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Abstract
Some of the applications of OWL and RDF (e.g. biomedical knowledge representation and

semantic policy formulation) call for extensions of these languages with nonmonotonic constructs
such as inheritance with overriding. Nonmonotonic description logics have been studied for many
years, however no practical such knowledge representation languages exist, due to a combination of
semantic difficulties and high computational complexity. Independently, low-complexity descrip-
tion logics such as DL-lite and EL have been introduced and incorporated in the OWL standard.
Therefore, it is interesting to see whether the syntactic restrictions characterizing DL-lite and EL
bring computational benefits to their nonmonotonic versions, too. In this paper we extensively in-
vestigate the computational complexity of Circumscription when knowledge bases are formulated
in DL-liteR, EL, and fragments thereof. We identify fragments whose complexity ranges from P
to the second level of the polynomial hierarchy, as well as fragments whose complexity raises to
PSPACE and beyond.

1. Introduction

The ontologies at the core of the semantic web — as well as ontology languages such as RDF, OWL,
and related Description Logics (DLs) — are founded on fragments of first-order logic and inherit
strengths and weaknesses of this well-established formalism. Limitations include monotonicity, and
the consequent inability to design knowledge bases (KBs) by describing prototypes whose general
properties can be later refined with suitable exceptions. This natural, iterative approach is com-
monly used by biologists and calls for an extension of DLs with defeasible inheritance with overrid-
ing (a mechanism normally supported by object-oriented languages). Some workarounds have been
devised for particular cases; however, no general solutions are currently available (Rector, 2004;
Stevens, Aranguren, Wolstencroft, Sattler, Drummond, Horridge, & Rector, 2007). Another moti-
vation for nonmonotonic DLs stems from the recent development of policy languages based on DLs
(Uszok, Bradshaw, Jeffers, Suri, Hayes, Breedy, Bunch, Johnson, Kulkarni, & Lott, 2003; Finin,
Joshi, Kagal, Niu, Sandhu, Winsborough, & Thuraisingham, 2008; Zhang, Artale, Giunchiglia, &
Crispo, 2009; Kolovski, Hendler, & Parsia, 2007). DLs nicely capture role-based policies and fa-
cilitate the integration of semantic web policy enforcement with reasoning about semantic metadata
(which is typically necessary in order to check policy conditions). However, in order to formulate
standard default policies such as open and closed policies,1and support common policy language
features such as authorization inheritance with exceptions (which is meant to facilitate incremental

1. If no explicit authorization has been specified for a given access request, then an open policy permits the access while
a closed policy denies it.
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policy formulation), it is necessary to adopt a nonmonotonic semantics; Bonatti and Samarati (2003)
provide further details on the matter.

Given the increasing size of semantic web ontologies and RDF bases, the complexity of reason-
ing is an influential factor that may either foster or prevent the adoption of a knowledge representa-
tion language. Accordingly, OWL2 introduces profiles that adopt syntactic restrictions (compatible
with application requirements) in order to make reasoning tractable. Two of such profiles are based
on the following families of DLs: DL-lite (Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati,
2005), that formalizes RDFS, and EL (Baader, 2003; Baader, Brandt, & Lutz, 2005), that exten-
sively covers important biomedical ontologies such as GALEN and SNOMED. Unfortunately, in
general, nonmonotonic DL reasoning can be highly complex and reach NExpTimeNP and even 3-
ExpTime (Donini, Nardi, & Rosati, 1997, 2002; Bonatti, Lutz, & Wolter, 2009). A natural question,
in this context, is whether restrictions such as those adopted by DL-lite and EL help in reducing the
complexity of nonmonotonic DL reasoning, too.

Answering this question is the main goal of this paper. We extensively investigate the com-
plexity of reasoning in DL-lite and EL. The nonmonotonic semantics adopted is Circumscription
(McCarthy, 1980), whose main appealing properties (discriminating Circumscription from other
nonmonotonic DL semantics proposed in the literature) are summarized below:

1. Circumscription is compatible with all the interpretation domains supported by classical DLs;
there is no need for adopting a fixed domain of standard names;

2. In circumscribed DLs, nonmonotonic inferences apply to all individuals, including those that
are not denoted by any constants and are implicitly asserted by existential quantifiers;

3. Circumscription naturally supports priorities among conflicting nonmonotonic axioms and
can easily simulate specificity-based overriding.

As an attempt to simplify the usage of circumscribed DLs and simultaneously remove potential
sources of computational complexity, we do not support the usage of abnormality predicates (Mc-
Carthy, 1986) in their full generality; we rather hide them within defeasible inclusions (Bonatti,
Faella, & Sauro, 2009). Defeasible inclusions are expressions C vn D whose intuitive meaning
is: an instance of C is normally an instance of D. Such inclusions can be prioritized to resolve
conflicts. Priorities can be either explicit or automatically determined by the inclusion’s specificity,
i.e. a defeasible inclusion C1 vn D1 may override C2 vn D2 if C1 is classically subsumed by
C2. In this framework, we prove that restricting the syntax to DL-lite inclusions suffices—in almost
all cases—to reduce complexity to the second level of the polynomial hierarchy. On the contrary,
circumscribed EL is still ExpTime-hard and further restrictions are needed to confine complex-
ity within the second level of the polynomial hierarchy. Syntactic restrictions will be analyzed
in conjunction with other semantic parameters, such as the kind of priorities adopted (explicit or
specificity-based), and which predicates may or may not be affected by Circumscription (i.e., fixed
and variable predicates, in Circumscription’s jargon).

The paper is organized as follows: First, the basics of low-complexity description logics and
their extension based on circumscription are recalled in Section 2 and Section 3, respectively. Then,
some reductions that can be used to eliminate language features and work on simpler frameworks
are illustrated in Section 4. After an undecidability result caused by fixed roles (Section 5), the paper
focuses on variable roles: The complexity of circumscribed DL-liteR and EL/EL⊥ are investigated
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Name Syntax Semantics

inverse role R− (R−)
I

= {(d, e) | (e, d) ∈ RI}
nominal {a} {aI}
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

existential
restriction

∃R.C {d ∈ ∆I | ∃(d, e) ∈ RI : e ∈ CI}

top > >I = ∆I

bottom ⊥ ⊥I = ∅

Figure 1: Syntax and semantics of some DL constructs.

in Section 6 and Section 7, respectively. A section on related work and a final discussion conclude
the paper.

2. Preliminaries

In DLs, concepts are inductively defined with a set of constructors, starting with a set NC of concept
names, a set NR of role names, and (possibly) a set NI of individual names (all countably infinite).
We use the term predicates to refer to elements of NC ∪ NR. Hereafter, letters A and B will range
over NC, P will range over NR, and a, b, c will range over NI. The concepts of the DLs dealt with in
this paper are formed using the constructors shown in Figure 1. There, the inverse role constructor
is the only role constructor, whereas the remaining constructors are concept constructors. Letters
C,D will range over concepts and letters R,S over (possibly inverse) roles.

The semantics of the above concepts is defined in terms of interpretations I = (∆I , ·I). The
domain ∆I is a non-empty set of individuals and the interpretation function ·I maps each concept
name A ∈ NC to a set AI ⊆ ∆I , each role name P ∈ NR to a binary relation P I on ∆I , and each
individual name a ∈ NI to an individual aI ∈ ∆I . The extension of ·I to inverse roles and arbitrary
concepts is inductively defined as shown in the third column of Figure 1. An interpretation I is
called a model of a concept C if CI 6= ∅. If I is a model of C, we also say that C is satisfied by I.

A (strong) knowledge base is a finite set of (i) concept inclusions (CIs) C v D where C and
D are concepts, (ii) concept assertions A(a) and role assertions P (a, b), where a, b are individual
names, P ∈ NR, andA ∈ NC, (iii) role inclusions (RIs)R v R′. An interpretation I satisfies (i) a CI
C v D if CI ⊆ DI , (ii) an assertion C(a) if aI ∈ CI , (iii) an assertion P (a, b) if (aI , bI) ∈ P I ,
and (iv) a RI R v R′ iff RI ⊆ R′I . Then, I is a model of a strong knowledge base S iff I satisfies
all the elements of S. We write C vS D iff for all models I of S , I satisfies C v D.

Terminologies are particular strong knowledge bases consisting of definitions, i.e. axioms such
as A ≡ C, that abbreviate the inclusions A v C and C v A. If a terminology T contains the above
definition, then we say that A is defined in T and that C is the definition of A. Each A defined in
T must have a unique definition. A concept name A directly depends on B (in T ) if B occurs in
A’s definition; moreover, A depends on B (in T ) if there is a chain of such direct dependencies
leading from A to B. A terminology T is acyclic if no A depends on itself in T . Terminologies
are conservative extensions, and the concept names defined in an acyclic terminology T can be
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eliminated by unfolding them w.r.t. T , that is, by exhaustively replacing the concepts defined in T
with their definition. For all expressions (i.e., concepts or inclusions) E, we denote with unf(E, T )
the unfolding of E w.r.t. T .

The logic DL-liteR (Calvanese et al., 2005) restricts concept inclusions to expressions CL v
CR, where

CL ::= A | ∃R R ::= P | P− CR ::= CL | ¬CL

(as usual, ∃R abbreviates ∃R.>).
The logic EL (Baader, 2003; Baader et al., 2005) restricts knowledge bases to assertions and

concept inclusions built from the following constructs:

C ::= A | > | C1 u C2 | ∃P.C

(note that inverse roles are not supported). The extension of EL with ⊥, role hierarchies, and
nominals (respectively) are denoted by EL⊥, ELH, and ELO. Combinations are allowed: for
example ELHO denotes the extension of EL supporting role hierarchies and nominals. Finally,
EL¬A denotes the extension where negation can be applied to concept names.

3. Defeasible Knowledge

A general defeasible inclusion (GDI) is an expression C vn D whose intended meaning is: C’s
elements are normally in D.

Example 3.1 (Bonatti et al., 2009) The sentences: “in humans, the heart is usually located on the
left-hand side of the body; in humans with situs inversus, the heart is located on the right-hand side
of the body” (Rector, 2004; Stevens et al., 2007) can be formalized with the EL⊥ axioms and GDIs:

Human vn ∃has heart.∃has position.Left ;

Situs Inversus v ∃has heart.∃has position.Right ;

∃has heart.∃has position.Left u
∃has heart.∃has position.Right v ⊥ .

2

A defeasible knowledge base (DKB) in a logicDL is a pair 〈K,≺〉, where K = KS∪KD, KS is
a strong DL KB, KD is a set of GDIs C vn D such that C v D is a DL inclusion, and ≺ is a strict
partial order (a priority relation) overKD. In the following, byC v[n] D we denote an inclusion that
is either classical or defeasible. Moreover, for a DKB KB = 〈K ∪ T ,≺〉, where T is a (classical)
acyclic terminology, we denote by unf(KB) = 〈K′,≺′〉 the DKB where K′ is the unfolding of all
inclusions in K w.r.t. T , and, for all DIs δ, δ′ in K, the relation unf(δ, T ) ≺′ unf(δ′, T ) holds if and
only if δ ≺ δ′.

As priority relation we shall often adopt the specificity relation ≺K which is determined by
classically valid inclusions. Formally, for all GDIs δ1 = (C1 vn D1) and δ2 = (C2 vn D2), let

δ1 ≺K δ2 iff C1 vKS
C2 and C2 6vKS

C1 .
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Example 3.2 The access control policy: “Normally users cannot read project files; staff can read
project files; blacklisted staff is not granted any access” can be encoded with:

Staff v User

Blacklisted v Staff

UserRequest v ∃subj.User u ∃target.Proj u ∃op.Read
StaffRequest v ∃subj.Staff u ∃target.Proj u ∃op.Read
UserRequest vn ∃decision.{Deny}
StaffRequest vn ∃decision.{Grant}
∃subj.Blacklisted v ∃decision.{Deny}
∃decision.{Grant} u ∃decision.{Deny} v ⊥ .

Staff members cannot simultaneously satisfy the two defeasible inclusions (due to the last inclusion
above). With specificity, the second defeasible inclusion overrides the first one and yields the intu-
itive inference that non-blacklisted staff members are indeed allowed to access project files. More
formally, the subsumption

∃subj.(Staff u ¬Blacklisted) u ∃target.Proj u ∃op.Read v ∃decision.{Grant}

holds in all the models of the above knowledge base (as defined below). 2

Intuitively, a model of 〈K,≺〉 is a model of KS that maximizes the set of individuals satisfying
the defeasible inclusions in KD, resolving conflicts by means of the priority relation ≺ whenever
possible. In formalizing the notion of model, one should specify how to deal with the predicates
occurring in the knowledge base: is their extension allowed to vary in order to satisfy defeasible
inclusions? A discussion of the effects of letting predicates vary vs. fixing their extension can be
found in the work of Bonatti, Lutz and Wolter (2006); they conclude that the appropriate choice is
application dependent. So, in general, the set of predicates NC∪NR can be arbitrarily partitioned into
two sets F and V containing fixed and varying predicates, respectively; we denote this semantics
by Circ∗F .

However, in Section 5 it is shown that fixed roles cause undecidability issues, so most of our
results concern a specialized framework in which all role names are varying predicates, that is,
F ⊆ NC. We use the notation CircF (rather than Circ∗F ) to indicate that F ⊆ NC.

The set F , the GDIs KD, and the priority relation ≺ induce a strict partial order over interpreta-
tions. As we move down the ordering we find interpretations that are more and more normal w.r.t.
KD. For all δ = (C vn D) and all interpretations I let the set of individuals satisfying δ be:

satI(δ) = {x ∈ ∆I | x 6∈ CI or x ∈ DI} .

Definition 3.3 Let KB = 〈K,≺〉 be a DKB. For all interpretations I and J , and all F ⊆ NC ∪NR,
let I <KB,F J iff:

1. ∆I = ∆J ;

2. aI = aJ , for all a ∈ NI;

3. AI = AJ , for all A ∈ F ∩ NC, and P I = PJ , for all P ∈ F ∩ NR;
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4. for all δ ∈ KD, if satI(δ) 6⊇ satJ (δ) then there exists δ′ ∈ KD such that δ′ ≺ δ and
satI(δ

′) ⊃ satJ (δ′) ;

5. there exists a δ ∈ KD such that satI(δ) ⊃ satJ (δ).

The subscript KB will be omitted when clear from context. Now a model of a DKB can be defined
as a maximally preferred model of its strong (i.e. classical) part.

Definition 3.4 Let KB = 〈K,≺〉 and F ⊆ NC ∪ NR. An interpretation I is a model of Circ∗F (KB)
iff I is a (classical) model of KS and for all models J of KS, J 6<F I.

Remark 3.5 This semantics is a special case of the circumscribed DLs introduced by Bonatti et
al. (2006). The correspondence can be seen by (i) introducing for each GDI C vn D a fresh atomic
conceptAb, playing the role of an abnormality predicate; (ii) replacingC vn D withCu¬Ab v D;
(iii) minimizing all the predicates Ab introduced above.

In order to enhance readability, we will use the following notation for the special cases in which
all concept names are varying and the case in which they are all fixed: <var and Circvar stand for
<∅ and Circ∅, respectively; <fix and Circfix stand respectively for <NC

and CircNC
. For a DKB

KB = 〈KS∪KD,≺〉, we say that an interpretation I is a classical model ofKB in case I is a model
of KS.

In this paper, we consider the following standard reasoning tasks over defeasible DLs:

Knowledge base consistency Given a DKB KB, decide whether Circ∗F (KB) has a model.

Concept consistency Given a concept C and a DKB KB, check whether C is satisfiable w.r.t. KB,
that is, whether a model I of Circ∗F (KB) exists such that CI 6= ∅.

Subsumption Given two concepts C, D and a DKB KB, check whether Circ∗F (KB) |= C v D,
that is, whether for all models I of Circ∗F (KB), CI ⊆ DI .

Instance checking Given a ∈ NI, a concept C, and a DKB KB, check whether Circ∗F (KB) |=
C(a), that is, whether for all models I of Circ∗F (KB), aI ∈ CI .

The following example illustrates most of the above tasks as well as the main difference between
Circvar and Circfix.

Example 3.6 Consider the following simplification of Example 3.2:

User vn ¬∃decision.{Grant}
Staff v User

Staff vn ∃decision.{Grant}
BlacklistedStaff v Staff u ¬∃decision.{Grant} .

Extend the knowledge base with the assertion Staff(John), and let the priority relation be≺K (i.e.,
priorities are determined by specificity). Denote the resulting knowledge base with KB. Due to the
inclusion Staff v User, the GDI for Staff (third line) has higher priority than the GDI for User
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(first line). Therefore, in all models I of Circvar(KB), John belongs to ∃decision.{Grant} and
hence the following entailments hold:

Circvar(KB) |= {John} v ∃decision.{Grant} (subsumption) (1)

Circvar(KB) |= ∃decision.{Grant}(John) (instance checking) (2)

Interestingly, John does not belong to BlacklistedStaff, because this is the only way of satisfy-
ing the top-priority GDI for Staff. Analogously, in all models I of Circvar(KB), John is the only
member of Staff because this setting maximizes the number of individuals satisfying both GDIs
(as all the individuals in ¬Staff vacuously satisfy the GDI for Staff for all values of decision).
More generally, as a side effect of the maximization of all satI(δ), Circvar induces a sort of closed-
world assumption over all concepts with exceptional properties (w.r.t. some larger concept). Conse-
quently, BlacklistedStaff is not satisfiable w.r.t. KB, and the following subsumption holds:

Circvar(KB) |= Staff v {John} . (3)

On the contrary, under Circfix, User and Staff may contain any number of individuals (other than
zero) because Circfix is not allowed to change the extension of any atomic concept, even if this
would satisfy more GDIs. Similarly, there exist models of Circfix(KB) where John does not belong
to ∃decision.{Grant} because John belongs to BlacklistedStaff and Circfix does not allow
to change its extension to satisfy more GDIs. As a consequence, it can be easily verified that
BlacklistedStaff is satisfiable w.r.t. Circfix(KB), and that (1), (2), and (3) do not hold if Circvar

is replaced by Circfix. We only have inferences such as:

Circfix(KB) |= User u ¬Staff v ¬∃decision.{Grant} , (4)

Circfix(KB) |= Staff u ¬BlacklistedStaff v ∃decision.{Grant} . (5)

2

Note that in Circvar one can obtain nominals (cf. Staff in (3)) without using nominals explicitly in
the knowledge base. If other axioms do not interfere, then an assertion A(a) and a GDI A vn ⊥
suffice to make A a singleton. This idea will be used in some reductions later on.

