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Abstract

To harness modern multicore processors, it is imperative todevelop parallel versions of funda-
mental algorithms. In this paper, we compare different approaches to parallel best-first search in a
shared-memory setting. We present a new method, PBNF, that uses abstraction to partition the state
space and to detect duplicate states without requiring frequent locking. PBNF allows speculative
expansions when necessary to keep threads busy. We identifyand fix potential livelock conditions
in our approach, proving its correctness using temporal logic. Our approach is general, allowing it
to extend easily to suboptimal and anytime heuristic search. In an empirical comparison on STRIPS
planning, grid pathfinding, and sliding tile puzzle problems using 8-core machines, we show that
A*, weighted A* and Anytime weighted A* implemented using PBNF yield faster search than
improved versions of previous parallel search proposals.

1. Introduction

It is widely anticipated that future microprocessors will not have faster clock rates, but instead
more computing cores per chip. Tasks for which there do not exist effective parallel algorithms
will suffer a slowdown relative to total system performance. In artificial intelligence, heuristic
search is a fundamental and widely-used problem solving framework. Inthis paper, we compare
different approaches for parallelizing best-first search, a popularmethod underlying algorithms such
as Dijkstra’s algorithm and A* (Hart, Nilsson, & Raphael, 1968).

In best-first search, two sets of nodes are maintained:openandclosed. Open contains the search
frontier: nodes that have been generated but not yet expanded. InA*, open nodes are sorted by their
f value, the estimated lowest cost for a solution path going through that node.Open is typically
implemented using a priority queue. Closed contains all previously generatednodes, allowing the
search to detect states that can be reached via multiple paths in the search space and avoid expanding
them multiple times. The closed list is typically implemented as a hash table. The centralchallenge
in parallelizing best-first search is avoiding contention between threads when accessing the open
and closed lists. We look at a variety of methods for parallelizing best-first search, focusing on
algorithms which are based on two techniques:parallel structured duplicate detectionandparallel
retracting A*.
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Parallel structured duplicate detection (PSDD) was originally developed byZhou and Hansen
(2007) for parallel breadth-first search, in order to reduce contention on shared data structures by
allowing threads to enjoy periods of synchronization-free search. PSDD requires the user to supply
an abstraction function that maps multiple states, called annblock, to a single abstract state. We
present a new algorithm based on PSDD called Parallel Best-NBlock-First (PBNF1). Unlike PSDD,
PBNF extends easily to domains with non-uniform and non-integer move costsand inadmissible
heuristics. Using PBNF in an infinite search space can give rise to livelock, where threads continue
to search but a goal is never expanded. We will discuss how this conditioncan be avoided in
PBNF using a method we callhotnblocks, as well as our use of bounded model checking to test its
effectiveness. In addition, we provide a proof of correctness for the PBNF framework, showing its
liveness and completeness in the general case.

Parallel retracting A* (PRA*) was created by Evett, Hendler, Mahanti, and Nau (1995). PRA*
distributes the search space among threads by using a hash of a node’s state. In PRA*, duplicate
detection is performed locally; communication with peers is only required to transfer generated
search-nodes to their home processor. PRA* is sensitive to the choice ofhashing function used
to distribute the search space. We show a new hashing function, based onthe same state space
abstraction used in PSDD, that can give PRA* significantly better performance in some domains.
Additionally, we show that the communication cost incurred in a naive implementation of PRA* can
be prohibitively expensive. Kishimoto, Fukunaga, and Botea (2009) present a method that helps to
alleviate the cost of communication in PRA* by using asynchronous message passing primitives.

We evaluate PRA* (and its variants), PBNF and other algorithms empirically using dual quad-
core Intel machines. We study their behavior on three popular search domains: STRIPS planning,
grid pathfinding, and the venerable sliding tile puzzle. Our empirical results show that the simplest
parallel search algorithms are easily outperformed by a serial A* searcheven when they are run
with eight threads. The results also indicate that adding abstraction to the PRA* algorithm can give
a larger increase in performance than simply using asynchronous communication, although using
both of these modifications together may outperform either one used on its own. Overall, the PBNF
algorithm often gives the best performance.

In addition to finding optimal solutions, we show how to adapt several of the algorithms to
bounded suboptimal search, quickly findingw -admissible solutions (with cost within a factor ofw

of optimal). We provide new pruning criteria for parallel suboptimal searchand prove that algo-
rithms using them retainw -admissibility. Our results show that, for sufficiently difficult problems,
parallel search may significantly outperform serial weighted A* search.We also found that the
advantage of parallel suboptimal search increases with problem difficulty.

Finally, we demonstrate how some parallel searches, such as PBNF and PRA*, lead naturally
to effective anytime algorithms. We also evaluate other obvious parallel anytimesearch strategies
such as running multiple weighted A* searches in parallel with different weights. We show that the
parallel anytime searches are able to find better solutions faster than their serial counterparts and
they are also able to converge more quickly on optimal solutions.

1. Peanut Butter ’N’ (marshmallow) Fluff, also known as a fluffernutter, is a well-known children’s sandwich in the
USA.
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2. Previous Approaches

There has been much previous work in parallel search. We will briefly summarize selected proposals
before turning to the foundation of our work, the PRA* and PSDD algorithms.

2.1 Depth- and Breadth-first Approaches

Early work on parallel heuristic search investigated approaches basedon depth-first search. Two
examples are distributed tree search (Ferguson & Korf, 1988), and parallel window search (Powley
& Korf, 1991).

Distributed tree search begins with a single thread, which is given the initial state to expand.
Each time a node is generated an unused thread is assigned to the node. Thethreads are allocated
down the tree in a depth-first manner until there are no more free threads toassign. When this occurs,
each thread will continue searching its own children with a depth-first search. When the solution
for a subtree is found it is passed up the tree to the parent thread and the child thread becomes free
to be re-allocated elsewhere in the tree. Parent threads go to sleep while their children search, only
waking once the children terminate, passing solutions upward to their parentsrecursively. Because
it does not keep a closed list, depth-first search cannot detect duplicate states and does not give
good search performance on domains with many duplicate states, such as grid pathfinding and some
planning domains.

Parallel window search parallelizes the iterative deepening A* (IDA*, see Korf, 1985) algo-
rithm. In parallel window search, each thread is assigned a cost-bound and will perform a cost-
bounded depth-first search of the search space. The problem with thisapproach is that IDA* will
spend at least half of its search time on the final iteration and since every iteration is still performed
in only a single thread, the search will be limited by the speed of a single thread.In addition, non-
uniform costs can foil iterative deepening, because there may not be a good way to choose new
upper-bounds that give the search a geometric growth.

Holzmann and Bosnacki (2007) have been able to successfully parallelize depth-first search for
model checking. The authors are able to demonstrate that their technique that distributes nodes
based on search depth was able to achieve near linear speedup in the domain of model checking.
Other research has used graphics processing units (GPUs) to parallelize breadth-first search for
use in two-player games (Edelkamp & Sulewski, 2010). In the following sections we describe
algorithms with the intent of parallelizing best-first search.

2.2 Simple Parallel Best-first Search

The simplest approach to parallel best-first search is to have open and closed lists that are shared
among all threads (Kumar, Ramesh, & Rao, 1988). To maintain consistency of these data structures,
mutual exclusion locks (mutexes) need to be used to ensure that a single thread accesses the data
structure at a time. We call this search “parallel A*”. Since each node thatis expanded is taken
from the open list and each node that is generated is looked up in the closedlist by every thread, this
approach requires a lot of synchronization overhead to ensure the consistency of its data structures.
As we see in Section 4.3, this naive approach performs worse than serialA*.

There has been much work on designing complex data structures that retaincorrectness under
concurrent access. The idea behind these specialwait-free data structures is that many threads
can use portions of the data structure concurrently without interfering withone another. Most of
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these approaches use a specialcompare-and-swapprimitive to ensure that, while modifying the
structure, it does not get modified by another thread. We implemented a simple parallel A* search,
which we call lock-free parallel A*, in which all threads access a single shared, concurrent priority
queue and concurrent hash table for the open and closed lists, respectively. We implemented the
concurrent priority queue data structure of Sundell and Tsigas (2005). For the closed list, we used
a concurrent hash table which is implemented as an array of buckets, eachof which is a concurrent
ordered list as developed by Harris (2001). These lock-free data structures used to implement LPA*
require a special lock-free memory manager that uses reference counting and acompare-and-swap
based stack to implement a free list (Valois, 1995). We will see that, even with these sophistocated
structures, a straightforward parallel implementation of A* does not give competitive performance.

One way of avoiding contention altogether is to allow one thread to handle synchronization of
the work done by the other threads.K -Best-First Search (Felner, Kraus, & Korf, 2003) expands the
bestk nodes at once, each of which can be handled by a different thread. In our implementation, a
master thread takes thek best nodes from open and gives one to each worker. The workers expand
their nodes and the master checks the children for duplicates and inserts them into the open list.
This allows open and closed to be used without locking, however, in orderto adhere to a strict
k -best-first ordering this approach requires the master thread to wait forall workers to finish their
expansions before handing out new nodes. In the domains used in this paper, where node expansion
is not particularly slow, we show that this method does not scale well.

One way to reduce contention during search is to access the closed list lessfrequently. A tech-
nique calleddelayed duplicate detection(DDD) (Korf, 2003), originally developed for external-
memory search, can be used to temporarily delay access to the a closed list. While several vari-
ations have been proposed, the basic principle behind DDD is that generated nodes are added to
a single list until a certain condition is met (a depth level is fully expanded, somemaximum list
size is reached (Stern & Dill, 1998), etc.) Once this condition has been met, thelist is sorted to
draw duplicate nodes together. All nodes in the list are then checked against the closed list, with
only the best version being kept and inserted onto the open list. The initial DDD algorithm used a
breadth-first frontier search and therefore only the previous depth-layer was required for duplicate
detection. A parallel version was later presented by Niewiadomski, Amaral, and Holte (2006a),
which split each depth layer into sections and maintained separate input and output lists for each.
These were later merged in order to perform the usual sorting and duplicate detection methods.
This large synchronization step, however, will incur costs similar to KBFS. It also depends upon
an expensive workload distribution scheme to ensure that all processors have work to do, decreas-
ing the bottleneck effect of nodes being distributed unevenly, but further increasing the algorithm’s
overhead. A later parallel best-first frontier search based on DDD was presented (Niewiadomski,
Amaral, & Holte, 2006b), but incurs even further overhead by requiring synchronization between
all threads to maintain a strict best-first ordering.

Jabbar and Edelkamp (2006) present an algorithm called parallel external A* (PEA*) that uses
distributed computing nodes and external memory to perform a best-first search. PEA* splits the
search space into a set of “buckets” that each contain nodes with the sameg andh values. The
algorithm performs a best-first search by exploring all the buckets with thelowestf value beginning
with the one with the lowestg . A master node manages requests to distribute portions of the current
bucket to various processing nodes so that expanding a single bucketcan be performed in parallel.
To avoid contention, PEA* relies on the operating system to synchronize access to files that are
shared among all of the nodes. Jabbar and Edelkamp used the PEA* algorithm to parallelize a
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model-checker and achieved almost linear speedup. While partitioning ong andh works on some
domains it is not general if few nodes have the sameg andh values. This tends to be the case in
domains with real-valued edge costs. We now turn our attention to two algorithms that will reappear
throughout the rest of this paper: PRA* and PSDD.

2.3 Parallel Retracting A*

PRA* (Evett et al., 1995) attempts to avoid contention by assigning separate open and closed lists
to each thread. A hash of the state representation is used to assign nodes tothe appropriate thread
when they are generated. (Full PRA* also includes a retraction scheme that reduces memory use
in exchange for increased computation time; we do not consider that feature in this paper.) The
choice of hash function influences the performance of the algorithm, sinceit determines the way
that work is distributed. Note that with standard PRA*, any thread may communicate with any of
its peers, so each thread needs a synchronized message queue to whichpeers can add nodes. In a
multicore setting, this is implemented by requiring a thread to take a lock on the message queue.
Typically, this requires a thread that is sending (or receiving) a messageto wait until the operation
is complete before it can continue searching. While this is less of a bottleneck than having a single
global, shared open list, we will see below that it can still be expensive. Itis also interesting to
note that PRA* and the variants mentioned below practice a type of delayed duplicate detection,
because they store duplicates temporarily before checking them against athread-local closed list
and possibly inserting them into the open list.

2.3.1 IMPROVEMENTS

Kishimoto et al. (2009) note that the original PRA* implementation can be improvedby remov-
ing the synchronization requirement on the message queues between nodes. Instead, they use the
asynchronous send and receive functionality from the MPI message passing library (Snir & Otto,
1998) to implement an asynchronous version of PRA* that they call Hash Distributed A* (HDA*).
HDA* distributes nodes using a hash function in the same way as PRA*, except the sending and
receiving of nodes happens asynchronously. This means that threads are free to continue searching
while nodes which are being communicated between peers are in transit.

In contact with the authors of HDA*, we have created an implementation of HDA* for multicore
machines that does not have the extra overhead of message passing forasynchronous communica-
tion between threads in a shared memory setting. Also, our implementation of HDA*allows us
to make a fair comparison between algorithms by sharing common data structuressuch as priority
queues and hash tables.

In our implementation, each HDA* thread is given a single queue for incoming nodes and one
outgoing queue for each peer thread. These queues are implemented as dynamically sized arrays
of pointers to search nodes. When generating nodes, a thread performs a non-blocking call to
acquire the lock2 for the appropriate peer’s incoming queue, acquiring the lock if it is available and
immediately returning failure if it is busy, rather than waiting. If the lock is acquired then a simple
pointer copy transfers the search node to the neighboring thread. If thenon-blocking call fails the
nodes are placed in the outgoing queue for the peer. This operation doesnot require a lock because
the outgoing queue is local to the current thread. After a certain number ofexpansions, the thread
attempts to flush the outgoing queues, but it is never forced to wait on a lock tosend nodes. It

2. One such non-blocking call is thepthread mutex trylock function of the POSIX standard.
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Figure 1: A simple abstraction. Self-loops have been eliminated.

also attempts to consume its incoming queue and only waits on the lock if its open list is empty,
because in that case it has no other work to do. Using this simple and efficient implementation,
we confirmed the results of Kishimoto et al. (2009) that show that the asynchronous version of
PRA* (called HDA*) outperforms the standard synchronous version. Full results are presented in
Section 4.

PRA* and HDA* use a simple representation-based node hashing scheme that is the same one,
for example, used to look up nodes in closed lists. We present two new variants, APRA* and
AHDA*, that make use of state space abstraction to distribute search nodesamong the processors.
Instead of assigning nodes to each thread, each thread is assigned a set of blocks of the search space
where each block corresponds to a state in the abstract space. The intuition behind this approach
is that the children of a single node will be assigned to a small subset of all ofthe remote threads
and, in fact, can often be assigned back to the expanding thread itself. This reduces the number of
edges in the communication graph among threads during search, reducing the chances for thread
contention. Abstract states are distributed evenly among all threads by using a modulus operator in
the hope that open nodes will always be available to each thread.

2.4 Parallel Structured Duplicate Detection

PSDD is the major previously-proposed alternative to PRA*. The intention of PSDD is to avoid
the need to lock on every node generation and to avoid explicitly passing individual nodes between
threads. It builds on the idea of structured duplicate detection (SDD), which was originally devel-
oped for external memory search (Zhou & Hansen, 2004). SDD uses an abstraction function, a
many-to-one mapping from states in the original search space to states in an abstract space. The
abstract node to which a state is mapped is called itsimage. An nblock is the set of nodes in the
state space that have the same image in the abstract space. The abstraction function creates anab-
stract graphof nodes that are images of the nodes in the state space. If two states are successors in
the state space, then their images are successors in the abstract graph. Figure 1 shows a state space
graph (left) consisting of 36 nodes and an abstract graph (right) whichconsists of nine nodes. Each
node in the abstract graph represents a grouping of four nodes, called annblock, in the original state
space, shown by the dotted lines in the state space graph on the left.
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Figure 2: Two disjoint duplicate detection scopes.

