
Journal of Artificial Intelligence Research 43 (2012) 353–388 Submitted 10/11; published 03/12

Computing All-Pairs Shortest Paths
by Leveraging Low Treewidth

Léon Planken l.r.planken@tudelft.nl
Mathijs de Weerdt m.m.deweerdt@tudelft.nl
Faculty of EEMCS, Delft University of Technology,
Delft, The Netherlands

Roman van der Krogt roman@4c.ucc.ie

Cork Constraint Computation Centre,

University College Cork, Cork, Ireland

Abstract

We present two new and efficient algorithms for computing all-pairs shortest paths. The
algorithms operate on directed graphs with real (possibly negative) weights. They make use
of directed path consistency along a vertex ordering d. Both algorithms run in O

(
n2wd

)
time, where wd is the graph width induced by this vertex ordering. For graphs of constant
treewidth, this yields O

(
n2
)

time, which is optimal. On chordal graphs, the algorithms
run in O (nm) time. In addition, we present a variant that exploits graph separators to
arrive at a run time of O

(
nw2

d + n2sd
)

on general graphs, where sd ≤ wd is the size of
the largest minimal separator induced by the vertex ordering d. We show empirically that
on both constructed and realistic benchmarks, in many cases the algorithms outperform
Floyd–Warshall’s as well as Johnson’s algorithm, which represent the current state of the
art with a run time of O

(
n3
)

and O
(
nm+ n2 log n

)
, respectively. Our algorithms can be

used for spatial and temporal reasoning, such as for the Simple Temporal Problem, which
underlines their relevance to the planning and scheduling community.

1. Introduction

Finding shortest paths is an important and fundamental problem in communication and
transportation networks, circuit design, bioinformatics, Internet node traffic, social net-
working, and graph analysis in general—e.g. for computing betweenness (Girvan & New-
man, 2002)—and is a sub-problem of many combinatorial problems, such as those that can
be represented as a network flow problem. In particular, in the context of planning and
scheduling, finding shortest paths is important to solve a set of binary linear constraints
on events, i.e. the Simple Temporal Problem (STP; Dechter, Meiri, & Pearl, 1991). The
STP in turn appears as a sub-problem to the NP-hard Temporal Constraint Satisfaction
Problem (TCSP; Dechter et al., 1991) and Disjunctive Temporal Problem (DTP; Stergiou
& Koubarakis, 2000), which are powerful enough to model e.g. job-shop scheduling prob-
lems. The shortest path computations in these applications can account for a significant
part of the total run time of a solver. Thus, it is hardly surprising that these topics have re-
ceived substantial interest in the planning and scheduling community (Satish Kumar, 2005;
Bresina, Jónsson, Morris, & Rajan, 2005; Rossi, Venable, & Yorke-Smith, 2006; Shah &
Williams, 2008; Conrad, Shah, & Williams, 2009).

c©2012 AI Access Foundation. All rights reserved.

Planken, De Weerdt, & Van der Krogt

Instances of the STP, called Simple Temporal Networks (STNs), have a natural represen-
tation as directed graphs with real edge weights. Recently, there has been specific interest
in STNs stemming from hierarchical task networks (HTNs; Castillo, Fernández-Olivares,
& González, 2006; Bui & Yorke-Smith, 2010). These graphs have the “sibling-restricted”
property: each task, represented by a pair of vertices, is connected only to its sibling tasks,
its parent or its children. In these graphs the number of children of a task is restricted by a
constant branching factor, and therefore the resulting STNs also have a tree-like structure.

The canonical way of solving an STP instance (Dechter et al., 1991) is by computing
all-pairs shortest paths (APSP) on its STN, thus achieving full path consistency. For
graphs with n vertices and m edges, this can be done in O

(
n3
)

time with the Floyd–Warshall

algorithm (Floyd, 1962), based on Warshall’s (1962) formulation of efficiently computing the
transitive closure of Boolean matrices. However, the state of the art for computing APSP
on sparse graphs is an algorithm based on the technique originally proposed by Johnson
(1977), which does some preprocessing to allow n runs of Dijkstra’s (1959) algorithm. Using
a Fibonacci heap (Fredman & Tarjan, 1987), the algorithm runs in O

(
n2 log n+ nm

)
time.

In the remainder of this paper, we refer to this algorithm as Johnson.

In this paper we present two new algorithms for APSP with real edge weights (in Sec-
tion 3). One algorithm, dubbed Chleq–APSP, is based on a point-to-point shortest path
algorithm by Chleq (1995); the other, named Snowball, is similar to Planken, de Weerdt,
and van der Krogt’s (2008) algorithm for enforcing partial (instead of full) path consis-
tency (P3C). These new algorithms advance the state of the art in computing APSP. In
graphs of constant treewidth, such as sibling-restricted STNs based on HTNs with a con-
stant branching factor, the run time of both algorithms is bounded by O

(
n2
)
, which is

optimal since the output is Θ
(
n2
)
. In addition to these STNs, examples of such graphs

of constant treewidth are outerplanar graphs, graphs of bounded bandwidth, graphs of
bounded cutwidth, and series-parallel graphs (Bodlaender, 1986).

When Chleq–APSP and Snowball are applied to chordal graphs, they have a run time of
O (nm), which is a strict improvement over the state of the art (Chaudhuri & Zaroliagis,
2000, with a run time of O

(
nmw2

d

)
; wd is defined below). Chordal graphs are an important

subset of general sparse graphs: interval graphs, trees, k-trees and split graphs are all special
cases of chordal graphs (Golumbic, 2004). Moreover, any graph can be made chordal using
a so-called triangulation algorithm. Such an algorithm operates by eliminating vertices one
by one, connecting the neighbours of each eliminated vertex and thereby inducing cliques
in the graph.

The induced width wd of the vertex ordering d is defined to be equal to the cardinality
of the largest such set of neighbours encountered. The upper bound of the run time of
both proposed algorithms on these general graphs, O

(
n2wd

)
, depends on this induced

width. Finding a vertex ordering of minimum induced width, however, is an NP-hard
problem (Arnborg, Corneil, & Proskurowski, 1987). This minimum induced width is the
tree-likeness property of the graph mentioned above, i.e. the treewidth, denoted w∗. In
contrast, the induced width is not a direct measure of the input (graph), so the bound of
O
(
n2wd

)
is not quite proper. Still, it is better than the bound on Johnson if wd ∈ o (log n).1

1. We prefer to write x ∈ o (f(n)) instead of the more common x = o (f(n)). Formally, the right-hand
side represents the set of all functions that grow strictly slower than f(n), and the traditional equality
in fact only works in one direction (see also Graham, Knuth, & Patashnik, 1989, Section 9.2).

354

Computing APSP by Leveraging Low Treewidth

To see this, note that the bound on Johnson is never better than O
(
n2 log n

)
, regardless of

the value of m.

In this paper, we also present a variant of Snowball that exploits graph separators and
attains an upper bound on the run time of O

(
nw2

d + n2sd
)
. This upper bound is even

better than the one for the two other new algorithms, since sd ≤ wd is the size of the largest
minimal separator induced by the vertex ordering d. While theoretical bounds on the run
time usually give a good indication of the performance of algorithms, we see especially for
this last variant that they do not always predict which algorithm is best in which settings.
In Section 4, therefore, we experimentally establish the computational efficiency of the
proposed algorithms on a wide range of graphs, varying from random scale-free networks
and parts of the road network of New York City, to STNs generated from HTNs and job-shop
scheduling problems.

Below, we first give a more detailed introduction of the required concepts, such as
induced width, chordal graphs and triangulation, after which we present the new algorithms
and their analysis.

