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Abstract

To harness modern multicore processors, it is imperatidetelop parallel versions of funda-
mental algorithms. In this paper, we compare different appnes to parallel best-first search in a
shared-memory setting. We present a new method, PBNF,sbatabstraction to partition the state
space and to detect duplicate states without requiringuéeglocking. PBNF allows speculative
expansions when necessary to keep threads busy. We idantffix potential livelock conditions
in our approach, proving its correctness using temporatldgur approach is general, allowing it
to extend easily to suboptimal and anytime heuristic sedncéin empirical comparison on STRIPS
planning, grid pathfinding, and sliding tile puzzle probkosing 8-core machines, we show that
A*, weighted A* and Anytime weighted A* implemented using RB yield faster search than
improved versions of previous parallel search proposals.

1. Introduction

It is widely anticipated that future microprocessors will not have fasteckctates, but instead
more computing cores per chip. Tasks for which there do not existtiefigoarallel algorithms

will suffer a slowdown relative to total system performance. In artificialligence, heuristic

search is a fundamental and widely-used problem solving frameworthidrpaper, we compare
different approaches for parallelizing best-first search, a poma#inod underlying algorithms such
as Dijkstra’s algorithm and A* (Hart, Nilsson, & Raphael, 1968).

In best-first search, two sets of nodes are maintaiopdnandclosed Open contains the search
frontier: nodes that have been generated but not yet expandad. dpen nodes are sorted by their
f value, the estimated lowest cost for a solution path going through that r@polen is typically
implemented using a priority queue. Closed contains all previously generaties, allowing the
search to detect states that can be reached via multiple paths in the seaechrspavoid expanding
them multiple times. The closed list is typically implemented as a hash table. The cfatitahge
in parallelizing best-first search is avoiding contention between threads atcessing the open
and closed lists. We look at a variety of methods for parallelizing best-fistch, focusing on
algorithms which are based on two techniquasrallel structured duplicate detectiandparallel
retracting A*.
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Parallel structured duplicate detection (PSDD) was originally developethby and Hansen
(2007) for parallel breadth-first search, in order to reduce ctioteon shared data structures by
allowing threads to enjoy periods of synchronization-free search DR®Ruires the user to supply
an abstraction function that maps multiple states, calledldack, to a single abstract state. We
present a new algorithm based on PSDD called Parallel B&bck-First (PBNE). Unlike PSDD,
PBNF extends easily to domains with non-uniform and non-integer move aondtsnadmissible
heuristics. Using PBNF in an infinite search space can give rise to livelduire threads continue
to search but a goal is never expanded. We will discuss how this condiiiorbe avoided in
PBNF using a method we cdibt nblocks as well as our use of bounded model checking to test its
effectiveness. In addition, we provide a proof of correctness PBNF framework, showing its
liveness and completeness in the general case.

Parallel retracting A* (PRA*) was created by Evett, Hendler, Mahantd, ldau (1995). PRA*
distributes the search space among threads by using a hash of a niatke’drs PRA*, duplicate
detection is performed locally; communication with peers is only required tofénagenerated
search-nodes to their home processor. PRA* is sensitive to the choltesbing function used
to distribute the search space. We show a new hashing function, bagshd eame state space
abstraction used in PSDD, that can give PRA* significantly better perfocenan some domains.
Additionally, we show that the communication costincurred in a naive implemen@itidPRA* can
be prohibitively expensive. Kishimoto, Fukunaga, and Botea (20@3gmt a method that helps to
alleviate the cost of communication in PRA* by using asynchronous messagag primitives.

We evaluate PRA* (and its variants), PBNF and other algorithms empirically ukial quad-
core Intel machines. We study their behavior on three popular seanchid®: STRIPS planning,
grid pathfinding, and the venerable sliding tile puzzle. Our empirical resutis that the simplest
parallel search algorithms are easily outperformed by a serial A* seme when they are run
with eight threads. The results also indicate that adding abstraction to thedbgbkithm can give
a larger increase in performance than simply using asynchronous conatiomj@lthough using
both of these modifications together may outperform either one used on it<Omerall, the PBNF
algorithm often gives the best performance.

In addition to finding optimal solutions, we show how to adapt several of lgarithms to
bounded suboptimal search, quickly findimgadmissible solutions (with cost within a factor of
of optimal). We provide new pruning criteria for parallel suboptimal searuth prove that algo-
rithms using them retaiw-admissibility. Our results show that, for sufficiently difficult problems,
parallel search may significantly outperform serial weighted A* seaktf. also found that the
advantage of parallel suboptimal search increases with problem difficulty

Finally, we demonstrate how some parallel searches, such as PBNF avidIe&d naturally
to effective anytime algorithms. We also evaluate other obvious parallel angéareh strategies
such as running multiple weighted A* searches in parallel with different isigNe show that the
parallel anytime searches are able to find better solutions faster than thelicsenterparts and
they are also able to converge more quickly on optimal solutions.

1. Peanut Butter 'N’ (marshmallow) Fluff, also known as a fluffernutie a well-known children’s sandwich in the
USA.
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2. Previous Approaches

There has been much previous work in parallel search. We will briefiynsarize selected proposals
before turning to the foundation of our work, the PRA* and PSDD algorithms

2.1 Depth- and Breadth-first Approaches

Early work on parallel heuristic search investigated approaches loaisddpth-first search. Two
examples are distributed tree search (Ferguson & Korf, 1988), aatlggavindow search (Powley
& Korf, 1991).

Distributed tree search begins with a single thread, which is given the inittal tetaexpand.
Each time a node is generated an unused thread is assigned to the notleredtie are allocated
down the tree in a depth-first manner until there are no more free threasisigm. When this occurs,
each thread will continue searching its own children with a depth-firstsedvhen the solution
for a subtree is found it is passed up the tree to the parent thread ardlththeead becomes free
to be re-allocated elsewhere in the tree. Parent threads go to sleep winitéhilteen search, only
waking once the children terminate, passing solutions upward to their paeentsively. Because
it does not keep a closed list, depth-first search cannot detect depdizdes and does not give
good search performance on domains with many duplicate states, sudthatigfinding and some
planning domains.

Parallel window search parallelizes the iterative deepening A* (IDAg Kerf, 1985) algo-
rithm. In parallel window search, each thread is assigned a cost-bahdi#i perform a cost-
bounded depth-first search of the search space. The problem witipibrisach is that IDA* will
spend at least half of its search time on the final iteration and since eveyateis still performed
in only a single thread, the search will be limited by the speed of a single thireaddition, non-
uniform costs can foil iterative deepening, because there may not bedavgay to choose new
upper-bounds that give the search a geometric growth.

Holzmann and Bosnhacki (2007) have been able to successfully paetielpth-first search for
model checking. The authors are able to demonstrate that their techniqudistnibutes nodes
based on search depth was able to achieve near linear speedup in thie dbmadel checking.
Other research has used graphics processing units (GPUs) to padiliededth-first search for
use in two-player games (Edelkamp & Sulewski, 2010). In the following sestiee describe
algorithms with the intent of parallelizing best-first search.

2.2 Simple Parallel Best-first Search

The simplest approach to parallel best-first search is to have opericaedi dists that are shared
among all threads (Kumar, Ramesh, & Rao, 1988). To maintain consistétimse data structures,
mutual exclusion locks (mutexes) need to be used to ensure that a single #ueesses the data
structure at a time. We call this search “parallel A*". Since each nodeishatpanded is taken
from the open list and each node that is generated is looked up in the t&idsdevery thread, this
approach requires a lot of synchronization overhead to ensure tisestancy of its data structures.
As we see in Section 4.3, this naive approach performs worse thanAtrial

There has been much work on designing complex data structures thatomtiggotness under
concurrent access. The idea behind these spe@iifree data structures is that many threads
can use portions of the data structure concurrently without interferingam¢hanother. Most of
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these approaches use a spec@npare-and-swaprimitive to ensure that, while modifying the
structure, it does not get modified by another thread. We implemented a siarpleepA* search,

which we call lock-free parallel A*, in which all threads access a singéged, concurrent priority
queue and concurrent hash table for the open and closed lists, treslyed/NVe implemented the
concurrent priority queue data structure of Sundell and Tsigas 2605 the closed list, we used
a concurrent hash table which is implemented as an array of bucketsyfeahlth is a concurrent
ordered list as developed by Harris (2001). These lock-free daigtstes used to implement LPA*
require a special lock-free memory manager that uses referenceéngpand acompare-and-swap
based stack to implement a free list (Valois, 1995). We will see that, even witle ophistocated
structures, a straightforward parallel implementation of A* does not givepetitive performance.

One way of avoiding contention altogether is to allow one thread to handléymezation of
the work done by the other threads-Best-First Search (Felner, Kraus, & Korf, 2003) expands the
bestk nodes at once, each of which can be handled by a different thneadir implementation, a
master thread takes tliebest nodes from open and gives one to each worker. The workgase
their nodes and the master checks the children for duplicates and insenténtioethe open list.
This allows open and closed to be used without locking, however, in dodadhere to a strict
k-best-first ordering this approach requires the master thread to waill feorkers to finish their
expansions before handing out new nodes. In the domains used infleis where node expansion
is not particularly slow, we show that this method does not scale well.

One way to reduce contention during search is to access the closed lisetpssntly. A tech-
nique calleddelayed duplicate detectiofpDD) (Korf, 2003), originally developed for external-
memory search, can be used to temporarily delay access to the a closed likt.s&viral vari-
ations have been proposed, the basic principle behind DDD is that ¢etherades are added to
a single list until a certain condition is met (a depth level is fully expanded, somémum list
size is reached (Stern & Dill, 1998), etc.) Once this condition has been mdisttlie sorted to
draw duplicate nodes together. All nodes in the list are then checkedsatjanclosed list, with
only the best version being kept and inserted onto the open list. The initiBl &Forithm used a
breadth-first frontier search and therefore only the previous dapér-was required for duplicate
detection. A parallel version was later presented by Niewiadomski, Amard|/Halte (2006a),
which split each depth layer into sections and maintained separate inputgmd lists for each.
These were later merged in order to perform the usual sorting and deptletection methods.
This large synchronization step, however, will incur costs similar to KBE&Isb depends upon
an expensive workload distribution scheme to ensure that all prosdsaee work to do, decreas-
ing the bottleneck effect of nodes being distributed unevenly, but fuiticesasing the algorithm’s
overhead. A later parallel best-first frontier search based on DD®presented (Niewiadomski,
Amaral, & Holte, 2006b), but incurs even further overhead by reqgisiynchronization between
all threads to maintain a strict best-first ordering.

Jabbar and Edelkamp (2006) present an algorithm called parallel axfer(PEA*) that uses
distributed computing nodes and external memory to perform a best-finsthsePEA* splits the
search space into a set of “buckets” that each contain nodes with thegsanth values. The
algorithm performs a best-first search by exploring all the buckets witlowestf value beginning
with the one with the lowes}. A master node manages requests to distribute portions of the current
bucket to various processing nodes so that expanding a single lmackbt performed in parallel.
To avoid contention, PEA* relies on the operating system to synchronizesado files that are
shared among all of the nodes. Jabbar and Edelkamp used the PEAithmigty parallelize a
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model-checker and achieved almost linear speedup. While partitioniggaod 4 works on some
domains it is not general if few nodes have the sagnmamd i values. This tends to be the case in
domains with real-valued edge costs. We now turn our attention to two algoritlamsithreappear
throughout the rest of this paper: PRA* and PSDD.

2.3 Parallel Retracting A*

PRA* (Evett et al., 1995) attempts to avoid contention by assigning sepgrateamd closed lists
to each thread. A hash of the state representation is used to assign ntaeappropriate thread
when they are generated. (Full PRA* also includes a retraction schemeethees memory use
in exchange for increased computation time; we do not consider thatddattinis paper.) The
choice of hash function influences the performance of the algorithm, gide¢ermines the way
that work is distributed. Note that with standard PRA*, any thread may comateneith any of
its peers, so each thread needs a synchronized message queue tpeengcban add nodes. In a
multicore setting, this is implemented by requiring a thread to take a lock on the reapsage.
Typically, this requires a thread that is sending (or receiving) a medsagait until the operation
is complete before it can continue searching. While this is less of a bottleratkéving a single
global, shared open list, we will see below that it can still be expensivis dlso interesting to
note that PRA* and the variants mentioned below practice a type of delay#idate detection,
because they store duplicates temporarily before checking them agdinwsiad-local closed list
and possibly inserting them into the open list.

2.3.1 IMPROVEMENTS

Kishimoto et al. (2009) note that the original PRA* implementation can be imprbyegmov-
ing the synchronization requirement on the message queues betwean hlead, they use the
asynchronous send and receive functionality from the MPI messagnpdibrary (Snir & Otto,
1998) to implement an asynchronous version of PRA* that they call Hasthithuted A* (HDA*).
HDA* distributes nodes using a hash function in the same way as PRA*pexte sending and
receiving of nodes happens asynchronously. This means that staeaftee to continue searching
while nodes which are being communicated between peers are in transit.

In contact with the authors of HDA*, we have created an implementation of HBmulticore
machines that does not have the extra overhead of message passiggnicironous communica-
tion between threads in a shared memory setting. Also, our implementation of dAYs us
to make a fair comparison between algorithms by sharing common data strugtaleas priority
gueues and hash tables.

In our implementation, each HDA* thread is given a single queue for incomidgsand one
outgoing queue for each peer thread. These queues are implementgthasadlly sized arrays
of pointers to search nodes. When generating nodes, a threadnperdonon-blocking call to
acquire the lockfor the appropriate peer’s incoming queue, acquiring the lock if it is availaid
immediately returning failure if it is busy, rather than waiting. If the lock is aeggiithen a simple
pointer copy transfers the search node to the neighboring thread. nbtilocking call fails the
nodes are placed in the outgoing queue for the peer. This operatiomatoesgjuire a lock because
the outgoing queue is local to the current thread. After a certain numlexpeisions, the thread
attempts to flush the outgoing queues, but it is never forced to wait on a losntb nodes. It

2. One such non-blocking call is tipe hr ead_nmut ex_t r yl ock function of the POSIX standard.
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Figure 1: A simple abstraction. Self-loops have been eliminated.

also attempts to consume its incoming queue and only waits on the lock if its open ligpig, e
because in that case it has no other work to do. Using this simple and dffitiglementation,
we confirmed the results of Kishimoto et al. (2009) that show that the asymohs version of
PRA* (called HDAY*) outperforms the standard synchronous versiaril résults are presented in
Section 4.

PRA* and HDA* use a simple representation-based node hashing schatie tire same one,
for example, used to look up nodes in closed lists. We present two newntgri@dPRA* and
AHDA*, that make use of state space abstraction to distribute search nou®y) the processors.
Instead of assigning nodes to each thread, each thread is assignhed l@@eks of the search space
where each block corresponds to a state in the abstract space. Thenreltimd this approach
is that the children of a single node will be assigned to a small subset of thik@emote threads
and, in fact, can often be assigned back to the expanding thread itselfretiuces the number of
edges in the communication graph among threads during search, reduzicigatices for thread
contention. Abstract states are distributed evenly among all threads lgyausiodulus operator in
the hope that open nodes will always be available to each thread.

