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Abstract

Methods for fusing document lists that were retrieved in response to a query often uti-
lize the retrieval scores and/or ranks of documents in the lists. We present a novel fusion
approach that is based on using, in addition, information induced from inter-document
similarities. Specifically, our methods let similar documents from different lists provide
relevance-status support to each other. We use a graph-based method to model relevance-
status propagation between documents. The propagation is governed by inter-document-
similarities and by retrieval scores of documents in the lists. Empirical evaluation demon-
strates the effectiveness of our methods in fusing TREC runs. The performance of our
most effective methods transcends that of effective fusion methods that utilize only re-
trieval scores or ranks.

1. Introduction

The ad hoc retrieval task is to find the documents most pertaining to an information need
underlying a given query. Naturally, there is considerable uncertainty in the retrieval process
— e.g., accurately inferring what the “actual” information need is. Thus, researchers pro-
posed to utilize different information sources and types to address the retrieval task (Croft,
2000b). For example, utilizing multiple document representations (Katzer, McGill, Tessier,
Frakes, & Dasgupta, 1982), query representations (Saracevic & Kantor, 1988; Belkin, Cool,
Croft, & Callan, 1993), and search techniques (Croft & Thompson, 1984; Fox & Shaw,
1994), have been proposed as a means for improving retrieval effectiveness.

Many of the approaches just mentioned depend on the ability to effectively fuse several
retrieved lists so as to produce a single list of results. Fusion might be performed under a
single retrieval system (Croft & Thompson, 1984), or upon the results produced by different
search systems (Fox & Shaw, 1994; Callan, Lu, & Croft, 1995; Dwork, Kumar, Naor, &
Sivakumar, 2001). Conceptually, fusion can be viewed as integrating “experts’ recommen-
dations” (Croft, 2000b), where the expert is a retrieval model used to produce a ranked list
of results — the expert’s recommendation.

A principle underlying many fusion methods is that the documents that are highly
ranked in many of the lists, i.e., that are highly “recommended” by many of the “experts”,
should be ranked high in the final result list (Fox & Shaw, 1994; Lee, 1997). The effectiveness
of approaches that employ this principle often depends on the overlap1 between non-relevant

1. We use the term “overlap” to refer to the number of documents shared by the retrieved lists rather than
in reference to content overlap.
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documents in the lists being much smaller than that between relevant documents (Lee,
1997). However, several studies have shown that this is often not the case, more specifically,
that on many occasions there are (many) different relevant documents across the lists to
be fused (Das-Gupta & Katzer, 1983; Griffiths, Luckhurst, & Willett, 1986; Chowdhury,
Frieder, Grossman, & McCabe, 2001; Soboroff, Nicholas, & Cahan, 2001; Beitzel et al.,
2003).

We propose a novel approach to fusion of retrieved lists that addresses, among others, the
relevant-documents mismatch issue just mentioned. A principle guiding the development of
our methods is that similar documents — from different lists, as well as those in the same
list — can provide relevance-status support to each other, as they potentially discuss the
same topics (Shou & Sanderson, 2002; Baliński & Dani lowicz, 2005; Diaz, 2005; Kurland
& Lee, 2005; Meister, Kurland, & Kalmanovich, 2010). Specifically, if relevant documents
are assumed to be similar following the cluster hypothesis (van Rijsbergen, 1979), then they
can provide “support” to each other via inter-document similarities.

Inspired by work on re-ranking a single retrieved list using inter-document similarities
within the list (Baliński & Dani lowicz, 2005; Diaz, 2005; Kurland & Lee, 2005), our approach
uses a graph-based method to model relevance-status propagation between documents in
the lists to be fused. The propagation is governed by inter-document-similarities and by
the retrieval scores of documents in the lists. Specifically, documents that are highly ranked
in the lists, and are similar to other documents that are highly ranked, are rewarded. If
inter-document-similarities are not utilized — i.e., only retrieval scores are used — then
some of our methods reduce to standard fusion approaches.

Empirical evaluation shows that our methods are highly effective in fusing TREC runs
(Voorhees & Harman, 2005); that is, lists of document that were created in response to
queries by search systems that participated in TREC. Our most effective methods post
performance that is superior to that of effective standard fusion methods that utilize only
retrieval scores. We show that these findings hold whether the runs to be fused, which are
selected from all available runs per track (challenge) in TREC, are the most effective ones,
or are randomly selected. Using an additional array of experiments we study the effect of
various factors on the performance of our approach.

2. Fusion Framework

Let q and d denote a query and a document, respectively. We assume that documents are
assigned with unique IDs; we write d1 ≡ d2 if d1 and d2 have the same ID, i.e., they are the

same document. We assume that the document lists L
[q;k]
1 , . . . , L

[q;k]
m , or L1, . . . , Lm in short,

were retrieved in response to q by m retrievals performed over a given corpus, respectively;
each list contains k documents. We write d ∈ Li to indicate that d is a member of Li, and

use SLi
(d) to denote the (positive) retrieval score of d in Li; if d 6∈ Li then SLi

(d)
def
= 0. The

document instance L
j
i is the document at rank j in list Li. To simplify notation, we often

use S(Lj
i ) to denote the retrieval score of L

j
i (i.e., S(Lj

i )
def
= SLi

(Lj
i )). The methods that

we present consider the similarity sim(d1, d2) between documents d1 and d2. The methods
are not committed to a specific way of computing inter-document similarities. For example,
the cosine measure between vector-space representations of documents can be used as in
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some previous work on re-ranking a single retrieved list (Diaz, 2005; Kurland & Lee, 2005).
In Section 4.1 we describe our specific choice of a language-model-based inter-document
similarity measure used for experiments following previous recommendations (Kurland &
Lee, 2010).

2.1 Fusion Essentials

Our goal is to produce a single list of results from the retrieved lists L1, . . . , Lm. To that end,
we opt to detect those documents that are “highly recommended” by the lists L1, . . . , Lm,
or in other words, that are “prestigious” with respect to the lists. Given the virtue by which
the lists were created, that is, in response to the query, we hypothesize that prestige implies
relevance. The key challenge is then to formally define and quantify prestige.

Many current fusion approaches (implicitly) regard a document as prestigious if it is
highly ranked in many of the lists. The CombSUM method (Fox & Shaw, 1994), for
example, quantifies this prestige notion by summing the document retrieval scores2:

PCombSUM(d)
def
=

∑

Li:d∈Li

SLi
(d).

To emphasize even more the importance of occurrence in many lists, the CombMNZ method
(Fox & Shaw, 1994; Lee, 1997), which is a highly effective fusion approach (Montague &
Aslam, 2002), scales CombSUM’s score by the number of lists a document is a member of:

PCombMNZ(d)
def
= #{Li : d ∈ Li}

∑

Li:d∈Li

SLi
(d).

A potentially helpful source of information not utilized by standard fusion methods is
inter-document relationships. For example, documents that are similar to each other can
provide support for prestige as they potentially discuss the same topics. Indeed, work on
re-ranking a single retrieved list has shown that prestige induced from inter-document simi-
larities is connected with relevance (Kurland & Lee, 2005). In the multiple-lists setting that
we address here, information induced from inter-document similarities across lists could be
a rich source of helpful information as well. A case in point, a document that is a member
of a single list, but which is similar to other documents that are highly ranked in many of
the lists could be deemed prestigious. Furthermore, similarity-based prestige can be viewed
as a generalization of the prestige notion taken by standard fusion methods, if we consider
documents to be similar if and only if they are the same document.

2.2 Similarity-Based Fusion

We use graphs to represent propagation of “prestige status” between documents; the prop-
agation is based on inter-document similarities and retrieval scores. The nodes of a graph

2. We assume that retrieval scores are normalized for inter-list compatibility; details about the normaliza-
tion scheme we employ in the experiments are provided in Section 4.1.
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represent either documents, or document instances (appearances of documents) in the re-
trieved lists. In the latter case, the same document can be represented by several nodes,
each of which corresponds to its appearance in a list, while in the former case, each node
corresponds to a different document.

The development of the following graph-construction method and prestige-induction
technique is inspired by work on inducing prestige in a single retrieved list (Kurland & Lee,
2005). In contrast to this work, however, we would like to exploit the special characteristics
of the fusion setup. That is, the fact that documents can appear in several retrieved
lists with different retrieval scores that might be produced by different retrieval methods.
Accordingly, all fusion methods that we develop are novel to this study.