2. Preliminaries

In this section, we briefly introduce the algorithm that enforces directed path consis-
tency (DPC) and how to find a vertex ordering required for this algorithm. We then
present our algorithms for all-pairs shortest paths, all of which require enforcing DPC (or
a stronger property) as a first step. In our treatment, we assume the weights on the edges
in the graph are real and possibly negative.

2.1 Directed Path Consistency

Dechter et al. (1991) presented DPC, included here as Algorithm 1, as a way check whether
an STP instance is consistent.2 This is equivalent to checking that the graph does not
contain a negative cycle (a closed path with negative total weight). The algorithm takes as
input a weighted directed graph G = 〈V,E〉 and a vertex ordering d, which is a bijection
between V and the natural numbers {1, . . . , n}. In this paper, we simply represent the ith
vertex in such an ordering as the natural number i. The (possibly negative) weight on the
arc from i to j is represented as wi→j ∈ R. Our shorthand for the existence of an arc
between these vertices, in either direction, is {i, j} ∈ E. Finally, we denote by Gk the graph
induced on vertices {1, . . . , k}; likewise, for a set of vertices V ′ ⊆ V , GV ′ denotes the graph
induced on V ′. So, in particular, GV = Gn = G.

In iteration k, the algorithm adds edges (in line 5) between all pairs of lower-numbered
neighbours i, j of k, thus triangulating the graph. Moreover, in lines 3 and 4, it updates
the edge between i and j with the weight of the paths i→ k → j and j → k → i, if shorter.
Consequently, for i < j, a defining property of DPC is that it ensures that wi→j is no higher
than the total weight of any path from i to j that consists only of vertices outside Gj (except
for i and j themselves). This implies in particular that after running DPC, w1→2 and w2→1

are labelled by the shortest paths between vertices 1 and 2.

2. Note that other algorithms—such as Bellman–Ford—can be used for this purpose as well, and usually
perform better in practice.

355

Planken, De Weerdt, & Van der Krogt

Algorithm 1: DPC (Dechter et al., 1991)

Input: Weighted directed graph G = 〈V,E〉; vertex ordering d : V → {1, . . . , n}
Output: DPC version of G, or inconsistent if G contains a negative cycle

1 for k ← n to 1 do
2 forall i < j < k such that {i, k} , {j, k} ∈ E do
3 wi→j ← min {wi→j , wi→k + wk→j}
4 wj→i ← min {wj→i, wj→k + wk→i}
5 E ← E ∪ {{i, j}}
6 if wi→j + wj→i < 0 then
7 return inconsistent
8 end

9 end

10 end

11 return G = 〈V,E〉

The run time of DPC depends on a measure wd called the induced width relative to
the ordering d of the vertices. Dechter et al. (1991) define this induced width of a vertex
ordering d procedurally to be exactly the highest number of neighbours j of k with j < k
encountered during the DPC algorithm. This includes neighbours in the original graph (i.e.
{j, k} ∈ E) as well as vertices that became neighbours through edges added during an
earlier iteration of the algorithm. However, the definition can be based on just the original
graph and the vertex ordering, by making use of the following result.

Proposition 1. Suppose that G = 〈V,E〉 is an undirected graph and d : V → {1, . . . , n}
(where d is a bijection) is a vertex ordering. Suppose further that we are given n sets of
edges E′k for 1 ≤ k ≤ n, defined as follows:

E′k =
{
{j, k} ⊆ V | j < k ∧ ∃path from k to j in G{j}∪{k,k+1,...,n}

}
Then, E′k is exactly the set of edges visited during iteration k of DPC.

Proof. Note that by definition, each set E′k is a superset of the original edges between
vertex k and its lower-numbered neighbours. We use this fact to prove the equivalence by
induction.

The equivalence holds for the first iteration k = n, because E′n is exactly the set of
original edges between vertex n and its lower-numbered neighbours, and there are no earlier
iterations during which DPC may have added other edges {j, k} with j < k. Now, assuming
that the equivalence holds for all sets E′` with ` > k, we show that it also holds for E′k. For
this inductive case, we prove both inclusion relations separately.

(⊇) To reach a contradiction, assume that there exists some edge {j, k} 6∈ E′k, with j < k,
which is visited by DPC during iteration k. Because E′k includes the original edges between
k and lower-numbered neighbours, this must be a new edge added during some earlier
iteration ` > k, so there must exist edges {j, `} , {k, `} ∈ E′`. By the induction hypothesis,
j and k are therefore connected in the induced subgraph G{j,k}∪{`,`+1,...,n}. But then they

356

Computing APSP by Leveraging Low Treewidth

must also be connected in the larger subgraph G{j}∪{k,k+1,...n} and thus by definition be
included in E′k: a contradiction.

(⊆) Assume, again for reaching a contradiction, that there exists some edge {j, k} ∈ E′k
not part of E during iteration k of DPC and therefore not visited by the algorithm. Clearly,
{j, k} cannot have been one of the original edges. By definition of E′k there must therefore
exist a path with at least one intermediate vertex from j to k in the induced subgraph
G{j}∪{k,k+1,...n}. Let ` be the lowest-numbered vertex other than j and k on this path;
we have that ` > k > j. Then, by the induction hypothesis, there must exist edges
{j, `} , {k, `} ∈ E′`, both of which were visited by DPC during iteration `. Once more, we
reach a contradiction, since DPC must have added {j, k} to E during iteration ` > k.

We now formally define the induced width as follows, and conclude with Proposition 1
that this is equivalent to the original procedural definition.

Definition 1. Given an undirected graph G = 〈V,E〉, a vertex ordering d, and n sets of
edges E′k as in Proposition 1, the induced width wd of G (relative to d) is the following
measure:

wd = max
k∈V

∣∣E′k∣∣
It follows that the run time of DPC is not a property of the graph per se; rather, it is

dependent on both the graph and the vertex ordering used. With a careful implementation,
DPC’s time bound is O

(
nw2

d

)
if this ordering is known beforehand.

The edges added by DPC are called fill edges and make the graph chordal (sometimes
also called triangulated). Indeed, DPC differs from a triangulation procedure only by its
manipulation of the arc weights. In a chordal graph, every cycle of length four or more has
an edge joining two vertices that are not adjacent in the cycle. By Definition 1, the number
of edges in such a chordal graph, denoted by mc ≥ m, is O (nwd). We now give the formal
definitions of these concepts.

Definition 2. Given a graph G = 〈V,E〉 and a set
{
v1, v2, . . . , vk

}
⊆ V of vertices that

form a cycle in G, a chord of this cycle is an edge between non-adjacent vertices in this
cycle, i.e. an edge

{
vi, vj

}
∈ E with 1 < j− i < k−1. A graph G = 〈V,E〉 is called chordal

if all cycles of size larger than 3 have a chord.

Definition 3. Given a graph G = 〈V,E〉, a triangulation T of G, with T ∩ E = ∅, is a
set of edges such that G′ = 〈V,E ∪ T 〉 is chordal. These edges are called fill edges. T is
a minimal triangulation of G if there exists no proper subset T ′ ⊂ T such that T ′ is a
triangulation of G.

2.2 Finding a Vertex Ordering

In principle, DPC can use any vertex ordering to make the graph both chordal and direc-
tionally path-consistent. However, since the vertex ordering defines the induced width, it
directly influences the run time and the number of edges mc in the resulting graph. As men-
tioned in the introduction, finding an ordering d with minimum induced width wd = w∗,
and even just determining the treewidth w∗, is an NP-hard problem in general. Still, the
class of constant-treewidth graphs can be recognised, and optimally triangulated, in O (n)

357

Planken, De Weerdt, & Van der Krogt

time (Bodlaender, 1996). If G is already chordal, we can find a perfect ordering (result-
ing in no fill edges) in O (m) time, using e.g. maximal cardinality search (MCS; Tarjan &
Yannakakis, 1984). This perfect ordering is also called a simplicial ordering, because ev-
ery vertex k together with its lower-numbered neighbours in the ordering induces a clique
(simplex) in the subgraph Gk. This implies the following (known) result, relating induced
width and treewidth to the size of the largest clique in G.