2.4 Parallel Structured Duplicate Detection

PSDD is the major previously-proposed alternative to PRA*. The intentiorS@iPis to avoid
the need to lock on every node generation and to avoid explicitly passingduadi nodes between
threads. It builds on the idea of structured duplicate detection (SDD)hwims originally devel-
oped for external memory search (Zhou & Hansen, 2004). SDD usabstraction functiona
many-to-one mapping from states in the original search space to states listeactispace. The
abstract node to which a state is mapped is calletritgge An nblock is the set of nodes in the
state space that have the same image in the abstract space. The abstiaction treates aab-
stract graphof nodes that are images of the nodes in the state space. If two states@sssus in
the state space, then their images are successors in the abstract ggaph1B5hows a state space
graph (left) consisting of 36 nodes and an abstract graph (right) woickists of nine nodes. Each
node in the abstract graph represents a grouping of four nodes aatkblock, in the original state
space, shown by the dotted lines in the state space graph on the left.
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Figure 2: Two disjoint duplicate detection scopes.

Eachnblock has an open and closed list. To avoid contention, a thread will acepctesive
access to amblock. Additionally, the thread acquires exclusive access tauthlecks that corre-
spond to the successors in the abstract graph oftiheck that it is searching. For eacailock we
call the set ofublocks that are its successors in the abstract graph thejiiicate detection scope
This is because these are the only abstract nodes to which accessiriedégwrder to perform
perfect duplicate detection when expanding nodes from the gitdock. If a thread expands a
noden in nblock b the children ofn must fall within b or one of thenblocks that are successors of
b in the abstract graph. Threads can determine whether or not new statraigd from expanding
n are duplicates by simply checking the closed lists:bfocks in the duplicate detection scope.
This does not require synchronization because the thread has ega@usess to this set ablocks.

In PSDD, the abstract graph is used to firlllocks whose duplicate detection scopes are dis-
joint. Thesenblocks can be searched in parallel without any locking during nodensiqas.
Figure 2 shows two disjoint duplicate detection scopes delineated by dhsbsdvith different
patterns. Amnblock that is not in use by any thread and whose duplicate detection scafs®is
not in use is considered to liee A free nblock is available for a thread to acquire it for search-
ing. Freenblocks are found by explicitly tracking, for eaelblock b, o(b), the number ofiblocks
amongb’s successors that are in use by another threadnBlock b can only be acquired when
o(b) =0.

The advantage of PSDD is that it only requires a single lock, the one dorgrmanipulation
of the abstract graph, and the lock only needs to be acquired by thsdemtsfinding a new free
nblock to search. This means that threads do not need to synchronizeewipéieding nodes, their
most common operation.

Zhou and Hansen (2007) used PSDD to parallelize breadth-first tiesgarch (Zhou & Hansen,
2006). In this algorithm, eachblock has two lists of open nodes. One list contains open nodes
at the current search depth and the other contains nodes at the att depth. In each thread,
only the nodes at the current search depth in an acquibdack are expanded. The children that
are generated are put in the open list for the next depth intiack to which they map (which will
be in the duplicate detection scope of thidock being searched) as long as they are not duplicates.
When the currenthblock has no more nodes at the current depth, it is swapped for alfeek
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that does have open nodes at this depth. If no mdMecks have open nodes at the current depth,
all threads synchronize and then progress together to the next dep#undissible heuristic is used
to prune nodes that fall on or above the current solution upper bound.

2.4.1 IMPROVEMENTS

While PSDD can be viewed as a general framewaork for parallel searcloy terminology, PSDD
refers to an instance of SDD in a parallel setting that uses layer-baseldrepization and breadth-
first search. In this subsection, we present two algorithms that use bi@ ff&nework and attempt
to improve on the PSDD algorithm in specific ways.

As implemented by Zhou and Hansen (2007), the PSDD algorithm uses thisticegstimate
of a node only for pruning; this is only effective if a tight upper boundlieady available. To
cope with situations where a good bound is not available, we have implementeglealgorithm
using the PSDD framework that uses iterative deepening (IDPSDD) teaserthe bound. As we
report below, this approach is not effective in domains such as gridipgithlg that do not have a
geometrically increasing number of nodes within successiveunds.

Another drawback of PSDD is that breadth-first search cannotagtes optimality in domains
where operators have differing costs. In anticipation of these problénwa) and Hansen (2004)
suggest two possible extensions to their work, best-first search gretalative best-first layering
approach that allows for larger layers in the cases where there amofteg (omblocks) with the
samef value. To our knowledge, we are the first to implement and test these aigsrith

Best-first PSDD (BFPSDD) usgsvalue layers instead of depth layers. This means that all
nodes that are expanded in a given layer have the same (lofwest)e. BFPSDD provides a best-
first search order, but may incur excessive synchronization esaérti there are few nodes in each
f layer. To ameliorate this, we loosen the best-first ordering by enforcetgathleast» nodes
are expanded before abandoning a non-emybitpck. (Zhou & Hansen, 2007 credit Edelkamp &
Schibdl, 2000 with this idea.) Also, when populating the list of fréglocks for each layer, all of
thenblocks that have nodes with the current layé¢nslue are used or a minimum kfrnblocks are
added wheré; is four times the number of threads. (This value fagave better performance than
other values tested.) This allows us to add additiadddcks to small layers in order to amortize the
cost of synchronization. In addition, we tried an alternative implementati®@F&fSDD that used
a range off values for each layer. A parametArf was used to proscribe the width (fnvalues)
of each layer of search. This implementation did not perform as well ardbwemt present results
for it. With either of these enhancements, threads may expand nodes vaithes greater than that
of the current layer. Because the first solution found may not be optieeicis continues until all
remaining nodes are pruned by the incumbent solution.

Having surveyed the existing approaches to parallel best-first seaechow present a new
approach which comprises the main algorithmic contribution of this paper.

3. Parallel Best-VBlock-First (PBNF)

In an ideal scenario, all threads would be busy expandbigcks that contain nodes with the lowest
f values. To approximate this, we combine PSDD’s duplicate detection scaéfrearidea from
the Localized A* algorithm of Edelkamp and Sdldlt (2000). Localized A*, which was designed
to improve the locality of external memory search, maintains sets of node®#d¢ on the same
memory page. The decision of which set to process next is made with theflelpeap of sets
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. while there is amblock with open nodes
lock; b < best freenblock; unlock
while b is no worse than the best fredlock or we've done fewer thamin expansions
m < best open node ih
if f(m) > f(incumbent, prune all open nodes ih
else ifm is a goal
if f(m) < f(incumbenk
lock;incumbent— m; unlock
else for each child of m
10. if ¢ is not on the closed list of itsblock
insertc in the open list of the appropriateblock

©CoNOGO WD

=
=

Figure 3: A sketch of basic PBNF search, showing locking.

ordered by the minimuryi value in each set. By maintaining a heap of frd¥ocks ordered on each
nblocks besyf value, we can approximate our ideal parallel search. We call this algoRtrailel
Best-VBlock-First (PBNF) search.

In PBNF, threads use the heap of freblocks to acquire the freeblock with the best open
node. A thread will search its acquirethlock as long as it contains nodes that are better than those
of the nblock at the front of the heap. If the acquirethlock becomes worse than the best free
one, the thread will attempt to release its curreblock and acquire the better one which contains
open nodes with lowef values. There is no layer synchronization, so threads do not needtto wa
unless nonblocks are free. The first solution found may be suboptimal, so searchcontsnue
until all open nodes havg values worse than the incumbent solution. Figure 3 shows high-level
pseudo-code for the algorithm.

Because PBNF is designed to tolerate a search order that is only appielyilmest-first, we
have freedom to introduce optimizations that reduce overhead. It ibf®#sat annblock has only
a small number of nodes that are better than the best:ipexk, so we avoid excessive switching
by requiring a minimum number of expansions. Due to the minimum expansioirestant it is
possible that the nodes expanded by a thread are arbitrarily worse thé&orntier node with the
minimum f. We refer to these expansions as “speculative.” This can be viewteadasg off node
quality for reduced contention on the abstract graph. Section 4.1 shewsshits of an experiment
that evaluates this trade off.

Our implementation also attempts to reduce the time a thread is forced to wait on aylock b
using non-blocking operations to acquire the lock whenever possibteeRhan sleeping if a lock
cannot be acquired, a non-blocking lock operation (suchtas ead_nut ex_t r yl ock) will
immediately return failure. This allows a thread to continue expanding its d¢urbdock if the lock
is busy. Both of these optimizations can introduce additional ‘speculatigresions that would
not have been performed in a serial best-first search.

3.1 Livelock

The greedy free-for-all order in which PBNF threads acquire frelocks can lead to livelock in
domains with infinite state spaces. Because threads can always acquirbloeks without waiting
for all open nodes in a layer to be expanded, it is possible thathheck containing the goal will
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never become free. This is because we have no assurance thidlioaks in its duplicate detection
scope will ever be unused at the same time. For example, imagine a situation tiviesrds are
constantly releasing and acquirimgplocks that prevent the goablock from becoming free. To
fix this, we have developed a method called ‘httocks’ where threads altruistically release their
nblock if they are interfering with a betterblock. We call this enhanced algorithm ‘Safe PBNF.

We use the term ‘thénterference scopef b’ to refer to the set ofiblocks that, if acquired,
would preventb from being free. The interference scope includes not érdysuccessors in the
abstract graph, but their predecessors too. In Safe PBNF, wieaahread checks the heap of
free nblocks to determine if it should release its curremock, it also ensures that its acquired
nblock is better than any of those that it interferes witlblocks whose interference scope the
acquirednblock is in). If it finds a better one, it flags thablock as ‘hot.” Any thread that finds
itself blocking a hotnblock will release its:block in an attempt to free the hablock. For each
nblock b we defines;, (b) to be the number of hatblocks thatb is in the interference scope of. If
or(b) # 0, b is removed from the heap of fregblocks. This ensures that a thread will not acquire
annblock that is preventing a hetblock from becoming free.

Consider, for example, an abstract graph containing fdolocks connected in a linear fashion:
A < B < C. A possible execution of PBNF can alternate between a thread expamding f
nblocks A and C'. If this situation arrises thenblocks B will never be considered free. If the only
goals are located inblock B then, in an infinite search space there may be a livelock. With the
“Safe” variant of PBNF, however, when expanding from eitdeor C' a thread will make sure to
check thef value of the best open nodeiiblock B periodically. If the best node i is seen to be
better than the nodes it or C' then B will be flagged as “hot” and bothblocks A and C' will no
longer be eligable for expansion until afteblock B has been acquired.

More formally, let\ be the set of alhblocks, Predecessors(z) and Successors(z) be the sets
of predecessors and successors in the abstract graghlaifk =, # be the set of all hotblocks,
IntScope(b) = {l € N : Fz € Successors(b) : | € Predecessors(z)} be the interference scope
of annblock b andz < y be a partial order over theblocks wherex < y iff the minimum f
value over all of the open nodes:ns lower than that o). There are three cases to consider when
attempting to set anblock b to hot with an undirected abstract graph:

1. H N IntScope(b) = {} NHN{zx € N : b € IntScope(z)} = {}; none of thenblocks b
interferes with or that interfere with are hot, s@ can be set to hot.

2. dx € H : x € IntScope(b) Az < b; b is interfered with by a betterblock that is already
hot, sob must not be set to hot.

3. dz € H : z € IntScope(b) N b < z; b is interfered with by amblock z that is worse than
b andz is already hota must be un-flagged as hot (updatingvalues appropriately) and in
its placeb is set to hot.

Directed abstract graphs have two additional cases:

4. 3z € H : b € IntScope(z) N b < z; b is interfering with amblock z andb is better than:
so un-flage as hot and set to hot.

5. dz € H : b € IntScope(z) Az < b; b is interfering with ammblock z andz is better tharb
so do not seb to hot.
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This scheme ensures that there are never twahluicks interfering with one another and that
the nblock that is set to hot is the besblock in its interference scope. As we verify below, this
approach guarantees the property that ifock is flagged as hot it will eventually become free.
Full pseudo-code for Safe PBNF is given in Appendix A.

3.2 Correctness of PBNF

Given the complexity of parallel shared-memory algorithms, it can be reagdo have proofs of
correctness. In this subsection we will verify that PBNF exhibits vari@ssrdble properties:

3.2.1 SUNDNESS

Soundness holds trivially because no solution is returned that doeas®tie goal test.

3.2.2 DEADLOCK

There is only one lock in PBNF and the thread that currently holds it neteanpts to acquire it a
second time, so deadlock cannot arise.

3.2.3 LVELOCK

Because the interaction between the different threads of PBNF cantbecgmplex, we modeled
the system using the TLA(Lamport, 2002) specification language. Using the TLC model checker
(Yu, Manolios, & Lamport, 1999) we were able to demonstrate a sequéstaes that can give rise

to a livelock in plain PBNF. Using a similar model we were unable to find an exanfiileetock

in Safe PBNF when using up to three threads and@li®cks in an undirected ring-shaped abstract
graph and up to three threads and eighlocks in a directed graph.

In our model the state of the system is represented with four variatibigs:acquired isHotand
Succs The statevariable contains the current action that each thread is performing (sithech
or nextblochk. Theacquiredvariable is a function from each thread to the ID of its acquitbtbck
or the valueNoneif it currently does not have anblock. The variabldsHot is a function from
nblocks to eithelRUE or FALSE depending on whether or not the givehlock is flagged as hot.
Finally, theSuccsvariable gives the set of successdilocks for eachublock in order to build the
nblock graph.

The model has two actiondoSearctanddoNextBlock ThedoSearctaction models the search
stage performed by a PBNF thread. Since we were interested in determittiegdfis a livelock,
this action abstracts away most of the search procedure and merely modelsetitaread may
choose a valichblock to flag as hot. After setting amblock to hot, the thread changes its state
so that the next time it is selected to perform an action it will try to acquire amiglack. The
doNextBlocksimulates a thread choosing its nedilock if there is one available. After a thread
acquires amblock (if one was free) it sets its state so that the next time it is selected tapexfo
action it will search.

The TLA* source of the model is located in Appendix B.

Formal proof: In addition to model checking, the TL'Aspecification language is designed to
allow for formal proofs of properties. This allows properties to be pidee an unbounded space.
Using our model we have completed a formal proof that arimbck will eventually become free
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regardless of the number of threads or the abstract graph. We phesernan English summary.
First, we need a helpful lemma:

Lemma 1 If an nblockn is hot, there is at least one otheblock in its interference scope that is
in use. Alsop is not interfering with any other hotblocks.

Proof: Initially no nblocks are hot. This can change only while a thread searches or wietgeites

annblock. During a search, a thread can only seb hot if it has acquired anblock m that is in

the interference scope af Additionally, a thread may only set to hot if it does not create any

interference with another hatblock. During a release, ii is hot, either the final acquireeblock

in its interference scope is released anid no longer hot, or still has at least one busyblock in

its interference scope. O
Now we are ready for the key theorem:

Theorem 1 If an nblock n becomes hot, it will eventually be added to the free list and will no
longer be hot.

Proof: We will show that the number of acquiredblocks in the interference scope of a mditlock
n is strictly decreasing. Therefore,will eventually become free.

Assume amblock n is hot. By Lemma 1, there is a threadhat has amblock in the interfer-
ence scope ofi, andn is not interfering with or interfered by any other hablocks. Assume that
a thready does not have anblock in the interference scope of There are four cases:

1. p searches itablock. p does not acquire a nemblock and therefore the number oblocks
preventingn from becoming free does not increasep ets amblock m to hot,m is not in
the interference scope af by Lemma 1.p will release itsnblock after it sees that is hot
(see case 2).

2. preleases itablock and acquires a nemblock m from the free list. The number of acquired
nblocks in the interference scope ofdecreases by one asreleases its:block. Sincem,
the newnblock acquired by, was on the free list, it is not in the interference scope .of

3. g searches itablock. ¢ does not acquire a nemblock and therefore the number @blocks
preventingn from becoming free does not increaseq Bets amblock m to hot,m is not in
the interference scope afby Lemma 1.