Formally, given a set of documents (document instances) V , we construct a weighted

(directed) complete graph G
def
= (V, V × V,wt) with the edge-weight function wt:

wt(v1 → v2)
def
=

{
sim(v1, v2) if v2 ∈ N bhd(v1; α),

0 otherwise;

v1, v2 ∈ V ; and, N bhd(v; α) is the α elements v′ in V − {v′′ : v′′ ≡ v} that yield the highest
sim(v, v′) — i.e., v’s nearest neighbors in V ; α is a free parameter.3 Previous work has
demonstrated the merits of using directed nearest-neighbor-based graphs, as we use here,
for modeling prestige-status propagation in setups wherein prestige implies “relevance to
information need” (Kurland & Lee, 2005). (See Kurland, 2006 for elaborated discussion.)

As in work on inducing (i) journal prestige in bibliometrics (Pinski & Narin, 1976), (ii)
Web-page prestige in Web retrieval (Brin & Page, 1998), and (iii) plain-text prestige for re-
ranking a single list (Kurland & Lee, 2005), we can say that a node v in G is prestigious to
the extent it receives prestige-status support from other prestigious nodes. We can quantify

this prestige notion using P(v; G)
def
=

∑
v′∈V wt(v′ → v)P(v′; G). However, this recursive

equation does not necessarily have a solution.

To address this issue, we define a smoothed version of the edge-weight function, which
echoes PageRank’s (Brin & Page, 1998) approach:

wt[λ](v1 → v2)
def
= λ ·

ŝim(v2, q)
∑

v′∈V ŝim(v′, q)
+ (1 − λ) ·

wt(v1 → v2)∑
v′∈V wt(v1 → v′)

; (1)

λ is a free parameter, and ŝim(v, q) is v’s estimated query similarity. (Below we present

various query-similarity measures.) The resultant graph is G[λ] def
= (V, V × V,wt[λ]).

Note that each node in G[λ] receives prestige-status support to an extent partially con-
trolled by the similarity of the document it represents to the query. Nodes that are among
the nearest-neighbors of other nodes get an additional support. Moreover, wt[λ] can be
thought of as a probability transition function, because the sum of weights on edges going
out from a node is 1; furthermore, every node has outgoing edges to all nodes in the graph
(self loops included). Hence, G[λ] represents an ergodic Markov chain for which a unique sta-
tionary distribution exists (Golub & Van Loan, 1996). This distribution, which can be found

3. Note that N bhd(v; α) contains only nodes that represent documents that are not that represented by v.
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Algorithm V ŝim(v, q) Score(d)

SetUni {d : d ∈
⋃

i Li} 1 P(d; G[λ])

SetSum {d : d ∈
⋃

i Li} PCombSUM(v) P(d; G[λ])

SetMNZ {d : d ∈
⋃

i Li} PCombMNZ(v) P(d; G[λ])

BagUni {Lj
i}i,j 1

∑
v∈V :v≡d P(v; G[λ])

BagSum {Lj
i}i,j S(v)

∑
v∈V :v≡d P(v; G[λ])

BagDupUni {Dup(Lj
i )}i,j 1

∑
v∈V :v≡d P(v; G[λ])

BagDupMNZ {Dup(Lj
i )}i,j S(v)

∑
v∈V :v≡d P(v; G[λ])

Table 1: Similarity-based fusion methods; Score(d) is d’s final retrieval score.

L1 L2

L1
1 : d1 L1

2 : d2

L2
1 : d2 L2

2 : d4

L3
1 : d3 L3

2 : d1

Table 2: Example of two retrieved lists to be fused.

using, for example, the Power method (Golub & Van Loan, 1996), is the unique solution to
the following prestige-induction equation under the constraint

∑
v′∈V P(v′; G[λ]) = 1:

P(v; G[λ])
def
=

∑

v′∈V

wt[λ](v′ → v)P(v′; G[λ]). (2)

2.2.1 Methods

To derive specific fusion methods, we need to specify the graph G[λ] using which prestige
is induced in Equation 2. More specifically, given the lists L1, . . . , Lm, we have to define a
set of nodes V that represent documents (or document instances); and, we have to devise
a query-similarity estimate (ŝim(v, q)) to be used by the edge-weight function wt[λ] from
Equation 1. The alternatives that we consider, which represent some ways of utilizing our
graph-based approach, and the resultant fusion methods, are presented in Table 1. It is
important to note that each fusion method produces a ranking of documents wherein a
document cannot have more than one instance. To facilitate the discussion of the various
methods from Table 1, we will refer to the example of fusing the two lists from Table 2, L1

and L2, each of which contains three documents.

The first group of methods does not consider occurrences of a document in multiple lists
when utilizing inter-document similarities. Specifically, V , the set of nodes, is defined to

be the set-union of the retrieved lists. For the example in Table 2, V
def
= {d1, d2, d3, d4}.

Thus, each document is represented in the graph by a single node. The prestige value of
this node serves as the final retrieval score of the document. The SetUni method ignores
the retrieval scores of documents by using a uniform query-similarity estimate; hence, only
inter-document similarity information is utilized. The SetSum and SetMNZ methods,
on the other hand, integrate also retrieval scores by using the CombSUM and CombMNZ
prestige scores for query-similarity estimates, respectively.
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The SetSum and SetMNZ methods are, in fact, generalized forms of CombSUM and
CombMNZ, respectively. If we use the edge-weight function wt[1] (i.e., set λ = 1 in Equa-
tion 1), that is, do not exploit inter-document-similarity information, then SetSum and
SetMNZ amount to CombSUM and CombMNZ, respectively; lower values of λ result in
more emphasis put on inter-document-similarities information. Furthermore, the set-based
paradigm can be used so as to incorporate and generalize any fusion method by using the
method’s retrieval score as the query-similarity estimate. Then, setting λ = 1 amounts to
using only the fusion method’s retrieval scores. (See Appendix A for a proof.)

In contrast to the set-based methods, the bag-based methods consider occurrences of
a document in multiple lists in utilizing inter-document similarity information. Each node
in the graph represents an instance of a document in a list. Hence, the set of nodes (V )
in the graph could be viewed as the bag-union of the retrieved lists. In the example from

Table 2, V
def
= {L1

1, L
2
1, L

3
1, L

1
2, L

2
2, L

3
2}. The final retrieval score of a document is set to the

sum of prestige scores of the nodes that represent it — i.e., that correspond to its instances
in the lists. For example, the score of d1 would be the sum of the scores of the nodes L1

1

and L3
2. It is also important to note that while the neighborhood set N bhd(v; α) of node

v cannot contain nodes representing the same document represented by v, it can contain
multiple instances of a different document. Thus, documents with many instances tend to
receive more inter-document-similarity-based prestige-status support than documents with
fewer instances.

The first representative of the bag-based methods, BagUni, ignores retrieval scores and
considers only inter-document-similarities. Hence, BagUni differs from SetUni only by the
virtue of rewarding documents with multiple instances. In addition to exploiting inter-
document similarities, the BagSum method also uses the retrieval score of a document
instance as the query-similarity estimate of the corresponding node. We note that Comb-
SUM is a specific case of BagSum with λ = 1, as was the case for SetSum. (See Appendix
A for a proof.) Furthermore, BagSum resembles SetSum in that it uses λ for controlling
the balance between using retrieval scores and utilizing inter-document similarities. How-
ever, documents with many instances get more prestige-status support in BagSum than in
SetSum due to the bag-based representation of the lists.

Naturally, then, we opt to create a bag-based generalized version of the CombMNZ
method. To that end, for each document instance L

j
i that corresponds to document d, we

define a new list Dup(Lj
i ). This list contains n copies of d, each assigned to an arbitrary

different rank between 1 and n with S(Lj
i ) as a retrieval score; n

def
= #{Li : d ∈ Li} — the

number of original lists that d belongs to. The set of nodes V is composed of all document
instances in the newly defined lists. For the example from Table 2, we get the following
newly created lists:

La
def
= Dup(L1

1
) Lb

def
= Dup(L3

2
) Lc

def
= Dup(L2

1
) Ld

def
= Dup(L1

2
) Le

def
= Dup(L3

1
) Lf

def
= Dup(L2

2
)

L1
a : L1

1
≡ d1 L1

b
: L3

2
≡ d1 L1

c : L2

1
≡ d2 L1

d
: L1

2
≡ d2 L1

e : L3

1
≡ d3 L1

f
: L2

2
≡ d4

L2
a : L1

1
≡ d1 L2

b
: L3

2
≡ d1 L2

c : L2

1
≡ d2 L2

d
: L1

2
≡ d2

The set of nodes, V , is {L1
a, L

2
a, L

1
b , L

2
b , L

1
c , L

2
c , L

1
d, L

2
d, L

1
e, L

1
f}. Note, for example, that while

d1 was represented by a single node under the set-based representation, and by two nodes
under the bag-based representation, here it is represented by four nodes. More generally,
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the number of nodes by which each document is represented here is the square of the number
of appearances of the document in the lists.

