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Abstract

Previous studies have demonstrated that encoding a Bayesian network into a SAT for-
mula and then performing weighted model counting using a backtracking search algorithm
can be an effective method for exact inference. In this paper, we present techniques for
improving this approach for Bayesian networks with noisy-OR and noisy-MAX relations—
two relations that are widely used in practice as they can dramatically reduce the number
of probabilities one needs to specify. In particular, we present two SAT encodings for
noisy-OR and two encodings for noisy-MAX that exploit the structure or semantics of the
relations to improve both time and space efficiency, and we prove the correctness of the
encodings. We experimentally evaluated our techniques on large-scale real and randomly
generated Bayesian networks. On these benchmarks, our techniques gave speedups of up
to two orders of magnitude over the best previous approaches for networks with noisy-
OR/MAX relations and scaled up to larger networks. As well, our techniques extend the
weighted model counting approach for exact inference to networks that were previously
intractable for the approach.

1. Introduction

Bayesian networks are a fundamental building block of many Al applications. A Bayesian
network consists of a directed acyclic graph where the nodes represent the random variables
and each node is labeled with a conditional probability table (CPT) that represents the
strengths of the influences of the parent nodes on the child node (Pearl, 1988). In general,
assuming random variables with domain size d, the CPT of a child node with n parents
requires one to specify d"*! probabilities. This presents a practical difficulty and has led to
the introduction of patterns for CPTs that require one to specify many fewer parameters
(e.g., Good, 1961; Pearl, 1988; Diez & Druzdzel, 2006).

Perhaps the most widely used patterns in practice are the noisy-OR relation and its
generalization, the noisy-MAX relation (Good, 1961; Pearl, 1988). These relations assume
a form of causal independence and allow one to specify a CPT with just n parameters in
the case of the noisy-OR and (d — 1)?n parameters in the case of the noisy-MAX, where n is
the number of parents of the node and d is the size of the domains of the random variables.
The noisy-OR/MAX relations have been successfully applied in the knowledge engineering of
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large real-world Bayesian networks, such as the Quick Medical Reference-Decision Theoretic
(QMR-DT) project (Miller, Masarie, & Myers, 1986) and the Computer-based Patient Case
Simulation system (Parker & Miller, 1987). As well, Zagorecki and Druzdzel (1992) show
that in three real-world Bayesian networks, noisy-OR/MAX relations were a good fit for up
to 50% of the CPTs in these networks and that converting some CPTs to noisy-OR/MAX
relations gave good approximations when answering probabilistic queries. This is surprising,
as the CPTs in these networks were not specified using the noisy-OR/MAX assumptions
and were specified as full CPTs. Their results provide additional evidence for the usefulness
of noisy-OR/MAX relations.

We consider here the problem of exact inference in Bayesian networks that contain
noisy-OR/MAX relations. One method for solving such networks is to replace each noisy-
OR/MAX by its full CPT representation and then use any of the well-known algorithms
for answering probabilistic queries such as variable elimination or tree clustering/jointree.
However, in general—and in particular, for the networks that we use in our experimental
evaluation—this method is impractical. A more fruitful approach for solving such networks
is to take advantage of the semantics of the noisy-OR/MAX relations to improve both
time and space efficiency (e.g., Heckerman, 1989; Olesen, Kjaerulff, Jensen, Jensen, Falck,
Andreassen, & Andersen, 1989; D’Ambrosio, 1994; Heckerman & Breese, 1996; Zhang &
Poole, 1996; Takikawa & D’Ambrosio, 1999; Diez & Galdn, 2003; Chavira, Allen, & Dar-
wiche, 2005).

Previous studies have demonstrated that encoding a Bayesian network into a SAT for-
mula and then performing weighted model counting using a DPLL-based algorithm can be
an effective method for exact inference, where DPLL is a backtracking algorithm specialized
for SAT that includes unit propagation, conflict recording, backjumping, and component
caching (Sang, Beame, & Kautz, 2005a). In this paper, we present techniques for im-
proving this weighted model counting approach for Bayesian networks with noisy-OR and
noisy-MAX relations. In particular, we present two CNF encodings for noisy-OR and two
CNF encodings for noisy-MAX that exploit their semantics to improve both the time and
space efficiency of probabilistic inference. In our encodings, we pay particular attention to
reducing the treewidth of the CNF formula. We also explore alternative search ordering
heuristics for the DPLL-based backtracking algorithm.

We experimentally evaluated our encodings on large-scale real and randomly generated
Bayesian networks using the Cachet weighted model counting solver (Sang, Bacchus, Beame,
Kautz, & Pitassi, 2004). While our experimental results must be interpreted with some
care as we are comparing not only our encodings but also implementations of systems
with conflicting design goals, on these benchmarks our techniques gave speedups of up to
three orders of magnitude over the best previous approaches for networks with noisy-OR
and noisy-MAX. As well, on these benchmarks there were many networks that could not
be solved at all by previous approaches within resource limits, but could be solved quite
quickly by Cachet using our encodings. Thus, our noisy-OR and noisy-MAX encodings
extend the model counting approach for exact inference to networks that were previously
intractable for the approach.
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Figure 1: General causal structure for a Bayesian network with a noisy-OR/MAX relation,
where causes X1, ..., X, lead to effect Y and there is a noisy-OR/MAX relation
at node Y.

2. Background

In this section, we review noisy-OR/MAX relations and the needed background on weighted
model counting approaches to exact inference in Bayesian networks (for more on these topics
see, for example, Koller & Friedman, 2009; Darwiche, 2009; Chavira & Darwiche, 2008).

2.1 Patterns for CPTs: Noisy-OR and Noisy-MAX

With the noisy-OR relation one assumes that there are different causes Xy, ..., X,, leading
to an effect Y (see Figure 1), where all random variables are assumed to have Boolean-
valued domains. Each cause X; is either present or absent, and each X; in isolation is likely
to cause Y and the likelihood is not diminished if more than one cause is present. Further,
one assumes that all possible causes are given and when all causes are absent, the effect is
absent. Finally, one assumes that the mechanism or reason that inhibits a X; from causing
Y is independent of the mechanism or reason that inhibits a X, j # 7, from causing Y.

A noisy-OR relation specifies a CPT using n parameters, q1, ..., g, one for each parent,
where ¢; is the probability that Y is false given that X; is true and all of the other parents
are false,

P(Y =0 | Xz = 1,Xj = O[Vj,j;éi}) = q;. (1)

From these parameters, the full CPT representation of size 2"*! can be generated using,

PY=0|X1,....Xs) =[] a (2)
1€Ty,
and
PY=1|X1,....Xp)=1- ][] a (3)
€Ty,

where T, = {i | X; =1} and P(Y =0 Xy,...,X,,) = 1 if T, is empty. The last condition
(when T, is empty) corresponds to the assumptions that all possible causes are given and
that when all causes are absent, the effect is absent; i.e., P(Y =0 | X; =0,...,X,, =0) = 1.
These assumptions are not as restrictive as may first appear. One can always introduce an
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Figure 2: Example of a causal Bayesian network with causes (diseases) Cold, Flu, and
Malaria and effects (symptoms) Nausea and Headache.

additional random variable X that is a parent of Y but itself has no parents. The variable
Xy represents all of the other reasons that could cause Y to occur. The node Xy and the
prior probability P(Xy) are referred to as a leak node and the leak probability, respectively.
In what follows, we continue to refer to all possible causes as Xi, ..., X,, where it is
understood that one of these causes could be a leak node.

Example 1. Consider the Bayesian network shown in Figure 2. Suppose that the random
variables are Boolean representing the presence or the absence of the disease or the symptom,
that there is a noisy-OR at node Nausea and at node Headache, and that the parameters
for the noisy-ORs are as given in Table 1. The full CPT for the node Nausea is given by,

C F M| P(Nausea=0|C,F,M) | P(Nausea = 1| C,F, M)
0 0 0 ]100 0.00
0 0 1040 0.60
0 1 0 ]0.50 0.50
0 1 1 ]020=05x04 0.80
1 0 0 |0.60 0.40
1 0 1 ]024=06x04 0.76
1 1 0 ]030=0.6x0.5 0.70
1 1 1 ]012=06x0.5x04 0.88

where C, F, and M are short for Cold, Flu, and Malaria, respectively.

An alternative way to view a noisy-OR relation is as a decomposed probabilistic model.
In the decomposed model shown in Figure 3, one only has to specify a small conditional
probability table at each node Y; given by P(Y; | X;), instead of an exponentially large
CPT given by P(Y | Xi,...,X,). In the decomposed model, P(Y; = 0 | X; = 0) = 1,
P(Y;=0]| X; =1) = ¢, and the CPT at node Y is now deterministic and is given by the
OR logical relation. The OR operator can be converted into a full CPT as follows,

PY | Y1,...

1, fY=Yiv---VY,,
7YTL) = .
0, otherwise.
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@ OR/MAX

Figure 3: Decomposed form for a Bayesian network with a noisy-OR/MAX relation, where
causes X1, ..., X, lead to effect Y and there is a noisy-OR/MAX relation at node
Y. The node with a double border is a deterministic node with the designated
logical relationship (OR) or arithmetic relationship (MAX).

Table 1: Parameters for the noisy-ORs at node Nausea and at node Headache for the
Bayesian network shown in Figure 2, assuming all of the random variables are
Boolean.

P(Nausea =0 | Cold =1, Flu = 0, Malaria =0) = 0.6
P(Nausea =0 | Cold =0, Flu = 1, Malaria =0) = 0.5
P(Nausea =0 | Cold =0, Flu = 0, Malaria =1) = 04
P(Headache =0 | Cold = 1, Flu = 0, Malaria =0) = 0.3
P(Headache =0 | Cold =0, Flu = 1, Malaria =0) = 0.2
P(Headache =0 | Cold =0, Flu = 0, Malaria =1) = 0.1
The probability distribution of an effect variable Y is given by,
PY | Xy,...,X,) = Z <HP(YHXZ-)>,
Y=Y1V--VY, \i=1
where the sum is over all configurations or possible values for Yi,...,Y, such that the OR

of these Boolean values is equal to the value for Y. Similarly, in Pearl’s (1988) decomposed
model, one only has to specify n probabilities to fully specify the model (see Figure 4); i.e.,
one specifies the prior probabilities P(I;), 1 < i < n. In this model, causes always lead to
effects unless they are prevented or inhibited from doing so. The random variables I; model
this prevention or inhibition.