4. q releases itablock (if it had one) and acquires a nesmdlock m from the free list. Sincen,
the newnblock acquired by, was on the free list, it is not in the interference scope ahd
the number ofblocks preventing: from becoming free does not increase.

We can now prove the progress property that we really care about:
Theorem 2 A noden with minimumyf value will eventually be expanded.
Proof: We considem’s nblock. There are three cases:

1. Thenblock is being expanded. Becausdéas minimumy, it will be at the front ofopenand
will be expanded.
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2. Thenblock is free. Because it holds the node with minimfinvalue, it will be at the front of
the free list and selected next for expansion, reducing to case 1.

3. Thenblock is not on the free list because it is in the interference scope ofenditock that
is currently being expanded. When the thread expandinguiatk checks its interference
scope, it will mark the bettetblock as hot. By Theorem 1, we will eventually reach case 2.

|

3.2.4 GOMPLETENESS

This follows easily from liveness:

Corollary 1 If the heuristic is admissible or the search space is finite, a goal will bemetiif one
is reachable.

Proof: If the heuristic is admissible, we inherit the completeness of serial A* (Nils$880) by
Theorem 2. Nodes are only re-expanded if theialue has improved, and this can happen only a
finite number of times, so a finite number of expansions will suffice to exhhestearch space.

3.2.5 OPTIMALITY

Because PBNF’s expansion order is not strictly best-first, it operateafilanytime algorithm, and
its optimality follows the same argument as that for algorithms such as Anytime Arisgta&
Zhou, 2007).

Theorem 3 PBNF will only return optimal solutions.

Proof: After finding an incumbent solution, the search continues to expand notiethe minimum
f value among all frontier nodes is greater than or equal to the incumbetibsatost. This means
that the search will only terminate with the optimal solution. O

Before discussing how to adapt PBNF to suboptimal and anytime seardirstvevaluate its
performance on optimal problem solving.

4. Empirical Evaluation: Optimal Search

We have implemented and tested the parallel heuristic search algorithms eésttive on three
different benchmark domains: grid pathfinding, the sliding tile puzzle, aRIBS planning. We
will discuss each domain in turn. With the exception of the planning domain, tloeithigns were

programmed in C++ using the POSIX threading library and run on dualqaeelintel Xeon E5320
1.86GHz processors with 16Gb RAM. For the planning results the algorithens written inde-

pendently in C from the pseudo code in Appendix A. This gives us additmordidence in the
correctness of the pseudo code and our performance claims. Thenglaxperiments were run
on dual quad-core Intel Xeon X5450 3.0GHz processors limited to tggbB of RAM. All open

lists and free lists were implemented as binary heaps except in PSDD an®ID®Bich used a
gueue giving them less overhead since they do not require access to minetued elements. All
closed lists were implemented as hash tables. PRA* and APRA* used queuesdming nodes,
and a hash table was used to detect duplicates in both open and closgtids@nd sliding tiles,
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we used the jemalloc library (Evans, 2006), a special multi-thread-awdlecnraplementation,
instead of the standard glibc (version 2.7) malloc, because we found ¢hkdttlr scales poorly
above 6 threads. We configured jemalloc to use 32 memory arenas peitrQftéhning, a custom
memory manager was used which is also thread-aware and uses a menidoy pach thread.

On grids and sliding tiles abstractions were hand-codedaldck data structures were created
lazily, so only the visited part of abstract graph was instantiated. The time takereate the
abstraction is accounted for in all of the wall time measurements for these twaide In STRIPS
planning the abstractions were created automatically and the creation times &tostinactions are
reported separately as described in Section 4.5.

4.1 Tuning PBNF

In this section we present results for a set of experiments that we dddigtest the behavior of
PBNF as some of its parameters are changed. We study the effects of timegartant parameters
of the PBNF algorithm: minimum expansions required before switching to lsearmewnblock

and the size of the abstraction. This study used twenty 5000x5000 doumected grid pathfinding
instances with unit cost moves where each cell has a 0.35 probability af beimbstacle. The
heuristic used was the Manhattan distance to the goal location. Error bies jots show 95%
confidence intervals and the legends are sorted by the mean of the depeadable in each plot.

In the PBNF algorithm, each thread must perform a minimum number of expenisafore
it is able to acquire a newblock for searching. Requiring more expansions between switches is
expected to reduce the contention on th#ock graph’s lock but could increase the total number
of expanded nodes. We created an instrumented version of the PBNithatgthat tracks the
time that the threads have spent trying to acquire the lock and the amount of Gintrdads
have spent waiting for a freeblock. We fixed the size of the abstraction to 62,50flocks and
varied the number of threads (from 1 to 8) and minimum expansions (1, 821&hd 64 minimum
expansions).

The upper left panel in Figure 4 shows the average amou@Pdf timein seconds that each
thread spent waiting to acquire the lock (y-axis) as the minimum expansicamegr was in-
creased (x-axis). Each line in this plot represents a different nunilereads. We can see that the
configuration which used the most amount of time trying to acquire the lock Wa®ight threads
and one minimum expansion. As the number of threads decreased, theteswaontention on
the lock as there were fewer threads to take it. As the number of minimum rdexp@ansions
increased the contention was also reduced. Around eight minimum exparbki® benefit of in-
creasing the value further seemed to greatly diminish.

The upper right panel of Figure 4 shows the results for the CPU time syatihg for a free
nblock (y-axis) as minimum expansions was increased (x-axis). This ereliff than the amount
of time waiting on the lock because, in this case, the thread successfully estqé lock but
then found that there were no fredlocks available to search. We can see that the configuration
with eight threads and one for minimum expansions caused the longest taaidime waiting
for a freenblock. As the number of threads decreased and as the required nuimbarimmum
expansions increased the wait time decreased. The amount of time sitémg viewever, seems
fairly insignificant because it is an order of magnitude smaller than the lock #gain, we see
that around eight minimum expansions the benefit of increasing seemed tastimin
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Figure 4: PBNF locking behavior vs minimum expansions on grid pathfindiith %2,500
nblocks. Each line represents a different number of threads.

The final panel, on the bottom in Figure 4, shows the total number of noglesmded (y-axis,
which is in thousands of nodes) as minimum expansions was increasedadimg the minimum
number of expansions that a thread must make before switching tdlack with better nodes
caused the search algorithm to explore more of the space that may ndtdeaveovered by a strict
best-first search. As more of these “speculative” expansions vegfermed the total number of
nodes encountered during the search increased. We can also saddingtthreads increased the
number of expanded nodes too.

From the results of this experiment it appears that requiring more than exighnsions be-
fore switchingnblocks had a decreasing benefit with respect to locking and waiting timeurin o
non-instrumented implementation of PBNF we found that slightly greater vabudld minimum
expansion parameter lead to the best total wall times. For each domain belose\ilee value that
gave the best total wall time in the non-instrumented PBNF implementation.
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Figure 5: PBNF abstraction size: 5000x5000 grid pathfinding, 32 minimyaresions.

Since PBNF uses abstraction to decompose a search space it is also itrtpartaterstand the
effect of abstraction size on search performance. Our hypothesishatusing too few abstract
states would lead to only a small number of fréglocks therefore making threads spend a lot of
time waiting for annblock to become free. On the other hand, if there are too many abstrast state
then there will be too few nodes in eagblock. If this happens, threads will perform only a small
amount of work before exhausting the open nodes in thbiock and being forced to switch to
a new portion of the search space. Each time a thread must swbtobks the contention on the
lock is increased. Figure 5 shows the results of an experiment that wiasnped to verify this
theory. In each plot we have fixed the minimum expansions parameter toldéh(gave the best
total wall time on grid pathfinding) and varied the number of threads (from8&) tmnd the size of
the abstraction (10,000, 62,500 and 250,00cks).

The upper left panel of Figure 5 shows a plot of the amount of CPUnslscgpent trying to ac-
quire the lock (y-axis) versus the size of the abstraction (x-axis). pea®rd, when the abstraction
was very coarse there was little time spent waiting on the lock, but as the simeaiistraction grew
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and the number of threads increased the amount of time spent lockingsedreat eight threads
with 250,000rblocks over 1 second of CPU time was spent waiting to acquire the lock. Sjgesu

that this is because threads were exhausting all open nodes imtiieaks and were, therefore,
being forced to take the lock to acquire a new portion of the search space.

The upper right panel of Figure 5 shows the amount of time that threaxuhd gg@iting for an
nblock to become free after having successfully acquired the lock onlyddHat nonblocks are
available. Again, as we suspected, the amount of time that threads waliréa&reblock decreases
as the abstraction size is increased. The more avaitaiiicks, the more disjoint portions of the
search space will be available. As with our experiments for minimum expasdio®m amount of
time spent waiting seems to be relatively insignificant compared to the time spemtiag locks.

The bottom panel in Figure 5 shows that the number of nodes that weamdeqg increased
as the size of the abstraction was increased. For finer grained absisatigoalgorithm expanded
more nodes. This is because each time a thread switches to abtegk it is forced to perform at
least the minimum number of expansions, therefore the more switches, théomuee expansions.

4.2 Tuning PRA*

We now turn to looking at the performance impact on PRA* of abstractioreagdchronous com-
munication. First, we compare PRA* with and without asynchronous commtionicd&esults from

a set of experiments on twenty 5000x5000 grid pathfinding and a seODafa2slom 15-puzzle in-
stances that were solvable by A* in 3 million expansions are shown in Figuféé line labeled
sync. (PRA*used synchronous communicati@async. sendsised synchronous receives and asyn-
chronous sendsasync. receivesused synchronous sends and asynchronous receivegsgnd.
(HDA¥*), used asynchronous communication for both sends and receivexféeg kthe legend is
sorted by the mean performance and the error bars represent theo®fitkence intervals on the
mean. The vertical lines in the plots for the life cost grid pathfinding domaiow shat these
configurations were unable to solve instances within the 180 second time limit.

The combination of both asynchronous sends and receives provieléash performance. We
can also see from these plots that making sends asynchronous provadedof a benefit than
making receives asynchronous. This is because, without asymelgsends, each node that is gen-
erated will stop the generating thread in order to communicate. Even if comrtianitabatched,
each send may be required to go to a separate neighbor and therefayie asnd operation may be
required per-generation. For receives, the worst case is thatdbiwirg thread must stop at each
expansion to receive the next batch nodes. Since the branching ifaetdypical search space is
approximately constant there will be approximately a constant factor modeceenmunications as
there are receive communications in the worst case. Therefore, makidg asynchronous reduces
the communication cost more than receives.

Figure 7 shows the results of an experiment that compares PRA* usitrgethm to distribute
nodes among the threads versus PRA* with asynchronous communicatieniinés are labeled
as follows: sync. (PRA*)used only synchronous communicati@sync. (HDA*)used only asyn-
chronous communication arsgnc. with abst. (APRAY)sed only synchronous communication and
used abstraction to distribute nodes among the threadasymt. and abst. (AHDA%)sed a com-
bination of asynchronous communication and abstraction. Again, the Vdiriesiin the plots for
the life cost grid pathfinding domains show that these configurations weideaito solve instances
within the 180 second time limit.
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Figure 6: PRA* synchronization: 5000x5000 grids and easy sliding tikantes.

It is clear from these plots that the configurations of PRA* that used adigin gave better
performance than PRA* without abstraction in the grid pathfinding domaie. r&ason for this is
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Figure 7: PRA* abstraction: 5000x5000 grids and easy sliding tile inssance

because the abstraction in grid pathfinding will often assign succedsamsaale being expanded
back to the thread that generated them. When this happens no communicagiquiied and the
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nodes can simply be checked against the local closed list and placed lmcdhepen list if they

are not duplicates. With abstraction, the only time that communication will be esjisrwhen a

node on the “edge” of an abstract state is expanded. In this sa®epf the children will map into

a different abstract state and communication will be required. This expetratso shows that the
benefits of abstraction were greater than the benefits of asynchroopusunication in the grid
pathfinding problems. We see the same trends on the sliding tile instancesehadlaey are not
quite as pronounced; the confidence intervals often overlap.

Overall, it appears that the combination of PRA* with both abstraction foribliging nodes
among the different threads and using asynchronous communicatiothgelvest performance. In
the following section we show the results of a comparison between this vafi@RA*, the Safe
PBNF algorithm and the best-first variant of PSDD.

4.3 Grid Pathfinding

In this section, we evaluate the parallel algorithms on the grid pathfinding doritai@ goal of
this domain is to navigate through a grid from an initial location to a goal locatidleatioiding
obstacles. We used two cost models (discussed below) and both fgardaight-way movement.
On the four-way grids, cells were blocked with a probability of 0.35 and eneight-way grids
cells were blocked with a probability of 0.45. The abstraction function thatwsad maps blocks
of adjacent cells to the same abstract state, forming a coarser absitlamtaytaid on the original
space. The heuristic was the Manhattan distance to the goal location. Shedlaes for states
(which are used to distribute nodes in PRA* and HDA*) are computed ag;,,, + y of the state
location. This gives a minimum perfect hash value for each state. For tinaidave were able to
tune the size of the abstraction and our results show execution with theblsasiction size for each
algorithm where it is relevant.

4.3.1 FOur-WAY UNIT CoSsT
In the unit-cost model, each move has the same cost: one.

Less Promising Algorithms Figure 8, shows a performance comparison between algorithms that,
on average, were slower than serial A*. These algorithms were test@@ anit-cost four-way
movement 1200x2000 grids with the start location in the bottom left cornetheengloal location in
the bottom right. The x-axis shows the number of threads used to solvénstace and the y-axis
shows the mean wall clock time in seconds. The error bars give a 95%leooé interval on the
mean wall clock time and the legend is sorted by the mean performance.

From this figure we can see that PSDD gave the worst average solution Wveesispect that
this was because the lack of a tight upper bound which PSDD uses fungriVe see that A* with
a shared lock-free open and closed list (LPA*) took, on averagesetbend longest amount of time
to solve these problems. LPA*'s performance improved up to 5 threadthandstarted to drop off
as more threads were added. The overhead of the special lock-fraergnenanager along with
the fact that access to the lock-free data structures may require Ba@ad retries could account
for the poor performance compared to serial A*. The next algorithm,ggdown from the top in
the legend, is KBFS which slowly increased in performance as more thwesrdsadded however
it was not able to beat serial A*. A simple parallel A* implementation (PA*) udimgks on the
open and closed lists performed worse as threads were added untilfabowhere it started to
give a very slow performance increase matching that of KBFS. The RIRfgrithm using a simple
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Figure 8: Simple parallel algorithms on unit cost, four-way 2000x1200mattifinding.

state representation based hashing function gave the best perforimémsegraph but it was fairly
erratic as the number of threads changed, sometimes increasing and sondettneesing. At 6
and 8 threads, PRA* was faster than serial A*.

We have also implemented the IDPSDD algorithm which tries to find the upper Hourad
PSDD search using iterative deepening, but the results are not shothe grid pathfinding do-
mains. The non-geometric growth in the number of states when increasingshieozind leads to
very poor performance with iterative deepening on grid pathfinding.tBtree poor performance of
the above algorithms, we do not show their results in the remaining grid, tildammipg domains
(with the exception of PSDD which makes a reappearance in the STRIP&ngagvaluation of
Section 4.5, where we supply it with an upper bound).