Eachnblock has an open and closed list. To avoid contention, a thread will acquireexclusive
access to annblock. Additionally, the thread acquires exclusive access to thenblocks that corre-
spond to the successors in the abstract graph of thenblock that it is searching. For eachnblock we
call the set ofnblocks that are its successors in the abstract graph the itsduplicate detection scope.
This is because these are the only abstract nodes to which access is required in order to perform
perfect duplicate detection when expanding nodes from the givennblock. If a thread expands a
noden in nblockb the children ofn must fall withinb or one of thenblocks that are successors of
b in the abstract graph. Threads can determine whether or not new states generated from expanding
n are duplicates by simply checking the closed lists ofnblocks in the duplicate detection scope.
This does not require synchronization because the thread has exclusive access to this set ofnblocks.

In PSDD, the abstract graph is used to findnblocks whose duplicate detection scopes are dis-
joint. Thesenblocks can be searched in parallel without any locking during node expansions.
Figure 2 shows two disjoint duplicate detection scopes delineated by dashedlines with different
patterns. Annblock that is not in use by any thread and whose duplicate detection scope isalso
not in use is considered to befree. A freenblock is available for a thread to acquire it for search-
ing. Freenblocks are found by explicitly tracking, for eachnblockb, σ(b), the number ofnblocks
amongb’s successors that are in use by another thread. Annblock b can only be acquired when
σ(b) = 0.

The advantage of PSDD is that it only requires a single lock, the one controlling manipulation
of the abstract graph, and the lock only needs to be acquired by threadswhen finding a new free
nblock to search. This means that threads do not need to synchronize whileexpanding nodes, their
most common operation.

Zhou and Hansen (2007) used PSDD to parallelize breadth-first heuristic search (Zhou & Hansen,
2006). In this algorithm, eachnblock has two lists of open nodes. One list contains open nodes
at the current search depth and the other contains nodes at the next search depth. In each thread,
only the nodes at the current search depth in an acquirednblock are expanded. The children that
are generated are put in the open list for the next depth in thenblock to which they map (which will
be in the duplicate detection scope of thenblock being searched) as long as they are not duplicates.
When the currentnblock has no more nodes at the current depth, it is swapped for a freenblock
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that does have open nodes at this depth. If no morenblocks have open nodes at the current depth,
all threads synchronize and then progress together to the next depth. An admissible heuristic is used
to prune nodes that fall on or above the current solution upper bound.

2.4.1 IMPROVEMENTS

While PSDD can be viewed as a general framework for parallel search,in our terminology, PSDD
refers to an instance of SDD in a parallel setting that uses layer-based synchronization and breadth-
first search. In this subsection, we present two algorithms that use the PSDD framework and attempt
to improve on the PSDD algorithm in specific ways.

As implemented by Zhou and Hansen (2007), the PSDD algorithm uses the heuristic estimate
of a node only for pruning; this is only effective if a tight upper bound is already available. To
cope with situations where a good bound is not available, we have implemented anovel algorithm
using the PSDD framework that uses iterative deepening (IDPSDD) to increase the bound. As we
report below, this approach is not effective in domains such as grid pathfinding that do not have a
geometrically increasing number of nodes within successivef bounds.

Another drawback of PSDD is that breadth-first search cannot guarantee optimality in domains
where operators have differing costs. In anticipation of these problems,Zhou and Hansen (2004)
suggest two possible extensions to their work, best-first search and a speculative best-first layering
approach that allows for larger layers in the cases where there are fewnodes (ornblocks) with the
samef value. To our knowledge, we are the first to implement and test these algorithms.

Best-first PSDD (BFPSDD) usesf value layers instead of depth layers. This means that all
nodes that are expanded in a given layer have the same (lowest)f value. BFPSDD provides a best-
first search order, but may incur excessive synchronization overhead if there are few nodes in each
f layer. To ameliorate this, we loosen the best-first ordering by enforcing that at leastm nodes
are expanded before abandoning a non-emptynblock. (Zhou & Hansen, 2007 credit Edelkamp &
Schr̈odl, 2000 with this idea.) Also, when populating the list of freenblocks for each layer, all of
thenblocks that have nodes with the current layer’sf value are used or a minimum ofk nblocks are
added wherek is four times the number of threads. (This value fork gave better performance than
other values tested.) This allows us to add additionalnblocks to small layers in order to amortize the
cost of synchronization. In addition, we tried an alternative implementation ofBFPSDD that used
a range off values for each layer. A parameter∆f was used to proscribe the width (inf values)
of each layer of search. This implementation did not perform as well and wedo not present results
for it. With either of these enhancements, threads may expand nodes withf values greater than that
of the current layer. Because the first solution found may not be optimal, search continues until all
remaining nodes are pruned by the incumbent solution.

Having surveyed the existing approaches to parallel best-first search, we now present a new
approach which comprises the main algorithmic contribution of this paper.

3. Parallel Best-NBlock-First (PBNF)

In an ideal scenario, all threads would be busy expandingnblocks that contain nodes with the lowest
f values. To approximate this, we combine PSDD’s duplicate detection scopes with an idea from
the Localized A* algorithm of Edelkamp and Schrödl (2000). Localized A*, which was designed
to improve the locality of external memory search, maintains sets of nodes that reside on the same
memory page. The decision of which set to process next is made with the help of a heap of sets
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1. while there is annblock with open nodes
2. lock;b ← best freenblock; unlock
3. whileb is no worse than the best freenblock or we’ve done fewer thanmin expansions
4. m ← best open node inb
5. if f (m) ≥ f (incumbent), prune all open nodes inb
6. else ifm is a goal
7. if f (m) < f (incumbent)
8. lock; incumbent← m; unlock
9. else for each childc of m
10. if c is not on the closed list of itsnblock
11. insertc in the open list of the appropriatenblock

Figure 3: A sketch of basic PBNF search, showing locking.

ordered by the minimumf value in each set. By maintaining a heap of freenblocks ordered on each
nblocks bestf value, we can approximate our ideal parallel search. We call this algorithmParallel
Best-NBlock-First (PBNF) search.

In PBNF, threads use the heap of freenblocks to acquire the freenblock with the best open
node. A thread will search its acquirednblock as long as it contains nodes that are better than those
of the nblock at the front of the heap. If the acquirednblock becomes worse than the best free
one, the thread will attempt to release its currentnblock and acquire the better one which contains
open nodes with lowerf values. There is no layer synchronization, so threads do not need to wait
unless nonblocks are free. The first solution found may be suboptimal, so search must continue
until all open nodes havef values worse than the incumbent solution. Figure 3 shows high-level
pseudo-code for the algorithm.

Because PBNF is designed to tolerate a search order that is only approximately best-first, we
have freedom to introduce optimizations that reduce overhead. It is possible that annblock has only
a small number of nodes that are better than the best freenblock, so we avoid excessive switching
by requiring a minimum number of expansions. Due to the minimum expansion requirement it is
possible that the nodes expanded by a thread are arbitrarily worse than the frontier node with the
minimum f . We refer to these expansions as “speculative.” This can be viewed astrading off node
quality for reduced contention on the abstract graph. Section 4.1 shows the results of an experiment
that evaluates this trade off.

Our implementation also attempts to reduce the time a thread is forced to wait on a lock by
using non-blocking operations to acquire the lock whenever possible. Rather than sleeping if a lock
cannot be acquired, a non-blocking lock operation (such aspthread mutex trylock) will
immediately return failure. This allows a thread to continue expanding its current nblock if the lock
is busy. Both of these optimizations can introduce additional ‘speculative’ expansions that would
not have been performed in a serial best-first search.

3.1 Livelock

The greedy free-for-all order in which PBNF threads acquire freenblocks can lead to livelock in
domains with infinite state spaces. Because threads can always acquire new nblocks without waiting
for all open nodes in a layer to be expanded, it is possible that thenblock containing the goal will
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never become free. This is because we have no assurance that allnblocks in its duplicate detection
scope will ever be unused at the same time. For example, imagine a situation where threads are
constantly releasing and acquiringnblocks that prevent the goalnblock from becoming free. To
fix this, we have developed a method called ‘hotnblocks’ where threads altruistically release their
nblock if they are interfering with a betternblock. We call this enhanced algorithm ‘Safe PBNF.’

We use the term ‘theinterference scopeof b’ to refer to the set ofnblocks that, if acquired,
would preventb from being free. The interference scope includes not onlyb’s successors in the
abstract graph, but their predecessors too. In Safe PBNF, whenever a thread checks the heap of
free nblocks to determine if it should release its currentnblock, it also ensures that its acquired
nblock is better than any of those that it interferes with (nblocks whose interference scope the
acquirednblock is in). If it finds a better one, it flags thatnblock as ‘hot.’ Any thread that finds
itself blocking a hotnblock will release itsnblock in an attempt to free the hotnblock. For each
nblock b we defineσh(b) to be the number of hotnblocks thatb is in the interference scope of. If
σh(b) 6= 0, b is removed from the heap of freenblocks. This ensures that a thread will not acquire
annblock that is preventing a hotnblock from becoming free.

Consider, for example, an abstract graph containing fournblocks connected in a linear fashion:
A ↔ B ↔ C . A possible execution of PBNF can alternate between a thread expanding from
nblocksA andC . If this situation arrises thennblocksB will never be considered free. If the only
goals are located innblock B then, in an infinite search space there may be a livelock. With the
“Safe” variant of PBNF, however, when expanding from eitherA or C a thread will make sure to
check thef value of the best open node innblockB periodically. If the best node inB is seen to be
better than the nodes inA or C thenB will be flagged as “hot” and bothnblocksA andC will no
longer be eligable for expansion until afternblockB has been acquired.

More formally, letN be the set of allnblocks,Predecessors(x ) andSuccessors(x ) be the sets
of predecessors and successors in the abstract graph ofnblock x , H be the set of all hotnblocks,
IntScope(b) = {l ∈ N : ∃x ∈ Successors(b) : l ∈ Predecessors(x )} be the interference scope
of an nblock b andx ≺ y be a partial order over thenblocks wherex ≺ y iff the minimum f

value over all of the open nodes inx is lower than that ofy . There are three cases to consider when
attempting to set annblock b to hot with an undirected abstract graph:

1. H ∩ IntScope(b) = {} ∧ H ∩ {x ∈ N : b ∈ IntScope(x )} = {}; none of thenblocksb
interferes with or that interfere withb are hot, sob can be set to hot.

2. ∃x ∈ H : x ∈ IntScope(b) ∧ x ≺ b; b is interfered with by a betternblock that is already
hot, sob must not be set to hot.

3. ∃x ∈ H : x ∈ IntScope(b) ∧ b ≺ x ; b is interfered with by annblock x that is worse than
b andx is already hot.x must be un-flagged as hot (updatingσh values appropriately) and in
its placeb is set to hot.

Directed abstract graphs have two additional cases:

4. ∃x ∈ H : b ∈ IntScope(x ) ∧ b ≺ x ; b is interfering with annblock x andb is better thanx
so un-flagx as hot and setb to hot.

5. ∃x ∈ H : b ∈ IntScope(x ) ∧ x ≺ b; b is interfering with annblock x andx is better thanb
so do not setb to hot.
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This scheme ensures that there are never two hotnblocks interfering with one another and that
thenblock that is set to hot is the bestnblock in its interference scope. As we verify below, this
approach guarantees the property that if annblock is flagged as hot it will eventually become free.
Full pseudo-code for Safe PBNF is given in Appendix A.

3.2 Correctness of PBNF

Given the complexity of parallel shared-memory algorithms, it can be reassuring to have proofs of
correctness. In this subsection we will verify that PBNF exhibits various desirable properties:

3.2.1 SOUNDNESS

Soundness holds trivially because no solution is returned that does not pass the goal test.

3.2.2 DEADLOCK

There is only one lock in PBNF and the thread that currently holds it never attempts to acquire it a
second time, so deadlock cannot arise.

3.2.3 LIVELOCK

Because the interaction between the different threads of PBNF can be quite complex, we modeled
the system using the TLA+ (Lamport, 2002) specification language. Using the TLC model checker
(Yu, Manolios, & Lamport, 1999) we were able to demonstrate a sequence of states that can give rise
to a livelock in plain PBNF. Using a similar model we were unable to find an example of livelock
in Safe PBNF when using up to three threads and 12nblocks in an undirected ring-shaped abstract
graph and up to three threads and eightnblocks in a directed graph.

In our model the state of the system is represented with four variables:state, acquired, isHotand
Succs. Thestatevariable contains the current action that each thread is performing (eithersearch
or nextblock). Theacquiredvariable is a function from each thread to the ID of its acquirednblock
or the valueNoneif it currently does not have annblock. The variableisHot is a function from
nblocks to eitherTRUE or FALSE depending on whether or not the givennblock is flagged as hot.
Finally, theSuccsvariable gives the set of successornblocks for eachnblock in order to build the
nblock graph.

The model has two actions:doSearchanddoNextBlock. ThedoSearchaction models the search
stage performed by a PBNF thread. Since we were interested in determining ifthere is a livelock,
this action abstracts away most of the search procedure and merely models that the thread may
choose a validnblock to flag as hot. After setting annblock to hot, the thread changes its state
so that the next time it is selected to perform an action it will try to acquire a newnblock. The
doNextBlocksimulates a thread choosing its nextnblock if there is one available. After a thread
acquires annblock (if one was free) it sets its state so that the next time it is selected to perform an
action it will search.

The TLA+ source of the model is located in Appendix B.

Formal proof : In addition to model checking, the TLA+ specification language is designed to
allow for formal proofs of properties. This allows properties to be proved for an unbounded space.
Using our model we have completed a formal proof that a hotnblock will eventually become free
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regardless of the number of threads or the abstract graph. We present here an English summary.
First, we need a helpful lemma:

Lemma 1 If an nblockn is hot, there is at least one othernblock in its interference scope that is
in use. Also,n is not interfering with any other hotnblocks.

Proof: Initially no nblocks are hot. This can change only while a thread searches or when it releases
annblock. During a search, a thread can only setn to hot if it has acquired annblockm that is in
the interference scope ofn. Additionally, a thread may only setn to hot if it does not create any
interference with another hotnblock. During a release, ifn is hot, either the final acquirednblock
in its interference scope is released andn is no longer hot, orn still has at least one busynblock in
its interference scope. 2

Now we are ready for the key theorem:

Theorem 1 If an nblock n becomes hot, it will eventually be added to the free list and will no
longer be hot.

Proof: We will show that the number of acquirednblocks in the interference scope of a hotnblock
n is strictly decreasing. Therefore,n will eventually become free.

Assume annblockn is hot. By Lemma 1, there is a threadp that has annblock in the interfer-
ence scope ofn, andn is not interfering with or interfered by any other hotnblocks. Assume that
a threadq does not have annblock in the interference scope ofn. There are four cases:

1. p searches itsnblock. p does not acquire a newnblock and therefore the number ofnblocks
preventingn from becoming free does not increase. Ifp sets annblockm to hot,m is not in
the interference scope ofn by Lemma 1.p will release itsnblock after it sees thatn is hot
(see case 2).

2. p releases itsnblock and acquires a newnblockm from the free list. The number of acquired
nblocks in the interference scope ofn decreases by one asp releases itsnblock. Sincem,
the newnblock acquired byp, was on the free list, it is not in the interference scope ofn.

3. q searches itsnblock. q does not acquire a newnblock and therefore the number ofnblocks
preventingn from becoming free does not increase. Ifq sets annblockm to hot,m is not in
the interference scope ofn by Lemma 1.

4. q releases itsnblock (if it had one) and acquires a newnblockm from the free list. Sincem,
the newnblock acquired byq , was on the free list, it is not in the interference scope ofn and
the number ofnblocks preventingn from becoming free does not increase.

2

We can now prove the progress property that we really care about:

Theorem 2 A noden with minimumf value will eventually be expanded.

