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Abstract

We focus on the problem of sequential decision making inigdrtobservable environments
shared with other agents of uncertain types having simil@oaflicting objectives. This problem
has been previously formalized by multiple frameworks ofievloich is theinteractive dynamic
influence diagram (I-DID)which generalizes the well-known influence diagram to thitiagent
setting. I-DIDs are graphical models and may be used to cterthe policy of an agent given its
belief over the physical state and others’ models, whicingka as the agent acts and observes in
the multiagent setting.

As we may expect, solving I-DIDs is computationally hard.isTis predominantly due to the
large space of candidate models ascribed to the other agrathits exponential growth over time.
We present two methods for reducing the size of the modelespad stemming its exponential
growth. Both these methods involve aggregating individnatlels into equivalence classes. Our
first method groups togethbehaviorally equivalentnodels and selects only those models for up-
dating which will result in predictive behaviors that arstdict from others in the updated model
space. The second method further compacts the model spdoeusing on portions of the be-
havioral predictions. Specifically, we clustaetionally equivalentnodels that prescribe identical
actions at a single time step. Exactly identifying the eglémces would require us to solve all
models in the initial set. We avoid this by selectively sotyisome of the models, thereby intro-
ducing an approximation. We discuss the error introducethbyapproximation, and empirically
demonstrate the improved efficiency in solving I-DIDs dug¢hte equivalences.

1. Introduction

Sequential decision making (planning) is a key tenet of agent autonorisi@@making becomes
complicated due to actions that are nondeterministic and a physical envirbtitaeis often only

partially observable. The complexity increases exponentially in the presdrather agents who
are themselves acting and observing, and whose actions impact the sujgjett Multiple related
frameworks formalize the general problem of decision making in uncertdiimgs shared with
other sophisticated agents who may have similar or conflicting objectives. ofOthese frame-
works is the interactive partially observable Markov decision proceBOWDP) (Gmytrasiewicz
& Doshi, 2005), which generalizes POMDPs (Smallwood & Sondik, 19&eIbling, Littman,

& Cassandra, 1998) to multiagent settings; another framework isntbeactive dynamic influ-
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Figure 1: A two time-slice I-DID for agentmodeling another agerjt 1-DIDs allow representing
models in a model node (hexagon) and their update over time using the dotted mod
update link. Predictions about the other agent’s behavior from the mageals@esented
using a dashed policy link.

ence diagram (I-DID)(Doshi, Zeng, & Chen, 2009). In cooperative settings, the decerdaliz
POMDP (Bernstein, Givan, Immerman, & Zilberstein, 2002) framework risoafeiltiagent deci-
sion making.

I-DIDs are graphical models for sequential decision making in uncertaitiagent settings.
They concisely represent the problem of how an agent should actimcantain environment shared
with others who may act simultaneously in sophisticated ways. I-DIDs may bedias graphical
counterparts of -POMDPs which adopt an enumerative representditioa decision-making prob-
lem. I-DIDs generalize dynamic influence diagrams (DID) (Tatman & Shact®80) to multiagent
settings analogously to the way that I-POMDPs generalize POMDPs. ImggriaDIDs have the
advantage of a representation that explicates the embedded domain sthyctilecomposing the
state space into variables and relationships between the variables. Nas$ ¢imly representation
more intuitive to use, it translates into computational benefits when comparee emtimerative
representation as used in I-POMDPs (Doshi et al., 2009).

Following the paradigm of graphical models, I-DIDs compactly representlecision problem
by mapping various variables into chance, decision and utility nodes, aatinig the dependencies
between variables using directed arcs between the corresponding. nbtley extend DIDs by
introducing a speciainodel nodevhose values are the possible models of the other agent. These
models may themselves be represented using I-DIDs leading to nested moBelingther agents’
models and the original agent’s beliefs over these models are updatetimegeusing a special
model updatdink that connects the model nodes between time steps. Solution to the I-DID is a
policy that prescribes what the agent should do over time, given its belefsthe physical state
and others’ models. Consequently, I-DIDs may be used to compute the pbhcyagenbnline—
given an initial belief of the agent — as the agent acts and observes iting $leat is populated by
other interacting agents. We show a generic I-DID in Fig. 1 and provide ohetails in Section 3.

As we may expect, solving I-DIDs is computationally very hard. In particulaey acutely
suffer from the curses of dimensionality and history (Pineau, Gordofh&n, 2006). This is
because the state space in I-DIDs includes the models of other agentstioratidthe traditional
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physical states. As the agents act, observe and update beliefs, ridif2grack the evolution of the
models over time. Theoretically, the number of candidate models grows exjailyeover time.
Thus, I-DIDs not only suffer from the curse of history that afflicts tr@deling agent, but also from
that exhibited by the modeled agents. This is further complicated by the nedted of the state
space.

Consequently, exact solutions of I-DIDs are infeasible for all but itnpke problems and ways
of mitigating the computational intractability are critically needed. Because thelegitygs pre-
dominantly due to the candidate models, we focus on principled reductiong ohdlel space
while avoiding significant losses in the optimality of the decision maker. Ourdpgtoach builds
upon the idea of grouping togethieehaviorally equivalenBE) models (Rathnasabapathy, Doshi,
& Gmytrasiewicz, 2006; Pynadath & Marsella, 2007). These are modedsavhehavioral pre-
dictions for the modeled agent(s) are identical. Because the solution oflifexisagent’s I-DID
is affected only by the predicted behavior of the other agent regardfate description of the
ascribed model, we may consider a single representative from each &Bwithout affecting the
optimality of the solution. Identifying BE models requires solving the individuatiel®. We re-
duce the exponential growth in the model space by discriminatively updatidglmdSpecifically,
at each time step, we select only those models for updating which will resultdigtive behaviors
that are distinct from others in the updated model space. In other woatdels that on update
would result in predictions which are identical to those of existing models@&rsatected for up-
dating. For these models, we simply transfer their revised probability massies &xisting BE
models. Thus, we avoid generating all possible updated models and sab#ggeducing them.
Rather, we generaterainimal setof models at each time step.

Restricting the updated models to the exact minimal set would require solvingathdkels
that are considered initially. Exploiting the notion that models whose beliefpatélly close tend
to be BE, we solve those models only whose beliefs are-gtise to a representative. We theoret-
ically analyze the error introduced by this approach in the optimality of the sonlulioportantly,
we experimentally evaluate our approach on I-DIDs formulated for multilblpm domains hav-
ing two agents, and show approximately an order of magnitude improvemestfisripance in
comparison to the previous clustering approach (Zeng, Doshi, & CIg&Y)2with a comparable
loss in optimality. One of these problem domains is@eporgia testbed for autonomous control of
vehicles (GaTACJDoshi & Sonu, 2010), which facilitates scalable and realistic problem d@ma
pertaining to autonomous control of unmanned agents such as uninhadi@dvahicles (UAV).
GaTAC provides a low-cost, open-source and flexible environmenefdistically simulating the
problem domains and evaluating solutions produced by multiagent deciskingnadgorithms.

We further compact the space of models in the model node by observingehatiorally
distinct models may prescribe identical actions at a single time step. We may thegntggether
these models into a single equivalence class. In comparison to BE, the defafitar equivalence
class is different: it includes those models whose prescribed action fattieular time step is
the same, and we call @ction equivalenc€AE). Since there are typically additional models than
the BE ones that prescribe identical actions at a time step, an AE class aftetleis many more
models. Consequently, the model space is partitioned into lesser numbessgscthan previously
and is bounded by the number of actions of the other agent.

Unlike the update of BE classes, given the action and an observation A&esldo not update
deterministically. We show how we may compute the probability with which an elgmiva class is
updated to another class in the next time step. Although, in general, groigingpdels introduces
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an approximation, we derive conditions under which AE model groupieggsves optimality of the
solution. We demonstrate the performance of our approach on multiple terdjagpblem domains
including in GaTAC and show significant time savings in comparison to predppsaches.

To summarize, the main contributions of this article are new approaches thgt gguivalent
models more efficiently leading to improved scalability in solving I-DIDs. Out firethod reduces
the exponential growth of the model space by discriminatively updating mdueisby generating
a behaviorally minimal set in the next time step that is characterized by thecgbsEBE models.
The second method adopts a relaxed grouping of models that prescriftieatiactions for that
particular time step. Grouping AE models leads to equivalence classes tiatimélude many
models in addition to those that are BE. We augment both these methods withraxiaggpion that
avoids solving all of the initial models, and demonstrate much improved scalabiéiperiments.

The remainder of this article is structured as follows. In Section 2, we digmevious work
related to this article. In Section 3, we briefly review the graphical modelD as well as its
solution based on BE. In Section 4, we show how we may discriminativelytepdadels in order
to facilitate behaviorally-distinct models at subsequent time steps. We iner@dtuapproximation,
and discuss the associated computational savings and error. We imtribéuapproach of further
grouping models based on actions, in Section 5. All approaches for galdtDs are empirically
evaluated along different dimensions in Section 6. We conclude this articlewlidtussion of the
framework and the solution approaches including extensions:ta2Nigent interactions, and some
limitations, in Section 7. The Appendices contain proofs of propositions mertielsewhere, and
detailed descriptions and I-DID representations of the problem domadasimshe evaluation.

2. Related Work

Suryadi and Gmytrasiewicz (1999) in an early piece of related workpge®d modeling other
agents using IDs. The approach proposed ways to modify the IDs to beftest the observed
behavior. However, unlike I-DIDs, other agents did not model the aalgigent and the distribution
over the models was not updated based on the actions and observations.

As detailed by Doshi et al. (2009), I-DIDs contribute to an emerging aodising line of
research on graphical models for multiagent decision making. This inchadémgent influence
diagrams (MAID) (Koller & Milch, 2001), network of influence diagramsIy (Gal & Pfeffer,
2008), and more recently, limited memory influence diagram based playedsévi & Jensen,
2008). While MAIDs adopt an external perspective of the interactigplo@ing the conditional
independence between effects of actions to compute the Nash equilibrateggtfor all agents
involved in the interaction, I-DIDs offer a subjective perspective to theraction, computing the
best-response policy as opposed to a policy in equilibrium. The latter maycootiat for other
agent’s behaviors outside the equilibrium and multiple equilibria may exist. Fortdre, both
MAID and NID formalisms focus on a static, single-shot interaction. In @sttrl-DIDs offer
solutions over extended time interactions, where agents act and updatbetiefis over others’
models which are themselves dynamic.

While I-DIDs closely relate to the previously mentioned ID-based grapmaels, another
significant class of graphical models compactly represents the joint ioeteeva graphical game
(Kearns, Littman, & Singh, 2001). It models the agents as graph vertickgrainteraction in payoff
between two agents using an edge, with the objective of finding a joint digtrbaver agents’
actions possibly in equilibrium. More recently, graphical multiagent model®fDuWellman,
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& Singh, 2008) enhance graphical games by allowing beliefs over dgdraviors formed from
different knowledge sources, and conditioning agent behaviorbstnagted history if the game is
dynamic (Duong, Wellman, Singh, & Vorobeychik, 2010).

As we mentioned previously, a dominating cause of the complexity of I-DID®isxbonential
growth in the candidate models over time. Using the insight that models (with idecdjzabilities
and preferences) whose beliefs are spatially close are likely to be BIg, ated Doshi (2007) uti-
lized ak-means approach to cluster models together and skEleabdels closest to the means of the
clusters in the model node at each time step. This approach facilitates theéecatisn of a fixed
number of models at each time. However, the approach first generapEsssible models before
reducing the model space at each time step, thereby not reducing the mepaned. Further, it
utilizes an iterative and often time-consumikigneans clustering method.

The concept of BE of models was proposed and initially used for solvibr@MDPs (Rath-
nasabapathy et al., 2006), and discussed generally by Pynadathaasell& (2007). We contextu-
alize BE within the framework of I-DIDs and seek further extensions. ewmhat related notion
is that of state equivalence introduced by Givan et al. (2003) whereghigalence concept is ex-
ploited to factorize MDPs and gain computational benefit. Along this directioothar type of
equivalence in probabilistic frameworks such as MDPs and POMDPs tisnesealso called BE, is
bisimulation (Milner, 1980; Givan et al., 2003; Castro, Panangadene&upr, 2009). Two states
are bisimilar if any action from these states leads to identical immediate rewatleasi@tes transi-
tion with the same probability to equivalence classes of states. While bisimulatiaesswithin a
model given just its definition, BE in multiagent systems is defined and usedatiffy: as a way of
comparing between models using their solutions. Interestingly, both theseptsrare ultimately
useful for model minimization.