More Promising Algorithms  The upper left plot in Figure 9 shows the performance of algorithms
on unit-cost four-way grid pathfinding problems. The y-axis reprissiie speedup over serial A*
and the x-axis shows the number of threads in use for each data poiot. bars indicate 95%
confidence intervals on the mean over 20 different instances. Algoriththe ilegend are ordered
by their average performance. The line labeled “Perfect speeduwissha perfect linear speedup
where each additional thread increases the performance linearly.

A more practical reference point for speedup is shown by the “Achievspeedup” line. On
a perfect machine with processors, running with cores should take time that decreases linearly
with n. On a real machine, however, there are hardware consideratioms&sumemory bus con-
tention that prevent this-fold speedup. To estimate this overhead for our machines, we ran sets
of n independent A* searches in parallel for< n < 8 and calculated the total time for each set
to finish. On a perfect machine all of these sets would take the same time a$ Withse = 1.
We compute the “Achievable speedup” with the ratio of the actual completion timie thme
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Figure 9: Speedup results on grid pathfinding and the sliding tile puzzle.

for the set withn = 1. At ¢ threads given the completion times for the séts;, (s, ..., C,),

achievable_speedup(t) = %
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The upper left panel shows a comparison between AHDA* (PRA* wittnelyonous commu-
nication and abstraction), BFPSDD and Safe PBNF algorithm on the 1&§@0%5000) unit-cost
four-way problems. Safe PBNF was superior to any of the other algorjthitissteadily decreas-
ing solution times as threads were added and an average speedupriatek*sef more than 6x
when using eight threads. AHDA* had less stable performance, sometivieg g sharp speedup
increase and sometimes giving a decreased performance as more thesadsided. At seven
threads where AHDA* gave its best performance, it was able to readp@&sdup over serial A*
search. The BFPSDD algorithm solved problems faster as more threeglaaded however it was
not as competitive as PBNF and AHDA* giving no more than 3x speedupsareal A* with eight
threads.

4.3.2 FOUrR-WAY LIFE COST

Moves in the life cost model have a cost of the row number of the state wheremove was
performed—moves at the top of the grid are free, moves at the bottom €838t(Ruml & Do,
2007). This differentiates between the shortest and cheapest patishvals been shown to be a
very important distinction (Richter & Westphal, 2010; Cushing, Bentor, &nlkkhampati, 2010).
The left center plot in Figure 9 shows these results in the same format #refonit-cost variant —
number of threads on the x axis and speedup over serial A* on the y@wiaverage, Safe PBNF
gave better speedup than AHDA*, however AHDA* outperformed PBIN§ixaand seven threads.
At eight threads, however, APRA* did not perform better than atisélieeads. Both of these al-
gorithms achieve speedups that are very close to the “Achievable spdedthis domain. Again
BFPSDD gave the worst performance increase as more threads vaee r@éching just under 3x
speedup.

4.3.3 HGHT-WAY UNIT COST

In eight-way movement path planning problems, horizontal and vertical snloaee cost 1, but
diagonal movements cosf2. These real-valued costs make the domain different from the previous
two path planning domains. The upper right panel of Figure 9 shows ruofilbereads on the x
axis and speedup over serial A* on the y axis for the unit cost eightm@yement domain. We see
that Safe PBNF gave the best average performance reaching jestaxsipeedup at eight threads.
AHDA* did not outperform Safe PBNF on average, however it was &blechieve a just over 6x
speedup over serial A* at seven threads. Again however, we sedltiaA* did not give very
stable performance increases with more threads. BFPSDD improved adshvere added out to
eight but it never reached more than 3x speedup.

4.3.4 BGHT-WAY LIFE COST

This model combines the eight-way movement and the life cost models; it tenel$hte most diffi-
cult path planning domain presented in this paper. The right center pirigiuse 9 shows threads
on the x axis and speedup over serial A* on the y axis. AHDA* gave tis¢deerage speedup over
serial A* search, peaking just under 6x speedup at seven thr@dtti@ugh it outperformed Safe
PBNF on average at eight threads AHDA* has a sharp decreaseformpance reaching down to
almost 5x speedup where Safe PBNF had around 6x speedup aeeAseBFPSDD again peaks
at just under 3x speedup at eight threads.
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Figure 10: Comparison of wall clock time for Safe PBNF versus AHDA* anghding tile puzzle.

4.4 Sliding Tile Puzzle

The sliding tile puzzle is a common domain for benchmarking heuristic seardtithigs. For these
results, we use 250 randomly generated 15-puzzles that serial A*bhatoasolve within 3 million
expansions.

The abstraction used for the sliding tile puzzles ignores the numbers onacd tiles. For
example, the results shown for Safe PBNF in the bottom panel of Figure 8ruabstraction that
looks at the position of the blank, one and two tiles. This abstraction give®:@d3ocks. In order
for AHDA* to get the maximum amount of expansions that map back to the elpgthread (as
described above for grids), its abstraction uses the one, two and thregitide the position of the
blank is ignored, any state generation that does not move the one, tweettites will generate a
child into the sameiblock as the parent therefore requiring no communication. The heuristic tha
was used in all algorithms was the Manhattan distance heuristic. The hastugaldi for tiles states
was a perfect hash value based on the techniques presented byn#&&tlaultze (2005).

The bottom panel of Figure 9 shows the results for AHDA*, and Safe PBN these sliding
tiles puzzle instances. The plot has the number of threads on the x axiseespetdup over serial
A* onthe y axis. Safe PBNF had the best mean performance but ther@mdap in the confidence
intervals with AHDA*. BFPSDD was unable to show a speedup over setiandl its performance
was not shown in this plot.

Because sliding tile puzzles vary so much in difficulty, in this domain we also digirags
difference test, shown in Figure 10. The data used for Figure 10 wiasteal on the same set of
runs as shown in the bottom panel of Figure 9. The y-axis in this figurgever, is the average,
over all instances, of the time that AHDA* took on that instance minus the time tifat FBNF
took. This paired test gives a more powerful view of the algorithms’ redgisrformance. Values
greater than 0.0 represent instances where Safe PBNF was fastaHbDar and values lower than
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0.0 represent those instances where AHDA* was faster. The errsrsbaw the 95% confidence
interval on the mean. We can clearly see that the Safe PBNF algorithm wéftcsigtly faster than
AHDA* across all numbers of threads from 1 to 8.

4.5 STRIPS Planning

In addition to the path planning and sliding tiles domains, the algorithms were alssddetbinto
a domain-independent optimal sequential STRIPS planner. In contithst poevious two domains
where node expansion is very quick and therefore it is difficult to aehiod parallel speedup,
node expansion in STRIPS planning is relatively slow. The planner usbese experiments uses
regression and the max-pair admissible heuristic of Haslum and Gefi@@0).2 The abstraction
function used in this domain is generated dynamically on a per-problem asifolowing Zhou
and Hansen (2007), this time was not taken into account in the solution timssnped for these
algorithms. The abstraction function is generated by greedily searching sp#te of all possible
abstraction functions (Zhou & Hansen, 2006). Because the algoritledsrte evaluate one candi-
date abstraction for each of the unselected state variables, it can biytpeiallelized by having
multiple threads work on different candidate abstractions.

Table 1 presents the results for A*, AHDA*, PBNF, Safe PBNF, PSDiefgan optimal upper
bound for pruning and using divide-and-conquer solution recoctgtn), APRA* and BFPSDD.
The values of each cell are the total wall time in seconds taken to solve estahda. A value
of "M’ indicates that the program ran out of memory. The best resultami goroblem and results
within 10% of the best are marked bold. Generally, all of the parallel algorithms were able to
solve the instances faster as they were allowed more threads. All of thkepatgorithms were
able to solve instances much faster than serial A* at seven threads. BNie &gorithm (either
PBNF or Safe PBNF) gave the best solution times in all but three domaingestitegly, while
plain PBNF was often a little faster than the safe version, it failed to solve tweegiroblems. This
is most likely due to livelock, although it could also simply be because the bioicks fix forces
Safe PNBF to follow a different search order than PBNF. AHDA* tentedive the second-best
solution times, followed by PSDD which was given the optimal solution costapi-for pruning.
BFPSDD was often better than APRA*,

The column, labeled “Abst.” shows the time that was taken by the parallelithig@rto serially
generate the abstraction function. Even with the abstraction generation tilee @l to the solution
times all of the parallel algorithms outperform A* at seven threads, exuodpe block-14 domain
where the time taken to generate the abstraction actually was longer than the tiomakAd solve
the problem.

4.6 Understanding Search Performance

We have seen that the PBNF algorithm tends to have better performandkeahbsiDA* algorithm
for optimal search. In this section we show the results of a set of expdsntieat attempts to
determine which factors allow PBNF to perform better in these domains. W&dsrad three
hypotheses. First, PBNF may achieve better performance becauseuitdsxigwer nodes witfi
values greater than the optimal solution cost. Second, PBNF may achievesbatieh performance
because it tends to have many fewer nodes on each priority queue tHaA*AHFinally, PBNF
may achieve better search performance because it spends less timeatowgdetween threads.
In the following subsections we show the results of experiments that werpexfl to test our
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A* AHDA* PBNF

threads 1 1 3 5 7 1 3 5 7
logistics-6 2.30 1.44 0.70 0.48 0.40 1.27 0.72 058 0.53
blocks-14 5.19 7.13 5,07 225 213 6.28 3.76 270 2.63
gripper-7 117.78 59.51 33.95 15.97 12.69 39.66 16.43 10.92 8.57
satellite-6 130.85 95.50 3359 24.11 18.24 68.14 34.15 20.84 16.57
elevator-12 | 335.74 206.16 96.82 67.68 57.10| 156.64 56.25 34.8426.72
freecell-3 199.06 14796 93,55 38.2427.37 185.68 64.06 44.05 36.08
depots-7 M 299.66 126.34 50.97 39.10 M M M M
driverlog-11 M 31551 85.17 51.28 4891 M M M M
gripper-8 M 532,51 239.22 97.61 76.34| 229.88 95.63 60.8748.32

SafePBNF PSDD
threads 1 3 5 7 1 3 5 7
logistics-6 1.17 0.64 0.56 0.62 1.20 0.78 0.68 0.64
blocks-14 6.21 269 2.20 2.02 6.36 3.57 2.96 2.87
gripper-7 3958 16.87 11.23 9.21 65.74 29.37 21.88 19.19
satellite-6 77.02 24.09 17.29 13.67 61.53 23.56 16.71 13.26
elevator-12 150.39 53.45 34.23 27.02 162.76 62.68 43.34 36.66
freecell-3 127.07 47.10 38.07 37.02 126.31 53.76 45.47 43.71
depots-7 156.36 63.04 42.91 34.66 159.98 73.00 57.65 54.70
driverlog-11 154.15 59.98 38.84 31.22 155.93 63.20 41.85 34.02
gripper-8 235.46 98.21 63.65 51.50 387.81 172.01 120.79 105.54

APRA* BFPSDD Abst.
threads 1 3 5 7 1 3 5 7 1
logistics-6 1.44 0.75 1.09 081 2.11 1.06 0.79 0.71 0.42
blocks-14 7.37 5.30 3.26 2.92 7.78 432 3.87 3.40 7.9
gripper-7 62.61 43.13 37.62 26.78| 4156 18.02 12.21 10.20 0.8
satellite-6 95.11 4285 67.38 52.82| 62.01 24.06 20.4313.54 1
elevator-12 | 215.19 243.24 211.45 169.92| 151.50 58.52 40.95 32.48 0.7
freecell-3 153.71 122.00 63.47 37.94| 131.30 57.14 47.74 45.07 17
depots-7 319.48 138.30 67.24 49.58| 167.24 66.89 48.32 42.68 3.6
driverlog-11| 334.28 99.37 89.73 104.87| 152.08 61.63 42.81 34.70 9.7
gripper-8 569.26 351.87 236.93 166.19| 243.44 101.11 70.84 59.18 1.1

Table 1: Wall time on STRIPS planning problems.
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Figure 11: Cumulative normalizefivalue counts for nodes expanded with eight threads on unit-
cost four-way grid pathfinding (left) and the 15-puzzle (right).

three hypotheses. The results of these experiments agree with the fifsgpatheses, however, it
appears that the third hypothesis does not hold and, in fact, PBNFiacakg spends more time
coordinating between threads than AHDA*,

4.6.1 NODE QUALITY

Because both PBNF and AHDA* merely approximate a best-first ordey, iy expand some
nodes that hav¢ values greater than the optimal solution cost. When a thread expands a node
with anf value greater than the optimal solution cost its effort was a waste becauselyinodes

that must be expanded when searching for an optimal solution are thosg wveithes less than the
optimal cost. In addition to this, both search algorithms may re-expand nodesghich a lower

cost path has been found. If this happens work was wasted duringghsub-optimal expansion

of the node.

Threads in PBNF are able to choose whidbilock to expand based on the quality of nodes in
the freenblocks. In AHDA*, however, a thread must expand only those noddsatfeaassigned
to it. We hypothesized that PBNF may expand fewer nodes fvithlues that are greater than the
optimal solution cost because the threads have more control over the aqiighig/nodes that they
choose to expand.

We collected thg value of each node expanded by both PBNF and AHDA*. Figure 11 show
cumulative counts for th¢ values of nodes expanded by both PBNF and AHDA* on the same set
of unit-cost four-way 5000x5000 grid pathfinding instances as weee in Section 4.3 (right) and
on the 15-puzzle instances used in Section 4.4 (left). In both plots, the slzougs thef value of
expanded nodes as a factor of the optimal solution cost for the givemaestd he y axis shows
the cumulative count of nodes expanded up to the given normafizeer the set of instances.
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Figure 12: Mean CPU time per open list operation.

By looking at y-location of the right-most tip of each line we can find the totahiper of nodes
expanded by each algorithm summed over all instances.

On the left panel of Figure 11 we can see that both algorithms tended tacexpdy a very
small number of nodes witfi values that were greater than the optimal solution cost on the grid
pathfinding domain. The AHDA* algorithm expanded more nodes in total ors#tisf instances.
Both PBNF and AHDA* must expand all of the nodes below the optimal solutist Because of
this, the only way that AHDA* can have a greater number of expansiansddes below a factor
of 1is if it re-expanded nodes. It appears that AHDA* re-expanmdete nodes than PBNF and this
seems to account for the fact that AHDA* expanded more nodes in total.

The right half of Figure 11 shows the results on the 15-puzzle. We sé&eathain, AHDA*
expanded more nodes in total than PBNF. In this domain the algorithms expapgeoximately
the same number of nodes withvalues less than the optimal solution cost. We can also see from
this plot that AHDA* expanded many more nodes that lfiachlues greater than or equal to the
optimal solution cost. In summary, PBNF expanded fewer nodes and batétycnodes than
AHDA* in both the grid pathfinding and sliding tiles domains. We speculate thatthis happen
because in PBNF the threads are allowed to choose which portion of the thgg search and they
choose it based on loyvvalue. In AHDA* the threads must search the nodes that map to them and
these nodes may not be very good.

