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Abstract

Leading agent-based trust models address two important needs. First, they show how
an agent may estimate the trustworthiness of another agent based on prior interactions.
Second, they show how agents may share their knowledge in order to cooperatively assess
the trustworthiness of others. However, in real-life settings, information relevant to trust
is usually obtained piecemeal, not all at once. Unfortunately, the problem of maintaining
trust has drawn little attention. Existing approaches handle trust updates in a heuristic,
not a principled, manner.

This paper builds on a formal model that considers probability and certainty as two
dimensions of trust. It proposes a mechanism using which an agent can update the amount
of trust it places in other agents on an ongoing basis. This paper shows via simulation that
the proposed approach (a) provides accurate estimates of the trustworthiness of agents that
change behavior frequently; and (b) captures the dynamic behavior of the agents. This
paper includes an evaluation based on a real dataset drawn from Amazon Marketplace, a
leading e-commerce site.

1. Introduction

Let us consider applications in domains such as electronic commerce, social networks, col-
laborative games, and virtual worlds populated with multiple virtual characters. These
applications exhibit two important common features: (1) they naturally involve multiple
entities, real (humans or businesses) or fictional; and (2) these entities are—or behave as if
they are—autonomous and heterogeneous. For this reason, we view these entities or their
computational surrogates as agents. The success of an agent application, evaluated in terms
such as the quality of experience enjoyed by a user or the economic value derived by a busi-
ness, depends on felicitous interactions among the agents. Since the agents are functionally
autonomous, the felicity of their interactions cannot be centrally ensured. Further, each
agent usually has limited knowledge of the others with whom it interacts. Therefore, each
agent relies upon a notion of trust to identify agents with whom to interact.
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Given our intended applications, we narrow our scope to agents who not only provide
and consume services, but also share information regarding the trustworthiness of other
agents. We assume each agent behaves according to a fixed type, meaning that although its
behavior could be complex, its trustworthiness is not based on the incentives or sanctions
it might receive, and its behavior is not different toward different participants. One can
imagine settings such as service encounters where a service provider does not selectively
favor some of its customers. Hence, the purpose of the trust model is to distinguish good
from bad agents, not directly to cause agents to behave in a good manner. Further, we
assume that the setting is empirical, meaning that the agents base the extent of their trust
in others upon the outcomes of prior interactions. The level of trust an agent Alice places in
an agent Bob can be viewed as Alice’s prediction of Bob providing it a good service outcome
in the future. To be empirically reliable, Alice should estimate Bob’s trustworthiness based
on its past experience with Bob. Both because (1) the parties with whom an agent deals may
alter their behavior and (2) the agent receives information about other parties incrementally,
it is important that an agent be able to update its assessments of trust.

As one would expect with such an important subject, several researchers have developed
formal ways to represent and reason with trust. Interestingly, however, existing approaches
do not concentrate on how to maintain such representations. It might seem that researchers
believe that a heuristic approach would be adequate. The typical approach is based on
exponential discounting, and requires a programmer to hand-tune parameters such as a
discount factor.

This paper contributes a model and method for updating trust ratings in light of in-
cremental evidence. Specifically, it develops a principled, mathematical approach for main-
taining trust historically (as a way to evaluate agents who provide services) and socially (as
a way to evaluate agents who provide information about other agents). Further, this paper
shows how to avoid any hand-tuned parameter.

1.1 Technical Motivation

A common way to estimate the trustworthiness of a provider is to evaluate the probability
of a future service outcome being good based on the number of good service outcomes from
the provider in the past. However, a traditional scalar representation (i.e., a probability)
cannot distinguish between getting one good outcome from two interactions, and getting
100 good outcomes from 200 interactions. But, intuitively, there is a significant difference
in terms of the confidence one would place in each of the above two scenarios. For this
reason, modern trust models define trust in terms of both the probability and the certainty
of a good outcome (Jøsang & Ismail, 2002; Wang & Singh, 2007; Gómez, Carbó, & Earle,
2007; Teacy, Patel, Jennings, & Luck, 2006; Harbers, Verbrugge, Sierra, & Debenham, 2007;
Paradesi, Doshi, & Swaika, 2009). The certainty is a measure of the confidence that an agent
may place in the trust information. Computing the certainty can help an agent filter out
those parties for whom it has insufficient information, even if nominally the probability of
a good outcome is high. In general, the certainty of a trust value should (a) increase as the
amount of information increases with a fixed probability, and (b) decrease as the number
of conflicts increases with a fixed total number of experiences (Wang & Singh, 2010).
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Open systems are dynamic and distributed. In other words, an agent often needs to
select a service provider with whom it has had no previous interaction. Referral networks
enable agents to collect trust information about service providers in a distributed manner
(Yu & Singh, 2002; Procaccia, Bachrach, & Rosenschein, 2007). In a referral network, an
agent requests other agents, called referrers, to provide trust information about a service
provider. If a referrer lacks direct experience with the service provider, it may refer to
another (prospective) referrer. Existing trust models (e.g., Barber & Kim, 2001), specify
how an agent may aggregate trust information from multiple sources (which could include
a combination of referrals and direct interactions).

We view referrals themselves as services that the referrers provide. Consequently, an
agent ought to be able to estimate a referrer’s trustworthiness based on the quality of the
referrals it provides. However, existing trust models lack a principled mechanism by which
to update the trust placed in a referrer.

Besides, to reflect the dynamism of agents over time, a discount factor is needed to
help trust models provide accurate predictions of future behavior (Zacharia & Maes, 2000;
Huynh, Jennings, & Shadbolt, 2006). With a low discount factor, past behavior is forgotten
quickly and the estimated trustworthiness reflects recent behavior. Conversely, with a
high discount factor, the estimated trustworthiness considers and emphasizes the long-term
overall behavior of the rated agent. Different discount factors can yield different accuracy
of behavior predictions. Choosing a proper discount factor for different types of agents in
varied settings involves a crucial trade-off between accuracy and evidence. This trade-off,
however, has not drawn much attention in the trust research community.

We propose a probabilistic approach for updating trust that builds on Wang and Singh’s
(2010) probability-certainty trust model. Our trust update method enriches Wang and
Singh’s trust model in two ways. First, our trust update applies in estimating the trust-
worthiness of referrers based on the referrals they provide. Second, our method adjusts the
discount factor dynamically by updating the dynamism of the agents without requiring any
manual tuning.

We select Wang and Singh’s trust model because it supports some features that are
crucial for our purposes. One, it defines the trustworthiness of an agent in evidence space,
representing trust using both probability and certainty. Two, it defines certainty so that the
amount of trust placed in an agent increases with the amount of evidence (if the extent of
conflict is held constant) and decreases with increasing conflict (if the amount of evidence is
held constant). Three, it supports operators for propagating trust through referrals. Wang
and Singh (2006) define mathematical operators for propagating trust. We incorporate
these operators as bases for addressing the specific technical problems of computing trust
updates and discounting referrers who provide erroneous referrals.

1.2 Contributions

This paper proposes a principled, evidence-based approach by which an agent can update the
amount of trust it places in another agent. It introduces formal definitions for updating the
trust placed and studies their mathematical properties. To achieve a self-tuning approach
for trust updates, this paper proposes the new notion of trust in history, in contrast to
the traditional notion of discounting history via a hand-tuned discount factor. This paper
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evaluates the proposed approach (1) conceptually via comparison with existing approaches
in terms of formal properties (2) via simulation against different agent behavior profiles;
and (3) with respect to some data from a real-life marketplace. The main outcomes are
that our approach

• Does not require the fine-tuning of parameters by hand, thereby not only reducing
the burden on a system administrator or programmer, but also expanding the range
of potential applications to include those where the behavior profiles of the agents are
not known ahead of time.

• Yields precision in estimating the probability component of trust.

• Yields a more appropriate level of the certainty component of trust than existing
approaches. In particular, it recognizes the effect of conflict in evidence and how to
compute certainty based on the certainty of the input information.

• Is robust against agents who provide wrong information.

1.3 Organization

The rest of this paper is organized as follows. Section 2 provides the essential technical
background for our approach. Section 3 introduces a general model for trust update that
uniformly handles both historical and social updates. Section 4 introduces a series of trust
update methods culminating in our proposed method. Section 5 evaluates these methods
on theoretical grounds by establishing theorems regarding the desirable and undesirable
properties. Section 6 specifies the historical and social update scenarios precisely. Section 7
conducts an extensive experimental evaluation of our methods, including both simulations
and an evaluation using real marketplace data from Amazon. Section 8 studies the litera-
ture. Section 9 concludes with a discussion and some directions for future work. Appendix A
presents proofs for all theorems.

2. Background on Probabilistic Trust Representation

This section introduces the key background on Wang and Singh’s (2007) approach that is
necessary for understanding our present contribution.

2.1 Probability-Certainty Distribution Function

Considering a binary event 〈r, s〉, where r and s represent the number of positive and
negative outcomes, respectively. Let x ∈ [0, 1] be the probability of a positive outcome.
Then the posterior probability of evidence 〈r, s〉 is the conditional probability of x given
〈r, s〉 (Casella & Berger, 1990). The conditional probability of x given 〈r, s〉 is

f(x|〈r, s〉) = g(〈r,s〉|x)f(x)
R 1
0 g(〈r,s〉|x)f(x)dx

= xr(1−x)s

R 1
0 xr(1−x)sdx
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where g(〈r, s〉|x) =





r + s

r



xr(1− x)s.
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Figure 1: Examples of probability-certainty distribution functions, varying r and s.

Here f(x) is the probability distribution function of x, which is itself the probability
of a positive outcome. The signature of f is given by f : [0, 1] 7→ [0,∞). Because f
is a probability density, we have

∫ 1
0 f(x)dx = 1. Following Jøsang (2001), we interpret

the above as a probability of a probability or a probability-certainty distribution function
(PCDF). The probability that the probability of a positive outcome lies in [x1, x2] equals
∫ x2

x1
f(x)dx. The mean value of f is

R 1
0 f(x)dx

1−0 = 1. Figure 1 gives some examples of f(x)
for different numbers of positive and negative outcomes. Notice that when we have no
evidence (i.e., 〈r, s〉 = 〈0, 0〉), we obtain a uniform distribution. As the evidence mounts,
the distribution becomes more and more focused around its expected value.

As an aside, notice that although we consider integral values of r and s in the above
examples, the actual values of r and s would usually not be integral because of the effect
of discounting information received from others or remembered from past interactions. In
particular, it is possible that the total evidence is positive but less than one, i.e., 0 < r+s <
1.

2.2 Trust Representation

As in Jøsang’s approach, Wang and Singh’s model represents trust values in both the
evidence and the belief spaces. In evidence space, a trust value is in the form 〈r, s〉, where
r+ s > 0. Here, r ≥ 0 is the number of positive experiences (that, say, agent Alice has with
agent Bob) and s ≥ 0 is the number of negative experiences she has with Bob. Both r and s
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are real numbers. Given 〈r, s〉, α = r
r+s

is the expected value of the probability of a positive
outcome when r + s > 0 and can be set as α = 0.5 when r + s = 0. In belief space, a trust
value is modeled as a triple of belief, disbelief, and uncertainty weights, 〈b, d, u〉, where each
of b, d, and u is greater than 0 and b+ d+u = 1. In intuitive terms, the certainty c = 1−u
represents the confidence placed in the probability. Trust values can be translated between
the evidence and belief space.