The BagDupUni method, then, uses a uniform query-similarity estimate. Hence, as
SetUni and BagUni it utilizes only inter-document similarities; but, in doing so, BagDupUni
rewards to a larger extent documents with multiple instances due to the bag representation
and the duplicated instances. The BagDupMNZ method integrates also retrieval-scores
information by using the retrieval score of a document instance in a new list as the query-
similarity estimate of the corresponding node. For wt[1] (i.e., λ = 1), BagDupMNZ amounts
to CombMNZ, as was the case for SetMNZ. (See Appendix A for a proof.) Yet, BagDupMNZ
rewards to a larger extent documents with multiple instances than SetMNZ does due to the
bag representation of the lists and the duplicated document instances.

3. Related Work

Fusion methods often use the ranks of documents in the lists, or their retrieval scores, but not
the documents’ content (Fox & Shaw, 1994; Voorhees, Gupta, & Johnson-Laird, 1994; Lee,
1997; Vogt & Cottrell, 1999; Croft, 2000b; Dwork et al., 2001; Aslam & Montague, 2001;
Montague & Aslam, 2002; Lillis, Toolan, Collier, & Dunnion, 2006; Shokouhi, 2007). For
example, Dwork et al. (2001), as us, use Markov chains so as to find prestigious documents
in the lists. However, the propagation of relevance status is governed only by information
regarding the ranks of documents in the lists. We show in Section 4.2 that using both
retrieval scores and inter-document similarities to guide relevance-status propagation is
more effective than using each alone. Also, we note that previous work on fusion has
demonstrated the relative merits of using retrieval scores rather than rank information (Lee,
1997). Furthermore, as stated in Section 2.2.1, our methods can incorporate and generalize
fusion methods that rely on scores/ranks by using the set-based graph representation. We
used in Section 2.2.1 the CombSUM and CombMNZ methods, which are based on retrieval
scores, as examples. CombSUM is a (non supervised) representative of a general family
of linear combination techniques (Vogt & Cottrell, 1999), and CombMNZ is considered a
highly effective approach which therefore often serves as a baseline in work on fusion (Lee,
1997; Aslam & Montague, 2001; Montague & Aslam, 2002; Lillis et al., 2006; Shokouhi,
2007). In Section 4.2 we demonstrate the performance merits of our approach with respect
to CombSUM and CombMNZ, and additional rank-based fusion methods.

There are several fusion methods that utilize document-based features, some of which
are based on the document content, e.g., snippets (summaries) of documents (Lawrence &
Giles, 1998; Craswell, Hawking, & Thistlewaite, 1999; Tsikrika & Lalmas, 2001; Beitzel,
Jensen, Frieder, Chowdhury, & Pass, 2005; Selvadurai, 2007). However, in contrast to
our methods, inter-document similarities were not used in these approaches. Thus, these
methods can potentially be incorporated in our fusion framework using the set-based graph
representation. Furthermore, we note that our methods can potentially utilize document
snippets to estimate inter-document similarities, rather than use the entire document con-
tent, if the content is not (quickly) accessible. Indeed, snippets were used for inducing
inter-document similarities so as to cluster results of Web search engines (Zamir & Etzioni,
1998).
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There is a large body of work on re-ranking an initially retrieved list using graph-
based methods that model inter-document similarities within the list (e.g., Dani lowicz &
Baliński, 2000; Baliński & Dani lowicz, 2005; Diaz, 2005; Kurland & Lee, 2005, 2006; Zhang
et al., 2005; Yang, Ji, Zhou, Nie, & Xiao, 2006). As mentioned in Section 2, our fusion
methods could conceptually be viewed as a generalization of some of these approaches
(Dani lowicz & Baliński, 2000; Diaz, 2005; Kurland & Lee, 2005); specifically, of methods
that utilize both retrieval scores and inter-document-similarities for modeling relevance-
status propagation within the list (Dani lowicz & Baliński, 2000; Diaz, 2005). A similar
relevance-status propagation method was also employed in work on sentence retrieval for
question answering (Otterbacher, Erkan, & Radev, 2005).

Similarities between document headlines were used for merging document lists that were
retrieved in response to a query from non-overlapping corpora (Shou & Sanderson, 2002).
Specifically, a document is ranked by the sum of similarities between its headline and head-
lines of other documents. In contrast to our approach, which operates on a single corpus,
and which accordingly exploits information regarding multiple occurrences of a document
in the lists, retrieval scores were not integrated with these similarities; and, a graph-based
approach as we use here was not employed. In Section 4.2 we show that using retrieval
scores in the single-corpus-based fusion setup that we explore is highly important; specif-
ically, integrating retrieval scores and inter-document-similarities results in much better
performance than that of using only inter-document similarities.

Similarities between documents in (potentially non-overlapping) different corpora were
also used to form document clusters (Xu & Croft, 1999; Crestani & Wu, 2006) so as to
(potentially) improve results browsing (Crestani & Wu, 2006) and to improve collection
selection (Xu & Croft, 1999) for search. In contrast to our approach, fusion methods
that are based on utilizing information induced from inter-document similarities were not
proposed.

There is some recent work on re-ranking a retrieved list using inter-document similarities
with a second retrieved list (Meister et al., 2010). The idea is that documents that are highly
ranked in the original list, and that are similar to documents highly ranked in the second
list, should be rewarded. However, in contrast to fusion approaches, documents that are
members of the second list, but not of the first list, cannot appear in the final result list.
Furthermore, in contrast to our approach, there is no recursive definition for prestige. Most
importantly, there is no apparent way of generalizing this method so as to fuse several lists,
in contrast to our approach.

Methods utilizing inter-item textual similarities — some using a variant of PageRank as
we do here — were also used, for example, for cross-lingual retrieval (Diaz, 2008), predic-
tion of retrieval effectiveness (Diaz, 2007), and text summarization and clustering (Erkan
& Radev, 2004; Mihalcea & Tarau, 2004; Erkan, 2006). Specifically, some recent work
(Krikon, Kurland, & Bendersky, 2010) has demonstrated the merits of integrating whole-
document-based inter-document similarities with inter-passage-similarities for re-ranking a
single retrieved list; especially, when using corpora containing long and/or topically het-
erogeneous documents. Incorporating inter-passage similarities in our methods is a future
venue we intend to explore.
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4. Evaluation

We next study the effectiveness of our similarity-based fusion approach, and the different
factors that affect its performance.

4.1 Experimental Setup

In what follows we describe the setup used for the evaluation.

4.1.1 Measuring Inter-Document Similarities.

We use a previously proposed language-model-based similarity estimate that was shown to
be effective in work on re-ranking a single retrieved list (Kurland & Lee, 2005, 2006, 2010).

Let p
[µ]
d (·) denote the unigram, Dirichlet-smoothed, language model induced from doc-

ument d, where µ is the smoothing parameter (Zhai & Lafferty, 2001). We set µ = 1000
following previous recommendations (Zhai & Lafferty, 2001). For documents d1 and d2 we
define:

sim(d1, d2)
def
= exp

(
−D

(
p

[0]
d1

(·)
∣∣∣
∣∣∣ p

[µ]
d2

(·)
))

;

D is the KL divergence. The “closer” the language models of d1 and d2 are, the lower the
KL divergence is, and the higher the similarity estimate is.

4.1.2 Data, Evaluation Measures, and Parameters.

We evaluate the performance of our fusion methods using TREC datasets (Voorhees &
Harman, 2005), which were also used in some previous work on fusion (e.g., Lee, 1997;
Aslam & Montague, 2001; Montague & Aslam, 2002): the ad hoc track of trec3, the web
tracks of trec9 and trec10, and the robust track of trec12. Tokenization, Porter stemming,
and stopword removal (using the INQUERY list) were applied to documents using the
Lemur toolkit4, which was also used for computing sim(d1, d2).

