally, it is planned to do more comparison with the state-of-the-art, both theoretically
and experimentally. Ultimately application of these ideas to a real world problem is needed
to asses their utility. Concerning this last point, we plan to apply the proposed framework
to a dialogue management problem.

Acknowledgments

The authors wish to thank the European Community (FP7/2007-2013, grant agreement
216594, CLASSiC project : www.classic-project.org) and the Région Lorraine for financial
support. Matthieu Geist also wish to thank ArcelorMittal Research for financial support
during his 2006-2009 PhD thesis.

References

Antos, A., Szepesvári, C., & Munos, R. (2008). Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Machine
Learning, 71 (1), 89–129.

Baird, L. C. (1995). Residual Algorithms: Reinforcement Learning with Function Approxi-
mation. In Proceedings of the International Conference on Machine Learning (ICML
95), pp. 30–37.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., & Lee, M. (2008). Incremental Natural
Actor-Critic Algorithms. In Proceedings of the Twenty-First Annual Conference on
Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press,
New York, USA.

Boyan, J. A. (1999). Technical Update: Least-Squares Temporal Difference Learning. Ma-
chine Learning, 49 (2-3), 233–246.

Bradtke, S. J., & Barto, A. G. (1996). Linear Least-Squares Algorithms for Temporal
Difference Learning. Machine Learning, 22 (1-3), 33–57.

Chen, Z. (2003). Bayesian Filtering : From Kalman Filters to Particle Filters, and Beyond.
Tech. rep., Adaptive Systems Lab, McMaster University.

529

Geist & Pietquin

Choi, D., & Van Roy, B. (2006). A Generalized Kalman Filter for Fixed Point Approxima-
tion and Efficient Temporal-Difference Learning. Discrete Event Dynamic Systems,
16, 207–239.

Dearden, R., Friedman, N., & Russell, S. J. (1998). Bayesian q-learning. In AAAI/IAAI,
pp. 761–768.

Engel, Y. (2005). Algorithms and Representations for Reinforcement Learning. Ph.D. thesis,
Hebrew University.

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes Meets Bellman: The Gaussian Process
Approach to Temporal Difference Learning. In Proceedings of the International Con-
ference on Machine Learning (ICML 2003), pp. 154–161.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement Learning with Gaussian Processes.
In Proceedings of International Conference on Machine Learning (ICML-05).

Geist, M., & Pietquin, O. (2010a). Eligibility Traces through Colored Noises. In Proceedings
of the IEEE International Conference on Ultra Modern Control systems (ICUMT
2010), Moscow (Russia). IEEE.

Geist, M., & Pietquin, O. (2010b). Managing Uncertainty within Value Function Approx-
imation in Reinforcement Learning. In Active Learning and Experimental Design
workshop (collocated with AISTATS 2010), Sardinia, Italy.

Geist, M., & Pietquin, O. (2010c). Revisiting natural actor-critics with value function
approximation. In Torra, V., Narukawa, Y., & Daumas, M. (Eds.), Proceedings of
7th International Conference on Modeling Decisions for Artificial Intelligence (MDAI
2010), Vol. 6408 of Lecture Notes in Artificial Intelligence (LNAI), pp. 207–218, Per-
pinya (France). Springer Verlag - Heidelberg Berlin.

Geist, M., & Pietquin, O. (2010d). Statistically Linearized Least-Squares Temporal Differ-
ences. In Proceedings of the IEEE International Conference on Ultra Modern Control
systems (ICUMT 2010), Moscow (Russia). IEEE.

Geist, M., & Pietquin, O. (2010e). Statistically Linearized Recursive Least Squares. In
Proceedings of the IEEE International Workshop on Machine Learning for Signal
Processing (MLSP 2010), Kittilä (Finland).

Geist, M., Pietquin, O., & Fricout, G. (2008). Bayesian Reward Filtering. In et al., S. G.
(Ed.), Proceedings of the European Workshop on Reinforcement Learning (EWRL
2008), Vol. 5323 of Lecture Notes in Artificial Intelligence, pp. 96–109. Springer Verlag,
Lille (France).

Geist, M., Pietquin, O., & Fricout, G. (2009a). Kalman Temporal Differences: the determin-
istic case. In Proceedings of the IEEE International Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL 2009), Nashville, TN, USA.

Geist, M., Pietquin, O., & Fricout, G. (2009b). Tracking in Reinforcement Learning. In
Proceedings of the 16th International Conference on Neural Information Processing
(ICONIP 2009), Bangkok (Thailande). Springer.