Proposition 2. If a graph G is chordal, the size of its largest clique is exactly w∗+ 1. If a
non-chordal graph G is triangulated along a vertex ordering d, yielding a chordal graph G′,
the size of the largest clique in G′ is exactly wd + 1. The treewidth of G′ equals wd and is
an upper bound for the treewidth of the original graph G: w∗ ≤ wd.

For general graphs, various heuristics exist that often produce good results. We mention
here the minimum degree heuristic (Rose, 1972), which in each iteration chooses a vertex
of lowest degree. Since the ordering produced by this heuristic is not fully known before
DPC starts but depends on the fill edges added, an adjacency-list-based implementation will
require another O (log n) factor in DPC’s time bound. However, for our purposes in this
article, we can afford the comfort of maintaining an adjacency matrix, which yields bounds
of O

(
n2 + nw2

d

)
time and O

(
n2
)

space.

3. All-Pairs Shortest Paths

Even though, to the best of our knowledge, a DPC-based APSP algorithm has not yet
been proposed, algorithms for computing single-source shortest paths (SSSP) based on DPC

can be obtained from known results in a relatively straightforward manner. Chleq (1995)
proposed a point-to-point shortest path algorithm that with a trivial adaptation computes
SSSP; Planken, de Weerdt, and Yorke-Smith (2010) implicitly also compute SSSP as part
of their IPPC algorithm. These algorithms run in O (mc) time and thus can simply be run
once for each vertex to yield an APSP algorithm with O (nmc) ⊆ O

(
n2wd

)
time complexity.

Below, we first show how to adapt Chleq’s algorithm to compute APSP; then, we present
a new, efficient algorithm named Snowball that relates to Planken et al.’s (2008) P3C.

3.1 Chleq’s Approach

Chleq’s (1995) point-to-point shortest path algorithm was simply called Min–path and com-
putes the shortest path between two arbitrary vertices s, t ∈ V in a directionally path-
consistent graph G. It is reproduced here as Algorithm 2 and can be seen to run in O (mc)
time because each edge is considered at most twice. The shortest distance from the source
vertex s is maintained in an array D; the algorithm iterates downward from s to 1 and then
upward from 1 to t, updating the distance array when a shorter path is found.

Since the sink vertex t is only used as a bound for the second loop, it is clear that D
actually contains shortest distances between all pairs (s, t′) with t′ ≤ t. Therefore, we can
easily adapt this algorithm to compute SSSP within the same O (mc) time bound by setting
t = n and returning the entire array D instead of just D[t]. We call the result Chleq–APSP,
included as Algorithm 3, which calls this SSSP algorithm (referred to as Min–paths) n times
to compute all-pairs shortest paths in O (nmc) ⊆ O

(
nw2

d

)
time.

358

Computing APSP by Leveraging Low Treewidth

Algorithm 2: Min–path (Chleq, 1995)

Input: Weighted directed DPC graph G = 〈V,E〉;
(arbitrary) source vertex s and destination vertex t

Output: Distance from s to t, or inconsistent if G contains a negative cycle

1 ∀i ∈ V : D[i]←∞
2 D[s]← 0
3 for k ← s to 1 do
4 forall j < k such that {j, k} ∈ E do
5 D[j]← min {D[j], D[k] + wk→j}
6 end

7 end
8 for k ← 1 to t do
9 forall j > k such that {j, k} ∈ E do

10 D[j]← min {D[j], D[k] + wk→j}
11 end

12 end

13 return D[t]

Algorithm 3: Chleq–APSP

Input: Weighted directed graph G = 〈V,E〉; vertex ordering d : V → {1, . . . , n}
Output: Distance matrix D, or inconsistent if G contains a negative cycle

1 G← DPC(G, d)
2 return inconsistent if DPC did

3 for i← 1 to n do
4 D[i][∗]← Min–paths(G, i)
5 end

6 return D

359

Planken, De Weerdt, & Van der Krogt

Algorithm 4: Snowball

Input: Weighted directed graph G = 〈V,E〉; vertex ordering d : V → {1, . . . , n}
Output: Distance matrix D, or inconsistent if G contains a negative cycle

1 G← DPC(G, d)
2 return inconsistent if DPC did

3 ∀i, j ∈ V : D[i][j]←∞
4 ∀i ∈ V : D[i][i]← 0
5 for k ← 1 to n do
6 forall j < k such that {j, k} ∈ E do
7 forall i ∈ {1, . . . , k − 1} do
8 D[i][k]← min {D[i][k], D[i][j] + wj→k}
9 D[k][i]← min {D[k][i], wk→j +D[j][i]}

10 end

11 end

12 end

13 return D

3.2 The Snowball Algorithm

In this section, we present an algorithm that computes APSP (or full path-consistency),
dubbed Snowball and included as Algorithm 4, that has the same asymptotic worst-case time
bounds as Chleq–APSP but requires strictly less computational work.

Like Chleq–APSP, this algorithm first ensures that the input graph is directionally path-
consistent. The idea behind the algorithm is then that we grow, during the execution of
the outermost loop, a clique {1, . . . , k} of computed (shortest) distances, one vertex at a
time, starting with the trivial clique consisting of just vertex 1; while DPC performed a
backward sweep along d, Snowball iterates in the other direction. When adding vertex k
to the clique, the two inner loops ensure that we compute the distances between k and all
vertices i < k. This works because we know by DPC that for any such pair (i, k), there
must exist a shortest path from i to k of the form i → · · · → j → k (and vice versa), such
that {j, k} ∈ E with j < k is an edge of the chordal graph. This means that the algorithm
only needs to “look down” at vertices i, j < k, and it follows inductively that D[i][j] and
D[j][i] are guaranteed to be correct from an earlier iteration.

The name of our algorithm derives from its “snowball effect”: the clique of computed
distances grows quadratically during the course of its operation. A small example of the
operation of Snowball is given in Figure 1. Originally, the graph contained a shortest path
4–7–6–2–5–1–3. Dashed edges have been added by DPC, and the path 4–2–1–3 is now also
a shortest path; in particular, w4→2 holds the correct value. This snapshot is taken for
k = 4; the shaded vertices 1–3 have already been visited and shortest distances D[i][j] have
been computed for all i, j ≤ 3. Then, during the iteration k = 4, for j = 2 and i = 3, the
algorithm sets the correct weight of D[4][3] by taking the sum w4→2 +D[2][3].

Theorem 3. Algorithm 4 (Snowball) correctly computes all-pairs shortest paths in O (nmc) ⊆
O
(
n2wd

)
time.

360

Computing APSP by Leveraging Low Treewidth

2

1

3

4

5

6

7

Figure 1: Snapshot (k = 4) of a graph during the operation of Snowball.

Proof. The proof is by induction. After enforcing DPC, w1→2 and w2→1 are labelled by the
shortest distances between vertices 1 and 2. For k = 2 and i = j = 1, the algorithm then
sets D[1][2] and D[2][1] to the correct values.