Retrieval methods that utilize inter-document similarities in a query context — e.g.,
for re-ranking a single retrieved list using graph-based techniques — are known to be most
effective when employed over relatively short lists (Willett, 1985; Diaz, 2005; Kurland & Lee,
2010). The reason is that such lists often contain documents that exhibit high surface-level
query similarity. Hence, the lists could be thought of as providing “effective” query-based
corpus context. Similar arguments were echoed in work on pseudo-feedback-based query
expansion (Xu & Croft, 1996; Lavrenko & Croft, 2001; Zhai & Lafferty, 2002; Tao & Zhai,
2006). Furthermore, utilizing inter-document similarities in such short lists was shown to be
highly effective in improving precision at the very top ranks (Kurland & Lee, 2005, 2006).5

Indeed, users of Web search engines, for example, are often interested in the most highly
ranked documents (a.k.a., “first page of results”). Given the considerations just mentioned,
we take the following design decisions with respect to the evaluation measures that we focus
on, the number of lists to be fused, and the number of documents in each list.

4. www.lemurproject.org
5. Improving precision at top ranks often results in improving MAP (mean average precision) by the virtue

of the way MAP is defined. We show in Section 4.2.1 that our approach improves both precision at top
ranks and MAP.
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As our focus is on precision at top ranks, we use precision of the top 5 and 10 documents
(p@5, p@10) as the main evaluation measures. To determine statistically-significant per-
formance differences, we use the two-tailed Wilcoxon test at the 95% confidence level. This
means that, on average, the result of a significance test might be erroneous in one out of
every twenty tests. Thus, we employ Bonferroni correction over the corpora per evaluation
measure (i.e., a confidence level of 98.75% is also used). Specifically, in the results tables
that we present, a statistical-significance mark corresponds to a 95% confidence level; and,
the mark is boldfaced if the corresponding performance difference is statistically significant
after Bonferroni correction was employed (i.e., using a 98.75% confidence level).

We use our methods to fuse three lists, each of which corresponds to the top-k documents
in a submitted run within a track; that is, we use the actual result lists (runs) submitted
by TREC’s participants. The main focus of our evaluation, up to (and including) Section
4.2.5, is on fusing the three runs that are the most effective among all submitted runs in a
track (both automatic and manual); effectiveness is measured by MAP@k , that is, mean
average non-interpolated precision at cutoff k, henceforth referred to as MAP (Voorhees
& Harman, 2005). The three runs to be fused are denoted, by descending order of MAP
performance, run1, run2, and run3, respectively. Although MAP is not an evaluation
measure we focus on — albeit, we do present MAP performance numbers in Section 4.2.1
— this practice ensures that the initial ranking of the lists to be fused is of relatively high
quality; that is, in terms of recall and relative positioning of relevant documents. Yet, the
lists to be fused could still be sub-optimal with respect to precision at top ranks. Thus, we
use for reference comparisons to our methods the Optimal Runs (“opt. run” in short)
per evaluation metric and track; that is, for each track, and evaluation metric m (p@5 or
p@10), we report the best (average over queries per track) m-performance obtained by any
submitted run in this track. Note that the MAP performance of run1 is the best in a track
by the virtue of the way run1 was selected. However, run1 is not necessarily the optimal
run with respect to p@5 or p@10. In addition, we compare the performance of our methods
with that of the CombSUM and CombMNZ fusion techniques; recall that these methods,
which rely solely on retrieval scores, are special cases of some of our methods. In nutshell,
we evaluate the effectiveness of our fusion approach, and that of the fusion methods that
serve as reference comparisons, in attaining high precision at top ranks with respect to that
of (i) the lists to be fused, and (ii) the best performing runs in a track with respect to
precision at top ranks.

We note that fusing the three most (MAP) effective runs in a track does not constitute
a real-life retrieval scenario as the quality of the lists to be fused is not known in practice,
but can rather potentially be predicted (Carmel & Yom-Tov, 2010). Yet, such setup is
suitable for a conservative evaluation of our methods, specifically, for studying their ability
to effectively fuse lists of high quality. Nevertheless, in Section 4.2.6 we also present the
performance of our methods when fusing three runs that are randomly selected from all
runs in a track.

Experiments with setting k, the number of documents in each list to be fused, to values
in {10, 20, 30, 40, 50, 75, 100} showed that the fusion methods with which we compare our
approach, specifically CombMNZ (Fox & Shaw, 1994; Lee, 1997), often attain (near) optimal
precision-at-top-ranks performance for k = 20. As it turns out, this is also the case for our
most effective fusion methods. Hence, the experiments to follow are based on using the top
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k = 20 documents from each run to be fused. In Section 4.2.4 we present the effect of k on
performance.

Our main goal in the evaluation to follow is to focus on the underlying principles of our
proposed fusion approach, and on its potential effectiveness. We would like to thoroughly
compare the different proposed methods of utilizing inter-document similarities, and the
factors that affect their performance, rather than engage in excessive performance opti-
mization. With these goals in mind, we start by ameliorating the effects of free-parameter
values. We do so by setting the values of the free parameters that our methods incorporate,
and those of the reference comparisons, so as to optimize the average p@5 performance over
the entire set of queries in a track6. Thus, we note that the p@10 performance numbers that
we present are not necessarily the optimal ones that could be attained. Yet, such an experi-
mental setup is more realistic than that of optimizing performance for each of the evaluation
metrics separately. Then, in Sections 4.2.3 and 4.2.4 we present the effect on performance
of varying the values of free parameters of our methods. Furthermore, in Section 4.2.5 we
present the performance of our most effective methods when values of free parameters are
learned using cross-validation performed over queries. The value of the ancestry parameter
α, which is incorporated by our methods, is chosen from {5, 10, 20, 30, 40, 50}. The value
of λ, which controls the reliance on retrieval scores versus inter-document-similarities, is
chosen from {0.1, 0.2, . . . , 1}.

For inter-list compatibility of retrieval scores, we normalize the score of a document in
a list with respect to the sum of all scores in the list; if a list is of negative retrieval scores,
which is usually due to using logs, we use the exponent of a score for normalization7.

4.1.3 Efficiency Considerations.

The number of documents (document instances) in the graphs we construct is at most a
few hundreds8. Hence, computing inter-document similarities does not incur a significant
computational overhead. Even if the entire document content is not quickly accessible,
document snippets, for example, could be used for computing inter-document similarities.
(This is a future venue we intend to explore.) Similar efficiency considerations were made
in work on clustering the results retrieved by Web search engines (Zamir & Etzioni, 1998),
and in work on re-ranking search results using clusters of top-retrieved documents (Willett,
1985; Liu & Croft, 2004; Kurland & Lee, 2006). In addition, we note that computing
prestige over such small graphs takes only a few iterations of the Power method (Golub &
Van Loan, 1996).

4.2 Experimental Results

We next present the performance numbers of our fusion approach. In Section 4.2.1 we
present the main result — the performance of our best-performing models with respect
to that of the reference comparisons. Then, in Section 4.2.2 we compare and analyze the

6. If two parameter settings yield the same p@5, we choose the one minimizing p@10 so as to provide
conservative estimates of performance.

7. Normalizing retrieval scores with respect to the maximum and minimum scores in a list yields almost
exactly the same performance numbers as those we report here.

8. Note that each of the three fused lists contains 20 documents, and each document instance is duplicated,
if at all, at most three times.
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trec3 trec9 trec10 trec12
p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

opt. run 76.0 72.2 60.0 53.1 63.2 58.8 54.5 48.6

run1 74.4 72.2 60.0 53.1 63.2 58.8 51.1 44.8
run2 72.8 67.6 45.8o 38.8o 54.4 50.2 52.5 48.6
run3 76.0 71.2 38.3o 34.6o 55.6 46.8o 51.5 45.2o

CombSUM 80.8ab 74.6b 52.9bc 48.5bc 71.2o

abc
61.0bc 53.7 49.2ac

BagSum 83.2o

abc
78.8om

abc
59.6m

bc
48.1bc 71.2o

abc
61.0bc 55.4ac 49.2ac

CombMNZ 80.8ab 74.6b 55.0bc 48.8bc 71.2o

abc
61.0bc 53.9 49.2ac

BagDupMNZ 83.2ab 79.0om

abc
60.4m

bc
47.9bc 72.0o

abc
61.0bc 56.6m

abc
49.0ac

Table 3: Main result table. The performance of two of our most effective fusion methods,
BagSum and BagDupMNZ; for λ = 1, these amount to CombSUM and CombMNZ,
respectively. The best performance in each column is boldfaced. Statistically-
significant differences with opt. run, run1, run2, and run3, are marked with ’o’, a’,
’b’, and ’c’, respectively. (Here and after, we do not mark statistically-significant
differences between run1, run2 and run3 to avoid cluttering the presentation, as
these convey no additional insight.) Statistically-significant differences between
BagSum and CombSUM, and between BagDupMNZ and CombMNZ, are marked
with ’m’. The values of (λ, α) that yield optimal average p@5 performance for
BagSum are (0.4, 5), (0.6, 40), (0, 5) and (0.1, 5) over trec3, trec9, trec10, and
trec12, respectively; for BagDupMNZ, (0.7, 5), (0.1, 20), (0.1, 5), and (0.1, 20) yield
optimal average p@5 performance for trec3, trec9, trec10, and trec12, respectively.