The next example deals with multiple inheritance, and in particular with parent concepts with
conflicting properties.

Example 3.7 Let KB consist of the axioms:

Whale v Mammal u SeaAnimal
Mammal vn ∃has organ.Lungs

SeaAnimal vn ∃has organ.Gills

∃has organ.Lungs u ∃has organ.Gills v ⊥ ,

where the priority relation is specificity. Note that mammals and sea animals have conflicting default
properties. In all models of Circvar(KB) Whale is empty, because this is the only way of having
both GDIs satisfied by all individuals. Now let KB′ = KB ∪ {Whale(Moby)}. In each model of
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Circvar(KB′), Moby satisfies as many GDIs as possible, that is, exactly one of the two GDIs of KB′.
As a consequence, we have the reasonable inference:2

Circvar(KB′) |= {Moby} v ∃has organ.Lungs t ∃has organ.Gills .

The conflict between the two default properties inherited by Moby can be settled by adding a simple
axiom like Whale v ∃has organ.Lungs, that overrides the property of sea animals. In this specific
example a strong axiom is appropriate; note, however, that the corresponding GDI would have the
same effect under ≺K ; for instance, we have:

Circvar(KB′ ∪ {Whale vn ∃has organ.Lungs}) |= {Moby} v ∃has organ.Lungs .

Consider Circfix now. The expected subsumptions Mammal v ∃has organ.Lungs and SeaAnimal v
∃has organ.Gills are not entailed by Circfix(KB), because Lungs and Gills are empty in some
models (as Circfix cannot change their extension to satisfy more GDIs). The two GDIs could be
enabled by forcing Lungs and Gills to be nonempty. This can be done in several ways, e.g. via
assertions such as Lungs(L) or inclusions such as > v ∃aux.Lungs (where aux is a new auxiliary
role). Let KB′′ denote such an extension. Then

Circfix(KB′′) |= {Moby} v ∃has organ.Lungs t ∃has organ.Gills ,

(similarly, the aforementioned expected consequences are entailed by Circfix(KB′′)). The conflict
between the properties inherited from Mammal and SeaAnimal can be settled as discussed above.

2

The impossibility of forcing existentials with GDIs in Circfix, illustrated by the above example, can
be exploited to check whether a concept is always nonempty. It suffices to introduce a fresh role
aux (in order to prevent interference with the other axioms of the knowledge base) and a GDI
> vn ∃aux.C. Clearly, the subsumption > v ∃aux.C is entailed iff C is nonempty in all models
of Circfix(KB). Similar ideas will be used in the rest of the paper.

The next example is artificial. It is a convenient way of illustrating the interplay of specificity
and multiple inheritance.

Example 3.8 Let KB be the following set of axioms:

A1 v A′1 (6)

A2 v A′2 (7)

B v A1 uA2 (8)

∃R1 u ∃R′1 v ⊥ (9)

∃R2 u ∃R′2 v ⊥ (10)

∃R1 u ∃R2 v ⊥ (11)

A1 vn ∃R1 (12)

A2 vn ∃R2 (13)

A′1 vn ∃R′1 (14)

A′2 vn ∃R′2 (15)

For all sets of concept names F , and for all models I of CircF (KB), each member x of BI (if any)
satisfies exactly one of the top priority GDIs (12) and (13), that are conflicting due to (11). If x does

2. The symbol t is description logics’ equivalent of disjunction. Formally, (C tD)I = CI ∪DI .
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not satisfy (12) then it can satisfy the conflicting GDI (14); symmetrically, if x does not satisfy (13)
then x can satisfy (15). Consequently, we have:

Circfix(KB) |= B v (∃R1 u ∃R′2) t (∃R2 u ∃R′1).

2

The last two examples show that GDIs and disjointness constraints together can express disjoint
unions. Similar techniques will be used later on to simulate the law of excluded middle, negation,
and 3-valued logic.

Subsumption, instance checking, and the complement of concept satisfiability can be reduced
to each other, as in the classical setting:

Theorem 3.9 Let DL range over DL-liteR and EL⊥; let X = var, fix, F . In CircX(DL), sub-
sumption, instance checking, and concept unsatisfiability can be reduced to each other in constant
time.

The proof is not completely standard, due to the limited expressiveness of DL-liteR and EL⊥, as
well as the peculiarities of nonmonotonic reasoning.3

Proof. First we focus on Circvar and CircF , where F consists of concept names occurring in a given
KB.

From unsatisfiability to subsumption. Checking unsatisfiability of a concept C can be reduced
to checking the subsumptionC v ⊥. DL-liteR does not support⊥ explicitly, however an equivalent
concept A⊥ can be easily defined with the inclusion A⊥ v ¬A⊥.

From subsumption to unsatisfiability. Conversely, a subsumption C v D can be reduced to the
unsatisfiability of C u ¬D. In DL-liteR conjunction is not supported, so the subsumption must be
reduced to the unsatisfiability of a fresh variable conceptA axiomatized byA v C andA v ¬D. In
EL⊥ conjunction is supported while negation is not; therefore the given subsumption can be reduced
to the unsatisfiability of C u D̄ where D̄ is a fresh variable concept axiomatized with D̄ uD v ⊥.

From instance checking to subsumption. An instance checking query C(a) can be reduced to
subsumption as follows: Introduce a fresh variable concept A and assert A(a); then minimize A
with A vn ⊥; now in all models I of Circvar, AI = {aI}. It follows that C(a) holds iff the
subsumption A v C holds.

From unsatisfiability to instance checking. Finally, the unsatisfiability of a concept C is equiv-
alent to the validity of the instance checking problem ¬C(a), where a is a fresh individual con-
stant. In EL⊥, ¬C must be suitably axiomatized with a fresh concept name C̄ and the inclusions
C̄ uC v ⊥,> vn C, and> vn C̄ (these three axioms entail the subsumption> v C t C̄, thereby
enforcing the law of the excluded middle). In order to preserve the semantics of the knowledge
base, > vn C and > vn C̄ must be given a priority strictly smaller than the priority of all the other
defeasible inclusion in the KB. This ensures that the new GDIs cannot block the application of any
of the original GDIs. Clearly, the two new GDIs must have the same priority.

3. For example, in classical logic a subsumption C v D is a logical consequence of KB iff for any fresh individual a,
D(a) is a logical consequence of KB ∪ {C(a)}. This approach is not correct for Circumscription. The models of
CircF (KB) can be quite different from the models of CircF (KB ∪ {C(a)}); for instance, consider the example in
which nonmonotonic reasoning makes Whale empty and the assertion Whale(Moby) overrides this inference.
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This completes the proof for Circvar and CircF . The proof for Circfix can be obtained by re-
placing the fresh variable concept names A, C̄, and D̄ with a corresponding (variable) concept ∃R,
where R is a fresh role. 2

Note that the above reductions still apply if priorities are specificity-based (≺K), with the exception
of the reduction of concept unsatisfiability to instance checking in EL⊥. For this case, one can use
Theorem 4.6 below to eliminate general priorities, and get a reduction for Circfix.

4. Complexity Preserving Features

In some cases, nonmonotonic inferences and language features—e.g. variable predicates and ex-
plicit priorities—do not affect complexity. In this section several such results (and related lemmata)
are collected; the reader is warned that, in general, they may not apply to all reasoning tasks and
all language fragments. We start by observing that the logics we deal with enjoy the finite model
property.

Lemma 4.1 Let KB = 〈K,≺〉 be a DKB in DL-liteR or ELHO⊥,¬. For all F ⊆ NC, CircF (KB)
has a model only if CircF (KB) has a finite model whose size is exponential in the size of KB.

Proof. A simple adaptation of a result for ALCIO (Bonatti et al., 2006), taking role hierarchies
into account. 2

As a consequence, these logics preserve classical consistency (because all descending chains of
models originating from a finite model must be finite):

Theorem 4.2 Let KB = 〈KD ∪ KS,≺〉 be a DKB in DL-liteR or ELHO⊥,¬. For all F ⊆ NC, KS

is (classically) consistent iff CircF (KB) has a model.

Remark 4.3 Obviously, a similar property holds for all circumscribed DLs with the finite model
property, including ALCIO and ALCQO.

Since knowledge base consistency is equivalent to its classical version, it will not be discussed in
this paper any further.

Next, we prove that under mild assumptions, CircF is not more expressive than Circfix (which is
a special case of the former), that is, variable concept names do not increase the expressiveness of
the logic and can be eliminated.4

Theorem 4.4 If DL is a description logic fully supporting unqualified existential restrictions
(∃ R),5 then, for allF ⊆ NC, concept consistency, subsumption, and instance checking in CircF (DL)
can be reduced in linear time to concept consistency, subsumption, and instance checking (respec-
tively) in Circfix(DL).

4. The standard techniques for eliminating variable predicates (Cadoli, Eiter, & Gottlob, 1992) use connectives that are
not fully supported in DL-liteR and EL, therefore an ad-hoc proof is needed.

5. We say that DL fully supports unqualified restrictions if they can occur wherever a concept name could.
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Proof. Let KB be any given DKB in the language DL. Introduce a new role name RA for each
(variable) concept name A 6∈ F . Then, replace each occurrence of A in KB with ∃RA and call
KB′ the resulting KB. Recall that in Circfix(DL) all concept names are fixed and all roles are vari-
able. Hence, the newly added roles RA behave in Circfix(KB′) exactly in the same way as concepts
A 6∈ F do in CircF (KB). Formally, there is a bijection between the models of CircF (KB) and the
models of Circfix(KB′), which preserves the interpretation of all role and concept names, except
that the extension of concept names A 6∈ F in a model of CircF (KB) coincides with the domain of
the corresponding role RA in the corresponding model of Circfix(KB′). As a consequence, the con-
sistency of a concept C w.r.t. CircF (KB) is equivalent to the consistency of C ′ w.r.t. Circfix(KB′),
where C ′ is obtained from C by replacing each occurrence of A 6∈ F with the corresponding ∃RA.
Similarly for subsumption and instance checking. 2

Symmetrically, the next theorem proves that in EL⊥ fixed predicates can be eliminated using general
priorities. The reduction adapts the classical encoding of fixed predicates to the limited expressive-
ness of EL⊥.

Theorem 4.5 For all F ⊆ NC, concept consistency, subsumption, and instance checking in
CircF (EL⊥) can be reduced in linear time to concept consistency, subsumption, and instance check-
ing (respectively) in Circvar(EL⊥) with general priorities.

Proof. Let K = 〈KS ∪ KD,≺〉 be a given EL⊥ DKB. Fixed predicates are removed through
the following transformation. For each concept name A ∈ F introduce a new concept name Ā
(representing ¬A). Let K∗S be the set of all disjointness axioms A u Ā v ⊥, for each A ∈ F . Let
K∗D be the set of all defeasible inclusions > vn A and > vn Ā, for each A ∈ F . Finally, let ≺′ be
the minimal extension of ≺ such that for all δ∗ ∈ K∗D and all δ ∈ KD, δ∗ ≺′ δ. Define

K′ = 〈KS ∪ K∗S ∪ KD ∪ K∗D,≺′〉 .

Claim 1. Let J and J ′ be two classical models of KS ∪ K∗S such that J ′ <K′,var J and for all
A ∈ F , ĀJ = ¬AJ . Then (i) for all δ ∈ K∗D, satJ

′
(δ) = satJ (δ) and (ii) J and J ′ agree on all

A ∈ F .
Proof of Claim 1: By definition of ≺′, the members of K∗D have maximal priority, therefore, for

all δ ∈ K∗D, satJ
′
(δ) ⊇ satJ (δ). If there existsA ∈ F such that satJ

′
(> vn A) ⊃ satJ (> vn A),

then AJ
′ ⊃ AJ , and hence ĀJ

′ ⊂ ĀJ ; consequently satJ
′
(> vn Ā) ⊂ satJ (> vn Ā) (a

contradiction). Symmetrically, the assumption that satJ
′
(> vn Ā) ⊃ satJ (> vn Ā) leads to a

contradiction. This proves (i); (ii) is a straightforward consequence of (i).
Claim 2. Every model I of CircF (K) can be extended to a model J of Circvar(K′).
To prove this claim, extend I to J by setting ĀJ = ¬AI , for all concept names A ∈ F .

Suppose that J is not a model of Circvar(K′). Since J satisfiesKS∪K∗S by construction, there must
be a J ′ that satisfies KS ∪ K∗S and such that J ′ <K′,var J . By Claim 1.(ii), J and J ′ agree on all
A ∈ F ; by Claim 1.(i), the improvement of J ′ over J concerns the GDIs in KD. It follows that
I ′ <K,F I, where I ′ is the restriction of J ′ to the language of K. This contradicts the assumption
that I is a model of CircF (K).

Claim 3. For all models J of Circvar(K′), the restriction of J to the language of K is a model
of CircF (K).

Let I be the restriction of J to the language ofK. Clearly I satisfiesKS. Now suppose that I is
not a model of CircF (K), which means that there exists I ′ satisfying KS and such that I ′ <K,F I.
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Extend I ′ to J ′ by setting ĀJ
′

= ¬AI′ , for all concept names A ∈ F . Note that I and I ′ must
agree on all A ∈ F , therefore J and J ′ agree on them, too. Consequently, for all δ ∈ K∗D,
satJ

′
(δ) = satJ (δ). Moreover, I ′ improves I over the GDIs of KD, therefore J ′ improves J over

KD, too. It follows that J ′ <K′,var J (a contradiction).
The Theorem is now a straightforward consequence of Claims 2 and 3. 2

Now consider priority relations and GDIs. We are going to prove that if the language fragment is
sufficiently rich, then they can be simulated with the specificity-based relation ≺K and normalized
defeasible inclusions A vn C (whose left-hand side is a concept name), respectively.

Let KB = 〈K,≺〉 be any given DKB in EL⊥. First we need to define a new fixed concept Dom
that encodes the domain without being equivalent to >. This requires the following transformation:

A∗ = Dom uA (∃R.C)∗ = Dom u ∃R.(C∗)
>∗ = Dom (C uD)∗ = C∗ uD∗

⊥∗ = ⊥ (C v[n] D)∗ = C∗ v[n] D
∗

Obtain K∗ from K by transforming all inclusions in K and by adding a nonemptiness axiom > v
∃aux .Dom (aux a fresh role) plus an assertion Dom(a) for each a ∈ NI occurring in K. It is not
hard to see that the restrictions to Dom of the classical models of K∗ correspond to the classical
models of K. More precisely, let I∗ be a classical model of K∗, we obtain a classical model I of
K by setting AI = AI

∗ ∩ DomI
∗

and RI = RI
∗ ∩ (DomI

∗ × DomI
∗
), for each concept name

A and role name R occurring in K. Notice that it is necessary for DomI
∗

to be non-empty for
this to work. Conversely, given a classical model I of K, it is sufficient to set DomI = ∆I and
auxI = ∆I ×∆I to make I a classical model of K∗.

Now we have to remove general priorities and GDIs. For all GDIs δ = (C vn D) ∈ K∗, add
two fresh predicates Aδ, Pδ and replace δ with the following axiom schemata:

Dom v Aδ Aδ′ v Aδ for all δ′ ≺ δ (16)

Aδ vn ∃Pδ ∃Pδ u C v D (17)

Call the new DKB KB′ = 〈K′,≺K′〉. By (16), the specificity-based relation≺K′ prioritizes the new
GDIs according to the original priorities. Moreover, by (17), a defeasible inclusion Aδ vn ∃Pδ
is satisfied by an individual if and only if the same individual satisfies the corresponding GDI δ.
Then it is not difficult to verify that all the reasoning tasks such that none of the new predicates Aδ
and Pδ occur in the query yield the same answer in 〈K∗,≺∗〉 and KB′. As a consequence of the
above discussion, by combining the transformation ·∗ with (16) and (17), and by observing that the
reduction makes use of EL⊥ constructs only, we have:

Theorem 4.6 Reasoning in Circfix(EL⊥) with explicit priorities and GDIs can be reduced in poly-
nomial time to reasoning in Circfix(EL⊥) with only specificity-based priority and defeasible inclu-
sions of the form A vn ∃P .