Now, assume that D[i][j] is set correctly for all vertices i, j < k. Let π : i = v0 →
v1 → · · · → v`−1 → v` = k be a shortest path from i to k, and further let hmax =
arg maxh∈{0,1,...,`} {vh ∈ π}. By DPC, if 0 < hmax < `, there exists a path of the same
weight where a shortcut vhmax−1 → vhmax+1 is taken. This argument can be repeated to
conclude that there must exist a shortest path π′ from i to k that lies completely in Gk and,
except for the last arc, in Gk−1. Thus, by the induction hypothesis and the observation that
the algorithm considers all arcs from the subgraph Gk−1 to k, D[i][k] is set to the correct
value. An analogous argument holds for D[k][i].

With regard to the algorithm’s time complexity, note that the two outermost loops
together result in each of the mc edges in the chordal graph being visited exactly once. The
inner loop always has fewer than n iterations, yielding a run time of O (nmc) time. From the
observation above that mc ≤ nwd, we can also state a looser time bound of O

(
n2wd

)
.

We now briefly discuss the consequences for two special cases: graphs of constant
treewidth and chordal graphs. For chordal graphs, which can be recognised in O (m) time,
we can just substitute m for mc in the run-time complexity; further, as described above,
a perfect ordering exists and can be found in O (m) time. This gives the total run-time
complexity of O (nm). Likewise, we stated above that for a given constant κ, it can be
determined in O (n) time whether a graph has treewidth w∗ ≤ κ, and if so, a vertex or-
dering d with wd = w∗ can be found within the same time bound. Then, omitting the
constant factor wd, the algorithm runs in O

(
n2
)

time. This also follows from the algo-
rithm’s pseudocode by noting that every vertex k has a constant number (at most w∗) of
neighbours j < k.

We note here the similarity between Snowball and the P3C algorithm (Planken et al.,
2008), presented below. Like Snowball, P3C operates by enforcing DPC, followed by a single
backward sweep along the vertex ordering. P3C then computes, in O

(
nw2

d

)
time, shortest

361

Planken, De Weerdt, & Van der Krogt

Algorithm 5: P 3C (Planken et al., 2008)

Input: Weighted directed graph G = 〈V,E〉; vertex ordering d : V → {1, . . . , n}
Output: PPC version of G, or inconsistent if G contains a negative cycle

1 G← DPC(G, d)
2 return inconsistent if DPC did

3 for k ← 1 to n do
4 forall i, j < k such that {i, k} , {j, k} ∈ E do
5 wi→k ← min {wi→k, wi→j + wj→k}
6 wk→j ← min {wk→j , wk→i + wi→j}
7 end

8 end

9 return G

paths only for the arcs present in the chordal graph. This similarity and a property of chordal
graphs in fact prompt us to present a version of Snowball with improved time complexity.

3.3 Improving Run-Time Complexity Using Separators

In this section, we present an improvement of Snowball for an O
(
nw2

d + n2sd
)

run time,
where sd is the size of the largest minimal separator in the chordal graph obtained by
triangulation along d.

Definition 4. Given a connected graph G = 〈V,E〉, a separator is a set V ′ ⊆ V such that
GV \V ′ is no longer connected. A separator V ′ is minimal if no proper subset of V ′ is a
separator.

This bound is better because, as seen below, it always holds that sd ≤ wd. The im-
provement hinges on a property of chordal graphs called partial path consistency (PPC).
In a partially path-consistent graph, each arc is labelled by the length of the shortest path
between its endpoints.3 P3C, presented as Algorithm 5, depends on DPC and computes PPC
in O

(
nw2

d

)
time, which is the current state of the art. Then, we use a clique tree of the

PPC graph to compute the shortest path between all vertices. Figure 2 shows an example
of a chordal graph and its associated clique tree. Such a clique tree has the following useful
properties (Heggernes, 2006, Section 3.2).

Property 1. Every chordal graph G = 〈V,E〉 has an associated clique tree T = 〈C, S〉,
which can be constructed in linear time O (mc).

Property 2. Each clique tree node c ∈ C is associated with a subset Vc ⊆ V and induces a
maximal clique in G. Conversely, every maximal clique in G has an associated clique tree
node c ∈ C.

Property 3. T is coherent: for each vertex v ∈ V , the clique tree nodes whose associated
cliques contain v induce a subtree of T .

3. Full path-consistency (FPC) is achieved if an arc exists for all pairs of vertices u, v ∈ V .

362

Computing APSP by Leveraging Low Treewidth

(a) Chordal graph (b) Clique tree

Figure 2: A chordal graph and its clique tree. Each shaded shape represents a maximal
clique of the graph, containing the vertices at its corners.

Property 4. If two clique tree nodes ci, cj ∈ C are connected by an edge {ci, cj} ∈ S,
Vci ∩ Vcj is a minimal separator in G. Conversely, for each minimal separator V ′ in G,
there is a clique tree edge {ci, cj} ∈ S such that V ′ = Vci ∩ Vcj .

Property 5. All vertices appear in at least one clique associated with a node in T , so:⋃
c∈C Vc = V .

Since we have by Proposition 2 on page 358 that the size of the largest clique in a chordal
graph is exactly wd + 1, it follows from Properties 2 and 4 that sd ≤ wd.

Now, the idea behind Snowball–Separators is to first compute PPC in O
(
nw2

d

)
time using

P3C, and then traverse the clique tree. PPC ensures that shortest paths within each clique
have been computed. Then, when traversing the clique tree from an arbitrary root node
out, we grow a set Vvisited of vertices in cliques whose nodes have already been traversed.
For each clique node c ∈ C visited during the traversal, shortest paths between vertices in
the clique Vc and vertices in Vvisited must run through the separator Vsep between c and c’s
parent. If sd is the size of the largest minimal separator in G, for each pair of vertices it
suffices to consider at most sd alternative routes for a total of O

(
n2sd

)
routes, yielding the

stated overall time complexity of O
(
nw2

d + n2sd
)
. We formally present the algorithm based

on this idea as Algorithm 6 with its associated recursive procedure Process–clique–tree–node

(on the following page).
Note that because we visit a node’s parent before visiting the node itself, it always

holds that Vcparent ⊆ Vvisited. Further note that, for simplicity of presentation, we assume
the graph to be connected. If not, we can simply find all connected components in linear
time and construct a clique tree for each of them.

The improved algorithm has an edge over the original algorithm when separators are
small while the treewidth is not. HTN-based sibling-restricted STNs (which are described
as part of our experimental validation in Section 4.3.5), for instance, have many separators
of size 2. If every task has as many as O (

√
n) subtasks and every task with its subtasks

induces a clique, we have wd ∈ O (
√
n) and sd = 2, implying that Snowball–Separators still

has an optimal O
(
n2
)

time complexity for these instances.4

Before we proceed to prove that the algorithm is correct and meets the stated run-time
bounds, we introduce the following definition.

4. However, since in general not every task and its subtasks form a clique, this low value of sd will usually
not be attained in practice.

363

Planken, De Weerdt, & Van der Krogt

Algorithm 6: Snowball–separators

Input: Weighted directed graph G = 〈V,E〉; vertex ordering d : V → {1, . . . , n}
Output: Distance matrix D, or inconsistent if G contains a negative cycle

1 G← P3C(G, d)
2 return inconsistent if P3C did

3 ∀i, j ∈ V : D[i][j]←∞
4 ∀i ∈ V : D[i][i]← 0
5 ∀ {i, j} ∈ E : D[i][j]← wi→j
6 ∀ {i, j} ∈ E : D[j][i]← wj→i
7 build a clique tree T = 〈C, S〉 of G
8 select an arbitrary root node croot ∈ C of T
9 (D,Vvisited)← Process–clique–tree–node(croot, nil, D,∅)

10 return D

Procedure Process–clique–tree–node(c, cparent, D, Vvisited)

Input: Current clique tree node c, c’s parent cparent, distance matrix D, set of
visited vertices Vvisited

Output: Updated matrix D and set Vvisited

1 if cparent 6= nil then
2 Vnew ← Vc \ Vcparent
3 Vsep ← Vc ∩ Vcparent
4 Vother ← Vvisited \ Vc
5 forall (i, j, k) ∈ Vnew × Vsep × Vother do
6 D[i][k]← min {D[i][k], D[i][j] +D[j][k]}
7 D[k][i]← min {D[k][i], D[k][j] +D[j][i]}
8 end

9 end
10 Vvisited ← Vvisited ∪ Vc
11 forall children c′ of c do
12 (D,Vvisited)← Process–clique–tree–node(c′, c,D, Vvisited) // recursive call

13 end

14 return (D,Vvisited)

364

Computing APSP by Leveraging Low Treewidth

Definition 5. We define a distance matrix D as valid for a set U of vertices, and (D,U)
as a valid pair, if for all pairs of vertices (i, j) ∈ U × U , D[i][j] holds the shortest distance
in G from i to j.