performance of all proposed fusion methods. We futher study the merits of using inter-
document similarities in Section 4.2.3. The effect on performance of additional factors, e.g.,
the number of documents in the lists to be fused (k), is presented in Section 4.2.4. Section
4.2.5 presents the performance numbers of our most effective models when the values of free
parameters are learned using cross validation performed across queries. As noted above, up
to (and including) Section 4.2.5, the evaluation is based on fusing the three most effective
runs in a track. In Section 4.2.6 we evaluate the performance of our methods when fusing
runs that are randomly selected. In Section 4.2.7 we present an analysis of the overlap of
relevant and non-relevant documents in the lists to be fused that sheds some more light on
the reasons for the relative effectiveness of our approach with respect to that of standard
fusion.

4.2.1 Main Result

Table 3 presents our main result. We present the performance numbers of two of our most
effective methods, namely, BagSum and BagDupMNZ. (See Section 4.2.2 for an in-depth
analysis of the performance of all our fusion methods.) Recall that for λ = 1 — i.e.,
using no inter-document-similarity information — these methods amount to CombSUM
and CombMNZ, respectively.

Our first observation based on Table 3 is that in most reference comparisons (track
× evaluation measure) the BagSum and BagDupMNZ methods outperform — often to a
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substantial and statistically-significant degree — each of the three fused runs. Furthermore,
in many cases, the performance of our methods is also superior to that of opt. run. This also
holds, for example, for p@5 of BagDupMNZ for trec12, a track for which the performance
of the runs to be fused (specifically, run2 and run3) can be quite below that of opt. run.

For trec9, our methods’ performance is in several cases below that of run1, which is also
opt. run with respect to p@5 and p@10. However, these performance differences are not
statistically significant. Also, note that run1 is by far more effective than run2 and run3;
hence, run2 and run3 potentially have a relatively few relevant documents to “contribute”
in addition to those in run1. Nevertheless, the performance of our methods for trec9 is
substantially better than that of the other two fused runs (run2 and run3); and, in terms
of p@5 — the metric for which performance is optimized — the performance for trec9 of
each of BagSum and BagDupMNZ is statistically-significantly better (for BagDupMNZ also
after employing Bonferroni correction) than that of its special case, that is, CombSUM and
CombMNZ, respectively. The fact that the p@5 performance of CombSUM and CombMNZ
is much worse than that of run1 for trec9, which is not the case for other tracks, could
be attributed to the fact that the number of relevant documents that are shared among
the three runs is the lowest observed with respect to all considered tracks. (We present an
analysis of the number of relevant documents shared by the runs in Section 4.2.7.) This is a
scenario in which our methods can yield much merit by using inter-document similarities, as
is evident in the p@5 performance improvements they post over CombSUM and CombMNZ
for trec9.

More generally, we can see in Table 3 that in a majority of the relevant comparisons
our methods’ performance is superior to that of their special cases that do not utilize inter-
document similarities (CombSUM and CombMNZ). The p@5 improvements for trec9, for
example, and as noted above, are both substantial and statistically significant. Furthermore,
our methods post more statistically significant improvements over the runs to be fused, and
over opt. run, than CombSUM and CombMNZ do. Thus, these findings attest to the merits
of utilizing inter-document similarities for fusion.

Analysis of MAP Performance. Although the focus of the evaluation we present is
on precision at top ranks, we are also interested in the general quality of the ranking
induced by our methods. Accordingly, we present the MAP performance of the BagSum and
BagDupMNZ methods in Table 4. To avoid potential metric-divergence issues (Azzopardi,
Girolami, & van Rijsbergen, 2003; Morgan, Greiff, & Henderson, 2004; Metzler & Croft,
2005), that is, optimizing performance for one retrieval metric and presenting performance
numbers for a different retrieval metric, we optimize the performance of our methods only
in this case with respect to MAP.

We can see in Table 4 that except for trec9, our methods outperform — and in quite a few
cases, statistically significantly so — the fused runs, and opt. run. (Recall that run1 is the
best MAP-performing run in a track; i.e., in terms of MAP, run1 is opt. run.) Moreover,
our methods consistently outperform their corresponding special cases, CombSUM and
CombMNZ.

Comparison with Rank-Based Fusion Methods While the focus of this paper is
on fusion methods that utilize retrieval scores, in Table 5 we compare the performance of
BagDupMNZ (one of our two best-performing methods) with that of two fusion methods
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trec3 trec9 trec10 trec12
MAP MAP MAP MAP

opt. run 10.4 28.2 30.7 28.8

run1 10.4 28.2 30.7 28.8

run2 9.6 18.4o 27.7o 28.4

run3 9.5 16.8o 21.6o 28.1

CombSUM 10.9bc 24.9bc 37.2bc 30.3o
a

BagSum 11.4om
abc 26.6bc 37.3bc 30.5o

a

CombMNZ 10.9bc 25.5bc 37.2bc 30.3o
a

BagDupMNZ 11.5om
abc 27.0bc 38.4bc 30.5o

a

Table 4: MAP performance numbers. The best performance in each column is boldfaced.
Statistically significant differences with opt. run, run1, run2, and run3, are marked
with ’o’, a’, ’b’, and ’c’, respectively. Statistically significant differences between
BagSum and CombSUM, and between BagDupMNZ and CombMNZ, are marked
with ’m’.

trec3 trec9 trec10 trec12
p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

round robin 76.4 73.2 50.4 45.6 61.6 55.2 53.9 47.3

Borda 80.4 78.6 55.0 48.3 71.2 62.0 54.3 48.8

BagDupMNZ 83.2 79.0r
b 60.4r

b 47.9 72.0r 61.0r 56.6 49.0

Table 5: Comparison with rank-based fusion methods. Statistically-significant differences
between BagDupMNZ and round robin and Borda are marked with ’r’ and ’b’,
respectively.

that utilize ranks of documents rather than their scores. The first is a simple round robin
approach wherein the order of runs used is run1, run2 and run3. The second rank-based
fusion method is Borda (Young, 1974), in which d is scored by the number of documents
not ranked higher than it in the lists:

PBorda(d)
def
=

∑

Li

#{d′ ∈ Li : SLi
(d′) <= SLi

(d)}.

We can see in Table 5 that BagDupMNZ outperforms both the round robin and the
Borda methods in most reference comparisons. Many of the performance differences (espe-
cially those with round robin) are quite substantial and some are also statistically significant.

Upper Bound Analysis To study the potential of our approach when completely neu-
tralizing the effects of free-parameter values, we present in Table 6 an upper bound analysis
of the p@5 performance of BagDupMNZ. To that end, for each query we use free-parameter
values of BagDupMNZ that yield optimized p@5 for this query. Recall that the performance
of BagDupMNZ reported above was based on free-parameter values set to optimize average
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trec3 trec9 trec10 trec12

OptRunPerQuery 91.6 79.6 84.4 84.8
opt. run 76.0p 60.0p 63.2p 54.5p

run1 74.4p 60.0p 63.2p 51.1p

CombMNZ 80.8p
a 55.0p 71.2po

a 53.9p

BagDupMNZ 89.6o
am 68.3po

am 79.6po
am 66.1po

am

Table 6: Upper bound analysis of the p@5 performance of BagDupMNZ. Specifically, for
each query we use BagDupMNZ with free-parameter values optimized for p@5 for
that query. As a reference comparison, for each query we consider the best p@5-
performing run (OptRunPerQuery). The performance of run1 (the best (MAP)
performing among the three fused runs), opt. run (the run that yields the best
average p@5 per track), and CombMNZ is presented for reference. ’p’, ’o’, ’a’,
and ’m’ mark statistically significant differences with OptRunPerQuery, opt. run,
run1, and CombMNZ, respectively.