Finally, by Theorem 4.4, the above result can be extended to all of CircF :

Corollary 4.7 Reasoning in CircF (EL⊥) with explicit priorities and GDIs can be reduced in poly-
nomial time to reasoning in Circfix(EL⊥) with only specificity-based priority and defeasible inclu-
sions of the form A vn ∃P .
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5. Undecidability of EL with Fixed Roles

In Circ∗ both concept names and roles can be fixed; however, as we show in this section, fixed roles
in general make reasoning tasks undecidable. To this end, the model conservative extension problem
defined by Lutz and Wolter (2010) is reduced to the subsumption problem.6

Some preliminary definitions are needed; given a signature Σ ⊆ NC ∪NR and two interpreta-
tions I and J , we say that I and J coincide on Σ if and only if ∆I = ∆J and for all predicates
X ∈ Σ, XI = XJ . Then, let T1 ⊆ T2 be classical EL TBoxes, T2 is a model conservative exten-
sion of T1 if and only if for every model I of T1, there exists a model J of T2 such that I and J
coincide on the signature of T1.

Lutz and Wolter (2010) prove (see Lemma 40) that there exists a class C of EL TBoxes such that
the problem of checking whether a TBox in C is a model conservative extension of another TBox in
C is undecidable. Moreover, the following property holds.

Lemma 5.1 Given two TBoxes T1 ⊆ T2 in C, if T2 is not a model conservative extension of T1

then there exists a model I of T1 and an interpretation J of T2 such that I and J coincide on the
signature of T1 and the set of individuals in J that violate at least one concept inclusion from T2 is
finite.

For a DKB KB = 〈KS ∪ KD,≺〉 and an interpretation I of KB, we denote by abKB(I) (for
abnormal) the total number of individuals x ∈ ∆I such that x 6∈ satI(δ) for some δ ∈ KD.

Lemma 5.2 Let KB = 〈KS ∪ KD, ∅〉 be a DKB and I be a classical model of KB s.t. abKB(I)
is finite. For all F ⊆ NC ∪ NR, either I is a model of CircF (KB) or there exists a model J of
CircF (KB) such that J <KB,F I.

Proof. It suffices to show that each <KB,F -chain descending from I is finite. Since DIs are incom-
parable with each other, each step in the <KB,F -chain must improve at least one DI and leave all
other DIs unchanged. Formally, if I ′ <KB,F I then there exists at least a DI δ ∈ KD such that
satI(δ) ⊂ satI′(δ) and for all δ′ ∈ KD it holds satI(δ

′) ⊆ satI′(δ
′). Hence, abKB(I ′) < abKB(I)

and the thesis follows. 2

Assume that T1, T2 ∈ C are given, where T1 ⊆ T2, and let Σ be the signature of T1. Let F = Σ
and KB = 〈K, ∅〉 where K = T1 ∪ {C vn D | C v D ∈ T2 \ T1}.

Lemma 5.3 For all T1, T2 ∈ C, T2 is a model conservative extension of T1 iff Circ∗F (KB) |= C v
D, for all C v D ∈ T2.

Proof. [if ] Suppose by contradiction that T2 is not a model conservative extension of T1 and
Circ∗F (KB) |= C v D, for all C v D ∈ T2. By Lemma 5.1, we can consider a model I of
T1 and an extension J of I on the signature of T2, such that the set of individuals that violate in J
at least one inclusion of T2 is finite. Since J is a classical model of KB and abKB(J ) is finite, by
Lemma 5.2, there exists a model J ′ of Circ∗F (KB) such that either J ′ = J or J ′ <KB,F J . Since
Circ∗F (KB) entails T2 and F = Σ, J ′ is a (classical) model of T2 that coincides with J and I on Σ
(absurdum).

6. The sketch of this proof has been kindly provided by Frank Wolter in a personal communication. Any imprecision in
the proof is due to the authors.
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[only if ] Suppose by contradiction that T2 is a model conservative extension of T1, and for some
Ĉ v D̂ ∈ T2, it holds Circ∗F (KB) 6|= Ĉ v D̂. Since Circ∗F (KB) 6|= Ĉ v D̂, there exists a model
I of Circ∗F (KB) such that satI(Ĉ vn D̂) ⊂ ∆I . Since I is a model of T1 and T2 is a model
conservative extension of T1, there exists an interpretation J that (i) coincides with I on Σ and
(ii) is a model of T2, i.e., for all defeasible inclusions C vn D in KB, satJ (C vn D) = ∆J .
Therefore, J <KB,F I (absurdum). 2

Since checking whether a TBox is a model conservative extension of another one has been proved
to be undecidable for C ⊆ EL (Lutz & Wolter, 2010), it immediately follows that subsumption in
Circ∗F (EL) is undecidable. Moreover, since subsumption can be reduced to concept unsatisfiability
or instance checking (Theorem 3.9), the latter reasoning tasks are undecidable as well.

Theorem 5.4 In Circ∗F (EL), subsumption, concept consistency and instance checking are undecid-
able.

6. Complexity of Circumscribed DL-liteR
In this section we focus on DL-liteR DKBs. We first prove that in Circvar(DL-liteR) the reasoning
tasks are complete for the second level of the polynomial hierarchy. From this, according to Theo-
rem 4.4, we immediately obtain an hardness result for Circfix(DL-liteR) too. Then, the membership
for Circfix(DL-liteR) to second level of the polynomial hierarchy is shown for the fragment of DKBs
with left-fixed defeasible inclusions, i.e. defeasible inclusions of type A vn C.

6.1 Complexity of Circvar(DL-liteR)

In this section we prove that Circvar(DL-liteR) subsumption, concept unsatisfiability (co-sat) and
instance checking are complete for Πp

2.
Our membership results rely on the possibility of extracting a small (polynomial) model from

any model of a circumscribed DKB.

Lemma 6.1 Let KB be a DL-liteR DKB. For all models I of Circvar(KB) and all x ∈ ∆I there
exists a model J of Circvar(KB) such that (i) ∆J ⊆ ∆I , (ii) x ∈ ∆J , (iii) for all DL-liteR concepts
C, x ∈ CI iff x ∈ CJ (iv) |∆J | is polynomial in the size of KB.

Proof. Assume that KB = 〈KS ∪ KD,≺〉, I is a model of Circvar(KB), and x ∈ ∆I . Let cl(KB)
be the set of all concepts occurring in KB. Choose a minimal set ∆ ⊆ ∆I containing: (i) x, (ii) all
aI such that a ∈ NI ∩ cl(KB), (iii) for each concept ∃R in cl(KB) satisfied in I, a node yR such
that for some z ∈ ∃RI , (z, yR) ∈ RI .

Now define J as follows: (i) ∆J = ∆, (ii) aJ = aI (for a ∈ NI ∩ cl(KB)), (iii) AJ = AI ∩∆
(A ∈ NC ∩ cl(KB)), and (iv) PJ = {(z, yP ) | z ∈ ∆ and z ∈ ∃P I} ∪ {(yP− , z) | z ∈ ∆ and z ∈
∃P−I} (P ∈ NR).

Note that by construction, for all z ∈ ∆J and for all C ∈ cl(KB), z ∈ CJ iff z ∈ CI ;
consequently, J is a classical model of S. Moreover, the cardinality of ∆J is linear in the size of
KB (by construction). So we are only left to show that J is a <KD,var-minimal model of KB.

Suppose not, and consider any J ′ <KD,var J . Define I ′ as follows: (i) ∆I
′

= ∆I , (ii) aI
′

=
aI , (iii)AI

′
= AJ

′
, (iv) P I

′
= PJ

′
. Note that the elements in ∆I \∆J ′ satisfy no left-hand side of

any DL-liteR inclusion (be it classical or defeasible), therefore all inclusions are vacuously satisfied.
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Moreover, the restriction of I ′ to ∆J
′

is <KD,var-smaller than the corresponding restriction of I
in the interpretation ordering. It follows that I ′ <KD,var I, and hence I cannot be a model of
Circvar(KB) (a contradiction). 2

C v ∃Q
∃Q− v ∃S
∃S vn ∃T

(a) A DKB K.

C 1

x
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(b) A model I of K.

C 1

x

4 6

7 8

Q
Q

T

S

Q

T S

(c) A “small” model extracted from
the model in Figure 2(b). Dashed
arrows denote edges that are not
present in I.

Figure 2: Illustrating Lemma 6.1.

To illustrate Lemma 6.1, consider the DKB KB in Figure 2(a) and the model I in Figure 2(b).
Note that all individuals in I satisfy the defeasible inclusion inKB. The “small” model J , depicted
in Figure 2(c), is obtained as follows. First, it contains the designated individual x; then, for each
concept ∃R that occurs in KB and is satisfied in I (where R is a possibly inverse role), it contains a
representative yR that receives role R in I. In our case, assume that the chosen representatives are:
yQ = 6, yQ− = 4, yS = 8, and yT = 7. Hence, ∆J = {x, 6, 4, 8, 7}. The roles in J are obtained
by connecting each individual z that satisfies a concept ∃P in I to the chosen representative yP .
For instance, since 4 satisfies ∃S in I, we have the edge (4, 8) ∈ SJ . Moreover, the representative
for an inverse role P− is connected to all nodes that satisfy the concept ∃P− in I. In our case, since
4 is the representative for Q− and 6 satisfies ∃Q−, we have the edge (4, 6) ∈ QJ . Besides, since 4
itself satisfies ∃Q−, we also have (4, 4) ∈ QJ . It can be verified by inspection that J is a model of
Circvar(KB), as its individuals satisfy all classical and defeasible inclusions in KB.

Theorem 6.2 Concept consistency over Circvar(DL-liteR) DKBs is in Σp
2. Subsumption and in-

stance checking are in Πp
2.

Proof. By Lemma 6.1, it suffices to guess a polynomial size model that provides an answer to the
given reasoning problem. Then, with an NP oracle, it is possible to check that the model is minimal
w.r.t. <var. 2

The complexity upper bounds proved by Theorem 6.2 are in fact tight, as stated by Theorem 6.6.
The proof of hardness is based on the reduction of the minimal-entailment problem of positive
disjunctive logic programs — which has been proved to be Πp

2-hard (Eiter & Gottlob, 1995).
A clause is a formula l1 ∨ · · · ∨ lh, where the li are literals over a set of propositional variables

PV = {p1, . . . , pn}. A positive disjunctive logic program (PDLP for short) is a set of clauses
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S = {c1, . . . , cm} where each cj contains at least one positive literal. A truth valuation for S is a
set I ⊆ PV , containing the propositional variables which are true. A truth valuation is a model of S
if it satisfies all clauses in S. For a literal l, we write S |=min l if and only if every minimal7 model
of S satisfies l. The minimal-entailment problem can be then defined as follows: given a PDLP S
and a literal l, determine whether S |=min l.

For each propositional variable pi, 1 ≤ i ≤ n, we introduce two concept names Pi and P̄i, where
the latter encodes ¬pi. We denote by Lj , 1 ≤ j ≤ 2n, a generic Pi or P̄i. For each clause cj ∈ S
we introduce the concept name Cj . Then, two other concept names True and False represent the
set of true and false literals, respectively. We employ roles RLi, RTrueCj , RFalseP̄i, RTrueP̄i,
and TLi.

In the following, defeasible inclusions δ are assigned a numerical priority h(δ), with the in-
tended meaning that δ1 ≺ δ2 iff h(δ1) < h(δ2).

The first step consists in reifying all the propositional literals, i.e., we want each of them to
correspond to an individual. Therefore, we introduce the axioms:

NonEmpty(a) (18)

NonEmpty v ¬Li (1 ≤ i ≤ 2n) (19)

NonEmpty v ∃RLi (1 ≤ i ≤ 2n) (20)

∃RL−i v Li (1 ≤ i ≤ 2n) (21)

Li v ¬Lj (1 ≤ i < j ≤ 2n) (22)

Li vn ¬Li (1 ≤ i ≤ 2n) [priority: 0] (23)

Axioms (18-21) force the literal encodings Li to be non empty. Axioms (22) make literal encodings
pairwise disjoint. Finally, defeasible inclusions (23) are used to reduce the Li to singletons.
Then, we represent the set of clauses S by adding for each clause cj = lj1 ∨ · · · ∨ ljk, 1 ≤ j ≤ m,
the following axioms.

Lji v Cj (1 ≤ i ≤ k) (24)

Cj vn ¬Cj [priority: 0] (25)

NonEmpty v ∃RTrueCj (26)

∃RTrueC−j v TrueCj (27)

TrueCj v True (28)

TrueCj v Cj (29)

Axioms (24–25) ensure that each (encoding of a) clause Cj is the union of its literals Lji. Axioms
(26–29) assure that each clause contains at least one true literal. In order to model the concepts

7. With respect to set inclusion.
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True and False and the correct meaning of complementary literals we add the following axioms.

True v ¬False (30)

TruePi v ∃RFalseP̄i (1 ≤ i ≤ n) (31)

∃RFalseP̄−i v FalseP̄i (1 ≤ i ≤ n) (32)

TruePi v Pi (1 ≤ i ≤ n) (33)

TruePi v True (1 ≤ i ≤ n) (34)

FalseP̄i v False (1 ≤ i ≤ n) (35)

FalseP̄i v P̄i (1 ≤ i ≤ n) (36)

The previous schemata regard TruePi only; analogous schemata are defined for FalsePi. The
following inclusions ensure that the truth of a given literal is locally visible in the individual a,
through the auxiliary roles TLi.

TrueLi v ∃TL−i (1 ≤ i ≤ 2n) (37)

TrueLi w ∃TL−i (1 ≤ i ≤ 2n) (38)

∃TLi v NonEmpty (1 ≤ i ≤ 2n) (39)

The axioms defined so far encode the classical semantics of S. To represent only minimal models
we add the following axioms.

Pi vn FalsePi (1 ≤ i ≤ n) [priority: 1] (40)

Pi vn TruePi (1 ≤ i ≤ n) [priority: 2] (41)

Given a PDLP S, we call the KB defined above KBS .
Given a truth assignment I ⊆ PV and a domain ∆ = {a, d1, . . . , d2n}, we define a correspond-

ing interpretation, denoted by model(S, I,∆), whose structure mirrors I . Formally, model(S, I,∆)
is the interpretation I = (∆, ·I) such that:

I. aI = a;

II. NonEmptyI = {a};

III. RLIi = {(a, di)} and TLIi = {(a, di) | I |= li};

IV. for each 1 ≤ i ≤ 2n, LIi = {di};

V. for each 1 ≤ j ≤ m, CIj = {LIj1, . . . , LIjh} where cj = lj1 ∨ · · · ∨ ljh;

VI. for each 1 ≤ i ≤ 2n, di ∈ TrueLIi (resp. di ∈ FalseLIi ) iff I |= li (resp. I 6 |=li);

VII. (X Y )I = XI ∩ Y I , where X Y is a concept name obtained by concatenating two other
concept names X and Y (for instance, concept name TrueCj is obtained by concatenating
concept names True and Cj); in other words, juxtaposition represents conjunction;

VIII. (RX Y )I = ∆I × (X Y )I .

The following lemma, proved in the Appendix, states the relationship between I and model(S, I,∆).
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Lemma 6.3 Given a PDLP S over PV = {p1, . . . , pn} and a truth assignment I ⊆ PV , I is
a minimal model of S iff the interpretation model(S, I,∆) is a model of Circvar(KBS), for all
domains ∆ with |∆| = 2n+ 1.

The following result, also proved in the Appendix, shows that any model of Circvar(KBS) in fact
corresponds to a minimal model of S.

Lemma 6.4 If I is a model of Circvar(KBS), then there exist a minimal model I of S such that
pi ∈ I iff P Ii ⊆ TrueI iff P̄ Ii ⊆ FalseI , for all i = 1, . . . , n.

Lemma 6.5 Given a PDLP S and a literal l represented by concept name L, the following are
equivalent:

(minimal entailment) S |=min l;

(subsumption) Circvar(KBS) |= L v True;

(co-sat) FalseL is not satisfiable w.r.t Circvar(KBS);

(instance checking) Circvar(KBS) |= (∃TL)(a).

Proof. The three inference problems onKBS represent the fact that for all models I of Circvar(KBS)
we have thatLI∩TrueI is not empty — co-sat in particular relies on the fact that in all Circvar(KBS)
models True and False are a partition of the individuals belonging to the literal concepts. There-
fore, it suffices to prove that l is true in all minimal models of S iff LI ∩ TrueI 6= ∅ in all models
of Circvar(KBS).

Lemma 6.3 establishes a bijection between minimal models I of S and certain models I =
model(S, I,∆) of Circvar(KBS), such that the truth of a literal l in I corresponds to the inclusion of
LI into TrueI in I (see rule VI in the definition of model ). Therefore, the right-to-left direction is
immediately satisfied. For the left-to-right direction, assume that l is true in all minimal models of
S and let I be a model of Circvar(KBS). By Lemma 6.4, there is a minimal model I of S such that
pi ∈ I iff P Ii ⊆ TrueI . If l = pi, we conclude LI ⊆ TrueI and the thesis. Similarly, for l = p̄i.

2

The following theorem provides complexity lower-bounds for the main decision problems of
both Circvar(DL-liteR) and Circfix(DL-liteR). The result for Circvar(DL-liteR) follows immediately
from Lemma 6.5, and it extends to Circfix(DL-liteR) due to Theorem 4.4.

Theorem 6.6 Subsumption, co-sat and instance checking over circumscribed DL-liteR DKBs with
general priorities are Πp

2-hard.