Proof: We considern ’s nblock. There are three cases:

1. Thenblock is being expanded. Becausen has minimumf , it will be at the front ofopenand
will be expanded.
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2. Thenblock is free. Because it holds the node with minimumf value, it will be at the front of
the free list and selected next for expansion, reducing to case 1.

3. Thenblock is not on the free list because it is in the interference scope of anothernblock that
is currently being expanded. When the thread expanding thatnblock checks its interference
scope, it will mark the betternblock as hot. By Theorem 1, we will eventually reach case 2.

2

3.2.4 COMPLETENESS

This follows easily from liveness:

Corollary 1 If the heuristic is admissible or the search space is finite, a goal will be returned if one
is reachable.

Proof: If the heuristic is admissible, we inherit the completeness of serial A* (Nilsson, 1980) by
Theorem 2. Nodes are only re-expanded if theirg value has improved, and this can happen only a
finite number of times, so a finite number of expansions will suffice to exhaustthe search space.2

3.2.5 OPTIMALITY

Because PBNF’s expansion order is not strictly best-first, it operates like an anytime algorithm, and
its optimality follows the same argument as that for algorithms such as Anytime A* (Hansen &
Zhou, 2007).

Theorem 3 PBNF will only return optimal solutions.

Proof: After finding an incumbent solution, the search continues to expand nodesuntil the minimum
f value among all frontier nodes is greater than or equal to the incumbent solution cost. This means
that the search will only terminate with the optimal solution. 2

Before discussing how to adapt PBNF to suboptimal and anytime search, wefirst evaluate its
performance on optimal problem solving.

4. Empirical Evaluation: Optimal Search

We have implemented and tested the parallel heuristic search algorithms described above on three
different benchmark domains: grid pathfinding, the sliding tile puzzle, and STRIPS planning. We
will discuss each domain in turn. With the exception of the planning domain, the algorithms were
programmed in C++ using the POSIX threading library and run on dual quad-core Intel Xeon E5320
1.86GHz processors with 16Gb RAM. For the planning results the algorithms were written inde-
pendently in C from the pseudo code in Appendix A. This gives us additional confidence in the
correctness of the pseudo code and our performance claims. The planning experiments were run
on dual quad-core Intel Xeon X5450 3.0GHz processors limited to roughly 2GB of RAM. All open
lists and free lists were implemented as binary heaps except in PSDD and IDPSDD which used a
queue giving them less overhead since they do not require access to minimum valued elements. All
closed lists were implemented as hash tables. PRA* and APRA* used queues for incoming nodes,
and a hash table was used to detect duplicates in both open and closed. Forgrids and sliding tiles,
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we used the jemalloc library (Evans, 2006), a special multi-thread-aware malloc implementation,
instead of the standard glibc (version 2.7) malloc, because we found that the latter scales poorly
above 6 threads. We configured jemalloc to use 32 memory arenas per CPU.In planning, a custom
memory manager was used which is also thread-aware and uses a memory pool for each thread.

On grids and sliding tiles abstractions were hand-coded and,nblock data structures were created
lazily, so only the visited part of abstract graph was instantiated. The time taken to create the
abstraction is accounted for in all of the wall time measurements for these two domains. In STRIPS
planning the abstractions were created automatically and the creation times for the abstractions are
reported separately as described in Section 4.5.

4.1 Tuning PBNF

In this section we present results for a set of experiments that we designed to test the behavior of
PBNF as some of its parameters are changed. We study the effects of the twoimportant parameters
of the PBNF algorithm: minimum expansions required before switching to search a newnblock
and the size of the abstraction. This study used twenty 5000x5000 four-connected grid pathfinding
instances with unit cost moves where each cell has a 0.35 probability of being an obstacle. The
heuristic used was the Manhattan distance to the goal location. Error bars inthe plots show 95%
confidence intervals and the legends are sorted by the mean of the dependent variable in each plot.

In the PBNF algorithm, each thread must perform a minimum number of expansions before
it is able to acquire a newnblock for searching. Requiring more expansions between switches is
expected to reduce the contention on thenblock graph’s lock but could increase the total number
of expanded nodes. We created an instrumented version of the PBNF algorithm that tracks the
time that the threads have spent trying to acquire the lock and the amount of time that threads
have spent waiting for a freenblock. We fixed the size of the abstraction to 62,500nblocks and
varied the number of threads (from 1 to 8) and minimum expansions (1, 8, 16, 32 and 64 minimum
expansions).

The upper left panel in Figure 4 shows the average amount ofCPU timein seconds that each
thread spent waiting to acquire the lock (y-axis) as the minimum expansions parameter was in-
creased (x-axis). Each line in this plot represents a different number of threads. We can see that the
configuration which used the most amount of time trying to acquire the lock was with eight threads
and one minimum expansion. As the number of threads decreased, there was less contention on
the lock as there were fewer threads to take it. As the number of minimum required expansions
increased the contention was also reduced. Around eight minimum expansions the benefit of in-
creasing the value further seemed to greatly diminish.

The upper right panel of Figure 4 shows the results for the CPU time spentwaiting for a free
nblock (y-axis) as minimum expansions was increased (x-axis). This is different than the amount
of time waiting on the lock because, in this case, the thread successfully acquired the lock but
then found that there were no freenblocks available to search. We can see that the configuration
with eight threads and one for minimum expansions caused the longest amount of time waiting
for a freenblock. As the number of threads decreased and as the required number of minimum
expansions increased the wait time decreased. The amount of time spent waiting, however, seems
fairly insignificant because it is an order of magnitude smaller than the lock time.Again, we see
that around eight minimum expansions the benefit of increasing seemed to diminish.
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Figure 4: PBNF locking behavior vs minimum expansions on grid pathfinding with 62,500
nblocks. Each line represents a different number of threads.

The final panel, on the bottom in Figure 4, shows the total number of nodes expanded (y-axis,
which is in thousands of nodes) as minimum expansions was increased. Increasing the minimum
number of expansions that a thread must make before switching to annblock with better nodes
caused the search algorithm to explore more of the space that may not havebeen covered by a strict
best-first search. As more of these “speculative” expansions were performed the total number of
nodes encountered during the search increased. We can also see thatadding threads increased the
number of expanded nodes too.

From the results of this experiment it appears that requiring more than eightexpansions be-
fore switchingnblocks had a decreasing benefit with respect to locking and waiting time. In our
non-instrumented implementation of PBNF we found that slightly greater values for the minimum
expansion parameter lead to the best total wall times. For each domain below weuse the value that
gave the best total wall time in the non-instrumented PBNF implementation.
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Figure 5: PBNF abstraction size: 5000x5000 grid pathfinding, 32 minimum expansions.

Since PBNF uses abstraction to decompose a search space it is also important to understand the
effect of abstraction size on search performance. Our hypothesis was that using too few abstract
states would lead to only a small number of freenblocks therefore making threads spend a lot of
time waiting for annblock to become free. On the other hand, if there are too many abstract states
then there will be too few nodes in eachnblock. If this happens, threads will perform only a small
amount of work before exhausting the open nodes in theirnblock and being forced to switch to
a new portion of the search space. Each time a thread must switchnblocks the contention on the
lock is increased. Figure 5 shows the results of an experiment that was performed to verify this
theory. In each plot we have fixed the minimum expansions parameter to 32 (which gave the best
total wall time on grid pathfinding) and varied the number of threads (from 1 to8) and the size of
the abstraction (10,000, 62,500 and 250,000nblocks).

The upper left panel of Figure 5 shows a plot of the amount of CPU seconds spent trying to ac-
quire the lock (y-axis) versus the size of the abstraction (x-axis). As expected, when the abstraction
was very coarse there was little time spent waiting on the lock, but as the size ofthe abstraction grew

704



BEST-FIRST SEARCH FORMULTICORE MACHINES

and the number of threads increased the amount of time spent locking increased. At eight threads
with 250,000nblocks over 1 second of CPU time was spent waiting to acquire the lock. We suspect
that this is because threads were exhausting all open nodes in theirnblocks and were, therefore,
being forced to take the lock to acquire a new portion of the search space.

The upper right panel of Figure 5 shows the amount of time that threads spent waiting for an
nblock to become free after having successfully acquired the lock only to find that nonblocks are
available. Again, as we suspected, the amount of time that threads wait for afreenblock decreases
as the abstraction size is increased. The more availablenblocks, the more disjoint portions of the
search space will be available. As with our experiments for minimum expansions, the amount of
time spent waiting seems to be relatively insignificant compared to the time spent acquiring locks.

The bottom panel in Figure 5 shows that the number of nodes that were expanded increased
as the size of the abstraction was increased. For finer grained abstractions the algorithm expanded
more nodes. This is because each time a thread switches to a newnblock it is forced to perform at
least the minimum number of expansions, therefore the more switches, the moreforced expansions.

4.2 Tuning PRA*

We now turn to looking at the performance impact on PRA* of abstraction andasynchronous com-
munication. First, we compare PRA* with and without asynchronous communication. Results from
a set of experiments on twenty 5000x5000 grid pathfinding and a set of 250 random 15-puzzle in-
stances that were solvable by A* in 3 million expansions are shown in Figure 6. The line labeled
sync. (PRA*)used synchronous communication,async. sends, used synchronous receives and asyn-
chronous sends,async. receives, used synchronous sends and asynchronous receives andasync.
(HDA*), used asynchronous communication for both sends and receives. As before, the legend is
sorted by the mean performance and the error bars represent the 95% confidence intervals on the
mean. The vertical lines in the plots for the life cost grid pathfinding domains show that these
configurations were unable to solve instances within the 180 second time limit.

The combination of both asynchronous sends and receives provided the best performance. We
can also see from these plots that making sends asynchronous providedmore of a benefit than
making receives asynchronous. This is because, without asynchronous sends, each node that is gen-
erated will stop the generating thread in order to communicate. Even if communication is batched,
each send may be required to go to a separate neighbor and therefore a single send operation may be
required per-generation. For receives, the worst case is that the receiving thread must stop at each
expansion to receive the next batch nodes. Since the branching factorin a typical search space is
approximately constant there will be approximately a constant factor more send communications as
there are receive communications in the worst case. Therefore, making sends asynchronous reduces
the communication cost more than receives.

Figure 7 shows the results of an experiment that compares PRA* using abstraction to distribute
nodes among the threads versus PRA* with asynchronous communication. The lines are labeled
as follows: sync. (PRA*)used only synchronous communication,async. (HDA*)used only asyn-
chronous communication andsync. with abst. (APRA*)used only synchronous communication and
used abstraction to distribute nodes among the threads andasync. and abst. (AHDA*)used a com-
bination of asynchronous communication and abstraction. Again, the vertical lines in the plots for
the life cost grid pathfinding domains show that these configurations were unable to solve instances
within the 180 second time limit.
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Figure 6: PRA* synchronization: 5000x5000 grids and easy sliding tile instances.

It is clear from these plots that the configurations of PRA* that used abstraction gave better
performance than PRA* without abstraction in the grid pathfinding domain. The reason for this is
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Figure 7: PRA* abstraction: 5000x5000 grids and easy sliding tile instances.

because the abstraction in grid pathfinding will often assign successors of a node being expanded
back to the thread that generated them. When this happens no communication is required and the
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nodes can simply be checked against the local closed list and placed on thelocal open list if they
are not duplicates. With abstraction, the only time that communication will be required is when a
node on the “edge” of an abstract state is expanded. In this case,someof the children will map into
a different abstract state and communication will be required. This experiment also shows that the
benefits of abstraction were greater than the benefits of asynchronouscommunication in the grid
pathfinding problems. We see the same trends on the sliding tile instances, however they are not
quite as pronounced; the confidence intervals often overlap.

Overall, it appears that the combination of PRA* with both abstraction for distributing nodes
among the different threads and using asynchronous communication gavethe best performance. In
the following section we show the results of a comparison between this variantof PRA*, the Safe
PBNF algorithm and the best-first variant of PSDD.

4.3 Grid Pathfinding

In this section, we evaluate the parallel algorithms on the grid pathfinding domain. The goal of
this domain is to navigate through a grid from an initial location to a goal location while avoiding
obstacles. We used two cost models (discussed below) and both four-way and eight-way movement.
On the four-way grids, cells were blocked with a probability of 0.35 and on the eight-way grids
cells were blocked with a probability of 0.45. The abstraction function that was used maps blocks
of adjacent cells to the same abstract state, forming a coarser abstract grid overlaid on the original
space. The heuristic was the Manhattan distance to the goal location. The hash values for states
(which are used to distribute nodes in PRA* and HDA*) are computed as:x · ymax + y of the state
location. This gives a minimum perfect hash value for each state. For this domain we were able to
tune the size of the abstraction and our results show execution with the best abstraction size for each
algorithm where it is relevant.

4.3.1 FOUR-WAY UNIT COST

In the unit-cost model, each move has the same cost: one.

Less Promising Algorithms Figure 8, shows a performance comparison between algorithms that,
on average, were slower than serial A*. These algorithms were tested on20 unit-cost four-way
movement 1200x2000 grids with the start location in the bottom left corner andthe goal location in
the bottom right. The x-axis shows the number of threads used to solve eachinstance and the y-axis
shows the mean wall clock time in seconds. The error bars give a 95% confidence interval on the
mean wall clock time and the legend is sorted by the mean performance.

From this figure we can see that PSDD gave the worst average solution times. We suspect that
this was because the lack of a tight upper bound which PSDD uses for pruning. We see that A* with
a shared lock-free open and closed list (LPA*) took, on average, thesecond longest amount of time
to solve these problems. LPA*’s performance improved up to 5 threads andthen started to drop off
as more threads were added. The overhead of the special lock-free memory manager along with
the fact that access to the lock-free data structures may require back-offs and retries could account
for the poor performance compared to serial A*. The next algorithm, going down from the top in
the legend, is KBFS which slowly increased in performance as more threadswere added however
it was not able to beat serial A*. A simple parallel A* implementation (PA*) usinglocks on the
open and closed lists performed worse as threads were added until about four where it started to
give a very slow performance increase matching that of KBFS. The PRA*algorithm using a simple
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Figure 8: Simple parallel algorithms on unit cost, four-way 2000x1200 gridpathfinding.

state representation based hashing function gave the best performancein this graph but it was fairly
erratic as the number of threads changed, sometimes increasing and sometimesdecreasing. At 6
and 8 threads, PRA* was faster than serial A*.

We have also implemented the IDPSDD algorithm which tries to find the upper boundfor a
PSDD search using iterative deepening, but the results are not shown on the grid pathfinding do-
mains. The non-geometric growth in the number of states when increasing the cost bound leads to
very poor performance with iterative deepening on grid pathfinding. Dueto the poor performance of
the above algorithms, we do not show their results in the remaining grid, tiles or planning domains
(with the exception of PSDD which makes a reappearance in the STRIPS planning evaluation of
Section 4.5, where we supply it with an upper bound).

More Promising Algorithms The upper left plot in Figure 9 shows the performance of algorithms
on unit-cost four-way grid pathfinding problems. The y-axis represents the speedup over serial A*
and the x-axis shows the number of threads in use for each data point. Error bars indicate 95%
confidence intervals on the mean over 20 different instances. Algorithms inthe legend are ordered
by their average performance. The line labeled “Perfect speedup” shows a perfect linear speedup
where each additional thread increases the performance linearly.