These two decomposed probabilistic models (Figure 3, and Figure 4) can be shown to
be equivalent in the sense that the conditional probability distribution P(Y | X1,...,X,,)
induced by both of these networks is just the original distribution for the network shown in
Figure 1. It is important to note that both of these models would still have an exponentially
large CPT associated with the effect node Y if the deterministic OR node were to be replaced
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Figure 4: Pearl’s (1988) decomposed form of the noisy-OR relation. Nodes with double
borders are deterministic nodes with the designated logical relationship.

by its full CPT representation. In other words, these decomposed models address ease of
modeling or representation issues, but do not address efficiency of reasoning issues.

The noisy-MAX relation (see Pearl, 1988; Good, 1961; Henrion, 1987; Diez, 1993) is
a generalization of the noisy-OR to non-Boolean domains. With the noisy-MAX relation,
one again assumes that there are different causes Xi,..., X, leading to an effect Y (see
Figure 1), but now the random variables may have multi-valued (non-Boolean) domains.
The domains of the variables are assumed to be ordered and the values are referred to as
the degree or the severity of the variable. Each domain has a distinguished lowest degree
0 representing the fact that a cause or effect is absent. As with the noisy-OR relation, one
assumes that all possible causes are given and when all causes are absent, the effect is absent.
Again, these assumptions are not as restrictive as first appears, as one can incorporate a leak
node. As well, one assumes that the mechanism or reason that inhibits a X; from causing
Y is independent of the mechanism or reason that inhibits a X, j # 7, from causing Y.

Let dx be the number of values in the domain of some random variable X. For simplicity
of notation and without loss of generality, we assume that the domain of a variable X is
given by the set of integers {0, 1, ..., dx — 1}. A noisy-MAX relation with causes Xy, ...,
X, and effect Y specifies a CPT using the parameters,

P(Y:y|XZ:.’EZ,X]:O[VJ,];AZ}):Q?’; 7 :1,...,77,, (4)
y=0,...,dy — 1,
Q?Z‘:L...,dXi — 1.
If all of the domain sizes are equal to d, a total of (d — 1)?n non-redundant probabilities

must be specified. From these parameters, the full CPT representation of size d**! can be
generated using,

Py <y|X)= 1] D a7 (5)

and
0] X) if y=0,

PY <y|X)—PY<y—1|X) ify>0.
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where X represents a certain configuration of the parents of Y, X = xq,...,x,, and
PY=0|X;=0,...,X, =0) =1, ie., if all causes are absent, the effect is absent.

Table 2: Parameters for the noisy-MAX at node Nausea for the Bayesian network shown in
Figure 2, assuming the diseases are Boolean random variables and the symptom
Nausea has domain {absent = 0, mild = 1, severe = 2}.

P(Nausea = absent | Cold = 1, Flu = 0, Malaria =0
P(Nausea = mild | Cold = 1, Flu = 0, Malaria = 0
P(Nausea = severe | Cold = 1, Flu = 0, Malaria =0

P(Nausea = absent | Cold = 0, Flu = 1, Malaria =0) = 0.5

)

) = 02

) =

)
P(Nausea = mild | Cold =0, Flu = 1, Malaria =0) = 0.2

)

)

)

)

0.1

P(Nausea = severe | Cold = 0, Flu = 1, Malaria =0) = 0.3

P(Nausea = absent | Cold = 0, Flu = 0, Malaria =1) = 0.1
P(Nausea = mild | Cold =0, Flu = 0, Malaria =1) = 0.4
P(Nausea = severe | Cold = 0, Flu = 0, Malaria =1) = 0.5

Example 2. Consider once again the Bayesian network shown in Figure 2. Suppose that
the diseases are Boolean random variables and the symptoms Nausea and Headache have
domains {absent = 0, mild = 1, severe = 2}, there is a noisy-MAX at node Nausea and
at node Headache, and the parameters for the noisy-MAX at node Nausea are as given in
Table 2. The full CPT for the node Nausea is given by,

C F M| P(N=al|C,FM) P(N=m|C,F,M) | P(N =s|C,F,M)
0 0 0 |L1.000 0.000 0.000
0 0 1 |0.100 0.400 0.500
0 1 0 |0.500 0.200 0.300
0 1 1 |0.050=05x0.1 0.300 0.650
1 0 00700 0.200 0.100
1 0 1 ]0070=0.7x0.1 0.380 0.550
1 1 0 ]0350=0.7x05 0.280 0.370
1 1 1 ]0035=07x05x0.1 0.280 0.685

where C, F, M, and N are short for the variables Cold, Flu, Malaria, and Nausea,
respectively, and a, m, and s are short for the values absent, mild, and severe, respec-
tively. As an example calculation, P(Nausea = mild | Cold = 0, Flu = 1, Malaria = 1) =
((0.54+0.2) x (0.1 4+0.4)) — (0.05) = 0.3 As a second example, P(Nausea = mild | Cold =
1, Flu = 1, Malaria = 1) = ((0.7+ 0.2) x (0.5 +0.2) x (0.1 4+ 0.4)) — (0.035) = 0.28

As with the noisy-OR relation, an alternative view of a noisy-MAX relation is as a
decomposed probabilistic model (see Figure 3). In the decomposed model, one only has to
specify a small conditional probability table at each node Y; given by P(Y; | X;), where
PY;=0]X; =0)=1and P(Y; =y | X; = 2) = ¢f,. Each ¥; models the effect of the
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cause X; on the effect Y in isolation; i.e., the degree or the severity of the effect in the case
where only the cause X; is not absent and all other causes are absent. The CPT at node Y
is now deterministic and is given by the MAX arithmetic relation. This corresponds to the
assumption that the severity or the degree reached by the effect Y is the maximum of the
degrees produced by each cause if they were acting independently; i.e., the maximum of the
Y;’s. This assumption is only valid if the effects do not accumulate. The MAX operator
can be converted into a full CPT as follows,

P(Y |Yi,...

1, if Y =max{Yy,...,Y,},
aYn) = .
0, otherwise.

The probability distribution of an effect variable Y is given by,

PY | Xy,...,X,) = > (ﬁP(ani)>,

Y=max{Y1,...,Y,} \i=1

where the sum is over all configurations or possible values for Y7,...,Y, such that the
maximum of these values is equal to the value for Y. In both cases, however, making the
CPTs explicit is often not possible in practice, as their size is exponential in the number of
causes and the number of values in the domains of the random variables.

2.2 Weighted Model Counting for Probabilistic Inference

In what follows, we consider propositional formulas in conjunctive normal form (CNF). A
literal is a Boolean variable (also called a proposition) or its negation and a clause is a
disjunction of literals. A clause with one literal is called a unit clause and the literal in the
unit clause is called a wunit literal. A propositional formula F' is in conjunctive normal form
if it is a conjunction of clauses.

Example 3. For example, (xV —y) is a clause, and the formula,
F=(@V-yAN@VyVz)AyV-ozVw)A(-wV-zVo)A(—oVuau),
1s in CNF, where u, v, w, x, y, and z are propositions.

Given a propositional formula in conjunctive normal form, the problem of determining
whether there exists a variable assignment that makes the formula evaluate to true is called
the Boolean satisfiability problem or SAT. A variable assignment that makes a formula
evaluate to true is also called a model. The problem of counting the number of models of a
formula is called model counting.

Let F' denote a propositional formula. We use the value 0 interchangeably with the
Boolean value false and the value 1 interchangeably with the Boolean value true. The nota-
tion F'|y—faise Tepresents a new formula, called the residual formula, obtained by removing
all clauses that contain the literal —v (as these clauses evaluate to true) and deleting the
literal v from all clauses. Similarly, the notation F'|,—¢. represents the residual formula
obtained by removing all clauses that contain the literal v and deleting the literal —v from all
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clauses. Let s be a set of instantiated variables in F'. The residual formula F|s is obtained
by cumulatively reducing F' by each of the variables in s.

Example 4. Consider once again the propositional formula F' given in Example 3. Suppose
x s assigned false. The residual formula is given by,

Floeo=(y)A(yVz)A(yV-zVw)A(-wV-zVo)A(—oVu).

As is clear, a CNF formula is satisfied if and only if each of its clauses is satisfied and a
clause is satisfied if and only if at least one of its literals is equivalent to 1. In a unit clause,
there is no choice and the value of the literal is said to be forced or implied. The process of
unit propagation assigns all unit literals to the value 1. As well, the formula is simplified by
removing the variables of the unit literals from the remaining clauses and removing clauses
that evaluate to true (i.e., the residual formula is obtained) and the process continues
looking for new unit clauses and updating the formula until no unit clause remains.

Example 5. Consider again the propositional formula F|,—¢ given in Example 4, where x
has been assigned false. The unit clause (—y) forces y to be assigned false. The residual
formula is given by,

Fla=o0y=0 = (2) AN (mzVw) A (mw V =z Vo) A (—v V).

In turn, the unit clause (z) forces z to be assigned true. Similarly, the assignments w = 1,
v=1, and u =1 are forced.

There are natural polynomial-time reductions between the Bayesian inference problem
and model counting problems (Bacchus, Dalmao, & Pitassi, 2003). In particular, exact
inference in Bayesian networks can be reduced to the weighted model counting of CNF's
(Darwiche, 2002; Littman, 1999; Sang et al., 2005a). Weighted model counting is a gener-
alization of model counting.

A weighted model counting problem consists of a CNF formula F and for each variable
v in F, a weight for each literal: weight(v) and weight(—v). Let s be an assignment of a
value to every variable in the formula F' that satisfies the formula; i.e., s is a model of the
formula. The weight of s is the product of the weights of the literals in s. The solution of
a weighted model counting problem is the sum of the weights of all satisfying assignments;
ie.,

weight(F) = Z Hweight(l),
s les
where the sum is over all possible models and the product is over the literals in that model.