Other frameworks for modeling the multiagent decision-making problem exisist Motable
among them is the decentralized POMDP (Bernstein et al., 2002). This frankéssuitable for
cooperative settings only and focuses on computing the joint solution fagatts in the team.
Seuken and Zilberstein (2008) provide a comprehensive surveypobaghes related to decentral-
ized POMDPs; we emphasize a few that exploit clustering. Emery-Monteetealo(2005) propose
iteratively merging action-observation histories of agents that lead to a smiEt-sase expected
loss. While this clustering could be lossy, Oliehoek et al. (2009) losslesdyec histories that
exhibit probabilistic equivalence. Such histories generate an identi¢dbdigon over the histories
of the other agents and lead to the same joint belief state. While we utilize BE toskigsikister
the models of the other agent, we note that BE models when combined with thetsaggat’s pol-
icy induce identical distributions over the subject agent’s action-obsemaistory. More recently,
Witwicki and Durfee (2010) use influence-based abstraction in ordentican agent’s belief to the
other agent’s relevant information by focusing on mutually-modeled featurly.

Our agent models are analogous to types in game theory (Harsanyi, ¥86¢h are defined
as attribute vectors that encompass all of an agent’s private informatighislicontext, Dekel et
al. (2006) define a strategic topology on universal type spaces (Meft&amir, 1985; Branden-
burger & Dekel, 1993) under which two types are close if their stratediavier is similar in all
strategic situations. While Dekel et al. focus on a theoretical analysis dbffmogy and use
rationalizability as the solution concept, we focus on operationalizing BE witlsiongputational
framework. Furthermore, our solution concept is that of best regpnsne’s beliefs.
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3. Background

We briefly review interactive influence diagrams (I-ID) for two-agei¢iactions followed by their
extension to dynamic settings, I1-DIDs (Doshi et al., 2009). Both thesedisms allow modeling
the other agent and to use that information in the decision making of the sabput

We illustrate the formalisms and our approaches in the context of the multiageniptigo-
lem (Gmytrasiewicz & Doshi, 2005) — a two-agent generalization of the walisk single agent
tiger problem (Kaelbling et al., 1998). In this problem, two agenhtsdj, face two closed doors
one of which hides a tiger while the other hides a pot of gold. An agent getxrded for opening
the door that hides the gold but gets penalized for opening the door |etadimg tiger. Each agent
may open the left door (action denoted by OL), open the right door (@Histen (L). On listening,
an agent may hear the tiger growling either from the left (observationtdey GL) or from the
right (GR). Additionally, the agent hears creaks emanating from thetitireof the door that was
possibly opened by the other agent — creak from the left (CL) or dreakright (CR) — or silence
(S) if no door was opened. All observations are assumed to be noignylfioor is opened by
an agent, the tiger appears behind any of the two doors randomly in thémextep. While the
actions of the other agent do not directly affect the reward for antatigy may potentially change
the location of the tiger. This formulation of the problem differs from that afriét al. (2003) in
the presence of door creaks and that it is not cooperative.

3.1 Interactive Dynamic Influence Diagrams

Influence diagrams (Tatman & Shachter, 1990) typically contain chardesnehich represent the
random variables modeling the physical staie,and the agent’s observationd;, among other
aspects of the problem; decision nodes that model the agent’s actignand utility nodes that
model the agent’s reward functio®;. In addition to these nodes, I-IDs for an ageémbclude a
new type of node called theodel node This is the hexagonal nodé/;;_;, in Fig. 2, wherej
denotes the other agent ahd- 1 is the strategy levelwhich allows for a nested modeling of
by the other agenf. Agentj’s level is one less than that @f which is consistent with previous
hierarchical modeling in game theory (Aumann, 1999a; Brandenbur@ei&!, 1993) and decision
theory (Gmytrasiewicz & Doshi, 2005). Additionally, a level 0 model is an tadlat probability
distribution. We note that the probability distribution over the chance ndand the model node
together represents ageid belief over itsinteractive state spacdn addition to the model node,
I-IDs differ from IDs by having a chance nodd,;, that represents the distribution over the other
agent’s actions, and a dashed link, callgubéicy link.

The model node contains as its values the alternative computational moddiea$y: to the
other agent. The policy link denotes that the distribution o¢elis contingent on the models in
the model node. We denote the set of these modelsty_,, and an individual model of as,
mji1 = (bji_1,0;), whereb;; ; is the level — 1 belief, andd; is the agent'srameencompassing
the decision, observation and utility nodes. A model in the model node may itsati BID or ID,
and the recursion terminates when a model is an ID or a flat probability disbrbaver the actions.

We observe that the model node and the dashed policy link that connectsét¢hance node,
A;, could be represented as shown in Fig:)3deading to a flat ID shown in Fig.(8). The decision
node of each level — 1 I-ID is transformed into a chance node. SpecificalePT(mj{l_l) is

the set of optimal actions obtained by solving the I-ID (or ID) denotedn@y_l, thenPr(a; €
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Figure 2: A generic level > 0 I-1D for agent: situated with one other agentThe shaded hexagon
is the model nodeN/; ;) and the dashed arrow is the policy link.

Figure 3: (a) Representing the model node and policy link using chance nodes anddeepées
between them. The decision nodes of the lower-level I-IDs or Ha;%, m?,l—l; super-
script numbers serve to distinguish the models) are mapped to the cowmlagpohance
nodes (4}, A?) respectively, which is indicated by the dotted arrows. Depending on the
value of nodeM od[ M;], distribution of each of the chance nodes is assigned to Agde
with some probability.(b) The transformed flat ID with the model node and policy link
replaced as iffa).

A}) = m if a; € OPT(mj, ), O otherwise. The different chance nodef (A7) —
one for each model — and additionally, the chance node lakieled M ;] form the parents of the
chance noded;. There are as many action nodes as the number of models in the suppgenof a
i's beliefs. The conditional probability table (CPT) of the chance notlg,is a multiplexer that
assumes the distribution of each of the action nodk%sAjz) depending on the value @i od[M;].
In other words, whe/od[M;] has the valuenjl’l_l, the chance nodd; assumes the distribution
of the nodeA}, andA; assumes the distribution of; whenMod[M;] has the valuen?, . The
distribution overM od[M;] is i’s belief overj’s models given the state.

For more than two agents, we add a model node and a chance nodentipgethe distribution
over an agent’s action linked together using a policy link, for each otremtagnteractions among
others such as coordination or team work could be considered by utilizidglsjavhich predict the
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joint behavior of others, in a distinct model node and possibly updating sucklsadtbr example,
the joint behavioral models could be graphical analogs of decentral@d#Ps. Other settings
involving agents acting independently or some of them being cooperative ethers adversarial

may be represented as well, and is a topic of research under study.asglanDoshi et al. (2009)
show how I-IDs relate to NIDs (Gal & Pfeffer, 2008).

Location"'

o A i
J
Tiger "

Figure 4: Level 1 I-ID ofi for the multiagent tiger problem. Solutions of two level 0 models (IDs) of
j map to the chance nodeﬁ;fl andAz’Q, respectively (illustrated using dotted arrows),

transforming the I-ID into a flat ID. The two models differ in the distribution rotree
chance nodeTigerLocation?.

We setup the I-ID for the multiagent tiger problem described previouslyign4= We discuss
the CPTs of the various nodes in Appendix B.1. While the I-ID contains twoefsaaf 7, there
would be as many action nodesjoif there were more models.

Figure 5: A generic two time-slice levéll-DID for agenti. Notice the dotted model update link

that denotes the update of the modelg @ind of the distribution over the models, over
time.
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I-DIDs extend I-IDs to allow sequential decision making over multiple time stéfesdepict a
general, two time-slice I-DID in Fig. 5. In addition to the model nodes and tehathpolicy link,
what differentiates an I-DID from a DID is theodel update linlkshown as a dotted arrow in Fig. 5.
We briefly explain the semantics of the model update next.

Figure 6: The semantics of the model update link. Notice the growth in the nwhiverdels in the
model node at+ 1 shown in bold (superscript numbers distinguish the different models).
Models att + 1 reflect the updated beliefs gfand their solutions provide the probability
distributions for the action nodes.

Agents in a multiagent setting may act and make observations, which chamgrebetefs.
Therefore, the update of the model node over time involves two steps: giirst) the models at
timet, we identify the updated set of models that reside in the model node attimeBecause the
agents act and receive observations, their models are updated tbtreflechanged beliefs. Since
the set of optimal actions for a model could include all the actions, and the agg/ receive any
one of|(2;| possible observations whetk is the set ofj’s observations, the updated set at time step
t+1 will have up to]/\/l;’lf1 || A;]€2;| models. Here],/\/l;7171| is the number of models at time step
|A;| and|Q);| are the largest spaces of actions and observations respectivelyy athtire models.
The CPT of chance nod&/od[M}!,] encodes the indicator functiom(v!, ,al, o™, b11)),
which is 1 if the beliefs’,_, in a modelm’,_, using the actiom; and observation'*' updates
to bﬁfl in a modelm§jil; otherwise it is 0. Second, we compute the new distribution over the
updated models given the original distribution and the probability of the ggefirming the action
and receiving the observation that led to the updated model. The dotted opxtie link in the
I-DID may be implemented using standard dependency links and chanes,rasdshown in Fig. 6
transforming the I-DID into a flat DID.

In Fig. 7, we show the two time-slice flat DID with the model nodes and the mquitte link
replaced by the chance nodes and the relationships between them. @bdeseand dependency
links not in bold are standard, usually found in single agent DIDs.

Continuing with our illustration, we show the two time-slice 1-DID for the multiagenertig
problem in Fig. 8. The model update link not only updates the numbgs eandidate models due
to its action and observations of growl, it also updates the probability distribatier these models.
The model update link in the I-DID is implemented using standard dependetksydsmshown in
Fig. 9. For the sake of clarity, we illustrate the update of a single modgtohtained in the model
node at time.
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Figure 7: A flat DID obtained by replacing the model nodes and modeltagutk in the I-DID
of Fig. 5 with the chance nodes and the relationships (in bold) as shown.i®.Fithe
lower-level models are solved to obtain the distributions for the chance awies.

Figure 8: Two time-slice levdlI-DID of ¢ for the multiagent tiger problem. Shaded model nodes
contain the different models gf

3.2 Behavioral Equivalence and Model Solution

Although the space of possible models is very large, not all models needttmbiglered by agent

in the model node. As we mentioned previously, models thaB&réRathnasabapathy et al., 2006;
Pynadath & Marsella, 2007) could be pruned and a single representadigiel considered. This is
because the solution of the subject agent’s I-DID is affected by thegpeedoehavior of the other
agent; thus we need not distinguish between behaviorally equivalentisndle define BE more
formally below:

Definition 1 (Behavioral equivalence)Two modelsyn;;— andm’, ,, of the other agentj, are
behaviorally equivalent ifOPT (1, 1) = OPT(m},_,), whereOPT(-) denotes the solution of
the model that forms the argument.

Thus, BE models are those whose behavioral predictions for the ageneatical.
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Tiger
Location'

Figure 9: Because ageyjtin the tiger problem may receive any one of six possible observations
given the action prescribed by its model, a single model in the model node at¢ionéd
lead to six distinct models at tire+ 1.

The solution of an I-DID (and I-ID) is implemented recursively down theslevas shown in
Fig. 10. In order to solve a level 1 I-DID of horizdn, we start by solving the level 0 models, which
may be traditional DIDs of horizoff’. Their solutions provide probability distributions over the
other agents’ actions, which are entered in the corresponding acties fmahd in the model node
of the level 1 I-DID at the corresponding time step (lines 3-5). Subsetyi¢he set ofj's models
is minimized by excluding the BE models (line 6).

The solution method uses the standard look-ahead technique, projectiggiis action and
observation sequences forward from the current belief state, asiddithe possible beliefs that
1 could have in the next time step (Russell & Norvig, 2010). Because addesn a belief over
j’'s models as well, the look-ahead includes finding out the possible modelg toaid have in
the future. Consequently, each g§ level 0 models represented using a standard DID must be
solved in the first time step up to horizdhto obtain its optimal set of actions. These actions are
combined with the set of possible observations thabuld make in that model, resulting in an
updated set of candidate models (that include the updated beliefs) thaidesaribe the behavior
of j. SE(b?, aj, 0;) is an abbreviation for the belief update (lines 8-13). Beliefs over thedatag
set of candidate models are calculated using the standard inference sthitoadh the dependency
links between the model nodes shown in Fig. 6 (lines 15-18). AgehDID is expanded across all
time steps in this manner. We point out that the algorithm in Fig. 10 may be realigethe help
of standard implementations of DIDs such asdiN EXPERT (Andersen & Jensen, 1989). The
solution is a policy tree that prescribes the optimal action(s) to perforngimtainitially given its
belief, and the actions thereafter conditional on its observations.