Wang and Singh (2007) differ from Jøsang (2001) in their definition of certainty. Wang
and Singh’s definition is based on the following intuition. As Figure 1 shows for 〈r, s〉 = 〈0, 0〉
when we know nothing, f is a uniform distribution over probabilities x. That is, f(x) = 1 for
x ∈ [0, 1] and 0 elsewhere. This reflects the Bayesian intuition of assuming an equiprobable
prior. Intuitively, the uniform distribution has a certainty of 0. As additional knowledge is
acquired, the probability mass shifts so that f(x) is above 1 for some values of x and below
1 for other values of x. For the above reason, Wang and Singh (2007) define certainty to
be the area above the uniform distribution f(x) = 1.

Definition 1 The certainty based on evidence 〈r, s〉, is given by

c(r, s) = 1
2

∫ 1
0 |f(x)− 1|dx

= 1
2

∫ 1
0 |

(xr(1−x)s

R 1
0 xr(1−x)sdx

− 1|dx
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Figure 2: Certainty increases with mounting evidence provided the amount of conflict in
the evidence is held constant. The X-axis measures the total number of outcomes,
which are equally positive and negative.

Conflict in the evidence in this setting means that some evidence is positive and some
is negative. Thus conflict is maximized when r = s and is minimized when r or s is zero.
Wang and Singh (2007) prove that certainty increases when the total number of transactions
increases and the conflict is fixed, as in Figure 2. They also show that certainty decreases
when conflict increases and the total number of transactions is fixed, as in Figure 3.
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Figure 3: Certainty decreases with increasing conflict provided the amount of evidence is
held constant. The X-axis measures the number of positive outcomes out of a
fixed total number of outcomes.

2.3 Trust Propagation

In real-life settings, an agent (a prospective client) may lack direct experience with another
agent (a prospective service provider) with whom it considers interacting. In this case,
the client can ask referrers for trust referrals. If a referrer lacks direct experience, it may
refer to other referrers, and so on. This is the essential idea behind referral networks. But
how should we calculate trust through referral networks? Many researchers have studied
trust propagation. In our chosen framework, Wang and Singh (2006) define mathematical
operators for propagating trust, which we can leverage for our present goals.

Wang and Singh (2006) provide a concatenation operator (similar to Jøsang’s, 1998,
recommendation operator) that enables a client C to compute how much trust it should
place in a service provider S based on its direct experience with a referrer R and a referral
for S provided by R. The idea is that, to compute its trust in S, C simply concatenates its
trust in R with R’s report about S. Definition 2 captures Wang and Singh’s concatenation
operator. In our setting, let MR = 〈rR, sR〉 be agent C’s trust in a referrer R. Here, cR
is the certainty determined from the above trust value. Further, let MS = 〈r′, s′〉 be R’s
report about its trust in a provider S. Then the amount of trust to be placed by C in S is
given by MR ⊗MS .

Definition 2 Concatenation ⊗. Let MR = 〈bR, dR, uR〉 and MS = 〈b′, d′, u′〉 be two trust
values. Then MR ⊗MS = 〈bRb

′, bRd
′, 1− bRb

′ − bRd
′〉.

To handle the situation where C collects trust information of S from more than one
source, we use Jøsang’s aggregation operator (Jøsang, 2001; Wang & Singh, 2007), which
simply sums the available evidence pro and con. C can use this operator to combine indepen-
dent reports about the trust to place in S. Definition 3 captures the aggregation operator.
In our setting, Mi = 〈ri, si〉 would be the trust that C would place in S based on exactly
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one path from C to S. When the paths are mutually independent, i.e., nonoverlapping, C’s
aggregate trust in S would be given M1 ⊕ . . .⊕Mk.

Definition 3 Aggregation ⊕. Let M1 = 〈r1, s1〉 and M2 = 〈r2, s2〉 be two trust values.
Then, M1 ⊕M2 = 〈r1 + r2, s1 + s2〉.

3. General Model for Updating Trust

As we observed above, most existing trust models do not provide a suitable trust update
method by which an agent may maintain the trust it places in another agent. In our model,
trust updates arise in two major settings, which we consolidate into a universal model for
trust update. These settings are as follows.

• Trust update for referrers, wherein an agent updates the trust it places in a referrer
based on how accurate its referrals are. This is a way for an agent to maintain its
social relationship with a referrer.

• Trust update by trust in history, wherein an agent updates the trust it places in a
service provider by tuning the relative weight (discount factor) assigned to the service
provider’s past behavior with respect to its current behavior. This is a way for an
agent to accommodate the dynamism of a service provider.

C S

R
Trust

Compare

Actual Trust

Estimated Trust

〈rR, sR〉 〈r′, s′〉

〈r, s〉

Target

SourceClient

Figure 4: Schematic illustration of our generalized trust update approach. Throughout this
paper, we use α = r

r+s
, α′ = r′

r′+s′
, and αR = rR

rR+sR

Interestingly, our approach treats the above settings as variations on a common theme,
which we term our general model for updating trust. Figure 4 presents this model, which
summarizes a process consisting of the following steps based on a client C, a target R, and
a service provider S. The client C seeks to update the amount of trust 〈rR, sR〉 that C
places in a target R.

• C estimates R’s trustworthiness (before the update) as 〈rR, sR〉.

• R reports S’s trustworthiness as 〈r′, s′〉.

• S delivers an outcome from which C obtains direct information by which it can esti-
mate the actual trustworthiness 〈r, s〉 of S.
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• Using this information about the (apparent) trustworthiness of S, C determines the
accuracy of the estimated trust value it previously received from R. Based on this
measure of R’s accuracy, C updates the trust it places in R to 〈r′R, s

′
R〉 on empirical

grounds.

Trust update methods can be differentiated by how they compare the estimated and
actual trust values. The rest of this section discusses the general structure of trust update
and investigates some trust update methods along with their shortcomings. Section 4
introduces our preferred approach.

Let us follow the setting of Figure 4. The accuracy of the estimated trust value is defined
by the closeness of the estimated trust value 〈r′, s′〉 and the actual trust value 〈r, s〉. Instead
of interpreting each transaction (one estimation of trust from the target) as either good or
bad, we interpret it as q good and 1− q bad transactions. Notice that “good” and “bad” in
the present context of a target providing estimates refers to the accuracy or otherwise of the
estimates with respect to the actual outcomes the client receives from the service provider.
Thus a target’s estimate could be good or bad independently of whether the actual service
outcome is good or bad.

Thus, q reflects how close the estimation 〈r′, s′〉 is to the actual trust 〈r, s〉. We require
0 ≤ q ≤ 1 ranging from a perfectly inaccurate to a perfectly accurate referral. The weight
we assign such an estimation should increase with its certainty. For example, suppose the
actual trustworthiness of S is 〈10, 0〉. Say, one target RA estimates S’s trustworthiness
as 〈0, 1〉 and another target RB estimates it as 〈0, 100〉. Both estimates agree that S
is not trustworthy, but RA claims much lower certainty (c(0, 1) = 0.25) than does RB

(c(0, 100) = 0.99). So RA should be punished less than RB if both estimates turn out to
be inaccurate. And, similarly, for rewarding them in case of accuracy. Therefore, instead
of treating each transaction as one transaction, we treat it as c′ transactions, where c′ < 1
is the certainty in the estimation. That is, we interpret each estimation as c′q good and
c′(1− q) bad transactions.

In addition, we discount each past transaction by its age (Zacharia & Maes, 2000; ?,
?, ?, ?, ?). Now let 〈rR, sR〉 be the trust placed in R by C; 〈r′, s′〉 be an estimation with
c′ = c(r′, s′); and 〈r′R, s

′
R〉 be the updated trust placed in R by C. Algorithm 1 presents

a modular specification for our generic trust update approach, highlighting its key inputs
and outputs. Let β be the temporal discount factor. Based on actual observations 〈r, s〉,
let q represent how accurate the estimation is and p represent how bad the estimation is.
The specific approaches that we consider below differ in how each computes its measure of
accuracy, q.

Note that we assume the client updates its trust in the referral after it has conducted
some transactions with the service provider, so r + s > 0 in this case. When 〈r, s〉 = 〈0, 0〉,
the client cannot update the trust according to our formulation, since we discount the update
by the certainty of 〈r, s〉 and when 〈r, s〉 = 〈0, 0〉, the certainty is 0. It does not matter
if 〈rR, sR〉 = 0 in the update method. We can initialize 〈rR, sR〉 to be some predefined
number, for example, 〈1, 1〉 or 〈0, 0〉. The initial value corresponds to the prior distribution
of the trust. The uniform distribution corresponds to initial setting of 〈rR, sR〉 at 〈0, 0〉.
But we can also set any prior we deem fit for the system. In trust update for referrers, we
initialize 〈rR, sR〉 to 〈1, 1〉 (to suggest that the client is willing to consider a referral from
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Algorithm 1: generalUpdate: Abstract method to revise the trust placed in target
R.
input q, p, β, c′, 〈rR, sR〉;
δrR ← c′q;
δsR ← c′p;
r′R ← δrR + (1− β)rR;
s′R ← δsR + (1− β)sR;
return 〈r′R, s

′
R〉;

the referrer) and 〈r, s〉 to 〈0, 0〉 (to suggest that the client has no prior experience with the
provider). But we perform a trust update only after the client has done some transactions
with the service provider (i.e., r+s > 0). In the trust in history setting, we initialize 〈rR, sR〉
to 〈0.9, 0.1〉 (to suggest that the client trust its own past experience with little confidence)
and 〈r, s〉 to 〈0, 0〉 (to suggest the client has no prior experience with the provider).

Now let us consider the certainty density function based on 〈r, s〉, which reflects the
actual trustworthiness of S. Here, f(x) is the probability (density) of the quality of service
provided by S being x.

f(x) =
xr(1− x)s

∫ 1
0 x

r(1− x)sdx
(1)

This density maximizes at x = α meaning that S will most likely provide a service outcome
with a quality of α. Consider the probability density function based on the estimation
〈r′, s′〉, which is R’s estimate of S’s trustworthiness and reflects R’s assessment of the
quality S will provide. In other words, R expects that S will provide a service outcome
most likely with a quality of x = α′.

4. Trust Update Based on Average Accuracy

Based on the above background, we now study the trust update problem systematically.
We analyze the shortcomings of a series of approaches, culminating in an approach that
yields the characteristics we desire.