A more practical reference point for speedup is shown by the “Achievable speedup” line. On
a perfect machine withn processors, running withn cores should take time that decreases linearly
with n. On a real machine, however, there are hardware considerations such as memory bus con-
tention that prevent thisn-fold speedup. To estimate this overhead for our machines, we ran sets
of n independent A* searches in parallel for1 ≤ n ≤ 8 and calculated the total time for each set
to finish. On a perfect machine all of these sets would take the same time as the set with n = 1.
We compute the “Achievable speedup” with the ratio of the actual completion times tothe time
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Figure 9: Speedup results on grid pathfinding and the sliding tile puzzle.

for the set withn = 1. At t threads given the completion times for the sets,〈C1,C2, ...,Cn〉,
achievable speedup(t) = t ·C1

Ct
.
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The upper left panel shows a comparison between AHDA* (PRA* with asynchronous commu-
nication and abstraction), BFPSDD and Safe PBNF algorithm on the larger (5000x5000) unit-cost
four-way problems. Safe PBNF was superior to any of the other algorithms, with steadily decreas-
ing solution times as threads were added and an average speedup over serial A* of more than 6x
when using eight threads. AHDA* had less stable performance, sometimes giving a sharp speedup
increase and sometimes giving a decreased performance as more threadswere added. At seven
threads where AHDA* gave its best performance, it was able to reach 6xspeedup over serial A*
search. The BFPSDD algorithm solved problems faster as more threads were added however it was
not as competitive as PBNF and AHDA* giving no more than 3x speedup over serial A* with eight
threads.

4.3.2 FOUR-WAY L IFE COST

Moves in the life cost model have a cost of the row number of the state wherethe move was
performed—moves at the top of the grid are free, moves at the bottom cost 4999 (Ruml & Do,
2007). This differentiates between the shortest and cheapest paths which has been shown to be a
very important distinction (Richter & Westphal, 2010; Cushing, Bentor, & Kambhampati, 2010).
The left center plot in Figure 9 shows these results in the same format as forthe unit-cost variant –
number of threads on the x axis and speedup over serial A* on the y axis.On average, Safe PBNF
gave better speedup than AHDA*, however AHDA* outperformed PBNF at six and seven threads.
At eight threads, however, APRA* did not perform better than at seven threads. Both of these al-
gorithms achieve speedups that are very close to the “Achievable speedup” for this domain. Again
BFPSDD gave the worst performance increase as more threads were added reaching just under 3x
speedup.

4.3.3 EIGHT-WAY UNIT COST

In eight-way movement path planning problems, horizontal and vertical moves have cost 1, but
diagonal movements cost

√
2. These real-valued costs make the domain different from the previous

two path planning domains. The upper right panel of Figure 9 shows number of threads on the x
axis and speedup over serial A* on the y axis for the unit cost eight-waymovement domain. We see
that Safe PBNF gave the best average performance reaching just under 6x speedup at eight threads.
AHDA* did not outperform Safe PBNF on average, however it was ableto achieve a just over 6x
speedup over serial A* at seven threads. Again however, we see that AHDA* did not give very
stable performance increases with more threads. BFPSDD improved as threads were added out to
eight but it never reached more than 3x speedup.

4.3.4 EIGHT-WAY L IFE COST

This model combines the eight-way movement and the life cost models; it tends to be the most diffi-
cult path planning domain presented in this paper. The right center panel of Figure 9 shows threads
on the x axis and speedup over serial A* on the y axis. AHDA* gave the best average speedup over
serial A* search, peaking just under 6x speedup at seven threads.Although it outperformed Safe
PBNF on average at eight threads AHDA* has a sharp decrease in performance reaching down to
almost 5x speedup where Safe PBNF had around 6x speedup over serial A*. BFPSDD again peaks
at just under 3x speedup at eight threads.
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Figure 10: Comparison of wall clock time for Safe PBNF versus AHDA* on the sliding tile puzzle.

4.4 Sliding Tile Puzzle

The sliding tile puzzle is a common domain for benchmarking heuristic search algorithms. For these
results, we use 250 randomly generated 15-puzzles that serial A* was able to solve within 3 million
expansions.

The abstraction used for the sliding tile puzzles ignores the numbers on a setof tiles. For
example, the results shown for Safe PBNF in the bottom panel of Figure 9 use an abstraction that
looks at the position of the blank, one and two tiles. This abstraction gives 3360nblocks. In order
for AHDA* to get the maximum amount of expansions that map back to the expanding thread (as
described above for grids), its abstraction uses the one, two and three tile. Since the position of the
blank is ignored, any state generation that does not move the one, two or three tiles will generate a
child into the samenblock as the parent therefore requiring no communication. The heuristic that
was used in all algorithms was the Manhattan distance heuristic. The hash value used for tiles states
was a perfect hash value based on the techniques presented by Korf and Schultze (2005).

The bottom panel of Figure 9 shows the results for AHDA*, and Safe PBNF on these sliding
tiles puzzle instances. The plot has the number of threads on the x axis and the speedup over serial
A* on the y axis. Safe PBNF had the best mean performance but there wasoverlap in the confidence
intervals with AHDA*. BFPSDD was unable to show a speedup over serial A* and its performance
was not shown in this plot.

Because sliding tile puzzles vary so much in difficulty, in this domain we also did a paired-
difference test, shown in Figure 10. The data used for Figure 10 was collected on the same set of
runs as shown in the bottom panel of Figure 9. The y-axis in this figure, however, is the average,
over all instances, of the time that AHDA* took on that instance minus the time that Safe PBNF
took. This paired test gives a more powerful view of the algorithms’ relative performance. Values
greater than 0.0 represent instances where Safe PBNF was faster thanAHDA* and values lower than
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0.0 represent those instances where AHDA* was faster. The error bars show the 95% confidence
interval on the mean. We can clearly see that the Safe PBNF algorithm was significantly faster than
AHDA* across all numbers of threads from 1 to 8.

4.5 STRIPS Planning

In addition to the path planning and sliding tiles domains, the algorithms were also embedded into
a domain-independent optimal sequential STRIPS planner. In contrast tothe previous two domains
where node expansion is very quick and therefore it is difficult to achieve good parallel speedup,
node expansion in STRIPS planning is relatively slow. The planner used inthese experiments uses
regression and the max-pair admissible heuristic of Haslum and Geffner (2000). The abstraction
function used in this domain is generated dynamically on a per-problem basis and, following Zhou
and Hansen (2007), this time was not taken into account in the solution times presented for these
algorithms. The abstraction function is generated by greedily searching in the space of all possible
abstraction functions (Zhou & Hansen, 2006). Because the algorithm needs to evaluate one candi-
date abstraction for each of the unselected state variables, it can be trivially parallelized by having
multiple threads work on different candidate abstractions.

Table 1 presents the results for A*, AHDA*, PBNF, Safe PBNF, PSDD (given an optimal upper
bound for pruning and using divide-and-conquer solution reconstruction), APRA* and BFPSDD.
The values of each cell are the total wall time in seconds taken to solve each instance. A value
of ’M’ indicates that the program ran out of memory. The best result on each problem and results
within 10% of the best are marked inbold. Generally, all of the parallel algorithms were able to
solve the instances faster as they were allowed more threads. All of the parallel algorithms were
able to solve instances much faster than serial A* at seven threads. The PBNF algorithm (either
PBNF or Safe PBNF) gave the best solution times in all but three domains. Interestingly, while
plain PBNF was often a little faster than the safe version, it failed to solve two ofthe problems. This
is most likely due to livelock, although it could also simply be because the hotnblocks fix forces
Safe PNBF to follow a different search order than PBNF. AHDA* tendedto give the second-best
solution times, followed by PSDD which was given the optimal solution cost up-front for pruning.
BFPSDD was often better than APRA*,

The column, labeled “Abst.” shows the time that was taken by the parallel algorithms to serially
generate the abstraction function. Even with the abstraction generation time added on to the solution
times all of the parallel algorithms outperform A* at seven threads, exceptin the block-14 domain
where the time taken to generate the abstraction actually was longer than the time A*took to solve
the problem.

4.6 Understanding Search Performance

We have seen that the PBNF algorithm tends to have better performance thanthe AHDA* algorithm
for optimal search. In this section we show the results of a set of experiments that attempts to
determine which factors allow PBNF to perform better in these domains. We considered three
hypotheses. First, PBNF may achieve better performance because it expands fewer nodes withf
values greater than the optimal solution cost. Second, PBNF may achieve better search performance
because it tends to have many fewer nodes on each priority queue than AHDA*. Finally, PBNF
may achieve better search performance because it spends less time coordinating between threads.
In the following subsections we show the results of experiments that we performed to test our
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A* AHDA* PBNF
threads 1 1 3 5 7 1 3 5 7
logistics-6 2.30 1.44 0.70 0.48 0.40 1.27 0.72 0.58 0.53
blocks-14 5.19 7.13 5.07 2.25 2.13 6.28 3.76 2.70 2.63
gripper-7 117.78 59.51 33.95 15.97 12.69 39.66 16.43 10.92 8.57
satellite-6 130.85 95.50 33.59 24.11 18.24 68.14 34.15 20.84 16.57
elevator-12 335.74 206.16 96.82 67.68 57.10 156.64 56.25 34.84 26.72
freecell-3 199.06 147.96 93.55 38.24 27.37 185.68 64.06 44.05 36.08
depots-7 M 299.66 126.34 50.97 39.10 M M M M
driverlog-11 M 315.51 85.17 51.28 48.91 M M M M
gripper-8 M 532.51 239.22 97.61 76.34 229.88 95.63 60.87 48.32

SafePBNF PSDD
threads 1 3 5 7 1 3 5 7
logistics-6 1.17 0.64 0.56 0.62 1.20 0.78 0.68 0.64
blocks-14 6.21 2.69 2.20 2.02 6.36 3.57 2.96 2.87
gripper-7 39.58 16.87 11.23 9.21 65.74 29.37 21.88 19.19
satellite-6 77.02 24.09 17.29 13.67 61.53 23.56 16.71 13.26
elevator-12 150.39 53.45 34.23 27.02 162.76 62.68 43.34 36.66
freecell-3 127.07 47.10 38.07 37.02 126.31 53.76 45.47 43.71
depots-7 156.36 63.04 42.91 34.66 159.98 73.00 57.65 54.70
driverlog-11 154.15 59.98 38.84 31.22 155.93 63.20 41.85 34.02
gripper-8 235.46 98.21 63.65 51.50 387.81 172.01 120.79 105.54

APRA* BFPSDD Abst.
threads 1 3 5 7 1 3 5 7 1
logistics-6 1.44 0.75 1.09 0.81 2.11 1.06 0.79 0.71 0.42
blocks-14 7.37 5.30 3.26 2.92 7.78 4.32 3.87 3.40 7.9
gripper-7 62.61 43.13 37.62 26.78 41.56 18.02 12.21 10.20 0.8
satellite-6 95.11 42.85 67.38 52.82 62.01 24.06 20.4313.54 1
elevator-12 215.19 243.24 211.45 169.92 151.50 58.52 40.95 32.48 0.7
freecell-3 153.71 122.00 63.47 37.94 131.30 57.14 47.74 45.07 17
depots-7 319.48 138.30 67.24 49.58 167.24 66.89 48.32 42.68 3.6
driverlog-11 334.28 99.37 89.73 104.87 152.08 61.63 42.81 34.70 9.7
gripper-8 569.26 351.87 236.93 166.19 243.44 101.11 70.84 59.18 1.1

Table 1: Wall time on STRIPS planning problems.
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Figure 11: Cumulative normalizedf value counts for nodes expanded with eight threads on unit-
cost four-way grid pathfinding (left) and the 15-puzzle (right).

three hypotheses. The results of these experiments agree with the first twohypotheses, however, it
appears that the third hypothesis does not hold and, in fact, PBNF occasionally spends more time
coordinating between threads than AHDA*.

4.6.1 NODE QUALITY

Because both PBNF and AHDA* merely approximate a best-first order, they may expand some
nodes that havef values greater than the optimal solution cost. When a thread expands a node
with an f value greater than the optimal solution cost its effort was a waste because the only nodes
that must be expanded when searching for an optimal solution are those withf values less than the
optimal cost. In addition to this, both search algorithms may re-expand nodes for which a lower
cost path has been found. If this happens work was wasted during the first sub-optimal expansion
of the node.

Threads in PBNF are able to choose whichnblock to expand based on the quality of nodes in
the freenblocks. In AHDA*, however, a thread must expand only those nodes that are assigned
to it. We hypothesized that PBNF may expand fewer nodes withf values that are greater than the
optimal solution cost because the threads have more control over the qualityof the nodes that they
choose to expand.

We collected thef value of each node expanded by both PBNF and AHDA*. Figure 11 shows
cumulative counts for thef values of nodes expanded by both PBNF and AHDA* on the same set
of unit-cost four-way 5000x5000 grid pathfinding instances as were used in Section 4.3 (right) and
on the 15-puzzle instances used in Section 4.4 (left). In both plots, the x axisshows thef value of
expanded nodes as a factor of the optimal solution cost for the given instance. The y axis shows
the cumulative count of nodes expanded up to the given normalizedf over the set of instances.
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Figure 12: Mean CPU time per open list operation.

By looking at y-location of the right-most tip of each line we can find the total number of nodes
expanded by each algorithm summed over all instances.

On the left panel of Figure 11 we can see that both algorithms tended to expand only a very
small number of nodes withf values that were greater than the optimal solution cost on the grid
pathfinding domain. The AHDA* algorithm expanded more nodes in total on thisset of instances.
Both PBNF and AHDA* must expand all of the nodes below the optimal solution cost. Because of
this, the only way that AHDA* can have a greater number of expansions for nodes below a factor
of 1 is if it re-expanded nodes. It appears that AHDA* re-expandedmore nodes than PBNF and this
seems to account for the fact that AHDA* expanded more nodes in total.

The right half of Figure 11 shows the results on the 15-puzzle. We see that, again, AHDA*
expanded more nodes in total than PBNF. In this domain the algorithms expanded approximately
the same number of nodes withf values less than the optimal solution cost. We can also see from
this plot that AHDA* expanded many more nodes that hadf values greater than or equal to the
optimal solution cost. In summary, PBNF expanded fewer nodes and better quality nodes than
AHDA* in both the grid pathfinding and sliding tiles domains. We speculate that thismay happen
because in PBNF the threads are allowed to choose which portion of the space they search and they
choose it based on lowf value. In AHDA* the threads must search the nodes that map to them and
these nodes may not be very good.

4.6.2 OPEN L IST SIZES

We have found that, since PBNF breaks up the search space into many differentnblocks, it tends
to have data structures with many fewer entries than AHDA*, which breaks up the search space
based on the number of threads. Since we are interested general-purpose algorithms that can handle
domains with real-valued costs (like eight-way grid pathfinding) both PBNF and AHDA* use binary
heaps to implement their open lists. PBNF has one heap pernblock (that is one per abstract state)
whereas AHDA* has one heap per thread. Because the number ofnblocks is greater than the
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number of threads AHDA* will have many more nodes than PBNF in each of its heaps. This causes
the heap operations in AHDA* to take longer than the heap operations in PBNF.

The cost of operations on large heaps has been shown to greatly impact overall performance of
an algorithm (Dai & Hansen, 2007). In order to determine the extent to which large heaps effect the
performance of AHDA* we added timers to all of the heap operations for both algorithms. Figure 12
shows the mean CPU time for a single open list operation for unit-cost four-way grid pathfinding
domain and for the 15-puzzle. The boxes show the second and third quartiles with a line drawn
across at the median. The whiskers show the extremes of the data except that data points residing
beyond the first and third quartile by more than 1.5 times the inter-quartile rangeare signified by
a circle. The shaded rectangle shows the 95% confidence interval on themean. We can see that,
in both cases, AHDA* tended to spend more time performing heap operations than PBNF which
typically spent nearly no time per heap operation. Heap operations must be performed once for each
node that is expanded and may be required on each node generation. Even though these times are in
the tens of microseconds the frequency of these operations can be veryhigh during a single search.

Finally, as is described by Hansen and Zhou (2007), the reduction in open list sizes can also ex-
plain the good single thread performance that PBNF experiences on STRIPS planning (see Table 1).
Hansen and Zhou point out that, although A* is optimally efficient in terms of node expansions, it is
not necessarily optimal with respect to wall time. They found that the benefitof managing smaller
open lists enabled the Anytime weighted A* algorithm to outperform A* in wall time even though
it expanded more nodes when converging to the optimal solution. As we describe in Section 9, this
good single thread performance may also be caused by speculative expansions and pruning.