4.6.2 CQPENLIST SIZES

We have found that, since PBNF breaks up the search space into mamgmtiffblocks, it tends
to have data structures with many fewer entries than AHDA*, which brepkihi@ search space
based on the number of threads. Since we are interested generasgalgorithms that can handle
domains with real-valued costs (like eight-way grid pathfinding) both PBNIFAdIDA* use binary
heaps to implement their open lists. PBNF has one heaplgeck (that is one per abstract state)
whereas AHDA* has one heap per thread. Because the numbeblotks is greater than the
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number of threads AHDA* will have many more nodes than PBNF in each oédap$ This causes
the heap operations in AHDA* to take longer than the heap operations in PBNF

The cost of operations on large heaps has been shown to greatly invpeait performance of
an algorithm (Dai & Hansen, 2007). In order to determine the extent tohwaige heaps effect the
performance of AHDA* we added timers to all of the heap operations ftr &lgorithms. Figure 12
shows the mean CPU time for a single open list operation for unit-cost faurgnid pathfinding
domain and for the 15-puzzle. The boxes show the second and thirtlepiarith a line drawn
across at the median. The whiskers show the extremes of the data exategatthpoints residing
beyond the first and third quartile by more than 1.5 times the inter-quartile megsignified by
a circle. The shaded rectangle shows the 95% confidence interval ometlie We can see that,
in both cases, AHDA* tended to spend more time performing heap operatiandBNF which
typically spent nearly no time per heap operation. Heap operations mustfoeped once for each
node that is expanded and may be required on each node generatorthBugh these times are in
the tens of microseconds the frequency of these operations can beigleguring a single search.

Finally, as is described by Hansen and Zhou (2007), the reduction mligpsizes can also ex-
plain the good single thread performance that PBNF experiences oPSTidnning (see Table 1).
Hansen and Zhou point out that, although A* is optimally efficient in terms dérexpansions, it is
not necessarily optimal with respect to wall time. They found that the besfefianaging smaller
open lists enabled the Anytime weighted A* algorithm to outperform A* in wall timenethough
it expanded more nodes when converging to the optimal solution. As weltlegt Section 9, this
good single thread performance may also be caused by speculativesaxsand pruning.

4.6.3 GOORDINATION OVERHEAD

Our third hypothesis was that the amount of time that each algorithm spewbordination over-
head” might differ. Both parallel algorithms must spend some of their time sicgedata structures
shared among multiple threads. This can cause overhead in two placd&sipkce where coor-
dination overhead can be seen is in the synchronization of access ¢a sfzda structures. PBNF
has two modes of locking theblock graph. First, if a thread has ownership ofrdslock with open
nodes that remain to be expanded then it will usg_| ock because there is work that could be
done if it fails to acquire the lock. Otherwise, if there are no nodes that teadhcould expand
then it attempt to acquire the lock on thélock graph using the normal operation that blocks on
failure. AHDA* will use atry_l ock on its receive queue at each expansion where it has nodes
on this queue and on its open list. In our implementation AHDA* will only use thelihaclock
operation when a thread has no nodes remaining to expand but hasreodsing in its send or
receive buffers.

The second place where overhead may be incurred is when thresslsdawdes to expand.
In PBNF this occurs when a thread exhausts its curndahdck and there are no freeblocks to
acquire. The thread must wait until a neMslock becomes free. In AHDA* if no open nodes map
to a thread then it may have no nodes to expand. In this situation the threadisyitiwait until a
node arrives on its receive queue. In either situation, locking or waitiege is time that is wasted
because threads are not actively searching the space.

When evaluating coordination overhead, we combine the amount of time wpéittg on a
lock and the amount of time waiting without any nodes to expand. Figure 1g@ssthe per-thread
coordination times for locks, waiting and the sum of the two normalized to the tatthltwe.
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Figure 13: Per-thread ratio of coordination time to wall time on unit-cost feay-pathfinding (top)
and the 15-puzzle (bottom).

Unlike the previous set of boxplots, individual data points residing atxttremes are not signified
by circles in order to improve readability. The “Locks” column of this plotwhdhe distribution
of times spent by each thread waiting on a lock, the “Wait” column shows thébdigdm of times
that threads spent waiting without any nodes available to expand anduh® t®lumn shows the
distribution of the sum of the mean lock and wait times.

The left side of Figure 13 shows the results for grid pathfinding. FrootKs” column we see
that threads in AHDA* spent almost no time acquiring locks. This is expeateduse AHDA*
uses asynchronous communication. It appears that the amount of timerdaatdlin PBNF spent
acquiring locks was significantly greater than that of AHDA*. The “Waitlwan of this plot
shows that both PBNF and AHDA* appeared to have threads spenlg tleasame amount of time
waiting without any nodes to expand. Finally, the “Sum” column shows that tieadis in PBNF
spent more time overall coordinating between threads.

The bottom half of Figure 13 shows the coordination overhead for thmutzle domain. Again,
we see that threads in AHDA* spent almost no time acquiring a lock. Indiitiweads in PBNF,
however, tended to spend a larger fraction of their time waiting on locks ifithegstiles domain
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than in grid pathfinding. In the “Wait” column of this figure we can see that ABpent more
time than PBNF without any nodes to expand. Finally, we see that, over allF-BB&ht more time
coordinating between threads than AHDA*.

Overall our experiments have verified that our first two hypothese$tBiF expanded better
quality nodes than AHDA* and that it spent less time performing priority qumerations than
AHDA*. We also found that our third hypothesis did not hold and that ttissa PBNF tended to
have more coordination overhead that AHDA* but this seems to be out-eigi the other two
factors.

4.7 Summary

In this section we have shown the results of an empirical evaluation of optianallgd best-first
search algorithms. We have shown that several simple parallel algorithresctizally be slower
than a serial A* search even when offered more computing power. Addltjowe showed empir-
ical results for a set of algorithms that make good use of parallelism andtgeréorm serial A*.

Overall the Safe PBNF algorithm gave the best and most consistentrparfoe of this latter set of
algorithms. Our AHDA* variant of PRA* had the second fastest mearoperdnce in all domains.

We have also shown that using abstraction in a PRA* style search to distribdés among
the different threads can give a significant boost in speed by regltitthamount of communica-
tion. This modification to PRA* appears to be a lot more helpful than simply usggchronous
communication. Using both of these improvements in conjunction (AHDAY), yialdempetitive
algorithm that has the additional feature of not relying on shared memory.

Finally, we performed a set of experiments in an attempt to explain why Safé-R&hded to
give better search performance than AHDA*. Our experiments lookéuled factors: node quality,
open list sizes and thread-coordination overhead. We concluded BiNfE B faster because it
expands fewer nodes with suboptinfavalues and it takes less time to perform priority queue
operations.

5. Bounded Suboptimal Search

Sometimes it is acceptable or even preferable to search for a solution tbaojstimal. Suboptimal

solutions can often be found much more quickly and with lower memory requmsrttean optimal

solutions. In this section we show how to create bounded-suboptimal tsadhsome of the best
optimal parallel search algorithms.

Weighted A* (Pohl, 1970), a variant of A* that orders its searchftim) = g(n) + w - h(n),
with w > 1, is probably the most popular suboptimal search. It guarantees that) fmimissible
heuristich and a weightw, the solution returned will bev-admissible (within aw factor of the
optimal solution cost) (Davis, Bramanti-Gregor, & Wang, 1988).

It is possible to modify AHDA*, BFPSDD, and PBNF to use weights to find sitinoal so-
lutions, we call these algorithms wAHDA*, wBFPSDD and wPBNF. Just aspitin@al search,
parallelism implies that a strigt’ search order will not be followed. The proof of weighted A*'s
w-optimality depends crucially on following a strigt order, and for our parallel variants we must
prove the quality of our solution by either exploring or pruning all nodelsusTfinding effective
pruning rules can be important for performance. We will assume througihaik is admissible.
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5.1 Pruning Poor Nodes

Let s be the current incumbent solution andthe suboptimality bound. A node can clearly be
pruned iff (n) > g(s). But according to the following theorem, we only need to retaifit is on
the optimal path to a solution that is a factorwobetter thars. This is a much stronger rule.

Theorem 4 We can prune a node if w - f(n) > ¢(s) without sacrificingw-admissibility.

Proof: If the incumbent isw-admissible, we can safely prune any node, so we consider the case
whereg(s) > w-g(opt), whereoptis an optimal goal. Note that without pruning, there always exists
a nodep in some open list (or being generated) that is on the best pattttbet f* be the cost of an
optimal solution. By the admissibility df and the definition op, w-f(p) < w-f*(p) = w-g(opt).
If the pruning rule discards, that would implyg(s) < w - f(p) and thusy(s) < w - g(opt), which
contradicts our premise. Therefore, an open node leading to an optilutdsavill not be pruned
if the incumbent is notv-admissible. A search that does not terminate until open is empty will not
terminate until the incumbent is-admissible or it is replaced by an optimal solution. O

We make explicit a useful corollary:

Corollary 2 We can prune a node if f'(n) > g(s) without sacrificingw-admissibility.

Proof: Clearlyw - f(n) > f'(n), so Theorem 4 applies. O
With this corollary, we can use a pruning shortcut: when the open list isssontincreasing’ and
the node at the front hg® > ¢(s), we can prune the entire open list.

5.2 Pruning Duplicate Nodes

When searching with an inconsistent heuristic, as in weighted A*, it is ples&ibthe search to
find a better path to an already-expanded state. Likhachev, Gorddi,heian (2003) noted that,
provided that the underlying heuristic functi@énis consistent, weighted A* will still return a-
admissible solution if these duplicate states are pruned during search.nShigee that each state

is expanded at most once during the search. Unfortunately, their depainds on expanding in
exactly best-first order, which is violated by several of the parallelcbealgorithms we consider
here. However, we can still prove that some duplicates can be drogpmusider the expansion

of a noden that re-generates a duplicate stdtéhat has already been expanded. We propose the
following weak duplicate dropping criterion: the new copydtan be pruned if the olg(d) <

g(n) +w - c*(n,d), wherec*(n, d) is the optimal cost from node to noded.

Theorem 5 Even if the weak dropping rule is applied, there will always be a nofiiem an optimal
solution path oropensuch thaty(p) < w - ¢*(p).

Proof: We proceed by induction over iterations of search. The theorem cleady hfter expansion
of the initial state. For the induction step, we note that npd®only removed fromopenwhen it
is expanded. If its chilgh; that lies along the optimal path is addedfmen the theorem holds. The
only way it won’t be added is if there exists a previous duplicate gg@nd the pruning rule holds,
i.e.,g(p)) < g(pi—1) +w - c*(pi—1, pi). By the inductive hypothesig(p;_1) < w - ¢*(p;—1), and
by definitiong*(p;—1) + ¢*(pi-1, pi) = g*(pi), SO we havegi(p;) < w - g*(p;). o
Note that the use of this technique prohibits using the global minithwadue as a lower bound on
the optimal solution’s cost, becaugeralues can now be inflated by up to a factoruaf However,
if s is the incumbent and we search until the global minimtimvalue is> g¢(s), as in a serial
weighted A* search, them-admissibility is assured:
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Corollary 3 If the minimumf’ value is> ¢(s), wheres is the incumbent, then we hayés) <
w - g*(opY)

Proof: Recall nodep from Theorem 54(s) < f'(p) = g(p) + w - h(p) < w - (¢*(p) + h(p)) <
w - g*(opt). O

It remains an empirical question whether pruning on this rather weak cnteiilblead to better
performance in practice. Our results indicate that it does provide am&djain the grid pathfinding
domain. Results are presented in Section 6.1. It should be noted that, windepexning can
preservew-admissibility, it may result in solutions of lower quality than those resulting frearch
without pruning.

5.3 Optimistic Search

Korf (1993) showed that weighted A* typically returns solutions that attelo than the boundy,
would suggest. To take advantage of this, Thayer and Ruml (2008)usgtianistic approach to
bounded suboptimal search that works in two stages: aggressica sisarg a weight that is greater
than the desired optimality bound to find an incumbent solution and then a clphagp to prove
that the incumbent is indeed within the bound. The intuition behind this appisdlcht wA* can
find a solution within a very tight bound (much tighter thang(opt)), then the search can continue
looking at nodes irf order until the bound can be proved. Thayer and Ruml show that, indeed
this approach can surpass the speed of wA* for a given optimality balfachave implemented an
optimistic version of PBNF (0PBNF).

One of the requirements of oPBNF is that it must have access to the minfrvaine over all
nodes in order to prove the bound on the incumbent solution. For thessggresearch stage, the
open lists and the heap of fredlocks are sorted off instead off so a couple of additions need to
be made. First, eaclblock has an additional priority queue containing the open search noded s
on f. We call this queu@pery. The open queue is simply maintained by adding and removing
nodes as nodes are added and removed fronf’teedered open list of eachblock. Second, a
priority queue, called min of all of thenblocks is maintained, sorted on the lowgstalue in each
nblock at the time of its last release. miis used to track a lower bound on the minimynaalue
over all nodes. This is accomplished by lazily updating monly when annblock is released by
a thread. When a thread releaseswaitock, it sifts the releasegdblock and its successors to their
new positions in the minqueue. These are the oniplocks whose minimunf values could have
been changed by the releasing thread. Since the global minifmeatue over all nodes is strictly
increasing (assuming a consistent heuristic) we have the guaranteeetliatatiue at the front of
the miry queue is strictly increasing and is a lower bound on the global minirfwalue at any
given time. Using this lower bound, we are able to prove whether or notcammibent solution is
properly bounded.

oPBNF needs to decide when to switch between the aggressive seasghagid the cleanup
phase of optimistic search. As originally proposed, optimistic search pesfaggressive search
until the first incumbent is found then it switches between cleanup (ywihen > ¢(s), wheren
is the best node based ghands is the incumbent solution) and aggressive search (when <
g(s)) to hedge against the case when the current incumbent is not within timel.béu oPBNF,
we were left with a choice: switch between aggressive search anduplesna global basis or on
a persnblock basis. We choose to switch on a pdatock basis under the assumption that some
threads could be cleaning up areas of the search space with Vaes while other threads look
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for better solutions in areas of the search space withflowalues. In oPBNF, when deciding if
onenblock is better than another (when deciding to switch or to setldack to hot), the choice

is no longer based solely on the bg¢swalue of the givemblock, but instead it is based on tlfie
value first, then th¢ value to break ties of if the begt value is out of the bound of the incumbent.
When acquiring a newblock, a thread takes either the freblock with the besf’ value or besf
value depending on whichblock is better (where the notion of better is described in the previous
sentence). Finally, when expanding nodes, a thread selects aggresaich or cleanup based on
the same criteria as standard optimistic search for the nodes within the acgbioed.

6. Empirical Evaluation: Bounded Suboptimal Search

We implemented and tested weighted versions of the parallel search algorigoussgéd above:
WAHDA*, wWAPRA*, wBFPSDD, wPBNF and oPBNF. All algorithms prune aes based on the
w - f criterion presented in Theorem 4 and prune entire open lisf as in Corollary 2. Search
terminates when all nodes have been pruned by the incumbent solutionex@eniments were
run on the same three benchmark domains as for optimal search: grid giapfithe sliding tile
puzzle, and STRIPS planning.

6.1 Grid Pathfinding

Results presented in Table 2 show the performance of the parallel s#gocithms in terms of
speedup over serial weighted A* on grid pathfinding problems. Duplidatessthat have already
been expanded are dropped in the serial wA* algorithm, as discusddliachev et al. (2003).

The rows of this table show the number of threads and different algorithmasaas the columns
are the weights used for various domains. Each entry shows the meaugmser serial weighted
A*. We performed a Wilcoxon signed-rank test to determine which mean sakeee significantly
different; elements that are bold represent values that were not significantly different(0.05)
from the best mean value in the given column. In general, the parallelithigershow increased
speedup as threads are added for low weights, and decreasedspsdlle weight is increased.

In unit-cost four-way movement grids, for weights of 1.1, and 1.2 the MiPRIgorithm was
the fastest of all of the algorithms tested reaching over five times the speed*ait a weight of
1.1 at and over 4.5x at a weight of 1.2 . At a weight of 1.4 wPBNF, wBHP@Dd wAHDA* did
not show a significant difference in performance at 8 threads. wAHIEx the best speed up of
all algorithms at a weight of 1.8. WAPRA* never gave the best performamités domain.