4.1 Linear Update and Its Shortcomings

Linear is a common trust update method, which serves as a baseline for comparison. Linear
defines the accuracy as the absolute difference between the quality α′ of the estimated trust
value 〈r′, s′〉 and the quality α of the actual trust value 〈r, s〉. That is,

q = 1− |α− α′| (2)

Using Equation 2, we construct two trust update methods, Linear-WS and Jøsang, by
inserting the q defined in Linear into the general trust update model described in Algo-
rithm 1. Note that, Linear-WS and Jøsang use trust representations with their separate
definitions of certainty, thereby yielding different trust update methods. Linear-WS, as
shown in Algorithm 2, adopts Wang and Singh’s notion of certainty underlying trust (Def-
inition 1), whereas Algorithm 3 depicts Jøsang trust update method, where the certainty
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c′ is defined as r′+s′

r′+s′+2 (Jøsang, 2001). Jøsang (1998) defines certainty as r′+s′

r′+s′+1 , which
yields little difference from a later work by Jøsang (2001) in trust update. Our motivation
for introducing Linear-WS is to help distinguish the benefit of our trust update methods
from the benefit of using Wang and Singh’s static trust representation. As we show be-
low, Linear-WS (which combines Wang and Singh’s static model with a heuristic update)
performs worse than our proposed update methods, thereby establishing that the proposed
methods yield some benefits beyond the static model that they incorporate.

A shortcoming of Linear is that it does not consider certainty. Consider an agent who
reports 〈0.1, 0.1〉 about a service provider when it has little information about the provider
and reports 〈90, 10〉 later when it has gathered additional information. Suppose the service
provider’s quality of service is indeed 0.9. The the above agent should be accorded high
trust, since it reports correct trust value of the service provider with high certainty and
reports wrong trust value with low certainty. In other words, when updating the trust in
this agent, the second referral should be given more weight than the first one. However,
Linear treats both referrals as the same and thus ends up with a wrong updated trust value
of this agent.

Algorithm 2: Linear-WS: A trust update method to revise the trust placed in target
R.
input 〈r, s〉, 〈r′, s′〉, β, 〈rR, sR〉;

α←
r

r + s

α′ ←
r′

r′ + s′

q ← 1− |α− α′|

c′ ← c(r′, s′)

return generalUpdate(q, 1− q, β, c′, 〈rR, sR〉);

Algorithm 3: Jøsang: A trust update method to revise trust placed in agent R.

input 〈r, s〉, 〈r′, s′〉, β, 〈rR, sR〉;

α←
r + 1

r + s+ 2

α′ ←
r′ + 1

r′ + s′ + 2

q ← 1− |α− α′|

c′ ←
r′ + s′

r′ + s′ + 2

return generalUpdate(q, 1− q, β, c′, 〈rR, sR〉);
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4.2 Update Based on Max-Certainty and Its Shortcomings

Hang, Wang, and Singh (2008) proposed the Max-Certainty trust update method, which
applies on Wang and Singh’s trust representation. Max-Certainty supports some interesting
features, but suffers from some shortcomings, which the present approach avoids. Max-
Certainty follows the general update model of Section 3, and defines q as in Algorithm 4.

Algorithm 4: Max-Certainty: A trust update method to revise the trust placed in
target R.

input 〈r, s〉, 〈r′, s′〉, β, 〈rR, sR〉;

α←
r

r + s

α′ ←
r′

r′ + s′

q ←
α′r(1− α′)s

αr(1− α)s

c′ ← c(r′, s′)

return generalUpdate(q, 1− q, β, c′, 〈rR, sR〉);

The intuition behind Algorithm 4’s definition of q is as follows. From Equation 1, we

have that q = f(α′)
f(α) , since S will provide service most likely with a quality of α—and not

as likely at any other quality α′. That is, q measures the ratio of the likelihoods that the
service provided by S has qualities α′ and α, respectively. In other words, our measure of
accuracy q is the ratio of the probability computed from the estimate from R with respect
to the probability computed from the measurement made by C itself. Figure 5 illustrates
this computation.

A malicious target (such as a referrer) in the present setting is one who is not just wrong
but is over-confident—that is, such an agent exaggerates the amount of evidence it claims
behind its report about a service provider. Although Max-Certainty tells us how likely it is
that a target R is trustworthy, it is not sensitive against malicious targets. Since combined
trust is naturally weighed by the amount of evidence, a trust report from a malicious target
may falsely dominate truthful reports based on an apparently smaller amount of evidence.

Under Max-Certainty, it takes C a long time to pinpoint a malicious target. For ex-
ample, suppose the actual trustworthiness of S is 〈2, 1〉 and R reports 〈5, 5〉. According to
Max-Certainty, 〈δrR, δsR〉 = 〈0.37, 0.07〉. If R had reported trust in S of 〈1000, 1000〉, then
〈δrR, δSR〉 would equal 〈0.79, 0.15〉. In other words, Max-Certainty treats the new evidence
as being confirmatory. Instead, we claim the report of 〈1000, 1000〉 is bad because it exag-
gerates the available evidence and thus has a highly misleading effect. In particular, it may
end up overriding many accurate reports (of lower certainty). Therefore, we consider the
report of 〈1000, 1000〉 to inaccurate, and treat its evidence as being disconfirmatory. This
observation leads to the following update approaches.

In the update formula based on Max-Certainty, let R’s trust of S be 〈r, s〉. When r+ s
is large, the formula is highly sensitive, since the PCDF is maximized at x = α = r

r+s
, but

232



A Probabilistic Approach for Maintaining Trust Based on Evidence

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00 . 511 . 522 . 533 . 5

p r o b a b i l i t y
cert ai nt yd ensit y

q
1 − qc e r t a i n t y d e n s i t y o fp r o b a b i l i t y a t 0 . 8

c e r t a i n t y d e n s i t y o fp r o b a b i l i t y a t 0 . 6
Figure 5: Illustration of the trust update method Max-Certainty with 〈r, s〉 = 〈8, 2〉 and

〈r′, s′〉 = 〈6, 4〉.

decreases quickly when x deviates from α (in other words, close to x = α, the magnitude of
the slope is high). For example, let the (actual) trustworthiness of S be 〈800, 200〉. When
a referrer reports 〈19, 6〉, it predicts that the quality of S is 0.76. This is quite close to the
actual quality of S, namely, 0.80. However, Max-Certainty yields 〈δrR, δsR〉 = 〈0.06, 0.58〉,
which indicates that Max-Certainty treats it to be a poor estimation.

4.3 Update Based on Sensitivity and Its Shortcomings

The foregoing leads us to another update method, which we term Sensitivity. The intu-
ition underlying Sensitivity was identified by Teacy et al. (2006). To motivate Sensitivity,
consider that in R’s estimate, the probability that the quality of S equals p, is given by

l(p) =
pr′(1− p)s′

∫ 1
0 x

r′(1− x)s′dx

Clearly, l(p) maximizes at α′, which means that R estimates the quality of the service
provided by S as most likely being α′. If we normalize l(α′) to 1, then

q =
αr′(1− α)s′

α′r′(1− α′)s′
(3)

measures how likely in R’s assessment would the quality of the service provider be α.

Figure 6 illustrates the above formulas using 〈r, s〉 = 〈8, 2〉 and 〈r′, s′〉 = 〈6, 4〉. Re-
turning to the previous example, 〈δrR, δsR〉 = 〈0.01, 0.93〉, which means that Sensitivity
considers 〈1000, 1000〉 an inaccurate report—as it should.

Although Sensitivity improves over Max-Certainty, like Max-Certainty, it remains sus-
ceptible to being excessively sensitive when the number of transactions is large. A numerical
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Figure 6: Illustration of the trust update method based on Sensitivity with 〈r, s〉 = 〈8, 2〉
and 〈r′, s′〉 = 〈6, 4〉. Thus α = 0.8 and α′ = 0.6.

example of the susceptibility of Sensitivity is as presented in Section 4.2. Let the trustwor-
thiness of S be 〈800, 200〉, whereas the referrer reports 〈190, 60〉. The above method, which
incorporates uncertainty, yields 〈δrR, δsR〉 = 〈0.24, 0.55〉. In other words, it treats the refer-
ral as being bad. However, 190/(190 + 60) = 0.76 is quite close to 800/(800 + 200) = 0.80,
which indicates that it ought to be treated as a good referral—hence we have a discrepancy.
The problem with Sensitivity is that it treats a referral as being disconfirmed by evidence
simply because the referrer is too confident even though the referral is accurate. Theorem 3
of Section 5 demonstrates the above problem, in a general setting.

The bottom-line is that both Max-Certainty and Sensitivity produce undesirable results.

4.4 Average Accuracy Disregarding Uncertainty

The foregoing discussion leads us to our penultimate step in coming up with our desired
approach. This and the final approach (detailed in Section 4.5) both consider the average
accuracy of the estimations. The present variant is the simpler of the two because it
disregards the uncertainty inherent in the belief regarding the source S.

Suppose as an idealization that the actual trustworthiness of the source S equals 〈α, 1−
α, 0〉, when expressed as a belief-disbelief-uncertainty triple. This case arises when we know
for sure that the source can provide the quality of service or referral at probability α.
Therefore, the uncertainty is 0, indicating that this is an ideal case.

As Figure 7 shows, suppose the target reports a trust value about the service provider
of 〈r′, s′〉. Let c′ = c(r′, s′) be the certainty based on 〈r′, s′〉. The PCDF for 〈r′, s′〉 means
the target estimates that the provider will produce a quality of x ∈ (0, 1) with certainty
f(x):

f(x) =
xr′(1− x)s′

∫ 1
0 x

r′(1− x)s′dx
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But the provider’s actual quality is x = α. The square of the estimation error at x is
(x − α)2. We multiply the square of the error by its certainty f(x), and then integrate
it over x from 0 to 1 to obtain the average square of the estimation error. The square
root of this integration yields the average error. That is, we can calculate the error in the
estimation according to the following formula:

e =

√

√

√

√

∫ 1
0 x

r′(1− x)s′(x− α)2dx
∫ 1
0 x

r′(1− x)s′dx
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Figure 7: Illustration of the average trust update method for r′ = 6 and s′ = 4, and α = 0.8
(dashed line). The error e is the average of the length of the arrows.

There are many ways to compute average errors, including the L1 and L∞ norms, and
so on. We use the L2 norm here for its simple mathematical properties. This choice is
not unique but is a common one (the same as variance) and is convenient to manipulate
mathematically.

We can now give an alternative definition of q based on e, i.e., q = 1 − e. From the
PCDF corresponding to the estimation 〈rR, sR〉, we can see that q corresponds to the average
accuracy of the estimation. The updated estimate of trustworthiness 〈rR, sR〉 of R is based
on q in the usual manner of Algorithm 1.

4.5 Average Accuracy Incorporating Uncertainty

Let us now consider a more complex variant of the above method, which uses the same q
definition as the above, but explicitly incorporates the uncertainty inherent in the belief
regarding S. Treating the trust placed in S as a belief function with uncertainty corre-
sponding to 〈r, s〉 in evidence space, we would like to discount the updates to rR and sR by
an additional factor of the certainty of the actual observations 〈r, s〉 made by C. In other
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Algorithm 5: Average-β: A trust update method to revise trust placed in agent R.

input 〈r, s〉, 〈r′, s′〉, β, 〈rR, sR〉;

α←
r

r + s

c← c(r, s)

q = 1−

√

(α−
r′ + 1

r′ + s′ + 2
)2 +

(r′ + 1)(s′ + 1)

(r′ + s′ + 2)2(r′ + s′ + 3)

c′ ← c(r′, s′)

c′ = cc′

return generalUpdate(q, 1− q, β, c′, 〈rR, sR〉);

words, we would begin with the definition of q as above and discount it with the certainty
determined from 〈r, s〉. Algorithm 5 captures this intuition.