6.2 Upper Bound of Circfix(DL-liteR) with Restrictions

We develop the same argument used for Circvar(DL-liteR) to prove similar upper bounds for
Circfix(DL-liteR) DKBs with left-fixed DIs (i.e., their left-hand side is fixed or—equivalently—
a concept name) or empty priority relations. Whether the same upper bounds apply to
Circfix(DL-liteR) without any restriction is left as an open question.
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Lemma 6.7 Let KB be a DL-liteR knowledge base whose DIs are left-fixed. For all models I of
Circfix(KB) and all x ∈ ∆I there exists a model J of Circfix(KB) such that (i) ∆J ⊆ ∆I , (ii)
x ∈ ∆J , (iii) for all DL-liteR concepts C, x ∈ CI iff x ∈ CJ , and (iv) |∆J | is polynomial in the
size of KB.

Proof. Assume that I is a model of Circfix(KB), with KB = 〈KS ∪ KD,≺〉, and x ∈ ∆I . Let
cl(KB) be the set of all concepts occurring in KB. Choose a minimal set ∆ ⊆ ∆I containing: (i)
x, (ii) all aI such that a ∈ NI ∩ cl(KB), (iii) for each concept ∃R in cl(KB) satisfied in I, a node
yR such that yR ∈ (∃R−)I (where ∃P−− is considered equivalent to ∃P ), and finally (iv) for all
inclusions C v[n] ∃R in KB such that (C u ∃R)I 6= ∅, a node z ∈ (C u ∃R)I .

Now define J as follows: (i) ∆J = ∆, (ii) aJ = aI (for a ∈ NI ∩ cl(KB)), (iii) AJ = AI ∩∆
(A ∈ NC ∩ cl(KB)), and (iv) PJ = {(z, yP ) | z ∈ ∆ and z ∈ ∃P I} ∪ {(yP , z) | z ∈ ∆ and z ∈
∃P−I} (P ∈ NR).

Note that by construction, for all z ∈ ∆J and for all C ∈ cl(KB), z ∈ CJ iff z ∈ CI ;
consequently, J is a classical model of KB. Moreover, the cardinality of ∆J is linear in the size of
KB (by construction). So we are only left to show that J is a <fix-minimal model of KB.

Suppose not, and consider any J ′ <fix J . Define I ′ as follows: (a) ∆I
′

= ∆I , (b) aI
′

= aI ,
(c) AI

′
= AI , (d) each RI

′
is a minimal set such that (d1) RI

′ ⊇ RJ
′
, (d2) for all z ∈ ∆I \∆J ,

and for all inclusions C v ∃R or C vn ∃R in KB such that z ∈ (C u ∃R)I , if RJ
′

contains a pair
(v, w), then (z, w) ∈ RI′ ; finally, (d3) each P I

′
is closed under the role inclusion axioms of KB.

Note that, by construction,

(*) for all z ∈ ∆I \∆J , z ∈ ∃RI′ only if z ∈ ∃RI ;

(**) for all z ∈ ∆I \∆J , z ∈ ∃RI′ only if there exists v ∈ ∆J
′

such that v ∈ ∃RJ ′ .

Now we prove that I ′ is a classical model of KB. By construction, the edges (z, w) introduced
in (d2) do not change the set of existential restrictions satisfied by the members of ∆J ; as a con-
sequence — and since J ′ is a model of KB— the members of ∆J satisfy all the classical CIs of
KB.

Now consider an arbitrary element z ∈ ∆I \∆J and any CI γ ofKS. If γ is an inclusion without
existential quantifiers, then I and I ′ give the same interpretation to γ by definition, therefore z
satisfies γ. If γ is ∃R v A, ∃R v ¬A, ∃R v ¬∃S, or A v ¬∃R (and considering that I satisfies
γ) z fails to satisfy γ only if for some R′ ∈ {R,S}, z 6∈ (∃R′)I and z ∈ (∃R′)I′ ; this is impossible
by (*). Next, suppose γ is ∃R v ∃S. If z ∈ (∃R)I

′
, then by (**) there exists a v ∈ ∆J

′
satisfying

(∃R)J
′

and hence (∃S)J
′

(as J ′ is a model of KS), therefore z ∈ (∃S)I
′

(by d2). We are only left
to consider γ = A v ∃R: If z ∈ AI′ = AI , then there exists wA ∈ AJ

′
(by construction of ∆) and

wA ∈ (∃R)J
′

because J ′ is a model of KB. Then z ∈ (∃R)I
′

by (d2). Therefore, in all possible
cases, z satisfies γ.

This proves that I ′ satisfies all the strong CIs of KB. It is not hard to verify that I ′ satisfies
also all role inclusions of KB. Therefore, in order to derive a contradiction, we are left to show that
I ′ <fix I (which implies that I is not a model of Circfix(KB)). Since by assumption J ′ <fix J ,
it suffices to prove the following claim: if satJ (δ) ⊆ satJ ′(δ) (resp. satJ (δ) ⊂ satJ ′(δ)), then
satI(δ) ⊆ satI′(δ) (resp. satI(δ) ⊂ satI′(δ)).

In ∆J , I and J (resp. I ′ and J ′) satisfy the same concepts, therefore we only need to show
that for all z ∈ ∆I \ ∆J , if z ∈ satI(δ) then z ∈ satI′(δ). In all cases but those in which the
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right-hand side of δ is ∃R, the proof is similar to the proof for strong CIs (it exploits (*) and the fact
that concept names are fixed).

Let δ be A vn ∃R and consider an arbitrary z ∈ ∆I \∆J such that z ∈ satI(δ). Since concept
names are fixed, the only interesting case is that z actively satisfies δ, i.e. z ∈ (A u ∃R)I . By
construction, ∆ contains an individual v ∈ (A u ∃R)J . Since by hypothesis satJ (δ) ⊆ satJ ′(δ),
v ∈ (A u ∃R)J

′
and hence, by (d2), z ∈ (∃R)I

′
, that is z ∈ satI′(δ). 2

To prove the same lemma under the assumption that the priority relation is empty we need
some preliminary notions. Given a KB KB = 〈KS ∪ KD,≺〉, an interpretation I and an individual
z ∈ ∆I , we denote with KB[z] the classical knowledge base:

KB[z] = KS ∪
{
C v D | (C vn D) ∈ KD and z ∈ satI(C vn D)

}
Then, the support of a concept C in I, supp I(C), is the set of individuals z ∈ ∆I such that, for
some A, z ∈ AI and A vKB[z] C. If z ∈ supp I(C) we say that z supports C in I.

Lemma 6.8 Let KB = 〈K, ∅〉 be a DL-liteR knowledge base. For all models I of Circfix(KB) and
all x ∈ ∆I there exists a model J of Circfix(KB) such that (i) ∆J ⊆ ∆I , (ii) x ∈ ∆J , (iii) for all
DL-liteR concepts C, x ∈ CI iff x ∈ CJ , and (iv) |∆J | is polynomial in the size of KB.

Proof. Assume that I is a model of Circfix(KB) and let ∆ ⊆ ∆I be defined as in the above proof
of Lemma 6.7, except for case (iv), which is replaced by: (iv’) for all inclusions C v[n] ∃R in KB
such that supp I(∃R) 6= ∅, a node w∃R ∈ supp I(∃R). That is, for each inclusion whose RHS is
variable, we pick a witness that is in the support of the RHS, if such a witness exists.

Next, define J as in the proof of Lemma 6.7. As before, J is a classical model of KB and
the cardinality of ∆J is linear in the size of KB. We are left to show that J is <fix-minimal.
Suppose not, and consider any J ′ <fix J . Since the priority relation is empty, for all DIs δ in KB,
satJ (δ) ⊆ satJ ′(δ). Hence, for all concepts C it holds supp J (C) ⊆ supp J ′(C). Define I ′ as
in the proof of Lemma 6.7, except for case (d2), which is replaced by: (d2’) for all z ∈ ∆I \∆J ,
and for all inclusions C v[n] ∃R in KB such that z ∈ supp I(∃R), if RJ

′
contains a pair (v, w),

then (z, w) ∈ RI
′
. We prove that I ′ <fix I, contradicting the hypothesis that I is a model of

Circfix(KB). The only non-trivial case consists in proving that the individuals in ∆I
′ \∆J

′
satisfy

in I ′ the same inclusions of type C v[n] ∃S that they satisfy in I.
Assume that z ∈ ∆I

′ \ ∆J
′

satisfies C v[n] ∃S in I; we distinguish two cases. First, if
z ∈ supp I(∃S), we have that ∆J

′
contains a witnessw∃S s.t. w∃S ∈ supp J (∃S) ⊆ supp J ′(∃S).

Therefore, there exists a pair (w∃S , y) ∈ SJ
′

and, by (d2’), (z, y) ∈ SI
′
. Second, assume that

z 6∈ supp I(∃S). Since z ∈ satI(C v[n] D), we have that z 6∈ supp I(C). Therefore, if C = A,
then z 6∈ AI = AI

′
, whereas if C = ∃R, then by (d2’) z 6∈ (∃R)I

′
. In both cases, z vacuously

satisfies δ in I ′. 2

Theorem 6.9 Let KB be a DKB with left-fixed DIs or an empty priority relation. Concept consis-
tency in Circfix(KB) is in Σp

2. Subsumption and instance checking are in Πp
2.

Proof. Similar to the proof of Theorem 6.2. 2
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7. Complexity of Circumscribed EL and EL⊥

Recall that reasoning in circumscribed EL is undecidable when roles can be fixed. Here we analyze
the other cases, were F ⊆ NC.

In EL, that cannot express any contradictions, defeasible inclusions cannot be possibly blocked
under Circvar, and circumscription collapses to classical reasoning:

Theorem 7.1 Let KB = 〈KS ∪KD,≺〉 be an EL DKB. Then I is a model of Circvar(KB) iff I is a
model of KS ∪ K̂D, where K̂D = {A v C | (A vn C) ∈ KD}.

Proof. Let I be any model of Circvar(KB), and let J be the interpretation such that (i) ∆J = ∆I ,
(ii) for all a ∈ NI, aJ = aI , (iii) for all A ∈ NC, AJ = ∆J , and (iv) for all P ∈ NR, PJ =
∆J ×∆J . It can be easily verified by structural induction that for all EL concepts C, CJ = ∆J

and hence each domain element of J satisfies all EL inclusions (strong and defeasible). Then,
clearly, J is a model of Circvar(KB). Consequently, for all δ ∈ KD, satI(δ) = ∆I , otherwise
J <var I (a contradiction). It follows that I is a classical model of KS ∪ K̂D. 2

By the results of the work of Baader et al. (2005), it follows that in Circvar(EL), concept satisfiability
is trivial, subsumption and instance checking are in P.

Remark 7.2 Clearly, the same argument and the same result apply to Circvar(ELHO).

If we make EL more interesting by adding ⊥ as a source of inconsistency, then complexity
increases significantly.

Theorem 7.3 In Circvar(EL⊥), concept satisfiability, instance checking, and subsumption are
ExpTime-hard. These results still hold if knowledge bases contain no assertion.8

Proof. Let EL¬A be the extension of EL where atomic concepts can be negated. We first reduce
TBox satisfiability in EL¬A (which is known to be ExpTime-hard, see Baader et al., 2005) to the
complement of subsumption in Circvar(EL⊥). Let T be a TBox (i.e., a set of CIs) in EL¬A. First
introduce for each concept nameA occurring in T a fresh concept name Ā whose intended meaning
is ¬A. Obtain T ′ from T by replacing each literal ¬A with Ā. Let KB = 〈K,≺K〉 be the DKB
obtained by extending T ′ with the following inclusions, where U and UA — for all A occurring in
T— are fresh concept names (representing undefined truth values), and R is a fresh role name:

A u Ā v ⊥ (42)

A u UA v ⊥ (43)

Ā u UA v ⊥ (44)

UA v U (45)

> vn A (46)

> vn Ā (47)

> vn UA (48)

> vn ∃R.UA (49)

We prove that T is satisfiable iff in some model of Circvar(KB) all UA’s are empty, which holds
iff Circvar(KB) 6|= > v ∃R.U . Consequently, subsumption in Circvar(EL⊥) is ExpTime-hard. As-
sume that T is satisfiable and I is a model of T with domain ∆I . From I we define an interpretation

8. Equivalently, in DL’s terminology: ABoxes are empty.
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J that is a model of Circvar(KB) such that UJ = ∅, thus proving that Circvar(KB) 6|= > v ∃R.U .
J has the same domain as I, and all concepts and roles occurring in T have the same interpretation
as in I; we only need to define the interpretation of the newly introduced concepts Ā, UA, and U ,
and of the role R. We set ĀJ = ∆I \AI and UJA = UJ = RJ = ∅.

By construction J is a model of the classical inclusions in KB, in particular CIs (42)–(45). It
remains to prove that J is minimal w.r.t. <var, i.e., it is not possible to improve any DI δ without
violating another DI that is either incomparable with δ, or has a higher priority than δ. Notice that
defeasible inclusions (46) (resp., (47)) are violated by all individuals not inAJ (resp., all individuals
in AJ ). DIs (48) and (49) are violated by all individuals. Moreover, notice that DIs (46)–(49) are
mutually incomparable according to specificity.

Each DI of type (46) or (47) can only be improved at the expenses of the corresponding DI
of the other type. Moreover, improving DIs (48) or (49) requires setting UJA 6= ∅, which, due to
rules (43) and (44) would damage the incomparable DIs (46) and/or (47). This proves that J is a
model of Circvar(KB), and hence Circvar(KB) 6|= > v ∃R.U .

Conversely, assume that Circvar(KB) 6|= > v ∃R.U , and let I be a model of Circvar(KB) with
an individual x ∈ ∆I such that x 6∈ (∃R.U)I . Due to rule (45), x 6∈ (∃R.UA)I for all atomic
concepts A. Hence, x violates all DIs of type (49). If there exists a concept UA such that (UA)I is
not empty, then the model obtained from I by adding an R-edge from x to an individual in (UA)I

is smaller than I according to <var, which is a contradiction. Therefore, all concepts UA are empty
in I.

Next, we show that for all atomic concepts A and all individuals y ∈ ∆I , either y ∈ AI or
y ∈ ĀI . Assume the contrary, i.e., there exists an individual y which belongs neither to AI nor to
ĀI . Then, y violates all DIs (46)–(49). Consider the interpretation I ′, obtained from I by setting
(UA)I

′
= UI

′
= {y}. By construction I ′ satisfies all CIs in KB. Compared to I, the status of

the DIs is the same, except that in I ′ the individual y satisfies (48). Hence, I ′ <var I, which is a
contradiction. Since each individual belongs to either AI or ĀI , we can convert I into a classical
model of T , thus showing that T is satisfiable.

Similarly, for any given a ∈ NI, T is satisfiable iff there exists a model I of Circvar(KB) such
that aI 6∈ (∃R.U)I . Therefore, instance checking in Circvar(EL⊥) is ExpTime-hard as well.

Finally, add a fresh concept name B and all the inclusions B u ∃R.UA v ⊥; call the new
DKB KB′. Note that T is satisfiable iff in some model of Circvar(KB) all UA’s are empty, which
holds iff B is satisfiable w.r.t. Circvar(KB′). Consequently, concept satisfiability in Circvar(EL⊥) is
ExpTime-hard. 2

Since Circvar is a special case of CircF , and by Theorem 4.4, the above theorem applies to CircF
and Circfix, too:

Corollary 7.4 For X = F, fix, concept satisfiability checking, instance checking, and subsumption
in CircX(EL⊥) are ExpTime-hard. These results still hold if ABoxes are empty (i.e. assertions are
not allowed).

Fixed concept names can play a role similar to ⊥, so that the above proof can be adapted to
CircF (EL).

Theorem 7.5 Instance checking and subsumption are ExpTime-hard both in CircF (EL) and in
Circfix(EL). The same holds in the restriction of EL not supporting >.
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Proof. We reduce satisfiability of an EL¬A TBox T to the complement of subsumption in CircF (EL).
First we have to introduce a new concept name D representing > and translate each concept C in
EL¬A into a corresponding C∗ in EL, as follows:

• C∗ = C if C is a concept name;

• C∗ = Ā if C is ¬A (for all A, Ā is a new concept name);

• C∗ = D u ∃R.(C∗1 uD) if C is ∃R.C1;

• C∗ = C∗1 u C∗2 if C is C1 u C2.

Each C1 v C2 in T is translated into C∗1 v C∗2 . Then we extend the translated TBox with the
following inclusions, where Bot (representing⊥), all UA’s, and Bad are new concept names and R
is a new role name:

A v D (50)

Ā v D (51)

UA v D (52)

A u Ā v Bot (53)

A u UA v Bot (54)

Ā u UA v Bot (55)

D vn A (56)

D vn Ā (57)

D vn UA (58)

D v D′ (59)

D′ vn ∃R.UA (60)

D′ vn ∃R.Bot (61)

∃R.UA v Bad (62)

∃R.Bot v Bad (63)

D(a) (ABox assertion) (64)

LetKB = 〈K,≺K〉 be the resulting DKB, and set F = {D,Bot}. We prove that the following three
properties are equivalent: (i) T is satisfiable, (ii) CircF (KB) 6|= D v Bad , and (iii) CircF (KB) 6|=
Bad(a).

Let us prove that (ii) implies (i). Let I be a model of CircF (KB) with an individual x s.t.
x ∈ DI and x 6∈ BadI . By (62)–(63), x 6∈ (∃R.UA)I for all A, and x 6∈ (∃R.Bad)I . By (59),
x ∈ (D′)I . Hence, x violates DIs (60) and (61). Assume that at least one concept UA is not empty
in I (resp., Bot is not empty in I). Then, I can be improved (according to <F ) by connecting with
an R-edge the individual x with the non-empty concept UA (resp., Bot), and then adding x to Bad
(notice that Bad is a variable concept). This being a contradiction, we conclude that Bot and all
UA’s are empty in I. Then, we prove that the restriction of I to the domain DI is a model of T .