In eight-way movement grids wPBNF gave the best performance for ehtvefdl.1 and 1.4,
although in the latter case this best performance was a decrease oveedldeo$ wA* and it was
achieved at 1 thread. WAHDA* was the fastest when the weight was dv\rer, this did not scale
as expected when the number of threads was increased. Finally wARRAe least performance
decrease over weighted A* at a weight of 1.8 with 1 thread. In this csdgarithms were slower
than serial weighted A* but WAPRA* gave the closest performance todhalsearch. wBFPSDD
never gave the best performance in this domain.

In the life-cost domain wPBNF outperformed all other algorithms for weigtts1.2 and 1.4.
At weight 1.8, wPBNF’s performance quickly dropped, however atddHBA* had the best results
with more than a 4x speedup over wA*, although the performance appeaee been very in-
consistent as it is not significantly different from much lower speedilyegaor the same weight.
WAPRA* never gave the best performance in this domain.

722



BEST-FIRST SEARCH FORMULTICORE MACHINES

weight

Unit Four-way Grids Unit Eight-way Grids Life Four-way Grids
11 12 14 138 11 12 14 18 11 12 14 18
11098 091 051 073 093 137 0.73 0.74 0.65 0.66 0.84 0.67
21174 165 107 087 165 182 057 066 115 1.17 159 0.39
I-Zl- 31247 233 162 089 236 177 055 061 165 1.67 232 0.39
0 41312 292 213 090 297 172 053 058 208 210 296 0.49
= 5|376 352 248 091 355 167 052 056 253 255 3.63 1.49
6430 399 280 089 404 161 050 054 294 295 420 1.64
7| 478 440 3.01 0.88 440 155 049 051 331 333 463 212
8| 509 466 3.11 0.87 470 149 045 046 361 3.64 511 1.06
11082 084 09 094 087 079 043 033 052 053 058 0.60
A 21126 126 145 091 137 110 043 035 0.83 0.83 092 0.76
Qo 3|165 165 190 084 180 122 041 033 110 109 126 0.84
P 41193 192 209 079 213 125 042 033 129 129 148 0.89
Lk 5]224 224 236 075 247 131 039 032 153 151 1.61 0.93
= 6251 251 258 0.71 274 121 036 030 173 1.72 1.78 0.93
% 71273 269 263 067 294 126 034 029 191 189 194 0091
S 81291 284 268 0.63 3.10 123 032 026 206 203 210 0.85
£ 1087 079 032 056 079 110 066 0.76 056 055 0.71 0.22
21135 117 063 084 1.04 199 062 0.61 0.88 0.86 129 0.32
&< 3|19 1.69 1.30 1.30 2.08 293 0.64 0.62 1.09 139 186 0.56
% 4204 210 157 1.30 248 2.84 056 0.54 160 164 224 056
é 5177 208 179 097 249 252 042 041 188 192 258 041
6| 323 303 218 1.33 3.73 2.83 049 0.45 215 217 3.02 1.50
71391 378 256 1.30 445 289 045 041 239 241 3.50 1.07
8| 379 364 3.02 113 439 258 037 038 238 242 355 4.16
11088 081 032 056 0.80 111 0.67 0.77 056 056 0.72 0.23
2|1051 044 022 036 035 069 031 028 035 034 046 0.12
< 3/036 032 020 026 041 065 023 022 0.23 0.26 0.32 0.10
g 4,050 044 030 041 043 073 022 019 042 043 055 0.16
é 51055 056 039 048 049 087 023 019 054 056 0.67 0.20
6052 049 031 030 050 065 016 0.14 039 039 049 0.13
71073 067 040 036 062 073 0.17 0.14 049 049 0.65 0.18
8| 109 107 082 0.77 0.89 138 0.28 0.22 1.00 098 1.22 0.42

Table 2: Grid Pathfinding: Average speedup over serial weighted A*vémious numbers of

threads.
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threads WPBNF wBFPSDD

1.4 17 20 3.0 1.4 17 20 3.0
1| 068 044 038 069| 065 0.61 0.44 0.35
2 1.35 0.81 1.00 0.63| 087 0.74 049 043
3| 148 0.97 0.85 0.56 1.05 0.72 0.63 0.46
4 1.70 1.20 0.93 0.60 1.09 1.00 0.57 0.45
5| 204 138 0.97 0.74| 1.27 0.97 0.65 0.40
6 2,16 1.30 1.19 0.67 1.33 1.17 0.61 0.39
7| 255 1.46 1.04 0.62 1.49 1.10 059 0.34
8 271 1.71 1.10 0.60 1.53 1.08 0.62 0.33

threads WAHDA* WAPRA*

1.4 17 20 3.0 1.4 17 20 3.0
1| 061 060 059 054| 061 059 059 0.54
2 1.18 1.11 1.32 0.78 1.18 1.08 1.36 0.78
3| 153 1.30 1.40 0.73 145 125 1.32 0.78
4 191 157 155 0.74 1.77 150 1.36 0.62
5| 233 1.70 1.27 0.66 232 162 126 0.64
6| 228 1.72 1.24 0.52 2.18 154 1.83 0.47
7 271 150 1.03 0.44 263 140 1.09 0.43
8 270 151 124 0.44 234 161 1.22 041

Table 3: 15-puzzle: Average speedup over serial weighted A* fdonra numbers of threads.

Unit Four-way Grids Unit Eight-way Grids 250 easy 15-puszle

threads| 1.1 1.2 1.4 1.8\ 11 12 14 1.8\ 14 17 20 3.0
0.54 099 0.74 0.47| 0.74 0.76 0.09 0.05 056 0.58 0.77 0.60
099 200 105 045126 0.71 0.09 0.05 0.85 1.07 0.83 0.72
140 289 119 045164 0.70 0.09 0.0 1.06 094 0.79 0.80
176 362 126 044190 0.69 0.09 0.031.01 0.82 093 0.69
211 429 133 043209 068 0.08 0.05 120 121 097 0.74
243 484 135 044|221 0.68 0.08 0.0 1.32 0.83 0.99 0.67

270 544 137 043|229 0.67 0.08 0.04 1.14 093 0.88 0.71

297 6.01 1.39 0.42| 230 0.67 0.08 0.04 133 0.87 0.81 0.64

oPBNF
©0O~NOUAWN R

Table 4: Average speedup over serial optimistic search for variousersmbthreads.
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Overall, we see that WPBNF often had the best speedup results at egddgtand for weights
less than 1.8. wAHDA*, however, gave the best performance at a wefgh.8 across all grid
pathfinding domains. wBFPSDD often gave speedup over serial weiglitdtbwever it was not
quite as competitive as wWPBNF or wAHDA*. wAPRA* was only very rareljfeato outperform
the serial search.

Table 4 shows the results for the optimistic variant of the PBNF algorithm (¢BB&ach cell
in this table shows the mean speedup of oPBNF over serial optimistic search.a@ain, théold
cells entries that are not significantly different from the best value in ¢hemm. For unit-cost
four-way pathfinding problems oPBNF gave a performance increaseoptimistic search for two
or more threads and for all weights less than 1.8. At a weight of 1.2, oPBhifed to give the
best speedup, this may be because optimistic search performed pooity/ @rticular weight. In
unit-cost eight-way pathfinding, we see that oPBNF performs comparalbhe unit-cost domain
for a weight of 1.1, however, at all higher weights the algorithm is slowan therial optimistic
search.

6.2 Sliding Tile Puzzles

For the sliding tiles domain, we used the standard Korf 100 15-puzzle$, (Ka85). Results are
presented in Table 3. wPBNF, wAHDA* and wAPRA* tended to give corap performance in
the sliding tile puzzle domain each having values that are not significantlyetfféor weights of

1.4 and 1.7. At a weight of 3.0, WAHDA* gave the least performanceaes® over weighted A* at
2 threads.

The right-most column of Table 4 shows the results for optimistic PBNF on 250utle
instances that were solvable by A* in fewer than 3 million expansions. oRENE its best perfor-
mance at a weight of 1.4. For weights greater than 1.4 oPBNF was unahl&trform its serial
counterpart. For greater weights oPBNF tended to perform better with smaitébers of threads.

One trend that can be seen in both the sliding tiles domain and the grid pathfdatimgn is
that the speedup of the parallel algorithms over serial suboptimal seaecobades as the weight is
increased. We suspect that the decrease in relative performance te the problems becoming
sufficiently easy (in terms of node expansions) that the overhead faligdssm becomes harmful
to overall search. In problems that require many node expansionsstefgarallelism (additional
expansions, spawning threads, synchronization — albeit small, waitinigrézrds to complete, etc.)
is amortized by the search effort. In problems that require only a small nuafilexpansions,
however, this overhead accounts for more of the total search time andabadgorithm could
potentially be faster.

To confirm our understanding of the effect of problem size on spedelgure 14 shows a com-
parison of WPBNF to weighted A* on all of the 100 Korf 15-puzzle instangsing eight threads.
Each point represents a run on one instance at a particular weight,akis yepresents wPBNF
speedup relative to serial wA*, and the x-axis represents the numbmdefs expanded by wA*.
Different glyphs represents different weight values used for bd#BMF and wA*. The figure
shows that, while wPBNF did not outperform wA* on easier problems, thefits of WPBNF over
WA* increased as problem difficulty increased. The speed gain for starines that were run at
a weight of 1.4 (the lowest weight tested) leveled off just under 10 timeésrfdsan wA*. This is
because the machine has eight cores. There are a few instance®thabseve speedup greater
than 10x. These can be explained by the speculative expansions tBARwerforms which may
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Sliding Tiles wPBNF v.s. wA*

log10(Times faster than wA*)

log10(Nodes expanded by wA*)
Figure 14: wPBNF speedup over wA* as a function of problem difficulty.

find a bounded solution faster than weighted A* due to the pruning of mateswwithf’ values
equal to that of the resulting solution. The poor behavior of WPBNF fey gmoblems is most
likely due to the overhead described above. This effect of problencwliffi means that wPBNF
outperformed wA* more often at low weights, where the problems require® expansions, and
less often at higher weights, where the problems were completed more quickly

6.3 STRIPS Planning

Table 5 shows the performance of the parallel search algorithms on STR#RAning problems,
again in terms of speedup versus serial weighted A*. In this table colurpresent various weights
and the rows represent different planning problems with two and seveads Bold values rep-
resent table entries that are within 10% of the the best performance fgivée domain. All
algorithms had better speedup at seven threads than at two. wPBNF gawestispeedup for the
most number of domains followed by wAHDA* which was the fastest for ttuethe domains at
seven threads. At two threads there were a couple of domains (satellig-Bezcell-3) where
wBFPSDD gave the most speedup, however it never did at seven shregdPRA* was always
slower than the three remaining algorithms. On one problem, freecell-3| weighted A* per-
forms much worse as the weight increases. Interestingly, WPBNF an®@&BbB do not show this
pathology, and thus record speedups of up to 1,700 times.

6.4 Summary

In this section, we have seen that bounded suboptimal variants of thieepsearches can give
better performance than their serial progenitors. We have also shotyontthe sliding tile puzzle,
parallel search gives more of an advantage over serial searcoldsrprdifficulty increases and we
suspect that this result holds for other domains too. We suspect that lieisdase the overhead of
using parallelism is not amortized by search time for very easy problems.
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WAPRA* WAHDA*

1.5 2 3 5 1.5 2 3 5

logistics-8 099 1.02 059 1.37 125 111 0.80 151
K% blocks-16 1.29 0.88 4.12 0.3( 152 109 486 0.38
S gripper-7 0.76 0.76 0.77 0.77 1.36 1.35 1.33 1.30
jc: satellite-6 0.68 093 0.70 0.75 1.15 1.09 1.28 1.44
o~ elevator-12 0.65 0.72 0.71 0.77 1.16 1.20 1.27 1.22
freecell-3 1.03 1.00 1.78 1.61 149 1.20 756 1.40
depots-13 0.73 1.25 097 1.08 0.92 1.29 0.96 1.09
driverlog-11 091 0.79 094 0.93 1.30 0.97 0.96 0.93
gripper-8 0.63 0.61 0.62 0.62 1.14 1.16 1.15 1.16
logistics-8 319 310 3.26 2.5§ 459 4.60 3.61 258

K blocks-16 3.04 137 1.08 0.37 3.60 1.62 056 0.32
S gripper-7 1.71 174 173 1.84 3.71 3.66 3.74 3.83
g satellite-6 1.11 1.01 1.29 1.44 3.22 3.57 3.05 3.60
~ elevator-12 0.94 097 104 1.02 277 2.88 298 3.03
freecell-3 3.09 799 267 2.93 477 271 48.66 4.77
depots-13 238 536 113 1.17 298 6.09 1.22  1.17
driverlog-11 190 125 0.93 0.94 352 1.48 0.95 0.92
gripper-8 1.70 168 1.68 1.74 3.71 3.63 3.67 4.00

wWPBNF wBFPSDD

15 2 3 5 1.5 2 3 5

logistics-8 2.68 2.27 4.06 1.00 1.86 2.12 1.14 0.15
@ blocks-16 0.93 0.54 0.48 1.34 0.34 0.19 0.16 0.32
S gripper-7 2.01 1.99 1.99 2.02 191 189 1.86 1.84
£ satellite-6 2.02 1.53 5.90 3.04 1.71 222 7.50 2.80
o~ elevator-12 | 2.02 2.08 2.21 2.15 1.76 1.76 1.81 2.18
freecell-3 2.06 0.84 8.11 1069 1.42 054 16.88 55.75
depots-13 2.70 4.49 0.82 0.81 148 158 0.18 0.14
driverlog-11| 0.85 0.19 0.69 0.62 0.85 0.11 0.19 0.21
gripper-8 2.06 2.04 2.08 2.07 200 196 1.97 1.98
logistics-8 7.10 6.88 1.91 0.46 3.17 359 0.62 0.10
@ blocks-16 2.87 0.70 0.37 1.26 0.49 0.22 0.11 0.32
S gripper-7 5.67 5.09 5.07 5.18 433 4.28 4.14 4.05
£ satellite-6 4,42 2.85 2.68 5.89 3.13 231 301 1.05
~ elevator-12 | 6.32 6.31 6.60 7.10 3.68 3.78 4.04 3.95
freecell-3 7.01 231 131.12 1,721.33 2.12 0.70 44.49 137.19
depots-13 3.12 1.80 0.87 0.89 1.88 1.87 0.15 0.12
driverlog-11| 1.72 0.43 0.67 0.42 1.26 0.21 0.30 0.23
gripper-8 5.85 5.31 5.40 5.44 4,62 455 4,55 4,51

Table 5: Speed-up over serial weighted A* on STRIPS planning probienvarious weights.
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7. Anytime Search

A popular alternative to bounded suboptimal search is anytime searchidh ashighly suboptimal
solution is returned quickly and then improved solutions are returned oveutititehe algorithm

is terminated (or the incumbent solution is proved to be optimal). The two mostgranytime
heuristic search algorithms are Anytime weighted A* (AwA*) (Hansen & Zi#2@07) and anytime
repairing A* (ARA*) (Likhachev, Gordon, & Thrun, 2003). In AwAa weighted A* search is
allowed to continue after finding its first solution, pruning when the unweighte) > ¢(s) where

s is an incumbent solution andis a hode being considered for expansion. ARA* uses a weighted
search where the weight is lowered when a solution meeting the curresptguhblity bound has
been found and a specidCONSIist is kept that allows the search to expand a node at most once
during the search at each weight.