The reason we consider certainty is that when we are not certain of the actual quality
of S, we are not certain of how to evaluate the target’s estimation of S either, so we
discount the update by the additional factor c. Returning to our previous example, let the
trustworthiness of S be 〈800, 200〉, whereas the target reports 〈19, 6〉. The above method,
which incorporates uncertainty, yields 〈δrR, δsR〉 = 〈0.53, 0.06〉, which indicates that the
above report is a good estimation—as it is supposed to be since 19/(19+6) = 0.76, which is
quite close to 800/(800 + 200) = 0.8. Therefore, when α′ is close to α, no matter how large
the total number transactions is, this method considers the target’s estimation as being
confirmative. The above holds true in general, as Theorem 4 of Section 5 shows.

4.6 Understanding the Trade Offs

The following tables illustrate the pros and cons of each update method. We compare the
accuracy measurements q used in Max-Certainty (Algorithm 4), Sensitivity (Equation 3),
and Average-β (Algorithm 5).

Table 1 summarizes the various situations of interest, especially those that Max-Certainty
and Sensitivity cannot handle well. As explained in Section 4.3, when r + s is large, Max-
Certainty is highly sensitive, and thus treats a good report as bad. When r′ + s′ is large,
Sensitivity is highly sensitive, and also treats a good report as bad.

Table 2 provides numerical examples corresponding to the situations specified in Table 1.
In this table, let the actual quality of the service provider be 0.50 and the quality indicated
by a referral be 0.55.

4.7 Estimating Certainty

We now evaluate the above methods with respect to their ability to infer and track the
certainty of the incoming trust reports. Figure 8 compares the q values produced by different
trust update methods. Its Y -axis is q, as calculated by the different trust update methods
introduced above. The estimate’s quality α′ is fixed at 0.55 as r′ + s′, the amount of
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Table 1: Comparing the effectiveness of trust update methods conceptually.

Case Accuracy

r + s r′ + s′ Max-Certainty Sensitivity Linear Average-β

small small good good fair good

small large good poor good good

large small poor good fair good

large large poor poor good good

Table 2: Trust update methods comparison via numerical examples.

Case Accuracy (q)

〈r, s〉 〈r′, s′〉 Max-Certainty Sensitivity Linear Average-β

〈1, 1〉 〈1.1, 0.9〉 0.99 0.99 0.95 0.78

〈1, 1〉 〈220, 180〉 0.99 0.13 0.95 0.95

〈200, 200〉 〈1.1, 0.9〉 0.13 0.99 0.95 0.78

〈200, 200〉 〈220, 180〉 0.13 0.13 0.95 0.95

evidence in the estimate, increases. The left and right plots show the resulting q with the
actual quality 〈r, s〉 = 〈1, 1〉, and 〈r, s〉 = 〈200, 200〉, respectively. Linear is always high,
independent of the certainty of the report. Max-Certainty over-estimates q when r+s is low
and under-estimates q when r+ s is high, and does not vary with certainty. Only Average’s
estimate of q reflects the certainty of the reports in both cases.

4.8 Methods Summarized

Figure 9 illustrates the trust update methods that we compare, including Jøsang, Linear-
WS, Max-Certainty, Sensitivity, and Average-β. We categorize these methods with respect
to their accuracy measurements and their underlying trust representation. Regarding the
accuracy measurement technique, Jøsang and Linear-WS measure accuracy based on the
linear approach. Each of Max-Certainty, Sensitivity, and Average-β defines its specific
accuracy measurement. All the approaches other than Jøsang follow Wang and Singh’s
trust representation.

5. Theoretical Evaluation of Accuracy Measurement Techniques

This section evaluates the above trust update methods in theoretical terms by consolidating
some important technical results. It may be skipped on a first reading. This section seeks
to give technical intuitions about its results.

237



Wang, Hang, & Singh

0  40 80 120 160 200 240 280 320 360 400

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

r′+s′

q

 

 

Average−β
Max−Certainty

Linear−WS

0  40 80 120 160 200 240 280 320 360 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r′+s′

q

 

 

Average−β
Max−Certainty
Linear−WS

Figure 8: Comparison of trust update methods based on their accuracy measurements q.
These graphs use a fixed referral expected quality α′ = 0.55 and vary the amount
of reported evidence r′ + s′. The actual quality values 〈r, s〉 are low (set to 〈1, 1〉
in the left graph) and high (set to 〈200, 200〉 in the right graph), respectively.

Accuracy

Measurement

Trust

Representation

Linear Max-Certainty Sensitivity Average

Jøsang Wang & Singh

Linear-WSJøsang Max-Certainty Sensitivity Average-β

GeneralUpdate

Figure 9: Trust update methods specified in terms of their trust representation and their
accuracy measurement methods.

As Figure 9 shows, each trust update method has three main components. The accuracy
measurement technique is the main contribution of this paper, and the one we evaluate
theoretically.

5.1 Bounded Range

As explained above, the update q means that an estimate can be treated as q good and
1 − q bad transactions. The range being bounded merely serves as a sanity check on the
definitions. Theorem 1 establishes this for all of the accuracy measurement definitions that
we consider.
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Definition 4 Let a trust update method compute q based on the above description. We say
the trust update method is bounded if and only if, for all inputs,

0 ≤ q ≤ 1

Theorem 1 Each of the four definitions of accuracy q as given in Equation 2, Algorithm 4,
Algorithm 5, and Equation 3 satisfies boundedness.

Proof : The range is trivially bounded for Linear. For Max-Certainty and Sensitivity
methods, we show that the PCDF function, f(·) achieves its maximum at x = α = r

r+s
, so

the f(x)
f(α) is between 0 and 1. For Average, we first show that |x−α| is less than 1, and then

show the rest of the integral is 1.

Specifically, all we need to show is that 0 ≤ e ≤ 1, where e = 1−q =

√

R 1
0 xr′ (1−x)s′ (x−α)2dx

R 1
0 xr′ (1−x)s′dx

.

Since (x− α) ≤ 1 when 0 ≤ x ≤ 1. Thus we obtain
R 1
0 xr

′

(1−x)s
′

(x−α)2dx
R 1
0 xr′ (1−x)s′dx

≤
R 1
0 xr

′

(1−x)s
′

dx
R 1
0 xr′ (1−x)s′dx

= 1.

Since
R 1
0 xr

′

(1−x)s
′

dx
R 1
0 xr′ (1−x)s′dx

= 1, we obtain

0 ≤ e ≤ 1. 2

5.2 Monotonicity

We now introduce an important property of trust updates, which we term monotonicity.
Monotonicity means that for a fixed trust estimate α, the farther the actual quality of the
service provider is from the quality predicted by the estimate the larger is the resulting
correction. Here, the correction corresponds inversely to q in Algorithm 1. In other words,
monotonicity means that if the error is greater, the correction due to trust update is larger
as well.

Definition 5 Let a trust update method compute q1 and q2 (corresponding to α = α1 and
α = α2, respectively) based on the above description. We define such a method as being
monotonic if and only if when α1 < α2 < α or α < α2 < α1, for some trust estimate
α ∈ (0, 1), we have

q1 < q2

Theorem 2 establishes that all of the accuracy measurement definitions that we consider
here satisfy monotonicity.

Theorem 2 Each of the four definitions of accuracy q as given in Equation 2, Algorithm 4,
Equation 3, and Algorithm 5 satisfies monotonicity.

Proof : Linear is trivially seen to be monotonic. To prove that Max-Certainty and
Sensitivity are monotonic, we only need to show that the PCDF function is increasing when
x ∈ (0, r

r+s
) and decreasing when x ∈ ( r

r+s
, 1). We show this by showing that the derivative
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of the PCDF function is positive when x ∈ (0, r
r+s

) and negative when x ∈ ( r
r+s

, 1). To

prove that Average is monotonic, we use Theorem 5 and let c = r+1
r+s+2 .

More specifically, this theorem is equivalent to showing that q(α) is increasing when
0 < α < r′

r′+s′
and decreasing when r′

r′+s′
< α < 1, where q is defined in Equation 3.

By Definition 3, q(α) = αr
′

(1−α)s
′

d
, where d = ( r′

r′+s′
)r′( s′

r′+s′
)s′ . Hence,

q′(α) = r′αr
′
−1(1−α)s

′

−s′αr
′

(1−α)s
′
−1

d

= αr
′
−1(1−α)s

′
−1(r′(1−α)−s′α)
d

= αr
′
−1(1−α)s

′
−1(r′−α(r′+s′))
d

.

Thus q′(α) > 0 when 0 < α < r′

r′+s′
and q′(α) < 0 when r′

r′+s′
< α < 1.

Hence q(α) is increasing when 0 < α < r′

r′+s′
and decreasing when r′

r′+s′
< α < 1.

To prove monotonicity for Max-Certainty, it is equivalent to show that q(α) is increasing
when 0 < α < r

r+s
and decreasing when r

r+s
< α < 1, where q is defined in Algorithm 4.

The rest of the proof is as above. 2
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Figure 10: Monotonicity of update methods illustrated: here, each trust update method
calculates quality of estimate q given a fixed trust estimate 〈r′, s′〉 = 〈2, 8〉, and
α ∈ [0, 1.0].

Figure 10 shows that Average method and Sensitivity method satisfy this property. The
Max-Certainty method is the same as Sensitivity method except that it uses r, s instead of
r′, s′. Thus, the figure for Max-Certainty would be the same as Figure 10 provided we use
r = 2 and s = 8.

5.3 Sensitivity Problems

The property of sensitivity alludes to a problem that some trust update methods face.
The idea is that an overly sensitive update method creates unjustifiably large updates. As
a result, the trust being placed can oscillate rapidly, leading to near chaotic conditions.
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Following Figure 4, Definition 6 specifies what it means for an update method to be asymp-
totically sensitive. The intuition behind Definition 6 is that as the amount of evidence used
to assess the trustworthiness of a source S goes up, it causes potentially erratic updates
in the amount of trust placed in the target R. Notice that Definition 6 is an undesirable
property.

Definition 6 Let a trust update method compute q based on a referral 〈r′, s′〉 and actual
experience 〈r, s〉. We further assume that α 6= α′. We define a trust update method as being
asymptotically sensitive if and only if when α and α′ are fixed, at least one of the following
holds:

lim
r′+s′→∞

q = 0

lim
r+s→∞

q = 0

Theorem 3 establishes that Max-Certainty and Sensitivity satisfy asymptotic sensitivity.
This means the above methods are susceptible to sensitivity problems as the amount of
evidence to judge a target increases.

Theorem 3 Algorithm 4 and Equation 3 satisfy asymptotic sensitivity.

Proof sketch: As for Max-Certainty method, let f(x) be the PCDF function. We want
to show that f(α) goes to infinity and f(x) goes to zero, where α = r

r+s
, x 6= α. Then

q = f(α′)
f(α) goes to infinity when r + s goes to infinity and α′ 6= α.
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(a) As r + s goes from 1 to 200, the quality
calculated by Max-Certainty falls.