4.6.3 COOORDINATION OVERHEAD

Our third hypothesis was that the amount of time that each algorithm spent on “coordination over-
head” might differ. Both parallel algorithms must spend some of their time accessing data structures
shared among multiple threads. This can cause overhead in two places. Thefirst place where coor-
dination overhead can be seen is in the synchronization of access to shared data structures. PBNF
has two modes of locking thenblock graph. First, if a thread has ownership of annblock with open
nodes that remain to be expanded then it will usetry lock because there is work that could be
done if it fails to acquire the lock. Otherwise, if there are no nodes that the thread could expand
then it attempt to acquire the lock on thenblock graph using the normal operation that blocks on
failure. AHDA* will use atry lock on its receive queue at each expansion where it has nodes
on this queue and on its open list. In our implementation AHDA* will only use the blocking lock
operation when a thread has no nodes remaining to expand but has nodesremaining in its send or
receive buffers.

The second place where overhead may be incurred is when threads have no nodes to expand.
In PBNF this occurs when a thread exhausts its currentnblock and there are no freenblocks to
acquire. The thread must wait until a newnblock becomes free. In AHDA* if no open nodes map
to a thread then it may have no nodes to expand. In this situation the thread will busy-wait until a
node arrives on its receive queue. In either situation, locking or waiting,there is time that is wasted
because threads are not actively searching the space.

When evaluating coordination overhead, we combine the amount of time spentwaiting on a
lock and the amount of time waiting without any nodes to expand. Figure 13 shows the per-thread
coordination times for locks, waiting and the sum of the two normalized to the total wall time.
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Figure 13: Per-thread ratio of coordination time to wall time on unit-cost four-way pathfinding (top)
and the 15-puzzle (bottom).

Unlike the previous set of boxplots, individual data points residing at the extremes are not signified
by circles in order to improve readability. The “Locks” column of this plot shows the distribution
of times spent by each thread waiting on a lock, the “Wait” column shows the distribution of times
that threads spent waiting without any nodes available to expand and the “Sum” column shows the
distribution of the sum of the mean lock and wait times.

The left side of Figure 13 shows the results for grid pathfinding. From “Locks” column we see
that threads in AHDA* spent almost no time acquiring locks. This is expected because AHDA*
uses asynchronous communication. It appears that the amount of time that threads in PBNF spent
acquiring locks was significantly greater than that of AHDA*. The “Wait” column of this plot
shows that both PBNF and AHDA* appeared to have threads spend nearly the same amount of time
waiting without any nodes to expand. Finally, the “Sum” column shows that the threads in PBNF
spent more time overall coordinating between threads.

The bottom half of Figure 13 shows the coordination overhead for the 15-puzzle domain. Again,
we see that threads in AHDA* spent almost no time acquiring a lock. Individual threads in PBNF,
however, tended to spend a larger fraction of their time waiting on locks in the sliding tiles domain
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than in grid pathfinding. In the “Wait” column of this figure we can see that AHDA* spent more
time than PBNF without any nodes to expand. Finally, we see that, over all, PBNF spent more time
coordinating between threads than AHDA*.

Overall our experiments have verified that our first two hypotheses thatPBNF expanded better
quality nodes than AHDA* and that it spent less time performing priority queueoperations than
AHDA*. We also found that our third hypothesis did not hold and that threads in PBNF tended to
have more coordination overhead that AHDA* but this seems to be out-weighed by the other two
factors.

4.7 Summary

In this section we have shown the results of an empirical evaluation of optimal parallel best-first
search algorithms. We have shown that several simple parallel algorithms can actually be slower
than a serial A* search even when offered more computing power. Additionally we showed empir-
ical results for a set of algorithms that make good use of parallelism and do outperform serial A*.
Overall the Safe PBNF algorithm gave the best and most consistent performance of this latter set of
algorithms. Our AHDA* variant of PRA* had the second fastest mean performance in all domains.

We have also shown that using abstraction in a PRA* style search to distributenodes among
the different threads can give a significant boost in speed by reducing the amount of communica-
tion. This modification to PRA* appears to be a lot more helpful than simply using asynchronous
communication. Using both of these improvements in conjunction (AHDA*), yieldsa competitive
algorithm that has the additional feature of not relying on shared memory.

Finally, we performed a set of experiments in an attempt to explain why Safe PBNF tended to
give better search performance than AHDA*. Our experiments looked atthree factors: node quality,
open list sizes and thread-coordination overhead. We concluded that PBNF is faster because it
expands fewer nodes with suboptimalf values and it takes less time to perform priority queue
operations.

5. Bounded Suboptimal Search

Sometimes it is acceptable or even preferable to search for a solution that is not optimal. Suboptimal
solutions can often be found much more quickly and with lower memory requirements than optimal
solutions. In this section we show how to create bounded-suboptimal variants of some of the best
optimal parallel search algorithms.

Weighted A* (Pohl, 1970), a variant of A* that orders its search onf ′(n) = g(n) + w · h(n),
with w > 1, is probably the most popular suboptimal search. It guarantees that, foran admissible
heuristich and a weightw , the solution returned will bew -admissible (within aw factor of the
optimal solution cost) (Davis, Bramanti-Gregor, & Wang, 1988).

It is possible to modify AHDA*, BFPSDD, and PBNF to use weights to find suboptimal so-
lutions, we call these algorithms wAHDA*, wBFPSDD and wPBNF. Just as in optimal search,
parallelism implies that a strictf ′ search order will not be followed. The proof of weighted A*’s
w -optimality depends crucially on following a strictf ′ order, and for our parallel variants we must
prove the quality of our solution by either exploring or pruning all nodes. Thus finding effective
pruning rules can be important for performance. We will assume throughout thath is admissible.
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5.1 Pruning Poor Nodes

Let s be the current incumbent solution andw the suboptimality bound. A noden can clearly be
pruned iff (n) ≥ g(s). But according to the following theorem, we only need to retainn if it is on
the optimal path to a solution that is a factor ofw better thans. This is a much stronger rule.

Theorem 4 We can prune a noden if w · f (n) ≥ g(s) without sacrificingw -admissibility.

Proof: If the incumbent isw -admissible, we can safely prune any node, so we consider the case
whereg(s) > w ·g(opt), whereopt is an optimal goal. Note that without pruning, there always exists
a nodep in some open list (or being generated) that is on the best path toopt. Let f ∗ be the cost of an
optimal solution. By the admissibility ofh and the definition ofp,w ·f (p) ≤ w ·f ∗(p) = w ·g(opt).
If the pruning rule discardsp, that would implyg(s) ≤ w · f (p) and thusg(s) ≤ w · g(opt), which
contradicts our premise. Therefore, an open node leading to an optimal solution will not be pruned
if the incumbent is notw -admissible. A search that does not terminate until open is empty will not
terminate until the incumbent isw -admissible or it is replaced by an optimal solution. 2

We make explicit a useful corollary:

Corollary 2 We can prune a noden if f ′(n) ≥ g(s) without sacrificingw -admissibility.

Proof: Clearlyw · f (n) ≥ f ′(n), so Theorem 4 applies. 2

With this corollary, we can use a pruning shortcut: when the open list is sorted on increasingf ′ and
the node at the front hasf ′ ≥ g(s), we can prune the entire open list.

5.2 Pruning Duplicate Nodes

When searching with an inconsistent heuristic, as in weighted A*, it is possible for the search to
find a better path to an already-expanded state. Likhachev, Gordon, and Thrun (2003) noted that,
provided that the underlying heuristic functionh is consistent, weighted A* will still return aw -
admissible solution if these duplicate states are pruned during search. This ensures that each state
is expanded at most once during the search. Unfortunately, their proofdepends on expanding in
exactly best-first order, which is violated by several of the parallel search algorithms we consider
here. However, we can still prove that some duplicates can be dropped.Consider the expansion
of a noden that re-generates a duplicate stated that has already been expanded. We propose the
following weak duplicate dropping criterion: the new copy ofd can be pruned if the oldg(d) ≤
g(n) + w · c∗(n, d), wherec∗(n, d) is the optimal cost from noden to noded .

Theorem 5 Even if the weak dropping rule is applied, there will always be a nodep from an optimal
solution path onopensuch thatg(p) ≤ w · g∗(p).
Proof: We proceed by induction over iterations of search. The theorem clearly holds after expansion
of the initial state. For the induction step, we note that nodep is only removed fromopenwhen it
is expanded. If its childpi that lies along the optimal path is added toopen, the theorem holds. The
only way it won’t be added is if there exists a previous duplicate copyp ′i and the pruning rule holds,
i.e.,g(p ′i) ≤ g(pi−1) +w · c∗(pi−1, pi). By the inductive hypothesis,g(pi−1) ≤ w · g∗(pi−1), and
by definitiong∗(pi−1) + c∗(pi−1, pi) = g∗(pi), so we haveg(p ′i) ≤ w · g∗(p ′i). 2

Note that the use of this technique prohibits using the global minimumf value as a lower bound on
the optimal solution’s cost, becauseg values can now be inflated by up to a factor ofw . However,
if s is the incumbent and we search until the global minimumf ′ value is≥ g(s), as in a serial
weighted A* search, thenw -admissibility is assured:
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Corollary 3 If the minimumf ′ value is≥ g(s), wheres is the incumbent, then we haveg(s) ≤
w · g∗(opt)

Proof: Recall nodep from Theorem 5.g(s) ≤ f ′(p) = g(p) + w · h(p) ≤ w · (g∗(p) + h(p)) ≤
w · g∗(opt). 2

It remains an empirical question whether pruning on this rather weak criterion will lead to better
performance in practice. Our results indicate that it does provide an advantage in the grid pathfinding
domain. Results are presented in Section 6.1. It should be noted that, while extra pruning can
preservew -admissibility, it may result in solutions of lower quality than those resulting from search
without pruning.

5.3 Optimistic Search

Korf (1993) showed that weighted A* typically returns solutions that are better than the bound,w ,
would suggest. To take advantage of this, Thayer and Ruml (2008) use an optimistic approach to
bounded suboptimal search that works in two stages: aggressive search using a weight that is greater
than the desired optimality bound to find an incumbent solution and then a cleanupphase to prove
that the incumbent is indeed within the bound. The intuition behind this approachis that wA* can
find a solution within a very tight bound (much tighter thanw ·g(opt)), then the search can continue
looking at nodes inf order until the bound can be proved. Thayer and Ruml show that, indeed,
this approach can surpass the speed of wA* for a given optimality bound.We have implemented an
optimistic version of PBNF (oPBNF).

One of the requirements of oPBNF is that it must have access to the minimumf value over all
nodes in order to prove the bound on the incumbent solution. For the aggressive search stage, the
open lists and the heap of freenblocks are sorted onf ′ instead off so a couple of additions need to
be made. First, eachnblock has an additional priority queue containing the open search nodes sorted
on f . We call this queueopenf . The openf queue is simply maintained by adding and removing
nodes as nodes are added and removed from thef ′ ordered open list of eachnblock. Second, a
priority queue, called minf , of all of thenblocks is maintained, sorted on the lowestf value in each
nblock at the time of its last release. minf is used to track a lower bound on the minimumf value
over all nodes. This is accomplished by lazily updating minf only when annblock is released by
a thread. When a thread releases annblock, it sifts the releasednblock and its successors to their
new positions in the minf queue. These are the onlynblocks whose minimumf values could have
been changed by the releasing thread. Since the global minimumf value over all nodes is strictly
increasing (assuming a consistent heuristic) we have the guarantee that the f value at the front of
the minf queue is strictly increasing and is a lower bound on the global minimumf value at any
given time. Using this lower bound, we are able to prove whether or not an incumbent solution is
properly bounded.

oPBNF needs to decide when to switch between the aggressive search phase and the cleanup
phase of optimistic search. As originally proposed, optimistic search performs aggressive search
until the first incumbent is found then it switches between cleanup (whenf ′(n) ≥ g(s), wheren
is the best node based onf ′ ands is the incumbent solution) and aggressive search (whenf ′(n) <
g(s)) to hedge against the case when the current incumbent is not within the bound. In oPBNF,
we were left with a choice: switch between aggressive search and cleanup on a global basis or on
a per-nblock basis. We choose to switch on a per-nblock basis under the assumption that some
threads could be cleaning up areas of the search space with lowf values while other threads look
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for better solutions in areas of the search space with lowf ′ values. In oPBNF, when deciding if
onenblock is better than another (when deciding to switch or to set annblock to hot), the choice
is no longer based solely on the bestf ′ value of the givennblock, but instead it is based on thef ′

value first, then thef value to break ties of if the bestf ′ value is out of the bound of the incumbent.
When acquiring a newnblock, a thread takes either the freenblock with the bestf ′ value or bestf
value depending on whichnblock is better (where the notion of better is described in the previous
sentence). Finally, when expanding nodes, a thread selects aggressive search or cleanup based on
the same criteria as standard optimistic search for the nodes within the acquirednblock.

6. Empirical Evaluation: Bounded Suboptimal Search

We implemented and tested weighted versions of the parallel search algorithms discussed above:
wAHDA*, wAPRA*, wBFPSDD, wPBNF and oPBNF. All algorithms prune nodes based on the
w · f criterion presented in Theorem 4 and prune entire open lists onf ′ as in Corollary 2. Search
terminates when all nodes have been pruned by the incumbent solution. Ourexperiments were
run on the same three benchmark domains as for optimal search: grid pathfinding, the sliding tile
puzzle, and STRIPS planning.

6.1 Grid Pathfinding

Results presented in Table 2 show the performance of the parallel searchalgorithms in terms of
speedup over serial weighted A* on grid pathfinding problems. Duplicate states that have already
been expanded are dropped in the serial wA* algorithm, as discussed byLikhachev et al. (2003).

The rows of this table show the number of threads and different algorithms whereas the columns
are the weights used for various domains. Each entry shows the mean speedup over serial weighted
A*. We performed a Wilcoxon signed-rank test to determine which mean values were significantly
different; elements that are inbold represent values that were not significantly different (p < 0.05)
from the best mean value in the given column. In general, the parallel algorithms show increased
speedup as threads are added for low weights, and decreased speedup as the weight is increased.

In unit-cost four-way movement grids, for weights of 1.1, and 1.2 the wPBNF algorithm was
the fastest of all of the algorithms tested reaching over five times the speed ofwA* at a weight of
1.1 at and over 4.5x at a weight of 1.2 . At a weight of 1.4 wPBNF, wBFPSDD and wAHDA* did
not show a significant difference in performance at 8 threads. wAHDA* had the best speed up of
all algorithms at a weight of 1.8. wAPRA* never gave the best performancein this domain.

In eight-way movement grids wPBNF gave the best performance for a weight of 1.1 and 1.4,
although in the latter case this best performance was a decrease over the speed of wA* and it was
achieved at 1 thread. wAHDA* was the fastest when the weight was 1.2, however, this did not scale
as expected when the number of threads was increased. Finally wAPRA* gave the least performance
decrease over weighted A* at a weight of 1.8 with 1 thread. In this case, all algorithms were slower
than serial weighted A* but wAPRA* gave the closest performance to the serial search. wBFPSDD
never gave the best performance in this domain.

In the life-cost domain wPBNF outperformed all other algorithms for weights 1.1, 1.2 and 1.4.
At weight 1.8, wPBNF’s performance quickly dropped, however and wAHDA* had the best results
with more than a 4x speedup over wA*, although the performance appearsto have been very in-
consistent as it is not significantly different from much lower speedup values for the same weight.
wAPRA* never gave the best performance in this domain.