Chavira and Darwiche (2002, 2008) proposed an encoding of a Bayesian network into
weighted model counting of a propositional formula in conjunctive normal form. Chavira
and Darwiche’s encoding proceeds as follows. At each step, we illustrate the encoding using
the Bayesian network shown in Figure 2. For simplicity, we assume the random variables
are all Boolean and we omit the node Headache. To improve clarity, we refer to the random
variables in the Bayesian network as “nodes” and reserve the word “variables” for the
Boolean variables in the resulting propositional formula.

e For each value of each node in the Bayesian network, an indicator variable is created,
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c ICoa ICl, M IM07 IM17
F o In,Ip, N ¢ Iy, In,.

e For each node, indicator clauses are generated which ensure that in each model exactly
one of the corresponding indicator variables for each node is true,

C : (g, Vie,) NIy V—Iey), M (In VIng) N (5D VI,
F (IFO\/IFI)/\(ﬁIFO\/ﬁfpl), N (INO\/INl)/\(ﬁINO\/ﬁINI).

e For each conditional probability table (CPT) and for each parameter (probability)
value in the CPT, a parameter variable is created,

C
F
M

Pe,, Poy, N+ Pngco,roMos  PN1|CoFo, Mo
Pr, Pr,
Prys Py Pnoicy,Fivs Payjon,m -

e For each parameter variable, a parameter clause is generated. A parameter clause
asserts that the conjunction of the corresponding indicator variables implies the pa-
rameter variable and vice-versa,

C ICO = PCO, ICl = Pcl,

F IF0<:>PFO, IF1<:>PF1,

M IM0<:>PM07 IM1<:>PM1,

N ICO/\IFO/\IMO/\INO<:>PN0\Co,Fo,Mo7 ICO/\IFO/\IMO/\INl<:>PN1|CO,F0,M07
Icl /\IF1 /\I]\/[1 /\INO & PNO\Cl,FLMl’ ICl /\IF1 /\I]w1 /\IN1 = PN1|01,F1,M1'

e A weight is assigned to each literal in the propositional formula. Each positive literal
of a parameter variable is assigned a weight equal to the corresponding probability
entry in the CPT table,

C

F

weight(Pc,) = P(C = 0),

weight(Pg,) = P(C = 1),

weight(Pr,) = P(F = 0),

weight(Pp,) = P(F = 1),

weight(Pyy, ) = P(M = 0),

weight(Pyr, ) = P(M = 1),

weight( Py |cy,mo,m,) = P(N=0|C =0,F =0,M = 0),
weight(PNl|CO7F0,M0) = P(N =1 | C = O,F = O,M = O),

weight(PNMChFl,Ml) P(N =0 ’ C = 1,F = 1,M = 1),
weight(PNﬂCLFl,Ml) = P(N =1 ’ C = 1,F = 1,M = 1)

All other literals (both positive and negative) are assigned a weight of 1; i.e., weight(I¢,)
= weight(—Ig,) = -+ - = weight(Iy,) = weight(—In,) = 1 and weight(=Pg,) = -+ - =

738



EXPLOITING STRUCTURE IN PROBABILISTIC INFERENCE

weight(= Py, |cy,Fy,m;) = 1. The basic idea is that the indicator variables specify the
state of the world—i.e., a value for each random variable in the Bayesian network—
and then the weights of the literals multiplied together give the probability of that
state of the world.

Sang, Beame, and Kautz (2005a) introduced an alternative encoding of a Bayesian
network into weighted model counting of a CNF formula. Sang et al.’s encoding creates
fewer variables and clauses, but the size of generated clauses of multi-valued variables can
be larger. As with Chavira and Darwiche’s encoding presented above, we illustrate Sang
et al.’s encoding using the Bayesian network shown in Figure 2, once again assuming the
random variables are all Boolean and omitting the node Headache.

e As in Chavira and Darwiche’s encoding, for each node, indicator variables are created
and indicator clauses are generated which ensure that in each model exactly one of
the corresponding indicator variables for each node is true.

e Let the values of the nodes be linearly ordered. For each CPT entry P(Y =y | X)
such that y is not the last value in the domain of Y, a parameter variable P, x is
created; e.g.,

C Pey, N+ Pnyico,Fo, Mo Pyo\Co, Fo, M1 »
F Pr,, Ppy|co, 71, Mo Pyo\Co, 1My 5
M Py, Pnyicy, Fo, Mo P01, 70,015

PNOICLFLMO’ PNO\Cl,FLMl'

e For each CPT entry P(Y = y; | X), a parameter clause is generated. Let the ordered
domain of Y be {y1,...,yr} and let X = zq,...,2;. If y; is not the last value in the
domain of Y, the clause is given by,

Iy Ao ANy A=Pyx A= APy 1 x A Pyyx = I,
If y; is the last value in the domain of Y, the clause is given by,
Ly N Ny APy x AN A=Py, 1 x = 1y,

For our running example, the following parameter clauses would be generated,

C PCO = ICo _‘PCO = ICl

F PFo :>IFO ﬁPFO :>IF1

M PMO éIMO _‘PMO $1M1

N ICO/\IFO/\IMO/\PNO\CO,FO,MO:>IN07 ICo/\IFO/\IMO/\ﬁPN(ﬂCO,FO,MO:>IN17
IC1 /\IF1 /\]']\41 /\]3]\[0‘01,Fl7]\/[1 = INO, Icl /\IF1 /\IJ\/[1 /\_'PN0|C1,F1,M1 = INl'

e A weight is assigned to each literal in the propositional formula. As in Chavira and
Darwiche’s encoding, the weight of literals for indicator variables is always 1. The
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weight of literals for each parameter variable P, x is given by,

weight(Pyx) = Py | X),
weight(~Pyx) = 1-P(y|X).

Let F' be the CNF encoding of a Bayesian network (either Chavira and Darwiche’s
encoding or Sang et al.’s encoding). A general query P(Q | E) on the network can be
answered by,

weight(F NQ N E) 7
weight(F AN E) (

where () and E are propositional formulas which enforce the appropriate values for the
indicator variables that correspond to the known values of the random variables.

A backtracking algorithm used to enumerate the (weighted) models of a CNF formula
is often referred to as DPLL or DPLL-based (in honor of Davis, Putnam, Logemann, and
Loveland, the authors of some of the earliest work in the field: Davis & Putnam, 1960; Davis,
Logemann, & Loveland, 1962), and usually includes such techniques as unit propagation,
conflict recording, backjumping, and component caching.

3. Related Work

In this section, we relate our work to previously proposed methods for exact inference in
Bayesian networks that contain noisy-OR/MAX relations.

One method for solving such networks is to replace each noisy-OR/MAX by its full CPT
representation and then use any of the well-known algorithms for answering probabilistic
queries such as variable elimination or tree clustering/jointree. However, in general-—and
in particular, for the networks that we use in our experimental evaluation—this method
is impractical. A more fruitful approach for solving such networks is to take advantage of
the structure or the semantics of the noisy-OR/MAX relations to improve both time and
space efficiency (e.g., Heckerman, 1989; Olesen et al., 1989; D’Ambrosio, 1994; Heckerman
& Breese, 1996; Zhang & Poole, 1996; Takikawa & D’Ambrosio, 1999; Diez & Galén, 2003;
Chavira et al., 2005).

Quickscore (Heckerman, 1989) was the first efficient exact inference algorithm for Boolean-
valued two-layer noisy-OR networks. Chavira, Allen and Darwiche (2005) present a method
for multi-layer noisy-OR networks and show that their approach is significantly faster than
Quickscore on randomly generated two-layer networks. Their approach proceeds as follows:
(i) transform the noisy-OR network into a Bayesian network with full CPTs using Pearl’s
decomposition (see Figure 4), (ii) translate the network with full CPTs into CNF using
a general encoding (see Section 2), (iii) simplify the resulting CNF by taking advantage
of determinism (zero parameters and one parameters), and (iv) compile the CNF into an
arithmetic circuit. One of our encodings for the noisy-OR (called WMC1) is similar to their
more indirect (but also more general) proposal for encoding noisy-ORs (steps (i)—(iii)). We
perform a detailed comparison in Section 4.1. In our experiments, we perform a detailed
empirical comparison of their approach using compilation (steps (i)—(iv)) against Cachet
using our encodings on large Bayesian networks.
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Many alternative methods have been proposed to decompose a noisy-OR/MAX by
adding hidden or auxiliary nodes and then solving using adaptations of variable elimi-
nation or tree clustering (e.g., Olesen et al., 1989; D’ Ambrosio, 1994; Heckerman & Breese,
1996; Takikawa & D’Ambrosio, 1999; Diez & Galan, 2003).

Olesen et al. (1989) proposed to reduce the size of the distribution for the OR/MAX
operator by decomposing a deterministic OR/MAX node with n parents into a set of bi-
nary OR/MAX operators. The method, called parent divorcing, constructs a binary tree
by adding auxiliary nodes Z; such that Y and each of the auxiliary nodes has exactly two
parents. Heckerman (1993) presented a sequential decomposition method again based on
adding auxiliary nodes Z; and decomposing into binary MAX operators. Here one con-
structs a linear decomposition tree. Both methods require similar numbers of auxiliary
nodes and similarly sized CPTs. However, as Takikawa and D’Ambrosio (1999) note, using
either parent divorcing or sequential decomposition, many decomposition trees can be con-
structed from the same original network—depending on how the causes are ordered—and
the efficiency of query answering can vary exponentially when using variable elimination or
tree clustering, depending on the particular query and the choice of ordering.