4. Discriminative Model Updates

Solving I-DIDs is computationally intractable due to not only the large spadecamplexity of
models ascribed tg, but also due to the exponential growth in candidate modejsaser time.
This growth leads to a disproportionate increase in the interactive state@gadime. We begin by
introducing a set of models thatiisinimalin a sense and describe a method for generating this set.
The minimal set is analogous to one of the notions of a minimal mental model spdesaibed by
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2.

15.

16.

18.

I-DID E XACT (levell > 1 I-DID or level 0 DID, horizonT’)

Expansion Phase
1.FortfromOtoT —1do
If { > 1then

Minimize M},
For eachm} in M7, | do
Recurswely call algorithm with the— 1 1-DID (or DID)
that representm§ and the horizon]" — ¢
Map the decision node of the solved I-DID (or DID)PT (m}), to the
corresponding chance nodg
M., | « PruneBEModelg(M, )
If t <T —1then
PopulateM [},

For eachm} in Mj, , do
For eachaj in OPT( %) do
For eacho; in O; (part ofm ;) do
Updatej’s bellef Vit — SE(b, a5, 0;)
mith — Newl DID (or DID) with b+ as the initial belief
/\/lHl1 1 {mtﬂ}
Add the model nodeMtl 1» and the model update link between
M, andM!Tl
Add the chance, decision, and utility nodestfer 1 time slice and the
dependency links between them
Establish the CPTs for each chance node and utility node

Solution Phase

17.1f [ > 1 then

Represent the model nodes, policy links and the modeltegdiohks

as in Fig. 6 to obtain the DID

19. Apply the standard look-ahead and backup method to sibvexpanded DID
(other solution approaches may also be used)

Figure 10: Algorithm for exactly solving a level> 1 I-DID or level O DID expanded over time
steps.

Pynadath and Marsella (2007). We assume that models of the other #tgrardy in their beliefs
and that the other agent’s frame is known. We later discuss in Section 7 thetiofgae frame

being unknown as well. For clarity, we continue to focus on two-agentaatens, and discuss

extensions of the techniques presented here in Section 7 as well.

4.1 Behaviorally Minimal Model Set

Given the set of models\1;,;_, of the other agent;, in a model node we define a corresponding

behaviorally minimaket of models:
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Definition 2 (Behaviorally minimal set) Define a minimal set of modeI:A}ljJ_l, as the largest
subset of\M;;_1, such that for each modeh;; _; € j\?l“,l, there exists no other modeIMj,z,l
that is BE tom,; ;.

Here, BE is as defined in Def. 1. We say tbhé(tj,l,l (behaviorally)minimizesM ;. As we
illustrate in Fig. 11 using the tiger problem (Kaelbling et al., 1998), the/\%lgt_l that minimizes
M;,—1 comprises of all the behavioraltjistinctrepresentatives of the modelsM ;;_; and only
these models. Because any model from a group of BE models may be selethedepresentative
in MjJ_l, a minimal set corresponding 101;;_; is not unique, although its cardinality remains
fixed.

0.075 0.10.025 0.05 02025 005005 015005 Pr(Mos)

Pri(TL)
v ANAL Y ,
0.2 0.6 0.2 Pri(Mj,Olls)
Pry(TL)

Figure 11: lllustration of a minimal set using the tiger problem. Black verticaklidenote the
beliefs contained in different models of aggnncluded in model node\/; . Decimals
on top indicate’s probability distribution overj’s models, Pr; (M t ols). In order to
form a behaviorally minimal setM o» We select a representative model from each BE
group of models (models in dn‘ferently shaded regions). Agandistribution over the
models |n/\/lt o Is obtained by summing the probability mass assigned to the individual
models in each region. Note thaﬂt o Is not unique because any one model within a
shaded region could be selected for inclusion in it.

Agenti's probability distribution over the minimal Sei\}l]l 1, conditioned on the physical
state is obtained by summing the probability mass over BE modeljn_; and aSS|gn|ng the
accumulated probability to the representative modeMrjll 1. Formally, letri;;— € /\/l]l 1s
then:

bi(1hj1-1]5) = Z bi(mji—1]s) 1)

my1—1€Mj 1

whereM;;_; C M,;_; is the set of BE models to which the representativg_; belongs. Thus,

if M,,_1 minimizesM,,;_1, then Eq. 1 shows how we may obtain the probability distribution over
J\?lj,l,l at some time step, givei's belief distribution over models in the model node at that step
(see Fig. 11).

The behaviorally minimal set together with the probability distribution over it masw@ortant
property: Solution of an I-DID remains unchanged when the models in alnmodie and the
distribution over the models are replaced by the corresponding minimal dehardistribution
over it, respectively. In other words, transforming the set of models imtbdel node into its
minimal set preserves the solution. Proposition 1 states this formally:
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Proposition 1. Let X : A(M;;—1) — A(M;;_1) be a mapping defined by Eq. 1, whevé;;_;
is the space of models in a model node aﬁql,l minimizes it. Then, applying preserves the
solution of the I-DID.

Proof of Proposition 1 is given in Appendix A. Proposition 1 allows us tomstkmt/\?lj,l_l is
indeed minimal given\1;;_; with respect to the solution of the I-DID.

Corollary 1. /\?ljvl_l in conjunction with.X is a sufficient solution-preserving subset of models
found inM;;;_.

Proof of this corollary follows directly from Proposition 1. Notice that theset continues to
be solution preserving when we additionally augm&mﬂt,l_l with models fromM;;_;.

As the number of models in the minimal set is, of course, no more than in the dginand
typically much less, solution of the I-DID is often computationally much less intenshen the
model set is replaced with its behaviorally minimal counterpart.

4.2 Discrimination Using Policy Graphs

A straightforward way of obtaining\?lj7l_1 exactlyat any time step is to first ascertain the BE
groups of models. This requires us to solve the I-DIDs or DIDs reptaggethe models, then select
a representative model from each BE group to include?lﬂl_l, and prune all others which have
the same solution as the representative.

4.2.1 APPROACH

Given the set of’'s models, M ;_, at timet(=0), we present a technique for generating the minimal
sets at subsequent time steps in the |-DI& first observe that behaviorally distinct models at time
t may result in updated models at- 1 that are BE.Hence, our approach is to select at time step
t only those models for updating which will result in predictive behaviors #natdistinct from
others in the updated model space at 1. Models that will result in predictions on update which
are identical to those of other existing model$ at 1 are not selected for updating. Consequently,
the resulting model set at+ 1 is minimal.

We do this by solving the individual I-DIDs or DIDs iM’; ;. Solutions to DIDs or I-DIDs
are policy trees, which may be merged bottom up to obtapnlm:y graph as we demonstrate in
Fig. 12. Seuken and Zilberstein (2007) reuse subtrees of smaller hdryziinking to them using
pointers while forming policy trees for the next horizon in the solution of deedized POMDPs.
The net effect is the formation of a policy graph similar to ours therebyigiroy an alternative
to our approach of solving the individual models to first obtain the compldieypoees and then
merge post hoc. We adopt the latter approach because the individuelanetich are DIDs, when
solved using available implementations produce complete policy trees. Theifal@noposition
gives the complexity of merging the policy trees to obtain the policy graph.

Proposition 2 (Complexity of tree merge)The worst-case complexity of the procedure for merging
policy trees to form a policy graph i9((]2;|T ~1)2|M;|?), whereT is the horizon.

Proof. The complexity of the policy tree merge procedure is proportional to the nuoflcempar-
isons that are made between parts of policy trees to ascertain their similaggudethe procedure
follows a bottom-up approach and the leaf level has the largest numberdesnthe maximum
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O 0=Q O

GR GL GR GL GL GR
*. GL GR GR GL GR GL * GR GL

[0-0.135) [0.135 - 0.865) [ 0.865 — 0. 955) [0.955 — 1]
Actions (node labels):
L = Listen
OL = Open left door GR GL GR

OR = Open right door

Observations (edge labels): @

GL = Growl from left door

GR = Grow! from right door Yi

Figure 12: (a) Example policy trees obtained by solving four modelsj dbr the tiger problem.
Beginning bottom up, we may merge the four L nodes, two OR nodes and two OL
nodes respectively to obtain the graph#). Because the two policy trees of two steps
rooted at L (bold circle) are identical, and so are the two policy trees rabtedright-
most), we may merge them, respectively, to obtain the policy gragh)inNodes at
t = 0 are annotated with ranges Bf;(T'L).

number of comparisons are made between leaf nodes. The worst casg wben none of the leaf
nodes of the different policy trees can be merged. Note that this prediaeenerger of upper parts

of the policy trees as well. Each policy tree may contain uffxd? —! leaf nodes, wher& is the
horizon. Hence, at mo€((|2;/7~1)%|M;|?) comparisons are made, whed¢| A |?) is the num-

ber of pairs in the model se1t The case when none of the leaf nodes merge must occur when the
models are behaviorally distinct, and they form a minimal 84, In other wordsM; = M;. [

1. If we assume an ordering of the observations (edge labels) therdbsing the tree, two policy trees may be suffi-
ciently compared ir©0(]2;|7 ') time.
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Each node in the policy graph represents an action to be performed bgehé and edges
represent the agent’s observations. As is common with policy graphs inCF8Mwve associate
with each node at time = 0, a range of beliefs for which the corresponding action is optimal (see
Fig. 12 ¢)). This range may be obtained by computing the value of executing the poleyonéed
at each node at= 0 in the graph and starting from each physical state. This results in a véctor o
values for each policy tree, typically called thevector. Intersecting tha-vectors and projecting
the intersections on the belief simplex provides us with the boundaries of ¢édeddelief ranges.

We utilize the policy graph to discriminate between model updates. For claritforvally
define a policy graph next.

Definition 3 (Policy graph) Define a policy graph as:
PG=(V,AEQ Ly, Le)

whereV is the set of vertices (nodes);is the set of actions which form the node labélss the set
of ordered pairs of vertices (edgeg);is the set of observations which form the edge labéls;

Y — A assigns to each vertex an action from the set of actidngjode label); andZ, : £ —
assigns to each edge an observation from the set of observatiofexige label). L. follows the
property that no two edges whose first elements are identical (begie aathe vertex) are assigned
the same observation.

Notice that a policy graph augments a regular graph with meaningful natiedge labels. For
a policy graph,PG, we also define the transition functio, : V x 2 — V, for convenience.
7,(v, 0) returns the vertex;’, such thafv, v’} € £ andL.({v,v'}) = o.

Our insight is that7, (v, o) is the root node of a policy tree that represents the predictive behav-
ior for the model updated using the actidn (v) and observation. As we iterate ovey’s models
in the model node at timein the expansion phase while solving the I-DID, we utitizgn deciding
whether to update a model.

We first combine the policy trees obtained by solving the models in Adfje ; to obtain the
policy graph,PG, as shown in Fig. 12. Let be the vertex inPG whose action labell,(v), rep-
resents the rational action for;;; € M}, ;. We can ascertain this by simply checking whether
the belief inm;;_; falls within the belief range associated with a node. For every observation
o € L¢({v,-}), we update the modety;,;_1, using action’, (v) and observation, if v = 7,(v, 0)
has not been encountered previously for this or any other model. Wealieshis below:

Example 1 (Model update) Consider the level 0 models pin the model node at time /\/13-70 =
{(0.01,6;), (0.5,60;), (0.05,8;)}, for the multiagent tiger problem. Recall that in a modej o§uch

as(0.01,6;), 0.01 isj’s belief (over TL) and), is its frame. From the PG in Fig. 12), the leftmost
node prescribing the actioh is optimal for the first and third models, while the second node also
prescribing L is optimal for the second model. Beginning with mod@l)1, éj), T,(v,GL) = vy
(whereL,(v1) = L) and7,(v, GR) = v (L,(v2) = OL). Since this is the first model we consider,
it will be updated usind. and both observations resulting in two models/\'ytéfol. For the model,

(0.5,0;), if v’ is the optimal node£, (v') = L), T,(v', GR) = v1, which has been encountered
previously. Hence, the model will not be updated usingnd GR, although it will be updated
usingL andGL.
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Intuitively, for a model,m;;_;, if nodev, = 7,(v, 0) has been obtained previously for this or
some other model and action-observation combination, then the updatg of will be BE to the
previously updated model (both will have the same policy tree rooted atience;n;;_; need not
be updated using the observatierBecause we do not permit updates that will lead to BE models,
the set of models obtained @t 1 is minimal. Applying this process analogously to models in the
following time steps will lead to minimal sets at all subsequent steps and nesteig. lev

4.2.2 APPROXIMATION

We may gain further efficiency by avoiding the solution of all models in the modeé at the first
time step. One way of doing this is to randomly sel&models ofj, such that’ « |M9’l_1|.
Solution of the models will result i policy trees, which could be combined as shown in Fig. 12
to form a policy graph. This policy graph is utilized to discriminate between theemgublates.
Notice that the approach becomes exact if the optimal solution of each mo@@jnl is identical

to that of one of the models. Because th& models are selected randomly, this assumption is
implausible and the approach is likely to result in a substantial loss of optimalitystha¢diated

by K.