In this section we present anytime versions of the best performing pasafethes from our
previous sections. We used the PBNF framework to implement Anytime weigabidF RAW-
PBNF) and Anytime Repairing PBNF (ARPBNF). We use the PRA* frameviorireate anytime
weighted AHDA* (AwAHDAY*). We also show the performance of a very simplgorithm that
runs parallel weighted A* searches with differing weights. In the plandimgain, we have imple-
mented anytime weighted BFPSDD (AwBFPSDD) for comparison as well.

Because our parallel searches inherently continue searching aftdirtesolutions are found,
they serve very naturally as anytime algorithms in the style of Anytime weightedTAg main
difference between the standard, optimal versions of these algorithnibegindnytime variants is
that the anytime versions will sort all open lists and the heap ofsit#ecks onf’(n) = g(n) +
w - h(n). In fact, in both cases the optimal search is a degenerate case of the asgtinoh
wherew = 1. This approach (simply using > 1) is used to implement all algorithms except for
ARPBNF and multi-weighted A*.

Next, we will discuss the details of the ARPBNF algorithm. Following that, we intceda
new parallel anytime algorithm called multi-weighted A*. Finally, we show theltesi a set of
comparisons that we performed on the anytime algorithms discussed in tbdease

7.1 Anytime Repairing PBNF

ARPBNF is a parallel anytime search algorithm based on ARA* (Likhachieal.e 2003). In
ARPBNF, open lists and the heaplocks are sorted off as in AWPBNF, but instead of merely
continuing the search until the incumbent is proved optimal, ARPBNF usemgjatvgehedule. Each
time an incumbent is found, the weight on the heuristic value is lowered byc#fisdeamount, all
open lists are resorted and the search continues. On the final iterationeitite will be 1.0 and
the optimal solution will be found.

The following procedure is used to resort thiglocks in parallel between incumbent solutions:

1. The thread calling for a resort (the one that found a goal) becomésatier by taking the
lock on thenblock graph and setting thresort flag (If the flag has already been set, then
another thread is already the leader and the current thread becomesea)wafter the flag
is set the leader thread releases the lock omtileck graph and waits for allblocks to have
o values of zero (nmblocks are acquired).

2. Threads check thesort flageach expansion, if it is set then threads release tl#acks and
become worker threads and wait for the leader to sestidue flag
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3. Once allnblocks haver = 0, the leader re-takes the lock on thblock graph and ensures
that all o values are still zero (if not, then it releases the lock and retries). Thereats
the global weight value to the next weight on the weight schedule andgiepla lock-free
gueue with allnblocks. Once the queue has been populated, the leader setarttitag

4. All threads greedily dequeugblocks and resort them until the queue is empty.

5. When allnblocks have been resorted, the leader thread clearssbe flagand thestart flag
and releases the lock on thélock graph. All threads will now acquire nemblocks and the
search will continue.

We modeled this procedure in TI*Aand showed it to be live-lock and dead-lock free for up to
4 threads and 5 nblocks by the use of the TLC model checker (Yu et 8P).1%his model is very
simple so we do not include it in an appendix.

7.2 Multi-weighted A*

In this section we introduce a new and simple parallel anytime algorithm called neitiihved A*.
The PBNF and PRA* frameworks for parallelizing anytime algorithms can begtioof as one
end on a spectrum of parallel anytime algorithms. In PBNF and PRA* all dsrage working on
finding a single solution of a given quality; on the opposite end of the speaach thread would
be working to find its own solution. To compare to an algorithm at that end o§pleetrum we
implemented an algorithm we call multi-weighted A* that allocates its available thtedlsir own
weighted A* searches. The thread that finishes first will generally béhtiead that was searching
at the greatest weight and therefore the solution will be of the worst qudltg next thread to
finish will have the next greatest weight, and so on. The final threadnplete will generally be
searching at a weight of 1.0, performing a standard A* search, andettilin the optimal solution.

The algorithm is given a schedule of weighs in decreasing order. Teskaweights in the
schedule are distributed among the available threads. The threads teegimrsg using wA* with
their given weight values. When a thread finds a new solution that is bettertlle current one,
it updates the incumbent that is shared between all threads to allow fangruwhen a thread
finds a better incumbent solution, it will he-admissible with respect to the weight the thread was
searching with. If a thread finishes (either finding a solution or pruningiiiseeopen list), it takes
the highest unclaimed weight from the schedule and starts a fresh sesamgtthat weight. If there
are no weights left in the schedule, the thread terminates. When all thraaelddiminated, the
search is complete. If the final weight in the schedule is 1.0, then the lasiosolaund will be
optimal.

One of the benefits of multi-weighted A* is that it is a very simple algorithm to implement.
However, as we will see below, it doesn’t benefit much from addedllpiism. A reason for
this may be because, when the weight schedule is exhausted (a threactigrapwith the lowest
weight, 1.0) threads that complete their searches will sit idle until the entirelsemminates. Since
the final weight will take the longest, this may be a majority of the search time. A dyramic
schedule could be used to keep threads busy until the optimal solution id. f@me could also
attempt to use more threads at once by using some multi-threaded search ategght, such as
WPBNF or wWAHDA*. We leave these extensions for future work.
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Figure 15: Raw data profiles (top) and lower hull profiles (bottom) for Aaft), AWPBNF (cen-
ter), and ARA* (right). Grid unit-cost four-way pathfinding.

8. Empirical Evaluation: Anytime Search

The implementation and empirical setup was similar to that used for suboptimethsEar ARA*,
ARPBNF and Multi-wA* we considered four different weight schedul¢g.4, 4.2, 2.6, 1.9, 1.5,
13,11,%,{42,26,19,15,1.3,1.1,1.05,%3,2.8,...,1.2,}, {5,4.8,...,1.2, 1. For AwA*
and the other anytime parallel algorithms we consider weights of: 1.1, 1.2,.8.4nd 3.4 for grid
pathfinding and 1.4, 1.7, 2.0, 3.0 and 5.0 for the sliding tiles domain. To fulllpateaanytime
algorithms, it is necessary to consider their performance profile, i.e., fflexted solution quality
as a function of time. While this can be easily plotted, it ignores the fact thahttiree algorithms
considered in this paper all have a free parameter, namely the weigHhiexiude of weights used
to accelerate the search. In order to compare algorithms, we make the &esuthat, in any
particular application, the user will attempt to find the parameter setting giviod gerformance
for the timescale they are interested in. Under this assumption, we can plarfbepance of each
anytime algorithm by computing, at each time point, the best performance thatohieeved by any
of the parameter settings tried for that algorithm — that is minimum solution costtiy®mrameter
settings for a given algorithm up to the given time point. We refer to this carceie ‘lower hull’
of the profiles, because it takes the minimum over the profiles for eachmpteasetting.
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Grid Unit Four-way 2 threads Grid Unit Four-way 8 threads
12 ARA¥* e 12 _\ ARA*
ARPBNEF 2 threads —--- : AWA* - —--
AWA* --—-- o Multi wA* 8 threads ------
Multi wA* 2 threads ------ 3 ARPBNF 8 threads —---
AwAHDA?* 2 threads ——— AwAHDA?* 8 threads ———
AwPBNEF 2 threads —— AwPBNEF 8 threads ——

Solution Cost (factor over optimal)
n

Solution Cost (factor over optimal)
n

_,_E;;'._._._..z._._._._.

Wall time relative to serial A* Wall time relative to serial A*

Figure 16: Grid unit-cost four-way pathfinding lower hull anytime profiles

The top row of Figure 15 shows an example of the raw data for three algsritn our
5000x5000 unit-cost four-way grid pathfinding problems. The y-akithese plots is the solu-
tion quality as a factor of optimal and the x-axis is the wall clock time relative to theuat of
time A* took to find an optimal solution. The bottom row of this figure shows the tdwd for the
respective data displayed above. By comparing the two images on the taligpky the data for
the AwA* algorithm, one can see that the three big “steps” in the lower hulliplathere a differ-
ent weight is used in the hull because it has found a better solution foathe 8me bound. The
center panel in Figure 15 shows that the AWPBNF algorithm gives a simittorpgance to AWA*,
however it is often faster. This is not surprising since AWPBNF is basg¢ti®AwA* approach and
it is running at eight threads instead of one. The final panel in Figush@®s ARA*, which uses
weight schedules instead of a single weight.

Figures 16-17 present the lower hulls of both serial and parallel algwsitim grid pathfinding
and the sliding tile puzzle. In each panel, the y-axis represents solutibasca$actor of the optimal
cost. In Figure 16 the x-axis represents wall time relative to the amount of tahedhal A* took to
find an optimal solution. This allows for a comparison between the anytime algardhd standard
serial A*. Since A* is not able to solve all of Korf's 100 15-puzzle instas on this machine, the
x-axis in Figure 17 is the absolute wall time in seconds. Both serial and palgt&ithms are
plotted. The profiles start when the algorithm first returns a solution adsl when the algorithm
has proved optimality or after a 180 second cutoff (since Multi-wA* cansocome memory more
quickly than the other algorithms, we gave it a 120 second cutoff on the stitiruzzle to prevent
thrashing).

8.1 Four-Way Unit Cost Grids

Figure 16 shows the anytime performance for unit cost four-way movegnighpathfinding prob-
lems. AWAHDA* and AWPBNF found the best solutions quicker than the o#thgorithms. Both
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Figure 17: Korf’s 100 15-puzzles lower hull anytime profiles.

of these algorithms improved in the amount of time taken to find better solutions a&stmeads
were added. AWPBNF converged more quickly as more threads weesl aében at two threads
AwWPBNF was the first algorithm to converge on the optimal solution in 60% dfrteof serial A*.
The next two algorithms are Multi-wA* and anytime repairing PBNF (ARPBNW)lti-wA* con-
verged more quickly as threads were added, but its performance amgfimermediate solutions
did not change too much for different numbers of threads. ARPBNE®other hand, took longer
to find good solutions for low thread counts, but as threads were addttegd to perform better,
eventually matching Multi wA* at eight threads. Both of these algorithms immtdiie solution
quality more steadily than AWPBNF and AWAHDA* which had large jumps in theirdoWwulls.
Each of these jumps corresponds to the hull switching to a different weadje (compare with the
raw data for AWPBNF in Figure 15). All of the parallel algorithms found dsolutions faster than

serial AWA* and serial ARA*. Some parallel algorithms, however, tookgento prove optimality
than AwA* in this domain.

8.2 Sliding Tile Puzzles

Figure 17 presents lower hulls for the anytime algorithms on Korf’'s 100 instaaf the 15-puzzle.
In this figure, the x-axes show the total wall clock time in seconds. Thesegiree®t normalized to
A* because itis not able to solve all of the instances. In these panelgenba AWAHDA* tended
to find good solutions faster than all other algorithms. AwA* and AwPBNFqgrared very similarly
at two threads and as the number of threads increased AWPBNF beguad befier solutions faster
than AwA*. ARPBNF took longer to find good solutions than AWPBNF and AN2A* but it
was able to find better solutions faster than its serial counterpart. The sinyieAMA* algorithm
performed the worst of the parallel algorithms. Increasing the numberazdl used in Multi-wA*
did not seem to increase the solution quality. ARA* gave the worst perfocenin this domain; its
profile curve can be seen at the very top of these three panels.

732



BEST-FIRST SEARCH FORMULTICORE MACHINES

AWAPRA* AWAHDA*

15 2 3 5 15 2 3 5

logistics-6 | 1.09 1.06 1.40 1.4( 1.23 1.21 1.59 1.66

& blocks-14 1.36 7.76 56.41 >90.16 1.62 9.90 63.60 >110.16
S gripper-7 0.78 0.77 0.76 0.75 1.35 1.33 1.32 1.33
£ satellite-6 0.77 0.78 0.78 0.76 1.26 1.23 1.24 1.23
«  elevator-12 | 0.64 0.67 0.69 0.7( 1.20 1.19 1.16 1.17
freecell-3 1.37 1.43 4.61 1.37 1.66 1.68 5.65 1.95
depots-7 1.24 1.30 1.30 2.64 151 151 1.50 3.18
driverlog-11| 1.15 1.19 1.11 1.20 1.50 1.55 1.46 1.54
gripper-8 0.61 0.62 0.62 0.64 1.16 1.11 1.14 111
logistics-6 | 1.45 1.43 1.81 1.81 2.87 2.81 3.65 3.74

& blocks-14 254 1563 98.52 >177.08 3.30 1991 132.97 >231.45
S gripper-7 1.77 1.68 1.71 1.73 3.75 3.69 3.61 3.67
£ satellite-6 1.22 1.22 1.26 1.26 3.56 3.46 3.51 3.50
~ elevator-12 | 0.93 0.93 0.95 094 277 2.75 2.79 2.77
freecell-3 3.64 3.75 11.59 444  5.00 4.97 16.36 21.57
depots-7 3.60 3.64 3.65 7.6( 441 4.42 4.40 9.25
driverlog-11| 3.04 3.20 3.05 3.17 4.74 4.82 4.66 4.87

AWPBNF AWBFPSDD

15 2 3 5 15 2 3 5

logistics-6 1.06 135 194 1.98 0.68 0.91 0.91 0.56

& blocks-14 191 199 13.22 >22.36 1.02 1.18 7.71 >11.92
S gripper-7 2.05 1.96 1.99 1.95 194 1.89 1.94 1.82
£ satellite-6 1.58 1.96 1.98 1.91 1.85 187 1.49 1.80
o~ elevator-12 2.01 2.07 2.13 2.07 1.74 1.74 1.75 1.69
freecell-3 1.93 1.06 2.78 6.23 145 1.46 1.97 3.08
depots-7 1.94 2.00 2.01 4.10 144 1.45 1.32 2.40
driverlog-11 1.95 2.10 1.99 0.77 1.73 1.78 1.59 1.41
gripper-8 2.04 2.05 2.09 2.06 201 2.00 1.98 1.96
logistics-6 2.04 246 4.19 4.21 1.02 1.35 1.37 0.92

& blocks-14 3.72 2237 2569 >7.20 160 196 1210 >19.94
S gripper-7 5.61 5.05 5.03 5.06 430 4.24 4.16 3.96
£ satellite-6 596  4.66 5.74 4.70 410 354 4.16 3.88
~ elevator-12 6.18 6.03 6.20 6.04 3.71 3.74 3.73 3.38
freecell-3 3.54 150 15.32 11.46 1.78 1.82 2.59 4.14
depots-7 5.74 5.52 548 10.84 202 196 1.92 3.68
driverlog-11 5.78 5.83 5.73 2.18 258 2.86 2.57 2.34

Table 6: Speed-up of anytime search to optimality over serial AwA* on SBRIRnNning using
various weights.