To take advantage of causal independence models, Diez (1993) proposed an algorithm
for the noisy-MAX/OR. By introducing one auxiliary variable Y’, Diez’s method leads to a
complexity of O(nd?) for singly connected networks, where n is the number of causes and d is
the size of the domains of the random variables. However, for networks with loops it needs to
be integrated with local conditioning. Takikawa and D’Ambrosio (1999) proposed a similar
multiplicative factorization approach. The complexity of their approach is O(max(2¢, nd?)).
However, Takikawa and D’Ambrosio’s approach allows more efficient elimination orderings
in the variable elimination algorithm, while Diez’s method enforces more restrictions on
the orderings. More recently, Diez and Galan (2003) proposed a multiplicative factorization
that improves on this previous work, as it has the advantages of both methods. We use their
auxiliary graph as the starting point for the remaining three of our CNF encodings (WMC2,
MAX1, and MAX2). In our experiments, we perform a detailed empirical comparison of
their approach using variable elimination against our proposals on large Bayesian networks.

In our work, we build upon the DPLL-based weighted model counting approach of
Sang, Beame, and Kautz (2005a). Their general encoding assumes full CPTs and yields
a parameter clause for each CPT parameter. However, this approach is impractical for
large-scale noisy-OR/MAX networks. Our special-purpose encodings extend the weighted
model counting approach for exact inference to networks that were previously intractable
for the approach.

4. Efficient Encodings of Noisy-OR into CNF

In this section, we present techniques for improving the weighted model counting approach
for Bayesian networks with noisy-OR relations. In particular, we present two CNF encodings
for noisy-OR relations that exploit their structure or semantics. For the noisy-OR relation
we take advantage of the Boolean domains to simplify the encodings. We use as a running
example the Bayesian network shown in Figure 2. In the subsequent section, we generalize
to the noisy-MAX relation.
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4.1 Weighted CNF Encoding 1: An Additive Encoding

Let there be causes X7, ..., X, leading to an effect Y and let there be a noisy-OR relation
at node Y (see Figure 1), where all random variables are assumed to have Boolean-valued
domains.

In our first weighted model encoding method (WMC1), we introduce an indicator vari-
able Iy for Y and an indicator variable Ix, for each parent of Y. We also introduce a
parameter variable P, for each parameter ¢;, 1 < i <n in the noisy-OR (see Equation 1).
The weights of these variables are as follows,

weight(Ix,) = weight(—Ix,) = 1,

weight(ly) = weight(—Iy) = 1,
weight(FPy,) = 1—gq,
weight(—Py,) = gi.

The noisy-OR relation can then be encoded as the formula,
(‘[Xl/\PQI)\/(‘[XZ/\PQQ)\/“.\/(IXn/\PQn)@IY' (8)

The formula can be seen to be an encoding of Pearl’s well-known decomposition for noisy-
OR (see Figure 4).

Example 6. Consider once again the Bayesian network shown in Figure 2 and the pa-
rameters for the noisy-ORs shown in Table 1. The WMC1 encoding introduces the five
Boolean indicator variables Ic, Ir, Iy, Iy, and Iy, each with weight 1; and the six pa-
rameter variables Pyg, Pos, Poa, Pos, Po2, and Py, each with weight(P,,) =1 — q; and
weight(—P,,) = ¢;. Using Equation 8, the noisy-OR at node Nausea can be encoded as,

(IC A\ P0'6) V (IF A\ P0.5) V (IM A\ P0.4) S Iy,

To illustrate the weighted model counting of the formula, suppose that nausea and malaria
are absent and cold and flu are present (i.e., Nausea = 0, Malaria = 0, Cold = 1, and
Flu = 1; and for the corresponding indicator variables I and In; are false and Io and Ip
are true). The formula can be simplified to,

(Pos) V (Pos) < 0.

There is just one model for this formula, the model that sets Pyg to false and Py s to false.
Hence, the weighted model count of this formula is weight(—Py ¢) X weight(—~FPy5) = 0.6x0.5
= 0.3, which s just the entry in the penultimate row of the full CPT shown in Example 2.

Towards converting Equation 8 into CNF, we also introduce an auxiliary indicator vari-
able w; for each conjunction such that w; < Ix, AF,,. This dramatically reduces the number
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of clauses generated. Equation 8 is then transformed into,

(=Iy VvV ((wrV---Vwy) A
(ﬁIX1 V=P, Vwy) A
(Ix, V—wi) A
(Pq1 V ow)
Ao A
—Ix, VP, Vw,) A
Ix, V —wy,) A
P,V —wy))) A
—Ix, V-F,)
NN
(~Ix, V~Fy,))).

TN~~~

(Iy vV (

The formula is not in CNF, but can be easily transformed into CNF using the distributive
law. It can be seen that the WMC1 encoding can also easily encode evidence—i.e, if Iy =0
or Iy = 1, the formula can be further simplified—Dbefore the final translation into CNF. Note
that we have made the definitions of the auxiliary variables (i.e., w; < Ix, A P,,;) conditional
on Iy being true, rather than just introducing separate clauses to define each auxiliary
variable. This allows the formula to be further simplified in the presence of evidence and
only introduces the w; if they are actually needed. In particular, if we know that Iy is false,
all of the clauses involving the auxiliary variables w;, including the definitions of the wj,
disappear when the formula is simplified.

Example 7. Consider once again the Bayesian network shown in Figure 2. To illustrate
the encoding of evidence, suppose that nausea is present (i.e., Nausea = 1) and headache
is not present (i.e., Headache = 0). The corresponding constraints for the evidence are as
follows.

(IC VAN P0_6) V (IF VAN P0_5) V (IM VAN P0_4) s 1 (9)

(IC/\POB)\/(IF/\PO,Q)\/(IM/\PO,l) <0 (10)

The above constraints can be converted into CNF' clauses. Constraint Equation 9 gives the
clauses,

(w1 V wy V ws)

A (=IcV =PygVw)A(IcV—wi) A (PyeV-wr)
A (mIpV =PysVwa) A(IpV -ws) A (PysV —ws)
A (=Ip VvV =Pyy Vws) A Iy V—ws) A (PoaV—ws)

and constraint Fquation 10 gives the clauses,

("IC V —|P0.3) A (—JF V —|P0_2) A\ (—JM V —|P0.1).
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To show the correctness of encoding WMC1 of a noisy-OR, we first show that each entry
in the full CPT representation of a noisy-OR relation can be determined using the weighted
model count of the encoding. As always, let there be causes X1, ..., X,, leading to an
effect Y and let there be a noisy-OR relation at node Y, where all random variables have
Boolean-valued domains.

Lemma 1. Fach entry in the full CPT representation of a noisy-OR at a node Y, P(Y =
y| X1 =x1,..., X, =xp), can be determined using the weighted model count of Equation 8
created using the encoding WMC1.

Proof. Let Fy be the encoding of the noisy-OR at node Y using WMC1 and let s be the
set of assignments to the indicator variables Iy, Ix,,...,Ix, corresponding to the desired
entry in the CPT (e.g., if Y = 0, Iy is instantiated to false; otherwise it is instantiated to
true). For each X; = 0, the disjunct (Ix, A P,,) in Equation 8 is false and would be removed
in the residual formula Fy|s; and for each X; = 1, the disjunct reduces to (F,,). If Iy =0,
each of the disjuncts in Equation 8 must be false and there is only a single model of the
formula. Hence,

weight(Fy|s) = [ [ weight(=Py,) = [[ & = P(Y¥ =0 X),
€Ty €Ty

where T, = {i | X; = 1} and P(Y =0 | X) = 1 if T}, is empty. If Iy = 1, at least one of
the disjuncts in Equation 8 must be true and there are, therefore, 2172/ — 1 models. It can
be seen that if we sum over all 2= possible assignments, the weight of the formula is 1.
Hence, subtracting off the one possible assignment that is not a model gives,

weight(Fy |s) = 1 — [ ] weight(~Py,) =1— [[ ¢ = P(Y =1 X).
€Ty €Ty

O

A noisy-OR Bayesian network over a set of random variables 71, ..., 7, is a Bayesian
network where there are noisy-OR relations at one or more of the Z; and full CPTs at
the remaining nodes. The next step in the proof of correctness is to show that each entry
in the joint probability distribution represented by a noisy-OR Bayesian network can be
determined using weighted model counting. In what follows, we assume that noisy-OR
nodes are encoded using WMC1 and the remaining nodes are encoded using Sang et al.’s
general encoding discussed in Section 2.2. Similar results can be stated using Chavira and
Darwiche’s general encoding.

Lemma 2. Fach entry in the joint probability distribution, P(Z1 = z1,...Zy, = zp), Tepre-
sented by a noisy-OR Bayesian network can be determined using weighted model counting
and encoding WMC1.

Proof. Let F be the encoding of the Bayesian network using WMC1 for the noisy-OR nodes
and let s be the set of assignments to the indicator variables Iz , ..., Iz corresponding
to the desired entry in the joint probability distribution. Any entry in the joint probability
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distribution can be expressed as the product,

n
P(Xy,...,Xy,) = [ P(X; | parents(X;)),
=1

where n is the size of the Bayesian network and parents(X;) is the set of parents of X;
in the directed graph; i.e., the entry in the joint probability distribution is determined by
multiplying the corresponding CPT entries. For those nodes with full CPTs, s determines
the correct entry in each CPT by Lemma 2 in Sang et al. (2005a) and for those nodes with
noisy-ORs, s determines the correct probability by Lemma 1 above. Thus, weight(F A s) is
the multiplication of the corresponding CPT entries; i.e., the entry in the joint probability
distribution. O

The final step in the proof of correctness is to show that queries of interest can be
correctly answered.

Theorem 1. Given a noisy-OR Bayesian network, general queries of the form P(Q | E)
can be determined using weighted model counting and encoding WMC1.

Proof. Let F be the CNF encoding of a noisy-OR Bayesian network. A general query
P(Q | E) on the network can be answered by,

PQANE)  weight(FANQAE)
P(E) weight(FAE)

where ) and FE are propositional formulas that enforce the appropriate values for the indica-
tor variables that correspond to the known values of the random variables. By definition, the
function weight computes the weighted sum of the solutions of its argument. By Lemma 2,
this is equal to the sum of the probabilities of those sets of assignments that satisfy the
restrictions Q A F and F, respectively, which in turn is equal to the sum of the entries in
the joint probability distribution that are consistent with @ A E and E, respectively. [

As Sang et al. (2005a) note, the weighted model counting approach supports queries
and evidence in arbitrary propositional form and such queries are not supported by any
other exact inference method.