(b) As r′ + s′ goes from 1 to 200, the qual-
ity calculated by Sensitivity falls whereas
the quality as calculated by Average rises
slightly.

Figure 11: Evaluating update methods with respect to quality. In both graphs, α = 0.6,
α′ = 0.5.
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Figure 11(a) shows that Max-Certainty suffers from asymptotic sensitivity as the total
number of observations r+s becomes large. And, Figure 11(b) shows that Sensitivity suffers
asymptotic sensitivity as the total number of transactions in the estimate becomes large.

When α and α′ are fixed, both Average and Sensitivity depend on the total number of
transactions r′+s′. In Figure 11(b), the quality calculated by Sensitivity goes from 1 to 0 and
the quality calculated by Average goes from about 0.73 to about 0.90. This demonstrates
that Sensitivity suffers from asymptotic sensitivity since it treats a good estimate as a bad
one when r′ + s′ becomes large, whereas Average does not suffer from this problem.

Definition 7 captures the opposite intuition to sensitivity where the accuracy measure-
ment q converges to the difference between the observed and reported probabilities. Theo-
rem 4 shows that Average, in contrast with Max-Certainty and Sensitivity, is not susceptible
to sensitivity and is thus more robust than the above methods.

Definition 7 Let a trust update method compute q based on the above description. We
define such a method as being convergent if and only if for a fixed α, we have that

lim
r′+s′→∞

q = 1− |α− α′|

Theorem 4 Following Figure 4, when α is fixed, the Average method is convergent.

Proof sketch: The convergence of Average follows naturally from Theorem 5, given
below.

5.4 Calculating Average Accuracy

The following formula shows how to calculate Average. The important feature of this
formula is that it is a closed form for calculating updates. It is exact and does not require
computing any integrals, which can be expensive to compute numerically. Hence, in the
computational respect too, this method is superior to Max-Certainty and Sensitivity.

Theorem 5 Let q be defined in Algorithm 5. Then

q = 1−

√

(

α−
r′ + 1

r′ + s′ + 2

)2

+
(r′ + 1)(s′ + 1)

(r′ + s′ + 2)2(r′ + s′ + 3)

Proof sketch: We need only to show that
∫ 1
0 x

r′(1 − x)s′ = r!s!
(r+s+1)! . We can accom-

plish this via integration by parts. The boundary terms are zeros. The details are in the
Appendix.

To summarize our technical results, we find that all the methods that we consider satisfy
the property of the accuracy measure lying within the range [0, 1]. Max-Certainty and
Sensitivity satisfy the undesirable property of asymptotic sensitivity, whereas Linear and
Average satisfy the opposite—desirable—property of converging toward the actual measure
of accuracy. The advantage of Average over Linear shows up with respect to its speed of
learning, which we demonstrate below through simulation studies.

6. Trust Update Scenarios

Now we discuss the two use case scenarios where we apply trust update.
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6.1 Trust Update for Referrers

Existing trust models lack update methods for an agent to update the extent of trust it
places in a referrer, based on the referrals the referrer gives. In general, the trustworthiness
of a referrer is best estimated based on how accurate its referrals are.

C S

R

Compare

Client Service Provider

Referrer

Client’s trust in Referrer

Client’s actual experiences

Referrer’s referral about S

M = 〈r, s〉

MS = 〈r′, s′〉MR = 〈rR, sR〉

Figure 12: Illustration of trust update for referrers.

The accuracy is determined by comparing the referrals with the observed trustworthiness
of the source, as illustrated in Figure 12. This process mirrors exactly the process described
for Figure 4, but with the target now being a referrer.

6.2 Trust Combination

C S

R1

R2

R3Client Service Provider

Client’s trust in Referrer

Client’s actual experiences

Referrer’s referral about S

Referrers

Figure 13: Illustration of trust combination.

After client C has determined the amount of trust it places in the service provider S
based on referrals from each of the referrers Ri, C consolidates the trust estimates using
the propagation operators introduced in Section 2.3. Figure 13 shows a situation with one
client, three referrers, and one service provider. C predicts the trustworthiness of the service
provider based on the information received from the three referrers. C would make such
a prediction when selecting a service provider—typically, before it has obtained sufficient
direct experience with S.

• C uses the concatenation operator to discount the trust report received from each
referrer according to C’s trust in that referrer.

• C uses the aggregation operator to combine the discounted trust reports. The com-
bined trust report yields C’s estimated trust in the service provider.
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6.3 Trust Update by Trust in History

To accommodate updating the trust placed in a service provider, we introduce the idea of
trust in history. We can imagine a “ghost” target reflecting the client’s previous level of
trust in a specific service provider. The ghost target, in essence, estimates the outcome to
be obtained from the service provider. Based on this estimate (and others), the client may
estimate its trust in that provider. The client evaluates this ghost target on par with any
real referrer.

C S

R

Compare

Client Service Provider

History

Trust in History Past Behavior

Current Behavior

M = 〈r, s〉

MS = 〈r′, s′〉MR = 〈rR, sR〉

Figure 14: Illustration of trust update by trust in history.

Figure 14 illustrates this scenario as an instantiation of our general model of trust
updates, from Section 3. The essential idea is that the client tries to estimate how much
trust to place in the past information about a provider. In this manner, we can avoid hard-
coding a discount factor to weigh the past information. Instead, the trust placed in history
serves as a dynamically computed discount factor that tells us how much to weigh the past.

Algorithm 6 describes a method, Average-α, which calculates the discount factor dynam-
ically from trust in history. Average-α is similar to Average-β. The main difference between
the two is that whereas Average-β applies to the referrers setting, Average-α applies to the
trust in history setting (both of these settings are introduced in Section 3).

In Algorithm 6, first, we compare the current behavior 〈r′, s′〉 with the past behavior
〈r, s〉 to determine how consistent the behavior of the provider S is. If the current be-
havior 〈r′, s′〉 is close to the past behavior 〈r, s〉, the trust in history increases; otherwise,
it decreases. The closeness is measured by the method averageAccuracy, as defined in Al-
gorithm 5. The trust placed in history, 〈rR, sR〉, reflects how static the behavior of S is.
Thus, the probability α of trust in history can be used as the discount factor β, which is
high when the new behavior is consistent with the past but low when it is not. Here, we
initially set 〈rR, sR〉 to 〈0.9, 0.1〉, i.e., the client trusts its past experience with small amount
of confidence. We initially set 〈r, s〉 to 〈0, 0〉, and we do trust update once the client has
done some transactions with the service provider.

A key point of distinction of our approach is that the trust placed in the history 〈rR, sR〉
is not a fixed discount factor; it is based on how much the history matches the subsequent
transactions. If the source’s behavior changes a lot and cannot be accurately predicted from
the history, then the trust placed in the history becomes low, and the historical information
is consequently discounted to a greater extent. As a result, the net past evidence that is
brought to bear on a prediction goes down in addition to that evidence including more
conflict than it would otherwise. Thus the certainty of the resulting prediction is lower
than when the new information agrees with the past.
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Algorithm 6: Average-α: Yields a discount factor based on C’s prior experiences
with S.
input 〈r, s〉, 〈r′, s′〉, 〈rR, sR〉;

α←
r

r + s

c← c(r, s)

c′ ← c(r′, s′)

q ←



1−

√

√

√

√

∫ 1
0 x

r′(1− x)s′(x− α)2dx
∫ 1
0 x

r′(1− x)s′dx





r′R ← rR + cc′(1− q)

s′R ← sR + cc′q

β ←
r′R

r′R + s′R

rT ← r + βr′

sT ← s+ βs′

return 〈rT , sT 〉;

7. Experimental Evaluation

We now evaluate our approach via simulations to supplement our theoretical analysis. We
consider the following main hypotheses in this study.

Hypothesis 1: Effectiveness Average with trust in history is no worse at prediction than
existing approaches for a variety of possible behaviors of service providers (Section 7.2,
Section 7.3, Section 7.4, and Section 7.5).

Hypothesis 2: No tuning Average with trust in history can offer accuracy similar to the
traditional approaches without requiring any tuning of parameters (Section 7.4 and
Section 7.5).

Hypothesis 3: Dynamism detection The certainty computed by Average with trust in
history reflects the dynamism of service providers. (Section 7.4).

We divide our simulations into two parts. The first part evaluates the effectiveness
of our trust update method. Section 7.2 compares our approach with three other models
in predicting behavior based on the estimated trustworthiness of referrers. Section 7.3
shows how the trustworthiness estimated by our approach identifies honest from malicious
referrers, and further yields accurate reports regarding the service providers.

The second part of our simulation shows the benefits of using trust in history. Section 7.4
compares trust update with and without trust in history in predicting behavior of different
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profiles. Section 7.5 shows the effectiveness of trust in history on a real dataset from Amazon
Marketplace.

We begin in Section 7.1 by introducing some behavior profiles and accuracy metric
throughout our evaluation.

7.1 Behavior Profiles and Accuracy Metrics

We conduct simulation studies to evaluate our trust update method. To this end, we
introduce some interesting behavior profiles for providers to capture a variety of situations
that can arise in practice. A profile simply means a formal characterization of the behavior
of a type of agent. We use the agent profiles to evaluate the effectiveness of the approaches
against different kinds of agents.

Table 3: Behavior tracking of different behavior profiles used in Sections 7.2 and 7.4.

Profile Example Behavior Function Xt

Probability Amazon ratings







1.0 90%

0.0 10%

Periodic Restaurant
(lunch and
dinner)







1.0 (⌊t/2⌋ mod 2) ≡ 1

0.0 otherwise

Damping Scam artist







1.0 if t ≤ T/2

0.0 otherwise

Random Stock market U(0, 1)

Random Walk Flight ticket
price

Xt−1 + γU(−1, 1)

Momentum Flight ticket
price

Xt−1 + γU(−1, 1) + ψ[Xt−1 −Xt−2]

We include the following behavior profiles in our study. Table 3 summarizes these
profiles and Figure 15 shows the resulting behaviors schematically. To define the profiles
formally, we introduce Xt, a behavior function to represent the probability of providing a
good service at timestep t. Here, U(−1, 1) represents the uniform distribution over [−1, 1].
The parameters ψ and γ are real numbers between 0 and 1. At each timestep t, we calculate
Xt first, and next determine the quality of service based on Xt.

• Probability captures providers such as a travel agency or a seller on Amazon Market-
place. For instance, a travel agency might be able to fulfill a passenger’s request for
a pleasure trip booking with a certain probability.

• Random emulates a totally unpredictable service.
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Figure 15: Behavior profiles shown schematically.

• Periodic describes a service that changes behavior regularly. For example, a restaurant
may employ experienced waiters for dinner, and novices for lunch.

• Damping models agents who turn bad after building up their reputation.

• Random Walk generalizes over providers whose current behavior depends highly on
their immediately previous behavior. For example, the quality of service provided by
a hotel would depend upon its recent investments in infrastructure and staff training;
thus the next quality of service would show a dependence on the previous quality of
service.

• Momentum is similar to Random Walk except that its current behavior depends highly
on two immediately previous steps.
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Among these profiles, Probability, Damping, and Random Walk yield more predictable be-
haviors than the others because their next outcome relates closely to the previous outcome.
Conversely, Random, Periodic, and Momentum are less predictable.