Inclusions (50)–(51) ensure that all individuals satisfying either A or Ā are in DI . DIs (56)–
(57), together with the fact that all UA’s are empty, guarantee that each individual in DI satisfies
either A or Ā, for all concept names A. Rules (53), together with the fact that Bot is empty,
guarantee that no individual satisfies both A and Ā. The translation from C to C∗ completes our
claim.

Next, we show that (i) implies (ii). Let I be a model of T . We extend I to become a model
J of CircF (KB) such that DJ 6⊆ BadJ , because DJ 6= ∅ and BadJ = ∅. For each A, set
ĀJ = ∆I \ AI and UJA = ∅. Then, set DJ = (D′)J = ∆J = ∆I and BotJ = BadJ = ∅. It is
easy to verify that J satisfies all CIs of KB. It remains to prove that J is minimal w.r.t. <F .
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Name Restrictions

full left local (LLf ) no qualified existentials on the LHS of inclusions
almost left local (aLL) union of an LLf KB and a classical acyclic terminology, s.t. unfolding

the former w.r.t. the latter produces a LLf KB

left local (LL) only the following schemata:
A v[n] ∃P.B A1 uA2 v B
∃P v B ∃P1 v ∃P2.B

(no nesting; no conflicts between DIs in Circfix)

LL2
only the following schemata:

A v[n] ∃P.B ∃P1 u ∃P2 v ∃P3.B
∃P v B

(no nesting; potential conflicts between DIs even in Circfix)

Figure 3: Fragments of EL⊥ considered in Section 7.

Since Bot is a fixed concept, inclusions (53)–(55) ensure that A, Ā and UA are mutually exclu-
sive, for all concepts A. Hence, each DI of type (56)–(58) can only be improved at the expenses
of another DI of incomparable priority, which does not count as an improvement according to <F .
DI (61) cannot be improved because Bot is empty and fixed. Finally, suppose one tries to improve
one of the DIs of type (60). To do so, at least one individual x must enter the concept UA. Due
to the mutual exclusion property described earlier, x needs to exit from A (resp. Ā), thus violating
DI (56) (resp., (57)), which has a higher priority than (60) due to (59).

The equivalence between (i) and (iii) can be proved along similar lines. Just notice that the
fact (64) makes Bad(a) equivalent to the inclusion D v Bad . The thesis for Circfix is obtained as
a consequence of Theorem 4.4. 2

Concept consistency is simpler, instead. Call an interpretation I complete iff for all A ∈ NC,
AI = ∆I , and for all P ∈ NR, P I = ∆I ×∆I . It is not hard to verify that all EL concepts and all
EL inclusions (both classical and defeasible) are satisfied by all x ∈ ∆I , therefore complete models
are always models of CircF (KB), for all DKBs KB and all F ⊆ NC. As a consequence we have
that concept consistency is trivial:

Theorem 7.6 For all EL concepts C, DKBs KB, and F ⊆ NC, C is satisfied by some model of
CircF (KB).

7.1 Left Local EL⊥ and Circvar

In this subsection and in the next one, we prove that qualified existentials in the left-hand side of
inclusions are responsible for the higher complexity of EL⊥ w.r.t. DL-liteR. In particular, qualified
existentials in the left-hand side make the proof strategy of Lemma 6.7 fail: when the target of an
edge which starts in x is redirected, the individual x may satisfy a qualified existential restriction
that it did not satisfy before. If so, the truth value of inclusions may be affected. By limiting the
occurrences of qualified existential restrictions in the left-hand side of inclusions, it is possible to
reduce significantly the complexity of instance checking and subsumption in circumscribed EL⊥.
Figure 3 summarizes the syntactic fragments of EL⊥ that we consider. We start with the following
class of knowledge bases:

Definition 7.7 A defeasible knowledge base 〈K,≺〉 is in the full left local (LLf ) fragment of EL⊥
iff the left-hand sides of the inclusions of K contain no qualified existential restrictions.
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Note that this restriction rules out all the acyclic terminologies containing a qualified existential
restriction, and hence most of the existing ontologies of practical interest. Therefore, we introduce
the following relaxation of LLf EL⊥:

Definition 7.8 An EL⊥ knowledge base KB = 〈K,≺〉 is almost LL (aLL for short) iff (i) K =
KLL∪Ka , (ii) KLL is in LLf , (iii) Ka is a classical acyclic terminology, and (iv) if a concept name
A defined in Ka occurs in the left-hand side of an inclusion in KLL , then A does not depend (in
Ka) on any qualified existential restriction.

In other words, by unfolding KLL with respect to Ka, we obtain a LLf knowledge base.

Example 7.9 Example 3.1 can be reformulated in aLL EL⊥:

Human vn ∃has lhs heart ;

∃has lhs heart u ∃has rhs heart v ⊥ ;

Situs Inversus ≡ Human u ∃has rhs heart .

Here KLL consists of the first two axioms and Ka consists of the third axiom. Note that, in general,
a concept nameA occurring in a terminology T can be extended with default properties by means of
an inclusion A vn C in the following cases: A can be a primitive concept (with no definition in T ),
or a concept partially defined by a one-way inclusion (e.g. Human v Mammal), or even a concept with
a complete definition A ≡ D in T , provided that A does not depend on any qualified existentials.
Accordingly, in this example, we could add a defeasible inclusion like Situs Inversus vn C,
that would not be permitted if the definition of situs inversus depended on qualified existential
restrictions as in

Situs Inversus ≡ Human u ∃has heart. ∃has position. Right . 2

A small model property similar to Lemma 6.7 can be proved for Circvar(aLL EL⊥) provided
that the right-hand side of subsumption queries has bounded quantifier depth. It is convenient to
split the proof into a proof for LLfEL⊥ and later extend it to aLL EL⊥ .

Since in LLfEL⊥ the RHS of an inclusion may have nested qualified existential restrictions, it
is difficult to prove the small model property when considering the entire language. For this reason,
we prove it indirectly: first we show how to transform a knowledge base KB into another KB∗ that
yields the following properties: (i) no nested formulas occur, (ii) defeasible inclusions are only of
type A vn B, (iii) every model I ∈ Circvar(KB) can be extended to a model of Circvar(KB∗) on
the same domain and (iv) every model of Circvar(KB∗) is a model of Circvar(KB). Then, we prove
a small model property for the fragment with no nesting and, thanks to properties (iii) and (iv), we
recover the small model property for the entire language.

Each LLfEL⊥ inclusion C v[n] D is transformed in three steps. Note that C’s shape is:

A1 u . . . uAn u ∃R1 u . . . u ∃Rm .

In the first step, C is replaced by a fresh concept name F0 (for convenience, we later refer to F0

also as FC) and the following axioms are added:

Fi v Ai+1 u . . . uAn u ∃R1 u . . . u ∃Rm (0 ≤ i ≤ n− 1) (65)

Ai+1 u Fi+1 v Fi (0 ≤ i ≤ n− 2) (66)

743



BONATTI, FAELLA, & SAURO

if m = 0, i.e., there are no existentials in C, add the inclusion:

An v Fn−1 (67)

Otherwise, add the following inclusions:

An uG0 v Fn−1 (68)

Gj v ∃Rj+1 u . . . u ∃Rm (0 ≤ j ≤ m− 1) (69)

Bj+1 uGj+1 v Gj (0 ≤ j ≤ m− 2) (70)

Bm v Gm−1 (71)

Bj v ∃Rj (1 ≤ j ≤ m) (72)

∃Rj v Bj (1 ≤ j ≤ m) (73)

where the Fi, Gj and Bj are fresh concept names.
At this point, the initial inclusion C v[n] D can be replaced by FC v[n] D. To eliminate the

nesting in D, in the second step we replace it with a fresh concept name FD and add the inclusion
FD v D∗, where ·∗ is recursively defined as

A∗ = A (74)

(C uD)∗ = C∗ uD∗ (75)

(∃R.H)∗ = ∃R.FH and add FH v H∗, where FH is fresh. (76)

Finally, in the third step, all inclusions of type A v D1 u . . . u Dh are split into A v Di,
1 ≤ i ≤ h. The resulting knowledge base, that we denote with KB∗, consists of instances of the
following axiom schemata:

A v[n] B A v ∃P.B A1 uA2 v B ∃P v B

Now we prove the properties (iii) and (iv) mentioned above.

Lemma 7.10 Every model of Circvar(KB) can be extended to a model of Circvar(KB∗) on the same
domain.

Proof. First, note that inclusions (65)–(73) are definitorial, that is every interpretation I of KB has
exactly one extension that satisfies them. This extension, for simplicity we continue to call it I, is
obtained by setting F Ii = (Ai+1 u . . . u An u ∃R1 u . . . u ∃Rm)I , GIj = (∃Rj+1 u . . . u ∃Rm)I

and BIj = (∃Rj)I .
Then, we can extend I by recursively setting F IH = HI , for each fresh concept FH introduced

in step 2. It is straightforward to see by structural induction on H that (H∗)I = HI , and hence
all inclusions in step 2 and 3 are satisfied. Thus, if I is a classical model of KB, then it is also a
classical model of KB∗.

Assume now that I is a model of Circvar(KB), we have to show that I is minimal also with
respect to KB∗. Suppose not, and let J be a classical model of KB∗ such that J <KB∗,var I. By
structural induction it is straightforward to see that for all C v[n] D in KB, (D∗)J ⊆ DJ . Since
FJC = CJ holds for all fresh concept names FC occurring in the LHS of a rule, we have that for
each inclusion C v[n] D in KB, satJ (FC v[n] FD) ⊆ satJ (C v[n] D) — which implies that J

744



DEFEASIBLE INCLUSIONS IN LOW-COMPLEXITY DLS

is a classical model of KB. Concerning I, for every C v[n] D in KB, we have (FC)I = CI and
(FD)I = DI by construction, that is satI(C v[n] D) = satI(FC v[n] FD).

The previous arguments entail that if satI(FC v[n] FD) ⊆ satJ (FC v[n] FD) (respectively
satI(FC v[n] FD) ⊂ satJ (FC v[n] FD)), then satI(C v[n] D) ⊆ satJ (C v[n] D) (resp.
satI(C v[n] D) ⊂ satJ (C v[n] D)). Therefore, it would follow that J <KB,var I, which
contradicts the hypothesis. 2

Lemma 7.11 All models of Circvar(KB∗) are models of Circvar(KB).

Proof. The proof is similar to Lemma 7.10, in particular we already know that (i) if an individual
satisfies an inclusion FC v[n] FD inKB∗, then it satisfies C v[n] D, and (ii) a classical model J of
KB can be extended in such a way that satJ (C v[n] D) = satJ (FC v[n] FD), for each (possibly
defeasible) inclusion in KB. From this, we have that every classical model of KB∗ is a classical
model of KB and, by assuming that some classical model J of KB improves I (i.e. J <KB,var I),
it follows that J can be extended into a classical model of KB∗ such that J <KB∗,var I. 2

The following result, whose proof can be found in the Appendix, represents a small model
property for LLfEL⊥, which uses the above transformation of KB into KB∗.

Lemma 7.12 LetKB = 〈K,≺K〉 be an LLfEL⊥ knowledge base, and C,D be EL⊥ concepts. For
all models I ∈ Circvar(KB) and for all x ∈ CI \DI there exists a model J ∈ Circvar(KB) such
that (i) ∆J ⊆ ∆I , (ii) x ∈ CJ \DJ , and (iii) |∆J | isO((|KB|2+|C|)d), where d = depth(D)+1.

Now we have to extend the above result to aLL EL⊥ . First, we show under which conditions
the concept names defined in Ka can be removed by unfolding them, using the unf operator defined
in Section 2. The proofs of the following two propositions can be found in the Appendix.

Proposition 7.13 Let KB = 〈KLL ∪ Ka,≺〉 be an aLL EL⊥ knowledge base. Every model of
CircF (unf(KB)) can be extended to a model of CircF (KB).

The converse holds only if defined predicates are variable. The reason is that by adding a
definition like A ≡ ∃P where A is fixed, one fixes the expression ∃P , too, thereby changing its
semantics.

Proposition 7.14 Let KB = 〈KLL ∪ Ka,≺〉 be an aLL EL⊥ knowledge base and suppose that all
the concept names defined in Ka are variable. Then, for all models I of CircF (KB), the restriction
of I to primitive predicates is a model of CircF (unf(KB)).

With these lemmata we can prove:

Lemma 7.15 Let KB = 〈K,≺K〉 be an aLL EL⊥ knowledge base (where K = Ka ∪ KLL) and
let C,D be EL⊥ concepts. For all models I ∈ Circvar(KB) and for all x ∈ CI \ DI there
exists a model J ∈ Circvar(KB) such that (i) ∆J ⊆ ∆I , (ii) x ∈ CJ \ DJ , and (iii) |∆J | is
O((|KB|2 + |C|)d), where d = depth(D) + 1 + |Ka|2.
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Proof. Let I ∈ Circvar(KB) and x ∈ CI \DI . Let KB′ = unf(KB), C ′ = unf(C,Ka), and D′ =
unf(D,Ka). Notice that KB′ is a LLf knowledge base. By Proposition 7.14, the restriction I ′ of I
to primitive predicates is a model of Circvar(KB′). In particular, it holds that x ∈ (C ′)I

′ \(D′)I′ . By
applying Lemma 7.12 toKB′, C ′, D′, and I ′, we obtain that there exists a model J of Circvar(KB′)
such that x ∈ (C ′)J \(D′)J and |∆J | isO((|KB′|2 + |C ′|)d′), where d′ = depth(D′)+1. We have
|KB′|2 + |C ′| ≤ |KB|2 + |C|, since replacing defined terms with their definitions can only decrease
the total number of subformulas. Finally, depth(D′) ≤ depth(D) +

∑
(A≡E)∈Ka

depth(E) ≤
depth(D) + |Ka|2, hence the thesis. 2

Consequently we have that:

Theorem 7.16 In Circvar(aLL EL⊥) concept satisfiability is in Σp
2. Moreover, deciding EL⊥ sub-

sumptions C v D or instance checking problems D(a) with a constant bound on the quantifier
depth of D’s unfolding w.r.t. the given DKB is in Πp

2.

Proof. Similar to the proof of Theorem 6.2. 2

Currently, we do not know whether the bound on quantifier nesting is necessary to the above upper
complexity bounds.

Next we prove that the Σp
2 and Πp

2 upper bounds for Circvar are tight. Actually, a much simpler
fragment suffices to reach that complexity:

Definition 7.17 An EL⊥ knowledge base is left local (LL) if its concept inclusions are instances of
the following schemata:

A v[n] ∃P.B A1 uA2 v B ∃P v B ∃P1 v ∃P2.B ,

where A and B are either concept names or ⊥. An LL EL⊥ concept is any concept that can occur
in the above inclusions.

Schema A v[n] B can be emulated in LL EL⊥ by the inclusions A v[n] ∃R, ∃R v B and
B v ∃R, for a fresh role R. Note the similarity of LL schemata with the normal form of EL
inclusions (Baader et al., 2005) that, however, would allow the more general inclusions ∃P.A v B
and ∃P1.A v ∃P2.B (that are forbidden by left locality).

Now we prove that reasoning in Circvar(LL EL⊥) is hard (and hence complete) for Σp
2 and Πp

2.
For this purpose, we provide a reduction of minimal entailment over positive, propositional

disjunctive logic programs (PDLP), defined in Section 6.1. For each propositional variable pi,
1 ≤ i ≤ n, introduce two concept names Pi and P̄i – where the latter encodes ¬pi. In the following
we will denote by Lj , 1 ≤ j ≤ 2n, a generic Pi or P̄i. For each clause cj ∈ S introduce a concept
name Cj . Then, two other concept names True and False represent the set of true and false literals
respectively. Finally, the concept names Lit and Min are used to model minimal propositional
assignments; we need also an auxiliary role R.

First, literals are reified, i.e. modeled as individuals, with the axioms:

> v ∃R.Li (1 ≤ i ≤ 2n) (77)

Li u Lj v ⊥ (1 ≤ i < j ≤ 2n) (78)

Li vn ⊥ (1 ≤ i ≤ 2n) (79)
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The first axiom makes all Li nonempty. Axioms (78) make them pairwise disjoint. Finally, axioms
(79) minimize the concepts Li and make them singletons. Then, we represent S by adding for each
clause cj = lj1 ∨ · · · ∨ ljh, 1 ≤ j ≤ m, the axioms

Lji v Cj (1 ≤ j ≤ m and 1 ≤ i ≤ h) (80)

Cj vn ⊥ (1 ≤ j ≤ m) (81)

> v ∃R.(Cj u True) (1 ≤ j ≤ m) (82)

By axioms (80) and (81), Cj equals the set of (encodings of) literals in cj . Axioms (82) make sure
that each clause holds.