We split the correctness proof of the algorithm into three parts: Lemmas 4 and 5
culminate in Theorem 6. The first step is to show that if Process–clique–tree–node is called
with a valid pair (D,U) and some clique node c, the procedure extends the validity to
U ∪ Vc.

Lemma 4. Consider a call to procedure Process–clique–tree–node with, as arguments, a clique
node c, c’s parent cparent, a distance matrix D, and the set of visited vertices Vvisited. If D
is valid for Vvisited upon calling, then D becomes valid for Vc ∪ Vvisited after running lines
1–8 of Process–clique–tree–node.

Proof. First, note that by Property 2, Vc induces a clique in G. Therefore, edges exist
between each pair (i, k) of vertices in Vc, and since the graph is PPC, wi→k is labelled with
the shortest distance between i and k. Due to lines 5 and 6 of the main algorithm, D also
contains these shortest distances, so D is valid for Vc.

Now, it remains to be shown that for each pair of vertices (i, k) ∈ Vc × Vvisited the
shortest distances D[i][k] and D[k][i] are set correctly. We show here the case for D[i][k];
the other case is analogous.

The desired result follows trivially if cparent = nil, since the procedure is then called with
Vvisited = ∅. Otherwise, let Vnew = Vc \ Vcparent , Vsep = Vc ∩ Vcparent and Vother = Vvisited \ Vc
as set by the procedure in lines 2–4. If either i or k lies in Vsep, the correctness of D[i][k]’s
value was already proven, so we only need to consider pairs of vertices (i, k) ∈ Vnew×Vother.

For any such pair (i, k), Vsep is a separator between i and k by Property 4, so any
shortest path from i to k is necessarily a concatenation of shortest paths from i to j∗ and
from j∗ to k, for some j∗ ∈ Vsep. Since it follows from the definitions of Vnew, Vsep and Vother

that for all (i, j) ∈ Vnew × Vsep and (j, k) ∈ Vsep × Vother, D[i][j] and D[j][k] are correctly
set (by the validity of D for Vc and Vvisited, respectively), the loop on lines 5–8 yields the
desired result.

Our next step is to prove that through the recursive calls, validity is in fact extended
to the entire subtree rooted at c.

Lemma 5. Consider again a call to procedure Process–clique–tree–node with, as arguments, a
clique node c, c’s parent Vcparent, a distance matrix D, and the set of visited vertices Vvisited.
If D is valid for Vvisited upon calling, then the returned, updated pair (D′, V ′visited) is also
valid.

Proof. First, note that by Lemma 4, D is valid for Vvisited after the update in line 10.

Assume that the clique tree has a depth of d; the proof is by reverse induction over the
depth of the clique tree node. If c is a clique tree node at depth d (i.e. a leaf), the loop in
lines 11–13 is a no-op, so we immediately obtain the desired result.

Now assume that the lemma holds for all nodes at depth k and let c be a clique tree
node at depth k − 1. For the first call (if any) made for a child node c′ during the loop in
lines 11–13, this lemma can then be applied. As a consequence, the returned and updated

365

Planken, De Weerdt, & Van der Krogt

pair is again valid. This argument can be repeated until the loop ends and the procedure
returns a valid pair.

With these results at our disposal, we can state and prove the main theorem of this
section.

Theorem 6. Algorithm 6 (Snowball–Separators) correctly computes all-pairs shortest paths
in O

(
nw2

d + n2sd
)

time.

Proof. Note that Vvisited = ∅ for the call to Process–clique–tree–node in line 9 of Snowball–

Separators; therefore, the pair (D,Vvisited) is trivially valid. By Lemma 5, this call thus
returns a valid updated pair (D,Vvisited). Since Process–clique–tree–node has recursively tra-
versed the entire clique tree, Vvisited contains the union

⋃
c∈C Vc of all cliques in the clique

tree T = 〈C, S〉, which by Property 5 equals the set of all vertices in G. Therefore, D
contains the correct shortest paths between all pairs of vertices in the graph.

As for the time complexity, note that the initialisations in lines 3 and 4 can be carried
out in O

(
n2
)

time, whereas those in lines 5 and 6 require O (mc) time. By Property 1, the
clique tree can be built in linear time O (mc). Since the clique tree contains at most n nodes,
Process–clique–tree–node is called O (n) times. Line 1 requires O

(
w2
d

)
time. To implement

lines 2–4 and 10 of Process–clique–tree–node, we represent the characteristic function for
Vvisited as an array of size n; using Vvisited instead of Vcparent everywhere, we then we simply
iterate over all O (wd) members of Vc to perform the required computations.

Now, only the complexity of the loop in lines 5–8 remains to be shown. Note that
|Vsep| ≤ sd by definition, and |Vother| < n always. Further using the observation that each of
the n vertices in the graph appears in Vnew for exactly one invocation of Process–clique–tree–

node (after which it becomes a staunch member of Vvisited), we obtain a total time bound of
O
(
n2sd

)
for the loop over all invocations.

While the recursive description above is perhaps easier to grasp and satisfies the claimed
time bounds, we found that efficiency benefited in practice from an iterative implementation.
It also turns out that a good heuristic is to first visit child nodes connected to the already
visited subtree by a large separator, postponing the processing of children connected by a
small separator, because the set of visited vertices is then still small. In this way, the sum of
terms |Vsep × Vvisited| is kept low. In our implementation, we therefore used a priority queue
of clique nodes ordered by their separator sizes. Future research must point out whether it
is feasible to determine an optimal traversal of the clique tree within the given time bounds.

Having presented our new algorithms and proven their correctness and formal complex-
ity, we now move on to an empirical evaluation of their performance.

4. Experiments

We evaluate the two algorithms together with efficient implementations of Floyd–Warshall

and Johnson with a Fibonacci heap5 across six different benchmark sets.6

5. For Johnson we used the corrected Fibonacci heap implementation by Fiedler (2008), since the widely
used pseudocode of Cormen, Leiserson, Rivest, and Stein (2001) contains mistakes.

6. Available at
http://dx.doi.org/10.4121/uuid:49388c35-c7fb-464f-9293-cca1406edccf

366

Computing APSP by Leveraging Low Treewidth

Table 1: Properties of the benchmark sets

type #cases n m wd sd
Chordal
– Figure 3 250 1,000 75,840–499,490 79–995 79–995
– Figure 4 130 214–3,125 22,788–637,009 211 211
Scale-free
– Figure 5 130 1,000 1,996–67,360 88–864 80–854
– Figure 6 160 250–1,000 2,176–3,330 150–200 138–190
New York 170 108–3,906 113–6,422 2–51 2–40
Diamonds 130 111–2,751 111–2,751 2 2
Job-shop 400 17–1,321 32–110,220 3–331 3–311
HTN 121 500–625 748–1,599 2–128 2–127

The properties of the test cases are summarised in Table 1. This table lists the number
of test cases, the range of the number of vertices n, edges m, the induced width wd produced
by the minimum degree heuristic, as well as the size of the largest minimal separators sd
in the graphs. More details on the different sets can be found below, but one thing that
stands out immediately is that sd is often equal to or only marginally smaller than wd.
However, the median size of the minimum separator is less than 10 for all instances except
the constructed chordal graphs.