We propose a simple but effective refinement that mitigates the loss. Retaihtiilels whose
beliefs are spatially close are likely to be BE (Rathnasabapathy et al.,.Z8&) of the remaining
\Mg{l_ly — K models whose belief is not within > 0 of the belief of any of thek” models will
also be solved. This additional step makes it more likely that all the behavidiatlyjct solutions
will be generated and included in forming the policy graphe # 0, all models in the model node
will be solved leading to the exact solution, while increasimgduces the number of solved models
beyond K. One measure of distance between belief points islthbased metric, though other
metrics such as the Euclidean distance may also be used.

4.3 Transfer of Probability Mass

Notice that a consequence of not updating models using some actiowvatimeicombination is
that the probability mass that would have been assigned to the updated mtigehindel node at
t+1is lost. Disregarding this probability mass may introduce error in the optimality cidhuion.

We did not perform the update because a model that is BE to the potentiaiyegpohodel
already exists in the model node at titel. We could avoid the error by transfering the probability
mass that would have been assigned to the updated model on to the BE model.

As we mentioned previously, the noMod[M;J[_ll] in the model nodeMﬁ_ll, has as its values

the different models ascribed to agenat timet¢ + 1. The CPT ofMod[Mﬁ_ll] implements the
functionr (b}, ,al,of*1 6141, ), whichis 1ifb}, , inthe modeln!, | updates tcbé.ﬁlAin model
m’!1, using the action-observation combination, otherwise it is 0.rh8t", = (b1}, 0;) be the
model that is BE t(m?ﬁl. In order to transfer the probability mass to this model if the update is
pruned, we modify the CPT cMod[M;.J[}l] to indicate tha’rm;*lf1 is the model that results from
updatingb§ ;_1 With action,a} and observationz.“. This has the desired effect of transfering the
probability that would have been assigned to the updated model (Fig. 6)m§.1+lﬂjq in the model
node at time + 1.
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4.4 Algorithm

We present the discriminative update based algorithm for solving allevel I-DID (as well as a
level 0 DID) in Fig. 13. The algorithm differs from the exact approdeiy.(10) in the expansion
phase. In addition to a two time-slice level-DID and horizonT', the algorithm takes as input
the number of random models to be solved initialty, and the distance, Following Section 4.2,

we begin by randomly selecting models to solve (lines 2-5). For each of the remaining models,
we identify one of thek solved model whose belief is spatially the closest (ties broken randomly).
If the proximity is within e, the model is not solved — instead, the previously computed solution
is assigned to the corresponding action node of the model in the model]bt(jfgl_eI (lines 6-12).
Subsequently, all models in the model node are associated with their respsattitions (policy
trees), which are merged to obtain the policy graph (line 13), as illustrated.id &

In order to populate the model node of the next time step, we identify the modéG that
represents the optimal action for a model at tim&he model is updated using the optimal action
aj (= Ly(v)) and each observatiosy only if the node,v’ = 7,(v, 0;) has not been encountered
in previous updates (lines 16-23). Given a policy graph, evalu&fjig, o;) is a constant time
operation. Otherwise, as mentioned in Section 4.3, we modify the CPT of MdéLMj’?j_ll],
to transfer the probability mass to a BE model (line 25). Consequently, modebkrat subsequent
time steps in the expanded I-DID are likely populated with minimal sets. Givenxfiaded I-DID,
its solution may proceed in a straightforward manner as shown in Fig. 10.

4.5 Computational Savings and Prediction Error Bound

The primary complexity of solving I-DIDs is due to the large number of modelsthst be solved
overT' time steps. At some time steépthere could bek/\/l 1l (A]182 |) many models of the
other agentj, where|M?’171\ is the number of models conS|dered initially. The nested modeling
further contributes to the complexity since solutions of each model at level requires solving
the lower levell — 2 models, and so on recursively up to level 0. In/drl agent setting, if the
number of models considered at each level for an agent is bounthiythen solving an I-DID at
level [ requires the solutions @ ((N|M|)!) many models. Discriminating between model updates
reduces the number of agent models at each level to at most the size @hidgnadsally minimal
set, | M|, while incurring the worst-case complexity 6¥((|Q2|7—1)2|M|?) in forming the policy
graph (Proposition 2). Consequently, we need to solve at A&V |M*|)!) number of models

at each non-initial time step, wheret* is the largest of the minimal sets across levél&his is

in comparison ta?((N|M|)}), where M grows exponentially over time. In generalf < M,
resulting in a substantial reduction in the computation. Additionally, a reductitmeimumber of
models in the model node also reduces the size of the interactive statewpatemakes solving
the I-DID more efficient.

If we choose to solve all models in the initial model noMol 1» in order to form the policy
graph, all sets of models at subsequent time steps will mdeed be minimal.dbensly, there is no
loss in the optimality of the solution of ageis level ! I-DID.

For the case where we seldct < |M?,zf1’ models to solve, it is infinitesimally small, we
will eventually solve all models resulting in no error. With increasing values t#rger numbers

2. As we discuss in Section 7, we may group BE models across agengdl asieito which the number of models to be
solved further reduces.
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I-DID A pPROX BE (levell > 1 I-DID or level 0 DID, T, K, €)
1.If [ > 1then
Selectively solve,
2. Randomly seleck” models fromMY,
3. Foreachm! in the K modelsdo

4, Recursively call algorithm with thie— 1 1-DID (or DID) that represents:*,

the horizonT, K, ande
5. Map the decision node of the solved I-DID (or DIIIZ)PT(mf), to the chance nodﬂf
6. Foreachm! inthe| MY, | — K modelsdo ) _
7. Find model amongds” whose belief)¥, is closest td} in m?
8. If [|bf — b5y < ethen i
9. Map the decision node @PT(m}) to the chance node{}
10. else
11. Recursively call algorithm with the— 1 I-DID (or DID) that representmg?,

the horizonT', K, ande

12. Map the decision node of the solved I-DID (or DIIQ)PT(mf), to the chance nod,eg_?

13. Combine the solutions (policy trees) of all models bottgp to obtain the policy graptRG

Expansion Phase
14.For t from Oto 7' — 2 do
15. If I > 1then
PopulateM {1, minimally

16. For eachm} in M}, | do

17. For eacha; in OPT(m}) do

18. For eacho; in Q; (part ofm}) do

19. v «— vertex in PG to which m§- maps

20. If 7,(v,0;) not been encountered previousihen

21. Updatej’s belief,b*! — SE(b:, a;, 0;)

22. m!*! — New I-DID (or DID) with b/ as belief

23, ML & mlt)

24, else

25. Update CPT oflod[M ;! ] s. t. rowm!, a;, 0; has a 1 in column
of BE model

26. Add the model nodey/; 1, , and the model update link betweafi, , andM; 11,

27. Add the chance, decision, and utility nodestfar 1 time slice and the dependency
links between them
28. Establish the CPTs for each chance node and utility node

Thesolution phasgroceeds analogously as in Fig. 10

Figure 13: Algorithm for approximately solving a level 1 I-DID or level 0 DID expanded over
T time steps using discriminative model updates.

of models remain unsolved and could be erroneously associated with exgstitgns. In the
worst case, some of these models may be behaviorally distinct from all df teelved models.
Therefore, the policy graph is a subgraph of the one in the exactaagddeads to sets of models
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that are subsets of the minimal sets. Additionally, lower-level models aredsapgroximately as
well. While we seek to possibly bound the prediction error, it's impact on thienafity of agenti’s
levell I-DID is difficult to pinpoint. We formally define the error and discuss bding it including
some limitations on the bound, in Appendix A.

5. Grouping Models Using Action Equivalence

Grouping BE models may significantly reduce the given space of othetsageodels in the model
node without loss in optimality. We may further compact the space of models in tdelmode
by observing that behaviorally distinct models may prescribe identical acioam single time step.
We may then group together these models into a single equivalence clasmparison to BE, the
equivalence class includes those models whose prescribed action fartivalar time step is the
same, and we call dction equivalenceWe define it formally next.

5.1 Action Equivalence

Notice from Fig. 12¢) that the policy graph contains multiple nodes labeled with the same action
at time steps = 0 andt = 1. The associated models while prescribing actions that are identical at
a particular time step, differ in the entire behavior. We call these maatilsnally equivalentFor

a general case, we define action equivalence (AE) below:

Definition 4 (Action equivalence) Two modelsyn; ;¢ andm;. _1, Of the other agent are actionally
equivalent at time stepif Pr(A%) = Pr(At/) wherePr( )= Wl-u)l if a’ € OPT(mj;-1),
e

0 otherwise; andDr(a;) m if aj € OPT(m,_,), 0 otherwise, as defined previously.

Since AE may include behaviorally distinct models, it partitions the model spaadeawer
classes.
We show an example aggregation of AE models in Fig 14. From the figurpattigon of the

model set,M%,_,, induced by AE at time step 0 M, %/, M%7}, whereM % is the class

3l—=1
of models in the model space whose prescribed actign=at0 is L, andMﬁ 0% is the class of

models whose prescribed actiontat 0 is OR. Note that these classes mclude the BE models as
well. Thus, all models in an AE class prescribe an identical action at that tippeFiethermore at

t = 1, the partition consists of 3 AE classes and;, at 2, the partition also consists of 3 singleton
classes.

If M | Is an AE class comprising of modets’ 11 € M]z 1» agenti’s conditional belief
over itis obtalned by summing ovés conditional bellef over its member models:

( jl 11s) = Z bi(mﬁ',l—lfs) (2)

mt t,p
me EMY_

5.2 Revised CPT oMod Node and its Markov Blanket

Equation 2 changes the CPT of the noﬂéod[M;Jfl], due to the aggregation. Chang and Fung
(1991) note that a coarsening operation of this type will not affect thieilwions that do not
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Figure 14: (a) Annotations are example probabilities for the models dased with the nodes(b, ¢) We
may group models that prescribe identical actions intoselags indicated by the dashed boxes.
Probabilities on the edges represent the probability efsiteon from a class to a model given
action and observation (ie., CPT of the né%bd node).

Mod[M;]

Mod[M,""]

Figure 15: Markov blanket of the chance nodéod[ M ]z 1}, shown in bold.

directly involve the model space if the joint probability distribution overltarkov blanket)f node,
Mod[M}, ], remains unchanged. In Fig. 15, we show the Markov blankét oM}, ,]. 8
The joint distribution over the Markov blanket is:

Pr(st, aé,oﬁ“, ﬁll) E Pr(st, j’lf 1,06,(:;? mﬁll) " »
=3, Pr(s)Pr(MT_|s") Pr(at| MGY_ ) Pr(m‘ Tt JMED_ | af, o) Pr(of™ |a})

= Pr(s")Pr(of*!|al )Z PT(M??_JS )Pr(a \M?? D Pr( 5711\/‘/‘?5)_1’@3703“) ®3)
= Pr(s")Pr(o t+1|a )Z Yot LMt Pr(m j7l71|s )Pr(a ]./\/ljl 1)

Pr(m!HL |MGY_ | ab,0 ;*1) (from Eq. 2

3. Because we assume that agents’ frames do not change, we maweréhe arc fromMod[M;J,l] to O;?“ thus
simplifying the blanket.
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The joint distribution prior to aggregation 8f od[M z 1) is:
1 1 1
Pr(st, az, 02'*‘ 7m§'~l_ )= PT(St)PT(O§+ |a§) Zm§,171€M;‘.171 Pr(m;l_l\St)PT(a§‘|m§',l—1)
t+1 t+1 '
Pr(mj,l 1‘mjl I E’ J )

4)
We equate the right hand sides of Egs. 3 and 4 to obtain the constraint tsiabensatisfied by
the CPTs of some of the chance nodes in the Markov blanket in orderéqoittt distribution to
remain unchanged:

Z Pr(a |Mjl Pr(m ;41_11|Mj1 1 37 §+1)E L EeMEP Pr(m ;l 1|5t):

J,0—

1 ” 1
>om mt,_eMb, Pr<mj,l—1‘8 )Pr(a ;”mj,l—lﬂjr( ;Jlr 1‘m]l i) Ev §+ )

(5)

Notice that Eq. 5 imposes a constraint on the CPTs of the successorﬂ@@miMod[Mﬁll]

If the constraint is satisfied — a setting for the CPTs of the no.d?sand Mod[Mj‘?j_ll], is found
— grouping of AE models in the initial model node is exact and the optimality of Dé&DI4s

preserved. An obvious way to satisfy Eqg. 5 would be to meet the followingfiwgiconstraint for
each AE clasgp:

t+l t A t+1
Pr(a |sz ) Pr ( 1|M ~1044,0; )—
1
Zm§ 171€Mj171 Pr(mt, 1|st)Pr(at|m]’l I)Pr(mjl 1m g .al, 03+)

th EMt.’p Pr(m;l*l'S )
J,l—1 Jil=1

(6)

Pr(atm?,_,) is fixed for each modehn!, ,, in AE classM;? | and equalsPr(af| M7 ).
Therefore, EQ. 6 reduces to:

1 1
Pr(m?liﬂst)P’/‘(m;:’l— 1\m]l 1 a; 0§+ )

. Pr(m;lil\s ) (7)

t t,p
M1 EMT

Pr(mit MY at oftl) =
( ]l 1’ Jl=12"3"3 ) m;yl,leM;’f,
Observe that Eq. 7 must hold for all values of the physical stételf the right hand side of

the above equation remains unchanged for any valug, offe may set the CPT df/[od[M;j_ll]

using it. Typically, it is not trivial — often not possible — to find a single CPTtie chance node

Mod[th.jjl] that will satisfy the constraint for all®. Chang and Fung (1991) demonstrate that a

close approximation would be to take the average of the right hand side. Gf &apr all possible

values ofs! if these values are close.