trec3 trec9 trec10 trec12
p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

opt. run 76.0 72.2 60.0 53.1 63.2 58.8 54.5 48.6

run1 74.4 72.2 60.0 53.1 63.2 58.8 51.1 44.8
run2 72.8 67.6 45.8o 38.8o 54.4 50.2 52.5 48.6
run3 76.0 71.2 38.3o 34.6o 55.6 46.8o 51.5 45.2o

SetUni 79.2b 75.0b 42.5o
a 39.2o

a 56.8 48.2o
a 47.3o 41.5o

b

SetSum 82.8o

abc
78.0o

abc
59.2bc 49.2bc 71.2o

abc
61.0bc 55.4a 48.5ac

SetMNZ 82.0ab 77.2o

abc
61.3bc 49.2bc 71.2o

abc
61.0bc 55.6ac 48.5ac

BagUni 82.4ab 78.8o

abc
59.2bc 47.9bc 70.8bc 61.2bc 53.1 46.5

BagSum 83.2o

abc
78.8o

abc
59.6bc 48.1bc 71.2o

abc
61.0bc 55.4ac 49.2ac

BagDupUni 82.0ab 78.6o

abc
57.5bc 48.1bc 72.0o

abc
60.4bc 52.9 47.8

BagDupMNZ 83.2ab 79.0o

abc
60.4bc 47.9bc 72.0o

abc
61.0bc 56.6abc 49.0ac

Table 7: Performance comparison of all proposed fusion methods. The best result in a
column is boldfaced. Statistically significant differences with opt. run, run1, run2,
and run3, are marked with ’o’, ’a’, ’b’, and ’c’, respectively.

p@5 performance for a track. (The same runs used above are fused here). For reference
comparison, we consider for each query the run in the track that yields the best p@5 for
that query (denoted OptRunPerQuery). We also present the performance of the opt. run
baseline, used above, which is the run that yields the best average p@5 performance per
track. The performance of run1 (the most (MAP) effective of the three fused runs) and
CombMNZ is presented for reference as well.

As we can see in Table 6 the performance of BagDupMNZ is substantially (and statisti-
cally significantly) better than that of opt. run, run1 and CombMNZ with the performance
differences being, naturally, much higher than those in Table 3. Thus, we see that using
inter-document similarities for fusion can yield substantial merits; and, that optimizing the
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free-parameter values of our approach per query yields better performance than using the
same values for all queries, as could be expected. As already noted, in Section 4.2.5 we
study the performance of our approach when using cross-validation to set free-parameter
values.

We can also see in Table 6 that except for trec3, the performance of BagDupMNZ is
much inferior (and statistically significantly so) to that of selecting the best-performing
run per each query (OptRunPerQuery). This is not a surprise as the performance of run1
(the most effective — on average — among the runs to be fused) is also substantially (and
statistically significantly) worse than that of OptRunPerQuery; the same observation holds
for opt. run, which shows that different runs are the most effective for different queries.

4.2.2 Performance Analysis of All Proposed Fusion Methods

In Table 7 we compare the performance of all proposed fusion methods. Our first observa-
tion is that using the retrieval scores of documents in the lists, on top of inter-document-
similarity information, is important. Indeed, the methods with the suffix “Uni” that use
a uniform query-similarity estimate, i.e., that disregard the retrieval scores of documents
in the lists, post performance that is almost always worse than that of their counterparts
that do utilize retrieval scores for inducing query similarity. (Compare SetUni with SetSum
and SetMNZ; BagUni with BagSum; and, BagDupUni with BagDupMNZ.) Furthermore,
utilizing retrieval scores results in performance that is almost always better — and in many
cases to a statistically significant degree — than that of run2 and run3; the performance
also transcends that of run1 and opt. run, except for trec9.

We can also see in Table 7 that the bag representation of the lists yields better perfor-
mance, in general, than that of using a set representation. (Compare, for example, BagUni
with SetUni, and BagSum with SetSum.) Recall that under a bag representation a docu-
ment is represented by the nodes corresponding to its instances in lists, while under a set
representation each document is represented by a single node. Hence, the fact that docu-
ments with occurrences in many of the fused lists can draw more prestige-status support
via inter-document-similarities than documents with fewer occurrences has positive impact
on performance.

Thus, it is not a surprise that the BagSum and BagDupMNZ methods that use a bag-
representation of the lists, and which utilize the retrieval scores of documents in the lists,
are among the most effective fusion methods that we proposed.

4.2.3 The Performance Impact of Using Inter-Document-Similarities

The λ parameter in Equation 1 (Section 2) controls the reliance on retrieval scores ver-
sus inter-document similarity information. Setting λ = 1, i.e., using no inter-document-
similarity information, results in the “XSum” methods being equivalent to CombSUM, and
the “XMNZ” methods being equivalent to CombMNZ. In Table 3 we showed that BagSum
outperforms CombSUM and that BagDupMNZ outperforms CombMNZ. We now turn to
study the performance of all “XSum” and “XMNZ” methods with respect to their “special
cases”, that is, CombSUM and CombMNZ, respectively.

We can see in Table 8 that in a majority of the relevant comparisons (track × evaluation
metric), each of our methods outperforms its special case, with several of the differences
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trec3 trec9 trec10 trec12
p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

CombSUM 80.8 74.6 52.9 48.5 71.2 61.0 53.7 49.2

SetSum 82.8 78.0m 59.2m 49.2 71.2 61.0 55.4 48.5

BagSum 83.2 78.8m 59.6m 48.1 71.2 61.0 55.4 49.2

CombMNZ 80.8 74.6 55.0 48.8 71.2 61.0 53.9 49.2

SetMNZ 82.0 77.2 61.3m 49.2 71.2 61.0 55.6 48.5

BagDupMNZ 83.2 79.0m 60.4m 47.9 72.0 61.0 56.6m 49.0

Table 8: Comparison of the similarity-based fusion methods with their special cases, Comb-
SUM and CombMNZ. Best performance in a column is boldfaced. Statistically
significant difference between a method and its special case is marked with ’m’.

being statistically significant. We therefore conclude that inter-document-similarities are
indeed a helpful source of information for fusion.

We further study the effect of varying the value of λ on the p@5 performance of one of
our two most effective methods, BagDupMNZ, in Figure 1. Our first observation is that
except for trec9, and for all values of λ, BagDupMNZ yields performance that transcends
that of run1, which is the most effective among the three fused runs; for most values of λ the
performance of BagDupMNZ is also better than that of opt. run. Trec9 is an exception in
that BagDupMNZ outperforms run1, which is also opt. run, for a single value of λ. Recall
that for trec9 the performance of run1 is by far better than that of the other fused runs.

Another observation that we make based on Figure 1 is that for most tracks λ ≥ 0.6
yields better performance than that attained by using lower values of λ. This finding further
demonstrates the importance of utilizing retrieval scores of documents as specified above.
For λ = 1 no inter-document-similarities are used and BagDupMNZ amounts to CombMNZ.
We can also see that in many cases wherein λ ∈ {0.7, 0.8, 0.9} BagDupMNZ outperforms
CombMNZ; for trec9 and trec12 these improvements are quite substantial. These findings
echo those specified above with regard to the merits of utilizing inter-document-similarities
for fusion. Finally, we note that the performance merits attained by using inter-document
similarities are even more emphasized when the runs to be fused are randomly selected from
all those available for a track (as we will show in Section 4.2.6), rather than being the best
(MAP) performing ones as those used here.

4.2.4 Further Analysis

Effect of α. The similarity-based fusion methods incorporate two free parameters: λ,
which controls the reliance on retrieval scores versus inter-document-similarities; the effect
of λ was studied above; and, α, which is the number of nearest neighbors considered for a
node in the graphs we use. In Figure 2 we analyze the effect of α on the p@5 performance
of BagDupMNZ.

We can see in Figure 2 that small values of α (∈ {5, 10, 20}) often yield better per-
formance than larger values. The same finding was reported in work on utilizing nearest-
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Figure 1: Effect of varying the value of λ (refer to Equation 1 in Section 2) on the p@5
performance of BagDupMNZ; λ = 1 amounts to CombMNZ. The performance
of opt. run, run1 and CombMNZ is depicted with horizontal lines for reference.
Note: figures are not to the same scale.

neighbors-based graphs for re-ranking a single retrieved list (Diaz, 2005; Kurland & Lee,
2005). Furthermore, we can see that small values of α yield performance that transcends
that of run1 and opt. run, except for trec9. Another observation that we make based
on Figure 2 is that for most corpora, and most values of α, BagDupMNZ outperforms its
special case, CombMNZ.