We introduce average prediction error E as a measure of the effectiveness of an update
method. The idea is that an update method makes a prediction at each timestep and we
compare this prediction with the trustworthiness as observed by the client.

Definition 8 Let 〈r′t, s
′
t〉 and 〈rt, st〉 be the predicted and observed behaviors at timestep t.

Define α′
t and αt as usual. Then, the average prediction error E over a total of T timesteps

equals:

E =

∑T
t=1 |α

′
t − αt|

T

7.2 Predicting Referrers of Different Behavior Profiles

We conduct a simulation study to demonstrate the effectiveness of our trust update method.
As Table 4 shows, this simulation includes a study of Average-β (our approach with fixed
discount factor β) along with three other trust models: Max-Certainty, Linear-WS, and
Jøsang.

Table 4: Trust update methods compared in Section 7.2.

Update Method Description Static Model

Linear-WS (Algorithm 2) Linear with fixed β Wang and Singh

Jøsang (Algorithm 3) Linear with fixed β Jøsang

Max-Certainty (Algorithm 4) Max-Certainty with fixed β Wang and Singh

Average-β (Algorithm 5) Average with fixed β Wang and Singh

In this experiment, there are 100 timesteps, in each of which the client conducts 50
transactions with the service provider. For concreteness, in our simulations, we set 〈rR, sR〉
and 〈r, s〉 to 〈1, 1〉 and 〈0, 0〉 in this study. This initial value reflects the intuition that a
client might place little trust in a stranger (as a referrer), and has no knowledge of the
service provider.

The first simulation compares the Average-β trust update method with other methods.
In this simulation, there is one client C and one service provider S. At each timestep, C
obtains a referral from a referrer R about S, and itself performs 50 transactions with S.
Using the various trust update methods, C updates its estimate of the trustworthiness of
R based on comparing the referral R gave with C’s actual experience. The behavior of the
referrer R is defined using each of the above profiles. Note that using different randomness,
and γ and ψ of Random Walk and Momentum in generating behavior of each profile yields
similar results. Here we only show one example of a particular set of profile parameters.

Figure 16 shows the average prediction error of all trust update methods with discount
factors of β = 0.00, 0.01, . . . , 1.00 for all behavior profiles. For example, for the more
predictable profiles such as Probability, Damping, Random Walk, and Momentum, a high
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Figure 16: Prediction errors with various discount factors. Although Average-β does not
dominate in all graphs, it yields competitive results, whereas most of the others
fail in at least some of the cases.

discount factor β yields better predictions because it focuses on recent results, even though
it sacrifices a large amount of evidence. Conversely, for the less predictable profiles such
as Periodic and Random, it is difficult to determine the best discount factor, because it
appears to depend on extraneous factors such as the random seed chosen.
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Recall that Average is the only one of the update methods that considers certainty.
However, this deficiency of Max-Certainty and Linear is overcome by multiplying certainty
in 〈δrR, δsR〉. As a result, the difference in average prediction errors is not significant.

Section 4.6 describes some cases where Max-Certainty fails to predicate accurately. In
the context of the Probability and Random profiles, when the probability-certainty density
distribution is steep (indicating strong evidence), a small difference between α based on the
observed trustworthiness and α′ based on the referral can yield a significant punishment in
Max-Certainty.

To further highlight the advantages of Average-β, we create two new profiles: Rumor
and Honest. A Rumor referrer provides accurate reports first but exaggerates the evidence
in the second half of the simulation. Suppose the actual experience is 〈4, 1〉. An exaggerated
referral might then be, for example, 〈40, 10〉. An Honest referrer provides referrals whose
strength depends on its experience. It can accommodate the situation such as at the
beginning when it may not have sufficient experience with a provider: an Honest referrer
would provide neutral referrals with low certainty.

Figure 17 shows the estimated trustworthiness, respectively, of a referrer following the
Rumor and a referrer following the Honest profile. A Rumor referrer provides fair referrals
at the beginning and begins to exaggerate later in the simulation. An Honest referrer has
provides fair referrals throughout: with little certainty at the beginning and generally with
greater certainty later in the simulation. For Rumor, Average-β detects the exaggeration
and lowers the trust placed in the referrer accordingly. However, other approaches are
not sensitive to this exaggeration. For Honest, Average-β does not punish the referrer
even though the referral is inaccurate at the beginning. Once the referrer gathers enough
experience and provides good reports, the trust placed in it is built up accordingly. Max-
Certainty suffers in this case, because, as we discussed in Section 4.6, it punishes Honest
for its reports turning out to be false.
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Figure 17: Trust (with discount factor β = 0.2) placed in Rumor (exaggerates after timestep
50) and Honest (has little knowledge before timestep 50) profiles over time. The
result shows our approach Average-β (a) punishes against exaggeration (later
in the simulation) and (b) stays neutral about evidence with low confidence (at
the beginning of the simulation).
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Summary

The foregoing shows that Average is effective in evaluating the trustworthiness of referrers
of various behavior profiles. Average provides competitive predictions against all behavior
profiles, whereas other approaches either suffer in some of the profiles or fail to provide
accurate predictions. Hence, we conclude that the above supports Hypothesis 1: Effective-
ness.

7.3 Identifying Robust and Malicious Referrers

Referrers might not be honest or cooperative. This simulation verifies that even if some
referrers maliciously provide trust reports indicating a falsely exaggerated amount of evi-
dence, as long as the client can access a few good referrers, it can obtain a good overall
estimate of the trustworthiness of the service provider. This experiment involves one client
agent, one service provider, and two referrers: one good throughout and one who is good
for the first 50 timesteps and then turns bad.
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Figure 18: Estimated versus actual trustworthiness of a service provider based on referrals
from two referrers, one good throughout and one who is compromised midway.

Figure 18 shows a case where, with just one good referrer to counterbalance one mali-
cious referrer, the client can predict the trustworthiness of the service provider accurately.
The service provider offers a good outcome with a probability of 0.90 at all times. The
trustworthiness estimated for the service provider is the same as its actual trustworthiness
until the 50th timestep, when one of the referrers turns bad, as a result of which the estimate
drops down to about 0.71. The estimate returns to about 0.88 in about five timesteps and
increases slowly back to 0.90.

Figure 19 shows the amount of trust placed in the good and the corrupted referrers.
The trust placed in the good referrer begins at about 0.90 and then increases to nearly 1.
The trust placed in the corrupted referrer begins from about 0.90 and reaches about 0.98
at the 50th timestep, then drops quickly to 0.15 in about ten timesteps. This drop in trust
in the corrupted referrer is key to the return to accuracy of the overall assessment of the
service provider.
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Figure 19: Trust placed in the good referrer versus trust placed in the corrupted referrer.

Summary

The foregoing shows that Average is effective in identifying malicious referrers. Besides,
Average provides accurate predictions despite of erroneous reports from malicious referrers.
Hence, we conclude that the above supports Hypothesis 1: Effectiveness.

7.4 Predicting Agents of Different Behavior Profiles using Trust in History

Now we evaluate the effectiveness of trust in history in tracking different behaving agents. In
this simulation, there is one client C and one service provider S. After each 100 timesteps,
C performs 50 transactions with S. The behavior of the service provider S is defined
using the profiles in Table 3. Using three different approaches, we update the estimate of
trustworthiness of S and predict its future behavior based on that estimate. In this scenario,
we set 〈rR, sR〉 (in Definition 8) to 〈0.9, 0.1〉 in this study. This initial value reflects the
intuition that whereas a client would place a fair amount of trust in its own past experience
(as history), it might place little trust in a stranger (as a referrer in Section 7.2).

Table 5: Trust update methods compared in Section 7.4.

Update Method Description Static Model

Amazon No discount Wang and Singh

Average-β (Algorithm 5) Discount past with fixed β Wang and Singh

Average-α (Algorithm 6) Discount past with trust in history Wang and Singh

Table 5 shows the three approaches compared in this simulation. These approaches
discount past experience differently. Amazon, like marketplace web sites such as Ama-
zon and eBay, retains all past experience; Average-β decays the past information with a
fixed discount factor β; and, Average-α decays the past information with a dynamically
computed trust in history. For example, suppose C has 〈40, 10〉 and 〈25, 25〉 in first two
timesteps. Amazon estimates the trustworthiness as 〈40 + 25, 10 + 25〉. Average-β yields
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〈40β + 25, 10β + 25〉, where β is a fixed value in [0, 1]. We can see Amazon is a special case
of Average-β when β = 0. Average-α uses an adaptive discount factor based on trust in
history. Figure 20 shows the average prediction error of all methods with discount factor
β = 0.00, 0.01, . . . , 1 for all behavior profiles defined in Table 3.
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Figure 20: Prediction error with various discount factors (lower is better). In each graph,
Amazon and Average-α yield horizontal lines since they do not take a discount
factor as input.
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For Probability, Average-α dominates all Average-β with different values of β. Recall
that Probability performs poorly once in a while. When that happens, Average-α adapts
dynamically by increasing the discount factor. Subsequently, Average-α adjusts the discount
factor back to a lower value once the behavior becomes more predictable. This adjustment
yields better predictions than any fixed discount factor. Note that Probability yields behav-
ior quite similar to real-life agents. An example of these are sellers on Amazon Marketplace,
which we discuss in Section 7.5.

As we observed above, some profiles are more predictable than others. For example, for
Damping, Random Walk, and Momentum, the next outcome significantly depends upon the
previous outcomes. In these cases, discounting old information more by using a high β value
yields predictions of improved accuracy. However, although Average-β with high discount
factors provides highly accurate predictions, the high discount factors yield low certainty
because the concomitant tendency to consider only the most recent evidence results in
reduced evidence, as shown in Figure 21.

Other profiles, especially Random and Periodic, are less predictable. For Random, we
need overall information (high β) to make the best prediction. For Periodic, higher and
lower β values yield a lower error than β values from the middle, although the error is
unacceptably high: the error exceeds 0.50. Note that Periodic changes its quality back and
forth every two timesteps. Using β = 1 yields perfect prediction when Periodic stays the
same but the worst error in the immediately following timestep (because of the alternation
of Periodic). Conversely, using β = 0 considers the overall behavior: it predicts 0.50 all
the time except during the initial several warmup timesteps. All β values and α yields an
error close to 0.50. Periodic is the only case where the behavior cannot be predicted by
all approaches. However, Periodic is not realistic in practical cases because a provider who
followed it would not gain much utility—Average-α can detect its unstable behavior and
places low trust in history thus yielding low certainty. The client C can react against it
accordingly.

Figure 21 compares the certainty of Amazon, Average-α, and Average-β with respect to
the β that yields the best trust prediction. Recall that certainty reflects two facts: (1) the
amount of evidence collected, and (2) the conflict in the evidence. In the first half of the
experiment, there is no conflict with the client’s own observations. Therefore, for example,
in Damping, the certainty of Average-α goes up as the history discount decreases (and
as the evidence increases). When the referrer turns bad in the middle of the experiment,
the certainty drops dramatically, partly because of the conflict in the evidence and partly
because, by using a high discount factor to discount the old evidence significantly, Average-
α in essence reduces the amount of evidence it considers. Conversely, the certainty of
Average-β is fixed because of the fixed discount factor, except when the conflict occurs in
the middle, and its certainty falls down briefly. For profiles such as Random and Periodic,
Average-α yields lower certainty than Average-β, because the behavior is unpredictable.
The low certainty of trust prediction can guide the client C not to interact with the target
because its behavior is unpredictable.
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Figure 21: Certainty of trust prediction with various discount approaches. Each graph
shows the certainty values of Amazon, Average-β (choosing the β that yields the
most accurate prediction), and Average-α approaches.