Of course, we may wish to aggregate models in nMed[M;jfl], as well (and so on). While
the overall procedure is analogous, the difference is in the Markokélar the node that is to be
aggregated. It includes the predecessor chance nﬁ)ﬁ@é{M;Fl], AE, and0§+1 in addition to its
successors and parents of successors corresponding to thoselif.Fig

We illustrate the application of Eq. 7 to the example policy graph in Fig: 1delow:

Example 2(Model update) For simplicity, let the left AE classtzlE’ll, comprise of three models,

mi % mi 07 andm’ ”7, all of which prescribe actior.. Leti’s belief over these three models
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be 0.16, 0.23 and 0.32 given physical state TL or TR, respectively (sed4ig). We set the
probability of updating sayMt 1011, using different action-observation combinations to individual
models at time=1, using Eq. 7 We show these probabilities in Fig(i4these form the CPT of
nodeMod[M;jjl] BecauseDr(mt l011| ) remains same given any constraint of Eq. 7 is met

and the AE based partitioning ai:O is exact.

Next, we group AE models &t1 forming 3 AE classes as shown in Fig.(z% Again, we may
set the probabilities of updating an AE class given action-observation ioatidns to individual
models att=2 using the right hand side of Eq. 7. However, doing so does not theetonstraint
represented by Eq. 7 because for exampte(m’, "y | M °7, a!=0, o/=1) varies given different
values of the conditionals. As an aside, it is not possible to meet this constrahis example.
Consequently, we adjust the CPT of the chance nmm[M;j_Ql], according to the average of the
right hand side of Eq. 7 for different values of the conditional variabde® (Fig. 14c)). As a result,

the AE based partitioning &t=1 is not exact.

A manifestation of the approximation is that agémbay now think that could initially open
the right door, followed by listening and then open the left or right doairagSuch a sequence of
actions by;j was not possible in the original policy graph shown in Fig.d4

5.3 Algorithm

We provide an algorithm for exploiting AE in order to solve a leivgl 1 I-DID (as well as a level
0 DID) in Fig. 16. The algorithm starts by selectively solving lower-levBIID or DID models at

t = 0, which results in a set of policy trees (line 2). We then build the policy grgpmérging
the policy trees as mentioned in lines 1-13 of Fig 13. The algorithm differa ff@g. 13 in the
expansion phase. In particular, we begin by grouping together AE maddée initial model
node. This changes the value of the initddlod node to the AE classes (lines 3-9). Subsequently,
updated models that are AE are aggregated at all time steps, and the ClR&é9/bfd nodes are
revised to reflect the constraint involving AE classes (lines 13-24). Agtiored in Section 5.2,
AE partitioning becomes inexact if we cannot find a CPT for the succédsarnode that satisfies
Eq. 7. Given the expanded I-DID, we use the standard look-ahehthaskup method to get the
solution.

5.4 Computational Savings

As we mentioned, the complexity of exactly solving a lev&DID is, in part, due to solving the
lower-level models of the other agent, and given the solutions, due to gunemntially growing
space of models. In particular, at some time stefhere could be at mo$1M 1141162 )t
many models, whereMOZ 1 is the set of initial models of the other agent. Whﬂ’e<< |M°l 1l
models are solved, conS|der|ng AE bounds the model space to af mypslistinct classes. Thus,
the cardinality of the interactive state space in the I-DID is bounde{Shyl;| elements at any
time step. This is a significant reduction in the size of the state space. In dping dditionally
incur the computational cost of merging the policy trees, whia®(§/Q;|"~")?|M?,_,[?) (from
Proposition 2). We point out that this approach is applied recursivelglte $-DIDs at all levels
down to 1, as shown in the algorithm.
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I-DID A pPROX AE (levell > 1 I-DID or level 0 DID, T', K, ¢)

1.1f I > 1then
2. Selectively solve modelsj’bﬂ?’lf1 as in Fig. 13 to obtain the policy graplG

Expansion Phase
3.1f [ > 1then
4. Foreachm{in M9, | do

5.

© No

v « vertex in PG to whichm9 maps
If a; — L,(v) has not been encountered previously
Initialize AE class\};”,

0,a; U
Mj,la—Jl - {m(])}

9. MJ, | — Setofall AE classes
10.For t from Oto 7' — 2 do

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24,
25,

26.

If [ > 1then
PopulateM;.j}1 using AE classes
For each M1, in M!,_, do
For eachm/ in M?jil do
For eacha; in OPT(m}) do
For eacho; in Q; do
v « vertex in PG to whichm} maps
If a; — L£,(7,(v,0;)) not been encountered previousiien
Initialize AE class/\/l;ﬁ’f g
Updatej's belief,bi*! — SE(b!, a;,0)
m/ ! — New I-DID (or DID) with b’*" as belief
Mﬁifj Y {mﬁ*l}
ML, — Setof all AE classes
Update CPT of nod&/od[M®!! ] to meet the constraint specified by Eq. 7
if possible, otherwise take average
Add the model nodey/; 1, , and the model update link betweafi, , andM; 11,
Add the chance, decision, and utility nodestfer 1 time slice and the dependency
links between them
Establish the CPTs for each chance node and utility node

Thesolution phaseroceeds analogously as the one in Fig. 10.

Figure 16:Algorithm for possibly inexactly solving a levél> 1 I-DID using action equivalence.

6. Empirical Results

We implemented the algorithms in Figs. 10, 13 and 16 and refer to the resultinggeeb as
Exact-BE, DMU andAE, respectively. In addition to these, we utilize the previous approximation
technique ofk-means clustering (Zeng et al., 2007), referred tdvig3, and the exact approach
without exploiting BE, referred to &xact, as baselines. In MC, models are clustered based on the
spatial closeness of their beliefs, and the clusters are refined iterativilljhey stabilize. Because
I-DIDs eventually transform to flat DIDs, we implemented them as a layeveabite popular ID
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tool, HUGIN EXPERT Vv7.0. The transformed flat DIDs and level O DIDs were all solved using
HUGIN to obtain the policy trees.

As benchmark problem domains, we evaluate the techniques on two welhkogvproblems
and a new scalable multiagent testbed with practical implications. One of tharbarics is the
two-agent generalization of the single agent tiger problem introducetbpsdy in Section 3. As
we mentioned, our formulation of this probledb(=2, | A;|=|A;|=3, |2;|=6, |2;|=2) follows the
one introduced by Gmytrasiewicz and Doshi (2005), which differs ftbenformulation of Nair
et al. (2003), in not being cooperative and havidapr creaksas additional observations. These
observations are informative, though not perfectly;'sfactions. The other toy domain is a gener-
alization of Smallwood and Sondik’s machine maintenance problem (Small&@&mhdik, 1973)
to the two-agent domain. This problent(=3, |4;|=|A;|=4, |Q;|=]Q2;|=2) is fully described in
Appendix B.2. I-DIDs for both these problem domains are shown in Se8tamd Appendix B.2,
respectively. Decentralized POMDP solution techniques are not ajpgeps baselines in coop-
erative problems such as machine maintenance because of the absara@whon initial belief
among agents, and I-DIDs take the perspective of an agent in the titeraacstead of computing
the joint behavior.

While the physical dimensions of these problems are small, the interactive [shate that in-
cludes models of the other agent is an order of magnitude larger. Furttesrttmey provide the ad-
vantage of facilitating detailed analysis of the solutions and uncovering stitegdoehaviors as pre-
viously demonstrated (Doshi et al., 2009). However, beyond incrgésirizons, they do not allow
an evaluation of the scalability of the techniques. In this context, we alsoadgahe approaches
within the Georgia testbed for autonomous control of vehicles (GaTAC}kl{D& Sonu, 2010),
which is a computer simulation framework for evaluating autonomous contearadl robotic vehi-
cles such as UAVs. Unmanned agents such as UAVs are used in fightasgfioes (Casbeer, Beard,
McLain, Sai-Ming, & Mehra, 2005), law enforcement (Murphy & Cycd®98), and wartime re-
connaissance. They operate in environments characterized by multiplagtars that affect their
decisions, including other agents with common or antagonistic preferefdestask is further
complicated as the vehicles may possess noisy sensors and unreliabieractsaTAC provides a
low-cost and open-source alternative to highly complex and expesisivgation infrastructures.

We setup and execute experiments to evaluate the followiagWe hypothesize that in sets
of models attributed to the other agent, several are BE. This will lead to tlet @agproach that
groups BE models (Exact-BE) being significantly more efficient than the plagmoach (Exact).
(b) Both approximation techniques (DMU and AE) will improve on the previous@gmation
technique ofc-means clustering (MC). This is because MC generates all models at eacstdjmne
before clustering and furthermore MC may retain BE modgls Finally, between DMU and AE,
we hypothesize AE to be significantly more efficient because it forms as nlasses as there are
actions only. However, the solution quality resulting from DMU and AE will Bplered.

6.1 Improved Efficiency Due to BE

We report on the performance of the exact methods (Exact-BE and)BExaen used for solving
both level 1 and 2 I-DIDs formulated for the small problem domains. As taeFeénfinitely many
computable models, we obtain the policy éyactlysolving the I-DID given a finite set of models

of the other agent initially)/°. In Fig. 17, we show the average rewards gathered by executing the
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policy trees obtained from exactly solving both level 1 and 2 I-DIDs forttie problem domains,
as a function of time allocated toward their solutions.

Each data point is the average of 200 runs of executing the policiesewietrue model of the
other agenty, is randomly selected according #e belief distribution overj’s models. The time
consumed is a function of the initial number of models and the horizon of thB]4ith of which
are varied beginning with/° = 50 at each level.

Multiagent tiger problem

Level =1 Level =2
7 6.5
65 6 K
6F 55F :

3
45 b
s
35 |
3E e

Average Reward
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o
Average Reward
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EXact-BE trreeee 25 F EXact-BE ++uee
Exact Exact
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Time(s) Time(s)
(a) (b)
Multiagent machine maintenance problem
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Figure 17: Performance profiles of the exact solutions on the multiagent(tigg and machine
maintenance problems, (). Higher average reward for given time is better. Exact-BE
significantly improves on the plain Exact approach at levels 1 and 2. Fgetdimes
the Exact program runs out of memory. Vertical bars represent thdath deviation
from the mean.

From Fig. 17, we observe that Exact-BE performs significantly betterttteExact approach.
Specifically, Exact-BE obtains the same amount of reward as Exact bugdrtitee, and subse-
guently, for a given allocated time, it is able to obtain larger reward thantEX&ds is because it
is able to solve for a better quality solution in less time as it groups together BHsraukretains
a single representative from each class, thereby reducing the nufmbedels held in each model
node. We see significant improvement in performances in solving |-DiDsta levels.

We uncover the main reason behind the improved performance of Exact48E. 18. As we
may expect, after grouping of BE models Exact-BE maintains much feweeslassnodels (pre-
dicting a particular behavior for the other agent) than the number of indiVidodels maintained
by Exact. This occurs for all horizons and for both the problem domaihe. number of models
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Multiagent tiger Multiagent machine maintenance

50 50
Exact mmm— Exact mm——
Exact-BE  mm— Exact-BE  mm—

Model Classes
Model Classes

Horizon Horizon

Figure 18: Exact-BE maintains far fewer classes at larger horizonampason to the Exact ap-
proach. Notice that the number of BE classes reduces as horizoragesreecause
solutions tend to involve fewer distinct behaviors. We do not show theaseri# mod-
els with time for Exact for clarity.

increase as horizon reduces (but time steps increase) due to modedgjguavever, BE classes
reduce with smaller horizon because of less distinct behaviors in the salution

As we increase the number of levels beyond two and mgdabre strategically, we expect
Exact-BE (and Exact) to result in solutions whose average rewardbposaproves but doesn't
deteriorate. However, as the number of models increases exponentially, with expect sub-
stantially more computational resources to be consumed making it challengiolyédar deeper
levels.