Our WMC1 encoding for noisy-OR is essentially similar to a more indirect but also more
general proposal by Chavira and Darwiche (2005) (see Darwiche, 2009, pp. 313-323 for a
detailed exposition of their proposal). Their approach proceeds as follows: (i) transform
the noisy-OR network into a Bayesian network with full CPTs using Pearl’s decomposition
(see Figure 4), (ii) translate the network with full CPTs into CNF using a general encoding
(see Section 2), and (iii) simplify the resulting CNF by taking advantage of determinism.
Simplifying the resulting CNF proceeds as follows. Suppose we have in an encoding the
sentence (Iy A I-p) & Poyjq. If the parameter corresponding to P, is zero, the sentence
can be replaced by —(I, A I-p) and P_y|, can be removed from the encoding. If the param-
eter corresponding to Py, is one, the entire sentence can be removed from the encoding.
Applying their method to a noisy-OR (see Figure 1) results in the following,
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where we have simplified the expression by substituting equivalent literals and by using the
fact that the random variables are Boolean (e.g., we use Ix, and —Ix, rather than Ix,—g
and Ix,—1). Three differences can be noted. First, in our encoding the definitions of the wj
are conditional on Iy being true, rather than being introduced as separate clauses. Second,
our definitions of the w; are more succinct. Third, in our encoding there are a linear number
of clauses conditioned on Iy whereas in the Chavira et al. encoding there are 2" — 1 clauses.
We note, however, that Chavira, Allen, and Darwiche (2005) discuss a direct translation of
a noisy-OR to CNF based on Pearl’s decomposition that is said to compactly represent the
noisy-OR (i.e., not an exponential number of clauses), but the specific details of the CNF
formula are not given.

4.2 Weighted CNF Encoding 2: A Multiplicative Encoding

Again, let there be causes Xy, ..., X, leading to an effect Y and let there be a noisy-
OR relation at node Y (see Figure 1), where all random variables are assumed to have
Boolean-valued domains.

Our second weighted model encoding method (WMC2) takes as its starting point Diez
and Galdn’s (2003) directed auxiliary graph transformation of a Bayesian network with a
noisy-OR/MAX relation. Diez and Galan note that for the noisy-OR relation, Equation (6)
can be represented as a product of matrices,

PY=0|X)\ _ 10 PY <0|X)
(P63 )= (0 D) (2l )
Based on this factorization, one can integrate a noisy-OR node into a regular Bayesian
network by introducing a hidden node Y’ for each noisy-OR node Y. The transformation
first creates a graph with the same set of nodes and arcs as the original network. Then,
for each node Y with a noisy-OR relation, we add a hidden node Y’ with the same domain

as Y, add an arc Y/ — Y, redirect each arc X; — Y to X; — Y’, and associate with Y a
factorization table,
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| Y
0
i
This auxiliary graph is not a Bayesian network as it contains parameters that are less than
0. So the CNF encoding methods for general Bayesian networks (see Section 2) cannot be
applied here.

We introduce indicator variables Iy, and Iy for Y/ and Y, and an indicator variable Iy,
for each parent of Y’. The weights of these variables are as follows,

'=0|Y' =1
1 0
-1 1.

Y
Y

weight(Iy:) = weight(=Iy/) = 1,
weight(ly) = weight(—Iy) = 1,
weight(Ix,) = weight(—Ix,) = 1.

For each arc X; — Y’, 1 < i < n, we create two parameter variables P)O(i v+ and P}(i yr- The
weights of these variables are as follows,

weight(P)O(iyy,) = 1, weight(P}(iyy,) = q,
weight(—'P)O(ivy,) = 0, weight(—'P)l(iy,) = 1-—gq.

For each factorization table, we introduce two variables, uy and wy, where the weights of
these variables are given by,

weight(uy) = 1, weight(—uy) = 0,
weight(wy) = -1, weight(~wy) = 2.

For the first row of a factorization table, we generate the clause,
(=Iyr V Iy), (11)
and for the second row, we generate the clauses,
(=Iyr V =Iy Vuy) A (Iyr V =1y Vwy). (12)
Finally, for every parent X; of Y’, we generate the clauses,
(Iy' V Ix,V PY, yi) A (Iy1 V =Ix, V Py, y). (13)
We now have a conjunction of clauses; i.e., CNF.

Example 8. Consider once again the Bayesian network shown in Figure 2 and the param-
eters for the noisy-ORs shown in Table 1. The auxiliary graph transformation is shown in
Figure 5. The WMC2 encoding introduces the seven Boolean indicator variables Io, I,
In, Iy, In, Iy, and Ig; the twelve parameter variables,

0 1 0 1
PCN’ PCN’ PCH’ PCH’

0 1 0 1
PFN’ PFN’ PFH’ PFH’

0 1 0 1
PMN’ PMN’ PMH’ PMH”
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Figure 5: Diez and Galdn’s (2003) transformation of a noisy-OR relation applied to the
Bayesian network shown in Figure 2.

and the four factorization variables uy, wy, ug, and wg. The noisy-OR at node Nausea
can be encoded as the set of clauses,

Iy V Iy InyVIcVPEy  InV-loVPLy
IV =InVuy InVIpV Py IV —IpV Phy
InVoINVwy Iy VIV PY . IVl v PL

To illustrate the weighted model counting of the formula, suppose that nausea and malaria
are absent and cold and flu are present (i.e., Nausea = 0, Malaria = 0, Cold = 1, and
Flu = 1; and for the corresponding indicator variables I and In; are false and Io and Ip
are true). The formula can be simplified to,

Phnt NPyt NPy i

(To see this, note that clauses that evaluate to true are removed and literals that evaluate to
false are removed from a clause. As a result of simplifying the first clause, Ins is forced to
be false and is removed from the other clauses.) There is just one model for this formula,
the model that sets each of the conjuncts to true. Hence, the weighted model count of this
formula is weight(PA ) x weight(Ph y.) x weight(PY; nv) = 0.6 x 0.5 x 1.0 = 0.3, which
15 just the entry in the penultimate row of the full CPT shown in Ezxample 2.

Once again, it can be seen that WMC2 can also easily encode evidence into the CNF
formula; i.e., if Iy = 0 or Iy = 1, the formula can be further simplified.

Example 9. Consider once again the Bayesian network shown in Figure 2. To illustrate
the encoding of evidence, suppose that nausea is present (i.e., Nausea = 1) and headache
is not present (i.e., Headache = 0). The WMC2 encoding results in the following set of
clauses,
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IN/V10VP87N, IN’\/_‘IC\/P61'7N/
—InVuy InVIpV PRy IV =IpVPEy
InVwy Iy VIV PY N IV =TIy V Py

—Ip IoV P g ~IcV Ph
IpV P2, ~IpV Pk,
IM\/P](\)/[,H/ ﬁIM\/P]%LH’

To show the correctness of encoding WMC2 of a noisy-OR, we first show that each entry
in the full CPT representation of a noisy-OR relation can be determined using the weighted
model count of the encoding. As always, let there be causes X1, ..., X,, leading to an
effect Y and let there be a noisy-OR relation at node Y, where all random variables have
Boolean-valued domains.

Lemma 3. Fach entry in the full CPT representation of a noisy-OR at a node Y, P(Y =
y| X1 =x1,...,X, = x,), can be determined using the weighted model count of Equa-
tions 11—18 created using the encoding WMC?2.

Proof. Let Fy be the encoding of the noisy-OR at node Y using WMC2 and let s be the
set of assignments to the indicator variables Iy, Ix,,...,Ix, corresponding to the desired
entry in the CPT. For each X; = 0, the clauses in Equation 13 reduce to (Iy+V P)O(i yr), and

for each X; = 1, the clauses reduce to (IysV P}(i y+)- If Iy = 0, the clauses in Equations 11
& 12 reduce to (—1Iy+). Hence,

weight(Fy|s) = weight(—Iy) H weight(P)O(i,Y,)) H weight(P)l(i,Y,))

Ty €Ty
= [a
€Ty

= P(Y=0]|X),

where T, = {i | X; = 1} and P(Y =0 | X) = 1 if T, is empty. If Iy = 1, the clauses in
Equations 11 & 12 reduce to (=Iys V uy) A (Iys V wy). Hence,

weight(Fyls) = weight(—Iy)weight(—uy )weight(wy) H qi +
€Ty,
weight(— Iy )weight(uy )weight(wy ) H qi +
1€Ty,
weight(Iy)weight(uy )weight(—wy ) +
weight(Iyweight(uy )weight(wy )
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The remainder of the proof of correctness for encoding WMC2 is similar to that of
encoding WMC1.

Lemma 4. Fach entry in the joint probability distribution, P(Z1 = z1,...Zy, = zp), Tepre-
sented by a noisy-OR Bayesian network can be determined using weighted model counting
and encoding WMC2.

Theorem 2. Given a noisy-OR Bayesian network, general queries of the form P(Q | E)
can be determined using weighted model counting and encoding WMC2.

5. Efficient Encodings of Noisy-MAX into CNF

In this section, we present techniques for improving the weighted model counting approach
for Bayesian networks with noisy-MAX relations. In particular, we present two CNF en-
codings for noisy-MAX relations that exploit their structure or semantics. We again use as
a running example the Bayesian network shown in Figure 2.

Let there be causes X1, ..., X, leading to an effect Y and let there be a noisy-MAX
relation at node Y (see Figure 1), where the random variables may have multi-valued (non-
Boolean) domains. Let dx be the number of values in the domain of some random variable
X.