All algorithms were implemented in Java and went through an intensive profiling phase.7

The experiments were run using Java 1.6 (OpenJDK-1.6.0.b09) in server mode, on Intel
Xeon E5430 CPUs running 64-bit Linux. The Java processes were allowed a maximum
heap size of 4 GB, and used the default stack size. We report the measured CPU times,
including the time that was spent running the triangulation heuristic for Chleq–APSP and
Snowball. The reported run times are averaged over 10 runs for each unique problem instance.
Moreover, we generated 10 unique instances for each parameter setting, obtained by using
different random seeds. Thus, each reported statistic represents an average over 100 runs,
unless otherwise indicated. Finally, each graph instance was ensured to contain no cycles
of negative weight.

4.1 Triangulation

As discussed in Section 2.2, finding an optimal vertex ordering (with minimum induced
width) is NP-hard, but several efficient triangulation heuristics for this problem exist. We
ran our experiments with six different heuristics: the minimum fill and minimum degree
heuristics, static variants of both (taking into account only the original graph), an ordering
produced by running maximum cardinality search (MCS) on the original graph, and a
random ordering. All of these, except minimum fill, have time complexities within the bound
on the run time of Chleq–APSP and Snowball. We found that the minimum degree heuristic
gave on average induced widths less than 1.5% higher than those found by minimum fill,

7. Our implementations are available in binary form at
http://dx.doi.org/10.4121/uuid:776a266e-81c6-41ee-9d23-8c89d90b6992

367

Planken, De Weerdt, & Van der Krogt

Table 2: The summed induced width, triangulation, and total run time of Snowball over all
experiments on general (non-chordal) graphs show that the minimum degree heuristic is the
best choice.

heuristic
∑
wd triangulation (s) Snowball (s) total (s)

min-fill 321,492 1,204,384 2,047 1,206,431
min-degree 326,222 498 3,166 3,664
MCS 365,662 1,520 3,348 4,868
static min-fill 388,569 1,387 2,746 4,133
static min-degree 388,707 1,317 2,748 4,064
random 505,844 2,436 5,179 7,615

but with drastically lower run time. The exorbitant time consumption of the minimum
fill heuristic can be partially explained by the fact that we used the LibTW package8 to
compute this ordering, whose implementation can probably be improved. However, it is
also known from the literature that the theoretical bound on the minimum fill heuristic
is worse than that of minimum degree (Kjærulff, 1990). All other heuristics are not only
slower than minimum degree, but also yield an induced width at least 12% higher, resulting
in a longer total triangulation time and a longer total run time of Snowball (see the summary
of the results over all benchmarks given in Table 2). Again, this confirms Kjærulff’s earlier
work. In the experimental results included below we therefore only show the results based
on the minimum degree heuristic.

4.2 Chordal Graphs

To evaluate the performance of the new algorithms on chordal graphs, we construct chordal
graphs of a fixed size of 1,000 vertices with a treewidth ranging from 79 up to just less
than the number of vertices, thus yielding a nearly complete graph at the high end. The
results of this experiment are depicted in Figure 3. In this, and other figures, the error
bars represent the standard deviations in the measured run time for the instances of that
size. For graphs up to an induced width of about three quarters of the number of vertices,
Snowball significantly outperforms Floyd–Warshall (which yields the expected horizontal line),
and overall the run time of both new algorithms is well below that of Johnson across the
entire range. Figure 4 shows the run times on chordal graphs of a constant treewidth and
with increasing number of vertices. Here, the two new algorithms outperform Johnson by
nearly an order of magnitude (a factor 9.3 for Snowball around n = 1300), and even more so
regarding Floyd–Warshall, confirming the expectations based on the theoretical upper bounds.

4.3 General Graphs

For general, non-chordal graphs, we expect from the theoretical analysis that the O
(
nw2

d

)
-

time Chleq–APSP and Snowball algorithms are faster than Johnson with its O
(
nm+ n2 log n

)
8. Available from http://treewidth.com/.

368

Computing APSP by Leveraging Low Treewidth

 100

 1000

 10000

 100000

 100 1000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

induced width (log scale)

F-W
Johnson

Chleq
Snowball

Figure 3: Run times on generated chordal graphs with a fixed number of 1000 vertices and
varying treewidth.

 100

 1000

 10000

 100000

 1e+06

 300 1000 3000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of vertices (log scale)

F-W
Johnson

Chleq
Snowball

Figure 4: Run times on generated chordal graphs of a fixed treewidth of 211.

369

Planken, De Weerdt, & Van der Krogt

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

induced width

F-W
Johnson

Chleq
Snowball

Figure 5: Run times on the scale-free benchmarks for graphs of 1,000 vertices and varying
induced width.

time bound when wd is low, and that Johnson is faster on sparse graphs (where m is low)
of a large induced width wd. The main question is at which induced width this changeover
occurs. Regarding Floyd–Warshall with its O

(
n3
)

bound, we expect that for larger n it is
always outperformed by the other algorithms.

4.3.1 Scale-Free Graphs

Scale-free networks are networks whose degree distribution follows a power law. That is,
for large values of k, the fraction P (k) of vertices in the network having k connections to
other vertices tends to P (k) ∼ ck−γ , for some constant c and parameter γ. In other words,
few vertices have many connections while many vertices have only a few connections. Such
a property can be found in many real-world graphs, such as in social networks and in
the Internet. Our instances were randomly generated with Albert and Barabási’s (2002)
preferential attachment method, where in each iteration a new vertex is added to the graph,
which is then attached to a number of existing vertices; the higher the degree of an existing
vertex, the more likely it is that it will be connected to the newly added vertex. To see at
which induced width Johnson is faster, we compare the run times on such generated graphs
with 1,000 vertices. By varying the number of attachments for each new vertex from 2
to n/2, we obtain graphs with an induced width ranging from 88 to 866. In these graphs,
the induced width is already quite large for small attachment values: for example, for a
value of 11, the induced width is already over 500.

The results of this experiment can be found in Figure 5. Here we see that up to an
induced width of about 350 (attachment value 5), Snowball is the most efficient. For higher
induced widths, Johnson becomes the most efficient; for wd around 800, even Floyd–Warshall

becomes faster than Snowball. A consistent observation but from a different angle can be
made from Figure 6, where the induced width is between 150 and 200, the number of edges

370

Computing APSP by Leveraging Low Treewidth

 100

 1000

 10000

 300 400 500 600 700 800 900 1000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of vertices

F-W
Johnson

Chleq
Snowball

Figure 6: Run times on the scale-free benchmarks for graphs of induced widths 150 to 200
and varying vertex count.

is between 2,176 and 3,330 and the number of vertices is varied from 250 to 1,000. Here we
see that for small graphs up to 350 vertices, Johnson is the fastest; then Snowball overtakes
it, and around 750 vertices Chleq–APSP is also faster than Johnson (this holds for all results
up to a sparse graph of 1,000 vertices).

Around the mark of 750 vertices, the results show a decrease in the run time for both
Snowball and Chleq–APSP. This is an artifact of the (preferential attachment) benchmark
generator. Since we cannot generate scale-free graphs with a specific induced width, we
modify the attachment value instead. As it turns out, for graphs of this size only one
attachment value yields an induced width within the desired range; for the graph of size
750, this width is at the high end of the interval, whereas for the graph of size 800 it is near
the low end. This explains the reduced run time for the larger graph.