Effect of k. The experimental design that was used insofar, and which was presented in
Section 4.1, was based on the observation that attaining high precision at top ranks calls for
fusion of relatively short retrieved lists. Indeed, the performance numbers presented above
demonstrated the effectiveness of fusing lists of 20 documents each. In Figure 3 we present
the effect of k (the number of documents in each retrieved list) on the p@5 performance of
BagDupMNZ and CombMNZ.
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Figure 2: Effect of α on p@5 performance. The performance of opt. run, run1 and
CombMNZ is depicted with horizontal lines for reference. Note: figures are not
to the same scale

We can see in Figure 3 that for almost all values of k the performance of BagDupMNZ
transcends that of CombMNZ. This finding also holds with respect to opt. run, except
for the trec9 case. These findings further attest to the merits of utilizing inter-document
similarities for fusion. Furthermore, small values of k, specifically k = 20 which was used
heretofore, often yield (near) optimal performance for both BagDupMNZ and CombMNZ.
Thus, we indeed see that fusing short lists, specifically, when utilizing inter-document sim-
ilarities, often leads to very effective precision-at-top-ranks performance.

4.2.5 Learning Free-Parameter Values

The performance numbers presented insofar were based on free-parameter values that yield
optimal average p@5 performance with respect to the set of queries for track. This ex-
perimental setup enabled us to study the potential performance of our approach, and to
carefully analyze the different factors that affect it.
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Figure 3: Effect of varying k, the number of documents in each fused list (run), on the p@5
performance of BagDupMNZ. The performance of opt. run, run1, and CombMNZ
is depicted for reference. Note: figures are not to the same scale.

Now, we turn to explore the question of whether effective values of the free parameters
of our methods, λ and α, generalize across queries; that is, whether such values can be
learned9. To that end, we employ a leave-one-out cross validation procedure wherein the
free parameters of a method are set for each query to values that optimize average p@5
performance over all other queries in a track. The resultant performance numbers of our
best performing methods, BagSum and BagDupMNZ, are presented in Table 9.

We can see in Table 9 that both BagSum and BagDupMNZ post better performance, in
a vast majority of the relevant comparisons (track × evaluation measure), than that of opt.
run, and that of the three runs that are fused; many of these performance improvements
are statistically significant.

9. Note that such analysis is different than that of studying the effect of free-parameter values on the
average performance that was presented above.
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trec3 trec9 trec10 trec12
p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

opt. run 76.0 72.2 60.0 53.1 63.2 58.8 54.5 48.6

run1 74.4 72.2 60.0 53.1 63.2 58.8 51.1 44.8

run2 72.8 67.6 45.8o 38.8o 54.4 50.2 52.5 48.6

run3 76.0 71.2 38.3o 34.6o 55.6 46.8o 51.5 45.2o

CombSUM 80.8ab 74.6b 52.9bc 48.5bc 71.2o

abc 61.0bc 53.7 49.2ac

BagSum 83.2o

abc 78.8om

abc
57.9bc 47.3bc 67.6m

bc
61.4bc 54.7a 49.2ac

CombMNZ 80.8ab 74.6b 55.0bc 48.8bc 71.2o

abc
61.0bc 53.9 49.2ac

BagDupMNZ 82.4ab 79.0om

abc
60.4m

bc
47.9bc 70.8bc 60.4bc 56.6m

abc
49.0ac

Table 9: Performance numbers when employing leave-one-out cross validation to set free-
parameter values. The best performance in each column is boldfaced. Statistically-
significant differences with opt. run, run1, run2, and run3, are marked with ’o’,
’a’, ’b’, and ’c’, respectively. Statistically significant differences between BagSum
and CombSUM, and between BagDupMNZ and CombMNZ, are marked with ’m’.

We next compare our methods with their special cases that do not utilize inter-document
similarities. That is, we compare BagSum with CombSUM and BagDupMNZ with
CombMNZ. With respect to p@5 — the metric for which performance was optimized in
the learning phase — our methods outperform their special cases for all tracks, except for
that of trec10; some of these improvements are also statistically significant (e.g., refer to
BagDupMNZ versus CombMNZ on trec9 and trec12). Furthermore, we note that most
cases in which CombSUM and CombMNZ outperform our methods are for p@10. We
attribute this finding to the metric divergence issue (Azzopardi et al., 2003; Morgan et al.,
2004; Metzler & Croft, 2005) — optimizing performance in the learning phase with respect
to one metric (p@5 in our case), and testing the performance with respect to another
metric (p@10 in our case), albeit somewhat connected. Recall that while our methods
incorporate two free parameters, the CombSUM and CombMNZ methods do not incorporate
free parameters. Additional examination of Table 9 reveals that our methods post more
statistically significant improvements over the runs to be fused and opt. run than CombSUM
and CombMNZ do.

All in all, these results demonstrate the effectiveness of our methods when employing
cross validation so as to set free-parameter values.

4.2.6 Fusing Randomly Selected Runs

Heretofore, the evaluation of our approach was based on fusing the most (MAP) effective
runs in a track. We now turn to study the effectiveness of our best performing fusion
methods when fusing randomly selected runs.

We select 20 random triplets of runs from each track. The best performing run among
the three is denoted run1, the second best is denoted run2, and the worst among the three
is denoted run3. We then fuse the three runs using either the standard fusion methods,
CombSUM and CombMNZ, or our methods that generalize these, namely, BagSum and
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trec3 trec9 trec10 trec12
p@5 p@10 p@5 p@10 p@5 p@10 p@5 p@10

run1 68.9 57.4 22.1 19.6 32.7 28.5 46.0 39.9
run2 57.4 55.4 16.2 14.7 28.5 24.9 39.9 34.4
run3 42.3 41.4 10.9 10.2 18.3 16.0 27.4 23.2

CombSUM 65.6bc 61.3abc 19.6abc 17.6abc 32.4bc 28.3bc 44.4abc 37.7abc

BagSum 76.1m

bc
70.4m

abc
22.0m

abc
18.2m

abc
36.6m

abc
30.5m

abc
47.8bc 40.6m

bc

CombMNZ 65.7bc 61.3abc 20.0abc 17.5abc 33.6bc 28.7bc 44.4abc 37.7abc

BagDupMNZ 75.7m

bc
70.1m

bc 21.3m

abc
18.0m

abc
36.5m

abc
30.2m

abc
46.6bc 40.4bc

Table 10: Fusing randomly selected runs. The performance numbers represent averages
over 20 random samples of triplets of runs. The best performance in a column
is boldfaced. Statistically significant differences of a fusion method with run1,
run2, and run3, are marked with ’a’, ’b’, and ’c’, respectively. Statistically sig-
nificant differences between BagSum and CombSUM, and between BagDupMNZ
and CombMNZ, are marked with ’m’.

BagDupMNZ, respectively. The performance numbers presented in Table 10 represent
averages over the 20 samples.10 The free parameters of BagSum and BagDupMNZ were
set to values optimizing average p@5 performance over queries for a track per each triplet
of runs. (The optimization procedure described in Section 4.1 was used.) Statistically
significant differences between two methods are determined based on the average (over 20
samples) performance per each query.

Our first observation based on Table 10 is that our methods are highly effective in fusing
randomly selected runs. In almost all reference comparisons (track × evaluation measure),
they outperform each of the three fused runs; most of these improvements are substantial
and statistically significant. The only exception is for run1 for trec9, which outperforms all
fusion methods.

We can also see in Table 10 that BagSum is slightly more effective than BagDupMNZ.
However, when fusing the best-performing runs in a track, as was the case above, the
picture was somewhat reversed. We attribute this finding to the relatively low overlap of
relevant documents in the randomly selected runs. Specifically, we show below that this
overlap is much smaller than that for the best-performing runs. Thus, the use of information
regarding multiple appearances in lists, which is quite emphasized by BagDupMNZ, is not
of significant merit. Note that this also holds for the standard fusion methods. That is, the
superiority of CombMNZ to CombSUM — the former emphasizes appearances in multiple
lists more than the latter — is less substantial than that for fusing the best performing
runs.