The WMC2 multiplicative encoding above can be extended to noisy-MAX by introduc-
ing more indicator variables to represent variables with multiple values. In this section,
we explain the extension and present two noisy-MAX encodings based on two different
weight definitions of the parameter variables. The two noisy-MAX encodings are denoted
MAX1 and MAX2, respectively. We begin by presenting those parts of the encodings that
MAX1 and MAX2 have in common. As with WMC2, these two noisy-MAX encodings take
as their starting point Diez and Galdn’s (2003) directed auxiliary graph transformation of
a Bayesian network with noisy-OR/MAX. Diez and Galdan show that for the noisy-MAX
relation, Equation (6) can be factorized as a product of matrices,

y
PY =y|X)=Y) My(yy) -P(Y <y | X) (14)
y'=0

where My is a dy X dy matrix given by,

1, if y/ =Y,
My (y,y') = -1, ify =y—1,
0, otherwise.
For each noisy-MAX node Y, we introduce dy indicator variables Iy, ... IYdyfl’ to

represent each value in the domain of Y, and (dQY ) + 1 clauses to ensure that exactly one of
these variables is true. As in WMC2, we introduce a hidden node Y’ with the same domain
as Y, corresponding indicator variables to represent each value in the domain of Y’, and
clauses to ensure that exactly one domain value is selected in each model. For each parent
X;, 1 <i<n,of Y, we define indicator variables I; ,, where x = 0,...,dx, — 1, and add
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clauses that ensure that exactly one of the indicator variables corresponding to each X; is
true. Each indicator variable and each negation of an indicator variable has weight 1.

Example 10. Consider once again the Bayesian network shown in Figure 2 and the pa-
rameters for the noisy-MAX shown in Table 2. As the node Nausea has domain {absent =
0, mild = 1, severe = 2} and the parents Cold, Flu, and Malaria are Boolean valued, both
the MAX1 and MAX2 encodings introduce the Boolean indicator variables In,, In,, , In,,
In:, Int , INt, Iog, Loy, IRy, IRy, Ing, and Iy . The weights of these variables and their
negations are 1. Four clauses are added over the indicator variables for Nausea,

(In, VIN, VIN) N (2N, V~In,)
A (_‘INa V _‘INS)
AN (ﬁINm \/ﬁINS).

Similar clauses are added over the indicator variables for the hidden node N' and over the
indicator variables for the parents Cold, Flu, and Malaria, respectively.

For each factorization table, we introduce two auxiliary variables, uy and wy, where
the weights of these variables are given by,

weight(uy) = 1, weight(—uy) = 0,
weight(wy) = -1, weight(—wy) = 2.

For each factorization table, a clause is added for each entry in the matrix,

1, add (_Jy/ V _Jy V ’U,y) if y/ =,
My(u) = -1, add (<l vl Vay) iy =y 1
0, add (I, V —I, V ~uy) otherwise.

Example 11. Consider once again the Bayesian network shown in Figure 2 and the pa-
rameters for the noisy-MAX shown in Table 2. As Nausea has domain {absent = 0, mild
= 1, severe = 2}, the factorization table My is given by,

‘ N’ = absent ‘ N' = mild ‘ N' = severe

N = absent 1 0 0
N = muld —1 1 0
N = severe 0 —1 1.

Auziliary variables uy and wy are introduced and the following clauses, shown in row order,
would be added for the factorization table My,

ﬁINa\/ﬁINl/l\/uN ﬁINa\/ﬁIN;n\/ﬁuN ﬁINa\/ﬁINé\/ﬁuN
_‘INm\/_‘INé\/'U)N _‘INm\/_‘IN;n Vun —JNm\/—'IN;\/—'uN
ﬁINS\/ﬁINl/l\/ﬁuN ﬁINS\/ﬁIN;n\/wN ﬁINS\/ﬁINé\/uN.

That completes the description of those parts of the encodings that are common to both
MAX1 and MAX2.
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5.1 Weighted CNF Encoding 1 for Noisy-MAX

Our first weighted model counting encoding for noisy-MAX relations (MAX1) is based on an
additive definition of noisy-MAX. Recall the decomposed probabilistic model for the noisy-
MAX relation discussed at the end of Section 2.1. It can be shown that for the noisy-MAX,
PY <y|Xi,...,X,) can be determined using,

PY <y|Xy,....Xn) =Y [[PviIx)=>Y_ [ &%, (15)

Yi<yi=1 Y;<y i=1
X0

where the qu{Q are the parameters to the noisy-MAX, and the sum is over all the configu-
rations or p(;ssible values for Yi,...,Y,, such that each of these values is less than or equal
to the value y. Note that the outer operator is summation; hence, we refer to MAX1 as an
additive encoding. Substituting the above into Equation 14 gives,

Y n
PY=y|Xi,....X) =Y My(w,y))- | D [ &%, |- (16)
y'=0 Yi<y' i=1
X;#0
It is this equation that we encode into CNF. The encoding of the factorization table My
is common to both encodings and has been explained above. It remains to encode the
computation for P(Y <y | Xy1,...,X,,).

For each parent X;, 1 <i < n, of Y we introduce dy indicator variables, I; ,,, to represent
the effect of X; on Y, where 0 < y < dy — 1, and add clauses that ensure that exactly one of
the indicator variables correspond to each X; is true. Note that these indicators variables
are in addition to the indicator variables common to both encodings and explained above.
As always with indicator variables, the weights of I; , and —1I; , are both 1.

For each parameter q;, to the noisy-MAX, we introduce a corresponding parameter
variable P . The weight of each parameter variable is given by,

weight(P,) = q;, weight(—~P,) =1

where 1 <i¢<n,0<y<dy —1,and 1 <z <dx, — 1. The relation between X; and Y is

represented by the parameter clauses’,

(Lix Niy) < Py,

where 1 <i<n,0<y<dy —1,and 1 <z <dx, — 1.

Example 12. Consider once again the Bayesian network shown in Figure 2 and the pa-
rameters for the noisy-MAX shown in Table 2. For the noisy-MAX at node Nausea, the
encoding introduces the indicator variables Ic N, , Ic.N,,, lc,Ny; IFN. s IF Ny, TNy, IM,N, >
IniN,,, and Iy N, all with weight 1, and the clauses,

1. To improve readability, in this section the propositional formulas are sometimes written in a more natural
but non-clausal form. We continue to refer to them as clauses when the translation to clause form is
straightforward.
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Icn,VIcn, Vien, Irn,VIEnN, VIEN, Ivmn, V1IN, VIvn,

-Icn, V1o N, -IrnN, V —IFN,, —Iv.n, V—Iy N,
-Icn, V ~Io N, —Ip N, V IFN, —InN, V InN,
—Ic N, V —Ic N, —IrnN,, VIF N, —Iyv.N,, V 2 Iu N,

As well, the following parameter variables and associated weights would be introduced,

weight(P&Na) =0.7 weight(P}vNa) =0.5 weight(Pj/LNa) =0.1
weight(Péme) =0.2 weight(P}7Nm) =0.2 weight(P]%LNm) =04
weight(Pést) =0.1 weight(P};’Ns) =0.3 weight(PMNs) = 0.5,

along with the following parameter clauses,

(Icl/\Icha)@PCl',Na (IF1AIF7NG)<:>PI%—‘,NG( (IMl/\IM,Na)@P]&,Na
(Ie, Nlen,) © Péy,  (Ir AIEN,) < Pry (Iuy AuN,) < Py,
(Icl/\IC7Ns)<:>Pcl',NS (IF1A1F7NS)<:>P%W7NS (IMl/\IM,Ns)@P]%LNS

It remains to relate (i) the indicator variables, I;,, which represent the value of the

parent variable X;, where x = 0,...,dx, —1; (ii) the indicator variables, I; ,, which represent

the effect of X; on Y, where y = 0,...,dy — 1; and (iii) the indicator variables, Iy~ , which
Y

represent the value of the hidden variable Y/, where ¢ = 0,...,dy — 1. Causal independent

clauses define the relation between (i) and (ii) and assert that if the cause X; is absent
(X; =0), then X; has no effect on Y7 i.e.,

Ii,xo = Ii7y0

where 1 < ¢ < n. Value constraint clauses define the relation between (ii) and (iii) and
assert that if the hidden variable Y’ takes on a value 3/, then the effect of X; on Y cannot
be that Y takes on a higher degree or more severe value y; i.e.,

Iy, = ~liy,
where 1 <i<n,0<y <dy—1,andy <y <dy — 1.

Example 13. Consider once again the Bayesian network shown in Figure 2 and the pa-
rameters for the noisy-MAX shown in Table 2. For the noisy-MAX at node Nausea, the
encoding introduces the causal independence clauses,

ICO:>IC,N(; IFOéIF,Na IM0:>IM,NQ
the value constraint clauses for N' = absent,

IN/z :>ﬁIC,Nm IN{z :>ﬁIF,Nm IN{z :>ﬁIM,Nm
In: = —lo N, In: = —~IFp N, In: = —In N,

and the value constraint clauses for N' = mild,

IN,’n:>ﬁIC,N5 IN,’n:>ﬁIF,N5 IN,’n:>ﬁIM,N5
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5.2 Weighted CNF Encoding 2 for Noisy-MAX

Our second weighted model counting encoding for noisy-MAX relations (MAX2) is based
on a multiplicative definition of noisy-MAX. Equation 5 states that P(Y <y | X1,...,X,)
can be determined using,

no oy
Py <y|X)=]] D_ ¢ (17)
1=1 y’=0
z;7#0
Note that the outer operator is multiplication; hence we refer to MAX2 as a multiplicative
encoding. Substituting the above into Equation 14 gives,

Yy n Yy
y/:() Z:l y//:()
;70

It is this equation that we encode into CNF. The encoding of the factorization table My
is common to both encodings and has been explained above. It remains to encode the
computation for P(Y <y | Xi,...,X,).

For each parameter ¢;, to the noisy-MAX, we introduce a corresponding parameter
variable Pfy The weight of each parameter variable pre-computes the summation in Equa-
tion 17,

y
weight(P},) = Z iy weight(=P)) =1
y'=0

where 1 <i<n,0<y<dy —1,and 1 <z <dyx, — 1. The relation between X; and Y’ is
represented by the parameter clauses,

(Ii,x A Iy’) Ang ]Dia,cyv

where 0 <y <dy —1land 0 <z <dyx, — 1.