722



BEST-FIRST SEARCH FORMULTICORE MACHINES

th
re

ad
s

weight
Unit Four-way Grids

1.1 1.2 1.4 1.8

w
P

B
N

F

1 0.98 0.91 0.51 0.73
2 1.74 1.65 1.07 0.87
3 2.47 2.33 1.62 0.89
4 3.12 2.92 2.13 0.90
5 3.76 3.52 2.48 0.91
6 4.30 3.99 2.80 0.89
7 4.78 4.40 3.01 0.88
8 5.09 4.66 3.11 0.87

w
B

F
P

S
D

D

1 0.82 0.84 0.96 0.94
2 1.26 1.26 1.45 0.91
3 1.65 1.65 1.90 0.84
4 1.93 1.92 2.09 0.79
5 2.24 2.24 2.36 0.75
6 2.51 2.51 2.58 0.71
7 2.73 2.69 2.63 0.67
8 2.91 2.84 2.68 0.63

w
A

H
D

A
*

1 0.87 0.79 0.32 0.56
2 1.35 1.17 0.63 0.84
3 1.90 1.69 1.30 1.30
4 2.04 2.10 1.57 1.30
5 1.77 2.08 1.79 0.97
6 3.23 3.03 2.18 1.33
7 3.91 3.78 2.56 1.30
8 3.79 3.64 3.02 1.13

w
A

P
R

A
*

1 0.88 0.81 0.32 0.56
2 0.51 0.44 0.22 0.36
3 0.36 0.32 0.20 0.26
4 0.50 0.44 0.30 0.41
5 0.55 0.56 0.39 0.48
6 0.52 0.49 0.31 0.30
7 0.73 0.67 0.40 0.36
8 1.09 1.07 0.82 0.77

Unit Eight-way Grids
1.1 1.2 1.4 1.8
0.93 1.37 0.73 0.74
1.65 1.82 0.57 0.66
2.36 1.77 0.55 0.61
2.97 1.72 0.53 0.58
3.55 1.67 0.52 0.56
4.04 1.61 0.50 0.54
4.40 1.55 0.49 0.51
4.70 1.49 0.45 0.46
0.87 0.79 0.43 0.33
1.37 1.10 0.43 0.35
1.80 1.22 0.41 0.33
2.13 1.25 0.42 0.33
2.47 1.31 0.39 0.32
2.74 1.21 0.36 0.30
2.94 1.26 0.34 0.29
3.10 1.23 0.32 0.26
0.79 1.10 0.66 0.76
1.04 1.99 0.62 0.61
2.08 2.93 0.64 0.62
2.48 2.84 0.56 0.54
2.49 2.52 0.42 0.41
3.73 2.83 0.49 0.45
4.45 2.89 0.45 0.41
4.39 2.58 0.37 0.38
0.80 1.11 0.67 0.77
0.35 0.69 0.31 0.28
0.41 0.65 0.23 0.22
0.43 0.73 0.22 0.19
0.49 0.87 0.23 0.19
0.50 0.65 0.16 0.14
0.62 0.73 0.17 0.14
0.89 1.38 0.28 0.22

Life Four-way Grids
1.1 1.2 1.4 1.8
0.65 0.66 0.84 0.67
1.15 1.17 1.59 0.39
1.65 1.67 2.32 0.39
2.08 2.10 2.96 0.49
2.53 2.55 3.63 1.49
2.94 2.95 4.20 1.64
3.31 3.33 4.63 2.12
3.61 3.64 5.11 1.06
0.52 0.53 0.58 0.60
0.83 0.83 0.92 0.76
1.10 1.09 1.26 0.84
1.29 1.29 1.48 0.89
1.53 1.51 1.61 0.93
1.73 1.72 1.78 0.93
1.91 1.89 1.94 0.91
2.06 2.03 2.10 0.85
0.56 0.55 0.71 0.22
0.88 0.86 1.29 0.32
1.09 1.39 1.86 0.56
1.60 1.64 2.24 0.56
1.88 1.92 2.58 0.41
2.15 2.17 3.02 1.50
2.39 2.41 3.50 1.07
2.38 2.42 3.55 4.16
0.56 0.56 0.72 0.23
0.35 0.34 0.46 0.12
0.23 0.26 0.32 0.10
0.42 0.43 0.55 0.16
0.54 0.56 0.67 0.20
0.39 0.39 0.49 0.13
0.49 0.49 0.65 0.18
1.00 0.98 1.22 0.42

Table 2: Grid Pathfinding: Average speedup over serial weighted A* for various numbers of
threads.
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threads wPBNF wBFPSDD
1.4 1.7 2.0 3.0 1.4 1.7 2.0 3.0

1 0.68 0.44 0.38 0.69 0.65 0.61 0.44 0.35
2 1.35 0.81 1.00 0.63 0.87 0.74 0.49 0.43
3 1.48 0.97 0.85 0.56 1.05 0.72 0.63 0.46
4 1.70 1.20 0.93 0.60 1.09 1.00 0.57 0.45
5 2.04 1.38 0.97 0.74 1.27 0.97 0.65 0.40
6 2.16 1.30 1.19 0.67 1.33 1.17 0.61 0.39
7 2.55 1.46 1.04 0.62 1.49 1.10 0.59 0.34
8 2.71 1.71 1.10 0.60 1.53 1.08 0.62 0.33

threads wAHDA* wAPRA*
1.4 1.7 2.0 3.0 1.4 1.7 2.0 3.0

1 0.61 0.60 0.59 0.54 0.61 0.59 0.59 0.54
2 1.18 1.11 1.32 0.78 1.18 1.08 1.36 0.78
3 1.53 1.30 1.40 0.73 1.45 1.25 1.32 0.78
4 1.91 1.57 1.55 0.74 1.77 1.50 1.36 0.62
5 2.33 1.70 1.27 0.66 2.32 1.62 1.26 0.64
6 2.28 1.72 1.24 0.52 2.18 1.54 1.83 0.47
7 2.71 1.50 1.03 0.44 2.63 1.40 1.09 0.43
8 2.70 1.51 1.24 0.44 2.34 1.61 1.22 0.41

Table 3: 15-puzzle: Average speedup over serial weighted A* for various numbers of threads.

Unit Four-way Grids Unit Eight-way Grids 250 easy 15-puzzles
threads 1.1 1.2 1.4 1.8 1.1 1.2 1.4 1.8 1.4 1.7 2.0 3.0

1 0.54 0.99 0.74 0.47 0.74 0.76 0.09 0.05 0.56 0.58 0.77 0.60
2 0.99 2.00 1.05 0.45 1.26 0.71 0.09 0.05 0.85 1.07 0.83 0.72
3 1.40 2.89 1.19 0.45 1.64 0.70 0.09 0.05 1.06 0.94 0.79 0.80
4 1.76 3.62 1.26 0.44 1.90 0.69 0.09 0.05 1.01 0.82 0.93 0.69
5 2.11 4.29 1.33 0.43 2.09 0.68 0.08 0.05 1.20 1.21 0.97 0.74oP

B
N

F

6 2.43 4.84 1.35 0.44 2.21 0.68 0.08 0.05 1.32 0.83 0.99 0.67
7 2.70 5.44 1.37 0.43 2.29 0.67 0.08 0.04 1.14 0.93 0.88 0.71
8 2.97 6.01 1.39 0.42 2.30 0.67 0.08 0.04 1.33 0.87 0.81 0.64

Table 4: Average speedup over serial optimistic search for various numbers of threads.
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Overall, we see that wPBNF often had the best speedup results at eight threads and for weights
less than 1.8. wAHDA*, however, gave the best performance at a weight of 1.8 across all grid
pathfinding domains. wBFPSDD often gave speedup over serial weightedA*, however it was not
quite as competitive as wPBNF or wAHDA*. wAPRA* was only very rarely able to outperform
the serial search.

Table 4 shows the results for the optimistic variant of the PBNF algorithm (oPBNF). Each cell
in this table shows the mean speedup of oPBNF over serial optimistic search. Once again, thebold
cells entries that are not significantly different from the best value in the column. For unit-cost
four-way pathfinding problems oPBNF gave a performance increase over optimistic search for two
or more threads and for all weights less than 1.8. At a weight of 1.2, oPBNFtended to give the
best speedup, this may be because optimistic search performed poorly at this particular weight. In
unit-cost eight-way pathfinding, we see that oPBNF performs comparablyto the unit-cost domain
for a weight of 1.1, however, at all higher weights the algorithm is slower than serial optimistic
search.

6.2 Sliding Tile Puzzles

For the sliding tiles domain, we used the standard Korf 100 15-puzzles (Korf, 1985). Results are
presented in Table 3. wPBNF, wAHDA* and wAPRA* tended to give comparable performance in
the sliding tile puzzle domain each having values that are not significantly different for weights of
1.4 and 1.7. At a weight of 3.0, wAHDA* gave the least performance decrease over weighted A* at
2 threads.

The right-most column of Table 4 shows the results for optimistic PBNF on 250 15-puzzle
instances that were solvable by A* in fewer than 3 million expansions. oPBNFgave its best perfor-
mance at a weight of 1.4. For weights greater than 1.4 oPBNF was unable to outperform its serial
counterpart. For greater weights oPBNF tended to perform better with smaller numbers of threads.

One trend that can be seen in both the sliding tiles domain and the grid pathfindingdomain is
that the speedup of the parallel algorithms over serial suboptimal search decreases as the weight is
increased. We suspect that the decrease in relative performance is due to the problems becoming
sufficiently easy (in terms of node expansions) that the overhead for parallelism becomes harmful
to overall search. In problems that require many node expansions the cost of parallelism (additional
expansions, spawning threads, synchronization – albeit small, waiting forthreads to complete, etc.)
is amortized by the search effort. In problems that require only a small number of expansions,
however, this overhead accounts for more of the total search time and a serial algorithm could
potentially be faster.

To confirm our understanding of the effect of problem size on speedup, Figure 14 shows a com-
parison of wPBNF to weighted A* on all of the 100 Korf 15-puzzle instances using eight threads.
Each point represents a run on one instance at a particular weight, the y-axis represents wPBNF
speedup relative to serial wA*, and the x-axis represents the number ofnodes expanded by wA*.
Different glyphs represents different weight values used for both wPBNF and wA*. The figure
shows that, while wPBNF did not outperform wA* on easier problems, the benefits of wPBNF over
wA* increased as problem difficulty increased. The speed gain for the instances that were run at
a weight of 1.4 (the lowest weight tested) leveled off just under 10 times faster than wA*. This is
because the machine has eight cores. There are a few instances that seem to have speedup greater
than 10x. These can be explained by the speculative expansions that wPBNF performs which may
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Sliding Tiles wPBNF v.s. wA*
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Figure 14: wPBNF speedup over wA* as a function of problem difficulty.

find a bounded solution faster than weighted A* due to the pruning of more nodes withf ′ values
equal to that of the resulting solution. The poor behavior of wPBNF for easy problems is most
likely due to the overhead described above. This effect of problem difficulty means that wPBNF
outperformed wA* more often at low weights, where the problems required more expansions, and
less often at higher weights, where the problems were completed more quickly.

6.3 STRIPS Planning

Table 5 shows the performance of the parallel search algorithms on STRIPS planning problems,
again in terms of speedup versus serial weighted A*. In this table columns represent various weights
and the rows represent different planning problems with two and seven threads.Bold values rep-
resent table entries that are within 10% of the the best performance for thegiven domain. All
algorithms had better speedup at seven threads than at two. wPBNF gave the best speedup for the
most number of domains followed by wAHDA* which was the fastest for threeof the domains at
seven threads. At two threads there were a couple of domains (satellite-6 and freecell-3) where
wBFPSDD gave the most speedup, however it never did at seven threads. wAPRA* was always
slower than the three remaining algorithms. On one problem, freecell-3, serial weighted A* per-
forms much worse as the weight increases. Interestingly, wPBNF and wBFPSDD do not show this
pathology, and thus record speedups of up to 1,700 times.

6.4 Summary

In this section, we have seen that bounded suboptimal variants of the parallel searches can give
better performance than their serial progenitors. We have also shown that, on the sliding tile puzzle,
parallel search gives more of an advantage over serial search as problem difficulty increases and we
suspect that this result holds for other domains too. We suspect that this isbecause the overhead of
using parallelism is not amortized by search time for very easy problems.
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wAPRA* wAHDA*
1.5 2 3 5 1.5 2 3 5

logistics-8 0.99 1.02 0.59 1.37 1.25 1.11 0.80 1.51
blocks-16 1.29 0.88 4.12 0.30 1.52 1.09 4.86 0.38
gripper-7 0.76 0.76 0.77 0.77 1.36 1.35 1.33 1.30
satellite-6 0.68 0.93 0.70 0.75 1.15 1.09 1.28 1.44

2
th

re
ad

s

elevator-12 0.65 0.72 0.71 0.77 1.16 1.20 1.27 1.22
freecell-3 1.03 1.00 1.78 1.61 1.49 1.20 7.56 1.40
depots-13 0.73 1.25 0.97 1.08 0.92 1.29 0.96 1.09
driverlog-11 0.91 0.79 0.94 0.93 1.30 0.97 0.96 0.93
gripper-8 0.63 0.61 0.62 0.62 1.14 1.16 1.15 1.16
logistics-8 3.19 3.10 3.26 2.58 4.59 4.60 3.61 2.58
blocks-16 3.04 1.37 1.08 0.37 3.60 1.62 0.56 0.32
gripper-7 1.71 1.74 1.73 1.82 3.71 3.66 3.74 3.83
satellite-6 1.11 1.01 1.29 1.44 3.22 3.57 3.05 3.60

7
th

re
ad

s

elevator-12 0.94 0.97 1.04 1.02 2.77 2.88 2.98 3.03
freecell-3 3.09 7.99 2.67 2.93 4.77 2.71 48.66 4.77
depots-13 2.38 5.36 1.13 1.17 2.98 6.09 1.22 1.17
driverlog-11 1.90 1.25 0.93 0.92 3.52 1.48 0.95 0.92
gripper-8 1.70 1.68 1.68 1.74 3.71 3.63 3.67 4.00

wPBNF wBFPSDD
1.5 2 3 5 1.5 2 3 5

logistics-8 2.68 2.27 4.06 1.00 1.86 2.12 1.14 0.15
blocks-16 0.93 0.54 0.48 1.32 0.34 0.19 0.16 0.32
gripper-7 2.01 1.99 1.99 2.02 1.91 1.89 1.86 1.84
satellite-6 2.02 1.53 5.90 3.04 1.71 2.22 7.50 2.80

2
th

re
ad

s

elevator-12 2.02 2.08 2.21 2.15 1.76 1.76 1.81 2.18
freecell-3 2.06 0.84 8.11 10.69 1.42 0.54 16.88 55.75
depots-13 2.70 4.49 0.82 0.81 1.48 1.58 0.18 0.14
driverlog-11 0.85 0.19 0.69 0.62 0.85 0.11 0.19 0.21
gripper-8 2.06 2.04 2.08 2.07 2.00 1.96 1.97 1.98
logistics-8 7.10 6.88 1.91 0.46 3.17 3.59 0.62 0.10
blocks-16 2.87 0.70 0.37 1.26 0.49 0.22 0.11 0.32
gripper-7 5.67 5.09 5.07 5.18 4.33 4.28 4.14 4.05
satellite-6 4.42 2.85 2.68 5.89 3.13 2.31 3.01 1.05

7
th

re
ad

s

elevator-12 6.32 6.31 6.60 7.10 3.68 3.78 4.04 3.95
freecell-3 7.01 2.31 131.12 1,721.33 2.12 0.70 44.49 137.19
depots-13 3.12 1.80 0.87 0.88 1.88 1.87 0.15 0.12
driverlog-11 1.72 0.43 0.67 0.42 1.26 0.21 0.30 0.23
gripper-8 5.85 5.31 5.40 5.44 4.62 4.55 4.55 4.51

Table 5: Speed-up over serial weighted A* on STRIPS planning problemsfor various weights.
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7. Anytime Search

A popular alternative to bounded suboptimal search is anytime search, in which a highly suboptimal
solution is returned quickly and then improved solutions are returned over timeuntil the algorithm
is terminated (or the incumbent solution is proved to be optimal). The two most popular anytime
heuristic search algorithms are Anytime weighted A* (AwA*) (Hansen & Zhou, 2007) and anytime
repairing A* (ARA*) (Likhachev, Gordon, & Thrun, 2003). In AwA*a weighted A* search is
allowed to continue after finding its first solution, pruning when the unweighted f (n) ≥ g(s) where
s is an incumbent solution andn is a node being considered for expansion. ARA* uses a weighted
search where the weight is lowered when a solution meeting the current suboptimality bound has
been found and a specialINCONSlist is kept that allows the search to expand a node at most once
during the search at each weight.