8.3 STRIPS Planning

Table 6 shows the speedup of the parallel anytime algorithms over serimhay*. All algorithms
were run until an optimal solution was proved. (For a weight of 5, AWAY cait of memory on
blocks-14, so our speedup values at that weight for that instanéareebounds.) Theold entries
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AWPBNF | AWBFPSDD | AWAPRA*
15 2 3 5|15 2 3 515 2 3 5
logistics-6 148 184 236 227068 093 071 054112 108 1.08 0.98
blocks-14 1.24 122 0.21 0.03 087 0.18 0.16 0.16 146 146 142 0.94
gripper-7 1.07 099 0.99 100093 095 093 092099 1.03 1.01 0.99
satellite-6 1.10 087 1.08 0.88 088 0.77 091 090099 100 1.01 1.02
elevator-12 | 1.06 1.04 1.04 1.030.77 0.78 0.76 0.73 1.02 1.00 1.00 1.00
freecell-3 1.05 044 099 029 064 064 020 0.14 113 116 0.82 0.10
depots-7 1.20 115 1.15 1.08 0.54 053 052 049 M M M M
driverlog-11| 1.16 1.15 1.19 043 053 058 054 050 M M M M
gripper-8 1.06 099 0.99 1.000.99 098 099 097 M M M M

7 Threads

Table 7: Speed-up of anytime search to optimality over PBNF on STRIPSiptaproblems using
various weights.

in the table represent values that are within 10% of the best performanteefgiven domain.
For all algorithms, speedup over serial generally increased with moredhend a higher weight.
PBNF gave the fastest performance for all except two domains (bibtlesid freecell-3). In these
two domains the AWAHDA* gave the best performance by at least a faéttdoover AWPBNF.

Hansen and Zhou (2007) show that AwA* can lead to speedup oveo*8sdme weight values
in certain domains. Finding a suboptimal solution quickly allgwsuning that keeps the open list
short and quick to manipulate, resulting in faster performance even thowgt éxpands more
nodes than A*. We found a similar phenomenon in the corresponding paadie. Table 7 shows
speedup over unweighted optimal PBNF when using various weights fangfteane algorithms. A
significant fraction of the values are greater than 1, representingeaigpevhen using the anytime
algorithm instead of the standard optimal parallel search. In generallgpeseems more variable
as the weight increases. For a weight of 1.5, AWPBNF always pro@dgeedup.

8.4 Summary

In this part of the paper we have shown how to create some new paraiteharsearch algorithms
based on the frameworks introduced in the previous sections. We haveratéted a new parallel
anytime algorithm that simply runs many weighted A* searches with differing higigIn our
experiments, we have seen that AWPBNF and AwWAHDA* found highelityusolutions faster than
other algorithms and that they both showed improved performance as meagelshvere added.
Additionally, ARPBNF, a parallel algorithm that is based on ARA*, improvethwnore threads
and tended to give a smoother increase in solution quality than the former tarilaigs, although
it did not find solutions quite as quickly and it was unable to converge ongtimal solution in
the sliding tiles domain within the given time limit. Running multiple weighted A* searches did
not give solutions faster as the number of threads increased, andvergence performance was
mixed.

9. Discussion

We have explored a set of best-first search algorithms that exploit takbgbaapabilities of modern
CPUs. First we looked at parallel optimal search with (Safe) PBNFyakvariants of PRA* and a
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set of simpler previously proposed algorithms. Overall, Safe PBNF gaviedst performance for
optimal search. Next we created a set of bounded-suboptimal sdgorittans based on PBNF,
the successful variants of PRA*, and the BFPSDD algorithm. PBNF ad RIRh asynchronous
communication and abstraction (AHDA*) gave the best performance diewrith PBNF doing
slightly better on the average. In addition, we showed some results thagéstupat bounded-
suboptimal PBNF has more of an advantage over serial weighted A*rsaarproblem difficulty
increases. Finally we converted PBNF and PRA* into anytime algorithms angar@d them with
some serial anytime algorithms and a new algorithm called multi-weighted A*. Wedfdlat
anytime weighted PBNF and the anytime variant of AHDA* gave the best anytarfermance
and were occasionally able to find solutions faster than their non-anytinmezparts.

Our results show that PBNF outperforms PSDD. We believe that this is decdthe lack of
layer-based synchronization and a better utilization of heuristic cost-infgonation. The fact
that BFPSDD got better as ifslayers were widened is suggestive evidence. Another less obvious
reason why PBNF may perform better is because a best-first seard¢taca a larger frontier size
than the breadth-first heuristic search used by PSDD. This largediefra@ize will tend to create
morenblocks containing open search nodes. There will be more disjoint duptietetion scopes
with nodes in their open lists and, therefore, more potential for increzaadigdism.

Some of our results show that, even for a single thread, PBNF can outpexfeerial A* search
(see Table 1). This may be attributed in part to the speculative behavioe &fBNF algorithm.
Since PBNF uses a minimum number of expansions before testing if it shotitdh $ovannblock
with betterf values, it will search some sub-optimal nodes that A* would not searclorder to
get optimal solutions, PBNF acts as an anytime algorithm; it stores incumbetibssland prunes
until it can prove that it has an optimal solution. Zhou and Hansen showhilsadipproach has the
ability to perform better than A* (Hansen & Zhou, 2007) because of uppand pruning, which
reduces the number of expansions of nodes witlf &alue that is equal to the optimal solution
cost and can reduce the number of open nodes, increasing the $mgeatagions on the open list.
PBNF may also give good single thread performance because it brpaks gearch frontier into
many small open lists (one for eaalblock). Because of this, each of the priority queue operations
that PBNF performs can be on much smaller queues than A*, which usdsgsiagle queue (see
Section 4.6.2).

9.1 Possible Extensions

While the basic guideline for creating a good abstractions in SDD (and PBN&)minimize the
connectivity between abstract states, there are other aspects ottbstthat could be explored.
For instance, discovering which features are good to include or abatray may be helpful to
users of PBNF. Too much focus on one feature could cause good tmHe too focused in a small
subset ofnblocks (Zhou & Hansen, 2009). Likewise, size of the abstraction coelleiamined in
more detail. Although we always use a constant abstraction size in oentwork for simplicity

it seems likely that abstraction size should change when number of thitesulges or perhaps even
based on features of the domain or problem instance. If a guideline ceudleMised, such as a ratio
between number ofblocks to threads ok value of the start state, a problem-adaptive abstraction
size would be much simpler in real world use. Additionally, edge partitioning@Z& Hansen,
2007) could allow us to reduce connectivity of the abstraction used byHPBN further study will
be necessary to discover the full impact of this technique on PBNF's/ligha
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Some possible future extensions to PBNF include adaptive minimum exparadiggsyuse of
external memory, and extension to a distributed setting. Our preliminary woddapting min-
imum expansion values indicated that simply increasing or decreasing tadedk failures and
successes had either neutral or negative effect on performaneae@son for this may be because
the minimum expansions parameter adds speculation.

It may be possible to combine PBNF with PRA* in a distributed memory setting. Thisidigo
may use a technique based on PRA* to distribute portions of the searahapaag different nodes
on a cluster of work stations while using a multicore search such as PBN&bmede.

An additional technique that was not explored in this paper is running mudteearch algo-
rithms with more threads than there are available cores. This techniquedrasider to improve
the performance of parallel delayed duplicate detection (Korf, 199#;8&&chultze, 2005) which
is heavily 1/0 intensive. Using this approach, when one thread is blockdfOoanother thread
can make use of the newly available processing core. Even without digkiF@chnique may be
useful if threads spend a lot of time waiting to acquire locks.

10. Conclusions

In this paper we have investigated algorithms for best-first search on mmaltitachines. We have
shown that a set of previously proposed algorithms for parallel baesséarch can be much slower
than running A* serially. We have presented a novel hashing functidPR#\* that takes advantage
of the locality of a search space and gives superior performancetidwdly, we have verified re-
sults presented by Kishimoto et al. (2009) that using asynchronous cacation in PRA* allows

it to perform better than using synchronous communication. We preseaw algorithm, PBNF,
that approximates a best-first search ordering while trying to keep alidhrbusy. We proved
the correctness of the PBNF search framework and used it to desvsuimptimal and anytime
algorithms.

We have performed a comprehensive empirical comparison with optimalpsuoiad and any-
time variations of parallel best-first search algorithms. Our results deratasirat using a good
abstraction to distribute nodes in PRA* can be more beneficial than agyras communication,
but that these two techniques can be used together (yielding AHDA*).I88@und that the orig-
inal breadth-first PSDD algorithm does not give competitive behaviorowtth tight upper bound
for pruning. We implemented a novel extension to PSDD, BFPSDD, thas gégsonable perfor-
mance on all domains we tested. Our experiments, however, demonstratesthatv PBNF and
AHDA* algorithms outperformed all of the other algorithms. PBNF performg fagsoptimal and
bounded-suboptimal search and both PBNF and AHDA* gave competitijénze performance.

Acknowledgments

We gratefully acknowledge support from NSF (grant 11S-08121419 DARPA CSSG program
(grant HR0011-09-1-0021) and helpful suggestions from Joidzayer. Some of these results
were previously reported by Burns, Lemons, Zhou, and Ruml (20@88)Burns, Lemons, Ruml,
and Zhou (2009a).

736



BEST-FIRST SEARCH FORMULTICORE MACHINES

Appendix A. Pseudo-code for Safe PBNF

In the following pseudo code there are three global structures. Thésfagpointer to the current
incumbent solutionincumbentthe second is doneflag that is set to true when a thread recognizes
that the search is complete and the third issiidock graph. The:block graph structure contains
the list of freenblocks,freelistalong with thes ando;, values for eactublock. For simplicity, this
code uses a single lock to access either structure. Each thread alsmbaleapcount. Thebest
function on a set of.blocks results in theblock containing the open node with the lowg¢satalue.

SEARCH(INITIAL NODE)

1. insertinitial node into open

2. foreachp € processorsTHREADSEARCH()
3. while threads are still runningait()

4. returnincumbent

THREADSEARCH()

1. b+ NULL

2. while—done

3. b <~ NEXTNBLOCK(b)

4. exp+ 0

5. while =SHOULDSWITCH(b, exp)

6. m < best open node ih

7. if m > incumbenthen prunen

8. if m is a goal then

9. if m < incumbenthen

10. lock;incumbent— m; unlock
11. else ifm is not a duplicate then
12. children «+ expandm)

13. for eachechild € children

14. insertchild into open of appropriate nblock
15. exp<+ exp+1

SHOULDSWITCH(B, EXP)

if b is empty then return true

if exp< min-expansionthen return false

exp<+ 0

if bestfreelist) < b or bestinterferenceScofgé)) < b then
if bestinterferenceScofé)) < bestfreelist) then

SeTHOT(bestinterferenceScoé)))

return true

lock

for eachh’ € interferenceScorié)
if hot(d") then SETCoLD(d’)

unlock

return false

©CoNoGO WD

el
N o
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SETHOT(B)

1
2
3
4
5.
6
7
8
9
1

0.
11.

lock
if —=hot(b) ando(b) > 0
and—3i € interferenceScog@) : i < b A hot(7) then
hot(b) < true
for eachm’ € interferenceScoyjé)
if hot(m') then ETCoLD(m)
if o(m’) = 0 andoy(m') =0
andm’ is not empty then
freelist«+ freelist\ {m'}
op(m') < op(m') +1
unlock

SETCOLD(B)

ONoGRr~WNE

hot(b) « false
for eachm’ € interferenceScofé)
ah(m’) — O'h(m,) —1
if o(m’) = 0 andoy,(m') = 0 andm’ is not empty then
if hot(m’) then
SeTCoLD(m’)
freelist«+ freelistu {m'}
wake all sleeping threads

RELEASE(B)

1
2
3
4,
5
6
7

for eachh’ € interferenceScoié)
o)+ o) -1
if o(b") = 0ando,(b’) = 0 andd’ is not empty then
if hot(v’) then
SETCOLD(b')
freelist«+ freelistU {b'}
wake all sleeping threads

NEXTNBLOCK(B)

©CoNOGOR~WDNE

if b has no open nodes émwas just set to hot then lock
else iftrylock() fails then returrp
if b # NULL then
bestScope- bestinterferenceScofé))
if b < bestScopandb < bestfreelist) then
unlock; returrb
RELEASE(D)
if (VI € nblocks : o(l) = 0) andfreelistis empty then
done« true
wake all sleeping threads

. whilefreelistis empty and-done sleep

if donethenn « NULL
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13. else
14.  m < bestfreelist)
15.  foreach)’ € interferenceScoge:)

16. o)« o(b)+1
17. unlock
18. returnm
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Appendix B. TLA* Model: Hot Nblocks

Here we present the model used to show that Safe PBNF is live-lockRieder to Section 3.2.3.

MODULE HotNblocks ‘
EXTENDS FiniteSets, Naturals
CONSTANTSnnblocks, nprocs, search, nextblock, none
VARIABLES state, acquired, isHot, Succs
Vars = (state, acquired, isHot, Succs)
States = {search, nextblock}
Nblocks = 0 .. nnblocks — 1
Procs = 0 .. nprocs — 1
ASSUME nnblocks > nprocs A nprocs > 0 A nnblocks > 1 A none ¢ Nblocks N\ Cardinality(States) = 2
Preds(z) = {y € Nblocks : © € Succs[y]} Set of predecessors téblock «
IntScope(x) = Preds(z) U UNION {Preds(y) : y € Succs[z]} The interference scope of
IntBy(z) = {y € Nblocks : © € IntScope(y)} Set of Nblocks which z interferes.
Busy(A) = AUUNION {Suces|z] : z € A} Set of Nblocks which are busy given the set of acquired nblocks
Overlap(z, A) = AN IntScope(x) SetofBusy Nblocks overlapping the successorsaof
Hot(A) = {z € Nblocks : isHot[x] A Overlap(z, A) # {}} Setof all hot nblocks given the set of acquired nblocks
HotInterference(A) = UNION {IntScope(z) : z € Hot(A)} SetofNblocks in interference scopes of hot nblocks
Free(A) = {z € Nblocks : Ouerlap(z, A) = {} Az ¢ HotInterference(A)} FreeNblocks
Acquired = {acquired[z] : © € Procs}\ {none} SetofNblocks which are currently acquired
OverlapAmt(zx) = Cardinality( Overlap(z, Acquired)) The number of nblocks overlapping
doNextBlock(z) = A UNCHANGED (Succs)
A state[z] = nextblock N acquired|[z] = none = Free(Acquired) # {}
N IF Free(Acquired \ {acquired[z]}) # {} THEN
ATy € Free(Acquired \ { acquired[z]}) : acquired’ = [acquired EXCEPT![z] = y]
A state’ = [state EXCEPT![z] = search]
NisHot' = [y € Nblocks — IF y € Free(Acquired \ {acquired|z]})
THEN FALSE ELSE isHot[y]]
ELSE A acquired’ = [acquired EXCEPT ! [z] = none]
A isHot' = [y € Nblocks — I\F y € Free(Acquired”)
THEN FALSE ELSE isHot[y]]
A UNCHANGED (state)
A UNCHANGED (acquired, Succs)
A state[z] = search A state’ = [state EXCEPT ! [z] = nextblock]
A V UNCHANGED (isHot)
V 3y € IntBy(acquired|z]) : A —isHot[y]
A IntScope(y) N Hot(Acquired) = {}
Ay ¢ HotInterference(Acquired)
A isHot" = [isHot EXCEPT![y] = TRUE]|
Init = Astate = [z € Procs — neatblock] A acquired = [z € Procs — none]
A isHot = [z € Nblocks — FALSE]
This is a basic graph where each nblock is connected to its neighborisfpanoop.
A Succs = [x € Nblocks — IF z = 0 THEN {nnblocks — 1, x + 1}
ELSE IFz = nnblocks — 1 THEN {0, z — 1} ELSE {z — 1, z + 1}]
Next = Fz € Procs : (doNextBlock(z) V doSearch(z))
Fuairness = Yz € Procs : WFyqgys(doNextBlock(z) VV doSearch(z))
Prog £ Init A O[Next] vars A Fairness
HotNblocks = Yz € Nblocks : isHot[z] ~» —isHot[x] The property to prove

2

doSearch(z)
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