Example 14. Consider once again the Bayesian network shown in Figure 2 and the pa-
rameters for the noisy-MAX shown in Table 2. For the noisy-MAX at node Nausea, the
following parameter variables and associated weights would be introduced,

weight(P&Na) =0.7 weight(P},Na) =0.5 weight(P]b,Na) =0.1

weight(Péva) =0.9 weight(P} N, ) =0.7 weight(Py, N,,) =05

weight(P&Ns) =1 weight(P},Ns) =1 weight(P]b,Ns) =1,
along with the following parameter clauses,

(Icl/\IN[l)@PCl’,Na (IFl/\IN[l)@Ppl“,Na (IMl/\IN[l)@P]%/[,Na

(Icl/\IN;n)@PCl',Nm (IFl/\IN{n)@PJ%’,Nm (IMl/\IN;n)@PJ&,Nm

(Ic, NIny) & Phy,  Im ANny) & Phy, (I Any) & Py,

As stated so far, the encoding is sufficient for correctly determining each entry in the full
CPT representation of a noisy-MAX relation using weighted model counting. However, to
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improve the efficiency of the encoding, we add redundant clauses. The redundant clauses do
not change the set of solutions to the encoding, and thus do not change the weighted model
count. They do, however, increase propagation and thus the overall speed of computation
in the special case where all of the causes are absent. To this end, for each noisy-MAX node
Y, we introduce an auxiliary variable I,,, with weights given by,

weight(l,,) = 1, weight(—I,,) = 0,
and we introduce the clauses,
n n
</\ Ii,0> = (Iy; = Ly ), (/\ Ii,O) = (Ivy = Loy ),
i i
and the clauses,
n n
</\\ILO> :ﬁ'(ly/:> ﬁ]by), </\\I@0> :i'(]y :>‘ﬁ]by),
i i
where 1 <9y <dy —land 1<y <dy — 1.

Example 15. Consider once again the Bayesian network shown in Figure 2. For the
noisy-MAX at node Nausea, an auziliary variable I, is introduced with weight(l,, ) =1
and weight(—1,, ) = 0 along with the following redundant clauses,

(]Cb ﬁ\]jb ﬁ\]j4b) = (IAZ = IbN) (]tb ﬁ\]jb ﬁ\]j4b) = (IAQ = IbN)
(ICO NIy N IMO) = (IN,’,L = _'Ivzv) (ICO NIy N IMO) = (In,, = _'Ivzv)
(]Cb ﬁ\]jb ﬁ\]j4b) = (IAﬁ =>‘ﬁ]QN) (]tb ﬁ\]jb ﬁ\]j4b) = (IA@ =>‘ﬁ]QN).

6. Experimental Evaluation

In this section, we empirically evaluate the effectiveness of our encodings. We use the
Cachet solver? in our experiments as it is one of the fastest weighted model counting solvers.
We compare against ACE (version 2) (Chavira et al., 2005) and Diez and Galan’s (2003)
approach using variable elimination.

We chose to compare against ACE for two reasons. First, ACE did well in the 2008 exact
inference competition (no winner was declared, but ACE performed better on more classes of
problems than all other entries). Second, other methods that are publicly available or that
did well at the competition, such as Smile/GeNIe (Druzdzel, 2005) or Cachet using a general
encoding on the full CPT representation, currently do not take any computational advantage
of noisy-OR and noisy-MAX and thus would be “straw” algorithms. A strength of ACE
is that it does take advantage of local structure and determinism and it specifically takes
advantage of the semantics of the noisy-OR and noisy-MAX to speed up computation. The
comparison to ACE, while revealing, is not without its methodological difficulties however
(see Section 6.4 for a discussion).

2. http://www.cs.rochester.edu/u/kautz/Cachet/index.htm
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We chose to compare against Diez and Galan’s (2003) approach, which consists of vari-
able elimination applied to an auxiliary network that permits exploitation of causal inde-
pendence, as they show that the approach is more efficient than previous proposals for
noisy-MAX. To our knowledge, this work has not been subsequently superseded; i.e., it is
still the state-of-the-art on improving variable elimination for noisy-MAX for exact infer-
ence. No implementation of Diez and Galan’s approach is publicly available, and so we
implemented it ourselves. Our implementation uses algebraic decision diagrams (ADDs)
(Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi, 1993) as the base data structure
to represent conditional probability tables. Algebraic decision diagrams permit a compact
representation by aggregating identical probability values and speed up computation by ex-
ploiting context-specific independence (Boutilier, Friedman, Goldszmidt, & Koller, 1996),
taking advantage of determinism and caching intermediate results to avoid duplicate com-
putation. While ADDs are more complicated than table based representations, their ability
to exploit structure often yields a speed up that is greater than the incurred overhead. In
fact, ADDs are currently the preferred data structure for inference in factored partially
observable Markov decision processes (Shani, Brafman, Shimony, & Poupart, 2008). The
variable elimination heuristic that we used is a greedy one that first eliminates all variables
that appear in deterministic potentials of one variable (this is equivalent to unit propaga-
tion) and then eliminates the variable that creates the smallest algebraic decision diagram
with respect to the eliminated algebraic decision diagrams. In order to avoid creating an
algebraic decision diagram for each variable when searching for the next variable to elimi-
nate, the size of a new algebraic decision diagram is estimated by the smallest of two upper
bounds: (i) the cross product of the domain size of the variables of the new algebraic deci-
sion diagram and (ii) the product of the sizes (e.g., the number of nodes) of the eliminated
algebraic decision diagrams.

Good variable ordering heuristics play an important role in the success of modern DPLL-
based model counting solvers. Here, we evaluate two heuristics: Variable State Aware
Decaying Sum (VSADS) and Tree Decomposition Variable Group Ordering (DTree). The
VSADS heuristic is one of the current best performing dynamic heuristics designed for
DPLL-based model counting engines (Sang, Beame, & Kautz, 2005b). It can be viewed as a
scoring system that attempts to satisfy the most recent conflict clauses and also considers the
number of occurrences of a variable at the same time. Compared with the VSADS heuristic,
the DTree heuristic (Huang & Darwiche, 2003) can be described as a mixed variable ordering
heuristic. DTree first uses a binary tree decomposition to generate ordered variable groups.
The decomposition is done prior to search. The order of the variables within a group is
then decided dynamically during the backtracking search using a dynamic heuristic.

All of the experiments were performed on a Pentium workstation with 3GHz hyper-
threading CPU and 2GB RAM.

6.1 Experiment 1: Random Two-Layer Networks

In our first set of experiments, we used randomly generated two-layer networks to compare
the time and space efficiency of the WMC1 and WMC2 encodings.

Both the WMC1 and WMC2 encodings can answer probabilistic queries using Equa-
tion 7. Both encodings lead to quick factorization given evidence during the encoding. The
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clauses from negative evidence can be represented compactly in the resulting CNF, even
with a large number of parents. In the WMC2 encoding, positive evidence can be repre-
sented by just three Boolean variables (see Example 9 for an illustration of which variables
are deleted and which are kept for the case of positive evidence), whereas the WMC1 en-
coding requires n Boolean variables, one for each parent (see Example 7). In the WMC2
encoding, we use two parameter variables (P)O(i y+ and P}(i y+) to represent every arc, while
the WMC1 encoding only needs one. 7 ’

Table 3: Binary, two layer, noisy-OR networks with 500 diseases and 500 symptoms. Effect
of increasing amount of positive evidence (P1) on number of variables in encoding
(n), treewidth of the encoding (width), average time to solve (sec.), and number
of instances solved within a cutoff of one hour (solv.), where the test set contained
a total of 30 instances. The results for Pt = 5, ..., 25 are similar to the results
for P™ = 30 and are omitted.

WMC1 WMC2 ACE
Pt n width  sec.  solv. n width sec. solv. | sec. solv.
30 | 3686 10 0.2 30 | 6590 11 0.1 30 | 31.7 30
35 | 3716 11 0.6 30 | 6605 11 0.2 30 | 32.5 30

40 | 3746 13 214 30 | 6620 11 0.5 30 | 32.7 30
45 | 3776 14 38.8 30 | 6635 13 2.0 30 | 35.7 30
50 | 3806 19 75.3 30 | 6650 13 6.1 30 | 409 30
55 | 3836 22 175.2 30 | 6665 16 71.0 30 | 166.0 30
60 | 3916 24 17 | 6680 16 27 21

Each random network contains 500 diseases and 500 symptoms. Each symptom has six
possible diseases uniformly distributed in the disease set. Table 3 shows the treewidth of the
encoded CNF for the WMC1 and WMC2 encodings. The first column shows the amount
of positive evidence in the symptom variables. The remainder of the evidence variables
are negative symptoms. It can be seen that although the WMC1 encoding generates fewer
variables than the WMC2 encoding, the CNF created by the WMC2 encoding has smaller
width. The probability of evidence (PE) is computed using the tree decomposition guided
variable ordering (Huang & Darwiche, 2003) and the results are compared against ACE? (a
more detailed experimental analysis is given in the next experiments).

6.2 Experiment 2: QMR-DT

In our second set of experiments, we used a Bayesian network called QMR-DT. In compar-
ison to randomly generated problems, QMR-DT presents a real-world inference task with
various structural and sparsity properties. For example, in the empirical distribution of
diseases, a small proportion of the symptoms are connected with a large number of diseases
(see Figure 6).

3. http://reasoning.cs.ucla.edu/ace/
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Figure 6: Empirical distribution of diseases in the QMR-DT Bayesian network. Approxi-
mately 80% of the symptoms are connected with less than 50 diseases.

The network we used was aQMR-DT, an anonymized version of QMR-DT?. Symptom
vectors with k positive symptoms were generated for each experiment. For each evidence
vector, the symptom variables were sorted into ascending order by their parent (disease)
number, the first k variables were chosen as positive symptoms, and the remaining symptom
variables were set to negative. The goal of the method is to generate instances of increasing
difficulty.