In this section we present anytime versions of the best performing parallelsearches from our
previous sections. We used the PBNF framework to implement Anytime weighted PBNF (Aw-
PBNF) and Anytime Repairing PBNF (ARPBNF). We use the PRA* frameworkto create anytime
weighted AHDA* (AwAHDA*). We also show the performance of a very simple algorithm that
runs parallel weighted A* searches with differing weights. In the planningdomain, we have imple-
mented anytime weighted BFPSDD (AwBFPSDD) for comparison as well.

Because our parallel searches inherently continue searching after their first solutions are found,
they serve very naturally as anytime algorithms in the style of Anytime weighted A*.The main
difference between the standard, optimal versions of these algorithms andtheir anytime variants is
that the anytime versions will sort all open lists and the heap of freenblocks onf ′(n) = g(n) +
w · h(n). In fact, in both cases the optimal search is a degenerate case of the anytimesearch
wherew = 1. This approach (simply usingw > 1) is used to implement all algorithms except for
ARPBNF and multi-weighted A*.

Next, we will discuss the details of the ARPBNF algorithm. Following that, we introduce a
new parallel anytime algorithm called multi-weighted A*. Finally, we show the results of a set of
comparisons that we performed on the anytime algorithms discussed in these sections.

7.1 Anytime Repairing PBNF

ARPBNF is a parallel anytime search algorithm based on ARA* (Likhachev et al., 2003). In
ARPBNF, open lists and the heap ofnblocks are sorted onf ′ as in AwPBNF, but instead of merely
continuing the search until the incumbent is proved optimal, ARPBNF uses a weight schedule. Each
time an incumbent is found, the weight on the heuristic value is lowered by a specified amount, all
open lists are resorted and the search continues. On the final iteration, theweight will be1.0 and
the optimal solution will be found.

The following procedure is used to resort thenblocks in parallel between incumbent solutions:

1. The thread calling for a resort (the one that found a goal) becomes theleader by taking the
lock on thenblock graph and setting theresort flag. (If the flag has already been set, then
another thread is already the leader and the current thread becomes a worker). After the flag
is set the leader thread releases the lock on thenblock graph and waits for allnblocks to have
σ values of zero (nonblocks are acquired).

2. Threads check theresort flageach expansion, if it is set then threads release theirnblocks and
become worker threads and wait for the leader to set thestart flag.
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3. Once allnblocks haveσ = 0, the leader re-takes the lock on thenblock graph and ensures
that allσ values are still zero (if not, then it releases the lock and retries). The leader sets
the global weight value to the next weight on the weight schedule and populates a lock-free
queue with allnblocks. Once the queue has been populated, the leader sets thestart flag.

4. All threads greedily dequeuenblocks and resort them until the queue is empty.

5. When allnblocks have been resorted, the leader thread clears theresort flagand thestart flag
and releases the lock on thenblock graph. All threads will now acquire newnblocks and the
search will continue.

We modeled this procedure in TLA+ and showed it to be live-lock and dead-lock free for up to
4 threads and 5 nblocks by the use of the TLC model checker (Yu et al., 1999). This model is very
simple so we do not include it in an appendix.

7.2 Multi-weighted A*

In this section we introduce a new and simple parallel anytime algorithm called multi-weighted A*.
The PBNF and PRA* frameworks for parallelizing anytime algorithms can be thought of as one
end on a spectrum of parallel anytime algorithms. In PBNF and PRA* all threads are working on
finding a single solution of a given quality; on the opposite end of the spectrum each thread would
be working to find its own solution. To compare to an algorithm at that end of thespectrum we
implemented an algorithm we call multi-weighted A* that allocates its available threadsto their own
weighted A* searches. The thread that finishes first will generally be thethread that was searching
at the greatest weight and therefore the solution will be of the worst quality. The next thread to
finish will have the next greatest weight, and so on. The final thread to complete will generally be
searching at a weight of 1.0, performing a standard A* search, and willreturn the optimal solution.

The algorithm is given a schedule of weighs in decreasing order. The largest weights in the
schedule are distributed among the available threads. The threads begin searching using wA* with
their given weight values. When a thread finds a new solution that is better than the current one,
it updates the incumbent that is shared between all threads to allow for pruning. When a thread
finds a better incumbent solution, it will bew -admissible with respect to the weight the thread was
searching with. If a thread finishes (either finding a solution or pruning its entire open list), it takes
the highest unclaimed weight from the schedule and starts a fresh searchusing that weight. If there
are no weights left in the schedule, the thread terminates. When all threads have terminated, the
search is complete. If the final weight in the schedule is 1.0, then the last solution found will be
optimal.

One of the benefits of multi-weighted A* is that it is a very simple algorithm to implement.
However, as we will see below, it doesn’t benefit much from added parallelism. A reason for
this may be because, when the weight schedule is exhausted (a thread is searching with the lowest
weight, 1.0) threads that complete their searches will sit idle until the entire search terminates. Since
the final weight will take the longest, this may be a majority of the search time. A moredynamic
schedule could be used to keep threads busy until the optimal solution is found. One could also
attempt to use more threads at once by using some multi-threaded search at each weight, such as
wPBNF or wAHDA*. We leave these extensions for future work.
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Figure 15: Raw data profiles (top) and lower hull profiles (bottom) for AwA* (left), AwPBNF (cen-
ter), and ARA* (right). Grid unit-cost four-way pathfinding.

8. Empirical Evaluation: Anytime Search

The implementation and empirical setup was similar to that used for suboptimal search. For ARA*,
ARPBNF and Multi-wA* we considered four different weight schedules: {7.4, 4.2, 2.6, 1.9, 1.5,
1.3, 1.1, 1}, {4.2, 2.6, 1.9, 1.5, 1.3, 1.1, 1.05, 1}, {3, 2.8, . . . , 1.2, 1}, {5, 4.8, . . . , 1.2, 1}. For AwA*
and the other anytime parallel algorithms we consider weights of: 1.1, 1.2, 1.4,1.8 and 3.4 for grid
pathfinding and 1.4, 1.7, 2.0, 3.0 and 5.0 for the sliding tiles domain. To fully evaluate anytime
algorithms, it is necessary to consider their performance profile, i.e., the expected solution quality
as a function of time. While this can be easily plotted, it ignores the fact that the anytime algorithms
considered in this paper all have a free parameter, namely the weight or schedule of weights used
to accelerate the search. In order to compare algorithms, we make the assumption that, in any
particular application, the user will attempt to find the parameter setting giving good performance
for the timescale they are interested in. Under this assumption, we can plot the performance of each
anytime algorithm by computing, at each time point, the best performance that was achieved by any
of the parameter settings tried for that algorithm – that is minimum solution cost over all parameter
settings for a given algorithm up to the given time point. We refer to this concept as the ‘lower hull’
of the profiles, because it takes the minimum over the profiles for each parameter setting.
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Figure 16: Grid unit-cost four-way pathfinding lower hull anytime profiles.

The top row of Figure 15 shows an example of the raw data for three algorithms on our
5000x5000 unit-cost four-way grid pathfinding problems. The y-axis of these plots is the solu-
tion quality as a factor of optimal and the x-axis is the wall clock time relative to the amount of
time A* took to find an optimal solution. The bottom row of this figure shows the lower hull for the
respective data displayed above. By comparing the two images on the left that display the data for
the AwA* algorithm, one can see that the three big “steps” in the lower hull plotis where a differ-
ent weight is used in the hull because it has found a better solution for the same time bound. The
center panel in Figure 15 shows that the AwPBNF algorithm gives a similar performance to AwA*,
however it is often faster. This is not surprising since AwPBNF is based on the AwA* approach and
it is running at eight threads instead of one. The final panel in Figure 15shows ARA*, which uses
weight schedules instead of a single weight.

Figures 16-17 present the lower hulls of both serial and parallel algorithms on grid pathfinding
and the sliding tile puzzle. In each panel, the y-axis represents solution cost as a factor of the optimal
cost. In Figure 16 the x-axis represents wall time relative to the amount of time that serial A* took to
find an optimal solution. This allows for a comparison between the anytime algorithms and standard
serial A*. Since A* is not able to solve all of Korf’s 100 15-puzzle instances on this machine, the
x-axis in Figure 17 is the absolute wall time in seconds. Both serial and parallel algorithms are
plotted. The profiles start when the algorithm first returns a solution and ends when the algorithm
has proved optimality or after a 180 second cutoff (since Multi-wA* can consume memory more
quickly than the other algorithms, we gave it a 120 second cutoff on the slidingtile puzzle to prevent
thrashing).

8.1 Four-Way Unit Cost Grids

Figure 16 shows the anytime performance for unit cost four-way movement grid pathfinding prob-
lems. AwAHDA* and AwPBNF found the best solutions quicker than the otheralgorithms. Both
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Figure 17: Korf’s 100 15-puzzles lower hull anytime profiles.

of these algorithms improved in the amount of time taken to find better solutions as more threads
were added. AwPBNF converged more quickly as more threads were added. Even at two threads
AwPBNF was the first algorithm to converge on the optimal solution in 60% of thetime of serial A*.
The next two algorithms are Multi-wA* and anytime repairing PBNF (ARPBNF).Multi-wA* con-
verged more quickly as threads were added, but its performance on finding intermediate solutions
did not change too much for different numbers of threads. ARPBNF, onthe other hand, took longer
to find good solutions for low thread counts, but as threads were added itstarted to perform better,
eventually matching Multi wA* at eight threads. Both of these algorithms improved the solution
quality more steadily than AwPBNF and AwAHDA* which had large jumps in their lower hulls.
Each of these jumps corresponds to the hull switching to a different weightvalue (compare with the
raw data for AwPBNF in Figure 15). All of the parallel algorithms found good solutions faster than
serial AwA* and serial ARA*. Some parallel algorithms, however, took longer to prove optimality
than AwA* in this domain.

8.2 Sliding Tile Puzzles

Figure 17 presents lower hulls for the anytime algorithms on Korf’s 100 instances of the 15-puzzle.
In this figure, the x-axes show the total wall clock time in seconds. These timesare not normalized to
A* because it is not able to solve all of the instances. In these panels, we see that AwAHDA* tended
to find good solutions faster than all other algorithms. AwA* and AwPBNF performed very similarly
at two threads and as the number of threads increased AwPBNF begun to find better solutions faster
than AwA*. ARPBNF took longer to find good solutions than AwPBNF and AwAHDA* but it
was able to find better solutions faster than its serial counterpart. The simple Multi wA* algorithm
performed the worst of the parallel algorithms. Increasing the number of threads used in Multi-wA*
did not seem to increase the solution quality. ARA* gave the worst performance in this domain; its
profile curve can be seen at the very top of these three panels.
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AwAPRA* AwAHDA*
1.5 2 3 5 1.5 2 3 5

logistics-6 1.09 1.06 1.40 1.40 1.23 1.21 1.59 1.66
blocks-14 1.36 7.76 56.41 >90.16 1.62 9.90 63.60 >110.16
gripper-7 0.78 0.77 0.76 0.75 1.35 1.33 1.32 1.33
satellite-6 0.77 0.78 0.78 0.76 1.26 1.23 1.24 1.23

2
th

re
ad

s

elevator-12 0.64 0.67 0.69 0.70 1.20 1.19 1.16 1.17
freecell-3 1.37 1.43 4.61 1.37 1.66 1.68 5.65 1.95
depots-7 1.24 1.30 1.30 2.68 1.51 1.51 1.50 3.18
driverlog-11 1.15 1.19 1.11 1.20 1.50 1.55 1.46 1.54
gripper-8 0.61 0.62 0.62 0.62 1.16 1.11 1.14 1.11
logistics-6 1.45 1.43 1.81 1.81 2.87 2.81 3.65 3.74
blocks-14 2.54 15.63 98.52 >177.08 3.30 19.91 132.97 >231.45
gripper-7 1.77 1.68 1.71 1.73 3.75 3.69 3.61 3.67
satellite-6 1.22 1.22 1.26 1.26 3.56 3.46 3.51 3.50

7
th

re
ad

s

elevator-12 0.93 0.93 0.95 0.94 2.77 2.75 2.79 2.77
freecell-3 3.64 3.75 11.59 4.44 5.00 4.97 16.36 21.57
depots-7 3.60 3.64 3.65 7.60 4.41 4.42 4.40 9.25
driverlog-11 3.04 3.20 3.05 3.17 4.74 4.82 4.66 4.87

AwPBNF AwBFPSDD
1.5 2 3 5 1.5 2 3 5

logistics-6 1.06 1.35 1.94 1.98 0.68 0.91 0.91 0.56
blocks-14 1.91 1.99 13.22 >22.36 1.02 1.18 7.71 >11.92
gripper-7 2.05 1.96 1.99 1.95 1.94 1.89 1.94 1.82
satellite-6 1.58 1.96 1.98 1.91 1.85 1.87 1.49 1.80

2
th

re
ad

s

elevator-12 2.01 2.07 2.13 2.07 1.74 1.74 1.75 1.69
freecell-3 1.93 1.06 2.78 6.23 1.45 1.46 1.97 3.08
depots-7 1.94 2.00 2.01 4.10 1.44 1.45 1.32 2.40
driverlog-11 1.95 2.10 1.99 0.77 1.73 1.78 1.59 1.41
gripper-8 2.04 2.05 2.09 2.06 2.01 2.00 1.98 1.96
logistics-6 2.04 2.46 4.19 4.21 1.02 1.35 1.37 0.92
blocks-14 3.72 22.37 25.69 >7.20 1.60 1.96 12.10 >19.94
gripper-7 5.61 5.05 5.03 5.06 4.30 4.24 4.16 3.96
satellite-6 5.96 4.66 5.74 4.70 4.10 3.54 4.16 3.88

7
th

re
ad

s

elevator-12 6.18 6.03 6.20 6.05 3.71 3.74 3.73 3.38
freecell-3 3.54 1.50 15.32 11.46 1.78 1.82 2.59 4.14
depots-7 5.74 5.52 5.48 10.84 2.02 1.96 1.92 3.68
driverlog-11 5.78 5.83 5.73 2.18 2.58 2.86 2.57 2.34

Table 6: Speed-up of anytime search to optimality over serial AwA* on STRIPS planning using
various weights.

8.3 STRIPS Planning

Table 6 shows the speedup of the parallel anytime algorithms over serial anytime A*. All algorithms
were run until an optimal solution was proved. (For a weight of 5, AwA* ran out of memory on
blocks-14, so our speedup values at that weight for that instance arelower bounds.) Thebold entries
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AwPBNF AwBFPSDD AwAPRA*
1.5 2 3 5 1.5 2 3 5 1.5 2 3 5

logistics-6 1.48 1.84 2.36 2.27 0.68 0.93 0.71 0.54 1.12 1.08 1.08 0.98
blocks-14 1.24 1.22 0.21 0.03 0.87 0.18 0.16 0.16 1.46 1.46 1.42 0.94
gripper-7 1.07 0.99 0.99 1.00 0.93 0.95 0.93 0.92 0.99 1.03 1.01 0.99
satellite-6 1.10 0.87 1.08 0.88 0.88 0.77 0.91 0.90 0.99 1.00 1.01 1.02
elevator-12 1.06 1.04 1.04 1.03 0.77 0.78 0.76 0.73 1.02 1.00 1.00 1.00

7
T

hr
ea

ds

freecell-3 1.05 0.44 0.99 0.29 0.64 0.64 0.20 0.14 1.13 1.16 0.82 0.10
depots-7 1.20 1.15 1.15 1.08 0.54 0.53 0.52 0.49 M M M M
driverlog-11 1.16 1.15 1.19 0.43 0.53 0.58 0.54 0.50 M M M M
gripper-8 1.06 0.99 0.99 1.00 0.99 0.98 0.99 0.97 M M M M

Table 7: Speed-up of anytime search to optimality over PBNF on STRIPS planning problems using
various weights.

in the table represent values that are within 10% of the best performance for the given domain.
For all algorithms, speedup over serial generally increased with more threads and a higher weight.
PBNF gave the fastest performance for all except two domains (blocks-14 and freecell-3). In these
two domains the AwAHDA* gave the best performance by at least a factor of 10x over AwPBNF.