In order to model the concepts True and False and the correct meaning of complementary
literals we add the axioms

True u False v ⊥ (83)

Pi u True v ∃R.(P̄i u False) (1 ≤ i ≤ n) (84)

Pi u False v ∃R.(P̄i u True) (1 ≤ i ≤ n) (85)

P̄i u True v ∃R.(Pi u False) (1 ≤ i ≤ n) (86)

P̄i u False v ∃R.(Pi u True) (1 ≤ i ≤ n) (87)

The axioms defined so far encode the classical semantics of S. To minimize models, add the fol-
lowing axioms:

Min u Pi v False (1 ≤ i ≤ n) (88)

Min u P̄i v True (1 ≤ i ≤ n) (89)

Li v Lit (1 ≤ i ≤ 2n) (90)

Cj v Lit (1 ≤ j ≤ m) (91)

Lit vn Min (92)

By (88) and (89), Min collects false positive literals and true negative literals. By (90) and (91),
Lit contains all the (representations of) literals and clauses. The purpose of these axioms is giving
defeasible inclusions (79) and (81) higher (specificity-based) priority than (92), so that model min-
imization cannot cause any Li to be larger than a singleton, nor any Cj to be different from the set
of literals of cj . Now (92) prefers those models where as many Pi as possible are in False .

In the following, given a PDLP S, let KBS be the Tbox defined above.

Lemma 7.18 Given a PDLP S, a literal l in S’s language, and the encoding L of l, the following
are equivalent:

(minimal entailment) S |=min l;

(subsumption) Circvar(KBS) |= > v ∃R.(True u L);

(co-sat) False u L is not satisfiable w.r.t Circvar(KBS);

(instance checking) Circvar(KBS) |= (∃R.(True u L))(a).

This lemma can be proved by analogy with the proof of Lemma 6.5; the details are left to the reader.
The conjunctions (u) nested in ∃ can be easily replaced with a new atom A by adding the

equivalence A ≡ True u L, that can itself be encoded in LL EL⊥, so we have:
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Theorem 7.19 Subsumption and instance checking over Circvar(LL EL⊥) are Πp
2-hard; concept

satisfiability is Σp
2-hard. These results hold even if the three reasoning tasks are restricted to LL

EL⊥ concepts, and priorities are specificity-based.

7.2 Left Local EL⊥ and Circfix

By a reduction of the validity problem for quantified Boolean formula, we can show that
Circfix(aLL EL⊥) is more complex than Circvar(aLL EL⊥), unless the polynomial hierarchy col-
lapses. Computing the truth of a quantified Boolean formula

ψ = Q1p1 . . . Qnpn.ϕ

(where the Qi’s are quantifiers) can be reduced in polynomial time to subsumption checking in
Circfix(aLL EL⊥) as follows. Introduce concept names A0, . . . , An, Ti and Fi for i = 1 . . . n, and
concept names Eji for 1 ≤ i < j ≤ n. Introduce role names R, bad , good , and Ui for i = 1 . . . n.

We define a aLLEL⊥ knowledge base 〈K,≺K〉, where K = KLL ∪Ka. The left-local part KLL

consists of the following groups of axioms. Notice that, in the following description, i is always an
arbitrary index in {1, . . . , n}. First, we encode the negation normal form ϕ̄ of ¬ϕ. Let Bpi = Ti
and B¬pi = Fi. For all subformulas F ∧G of ϕ̄ introduce a new concept name BF∧G and add the
inclusion BF uBG v BF∧G. For all subformulas F ∨G of ϕ̄ introduce a new concept name BF∨G
and add the inclusions BF v BF∨G and BG v BF∨G.

The second group of axioms of KLL constrains Ti and Fi to avoid inconsistencies. Intuitively
∃Ui means “pi is undefined”:

Ti u Fi v ⊥ (93)

Ti u ∃Ui v ⊥ (94)
Fi u ∃Ui v ⊥ (95)

The third group of axioms of KLL defines a tree that encodes the truth assignments needed to
evaluate the QBF:

for all i 6= j Ai uAj v ⊥ (96)

for all i s.t. Qi = ∀ Ai−1 v ∃R.(Ti uAi) u ∃R.(Fi uAi) (97)

for all i s.t. Qi = ∃ Ai−1 v ∃R.Ai (98)

The fourth group of axioms of KLL detects misrepresentations by forcing role bad to point
to the nodes of the evaluation tree where something is going wrong (i.e. the truth assignment is
incomplete, or some predicate changes value along a branch, or ϕ is false in a leaf).

> vn ∃bad .∃Ui (99)

> vn ∃bad .Eji (100)

> vn ∃bad .Êji (101)

> vn ∃bad .(Bϕ̄ uAn) (102)

(Eji and Êji are defined in Ka below). Finally, good captures the absence of bad :
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∃bad u ∃good v ⊥ . (103)

The acyclic terminology Ka has the only purpose of detecting whether some propositional symbol
changes its value along a path:

Eji ≡ Aj−1 u Ti u ∃R.(Aj u Fi) (104)

Êji ≡ Aj−1 u Fi u ∃R.(Aj u Ti) . (105)

Lemma 7.20 Let I be a model of Circfix(KB) that satisfies A0 u ∃good . For all i = 1 . . . n, all the
individuals in ∆I are contained in either T Ii or F Ii .

Proof. First, by contradiction, assume that for some i = 1 . . . n and x ∈ ∆Ii , x is neither in F Ii nor
in T Ii . Since axioms (93)-(95) do not prevent x from satisfying ∃Ui and I must be minimal w.r.t.
axiom (99), then the entire domain ∆I satisfies ∃bad .∃Ui. However, by axiom (103), this means
that A0 u ∃good is unsatisfiable against the hypothesis. 2

Lemma 7.21 Let I be a model of Circfix(KB) that satisfies A0 u ∃good . If for some i = 1 . . . n,
xi ∈ (Ai uTi)I (respectively, x ∈ (Ai uFi)I), then all paths {xi, xi+1, . . . , xn} such that xj ∈ Aj
and (xj−1, xj) ∈ RI , where i < j ≤ n, are contained in T Ii (resp., y ∈ F Ii ).

Proof. Assume that xi ∈ (AiuTi)I and {xi, xi+1, . . . , xn} 6⊆ T Ii . This means that xi 6= xn and for
some i < j ≤ n, xj−1 ∈ (Aj−1 u Ti)I and xj ∈ (Aj−1 u Fi)I . Then, by axiom (104), xj−1 ∈ Eji
and since I must be minimal w.r.t. axiom (100) the entire domain ∆I satisfies ∃bad .Eji . However,
by axiom (103), this means that A0 u ∃good is unsatisfiable against the hypothesis. 2

Theorem 7.22 Concept satisfiability, subsumption checking, and instance checking are PSPACE-
hard in Circfix(aLL EL⊥). The result still holds if the nesting level of existential restrictions is
bounded by a constant, and the priority relation is empty.

Proof. In order to prove the theorem it suffices to show that the QBF ψ is true iff A0 u ∃good is
satisfiable w.r.t. the above KB.
[if ] Let I be a model of Circfix(KB) that satisfies A0 u ∃good . Due to axioms (96)-(98), I must
contain a DAG that starts with x (which is in (A0 u∃good)I) and, following the R-edges, proceeds
through the concepts Ai of increasing index, up to An. In this DAG, for all i = 1 . . . n such that
Qi = ∀, individuals belonging to a AIi have two successors: one in AIi+1 ∩ T Ii+1 and the other
in AIi+1 ∩ F Ii+1. Individuals in AIi , where Qi = ∃, have only one successor, in AIi+1. Due to
Lemma 7.20, such a successor is either in T Ii+1 or F Ii+1.

Now, consider any truth assignment v to the universally quantified variables of ψ. In the DAG,
follow the unique path from x to a leaf z ∈ AIn, that for each level i corresponding to a Qi = ∀
proceeds withAIi+1∩T Ii+1 orAIi+1∩F Ii+1 in accordance with v. By Lemma 7.20, for all i = 1 . . . n
z is in either Ti or Fi, moreover, by Lemma 7.21, membership of z in Ti or Fi is consistent with v.
Therefore, z represents a full truth assignment of the variables in ψ which extends v.

Now, since I minimizes the set of abnormal individuals w.r.t. the defeasible inclusion (99)
and in all models ∃good and ∃bad are disjoint, x ∈ ∃goodI implies that z 6∈ BIϕ̄. But then, it is
straightforward to conclude that this truth assignment satisfies ϕ.
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[only if ]. Assume that ψ is true. Assume w.l.o.g. that odd quantifiersQ1, Q3, . . . , Qn−1 are uni-
versal and even quantifiers are existential. For each existential quantifier Qi, let fi : {T, F}i/2 →
{T, F} be the function such that for all values v1, v3, . . . , vn−1 of the universally quantified vari-
ables, ϕ(v1, f2(v1), v3, f4(v1, v3), . . . , fn(v1, v3, . . . , vn−1)) is true.

We define a tree-like model I of KB that satisfies A0 u ∃good . We start with a root individual
x, such that x |=I A0 u ∃good . We proceed inductively as follows. For even i (including 0), each
individual y ∈ AIi has two R-successors y′, y′′ ∈ AIi+1, such that y′ ∈ T Ii and y′′ ∈ F Ii (see
axioms (97)). For odd i, each individual y ∈ AIi has one R-successor y′ ∈ AIi+1 (see axioms (98)),
such that y′ satisfies either Ti or Fi, according to the value of fi when applied to the truth values
that can be read along the path from the root to y. Along each R − path x0 . . . xi . . . xn the same
concept Ti or Fi assigned to xi is assigned to all xj , with i < j ≤ n, and indifferently either Ti or Fi
is assigned to the xh with 1 ≤ h ≤ i. The model is completed by assigning to xn (i) BF∧G, for all
subformulas F ∧G of ϕ̄, such that F and G are assigned to xn, and (ii) BF∨G, for all subformulas
F ∨G of ϕ̄, such that F or G are assigned to xn.

We leave to the reader the proof that the structure just defined satisfies the classical part of
KB. Regarding minimality w.r.t. the defeasible inclusions in KB, we remark the following. All
the individuals violate inclusions (99). However, due to rules (94) and (95), the situation cannot
be improved by simply modifying the roles. Similarly, all the individuals violate inclusions (100)-
(101). However, since the Eji are all empty these defeasible inclusions cannot be improved.

Finally, since each leaf z ∈ An represents a truth assignment that satisfies φ, then Bϕ̄ is empty
and hence our model is also minimal w.r.t. the inclusion (102). 2

The LL fragment of EL⊥, unlike LLf , does not fully support unqualified existential. Conse-
quently, Theorem 4.4 cannot by used to transfer the hardness results of Theorem 7.19 from var to
fix.9 The above hardness results hold only for the more general framework Circvar(LLf EL⊥) and
hence, by Theorem 4.4,for Circfix(LLf EL⊥):

Proposition 7.23 Subsumption and instance checking over Circfix(LLf EL⊥) are Πp
2-hard; con-

cept satisfiability is Σp
2-hard. These results hold even if queries contain only LL EL⊥ concepts, and

priorities are specificity-based.

The following result, whose proof can be found in the Appendix, shows a context in which the
above lower bounds are tight: namely, the case in which the priority relation is empty (i.e., DIs are
mutually incomparable) and, for subsumption queries C v D or instance checking queries D(a),
the quantifier depth of D is bounded by a constant.

Lemma 7.24 LetKB = 〈KS∪KD, ∅〉 be an LLfEL⊥ knowledge base, andC,D be EL⊥ concepts.
For all models I ∈ Circfix(KB) and for all x ∈ CI \DI there exists a model J ∈ Circfix(KB) such
that (i) ∆J ⊆ ∆I , (ii) x ∈ CJ \DJ (iii) |∆J | is O((|KB|+ |C|)d) where d = depth(D).

Going back to the LL fragment, in the following we prove that Circfix is less complex than Circvar

(unless the polynomial hierarchy collapses). In particular, we show that Circfix(LLEL⊥) is tractable.
Algorithm 1 takes as input a knowledge base KB and two concepts C and D (we may assume
without loss of generality that C = AC u

dn
i=1 ∃Pi.Bi) and checks whether Circfix(KB) |= C v D.

9. We will prove below that in LL EL⊥, Circfix is actually less complex than Circvar.
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Algorithm 1:
Data: C = AC u

dn
1 ∃Pi.Bi, D, KB = 〈K,≺〉.

A := {A vn ∃P.B | C |= A};
X := C;
while A 6= ∅ do

remove from A a defeasible inclusion A vn ∃P.B;
if SupCls(∃P.B) ⊆ SupCls(C) and NonEmpty(∃P.B,KS) ⊆ NonEmpty(C,KS) then

X := X u ∃P.B;

return X vKS
D;

With SupCls(H) we mean the set of superclasses of a concept H , i.e., the set of B ∈ NC ∪ {⊥}
such that H vKS

B.
Given a concept H , the operator NonEmpty(H,KS) represents the set of concepts that are

forced to be non empty whenever H is. Note that this set includes some concepts that are forced to
be non empty by the ABox in KB, independently from H . We write H ; A iff H vKS

∃R.A for
some R, and we denote by +

; the transitive closure of ;. Then, NonEmpty(H,KS) is formally
defined as follows:

NE Kernel = {H} ∪
⋃
a∈NI
{A | KS |= A(a)} ∪

⋃
a∈NI,R∈NR

{A | KS |= (∃R.A)(a)}
NonEmpty(H,KS) =

⋃
A∈NE Kernel{A′ | A

+
; A′}.

Roughly speaking, the algorithm accumulates the RHS of defeasible inclusions actively satisfied
by a witness of C. Then, it tries to derive D. In particular, a defeasible inclusion A vn ∃R.B is
actively satisfied just in the case (i) does not entail locally ⊥ or a concept name not subsumed by
C, and (ii) does not entail globally the non-emptiness of a concept name that should be empty. The
rationale is that concept names are fixed and circumscription cannot change their extension as the
application of A vn ∃R.B could instead require.

Lemma 7.25 Circfix(KB) |= C v D holds iff Algorithm 1 returns true.

Proof. [if ] It suffices to show that for all models of Circfix(KB), X subsumes C, where X is the
formula obtained after the while statement. Assume per absurdum that for some model I and an
individual x ∈ ∆I , x ∈ CI \XI . This means that for some defeasible inclusionA ⊆n ∃P.B (i) x 6∈
satI(A ⊆n ∃P.B) and (ii) from line 1, SupCls(∃P.B) ⊆ SupCls(C) and NonEmpty(∃P.B,KS) ⊆
NonEmpty(C,KS).

Note that, since NonEmpty(∃P.B,KS) ⊆ NonEmpty(C,KS), whenever ∃R.B vKS
∃S.B̄

there exists an individual yB̄ ∈ B̄I . Let I ′ be the interpretation obtained from I by adding all such
(x, yB̄). Clearly, by adding new arcs the set of individuals that satisfied a defeasible inclusion δ
cannot decrease, therefore for all δ ∈ KD, satI(δ) ⊆ satI′(δ). Moreover, since x ∈ (∃R.B)I

′
,

satI(A ⊆n ∃P.B) ⊂ satI′(A ⊆n ∃P.B) and hence I ′ <fix I.
From condition (ii) and the fact that defeasible inclusions do not conflict with each other, it is

easy to verify that I ′ is also a classical model of KB, but this would mean that I is not a model of
Circfix(KB) against the hypothesis.

[only if ] Assume that Algorithm 1 returns false. Let I be the following interpretation:

• ∆I = {xC} ∪ {xA | A ∈ NonEmpty(C,KS)} ∪ {xa | a ∈ NI};
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• for all B ∈ NC, BI is the union of: (i) {xC} if B ∈ S1, (ii) the set of xA, with A ∈ S2, such
that A |=KS

B, and (iii) the set of xa, with a ∈ NI, such that KS |= B(a);

• for all R ∈ NR, RI is the union of the pairs (i) (xA, xB) where A,B ∈ S2 and A vKS
∃R.B,

(ii) (xa, xb) where a, b ∈ NI and KS |= R(a, b), (iii) (xa, xB) where a ∈ NI, B ∈ S2 and
KS |= ∃R.B(a), (iv) (xC , xB) where B ∈ S2 and X vKS

∃R.B; other arcs are not relevant.

By construction I is a (classical) model of KS and xC ∈ CI \ DI , hence in order to prove I ∈
Circfix(KB) it remains to show that I is minimal. Note that, since defeasible inclusions do not
contain nested roles on the right side, the set of defeasible inclusions satisfied by an individual does
not affect the set of defeasible inclusions satisfied by another individual. Therefore, an interpretation
can be improved point-wise and we can assume w.l.o.g. that all the individuals in I, except xC ,
cannot be further improved. Assume now that there exists an interpretation J that improves I in
xC , this means in particular that for some δ = A vn ∃P.B, xC ∈ satJ (δ) \ satI(δ).

The assumption xC 6∈ satI(δ) means that ∃P.B does not satisfy the condition in line 1 and,
since concept names are fixed, δ cannot be satisfied in J . 2

Theorem 7.26 In Circfix(LL EL⊥) DKBs, LL EL⊥ subsumption, instance checking, and concept
consistency are in P.

Proof. Since SupCls(H) and NonEmpty(H,KS) are based on classical reasoning, they can be
performed in polynomial time. Moreover, the number of iterations in Algorithm 1 is bounded by
the number of defeasible inclusions. Therefore, due to Lemma 7.25, the subsumption problem is
tractable. By Theorem 3.9, instance checking and concept inconsistency can be reduced to sub-
sumption. 2

Complexity is low under Circfix because in this context LL axioms are not general enough to sim-
ulate quantifier nesting nor conjunctions of existential restrictions. In Circvar these features can be
simulated by abbreviating compound concepts C with concept names A using equivalences A ≡ C
such that C does not depend on qualified existentials (hence the LL restriction is preserved). With
Circfix, such equivalences change the semantics of C whenever C is (or contains) an existential
restriction, because A is fixed and prevents C from varying freely. As we reintroduce the missing
features, complexity increases again.