We report the runtime to answer the probability of evidence (PE) queries. We also
experimented with an implementation of Quickscore®, but found that it could not solve any
of the test cases shown in Figure 7. The approach based on weighted model counting also
outperforms variable elimination on QMR-DT. The model counting time for 2560 positive
symptoms, when using the WMC1 encoding and the VSADS dynamic variable ordering
heuristic, is 25 seconds. This same instance could not be solved within one hour by variable
elimination.

We tested two different heuristics on each encoding: the VSADS dynamic variable order
heuristic and DTree (Huang & Darwiche, 2003), the semi-static tree decomposition-based
heuristic. The runtime using an encoding and the DTree heuristic is the sum of two parts:
the preprocessing time by DTree and the runtime of model counting on the encoding. In
this experiment, DTree had a faster runtime than VSADS in the model counting process.
However, the overhead of preprocessing for large size networks is too high to achieve better
overall performance.

The WMC2 encoding generates twice as many variables as the WMC1 encoding. Al-
though the WMC2 encoding is more promising than the WMC1 encoding on smaller size

4. http://wuw.utoronto.ca/morrislab/aQMR.html
5. http://www.cs.ubc.ca/~murphyk/Software/BNT/bnt.html
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Figure 7: The QMR-DT Bayesian network with 4075 symptoms and 570 diseases. Effect
of amount of positive symptoms on the time to answer probability of evidence
queries, for the WMC1 encoding and the DTree variable ordering heuristic, the
WMCI1 encoding and the VSADS variable ordering heuristic, the WMC2 encoding
and the DTree variable ordering heuristic, and Diez and Galan’s (2003) approach
using variable elimination. ACE could not solve instances with more than 500
positive symptoms within a one hour limit on runtime.

networks (see Table 3), here the WMC2 encoding is less efficient than the WMC1 encoding.
The overhead of the tree decomposition ordering on the WMC2 encoding is also higher
than on the WMC1 encoding. Our results also show that dynamic variable ordering does
not work well on the WMC2 encoding. Model counting using the WMC2 encoding and the
VSADS heuristic cannot solve networks when the amount of positive evidence is greater
than 1500 symptoms.

The experimental results also show that our approach is more efficient than ACE. For
example, using ACE, a CNF of QMR-DT with 30 positive symptoms creates 2.8 x 10°
variables, 2.8 x 10° clauses and 3.8 x 10° literals. Also, it often requires more than 1GB of
memory to finish the compilation process. With the WMC1 encoding, the same network
and the same evidence create only 4.6 x 10* variables, 4.6 x 10* clauses and 1.1 x 10° literals.
Cachet, the weighted model counting engine, needs less than 250MB of memory in most
cases to solve these instances. And in our experiments, ACE could not solve QMR-DT with
more than 500 positive symptoms within an hour.
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6.3 Experiment 3: Random Multi-Layer Networks

In our third set of experiments, we used randomly generated multi-layer Bayesian networks.
To test randomly generated multi-layer networks, we constructed a set of acyclic Bayesian
networks using the same method as Diez and Galan (2003): create n binary variables;
randomly select m pairs of nodes and add arcs between them, where an arc is added from
X; to X; if i < j; and assign a noisy-OR distribution or a noisy-MAX distribution to each
node with parents.
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Figure 8: Random noisy-OR Bayesian networks with 3000 random variables. Effect of
number of hidden variables on average time to answer probability of evidence
queries, for the WMC1 encoding and the VSADS variable ordering heuristic,
the WMC1 encoding and the DTree variable ordering heuristic, and Diez and
Galan’s (2003) approach using variable elimination.

Figure 8 shows the effect of the number of hidden variables on the average time to
answer probability of evidence (PE) queries for random noisy-OR Bayesian networks. Each
data point is an average over 30 randomly generated instances, where each instance had
3000 nodes in total.

The results from the two layer QMR-DT and the multiple layer random noisy-OR. show
that on average, the approach based on weighted model counting performed significantly
better than variable elimination and significantly better than ACE. All the approaches
benefit from the large amount of evidence, but the weighted model counting approach
explores the determinism more efficiently with dynamic decomposition and unit propaga-
tion. In comparison to variable elimination, the weighted model counting approach encodes
the local dependencies among parameters and the evidence into clauses/constraints. The
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topological or structural features of the CNF, such as connectivity, can then be explored
dynamically during DPLL’s simplification process.

Heuristics based primarily on conflict analysis have been successfully applied in modern
SAT solvers. However, Sang, Beame, and Kautz (2005b) note that for model counting it is
often the case that there are few conflicts in those parts of the search tree where there are
large numbers of solutions and in these parts a heuristic based purely on conflict analysis
will make nearly random decisions. Sang et al.’s (2005b) VSADS heuristic, which combines
both conflict analysis and literal counting, avoids this pitfall and can be seen to work very
well on these large Bayesian networks with large amounts of evidence. DTree is also a good
choice due to its divide-and-conquer nature. However, when we use DTree to decompose
the CNF generated from QMR-DT, usually the first variable group contains more than 500
disease variables. As well, the overhead of preprocessing affects the overall efficiency of this
approach.
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Figure 9: Random noisy-MAX Bayesian networks with 100 five-valued random variables.
Effect of number of arcs on average time to answer probability of evidence queries,
for the MAX1 encoding for noisy-MAX, the MAX2 encoding for noisy-MAX, and
Chavira, Allen, and Darwiche’s ACE (2005).

Similarly, we performed an experiment with 100 five-valued random variables. Figure 9
shows the effect of the number of arcs on the average time to answer probability of evidence
(PE) queries for random noisy-MAX Bayesian networks. Each data point is an average
over 50 randomly generated instances. It can be seen that on these instances our CNF
encoding MAX2 out performs our encoding MAX1 and significantly outperforms Chavira,
Allen, and Darwiche’s ACE (2005). It has been recognized that for noisy-MAX relations,
the multiplicative factorization has significant advantages over the additive factorization
(Takikawa & D’Ambrosio, 1999; Diez & Galdn, 2003). Hence, one would expect that the
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CNF encoding based on the multiplicative factorization (encoding MAX2) would perform
better than the CNF encoding based on the additive factorization (encoding MAX1). The
primary disadvantage of encoding MAX1 is that it must encode in the CNF summing over
all configurations. As a result, MAX1 generates much larger CNFs than MAX2, including
more variables and more clauses. In encoding MAX2, the weight of a parameter variable
represents the maximum effect of each cause and hence minimizes the add computations.

6.4 Discussion

We experimentally evaluated our four SAT encodings—WMC1 and WMC2 for noisy-OR
and MAX1 and MAX2 for noisy-MAX—on a variety of Bayesian networks using the Cachet
weighted modeling counting solver. The WMC1 and MAX1 encodings can be characterized
as additive encodings and the WMC2 and MAX2 encodings as multiplicative encodings. In
our experiments, the multiplicative encodings gave SAT instances with smaller treewidth.
For noisy-OR, the additive encoding (WMC1) gave smaller SAT instances than the multi-
plicative encoding (WMC2). For noisy-MAX, it was the reverse and the additive encoding
(MAX1) gave larger SAT instances than the multiplicative encoding (MAX2). With re-
gards to speedups, in the experiments for the noisy-OR, the results were mixed as to which
encoding is better; sometimes it was WMC1 and other times WMC2. In the experiments
for the noisy-MAX, the results suggest that the multiplicative encoding (MAX2) is better.
Here the reduced treewidth and the reduced size of the MAX2 encoding were important,
and WMC2 was able to solve many more instances.

We also compared against Diez and Galdn’s (2003) approach using variable elimination
(hereafter, D&G) and against ACE (Chavira et al., 2005). In our experiments, our approach
dominated D&G and ACE with speedups of up to three orders of magnitude. As well, our
approach could solve many instances which D&G and ACE could not solve within the
resource limits. However, our results should be interpreted with some care for at least three
reasons. First, it is well known that the efficiency of variable elimination is sensitive to the
variable elimination heuristic that is used and to how it is implemented. While we were
careful to optimize our implementation and to use a high-quality heuristic, there is still the
possibility that a different implementation or a different heuristic would lead to different
results. Second, Cachet, which is based on search, is designed to answer a single query and
our experiments are based on answering a single query. However, ACE uses a compilation
strategy which is designed to answer multiple queries efficiently. The compilation step can
take a considerable number of resources (both time and space) which does not payoff in our
experimental design. Third, although ACE can be viewed as a weighted model counting
solver, we are not comparing just encodings in our experiments. As Chavira and Darwiche
(2008) note, Cachet and ACE differ in many ways including using different methods for
decomposition, variable splitting, and caching. As well, ACE uses other optimizations that
Cachet does not, including encoding equal parameters, eclauses (a succinct way of encoding
that only one literal is true in a disjunction), and structured resolution. (We refer the reader
to Chavira & Darwiche, 2008 for an experimental comparison of search and compilation,
and an extensive discussion of the difficulty of comparing the two approaches and their
advantages and disadvantages.) Nevertheless, in our experiments we demonstrated instances
of noisy-OR networks (see Figure 7) and noisy-MAX networks (see Figure 9) that could not
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be solved at all by D&G and by ACE within the resource limits, but could be solved quite
quickly by Cachet using our encodings.

7. Conclusions and Future Work

Large graphical models, such as QMR-DT, are often intractable for exact inference when
there is a large amount of positive evidence. We presented time and space efficient CNF
encodings for noisy-OR/MAX relations. We also explored alternative search ordering heuris-
tics for the DPLL-based backtracking algorithm on these encodings. In our experiments,
we showed that together our techniques extend the model counting approach for exact in-
ference to networks that were previously intractable for the approach. As well, while our
experimental results must be interpreted with some care as we are comparing not only
our encodings but also implementations of systems with conflicting design goals, on these
benchmarks our techniques gave speedups of up to three orders of magnitude over the best
previous approaches and scaled up to larger instances. Future work could include develop-
ing specific CNF encodings of other causal independence relations (see Koller & Friedman,
2009, pp. 175-185).
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