6.2 Comparative Performance of Approximation Methods

While discriminating between model updates as described in Section 4 by iteslihdblead to a
loss in optimality, we combined it with the approach of solvisgwhich we will now call K'p )
models out of the\/® models, and then solving those models which areermdbse to any of the
Kpyp models, to form the policy graph. Thus, we initially examine the behavior of tle tw
parametersK py; ande, in how they regulate the performance of the DMU-based approximation
technique for solving level 1 1-DIDs.

We show the performance of DMU for both the multiagent tiger and machine mamte
problems in Fig. 19. We also compare its performance with an implementation of A&
represents the total number of models retained after clustering and piuarting approach. The
performance of MC is shown as flat lines becaaskes not play any role in the approach. Each
data point for DMU is the average of 50 runs of executing the policiesavter true model of the
other agenty, is randomly picked according s belief distribution overj’s models, and solved
exactly if possible. Otherwise, if> 1, we solve it approximately using DMU with a lardép /i
and smalk. The plot is forA/% = 100, and a horizon of 10. As we increase the number of models
randomly selectedi 7, and reduce distance, the policies improve and converge toward the
exact. Notice that DMU improves on the performance of MC as we redudoe Kpyrr = Kare.

This behavior remains true for the multiagent machine maintenance problegilas w

We evaluate the impact of AE on solving level 1 I-DIDs for both problem dosand compare
it to MC. The experiments were run analogously as before with differalies for K 45 ande.
Both these parameters play roles that are similar to their use in DMU. We elfsenv Fig. 20 that
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Multiagent tiger Multiagent machine maintenance
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Figure 19: Performance profiles for DMU on horiz@i¥10, level 1 I-DID with A/°=100. For

given MY, the performance approaches that of the exact methddmagy increases
ande reduces. The comparison with MC indicates that better performance israghie

by DMU-based solutions.
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Figure 20: Performance profiles for AE on horizor10, level 1 I-DID with A/°=100. For given
M?, the performance approaches that of the exact methddasincreases ane re-
duces. Comparative performance in relation to MC indicates that AE is apéb
achieving better quality solutions (although for relatively small valueg.of

ase reduces and more models beyaolid ; are solved, the solution generated by AE improves on
MC for the case wher& 4 = Kj;c. Of course, as we solve more models initially, AE produces
better quality solutions because the generated policy graph includes mitsr@foae exact graph.
Additionally, as we may expect, the solution quality approaches that of thet ard becomes
significantly close to the exact (within one standard deviation for the tigdngmg fore < 0.1.

While our previous experiments demonstrated that both DMU and AE arébleaplimprov-
ing on MC, it is not clear how many more initial models beydiig;~ were solved to obtain the
improvements. Furthermore, performance of DMU and AE were not cadpdn Fig. 21, we
directly compare the performance of DMU, AE and MC. In particular, we Sueathe average
rewards obtained by corresponding solutions of level 2 I-DIDs asetifon of time consumed by
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Figure 21: Performance comparison of approximation techniques fangdkvel 2 I-DIDs. AE
achieves significantly improved efficiency for identical quality solutions dkie two
domains.

the approaches. For DMU and AE, the time taken is dependent on the parsifie ande), tree
merging and the horizon of the I-DID solved. For MC, the time is due to the ieratustering

until convergence and th& models that are picked. For the problem domains considered, larger
horizon with increasing< and reducing typically leads to better average rewards. We observe
that both DMU and AE significantly improve on MC — they produce identicalityusolutions in

less time than that by MC. Furthermore, between DMU and AE, the latter'sipeahce is more
favorable. This is because, while grouping AE models may result in an ataligpproximation,
further efficiency is made possible by the fewer AE classes and whasbearudoes not exceed a
constant across horizons.

We empirically explore the reason behind the comparative performance afptiroximation
techniques. Because the time (and space) consumed by the approgmidsiminantly due to the
solution of the models in the model node, we focus on the models retained bppheaahes at
different horizons. Fig. 22 shows the models at different horizonwdioying ¢ and for both the
problem domains. Note that when= 0, all initial models are solved and in the case of DMU,
results in the behaviorally minimal set at every horizon. Furthermore, asemtioned previously,
for non-zeroe, the merged policy graph is a subgraph of the exaet (0) case. As we show, the
resulting sets of models are subsets of the minimal set.

At any horizon, AE maintains no more model classes than the numbgs aictions, |A4;].

As we see, this is substantially less than the number maintained by DMU. MC maiatikesi
number,K ¢, of models at each horizon of the I-DID.

6.3 Runtime Comparison

We show the run times of the exact and approximation techniques for solvieigll@nd 2 I-DIDs
while scaling in horizons, in Table 1. Notice that a plain exact approachdites not exploit
model equivalences scales poorly beyond small horizons. In cordiiagtly grouping BE models
and reducing the exponential growth in models leads to significantly fasteutans and better
scaleup. The run times are reported for both these approaches sokvisantie I-DID exactly.

In obtaining the run times for the approximations, we adjusted the correisygoparameters so
that the quality of the solution by each approach was similar to each other. ®MWE reported
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Figure 22: Number of models maintained in the model node for differentdmoiiza level 1 I-DID
for the multiagent tigerd, b) and machine maintenance () problems. For DMU, as
e reduces, the model space approaches the minimal set. Aggregation ESingtiAer
reduces the model space.

substantially less execution times and better scaleup in comparison to MC fotheotlomains.
However, the run times of DMU and AE are relatively similar for level 1 I-BIAIlthough, as we
saw previously, there is a difference in the number of models maintained hywtheechniques,
solving j's level O DIDs is quick and the difference does not lead to a significanaamnpThe

differences in run times are more significant for level 2 I-DIDs becaobangj’s level 1 I-DIDs is

computationally intensive. As we may expect, AE consumes substantially less toomjrarison
to DMU — sometimes less than half. Both approaches scale up similarly in termshadrikien. In

particular, we are able to solve both level 1 and 2 I-DIDs for more tharriadroof 10. Further
scaleup is limited predominantly due to our use of software suchwsitfor solving the flat
DIDs, which seeks to keep the entire transformed DID in main memory.

6.4 Scalable Testbed: GaTAC

As we mentioned, the objective behind developing GaTAC is to provide atrealisd scalable
testbed for algorithms on multiagent decision making. GaTAC facilitates this lwdimg an intu-
itive and easy to deploy architecture that makes use of powerful, apenessoftware components.
Successful demonstrations of algorithms in GaTAC would not only reptésegible gains but have
the potential for practical applications toward designing autonomous velsicté as UAVs?

4. GaTAC is available for download ahttp://thinc.cs.uga.edu/thinclabw ki/index.php/
GaTAC : _Georgi a_Testbed_for_Aut ononous_Control _of _Vehicles
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| Level [ Domain | T | Exact Exact-BE DMU AE MC |
4 5.8s 0.47s 0.13s 0.42s 2.12s
Tiger 8 * 10.5s 1.27s 1.64s 28.45s
Level 1 14 * 2h 4m 15m6s 15m 15s *
4 6.66s 0.45s 0.19s 0.22s 3.23s
MM 6 * 1.73s 0.53s 0.58s 9.88sg
12 * 9m 40s 2m 9s 2m 12s *
3 | 3m24s 10.97s 4.63s 3.11s 1m 46s
Tiger 6 * 22m 6s 6m 54s 3m 3s *
Level 2 10 * 2h 48m 27m 36s 16m 54s *
4 | 5ml2s 1.11s 0.33s 0.58s 2m 2s
MM 6 * 13.59s 4.3s 1.48s *
10 * 20m 36s 3m 36s 2m 15s *

Table 1: Exploiting model equivalences has a significant impact on theiégxetimes. Both DMU
and AE demonstrate improved efficiency. Algorithm involving AE scales sizanifly
better to larger horizons for deeper strategy levels. All experimentiarerr a WinXP
platform with a dual processor Xeon 2.0GHz and 2GB memory. *' indicdtasthe data
point is unavailable because the program ran out of memory.
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Figure 23: (a) Design of GaTAC showing two networked instances of a flight simulator (&lighr
with 3D scenery from TerraGear), one autonomously and other manuailyotied.
GaTAC is extensible and more instances may be ad@igdSnapshot of a UAV flying
within FlightGear. Different viewpoints including an external view as shamd a
cockpit view are available.

manual control

A simplified design of the GaTAC architecture is shown in Fig. 23, where a algraontrolled
UAV is interacting with an autonomous one. Briefly, GaTAC employs multiple ingtao€an open-
source flight simulator, calleBlightGear (Perry, 2004), possibly on different networked platforms
that communicate with each other via external servers, and an autonowmngl enodule that
interacts with the simulator instances. GaTAC can be deployed on most plaifafoging Linux
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and Windows with moderate hardware requirements, and the entire sagtedscavailable under
GNU Affero public license version 3.

We utilize a relatively straightforward setting consisting
of another hostile fugitive, who is the target of ground re-
connaissance (Fig. 24). UAVYmust track down the fugitive (j
before he flees to the safe house. The problem is made com- £
plex by assuming that the fugitive is unaware of its own pre-
cise location though it knows the location of the safe house,
and/ may not be aware of the fugitive’s location. The prob- %
lem is further complicated if we realistically assume non-
deterministic actions and observations. Our simulations in NZ
GaTAC include grids of sizes 8 3 and 5x 5 with the same T
actors in each. GaTAC may be programmed to support more
complex scenarios comprising of a team of UAVs, multiple
hostile UAVs and reconnaissance targets attempting to blémgure 24: Example 5x 5 theater

in with civilians. of UAV I, which per-

We summarize our formulation of the UAV’s problem forms low-altitude recon-
domain. We utilize the possible relative positions of the naissance of a potentially
fugitive as states. Hence, possible states woulddrae hostile theater populated
north, south east west north-west and so on. Our repre- by a fugitive, J.

sentation for a 3x 3 theater consists of 25 physical states

for the UAV I. We assume that the fugitive is unaware of its own location resulting in 9 iysic
states for it. Extending the theater to ax55 grid leads to 81 physical states for the UAV and 25
for the fugitive. We factor the physical state into two variables in the I-Di& thodel the row and
column positions, respectively. Both UAVand the fugitive may move in one of the four cardinal
directions, and they may additionally hover at their current positions and listget informative
observations. Thus trectionsfor both I and the fugitive aré movenorth, movesouth, movevest,
moveeast, listeh. We may synchronize the actions for the two agents in GaTAC by allocating
equal time duration to the performance of each action. Typically, UAVs hdxared and camera
sensors whose range is limited. Accordingly, we assume that both the/l\d the fugitive can
sense whether their respective target is north of theengenorth), south of them gensesouth,
west or east of them in the same rosef(sdeve) or in the same location as themefisefound.
For I the target is the fugitive, while the fugitive’s target is the safe house.elassume that the
fugitive is unaware of 's presence, itfransition functionis straightforward and simply reflects the
possible nondeterministic change in grid location of the fugitive as it movestendis However,
transitions in physical state dfare contingent on the joint actions of both agents. Furthermore, the
probability distribution over the next states is not only due to the nondetermafiime actions, but

is also influenced by the current relative physical state. To providegpartunity for the UAVI

to catch the fugitive, we assume that the fugitive can sense the safedrysehen it is within a
distance of 1 sector (horizontally or vertically) from it. On the other ham/ W's observations of
the fugitive are not limited by this constraint. Thus, if the fugitive is in any locetitat is north off
(including north-west or north-east) receives an observation sénsenorth. To simulate noise in
the sensors, we assume that the likelihood of the correct observationibile&ll others are equi-
probable. The reward function is straightforward with the fugitive néngia reward if its location

is identical to that of the safe house, and small costs for performing at¢ti@liscourage excessive
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action taking. Analogously, UAV recieves a reward on performing an action and receiving an
observation ofensefound and incurs small costs for actions that lead to other observations.

South L

NhShLI

56 060 a = “n

(b)

Figure 25: (a) Example policies of the fugitive modeled by the UAY) UAV I's optimal policy of
pursuing the fugitive obtained by solving the level 1 I-DID exactly using Bite policy
is straightforward, using observations to guide the actions. All policiefoame 3 x 3
grid.