Let LL2EL⊥ support the schemata:

A v[n] ∃P.B ∃P1 u ∃P2 v ∃P3.B ∃P v B

One may easily verify that LL2EL⊥ is equivalent to LL EL⊥ plus schema ∃P1 u ∃P2 v ∃P3.B.
The missing axioms can be reformulated using fresh roles R and suitable equivalences ∃R ≡ C
(that preserve C’s semantics because R is a varying predicate)10.

With these additional schemata, one can create conflicts between variable concepts, as in ∃P1 u
∃P2 v ⊥. Then different defeasible inclusions may block each other, thereby creating a potentially
exponential search space.

Theorem 7.27 Subsumption and instance checking over Circfix(LL2EL⊥) are coNP-hard; con-
cept satisfiability is NP-hard. These results hold even if the three reasoning tasks are restricted to
LL2EL⊥ concepts, and priorities are specificity-based.

10. In particular, schema A1uA2 v B can be emulated by the inclusions A1 v ∃R1, A2 v ∃R2, B v ∃R3, ∃R1 v A1,
∃R2 v A2, ∃R3 v B, and ∃R1 u ∃R2 v ∃R3.
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Proof. By reduction of SAT. For each propositional variable pi introduce the concept names Ai, Āi,
and role Ui, representing pi’s truth value (resp. true, false, and undefined). These alternatives are
made mutually inconsistent with:

Ai u Āi v ⊥ Ai u ∃Ui v ⊥ Āi u ∃Ui v ⊥

For each given clause cj = lj,1 ∨ · · · ∨ lj,n, introduce a concept name C̄j representing cj’s falsity,
and for each L̄j,k representing the complement of lj,k add L̄j,1 u · · · u L̄j,n v C̄j .

Define a concept name F̄ representing the falsity of the given set of clauses, and a disjoint
concept F with:

C̄j v F̄ (for all input clauses cj) F̄ u F v ⊥ .

Now, with a defeasible inclusion, ∃Ui is forced to be true for all individuals that satisfy neither Ai
nor Āi; moreover, a role U detects undefined literals:

> vn ∃Ui ∃Ui v ∃U .

Let K be the above set of inclusions and KB = 〈K,≺K〉. It can be proved that the given set of
clauses S is unsatisfiable iff Circfix(KB) |= F v ∃U , therefore subsumption checking is coNP-
hard.

Similarly, it can be proved that S is unsatisfiable iff Circfix(KB′) |= (∃U)(a), where KB′ =
〈K′,≺K′〉 and K′ = K ∪ {F (a)}; therefore instance checking is coNP-hard.

Finally, it can be proved that S is satisfiable iff F u∃OK is satisfiable w.r.t. Circfix(KB′′), where
KB′′ = 〈K′′,≺K′′〉 and K′′ = K∪ {∃U u ∃OK v ⊥}; therefore satisfiability checking is NP-hard.

We are only left to remark that K can be easily encoded in LL2EL⊥. 2

We prove that this bound is tight using Algorithm 2. The algorithm non-deterministically looks for
an individual x (in some model) that satisfies C and not D. S1 guesses any additional fixed concept
names satisfied by x; S2 guesses the concept names that are satisfied somewhere in the model (not
necessarily by x) and finally ≺′ guesses a total extension of ≺ that determines the application order
of GDIs.

Similarly to Algorithm 1, Algorithm 2 selects the defeasible inclusions that are active in x and
accumulates in the formula X the RHS of those that are not blocked, i.e. do not require to change the
interpretation of the concept names neither locally nor globally. The major differences are that (i)
defeasible inclusions are extracted according to ≺′ and (ii) in line 2 the entire accumulated formula
X u ∃P.B is used to check that a defeasible inclusion is not blocked.

Finally, note that the variable part of C (i.e.
dn
i=1 ∃Pi.Bi) is introduced in X only in line 8, after

all defeasible inclusions have been applied, because defeasible inclusions can influence the variable
part (e.g. by forcing it to be empty).

Lemma 7.28 Circfix(KB) |= C v D holds iff all the runs of Algorithm 2 return true.

Proof. [if ] Assume per absurdum that there exists an interpretation I ∈ Circfix(KB) and an indi-
vidual x ∈ ∆I such that x ∈ CI \ DI . Let S1 and S2 be the set of concept names in NC that I
satisfies respectively locally in x and globally – i.e., for some individual. Let≺′ be a linearization of
≺ compatible with I, i.e. for all δ, δ′ ∈ KD (i) either δ ≺′ δ′ or δ′ ≺′ δ, (ii) δ ≺ δ′ implies δ ≺′ δ′,
(iii) if δ and δ′ are not comparable according to ≺ (δ 6≺ δ′ and δ′ 6≺ δ) and x ∈ satI(δ) \ satI(δ

′),
then δ ≺′ δ′.

753



BONATTI, FAELLA, & SAURO

Algorithm 2:
Data: C = AC u

dn
1 ∃Pi.Bi, D, KB = 〈K,≺〉.

Guess S1, S2 ⊆ NC, where uS1 |= AC and S1 ⊆ S2, and a linearization ≺′ of ≺;
A := {A vn ∃P.B | uS1 |= A};
X :=

d
S1;

while A 6= ∅ do
remove from A the ≺′-minimal inclusion A vn ∃P.B;
if SupCls(X u ∃P.B) ⊆ S1 and NonEmpty(X u ∃P.B,KS) ⊆ S2 then

X := X u ∃P.B;

X := X u
dn

1 ∃Pi.Bi;
return SupCls(X) 6⊆ S1 or NonEmpty(X,KS) 6⊆ S2 or X vKS

D;

Let X be the result of running Algorithm 2 on guesses S1, S2, and ≺′. It is straightforward to
see that for all δ = A vn ∃P.B ∈ KD such that ∃P.B occurs in X, x ∈ satI(δ). This, together
with the fact that x ∈ CI , implies that 1) SupCls(X) ⊆ S1; 2) NonEmpty(X,KS) ⊆ S2 and, since
x 6∈ DI , 3) X 6vKS

D. But this means that on this run Algorithm 2 should return false.
[only if ] Assume that for some guess of S1, S2 and ≺′ Algorithm 2 returns false. Let I be

defined as in Lemma 7.25. In a similar way it can be proved that I is a classical model of KS and
xC ∈ CI \DI . Assume now that I is improved by an interpretation J , w.l.o.g. we can also assume
that (i) for some δ = A vn ∃P.B, xC ∈ satJ (δ) \ satI(δ) and (ii) for all δ′ with higher priority
than δ or not comparable with it, we have xC ∈ satJ (δ′) iff xC ∈ satI(δ

′).
If X′ is the value of X when δ is extracted on line 2 of Algorithm 2, since δ′ ≺ δ implies δ′ ≺′ δ,

all the δ′ already extracted have higher priority or are not comparable with δ. Since (ii) holds and by
construction xC ∈ X′I , xC ∈ X′J . However, the assumption xC 6∈ satI(δ) means that X′ u ∃P.B
does not satisfy the condition in line 2 and since concept names are fixed δ cannot be satisfied in J .

2

Theorem 7.29 LL2EL⊥ subsumption and instance checking over Circfix(LL2EL⊥) are in coNP;
LL2EL⊥ concept satisfiability is in NP.

Proof. It is analogous to Theorem 7.26 and left to the reader. 2

It can be verified that the LL2 fragment does not support quantifier nesting. With quantifier nesting,
one would obtain LLf EL⊥ (i.e. full LL).

8. Related Work

DLs have been extended with nonmonotonic constructs such as default rules (Straccia, 1993; Baader
& Hollunder, 1995a, 1995b), autoepistemic operators (Donini et al., 1997, 2002), and circumscrip-
tion (Cadoli, Donini, & Schaerf, 1990; Bonatti et al., 2009, 2009; Bonatti, Faella, & Sauro, 2010).
An articulated comparison of these approaches can be found in the work of Bonatti, Lutz, and
Wolter (2009).

Most of these approaches concern logics whose reasoning tasks’ complexity lies beyond PH
(unless the hierarchy collapses). For example, the logics considered by Donini et al. (1997, 2002)
range from PSPACE to 3-ExpTime. The circumscribed DLs studied by Cadoli et al. (1990) as well
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Table 1: Main complexity results. The corresponding decision problems for the classical versions
of the considered logics are solvable in polynomial time.

DL-liteR EL EL⊥

var fix(\) var fix var fix

LL – aLL (†) LL LL2 LLf aLL
concept
satisfiability Σp

2 ≤ Σp
2 trivial Σp

2 ≤P NP ≥ Σp
2

(#) ≥PSPACE

subsumption
& instance
checking

Πp
2 ≤ Πp

2 ≤P ≥ExpTime Πp
2
(‡) ≤P co-NP ≥ Πp

2
(#) ≥PSPACE

(†) with specificity-based priorities; general priorities make var at least as complex as fix
(‡) if quantifier nesting is bounded in the r.h.s. of subsumptions and in instance checking problems
(\) if DIs are left-fixed or the priority relation is empty
(#) membership holds if the priority relation is empty and condition (‡) holds

as Bonatti et al. (2009) range from NPNExp to NExpNP. Some logics are undecidable (Baader &
Hollunder, 1995a; Bonatti et al., 2009).

A pioneering approach to low-complexity, circumscribed description logics was presented by
Cadoli et al. (1990). That approach applies non-prioritized circumscription to a fragment of the
description logic ALE . Decidability of reasoning is shown by a reduction to propositional reason-
ing under the Extended Closed World Assumption (ECWA), which is in Πp

2. To the best of our
knowledge, that was the first effective reasoning method for a nonmonotonic description logic.

A hybrid of Circfix(EL⊥) and closed world assumption has been proved to be in PTIME (Bonatti
et al., 2010). On the one hand, that approach imposes less restrictions on the structure of inclusions;
on the other hand, it cannot be fully extended to variable predicates without affecting tractability.

A recent approach that is similar in spirit to circumscription has been taken by Giordano et
al. (2008). They extend ALC with a modal operator T representing typicality, and maximize T ’s
extension to achieve nonmonotonic inferences. Decidability is proved via a tableau algorithm that
also establishes a co-NExpTimeNP upper bound for subsumption. No matching lower bounds are
given; it is proved that reasoning in the underlying monotonic logic is NP-hard.

Finally, an approach based on rational closures andALC can be found in the work of Casini and
Straccia (2010). An appealing feature of this approach is that reasoning can be reduced to classical
inference. Complexity is not increased by nonmonotonic reasoning: it ranges from PSPACE to
ExpTime.

9. Discussion and Future Work

The main complexity results of this paper are summarized in Table 1. By restricting circumscribed
KBs to Circvar(DL-liteR), complexity decreases significantly (from (co)-NExpTimeNP to the sec-
ond level of PH). The same complexity upper bounds hold in Circfix(DL-liteR) whenever the priority
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relation is empty or the defeasible inclusions admit only concept names on the LHS. However, the
general case is still an open question.

On the contrary, restricting the language to EL or EL⊥ does not in general suffice to bring com-
plexity within PH. In particular, it can be proved that reasoning tasks are undecidable in Circ∗F (EL)
(i.e., when roles can be fixed) and that reasoning in Circfix(EL) and Circvar(EL⊥) is in general
ExpTime-hard.

The main source of the higher complexity of the EL family (w.r.t. DL-liteR) has been identified
by introducing a further restriction called full left locality (LLf ) that suffices to confine complex-
ity within the second level of PH under Circvar with specificity-based priorities, provided that the
quantifier nesting level in subsumption queries and instance checking queries is suitably bounded
(no restrictions are needed on concept satisfiability).

Since the left locality restriction rules out acyclic terminologies (which are commonly used in
ontologies), it has been relaxed to almost left local (aLL) knowledge bases, that support acyclic
terminologies with the restriction that unfolding (i.e., the process of replacing the atoms defined
in the acyclic terminology with their definition) should yield a LLf knowledge base. Reasoning
becomes PSPACE-hard, in general; however in the aLL fragment of Circvar (and under the same
assumptions needed for LLf ), reasoning remains complete for the second level of PH. In particular,
the assumption that the priorities are determined by specificity is essential: By Theorem 4.5, general
priorities make Circvar at least as complex as Circfix, that is, PSPACE-hard.

We have also analyzed the complexity of several fragments lying between LL and aLL under
Circfix. These results provide some further information about the complexity sources in circum-
scribed DLs. For example, quantifier nesting in the KB is partially responsible for complexity
(presumably because it enables conflicts between the default properties of different individuals): in
particular, by removing quantifier nesting (i.e., by restricting KBs to the LL2 fragment) complex-
ity drops to the first level of PH. The other source of complexity, of course, is due to the conflicts
between defeasible inclusions concerning each individual in isolation; in Circfix(LLEL⊥) a defea-
sible inclusion can never block another inclusion (because fixed predicates prevent this) and—as a
consequence—complexity drops within PTIME.

We have also proved that in all fragments that fully support unqualified existential restrictions,
variable concept names can be eliminated. Moreover, in EL⊥ and its various left local fragments,
compound concepts can be replaced with concept names in the left-hand side of defeasible inclu-
sions, without affecting expressiveness. In the same fragments, general priorities can be simulated
using only specificity-based priorities.

We have to leave several interesting questions open: First, it is not clear whether general priori-
ties are necessary to the hardness results for DL-liteR; in particular, it would be interesting to estab-
lish the exact complexity of DL-liteR with specificity-based priorities. Other gaps in the complexity
of circumscribed DL-liteR concern the complexity of Circfix with unrestricted GDIs or nonempty
priority relations, and the complexity of reasoning with fixed roles. The next interesting question is
whether the bound on quantifier nesting in the queries is actually needed to confine complexity of
circumscribed EL⊥ within the second level of PH. Finally, there is no exact charcterization of the
complexity of Circfix(LLf EL⊥) and of the fragments whose complexity lies beyond PH.

For the fragments that do belong to the second level of PH, we see an interesting opportunity
of encoding reasoning in ASP and use some well-engineered engine such as DLV (Eiter, Leone,
Mateis, Pfeifer, & Scarcello, 1997) to test scalability. In order to evaluate implementations exper-
imentally, it is necessary to set up suitable benchmarks that, in a first stage, must necessarily be
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synthetic problems, since nonmonotonic KBs have not been supported so far. Of course, identifying
meaningful criteria for problem generation is a nontrivial issue. Therefore, systematic experimental
evaluations still require a significant body of work.
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Appendix A. Additional Lemmas and Proofs

A.1 Proofs for Section 6

Lemma 6.3. Given a PDLP S over PV = {p1, . . . , pn} and a truth assignment I ⊆ PV , I
is a minimal model of S iff the interpretation model(S, I,∆) is a model of Circvar(KBS), for all
domains ∆ with |∆| = 2n+ 1.

Proof. [only if ] Let I = model(S, I,∆), we first show that I is a model of the classical part of
KBS . Since I-V, the Abox (18) and all axioms (20-24) are satisfied. Whereas, axioms (33-36)
follow directly from VII.

Since I is an interpretation, VI assures that if TrueP I 6= ∅, then FalseP̄ I 6= ∅. Together with
VIII, axioms (31-32) are satisfied, whereas together with VII, True and False reflect in I the truth
values of I; therefore TrueI ∩ FalseI = ∅ and hence axiom (30) is satisfied. Moreover, as I is a
model of S, for each c ∈ S there exists at least one literal li occurring in c such that I |= li. Due
to V-VII, CIj ∩ TrueI 6= ∅ and, due to VII and VIII (where X = True and Y = Cj), I satisfies
axioms (26-29).

It remains to prove that there exists no interpretation J such that J <var I. As ∆I is finite,
we can assume w.l.o.g. that J is a model of KBS . Assume that for some 1 ≤ i ≤ 2n, satI(Li vn
¬Li) ⊂ satJ (Li vn ¬Li), this is equivalent to saying that LJi ⊂ LIi , but since LIi is a singleton,
LJi would be empty contradicting axioms (18-23). Similarly, satI(Cj vn ¬Cj) ⊂ satJ (Cj vn
¬Cj) iff CJj ⊂ CIj . Thus, due to V some axiom Lji v Cj would not be satisfied in J . Therefore
the defeasible inclusions with highest priority cannot be improved.

Now assume that for each literal and clause concept it holds LJi = LIi = {di} and CJj = CIj .
Since I reflects the truth values of I , all the di’s that are not included in FalseLIi are included in
TrueLIi . Thus, if for all 1 ≤ i ≤ 2n, satI(Pi vn FalsePi) were equal to satJ (Pi vn FalsePi)
then there would be no way for J to improve a defeasible inclusion Pi vn TruePi. Therefore, the
only possibility so far is that J improves some instance of (40).

Note that TrueJ and FalseJ are a partition of
⋃
i P
J
i . Otherwise, we could set a PJi without

truth value (i.e., di 6∈ TruePJi ∪FalseP
J
i ) to FalsePi — since no classical inclusion is jeopardized

we would obtain an improvement of J according to (40), against the hypothesis that J is a model.
Due to (31-36), TrueJ and FalseJ are a partition of all {d1, . . . , d2n}.