Geramifard, A., Bowling, M., & Sutton, R. S. (2006). Incremental Least-Squares Temporal
Difference Learning. In Proceedings of the 21st Conference, American Association for
Artificial Intelligence, pp. 356–361.

530

Kalman Temporal Differences

Gill, P. E., Golub, G. H., Murray, W., & Saunders, M. A. (1974). Methods for Modifying
Matrix Factorization. Mathematics of Computation, 28 (126), 505–535.

Goodwin, G. C., & Sin, K. S. (2009). Adaptive Filtering Prediction and Control. Dover
Publications, Inc., New York, NY, USA.

Jo, S., & Kim, S. W. (2005). Consistent Normalized Least Mean Square Filtering with
Noisy Data Matrix. IEEE Transactions on Signal Processing, 53 (6), 2112–2123.

Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation. Pro-
ceedings of the IEEE, 92 (3), 401–422.

Kakade, S. (2001). A natural policy gradient. In Advances in Neural Information Processing
Systems 14 [Neural Information Processing Systems (NIPS 2001), pp. 1531–1538,
Vancouver, British Columbia, Canada.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME–Journal of Basic Engineering, 82 (Series D), 35–45.

Kolter, J. Z., & Ng, A. Y. (2009). Regularization and Feature Selection in Least-Squares
Temporal Difference Learning. In proceedings of the 26th International Conference on
Machine Learning (ICML 2009), Montreal Canada.

Konda, V. R., & Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM J. Control
Optim., 42 (4), 1143–1166.

Lagoudakis, M. G., & Parr, R. (2003). Least-Squares Policy Iteration. Journal of Machine
Learning Research, 4, 1107–1149.

Peters, J., Vijayakumar, S., & Schaal, S. (2005). Natural Actor-Critic. In et al., J. G. (Ed.),
Proceedings of the European Conference on Machine Learning (ECML 2005), Lecture
Notes in Artificial Intelligence. Springer Verlag.

Phua, C. W., & Fitch, R. (2007). Tracking Value Function Dynamics to Improve Reinforce-
ment Learning with Piecewise Linear Function Approximation. In Proceedings of the
International Conference on Machine Learning (ICML 07).

Precup, D., Sutton, R. S., & Singh, S. P. (2000). Eligibility Traces for Off-Policy Policy
Evaluation. In Proceedings of the Seventeenth International Conference on Machine
Learning (ICML00), pp. 759–766, San Francisco, CA, USA. Morgan Kaufmann Pub-
lishers Inc.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience.

Schneegaß, D., Udluft, S., & Martinetz, T. (2007). Improving optimality of neural rewards
regression for data-efficient batch near-optimal policy identification.. In de Sá, J. M.,
Alexandre, L. A., Duch, W., & Mandic, D. P. (Eds.), ICANN, Vol. 4668 of Lecture
Notes in Computer Science, pp. 109–118. Springer.

Schoknecht, R. (2002). Optimality of Reinforcement Learning Algorithms with Linear Func-
tion Approximation. In Proceedings of the Conference on Neural Information Process-
ing Systems (NIPS 15).

Sigaud, O., & Buffet, O. (Eds.). (2010). Markov Decision Processes and Artificial Intelli-
gence. Wiley - ISTE.

531

Geist & Pietquin

Simon, D. (2006). Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
(1. Auflage edition). Wiley & Sons.

Strehl, A. L., Li, L., Wiewiora, E., Langford, J., & Littman, M. L. (2006). Pac model-
free reinforcement learning. In Proceedings of the 23rd International Conference on
Machine Learning (ICML 2006), pp. 881–888, Pittsburgh, PA, USA.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction (3rd edi-
tion). The MIT Press.

Sutton, R. S., Koop, A., & Silver, D. (2007). On the role of tracking in stationary envi-
ronments. In ICML ’07: Proceedings of the 24th international conference on Machine
learning, pp. 871–878, New York, NY, USA. ACM.

Söderström, T., & Stoica, P. (2002). Instrumental variable methods for system identification.
Circuits, Systems, and Signal Processing, 21, 1–9.

Tsitsiklis, J. N., & Roy, B. V. (1997). An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42, 674–690.

van der Merwe, R. (2004). Sigma-Point Kalman Filters for Probabilistic Inference in Dy-
namic State-Space Models. Ph.D. thesis, OGI School of Science & Engineering, Oregon
Health & Science University, Portland, OR, USA.

Yu, H., & Bertsekas, D. P. (2007). Q-Learning Algorithms for Optimal Stopping Based on
Least Squares. In Proceedings of European Control Conference, Kos, Greece.

532