Summary

The foregoing shows that Average with trust in history is effective in tracking various
dynamic behaviors. Average with trust in history provides competitive predictions without
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prior knowledge of the behaviors and tuning any parameter. Besides, the certainty of
Average with trust in history can be served as an indicator of the dynamism of the behavior.
Hence, we conclude that the above supports Hypothesis 1: Effectiveness; Hypothesis 2: No
tuning; and Hypothesis 3: Dynamism detection.

7.5 Predicting Amazon Marketplace Data using Trust in History

In order to evaluate the effectiveness of our method in predicting data from the real world,
we studied manually collected feedback profiles of five sellers from Amazon. These sellers
obtained 60, 107, 180, 235, and 452 feedbacks, respectively. Each feedback is an integer
from 1 to 5. We treat each feedback as equaling the quality of service the seller provided
during the rated transaction. More precisely, we normalize the rating from {1, 2, 3, 4, 5} to
{0, 0.25, 0.5, 0.75, 1} and treat each normalized rating as the probability obtained from ten
transactions. For example, the rating 5 is translated to 〈10, 0〉 and the rating 2 is translated
to 〈2.5, 7.5〉. At each timestep, the current feedback can be predicted by using the feedbacks
in the past. For example, consider a seller who receives feedbacks 3, 1, 2, and 4, respectively,
in the first four timesteps. We can use these feedbacks as a basis for predicting its next
feedback. In a simple approach, as supported by Amazon, we can use the average of these
feedbacks to predict the fifth feedback. In the above example, we would predict a feedback
of (3 + 1 + 2 + 4)/4 = 2.50. Suppose at the fifth timestep, the seller actually receives a
feedback of 3. Thus our prediction error would be 0.50. The above approach weighs each
feedback given in the past equally.

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 3 40 . 3 50 . 3 60 . 3 70 . 3 80 . 3 90 . 40 . 4 1
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Figure 22: Prediction error of feedback of Amazon seller. Trust in history versus different
history discount factors.

Alternatively, we may discount the history by a factor of β ∈ [0, 1]. For example, when
β = 0.90, we have 3 × β3 + 1 × β2 + 2 × β1 + 4 × β0)/(β3 + β2 + β + 1), which equals
1 × 0.93 + 2 × 0.92 + 3 × 0.9 + 4)/(0.93 + 0.92 + 0.9 + 1) = 2.56. Under this scheme, in
the above case, the prediction error would be 0.44. If we use a different discount factor
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for the history, we would in general obtain a different prediction error. In our experiment,
we normalize the feedback to a real number in [0, 1]. That is, a feedback of 1, 2, 3, 4,
or 5 corresponds to a trust value of 0, 0.25, 0.50, 0.75, or 1, respectively. We compare
the prediction error using the trust in history with the prediction error using a specified
discount factor. As Figure 22 shows, using the fixed discount in history, when the discount
factor is 0.82, the average error of prediction is the lowest, which is 0.35. In general, the
error would be higher unless we happened to correctly guess the optimal discount factor.
In contrast, using trust in history, the average prediction error is 0.34, which turns out to
be lower than using any specific fixed discount factor (Hypothesis 1 ).

An important engineering challenge facing traditional approaches is that, since they
require a fixed discount factor for the history as a parameter, we need to manually tune
such a discount factor for each application scenario. Such tuning limits the applicability of
the traditional approaches substantially. In contrast, our method that uses trust in history
automatically adapts to an agent’s changing behavior, and thus does not require any manual
tuning (Hypothesis 2 ).

Summary

The foregoing shows that Average with trust in history is effective in tracking ratings from
Amazon without tuning any parameters. Hence, we conclude that the above supports
Hypothesis 1: Effectiveness and Hypothesis 2: No tuning.

7.6 Summarizing Experimental Results

Our results are twofold. First, in Section 7.2, we show Average provides a competitive
accuracy measurement on referrals. It can deal with various behavior effectively, detect
exaggerated reports, and forgive referrers with no trust information (Hypothesis 1 ). Sec-
tion 7.3 demonstrates how our trust update method identifies malicious referrer and provides
an accurate report from referrals containing false information (Hypothesis 1 ). Second, we
show the effectiveness and benefits of trust in history. Section 7.4 presents how trust in
history tracks various artificial behavior competitively without parameter tuning (Hypothe-
ses 1 and 2 ). We show that trust in history can preserve a greater amount of evidence than
the other approaches and thereby provide additional information about the dynamism of
the service provider (Hypothesis 3 ). Section 7.5 shows it works just as well on practical
behavior from real datasets (Hypothesis 1 ).

Although Average-α is not the most accurate method in all circumstances (Hypothesis
1 ), we consider Average-α to be the best solution among these methods. Average-α requires
no tuning of a discount factor. There are two main advantages for not having to tune β by
hand.

• Tuning the discount factor can be difficult for a variety of reasons. It is nontrivial to
determine a provider’s behavior profile. It is difficult to determine the best value of
β for a specific profile and to maintain that value even as an agent changes its profile
dynamically. Using the dynamically changing α as the discount factor can adapt to
all kinds of profiles.
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• By dynamically tuning the discount factor, Average-α can provide dynamic certainty
information, which reflects the predictability of the referrers (Hypothesis 3 ). If a
provider changes behavior frequently, the certainty computed by the trust in history
does not build up. Knowing the certainty may affect an agent’s decision-making
strategy. Even if the probability is high, the provider may not be trusted, due to a low
certainty. Conversely, using β as the discount factor cannot provide such information
because it discounts history equally regardless of conflict (Hypothesis 3 ).

8. Literature

Trust models have been widely studied (Sabater & Sierra, 2005; Jøsang, Ismail, & Boyd,
2007). Here we focus on some well-known trust models and also the ones that study trust
update and evaluate the trustworthiness of referrers based on their referrals.

The Beta Reputation System (BRS) (Jøsang & Ismail, 2002) and SPORAS (Zacharia &
Maes, 2000) are two trust models that support the idea of the discount factor. They define
a fixed damping factor to control how much past experience should be discounted. This
is similar to β, the manually coded discount factor in our experiments. In our approach,
the discount factor can be automatically tuned based on how dynamic the agent behavior
is. Besides, BRS and SPORAS fail to provide a trust update mechanism to update the
estimated trustworthiness of agents based on the accuracy of the trust information they
provide.

FIRE (Huynh et al., 2006) and REGRET (Sabater & Sierra, 2002) are two trust models
that consider trust information from both individual and social aspects. FIRE estimates
trust from four sources: interactions, roles, witnesses, and certified reputations. The trust
information in REGRET includes individual and social dimensions. However, both FIRE
and REGRET lack a trust update mechanism. Although FIRE can cope with some dy-
namism, in their experiments, Huynh et al. assume the agent behavior only involves minor
changes with an extremely low probability. Our trust update approach copes with various
kinds of dynamism. We evaluate our trust update by introducing several dynamic behavior
profiles. Our experiments show our trust update provides accurate trust estimation for a
variety of natural behavior profiles.

Teacy et al. (2006) develop Travos, one of the trust models based on the beta distribu-
tion. Travos calculates trust based on both direct experience and trust information from
third parties. Travos also provides a mechanism to measure the accuracy of referrals. Given
a referral 〈r′, s′〉 (i.e., a beta distribution), Travos divides the probability density into several
disjoint intervals. Suppose the probability α of the actual experience 〈r, s〉 lies in interval k.
Then the accuracy of the referral is defined as the probability density ratio of the interval k
to all intervals. Similar to Sensitivity, their accuracy measurement suffers when the number
of transactions is large. Besides, the number of intervals requires human tuning. Teacy et
al. suggest that a good trust model should satisfy three requirements: it should provide a
comparable trust metric with or without personal experience; it should provide a confidence
measure; and it should be able to assess the reliability of trust information sources and dis-
count the information provided by unreliable sources. Our approach satisfies their three
requirements of a good trust model. Besides, our approach makes no assumption about
agent behavior. However, Travos assumes the agent behavior remains unchanged over time.
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Teacy et al. agree that a time-based behavioral strategy is necessary for agents to deal
with dynamic behavior. By using our automatically adjusted discount factor, our approach
provides a time-based strategy dealing with a variety of dynamic behavior profiles.

Fullam and Barber (2007) study how to choose between trust from direct experience
(experience-based) and from referrals (reputation-based). They adopt reinforcement learn-
ing to learn a parameter that controls how to aggregate information from experience-based
and reputation-based trust. Based on the reward the client gains from the transactions,
Fullam and Barber dynamically update the weights of reputation providers (referrers) in
a linear manner. Wang and Vassileva (2003) present a Bayesian network-based trust and
reputation model for peer-to-peer networks. Their model also treats trust update in a linear
manner. They predefine a fixed discount factor to discount past information. Our approach
updates trust based on the probability theory. We show how our approach performs better
than linear-based trust update approach both theoretically and experimentally.

Ries and Heinemann (2008) propose CertainTrust, which is similar to Jøsang’s approach.
They define trust in terms of the numbers of positive and negative experiences. Their
certainty does not reflect the conflict in the evidence, but reflects the amount of evidence.
Trust is propagated using two operators: consensus (our aggregation) and discounting (our
concatenation). Context dependence is supported by predefining the maximum amount of
expected evidence, which is not trivial. Ries and Heinemann update trust in two ways. To
update trust from a feedback f (a scalar between −1 and 1), they increment the number
of positive experiences by (1 + f)/2 and increment the number of negative experiences by
(1−f)/2. An alternative is to update the trust placed in an agent based on the accuracy of
the recommendations it provides. The accuracy of the recommendations is defined as the
tendency to the actual behavior. Ries and Heinemann adopt an aging factor analogous to
a discount factor. The aging factor normalizes the trust values that exceed the predefined
maximum number of experiences. Their aging factor is defined once and used only for
normalization. As shown in Section 7, using fixed aging factors poorly deals with various
kinds of behavior profiles and these parameters require human tuning. In contrast, our
approach can track the dynamic behavior as well as adjust the discount factor based on
how dynamic the agents are.

Khosravifar, Gomrokchi, and Bentahar (2009) design a maintenance-based trust model.
They define a timely relevance factor to discount the past experience when updating trust.
The timely relevance factor reflects the time difference between the current time and the
time of last update. The amount of discounted information is determined by a domain-
dependent variable λ, which is similar to the discount factor β discussed in this paper.
When λ is high, past experience is forgotten faster. When λ is low, trust values tend to
consider overall experience. However, Khosravifar et al.’s timely relevance factor requires
manual tuning, which is also the common limitation of the trust update methods with the
β discount factor. The discount factor α in our Average-α requires no manual tuning.