We modeled the problem formulation described above using a level 1 |-@1hé UAV I and
level 0 models for the fugitive. We show two example policies of the fugitiiaiokd by solving
its level 0 models, in Fig. 2%). While we considered several models for the fugitive with differing
initial beliefs, the fugitive’s initial belief of likely being just below the safe keuesults in the left
policy, while its initial belief of likely being south and east of the safe housgd¢a the policy on
the right. We show the UAV’s policy of reconnaissance in Figib250btained by solving its level 1
I-DID exactly while utilizing BE classes. Thirty models of the fugitive groupetd 16 BE classes
were considered in the I-DID. Here, the UAV initially believes that the fugits/likely to be in the
same row or south of it.

We simulate the reconnaissance theaters of Fig. 24 in GaTAC. The UAV anfiiditive’s
behaviors are controlled by their respective policies provided as inpihietautonomous control
module. For each simulation run, we generated the UAV’s policy by solvingvigs Iel-DID using
either Exact-BE, DMU or AE, and sampled one of the fugitive’s 30 modetsethan the UAV’s
initial belief. The run terminates when either the fugitive reaches the safgehor the UAV spots
the fugitive by entering the same sector as the fugitive. In the case of DMUAE, we used
parametersK = 13 ande = 0.3 for the 3x 3 problem size, an& = 17,¢ = 0.15 forthe 5x 5
problem. We show the average reward gathered by the UAV across 2@asonuuns for each of
the three approaches in Fig.(26 and the associated clock time for solving the I-DIDs in Fig.626
While we considered several different beliefs for the UAV, positioning/fispproximately between
the fugitive and the safe house yielded a fugitive capture rate of 65%ga@thersimulation runs and
an escape rate of 25%. The remaining runs did not result in a captuneescape.

While exactly solving the I-DID using Exact-BE continues to provide the kstrgmvard among
all approaches, as shown in Fig.(28, it fails to scale to a longer horizon or problem size. Both
DMU and AE scale, although AE performs worse than DMU in the contexawérd in this domain.
Note that longer horizons result in overall better quality policies in this proldlemain, as we may
expect. This is because the UAV is able to plan its initial action better. Finally, th@ieg reward
obtained by AE relative to DMU’s as the horizon increases from 6 to 8 fer3tlx 3 grid, and
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Figure 26: (a) Simulation performance of the UAV in GaTAC when its level 1 I-DID is solveithgs

the different approaches and over longer horizons. We scaledithsige from 3x 3

to 5 x 5. Notice that Exact-BE fails to scale as the horizon and problem size s&rea
and we do not show its rewar¢h) Execution times for solving the level 1 I-DID using
the different approaches. Although AE results in solutions of lower quatitypared to
DMU, it does so in much less time. For the longer horizon of 8, this time differénc
about an order of magnitude.

the slight climb in AE’s relative reward as a percentage of DMU's fromualad% to 62% for the
horizon of 6 as the grid size is scaled fromx3 to 5 x 5 makes us believe that AE’s performance
will not necessarily deteriorate compared to DMU for larger problems.ra&lyave demonstrate
the scalability of DMU and AE by increasing the horizon to 8 for this largebf@mm domain, and
further scaling its size. Larger grid sizes or longer horizons resultedids hat could not be solved
by HUGIN given the fixed memory.
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Figure 27: UAVI's flight trajectory is in dashed blue while the fugitive’s is in dashed redjetto-

ries(a, b) eventually lead to the fugitive being spotted whilg i, the fugitive reaches
the safe house. The latter is due to an incorrect move by the UAV bechaseguity
in its observations. A circle represents hovering during which the UAV efultive is
listening and senses the labeled observation.
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Finally, we handpick three simulations from the numerous that we carriedr@ishow the
corresponding trajectories of the UAV and the fugitive in Fig. 27. We stvoavtrajectories where
the UAV spots the fugitive and a trajectory where the fugitive successattgpes to the safehouse.
Figure 27 shows that the trajectories of the UAV can get quite complicated tlubge of the fugitive
are more straightforward due to its low strategic awareness.

7. Discussion

Graphical models are an appealing formalism for modeling decision makinig dloe convenience
of representation and the increased efficiency of the solution. DIDa key contribution in this
regard. I-DIDs are founded on the normative paradigm of decisicoryres formalized by DIDs
and augmented with aspects of Bayesian games (Harsanyi, 1967) aadtimteepistemology (Au-
mann, 1999a, 1999b) to make them applicable to interactions. |-DIDsajemeeDIDs to multiagent
settings thereby extending the advantages of DIDs to decision making in motissgengs. I-DIDs
adopt a subjective approach to understanding strategic behavitadrioca decision-theoretic for-
malism that takes a decision-makers perspective in an interaction which megoperative or
non-cooperative. The broader impact is that understanding the sagecision-making process fa-
cilitates planning and problem-solving at its own level and in the absencentvhtieed controllers
or assumptions about agent behaviors. In a game-theoretic sensettitig modeled by I-DIDs is
a partially observable stochastic game, and solving it by computing Nash eigudibotherwise,
has received minimal attention in game theory.

We presented a collection of exact and approximation algorithms for scalakiyg I-DIDs.
These algorithms improve on early techniques by providing more effegipmaches in order to
reduce the exponential growth of other agents’ models at each time stemaduidea is to cluster
models attributed to other agents that are BE. These models attribute identiagidoe across all
time steps to the other agent. We then select representative models frowiwesieh without loss
of optimality in the solution. Instead of generating the updated models and ahgsteem, we
showed how we may selectively update those models that will not be BE to gxistidels in the
next time step. Nevertheless, ascertaining BE requires solving the initiafl setdels. In order to
approximate this, we proposed solvikgrandomly picked models followed by all those which are
not e-close to any of thé models. We partially bounded the error due to this approximation for
some cases. Despite the lack of a proper bound, our empirical resdtd tieat the error becomes
unwieldy for large: values only. This is because many problems admit large BE regions for models
albeit which tend to reduce as horizon increases.

In order to further reduce the number of equivalence classes, waigated grouping together
models whose prescribed actions at a particular time step are identical. phigelp is appealing
because the number of AE classes is upper bounded by the number aftdistions at any time.
While AE models may be grouped without loss in optimality, we identified the conditiodsr
which AE leads to an approximation. Our experiments indicate that consideyatfBE are of
significance while grouping AE models leads to most reduction in the modet spaong all the
different approaches. However, they also show that the gap in tHi¢yqofathe solutions due to
grouping BE and grouping AE models can become large. This differeggendls on the domain
characteristics and does not necessarily worsen as the problem i isdadgizon or size.

Due to the expressiveness of the modeling and its ensuing complexity, periregntation
focused on settings involving two agents. However, as the number of aglesits increases, po-
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tential computational savings due to exploiting BE and AE assumes greatdicsigee. This is
because the space of interactive states increases exponentially withmthemof agents. There-
fore, grouping agent models in less numbers of classes would substargdiliye the state space
and consequently the size of the I-DID. We may group models separatetadh agent in which
case the computations for ascertaining BE classes grow linearly with the nofrdgents. On the
other hand, consider the tiger problem where agerdction is affected by somebody opening the
door, without the need for knowing which particular agent opened it. imdhase, we may group
together models that are BE but belonging to different agents, leadingreased savings. Our
preliminary experimentation in the context of the multiagent tiger problem in a séttintying
two other agents (total of three agents) one of which is thought to be @imgewhile the other
adversarial, indicates that grouping BE models for each other agesttieadspeed up of about 7
for both a 3-horizon and 5-horizon I-DID. Specifically, the computation tieteices from 4.8s for
Exact to 0.6s for Exact-BE when the horizon is 3, and from 72.6s to 16r3sxact-BE when the
horizon is 5.

Because identifying exact BE is computationally intensive, we think that ingokreealability
may be brought by further investigating approximate BE of models. This walldd/ us to form
larger clusters and have fewer representative models. While we astigateng multiple ways of
doing this, a significant challenge is storing policy trees that grow expiatlgras the horizon is
further scaled. One promising approach in this regard is to compare genfiey trees of bounded
depth and the distance between the belief vectors at the leaves of theltrmesllows us to define
an approximate measure of BE based on the distance between the updiafegbers given that
the bounded-depth policy trees are identical. However, our preliminaegtigations reveal that
deriving the depth of the tree becomes challenging for certain types bligpns.

A general limitation of utilizing the spatial closeness of beliefs for approximatigtifying
BE models is that the error may be larger if the frames in the models differ. Thexmuse model
beliefs that are close are still less likely to result in the same behavior if @ayetbard functions
are different. In the absence of this approximation, our approachetisicriminatively updating
models and grouping AE models continue to apply if frames are also unceetzanse they operate
on model solutions — policy trees and actions — and not on model specificafionther impact of
considering frame uncertainty is that the Markov blanket shown in Figh&bges. A general hurdle
is that further scalability of ID-based graphical models is also limited by theragsof state-of-
the-art techniques for solving DIDs within commercial implementations suchussMEXPERT
that predominantly rely on solving the entire DID in main memory. Although newesions of
HuaGIN allow the use of limited memory IDs (Nilsson & Lauritzen, 2000), recent adesisuch as
a branch-and-bound approach for solving multistage 1Ds (Yuan, Widagsen, 2010) would help
drive further scalability of I-DID solutions.
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Appendix A. Proofs

Proof of Proposition 1. We prove by induction on the horizon. L{*M},z—p e ngzq} be the
collection of behaviorally equivalent sets of models\f;;_;. We aim to show that the value of
each ofi’s actions in the decision nodes at each time step remains unchanged oatapphé the
transformation,X. This implies that the solution of the I-DID is preserved. Lgt(b;;,a;) give
the action value at horizom. Its computation in the I-DID could be modeled using the standard dy-
namic programming approach. LEtR;(s,m;,;—1, a;) be the expected immediate reward for agent
i averaged ovej’s predicted actions. Theiv{mql LMl ER;(s, m]l 1) = Zaj R;(s,a;,a;)
Pr(aj\mjﬁl_l) Ri(s,a;,a ) becauseq is optimal for allm? i1 € M SYIRE

Basis step:Q (b, a;) = Z - bzl(S mji—1)ER;(s, mj,l—luaz)

=D cqbii(s) ml, em?, b (m? mj,_|s)Ri(s, a;, a?) (af is optimal for all behaviorally equivalent
models inM7, ;)

= D bia($)Rils, @iy af) Yopr | enan | bia(miy 4 1s)

= ng bi,l(s)Rz(S Qs ])b’L l( ] 1_1’3) (from Eq. )

= ZS’? bii(s,m ?,1_1)ER1(37 mj’l_l, a;) (af is optimal for representative:, )

= Ql( 3,0y ai) ~ . .

Inductive hypothesis: Let, Vq, 5, , Q" (big,a;) = Q"(bi, a;), whereb; ; relates tab; ; using Eq. 1.
ThereforeU"(b; ;) = U”(bi,l) WhereU”(bi,l) is the expected utility ob; ; for horizonn.

Inductive proof: Q" (biy, ai) = Q" (big, ai) + Yo, sm,, 1.0, Pr(0ils. ai,a;)

Pr(aj \mﬂ,l)bi’l(s, mj7l,1)Un<bg7l> (basis step

= Q (bip ai) + X2, o Proils, ai,af) bi(s) mt, em?, big(mf, 4[s) U™(b;,;) (af is opti-
mal for models inM}, ;)

= Q' (bigsa;) + X, 54 Prloils, ai,af) bii(s) mt, emt, | big(mi;_y|s) U(b;;)  (using the
inductive hypothesjs

=Q! (b zl’az) +Zoi,3,q r(oils, ai, j) (s )bzl(m . s ) (b, ) (fromEq. )

= Q ( i,l7ai) + in,s,q (0’6‘8 a’l? j) (S m l 1) Un(b;l)

= Q" (biy, ai) O

b;
b;

Calculating prediction error in Section 4.5. Let m;;_; be the model associated with a solved
model,m;.vl_l, resulting in the worst error. Let be the exact policy tree obtained by solving

m;,—1 optimally anda’ be the policy tree forn’, ;. Asm, , is itself solved inexactly due
to approximate solutions of lower level models, dét be the exact policy tree that is optimal for
m’;; . If bj—1 is the beliefinm;;_, andd’, , inm’, |, then the erroris:

E = |Oé . bj7l_1 —a- bj,l_1|
=la-bj—1—a bj1+ (" -bj—1—a"- bj,l—1)| (add zerg 8)
=[(a-bji-1—a”- bz 1) + (0/' b]l 1—a b))l _ _
< (e bj—1 —a” - bji—1)|+ (@ - bji—1 —a' - bj;—1)| (triangle inequality

For the first term)o - b;;—1 — " - bj;—1|, which we denote by, the error is due to associating
mj,—1 With m’;,_,, both solved exactly. We analyze this error below:
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p =loa-bjj—1—a"bj_1]
= | bj,l*l - a b/ -1 + a” b/ l 1 a// : bj,171| (add Zer()
<la-bjia—a- b,171+0‘/ b,lfl o’ bl (o by Zaby; )
= | (bjg—1 =} q) — "+ (bji—1 = b)) )
=[(a—a") - (bji—1 — b))l
<la = a"[|oo X [|bji—1 =, 4111 (Holder’s inequality
< (Rmew — Rmin)T x ¢

In the above inequality, the largest difference betwegn, andb’;, , is ¢, otherwise model,
m;,—1 With beliefb;;_, would be solved. Notice that the error is regulated tBnd as increases,
we solve less models beyord and the approximation error worsens.