For these scale-free networks, we conclude that Snowball is the fastest of the four algo-
rithms when the induced width is not too large (at most one third of the number of vertices
in our benchmark set). However, we also observe that the structure of scale-free networks is
such that they have a particularly high induced width for relatively sparse graphs, exactly
because a few vertices have most of the connections. Therefore, Snowball is most efficient
only for relatively small attachment values.

4.3.2 Selections from New York Road Network

More interesting than the artificially constructed graphs are graphs based on real networks,
for which shortest path calculations are relevant. The first of this series is based on the road
network of New York City, which we obtained from the DIMACS challenge website.9 This
network is very large (with 264,346 vertices and 733,846 edges) so we decided to compute

9. http://www.dis.uniroma1.it/~challenge9/

371

Planken, De Weerdt, & Van der Krogt

Figure 7: Coordinates for the vertices in the New York City input graph, and examples of
the extent of subgraphs with respectively 250, 1000, and 5000 vertices.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of vertices (log scale)

F-W
Johnson

Chleq
Snowball

Figure 8: Run times on the New York benchmarks for subgraphs of varying vertex count.

372

Computing APSP by Leveraging Low Treewidth

shortest paths for (induced) subgraphs of varying sizes. These were obtained by running
a simple breadth-first search from a random starting location until the desired number of
vertices had been visited. The extent of the subnetworks thus obtained is illustrated for
three different sizes in Figure 7. The results of all algorithms on these subgraphs can be
found in Figure 8. Here we observe the same ranking of the algorithms as on the chordal
graphs of a fixed treewidth and for diamonds: Floyd–Warshall is slowest with its Θ

(
n3
)

run time, then each of Johnson, Chleq–APSP, and Snowball is significantly faster than its
predecessor. This can be explained by considering the induced width of these graphs. Even
for the largest graphs the induced width is around 30, which is considerably smaller than
the number of vertices.

4.3.3 STNs from Diamonds

This benchmark set is based on problem instances in difference logic proposed by Strichman,
Seshia, and Bryant (2002) and also appearing in the smt-lib (Ranise & Tinelli, 2003), where
the constraint graph for each instance takes the form of a circular chain of “diamonds”. Each
such diamond consists of two parallel paths of equal length starting from a single vertex and
ending in another single vertex. From the latter vertex, two paths start again, to converge
on a third vertex. This pattern is repeated for each diamond in the chain; the final vertex
is then connected to the very first one. The sizes of each diamond and the total number of
diamonds are varied between benchmarks.

Problems in this class are actually instances of the NP-complete Disjunctive Temporal
Problem (DTP): constraints take the form of a disjunction of inequalities. From each DTP
instance, we obtain a STP instance (i.e. a graph) by randomly selecting one inequality from
each such disjunction. This STP is most probably inconsistent, so its constraint graph
contains a negative cycle; we remedy this by modifying the weights on the constraint edges.
The idea behind this procedure is that the structure of the graph still conforms to the type
of networks that one might encounter when solving the corresponding DTP instance, and
that the run time of the algorithms mostly depends on this structure. Moreover, to reduce
the influence of the randomized extraction procedure, we repeat it for 10 different seeds.

For our benchmark set, we considered problem instances which had the size of the
diamonds fixed at 5 and their number varying. The most interesting property of this set
is that the graphs generated from it are very sparse. We ran experiments on 130 graphs,
ranging in size from 111 to 2751 vertices, all with an induced width of 2. This induced width
is clearly extremely small, which translates into Chleq–APSP and Snowball being considerably
faster than Johnson and Floyd–Warshall, as evidenced by Figure 9.

4.3.4 STNs from Job-Shop Scheduling

We generated each of the 400 graphs in our “job-shop” set from an instance of a real job-
shop problem. These instances were of the type available in smt-lib (Ranise & Tinelli,
2003), but of a larger range than included in that benchmark collection. To obtain these
graphs from the job-shop instances, we again used the extraction procedure described in
the previous section. The most striking observation that can be taken from Figure 10 is
that the difference between Johnson and the two new algorithms is not quite as pronounced,
though Snowball is consistently the fastest of the three by a small margin. The fact that this

373

Planken, De Weerdt, & Van der Krogt

 1

 10

 100

 1000

 10000

 100000

 100 1000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of vertices (log scale)

F-W
Johnson

Chleq
Snowball

Figure 9: Run times on the diamonds benchmarks for graphs of varying vertex count.

 1

 10

 100

 1000

 10000

 100 1000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of vertices (log scale)

F-W
Johnson

Chleq
Snowball

Figure 10: Run times on the job-shop benchmarks for graphs of varying vertex count.

374

Computing APSP by Leveraging Low Treewidth

margin is so small is most likely due to the structure of these graphs, which is also reflected
in their relatively high induced width. Note also that the run times for Floyd–Warshall are
better for graphs of up to 160 vertices, while for larger graphs the other algorithms are
significantly faster.

4.3.5 STNs from HTNs

Finally, we consider a benchmark set whose instances imitate so-called sibling-restricted
STNs originating from Hierarchical Task Networks. This set is therefore particularly inter-
esting from a planning point of view. In these graphs, constraints may occur only between
parent tasks and their children, and between sibling tasks (Bui & Yorke-Smith, 2010). We
consider an extension that includes landmark variables (Castillo, Fernández-Olivares, &
González, 2002) that mimic synchronisation between tasks in different parts of the net-
work, and thereby cause some deviation from the tree-like HTN structure. We generate
HTNs using the following parameters: (i) the number of tasks in the initial HTN tree (fixed
at 250; note that tasks have a start and end point), (ii) the branching factor, determining
the number of children for each task (between 4 and 7), (iii) the depth of the HTN tree
(between 3 and 7), (iv) the ratio of landmark time points to the number of tasks in the
HTN, varying from 0 to 0.5 with a step size of 0.05, and (v) the probability of constraints
between siblings, varying from 0 to 0.5 with a step size of 0.05.

These settings result in graphs of between 500 and 625 vertices, with induced widths
varying between 2 and 128. Though the induced width seems high in light of our claim
above that it is constant, we verified that wd ≤ 2 × branching factor + #landmarks + 1
for all instances. Filling in the maximal values of 7 and 125 respectively, we find an upper
bound wd ≤ 140, well above the actual maximum encountered.

Figure 11 shows the results of these experiments as a function of the induced widths of
the graphs. We can see that only for the larger induced widths, Johnson and Chleq–APSP

come close. These large induced widths are only found for high landmark ratios of 0.5. The
results indicate that for the majority of STNs stemming from HTNs, Snowball is significantly
more efficient than Johnson.

4.4 Snowball–Separators

In Section 3.3 we presented a version of Snowball that has an improved worst-case run time
over vanilla Snowball by taking advantage of the separators in the graph. In this section,
we discuss the results of our experiments comparing these two variants. First, we turn our
attention to the benchmark problems on regular graphs. Our results are summarised in
Figure 12. As one can see, Snowball–Separators actually performs strictly worse on these sets
in terms of run-time performance when compared to the original Snowball.

However, as can be seen in Table 1, the largest minimal separator is often equal to
or only marginally smaller than the induced width. Even though there may be only few
separators this large, and many may be substantially smaller (as noted above, for most
instances the median separator size is below 10), this prompts us to run experiments on
instances where separator sizes are artificially kept small. Indeed, we found that there are
cases where Snowball–Separators shows an improvement over vanilla Snowball when comparing
the number of update operations performed—i.e. lines 8 and 9 of Snowball and lines 6 and 7

375

Planken, De Weerdt, & Van der Krogt

 10

 100

 1000

 0 20 40 60 80 100 120

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

induced width

F-W
Johnson

Chleq
Snowball

Figure 11: Run times on the HTN benchmarks for graphs from 500 to 625 vertices and
varying induced width. Each point is the average of instances with an induced width within
a range [5k, 5k + 4], for some k. This results in between 5 and 11 instances per data point.