Poyraz (Sensoy, Zhang, Yolum, & Cohen, 2009) is a trust-based service selection ap-
proach. Poyraz calculates the estimated trustworthiness of web services based on both
direct experience and referrals. Poyraz filters out referrals provided by untrustworthy advi-
sors (i.e., referrers). It assesses the trustworthiness of advisors based on private credit and
public credit. The private credit is evaluated by comparing the consumer’s actual experi-
ence with the referral. The comparison produces either a satisfactory or an unsatisfactory
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assessment based on the consumer’s preferences. When the consumer lacks experience,
public credit is calculated by comparing the referral with other advisors’ referrals. If the
referral deviates from the majority, the advisor is considered untrustworthy. Poyraz also
provides a time window to discard old trust information. Our approach compares actual
experience with referrals based on probability density rather than consumer’s preferences.
We discount old trust information using a discount factor. Instead of manually adjust the
size of the time window, our discount factor is automatically tuned based on how dynamic
the agent behavior is.

Paradesi et al. (2009) incorporate trust based on certainty into their work on web service
composition. Like our approach, their definition of trust and certainty is based on Wang
and Singh’s (2007) approach. In their trust framework, Wisp, Paradesi et al. study four
types of frequently encountered web service flows in composition. They provide operators to
calculate the trust and certainty for the composed web service in each case. Paradesi et al.’s
method to update the trust is intuitive based on Wang and Singh and Jøsang’s approach: it
simply adds up the number of positive and the number of negative transactions separately.
Importantly, it does not consider history discount or the effect of aging information, as we
have here. In this manner, Paradesi et al.’s work complements our proposed approach, and
could be refined to adopt our more sophisticated definitions of trust update.

Mistry, Gürsel, and Sen (2009) estimate reputation scores of sensor nodes based on mea-
surement accuracy in sensor networks. In their framework, a parent node receives reports
from its children nodes. Based on the aggregated (average) report, the parent evaluates the
trustworthiness of its children. The parent compares the aggregated report and sensed data
from each child, and then calculates the error based on the Wilcoxon Signed Rank Test
(Wilcoxon, 1945). The reputation of each child reflects the new evidence (the error) based
on two update schemes, β-reputation (Jøsang & Ismail, 2002) and Q-learning (Watkins &
Dayan, 1992). Both β-reputation and Q-learning schemes use a fixed parameter (discount
factor γ in β-reputation and learning rate α in Q-learning) to exponentially discount the
past evidence, which is similar to our general update (Algorithm 1). Their update schemes
require manual tuning and thus lack the ability of dealing with dynamism.

Vogiatzis, MacGillivray, and Chli (2010) build a trust framework on Hidden Markov
Models. They apply a probabilistic model to estimate the quality of the service provider
with varying behavior. There are some important differences between their approach and
ours. Vogiatzis et al. assume that the changes in the behavior of a service provider are slowly
varying and can be described as a Wiener process on the quality sequence. A Wiener process
is analogous to Brownian motion and supports properties that are not well-motivated when
talking about service providers. For example, it requires that the behavior of a service
provider have a mean of 0 and a deviation proportional to the time (that is, it should offer
the same quality on average as it does at the beginning). Such a model makes sense for a
Brownian motion but does not apply to agents who may vary their quality of service due to
environmental effects as well as investments in infrastructure, as motivated above. Further,
Vogiatzis et al. make additional unjustified assumptions such as that opinions from an
honest provider have a normal distribution with a mean of the true quality and that opinions
from a dishonest provider have a uniform distribution. Thus, their approach only models
agents with randomly decision making, and does not apply to agents who deliberately
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provide extremely high or extremely low referrals. Overall, the model of Vogiatzis et al. has
limited practical applicability in connection with services and agents.

Vogiatzis et al. (2010) evaluate their approach with respect to two types of behaviors:
static and damping. We treat dynamism more extensively by defining six dynamic behavior
profiles and show how our approach performs against these profiles. However, our definition
of reputation of the target (referrer) satisfies the required mathematical properties and it is
rigorous. We use heuristics to update the trust of referrals. We have justified our heuristics
by proving that our models satisfy important mathematical properties, for example, the
farther the referrals are from the believed actual quality of a service provider, the higher
is the update (q in Algorithm 1) in the trust placed in the referrer. Our model is compu-
tationally efficient. An excessive need for computation is a big shortcoming of Vogiatzis
et al.’s and other such traditional approaches. For example, in order to estimate the quality
of a service provider with varying behavior, based on 100 transactions, Vogiatzis et al.’s
approach would need to calculate multiple integrals with dimension 100. The efficiency
would suffer further when calculating the honesty of multiple opinion providers.

Hazard and Singh (2010) identify and axiomatize some common intuitions about trust
when viewed from the perspective of the incentives of agents. They relate the trustwor-
thiness of an agent to how it discounts future payoffs: more trustworthy agents have a
longer time horizon, an intuition also shared by Smith and desJardins (2009). The above
approaches are complementary to ours in that they deal with agents who can strategically
alter their behavior whereas we concern ourselves with agents of a fixed type, whose pro-
vided quality of service we attempt to estimate. Also, from the incentives perspective, Jurca
and Faltings (2007) study mechanisms to ensure agents offer truthful feedback on others.
Our approach deals with how to incorporate new evidence in maintaining a trust rating.
Their approach applies in settings where one can sanction false reporters and thus promote
good behavior.

9. Conclusions and Directions

This paper proposes an approach to perform trust updates. It makes the following contribu-
tions. One, for the problem of updating the trust placed in referrers on a continuing basis,
it develops a mathematically well-justified probabilistic approach for performing updates.
Importantly, this approach works on top of a conceptually simple representation for trust
that reflects common intuitions about trust and evidence. Further, the proposed approach
although cast as a heuristic for calculating trust updates is evaluated (along with some
competing heuristics) on mathematical grounds through properties of monotonicity and
sensitivity. Two, this paper adapts its referrals approach for updating trust in a provider
by modeling trust assessments as referrals from the history of prior interactions. Three,
this paper shows that the proposed approach yields performance that compares well with
existing approaches without requiring any hand tuning of parameters common in previous
approaches.

Our investigations have opened up some interesting natural directions for future study.
First, an obvious theme is further experimental evaluation. It would be instructive to
consider additional types of agents, for instance, discriminative agents. Second, a promising
line of inquiry is relating the above to the decision-making strategies for agents to compare
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trust estimates for service selection. It would be interesting to examine how discounting the
past, as we showed above, relates to discounting valuations of the future. Third, in certain
settings, especially with widespread sharing of information, updating trust estimates can
have significant dynamical effects. Hazard (2010) has studied such dynamical properties of
various mechanisms but without explicitly considering referrals. It will be instructive to
combine our approach with his.

Fourth, our current definition does not accommodate multivalued events and does not
tell us if a referral overestimates or underestimates the quality of the service provider.
Multivalued events can be useful in some practical cases. Further, an underestimate might
be more desirable than an overestimate—in the former case, you get a pleasant surprise,
although it is not always ideal because you would miss out on selecting some good providers
because of the underestimation. We have begun to address a suitable representation of trust.
However, it would be nontrivial to provide appropriate updating methods.
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Appendix A. Proofs of Theorems

Lemma 6
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Lemma 7 Given r and s as above, we have that
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Where r is a positive integer.
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Proof: This lemma is used in the next lemma, to show that the right side of an equation
approaches a constant, where the equation has duplicated roots, and then the two roots of
the equation approach that duplicated root.
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Lemma 8 Let α = s
r

and α is fixed. Let A(r) and B(r) be the two values of x that satisfy
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Where r is a positive integer.

Proof: The idea is to show that A(r) and B(r) are two roots of an equation g(x) = β(r).
If limr→∞ β(r) = β and the equation g(x) = β has duplicated roots of α, then we have
limr→∞A(r) = limr→∞B(r) = α
A(r) and B(r) are two roots for the equation
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Lemma 9 Let α = r
r+s

and t = r + s. Let α be fixed and c 6= α.

lim
t→∞

cαt(1− c)(1−α)t

∫

xαt(1− x)(1−α)tdx
= 0 (6)

lim
t→∞

ααt(1− α)(1−α)t
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=∞ (7)

Proof: Let f(x) = xαt(1−x)(1−α)t
R

xαt(1−x)(1−α)tdx

Proof of Equation 6:
Without losing generality, assume 0 < c < α.
For any ǫ > 0, let A(t) and B(t) be defined in Equation 4 where c = ǫ. According to
Lemma 8, there is a T > 0 such that c < A(t) < α when t > T . Since f(c) < f(A(t)) = ǫ,

we have f(c) < ǫ. Thus for any ǫ > 0, there is a T > 0, such that cαt(1−c)(1−α)t
R

xαt(1−x)(1−α)tdx
< ǫ

when t > T , which proves Equation 6.
Proof of Equation 7:

For any N > 0, let A(t) and B(t) be defined in Equation 4 where c = 0.50. Since
f(x) < f(A(t)) = 0.50 when x < A(t) and f(x) < f(B(t)) = 0.50 when x > B(t). Then
∫ A(t)
0 f(x)dx+

∫ 1
B(t) f(x)dx <

∫ 1
0 0.50dx = 0.50.

Thus
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1−
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B(t) f(x)dx > 0.50 Since f(x) ≤ f(α) when x ∈ (A(t), B(t)).

Thus we obtain (B(t)−A(t))f(α) > 0.50
According to Lemma 8, there is a T > 0 such that B(t)−A(t) < 1

2N
when t > T .

Thus we have f(α) > 0.50/(B(t)−A(t)) > N when t > T .
Therefore, for any N > 0, there is a T > 0 such that f(α) > N when t > T , which proves
Equation 7. 2

Proof of Theorem 3
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By Lemma 9, we have limt→∞ f(α) = 0 and limt→∞ f(α′) =∞, so we have
limt→∞ q = 0.

The case for Sensitivity is the same as the above. 2
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(t+2)2(t+3)

= 0 2

Proof of Theorem 5
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By lemma 6, we have
∫ 1
0 x

r′(1− x)s′(x− α)2dx

=
∫ 1
0 x

r′(1− x)s′(x2 − 2αx+ α2)dx

=
∫ 1
0 x

r′+2(1− x)s′ − 2αxr′+1(1− x)s′ + α2xr′(1− x)s′dx

= (r′+2)!s′!
(r′+s′+3)! − 2α (r′+1)!s′!

(r′+s′+2)! + α2 r′!s′!
(r′+s′+1)!

So

q = 1−

√

R 1
0 xr′ (1−x)s′ (x−α)2dx

R 1
0 xr′ (1−x)s′dx

= 1−

√

(r′+2)!s′!

(r′+s′+3)!
−2α

(r′+1)!s′!

(r′+s′+2)!
+α2 r′!s′!

(r′+s′+1)!

r′!s′!
(r′+s′+1)!

= 1−
√

α2 − 2α r′+1
r′+s′+2 + (r′+1)(r′+2)

(r′+s′+2)(r′+s′+3)

= 1−
√

(α− r′+1
r′+s′+2)2 + (r′+1)(s′+1)

(r′+s′+2)2(r′+s′+3)
2
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