In subsequent time steps, because the sets of models could be subsetsfitiial sets, the
updated probabilities could be transferred to incorrect models. In thet wase, the error incurred
is bounded analogously to Eg. 9. Hence, the cumulative errgs jpredicted behavior over steps
is at mostI’ x p, which is similar to that of the previousmeans model clustering approach (Zeng
et al., 2007):

pT < (R;naz . R;mn)TQE

The second term(a” - b;;—1 — - bj;—1)|, In Eq. 8 represents the error due to the approximate
solutions of models further down in level (for exampls,level [ — 2 models). Sinceg’s behavior
depends, in part, on the actionsiofand not on the value afs solution), even a slight deviation
by j from the exact prediction farcould lead tgj's behavior with the worst error. Hence, it seems
difficult to derive bounds for the second term that are tighter than thel uge"** — R;””)T

Consequently, the total error in predicting behavior is bounded if lower-level models are
solved exactly. Otherwise, as we show in Section 6.2, the error is largéasngry largee. This is
because many problems admit large BE regions for the models therebyamnobostraining, and
the prediction continues to remain exact. However, we noticed that thesesetp reduce in size
as the horizon increases. In summary, although the error due to asgpdiffttnent models whose
beliefs ares-close is bounded, we are unable to usefully bound the overall erroedigtion due to
approximate solutions of lower-level models.

Appendix B. Problem Domains

We provide detailed descriptions of all the problem domains utilized in our &tiahs, including
their I-DID models, below.

B.1 Multiagent Tiger Problem

As we mentioned previously, our multiagent tiger problem is a non-coopegdneralization of the
well-known single agent tiger problem (Kaelbling et al., 1998) to the multiagetting. It differs
from other multiagent versions of the same problem (Nair et al., 2003)dun@ng that the agents
hear creaks as well as the growls and the reward function does mobfgaooperation. Creaks
are indicative of which door was opened by the other agent(s). Whileeserithed the problem
in Section 3, we quantify the different uncertainties here. We assume thattiuracy of creaks
is 90%, while the accuracy of growls is 85% as in the single agent problemtidér location is
chosen randomly in the next time step if any of the agents opened any ddbies ¢garrent step.
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Fig. 8 shows an I-DID unrolled over two time-slices for the multiagent tigebler. We give the
CPTs for the different nodes below:

(af,a}) | TigerLocation® | TL | TR
(OL, ) * 05| 05
(OR, *) * 05| 05
(x,0L) * 05| 05
(x,OR) * 05|05
(L, L) TL 1.0 0

(L, L) TR 0 | 1.0

Table 2: CPT of the chance no@&ger Location'*! in the I-DID of Fig. 8.

We assign the marginal distribution over the tiger’s location from agemitial belief to the
chance nodeTiger Locationt. The CPT ofTiger Location'*! in the next time step conditioned
on TigerLocation', A}, and A’ is the transition function, shown in Table 2. The CPT of the
observation nOdEGrowl&CreaktH is shown in Table 3. CPTs of the observation nodes in level
0 DIDs are identical to the observation function in the single agent tigetgarob

{al,al) [ TgrLoc™™ [ (GL,CL) [ (GL,CR) | (GL,S) [ (GR,CL) [ (GR,CR) | (GR,S
L.I) TL 0.85%0.05 | 0.85*0.05| 0.85%0.9 | 0.15%0.05 | 0.15*0.05| 0.15*0.9
(L,L) TR 0.15%0.05 | 0.15*0.05 | 0.15%0.9 | 0.85%0.05 | 0.85*0.05 | 0.85%0.9
{L,0L) TL 0.85%0.9 | 0.85*0.05 | 0.85%0.05| 0.15*0.9 | 0.15*0.05 | 0.15*0.05
(L,0L) TR 0.15%0.9 | 0.15*0.05 | 0.15%0.05| 0.85%0.9 | 0.85*0.05 | 0.85*0.05
(L,OR) TL 0.85*0.05| 0.85*0.9 | 0.85%0.05| 0.15%0.05| 0.15*0.9 | 0.15*0.05
(L,OR) TR 0.15%0.05| 0.15*0.9 | 0.15%0.05| 0.85%0.05| 0.85*0.9 | 0.85*0.05
(OL, =) 1/6 1/6 1/6 1/6 1/6 1/6

(OR, =) 1/6 1/6 1/6 1/6 1/6 1/6

Table 3: CPT of the chance nod&yowl&Creak!™!, in agenti’s I-DID.

Decision nodesd’ and A*!, contain possible actions of agerguch ad., OL, andOR Model
node M]tl 1» contains the different models of agentvhich are DIDs if the I-DID is at level O,
otherwise they are I-DIDs themselves. The distribution over the assodidteti)/] node (see
Fig. 9) is the conditional distribution ovefs models given physical state from agei# initial

belief. The CPT of the chance nocMod[Mt“] in the model nodeMtl 1» reflects which prior

model, action and observation pfesults in a model contained in the model node.

Finally, the utility node,R;, in the I-DID relies on both agents’ actlonAZL? and Az., and the
physical states]iger Location!. The utility table is shown in Table 4. These payoffs are analogous
to the single agent version, which assigns a reward of 10 if the coroectislopened, a penalty of
100 if the opened door is the one behind which is a tiger, and a penalty ofidtéming. A result of
this assumption is that the other agent’s actions do not impact the origindisaggyoffs directly,
but rather indirectly by resulting in states that matter to the original agent. tilite tables for level
0 models are exactly identical to the reward function in the single agent tigelepn.
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<ai, aj> TL TR
(OR,OR) | 10 | -100
(OL,0L) | -100| 10
(OR,OL) | 10 | -100
(OL,OR) | -100| 10
(L, L) 1 1
(L,OR) | 1 [ 1
(OR,L)y | 10 | -100
(L,OL) | 1 | 1
(OL,L) |-100| 10

Table 4: Utility table for nodeR;, in the I-DID. Utility table in the I-DID for agenjy is the same
with column labela;, a;), swapped.

B.2 Multiagent Machine Maintenance Problem

We extend the traditional single agent based machine maintenance (MMgmpr@®mallwood &
Sondik, 1973) to a two-agent cooperative version. Smallwood andils¢tP73) described an MM
problem involving a machine containing two internal components. Either ohetbrcomponents
of the machine may fail spontaneously after each production cycle (Oafaitomponent fails; 1-
fail: 1 component fails; 2-fail: both components fail). If an internal congrarnas failed, then there
is some chance that when operating upon the product, it will cause thegbitodbe defective. An
agent may choose to manufacture the product (M) without examining it, eraiménproduct (E),
inspect the machine (1), or repair it (R) before the next productiotecy@n an examination of the
product, the subject may find it to be defective. Of course, if more coemtsrhave failed, then the
probability that the product is defective is greater.

Machine
Failure'

Figure 28: Level I-DID of agent: for the multiagent MM problem.

A level [ I-DID for the multiagent MM problem is shown in Fig. 28. We considérmodels of
agentj at the lower level which differ in the probability thatassigns to the chance nolftachine
Failure. Agenti’s initial belief over the physical state an& models provides the marginal distri-
bution overM achineFailure®. In the I-DID, the chance nod@/achineFailure!™t, has incident
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arcs from the nodes/achineFailure', A}, and A%. In Table 5, we show the CPT of the chance
node.

(af,a}) Machine Failure’*! [ O-fail | 1-fail | 2-fail
(M/E,M/E) O-fall 0.81 | 0.18 | 0.01
(M/E,M/E) 1-fall 00 | 09 | 01
(M/E,MIE) 2-fail 00 | 00 | 1.0

M,ITR) 0-fal 10 | 0.0 | 00

(M,IIR) 1-fail 0.95 | 0.05 | 0.0

(M,I/R) 2-fail 095 | 0.0 | 0.05

(EIR) 0-fail 10 | 00 | 00

(E\IIR) 1-fail 095 | 005 | 0.0

(EIR) 2-fail 0.95 | 0.0 | 0.05

(IIR*) 0O-fail 1.0 0.0 0.0

(IR *) 1-fail 0.95 | 0.05 | 0.0

(IR*) 2-fail 095| 0.0 | 0.05

Table 5: CPT of the chance nod®,achine Failure!™!, in the levell I-DID of agenti. At level 0
the CPT is analogous to the one in the original MM problem.

With the observation chance nodBefectivel™, we associate the CPT shown in Table 6.
Note that arcs fromM achineFailuret*t! and the nodesA;? andAg-, in the previous time step are
incident to this node. The observation nodes in the level 0 DIDs have @RTare identical to the
observation function in the original MM problem.

(af,a%) | Machine Failure’*" | not-defective | defective
M, M/E) * 05 05
(M,I/R) * 0.95 0.05
(E,M/E) 0-fail 0.75 0.25
(E,MIE) 1-fail 0.5 05
(E,MIE) 2-fail 0.25 0.75
(EIR) * 0.95 0.05
(IR*) * 0.95 0.05

Table 6: CPT of the observation nodeg fective! ™. Corresponding CPT in ageyit [ — 1 1-DID

is identical but with(a!, a]> swapped.

The decision noded;, has one information arc from the observation nﬁﬂgectivef indicat-
ing thati knows the examination results before making the choice. The utility Rpéeassociated
with the utility table in Table 7. The utility table for a level 0 agent is identical to theiortbe
original MM problem.

The CPT of the chance node/[od[Mt“], in the model nodeMtl 1» reflects which prior
model, action and observation pfesults in a model contained in the model node, analogously to
the tiger problem.
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(af,al) [ O-fail | 1fail | 2-fail
(M\M) | 1.805 | 0.95 | 05
(MEE) | 1555 | 0.7 | 0.25
(MI) | 0.4025 | -1.025| -2.25
(MR) | -1.0975| -1.525| -1.75
(EM) | 1.5555| 0.7 | 0.25
(EE | 1.305 | 045 | 0.0
(El) | 0.1525 | -1.275| -2.5
(ER | -1.3475| -1.775| -2.0
(M) | 0.4025 | -1.025| -2.25
(LE) | 0.1525 | -1.275| -2.5
{n 10 | -3.00 | -5.00
IRy | 25 | -35 | -45
(RM) | -1.0975| -1.525| -1.75
(RE) | -1.3475| -1.775| -2.0
R | 25 | -35 | 45
RR -4 4 -4

Table 7:; Utility table for ageni. Agent j’s utility table in its{ — 1 I-DID is identical but with

column labely(af, a’), swapped.

B.3 UAV Reconnaissance Problem

We show a level I-DID for the multiagent UAV problem in Fig 29. Models of the fugitive (agen
j) at the lower level differ in the probability that the fugitive assigns to its pasiticthe grid. The
UAV’s (agent:) initial beliefs are probability distributions assigned to the relative position @f th
fugitive decomposed into the chance nodéagRel PosX! and FugRel PosYt, which represent
the relative location of the fugitive along the row and column, respectivedyCPTs assume that
each action (exceflisten) moves the UAV in the intended direction with a probability of 0.67, while
the remaining probability is equally divided among the other neighboring positidationlisten
keeps the UAV in the same position.

The observation nodejen Fug, represents the UAV’s sensing of the relative position of the
fugitive in the grid. Its CPT assumes that the UAV has good sensing capdbidithood of 0.8
for the correct relative location of the fugitive) if the actionligen, otherwise the UAV receives
random observations during other actions.

The decision noded;, contains five actions of the UAV, which includes moving in the four
cardinal directions and listening. The edge incident into the node indicateththUAV ascertains
the observation on the relative position of the fugitive before it takes tionac

The utility node,R;, is the reward assigned to the UAV for its actions given the fugitive’s kelati
position and its actions. The UAV gets rewarded 50 if it captures the fugdtherwise, it costs -5
for performing any other action.

Because the actual CPT tables are very large, we do not show themAtigpeoblem domain
files are available upon request.
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FugRel
Posx"*!

Figure 29: Level I-DID of agent: for our UAV reconnaissance problem.
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