Hansen and Zhou (2007) show that AwA* can lead to speedup over A* for some weight values
in certain domains. Finding a suboptimal solution quickly allowsf pruning that keeps the open list
short and quick to manipulate, resulting in faster performance even though AwA* expands more
nodes than A*. We found a similar phenomenon in the corresponding parallel case. Table 7 shows
speedup over unweighted optimal PBNF when using various weights for theanytime algorithms. A
significant fraction of the values are greater than 1, representing a speedup when using the anytime
algorithm instead of the standard optimal parallel search. In general, speedup seems more variable
as the weight increases. For a weight of 1.5, AwPBNF always providesa speedup.

8.4 Summary

In this part of the paper we have shown how to create some new parallel anytime search algorithms
based on the frameworks introduced in the previous sections. We have also created a new parallel
anytime algorithm that simply runs many weighted A* searches with differing weights. In our
experiments, we have seen that AwPBNF and AwAHDA* found higher quality solutions faster than
other algorithms and that they both showed improved performance as more threads were added.
Additionally, ARPBNF, a parallel algorithm that is based on ARA*, improved with more threads
and tended to give a smoother increase in solution quality than the former two algorithms, although
it did not find solutions quite as quickly and it was unable to converge on the optimal solution in
the sliding tiles domain within the given time limit. Running multiple weighted A* searches did
not give solutions faster as the number of threads increased, and its convergence performance was
mixed.

9. Discussion

We have explored a set of best-first search algorithms that exploit the parallel capabilities of modern
CPUs. First we looked at parallel optimal search with (Safe) PBNF, several variants of PRA* and a

734



BEST-FIRST SEARCH FORMULTICORE MACHINES

set of simpler previously proposed algorithms. Overall, Safe PBNF gave the best performance for
optimal search. Next we created a set of bounded-suboptimal search algorithms based on PBNF,
the successful variants of PRA*, and the BFPSDD algorithm. PBNF and PRA* with asynchronous
communication and abstraction (AHDA*) gave the best performance over all, with PBNF doing
slightly better on the average. In addition, we showed some results that suggest that bounded-
suboptimal PBNF has more of an advantage over serial weighted A* search as problem difficulty
increases. Finally we converted PBNF and PRA* into anytime algorithms and compared them with
some serial anytime algorithms and a new algorithm called multi-weighted A*. We found that
anytime weighted PBNF and the anytime variant of AHDA* gave the best anytime performance
and were occasionally able to find solutions faster than their non-anytime counterparts.

Our results show that PBNF outperforms PSDD. We believe that this is because of the lack of
layer-based synchronization and a better utilization of heuristic cost-to-goinformation. The fact
that BFPSDD got better as itsf layers were widened is suggestive evidence. Another less obvious
reason why PBNF may perform better is because a best-first search can have a larger frontier size
than the breadth-first heuristic search used by PSDD. This larger frontier size will tend to create
morenblocks containing open search nodes. There will be more disjoint duplicatedetection scopes
with nodes in their open lists and, therefore, more potential for increased parallelism.

Some of our results show that, even for a single thread, PBNF can outperform a serial A* search
(see Table 1). This may be attributed in part to the speculative behavior of the PBNF algorithm.
Since PBNF uses a minimum number of expansions before testing if it should switch to annblock
with betterf values, it will search some sub-optimal nodes that A* would not search. In order to
get optimal solutions, PBNF acts as an anytime algorithm; it stores incumbent solutions and prunes
until it can prove that it has an optimal solution. Zhou and Hansen show thatthis approach has the
ability to perform better than A* (Hansen & Zhou, 2007) because of upper bound pruning, which
reduces the number of expansions of nodes with anf value that is equal to the optimal solution
cost and can reduce the number of open nodes, increasing the speed of operations on the open list.
PBNF may also give good single thread performance because it breaks up the search frontier into
many small open lists (one for eachnblock). Because of this, each of the priority queue operations
that PBNF performs can be on much smaller queues than A*, which uses onebig single queue (see
Section 4.6.2).

9.1 Possible Extensions

While the basic guideline for creating a good abstractions in SDD (and PBNF)is to minimize the
connectivity between abstract states, there are other aspects of abstraction that could be explored.
For instance, discovering which features are good to include or abstract away may be helpful to
users of PBNF. Too much focus on one feature could cause good nodes to be too focused in a small
subset ofnblocks (Zhou & Hansen, 2009). Likewise, size of the abstraction could be examined in
more detail. Although we always use a constant abstraction size in our current work for simplicity
it seems likely that abstraction size should change when number of threads changes or perhaps even
based on features of the domain or problem instance. If a guideline could be devised, such as a ratio
between number ofnblocks to threads orh value of the start state, a problem-adaptive abstraction
size would be much simpler in real world use. Additionally, edge partitioning (Zhou & Hansen,
2007) could allow us to reduce connectivity of the abstraction used by PBNF, but further study will
be necessary to discover the full impact of this technique on PBNF’s behavior.
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Some possible future extensions to PBNF include adaptive minimum expansion values, use of
external memory, and extension to a distributed setting. Our preliminary work on adapting min-
imum expansion values indicated that simply increasing or decreasing basedon lock failures and
successes had either neutral or negative effect on performance. One reason for this may be because
the minimum expansions parameter adds speculation.

It may be possible to combine PBNF with PRA* in a distributed memory setting. This algorithm
may use a technique based on PRA* to distribute portions of the search space among different nodes
on a cluster of work stations while using a multicore search such as PBNF on each node.

An additional technique that was not explored in this paper is running multicore search algo-
rithms with more threads than there are available cores. This technique has been used to improve
the performance of parallel delayed duplicate detection (Korf, 1993; Korf & Schultze, 2005) which
is heavily I/O intensive. Using this approach, when one thread is blocked on I/O another thread
can make use of the newly available processing core. Even without disk I/Othis technique may be
useful if threads spend a lot of time waiting to acquire locks.

10. Conclusions

In this paper we have investigated algorithms for best-first search on multicore machines. We have
shown that a set of previously proposed algorithms for parallel best-first search can be much slower
than running A* serially. We have presented a novel hashing function for PRA* that takes advantage
of the locality of a search space and gives superior performance. Additionally, we have verified re-
sults presented by Kishimoto et al. (2009) that using asynchronous communication in PRA* allows
it to perform better than using synchronous communication. We present a new algorithm, PBNF,
that approximates a best-first search ordering while trying to keep all threads busy. We proved
the correctness of the PBNF search framework and used it to derive new suboptimal and anytime
algorithms.

We have performed a comprehensive empirical comparison with optimal, suboptimal and any-
time variations of parallel best-first search algorithms. Our results demonstrate that using a good
abstraction to distribute nodes in PRA* can be more beneficial than asynchronous communication,
but that these two techniques can be used together (yielding AHDA*). We also found that the orig-
inal breadth-first PSDD algorithm does not give competitive behavior without a tight upper bound
for pruning. We implemented a novel extension to PSDD, BFPSDD, that gives reasonable perfor-
mance on all domains we tested. Our experiments, however, demonstrate thatthe new PBNF and
AHDA* algorithms outperformed all of the other algorithms. PBNF performs best for optimal and
bounded-suboptimal search and both PBNF and AHDA* gave competitive anytime performance.
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Appendix A. Pseudo-code for Safe PBNF

In the following pseudo code there are three global structures. The first is a pointer to the current
incumbent solution,incumbent, the second is adoneflag that is set to true when a thread recognizes
that the search is complete and the third is thenblock graph. Thenblock graph structure contains
the list of freenblocks,freelistalong with theσ andσh values for eachnblock. For simplicity, this
code uses a single lock to access either structure. Each thread also has alocal expcount. Thebest
function on a set ofnblocks results in thenblock containing the open node with the lowestf value.

SEARCH(INITIAL NODE )
1. insert initial node into open
2. for eachp ∈ processors, THREADSEARCH()
3. while threads are still running,wait()
4. returnincumbent

THREADSEARCH()
1. b ← NULL
2. while¬done
3. b ← NEXTNBLOCK(b)
4. exp← 0
5. while¬SHOULDSWITCH(b, exp)
6. m ← best open node inb
7. if m > incumbentthen prunem
8. if m is a goal then
9. if m < incumbentthen
10. lock;incumbent← m; unlock
11. else ifm is not a duplicate then
12. children← expand(m)
13. for eachchild ∈ children
14. insertchild into open of appropriate nblock
15. exp← exp+ 1

SHOULDSWITCH(B, EXP)
1. if b is empty then return true
2. if exp< min-expansionsthen return false
3. exp← 0
4. if best(freelist) < b or best(interferenceScope(b)) < b then
5. if best(interferenceScope(b)) < best(freelist) then
6. SETHOT(best(interferenceScope(b)))
7. return true
8. lock
9. for eachb ′ ∈ interferenceScope(b)
10. if hot(b ′) then SETCOLD(b ′)
11. unlock
12. return false
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SETHOT(B)
1. lock
2. if ¬hot(b) andσ(b) > 0
3. and¬∃i ∈ interferenceScope(b) : i < b ∧ hot(i) then
4. hot(b)← true
5. for eachm ′ ∈ interferenceScope(b)
6. if hot(m ′) then SETCOLD(m ′)
7. if σ(m ′) = 0 andσh(m ′) = 0
8. andm ′ is not empty then
9. freelist← freelist\ {m ′}
10. σh(m

′)← σh(m
′) + 1

11. unlock

SETCOLD(B)
1. hot(b)← false
2. for eachm ′ ∈ interferenceScope(b)
3. σh(m

′)← σh(m
′)− 1

4. if σ(m ′) = 0 andσh(m ′) = 0 andm ′ is not empty then
5. if hot(m ′) then
6. SETCOLD(m ′)
7. freelist← freelist∪ {m ′}
8. wake all sleeping threads

RELEASE(B)
1. for eachb ′ ∈ interferenceScope(b)
2. σ(b ′)← σ(b ′)− 1
3. if σ(b ′) = 0 andσh(b ′) = 0 andb ′ is not empty then
4. if hot(b ′) then
5. SETCOLD(b ′)
6. freelist← freelist∪ {b ′}
7. wake all sleeping threads

NEXTNBLOCK(B)
1. if b has no open nodes orb was just set to hot then lock
2. else iftrylock() fails then returnb
3. if b 6= NULL then
4. bestScope← best(interferenceScope(b))
5. if b < bestScopeandb < best(freelist) then
6. unlock; returnb
7. RELEASE(b)
8. if (∀l ∈ nblocks : σ(l) = 0) andfreelist is empty then
9. done← true
10. wake all sleeping threads
11. whilefreelist is empty and¬done, sleep
12. if donethenn ← NULL
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13. else
14. m ← best(freelist)
15. for eachb ′ ∈ interferenceScope(m)
16. σ(b ′)← σ(b ′) + 1
17. unlock
18. returnm
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Appendix B. TLA + Model: Hot Nblocks

Here we present the model used to show that Safe PBNF is live-lock free. Refer to Section 3.2.3.
MODULE HotNblocks

EXTENDSFiniteSets , Naturals
CONSTANTSnnblocks , nprocs , search, nextblock , none
VARIABLES state, acquired , isHot , Succs
Vars

∆

= 〈state, acquired , isHot , Succs〉
States

∆

= {search, nextblock}
Nblocks

∆

= 0 . . nnblocks − 1
Procs

∆

= 0 . . nprocs − 1
ASSUMEnnblocks ≥ nprocs ∧ nprocs > 0 ∧ nnblocks > 1 ∧ none /∈ Nblocks ∧ Cardinality(States) = 2
Preds(x )

∆

= {y ∈ Nblocks : x ∈ Succs [y ]} Set of predecessors toNblock x

IntScope(x )
∆

= Preds(x ) ∪ UNION {Preds(y) : y ∈ Succs [x ]} The interference scope ofx
IntBy(x )

∆

= {y ∈ Nblocks : x ∈ IntScope(y)} Set ofNblocks whichx interferes.
Busy(A)

∆

= A ∪ UNION {Succs [x ] : x ∈ A} Set ofNblocks which are busy given the set of acquired nblocks
Overlap(x , A)

∆

= A ∩ IntScope(x ) Set ofBusy Nblocks overlapping the successors ofx

Hot(A)
∆

= {x ∈ Nblocks : isHot [x ] ∧Overlap(x , A) 6= {}} Set of all hot nblocks given the set of acquired nblocks
HotInterference(A)

∆

= UNION {IntScope(x ) : x ∈ Hot(A)} Set ofNblocks in interference scopes of hot nblocks
Free(A)

∆

= {x ∈ Nblocks : Overlap(x , A) = {} ∧ x /∈ HotInterference(A)} FreeNblocks

Acquired
∆

= {acquired [x ] : x ∈ Procs} \ {none} Set ofNblocks which are currently acquired
OverlapAmt(x )

∆

= Cardinality(Overlap(x , Acquired)) The number of nblocks overlappingx .
doNextBlock(x )

∆

= ∧ UNCHANGED 〈Succs〉
∧ state[x ] = nextblock ∧ acquired [x ] = none ⇒ Free(Acquired) 6= {}
∧ IF Free(Acquired \ {acquired [x ]}) 6= {} THEN

∧ ∃ y ∈ Free(Acquired \ {acquired [x ]}) : acquired ′ = [acquired EXCEPT ! [x ] = y ]
∧ state ′ = [state EXCEPT ! [x ] = search]
∧ isHot ′ = [y ∈ Nblocks 7→ IF y ∈ Free(Acquired \ {acquired [x ]})

THEN FALSE ELSE isHot [y ]]
ELSE ∧ acquired ′ = [acquired EXCEPT ! [x ] = none]

∧ isHot ′ = [y ∈ Nblocks 7→ IF y ∈ Free(Acquired ′)
THEN FALSE ELSE isHot [y ]]

∧ UNCHANGED 〈state〉
doSearch(x )

∆

= ∧ UNCHANGED 〈acquired , Succs〉
∧ state[x ] = search ∧ state ′ = [state EXCEPT ! [x ] = nextblock ]
∧ ∨ UNCHANGED 〈isHot〉
∨ ∃ y ∈ IntBy(acquired [x ]) : ∧ ¬isHot [y ]

∧ IntScope(y) ∩ Hot(Acquired) = {}
∧ y /∈ HotInterference(Acquired)
∧ isHot ′ = [isHot EXCEPT ! [y ] = TRUE]

Init
∆

= ∧ state = [x ∈ Procs 7→ nextblock ] ∧ acquired = [x ∈ Procs 7→ none]
∧ isHot = [x ∈ Nblocks 7→ FALSE]
This is a basic graph where each nblock is connected to its neighbors forming a loop.
∧ Succs = [x ∈ Nblocks 7→ IF x = 0 THEN {nnblocks − 1, x + 1}

ELSE IF x = nnblocks − 1 THEN {0, x − 1} ELSE {x − 1, x + 1}]
Next

∆

= ∃ x ∈ Procs : (doNextBlock(x ) ∨ doSearch(x ))
Fairness

∆

= ∀ x ∈ Procs : WFVars(doNextBlock(x ) ∨ doSearch(x ))
Prog

∆

= Init ∧2[Next ]Vars ∧ Fairness

HotNblocks
∆

= ∀ x ∈ Nblocks : isHot [x ] ; ¬isHot [x ] The property to prove
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