Thus, we can consider the propositional assignment J such that pi ∈ J iff PJi ⊆ TrueJ .
First, for all clauses cj , since J satisfies axioms (26-29), for some 1 ≤ i ≤ 2n we have

LJi ⊆ C
J
j ∩TrueJ . As LJi = LIi and CJj = CIj , ljl occurs in cj . But this means that J |= li, and
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hence J |= cj . Thus, J is a model of S. Finally, as said before, if J <var I, then the intersection of⋃
i P
I
i and FalseI is strictly contained in the intersection of

⋃
i P
J
i and FalseJ . This implies that

J ⊂ I , against the hypothesis that I is a minimal model.
[if ] Assume that I = model(S, I,∆) is a model of Circvar(KBS). First we show that I is a

model of S, i.e., for all cj ∈ S, I |= cj . As I satisfies axioms (26-29), for some 1 ≤ i ≤ 2n it holds
di ∈ CIj ∩ TrueI . Due to IV and V, di belongs to some LIi such that the corresponding literal li
occurs in cj . According to VI, this implies that I |= li, and hence I |= cj .

It remains to show that I is a minimal model. Assume that there exists a model J of S such that
J ⊂ I , without loss of generality we can assume that J is minimal model. Let J = model(S, J,∆),
from the above arguments J is a model of KBS . Furthermore, satJ (δ) = satI(δ) for each δ of
type Li vn ¬Li or Cj vn ¬Cj . Finally, as TrueJ and FalseJ reflect the truth values of J ,⋃
i P
I
i ∩ FalseI ⊂

⋃
i P
J
i ∩ FalseJ and hence J <var I due to the improvement of DIs (40). 2

Lemma 6.4. If I is a model of Circvar(KBS), then there exist a minimal model I of S such that
pi ∈ I iff P Ii ⊆ TrueI iff P̄ Ii ⊆ FalseI , for all i = 1, . . . , n.

Proof. Let I be a model of Circvar(KBS). First, we show that LIi is a singleton, for all 1 ≤ i ≤ 2n.
Assume the contrary. Clearly, to satisfy (18–21), each LIi has to be nonempty. Therefore, for some
1 ≤ k ≤ n, LIk contains at least two individuals. We will show that there exists an interpretation I ′
that improves I.

For all 1 ≤ i ≤ 2n, let di be an arbitrary element of LIi , and let ∆ = {d1, . . . , d2n} ∪ {aI}. As
the LIi are disjoint with each other (see axioms (22)) and NonEmptyI is disjoint with any LIi , we
have |∆| = 2n+ 1.

All PDLP are satisfiable, thus there exists a model Î of S. Let Î = model(S, Î,∆). Let I ′ be
an interpretation such that: (i) ∆I

′
= ∆I , (ii) for all roles R, RI

′
= ∆I × ∆I , (iii) I ′ coincides

with Î on ∆ with respect to all concept names, and (iv) all the other individuals d ∈ ∆I \∆ do not
belong to any concept name. It is straightforward to see that I ′ satisfies the classical part of KBS .
Furthermore, by construction, (a) for all 1 ≤ i ≤ 2n, LI

′
i ⊆ LIi ; (b) for all 1 ≤ j ≤ m, CI

′
j ⊆ CIj ;

(c) for some 1 ≤ l ≤ 2n, LI
′
l ⊂ LIl . Thus, I ′ <var I, due to the improvement of DI (23).

By the above argument, we have LIi = {di}. Define the truth valuation I = {pi | di ∈ TrueI}.
It remains to prove that I is a minimal model of S. The fact that I is a model of S is ensured by
axioms (24–29). Then, assume by contradiction that there exists a model J of S that is smaller
than I (i.e., J ⊂ I), and let J = model(S, J,∆). From J we can build an interpretation J ′ with
∆J

′
= ∆I and such that J ′ is a classical model of KBS and J ′ <var I, thus contradicting the

hypothesis that I is a model of Circvar(KBS). We define J ′ by copying from J all the properties
(concepts and roles) of the individuals in ∆J = ∆, and by leaving all the individuals in ∆I \∆ out
of concept and role extensions. 2

A.2 Proofs for Section 7

Given a KB K, an interpretation I, and an individual z, recall the definition of KB[z] from Sec-
tion 6.2. Redefine the notion of “support” as follows: supp I(C) is the set of individuals z ∈ ∆I

such that > vKB[z] C holds.

Lemma 7.12. LetKB = 〈K,≺K〉 be an LLfEL⊥ knowledge base, and C,D be EL⊥ concepts. For
all models I ∈ Circvar(KB) and for all x ∈ CI \DI there exists a model J ∈ Circvar(KB) such
that (i) ∆J ⊆ ∆I , (ii) x ∈ CJ \DJ , and (iii) |∆J | isO((|KB|2+|C|)d), where d = depth(D)+1.
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Proof. Given two individuals x and y in ∆I , the distance d(x, y) is the minimal length of role-paths
from x to y. Let KB∗ be the knowledge base obtained from KB by applying the transformation
presented in Section 7. Notice that |KB∗| ≤ |KB|2.

By Lemma 7.10, I can be extended into a model of Circvar(KB∗), which we continue to call I
for convenience. We define a small model J of Circvar(KB∗) such that x ∈ CJ \ DJ . Then, we
obtain the thesis by Lemma 7.11.

We start from an initial domain ∆J that contains (i) x; (ii) all aI , where a ∈ NI occurs in KB∗;
(iii) for all concepts H ∈ cl(KB∗) ∪ cl(C) such that HI 6= ∅, a witness yH ∈ HI ; (iv) for all
concepts H ∈ cl(KB∗) ∪ cl(C) such that supp I(H) 6= ∅, a witness wH ∈ supp I(H).

We expand J by exhaustively applying the following rule (where ∃P is a special case of ∃P.H
with H = >):

Let y ∈ ∆J and ∃P.H ∈ cl(KB∗) ∪ cl(C) be such that y ∈ (∃P.H)I and y 6∈ (∃P.H)J . If
d(x, y) < d, then add z to ∆J and (y, z) to PJ , where z is such that (y, z) ∈ P I and z ∈ HI .
Otherwise, add (y, yH) to PJ .

Finally, for each concept name A, set AJ = ∆J ∩AI .
With respect to the cardinality of ∆J , note that initially the number of individuals in ∆J is

O(|KB∗|+ |C|). During the expansion, for each individual whose distance from x is less than d, at
most O(|KB∗| + |C|) new individuals are added. This means that |∆J | = O((|KB∗| + |C|)d) =
O((|KB|2 + |C|)d).

By construction for each individual y ∈ ∆J andH ∈ cl(KB∗)∪cl(C) if y ∈ HI , then y ∈ HJ .
In particular, in caseH = ∃P , also the inverse holds, if y ∈ ∃PJ , then y ∈ ∃P I . From the previous
two facts it immediately follows that J is a classical model of KB∗ and x ∈ CJ . Moreover, since
up to a distance d from x, PJ is contained in P I , for all P ∈ NR, it is easy to see that x 6∈ DJ .

It remains to show that J is minimal. Assume by contradiction that for some classical model
J ′ of KB∗, it holds J ′ <var J , we show that there exists a classical model I ′ of KB∗ such that
I ′ <var I — against the hypothesis that I ∈ Circvar(KB∗).

We distinguish two cases: in the first cas, all individualswH introduced in clause (iv) still satisfy
the corresponding concept H in J ′; in the second case, at least one wH does not satisfy its concept
H . We define I ′ as follows. In both cases, individual names are interpreted as in I and concept
names for individuals in ∆J are interpreted as in J ′.

In the first case, an individual z ∈ ∆I \∆J satisfies a concept name A, that is z ∈ AI′ , if and
only if z ∈ supp I(A). Moreover, for each P ∈ NR, P I

′
is the minimal set such that:

1. PJ
′ ⊆ P I′ ;

2. if z ∈ ∆I \∆J and z ∈ supp I(∃P.H), and y ∈ HJ ′ then (z, y) ∈ P I′ .

We prove that I ′ is a classical model of KB∗. Since I ′ is a copy of J ′ over ∆J and J ′ is
a classical model, we only need to show that the individuals z ∈ ∆I \ ∆J satisfy all the strong
inclusions in KS. Note that if z satisfies in I ′ the LHS H of a strong inclusion, then z supports H
in I. By definition, z supports also the RHS in I. If the RHS is a concept name B, then z ∈ BI′

by construction. Otherwise, i.e., if the RHS is ∃P.H , by step 2 above, it suffices to show that HJ
′

is not empty. However, by assumption, the witness of ∃P.H introduced in clause (iv) still satisfies
∃P.H in J ′. Therefore, there exists an individual y satisfying H in J ′.

Next, we prove that I ′ <var I. Since J ′ <var J , it suffices to show that an individual z ∈
∆I\∆J satisfies in I ′ all the defeasible inclusions it satisfies in I. Assume that a DI δ = (A vn B)
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is satisfied by z in I. If z ∈ AI′ , then by construction z ∈ supp I(A). Clearly, if z ∈ supp I(A)
and z ∈ satI(A vn B), then z ∈ supp I(B). Therefore, z ∈ BI′ .

We are left to prove the theorem for the second case, i.e.: at least one wH does not satisfy its
concept H . Clearly, wH does not support H in J ′ anymore. In particular, there must be a DI δ such
that wH ∈ satJ (δ) \ satJ ′(δ). From J ′ <var J , it follows that there must be a DI δ′ such that
δ′ ≺K δ and satJ (δ′) ⊂ satJ ′(δ

′). Now, in I ′ we can safely violate all DIs whose priority is lower
than δ′, and in particular all DIs whose LHS classically subsumes >. Then, complete the definition
of I ′ as follows. Each basic concept A holds in an individual z ∈ ∆I \∆J if and only if> vKS

A.
For each P ∈ NR, P I

′
is the minimal set such that

1. PJ
′ ⊆ P I′ ;

2. if z ∈ ∆I \∆J , > vKS
∃P.H , and y ∈ HJ ′ then (z, y) ∈ P I′ .

It is easy to verify that I ′ is a classical model of KB∗. In order to prove that I ′ <var I, note that the
following two facts hold.

First, an individual z ∈ ∆I \∆J satisfies all the DIs whose priority is not minimal. Assume that
δ1 ≺K δ2, for some DIs δ1 and δ2, this means that the LHS of δ2 subsumes the LHS of δ1 but not
the vice versa. Then, the LHS of δ1 does not subsume > and hence, by construction, z vacuously
satisfies δ1.

Second, if z violates a DI δ′′ = (A vn B), then δ′ ≺K δ′′. As before, since δ′ ≺K δ, its LHS
does not subsume >. However, since z violates δ′′, z ∈ AI′ and hence A subsumes >. Therefore,
δ′ ≺K δ′′.

From the first fact it immediately follows that satI(δ
′) ⊂ satI′(δ

′). Assume now, that for some
δ′′, satI(δ

′′) 6⊆ satI′(δ
′′). If there exists an individual z ∈ ∆I \ ∆J such that z ∈ satI(δ

′′) \
satI′(δ

′′), then by the second fact δ′ ≺K δ′′. Otherwise, there must exist an individual w ∈ ∆J

such that w ∈ satI(δ
′′) \ satI′(δ

′′). However, in ∆J the set of DIs that an individual satisfies in I
(resp. I ′) is the same set of DIs it satisfies in J (resp. J ′). This means that there exists a defeasible
inclusion δ′′′ such that δ′′′ ≺K δ′′ and satJ (δ′′′) ⊂ satJ ′(δ

′′′). Due to the first fact, δ′′′ is satisfied
in all ∆I \∆J , and hence satI(δ

′′′) ⊂ satI′(δ
′′′). 2

Proposition 7.13. Let KB = 〈KLL ∪ Ka,≺〉 be an aLL EL⊥ knowledge base. Every model of
CircF (unf(KB)) can be extended to a model of CircF (KB).

Proof. Let Kunf = unf(KB) = 〈K′,≺′〉. Let I be any model of CircF (Kunf). Extend it to a
classical model J of K′ ∪ Ka by setting AJ = DJ for all definitions A ≡ D in Ka. Note that
K′ ∪ Ka is classically equivalent to KLL ∪ Ka. Now suppose that J is not a model of CircF (KB).
Since by construction J is a classical model of Ka and the strong axioms of KLL, there must be a
classical model J ′ of the same axioms such that J ′ <F J . By restricting J ′ to primitive predicates
(i.e., predicates that are not defined in Ka), we obtain a classical model I ′ of K′. Note that for all
defeasible inclusions δ ∈ KLL, it holds satJ ′(δ) = satJ ′(unf(δ,Ka)) = satI′(unf(δ,Ka)) and
satJ (δ) = satJ (unf(δ,Ka)) = satI(unf(δ,Ka)). It follows that I ′ <F I, a contradiction. 2

Proposition 7.14. Let KB = 〈KLL ∪ Ka,≺〉 be an aLL EL⊥ knowledge base and suppose that all
the concept names defined in Ka are variable. Then, for all models I of CircF (KB), the restriction
of I to primitive predicates is a model of CircF (unf(KB)).
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Proof. Let Kunf = unf(KB) = 〈K′,≺′〉. Let J be the restriction of I to primitive predicates.
In other words, J is obtained from I by dropping the interpretation of all concept names defined
in Ka, which are all variable. It can be easily verified that J is a classical model of K′. Suppose
by contradiction that J is not a model of CircF (Kunf); then there exists a classical model J ′ of
K′ such that J ′ <F J . Now extend J ′ to a model I ′ of KLL ∪ Ka by setting AI

′
= DI

′
for

all definitions A ≡ D in Ka. Since the predicates defined in Ka are variable, all fixed predicates
preserve their extensions across I, J , J ′, and I ′. Moreover, for all defeasible inclusions δ ∈ KLL,
we have satI′(δ) = satI′(unf(δ,Ka)) = satJ ′(unf(δ,Ka)) and satI(δ) = satI(unf(δ,Ka)) =
satJ (unf(δ,Ka)). It follows that I ′ <F I, a contradiction. 2

Given a knowledge base KB, an interpretation I and a concept D, again we have to override
the notion of support; supp I(D) is the set of z ∈ ∆I such that( l

z∈AI
A
)
vKB[z] D .

Clearly, if I is a classical model of KB and z ∈ supp I(D), then z ∈ DI .

Lemma 7.24. LetKB = 〈KS∪KD, ∅〉 be an LLfEL⊥ knowledge base, andC,D be EL⊥ concepts.
For all models I ∈ Circfix(KB) and for all x ∈ CI \DI there exists a model J ∈ Circfix(KB) such
that (i) ∆J ⊆ ∆I , (ii) x ∈ CJ \DJ (iii) |∆J | is O((|KB|+ |C|)d) where d = depth(D).

Proof. Define the “small” model J as in the proof of Lemma 7.12, using the new definition of
support. Regarding the size of J and the fact that it is a classical model of KB, the same arguments
as in the proof of Lemma 7.12 apply. In particular, it holds |∆J | = O((|KB|+ |C|)d).

It remains to show that J is<fix-minimal. Assume by contradiction that for some interpretation
J ′, it holds J ′ <fix J ; as usual, we show that there exists I ′, such that I ′ <fix I. Let I ′ be defined
as follows: ∆I

′
= ∆I ; aI

′
= aI , for all a ∈ NI; AI

′
= AI , for all A ∈ NC; P I

′
is the minimal set

such that:

• PJ ′ ⊆ P I′ , and

• for all z ∈ ∆I
′ \ ∆J

′
, for all y ∈ ∆J

′
and for all ∃P.H ∈ cl(KB) such that z ∈

supp I(∃P.H), if y ∈ HI
′
, then (z, y) ∈ P I

′
(∃P can be seen as a special case where

H = >).

First, we prove that I ′ is a classical model of KB. In particular, it suffices to show that classical
inclusions are satisfied in ∆I

′ \ ∆J
′
. Given a classical inclusion C1 v D1 of KB, assume that

z ∈ CI′1 , and recall that C1 is of the type

A1 u . . . uAn u ∃R1 u . . . u ∃Rm.

It suffices to show that there exists an individual w ∈ ∆J
′

that satisfies C1 as well. By construction,
for all ∃R occurring in C1, z ∈ supp I(∃R), therefore z ∈ supp I(C1). This means that there
exists a witness w ∈ supp I(C1) in ∆J . Since for each concept E, w ∈ EI implies w ∈ EJ ,
it follows that w ∈ supp J (C1). Since the priority relation is empty, for each DI δ in KD it holds
satJ (δ) ⊆ satJ ′(δ). As a consequence, for each concept E it holds supp J (E) ⊆ supp J ′(E). In
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particular, w ∈ supp J ′(C1) and hence w ∈ CJ ′1 and w ∈ DJ ′1 . By construction, we obtain that
z ∈ DI′1 .

It remains to prove that I ′ improves I according to <fix. Let δ = (C1 vn D1) be a defeasible
inclusion in KB. Since J ′ <fix J , it suffices to prove that for all z ∈ ∆I

′ \ ∆J
′
, if z ∈ satI(δ)

then z ∈ satI′(δ).
Suppose first that z vacuously satisfies δ in I (i.e., it violates C1). Atomic concepts have the

same extension in I and I ′, and z satisfies an unqualified existential in I ′ only if it satisfies the
same existential in I. Hence, z vacuously satisfies δ in I ′ as well.

Suppose instead that z actively satisfies δ in I. If z 6∈ supp I(C1), then z 6∈ CI
′

1 , and so z
vacuously satisfies δ in I ′. Otherwise, z ∈ supp I(C1) and z ∈ supp I(D1). By construction, there
is a witness w ∈ ∆J

′
such that w ∈ supp J (D1) ⊆ supp J ′(D1). This implies that w ∈ DJ ′1 and,

considering the construction of P I
′
, z ∈ DJ ′1 . Therefore, z ∈ satJ ′(δ) and we obtain the thesis. 2
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