Perhaps the most important observation that we can make based on Table 10 is that
our methods are always more effective than the standard fusion approaches, which con-
stitute their special cases; that is, compare BagSum with CombSUM and BagDupMNZ

10. We note that the drop in performance when moving from run1 to run2 and run3 is the highest for trec9.
This is because many runs in trec9 are of very low quality and contain very few relevant documents if
any (Meister et al., 2010).
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trec3 trec9
Rel Non-Rel Rel Non-Rel

1 2 3 1 2 3 1 2 3 1 2 3
Best runs 59.2 24.6 16.2 81.1 14.5 4.3 61.4 25.3 13.3 79.4 14.0 6.6
Random runs 66.9 25.3 7.7 84.9 12.9 2.2 78.6 24.4 6.3 78.6 17.8 3.6

trec10 trec12
Rel Non-Rel Rel Non-Rel

1 2 3 1 2 3 1 2 3 1 2 3
Best runs 56.9 26.6 16.5 77.4 16.0 6.6 32.6 24.6 42.8 51.9 23.3 24.8
Random runs 66.6 22.8 10.6 79.6 14.9 5.5 48.5 27.8 23.6 68.0 20.0 12.4

Table 11: The percentage of (non-) relevant documents (of those that appear in at least
one of the three runs to be fused) that appear in one (1), two (2) , or all three (3)
runs. The number of documents, k, considered for each run is 20. The three runs
are either the best (MAP) performing in the track, or randomly selected; in the
latter case, percentages represent averages over 20 random samples. Percentages
may not sum to 100 due to rounding.

with CombMNZ. Many of the performance differences are also statistically significant. Fur-
thermore, in most relevant comparisons, CombSUM and CombMNZ are outperformed by
run1 — the best performing run among the three fused — while the reverse holds for our
methods. Thus, these results support the merits of utilizing inter-document similarities for
fusion.

4.2.7 Analysis of (non-) Relevant Documents Overlap in the Lists

The results just presented show that using inter-document-similarities is highly effective
when fusing randomly selected runs. In fact, the relative performance improvements over
the standard fusion methods that do not utilize inter-document similarities are larger than
those observed above when fusing the best-performing runs. Furthermore, the findings
presented above attested to the relative limited merit of heavily emphasizing information
regarding multiple appearances of documents in the randomly selected runs with respect
to the case with the best-performing runs. Hence, we turn to analyze the relevant and
non-relevant document overlap between runs when using randomly-selected runs and when
using the best-performing runs.

In Table 11 we present the percentage of (non-) relevant documents, of those appearing
in at least one of the three runs to be fused, that appear in one, two, or all three runs. We
use the top-20 documents from each run as above. We present percentages for the three
best-performing runs in a track and for three randomly selected runs; in the latter case, we
report averages over 20 samples of triplets of runs. In all cases, percentages are averages
over all queries in a track.

Our first observation based on Table 11 is that for most tracks, a majority of the relevant
documents appears in only one of the three runs. This finding supports the motivation
for our approach; that is, using inter-document similarities so as to transfer relevance-
status support between different (similar) relevant documents across the lists. We can also
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see that the same finding holds for non-relevant documents — a majority of non-relevant
documents appears in only one of the three fused runs. We note that previous reports,
supporting to a certain extent the cluster hypothesis, have already shown that a majority
of the nearest neighbors of a relevant document in the similarity space tend to be relevant;
while, those of a non-relevant document tend to be both relevant and non-relevant (Kurland,
2006). This study was performed upon documents retrieved in response to a query as is the
case here. Hence, while relevant documents tend to maintain most prestige-status support
within the set of relevant documents, non-relevant documents tend to spread this support
among relevant and non-relevant documents. Furthermore, the percentage of non-relevant
documents that appears in exactly one run is larger than that for relevant documents.
This finding echoes those used to explain the effectiveness of standard fusion methods that
emphasize appearance in many lists — i.e., that the overlap between relevant documents in
the lists is higher than that for non-relevant documents (Lee, 1997).

We can also see in Table 11 that the percentage of relevant documents that appear in
only one run is much larger when using randomly selected runs than when using the best-
performing runs. In other words, the relevant-document overlap across lists in the best-
performing-runs case is higher than that in the randomly-selected runs case. This finding
helps to explain the observations made above: (i) the relative performance gains posted
by our methods with respect to the standard fusion approaches, which do not utilize inter-
document similarities, are larger for randomly selected runs than for the best performing
runs, and (ii) heavily emphasizing document appearances in multiple runs is not as effective
in the random-runs case as it is in the best-runs case.

To further explore the findings just stated, we present in Figure 4 the percentage of
relevant documents that appear in only one of the three runs as a function of the number of
documents (k) in each run. It is evident in Figure 4 that for the best-performing runs case
the percentages are lower than for the randomly-selected runs case, for most values of k.
This finding further supports the conclusion above with regard to the relative effectiveness
of our approach with the best-performing runs versus randomly-selected runs. Furthermore,
for most tracks, and for most values of k, at least 40% of the relevant documents in the
runs to be fused appear in only one of the three runs. This finding further demonstrates
the mismatch between relevant-document sets in the runs — a scenario motivating the
development of our fusion approach.

5. Conclusion and Future Work

We presented a novel approach to fusing document lists that were retrieved in response to
a query. Our approach lets similar documents across (and within) lists provide relevance
status support to each other. We use a graph-based method to model the propagation of
relevance status between documents in the lists. The propagation is governed by inter-
document-similarities and by the retrieval scores of documents in the lists.

Empirical evaluation demonstrated the effectiveness of our approach. We showed that
our methods are highly effective in fusing TREC runs. This finding holds whether the runs
are the most effective per TREC’s track (challenge), or randomly selected from the track.
We also showed that the performance of our methods transcends that of effective standard
fusion methods that utilize only retrieval scores or ranks of documents.
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Figure 4: The percentage of relevant documents (of those that appear in at least one of the
three runs to be fused) that appear in only one of the runs as a function of the
number of documents in a run (k). The runs are either the best-performing in a
track, or randomly selected; in the latter case, numbers represent averages over
20 random samples.

One family of our proposed methods, namely, the set-based family, can incorporate
any fusion method that relies on retrieval scores/ranks. More specifically, we showed that
if inter-document-similarities are not utilized, then these set-based methods reduce to the
standard fusion method that they incorporate. We have used the CombSUM and CombMNZ
fusion methods as examples for instantiating set-based fusion approaches. Naturally then,
utilizing additional fusion methods that rely on retrieval scores/ranks is a future venue we
intend to explore.

Another venue we intend to explore is the effect of our approach on the diversity of
results in the final result list (Carbonell & Goldstein, 1998); and, exploring ways to adapt
our methods so as to improve aspect coverage in the result list (Zhai, Cohen, & Lafferty,
2003).
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Appendix A

Proposition 1. Let f be some fusion method that is based on retrieval scores/ranks, e.g.,
CombSUM or CombMNZ; f(d) is the score assigned by f to document d that appears in
at least one of the lists to be fused. Suppose we use f(d) as the query-similarity estimate

of d in the set-based group of methods, that is, ŝim(d, q)
def
= f(d). Then, using wt[1] (i.e.,

setting λ = 1 in Equation 1) results in the final retrieval score of d in Table 1 (Score(d))
being rank-equivalent to f(d).

Proof. Each node v in the graph corresponds to a different document d, and has |V | incoming

edges the weight of each is
dsim(d,q)

P

v′∈V
dsim(v′,q)

; ŝim(d, q) is f(d). Hence, this weight is the unique

solution to Equation 2, which serves as d’s final retrieval score, and is rank-equivalent to
f(d).

Proposition 2. Using wt[1] in the BagSum algorithm amounts to the CombSUM algorithm.

Proof. A node v in the graph corresponds to a document-instance L
j
i of some document d;

and, has |V | incoming edges, the weight of each is
S(Lj

i )
P

v′∈V
dsim(v′,q)

. This weight is, therefore,

the prestige score P(Lj
i ; G

[λ]) of v as computed in Equation 2 . By definition, the final

retrieval score of d is
∑

i,j:Lj
i≡d

P(Lj
i ; G

[λ]). This score is (following the definitions and the

above)
∑

Li:d∈Li

SLi
(d)

P

v′∈V
dsim(v′,q)

, which is rank-equivalent to PCombSUM(d).

Proposition 3. Using wt[1] in the BagDupMNZ algorithm amounts to the CombMNZ al-
gorithm.

Proof. Let L
j
i be a document-instance of document d. Following the definitions and Propo-

sition 2, the prestige value of a single copy of L
j
i from the newly defined list is

SLi
(d)

P

v′∈V
dsim(v′,q)

.

There are n = #{Li : d ∈ Li} such copies in the new list. Therefore, by definition, the final

retrieval score of d is n
∑

Li:d∈Li

SLi
(d)

P

v′∈V
dsim(v′,q)

, which is rank equivalent to PCombMNZ(d).
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