 1

 10

 100

 1000

 10000

 100000

 100 1000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of vertices (log scale)

htn

job shop

ny

diamonds

chordal

scale-free

Snowball
Snowball-Sep

Figure 12: Run times of the Snowball algorithms on the benchmark problem sets listed in
Table 1.

376

Computing APSP by Leveraging Low Treewidth

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400 450

nu
m

be
r

of
 u

pd
at

es
 (

x1
00

0,
 lo

g
sc

al
e)

induced width

Snowball
Snowball-Sep

DPC
P3C

Figure 13: Number of distance matrix updates on chordal instances with 512 vertices,
largest minimal separator size 2 and varying treewidth. Each point represents between 5
and 10 instances.

in Process–clique–tree–node, along with lines 3 and 4 of DPC and lines 5 and 6 of P3C. One
such case is presented in Figure 13. This describes the results on a collection of chordal
graphs of 512 vertices, in which the largest minimal separator is fixed at size 2, and the
treewidth is varied between 16 and 448. The figure also includes the results of DPC and P3C,
as these are the respective subroutines of Snowball and Snowball–Separators. For these graphs,
Snowball–Separators performs strictly fewer update operations than Snowball on all instances,
although the difference becomes smaller as the induced width increases. While the number of
updates shows a distinct improvement over Snowball, the run times of the Snowball–Separators

algorithms do not show the same improvement. Instead, as can be seen from Figure 14, the
run times of Snowball are strictly better than those of Snowball–Separators on all instances.
Snowball can now even be seen to outperform P3C which has a better theoretical bound; the
reason is that the adjacency matrix data structure as used by Snowball is very fast, while
the adjacency list used by P3C, though staying within the theoretical bound, inflicts a larger
constant factor on the run time.

From these experiments, we can conclude that on graphs of these sizes, the additional
bookkeeping required by Snowball–Separators outweighs the potential improvement in the
number of distance matrix updates.

4.5 A Proper Upper Bound on the Run Time

On general graphs, the run time of the proposed algorithms depends on the induced width wd
of the ordering produced by the triangulation heuristic. This induced width is not a direct
measure of the input (graph), so the given upper bound on the run time is not quite proper.
To arrive at a proper bound, in this section we aim to relate the run time to the treewidth,
denoted w∗, which is a property of the input. However, determining the treewidth, an

377

Planken, De Weerdt, & Van der Krogt

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400 450

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

induced width

Snowball
Snowball-Sep

DPC
P3C

Figure 14: Run times on chordal instances with 512 vertices, largest minimal separator
size 2 and varying treewidth. Each point represents between 5 and 10 instances.

NP-hard problem, is an intractable task for the benchmark problems we used. We therefore
compare the measured induced width wd ≥ w∗, an upper bound on the treewidth, to a lower
bound x ≤ w∗.10 We are unaware of any guarantee on the quality relative to the treewidth
of either the minimum degree triangulation heuristic or the lower bound we used. However,
we can calculate the ratio wd/x to get an upper bound on the ratio wd/w

∗. From this
measure we can then obtain an upper bound on the run time expressed in the treewidth,
at least for the benchmark problems in this paper.

The results of these computations can be found in Figure 15, where we plot these ratios
for the New York, HTN, scale-free and job-shop benchmarks as a function of the lower
bound x. Using a least-squares approach, we then fitted functions wd(x) = cxk (showing
up as a straight line in this log-log plot) to the plotted data points. For functions found
by fitting, we get k = 4.6 for New York, k = 2.3 for HTN, and k = 0.98 for job-shop, all
with small multiplicative constants 0.012 < c < 1.62. As one can see from the plotted data
points for the scale-free instances, they are not amenable to such a fit and we therefore omit
it from the figure.

The decreasing trend for the job-shop data indicates that the quality of the triangulation
(i.e. of the upper bound represented by the induced width) gradually increases: the lower
and upper bound are always less than a factor 2 apart. Indeed, if we plot a line representing
a function w′d(x) = 2x (yielding a horizontal line in this figure), we find that it describes a
comfortable upper bound on the data points for this benchmark set.

The HTN data prompts us to plot a function w′′d(x) = 2
5x

2.5, with an exponent slightly
higher than the one we found from the least-squares fit, and further tweaked slightly by a

10. The lower bound was computed with the LibTW package; see http://treewidth.com/. We used the
MMD + Least-c heuristic.

378

Computing APSP by Leveraging Low Treewidth

 1

 2

 4

 8

 10 100

re
la

tiv
e

in
du

ce
d

w
id

th
 (

vs
. l

ow
er

 b
ou

nd
)

lower bound on treewidth

New York

HTN

scale-free

job shop

2x
2/5x2.5

Figure 15: An upper bound on the induced width relative to the treewidth can be deter-
mined experimentally by comparing it to a lower bound on the treewidth.

multiplicative coefficient to bring it into view. This function as plotted represents an ample
upper bound for the HTN benchmarks (as well as the job-shop ones).

The fit for the data points for the New York benchmark is not good and the trend of
the points themselves is not very clear, because the lower bound only spans an interval
from 1 to 4. Therefore, we cannot give an upper bound for this set of benchmarks with any
acceptable level of confidence.

However, the scale-free data points we plotted, which could not be fitted with a function
yielding a straight line, do mostly follow a clear curving trend. A hypothesis for this
behaviour is that the quality of the upper and lower bound deteriorates mostly for the middle
sizes of the benchmarks; smaller and larger scale-free graphs are easier to triangulate well.11

To give an upper bound, we could plot any line on the outer hull of these data points; e.g.
the horizontal line represented by wd(x) = 8x would work. The most pessimistic assumption
would be to choose a function with the highest slope, and we find that the upper bound
w′′d(x) = 2

5x
2.5, found for the HTN benchmarks, also works here.

From this discussion, we may conclude that for all benchmarks we ran except for New
York, wd(x) is O

(
x2.5

)
which in turn is O

(
w∗2.5

)
; the run time of the algorithms Snowball

and Chleq–APSP on these instances can therefore be bounded by O
(
n2w∗2.5

)
.

To conclude this section, we remark that an alternative to a triangulation heuristic
would be to use an approximation algorithm with a bound on the induced width that can
be theoretically determined. For example, Bouchitté, Kratsch, Müller, and Todinca (2004)
give a O (logw∗) approximation of the treewidth w∗. Using such an approximation would
give an upper bound on the run time of Snowball of O

(
n2w∗ logw∗

)
. However, the run

11. This mirrors earlier observations by the authors.

379

Planken, De Weerdt, & Van der Krogt

time of obtaining this approximate induced width is O
(
n3 log4 nw∗5 logw∗

)
and has a high

constant as well, so their work is—for now—mainly of theoretical value.

5. Related Work

For dense, directed graphs with real weights, the state-of-the-art APSP algorithms run in
O
(
n3/ log n

)
time (Chan, 2005; Han, 2008). These represent a serious improvement over

the O
(
n3
)

bound on Floyd–Warshall but do not profit from the fact that in most graphs that
occur in practice, the number of edges m is significantly lower than n2.

This profit is exactly what algorithms for sparse graphs aim to achieve. Recently, an
improvement was published over theO

(
nm+ n2 log n

)
algorithm based on Johnson’s (1977)

and Fredman and Tarjan’s (1987) work: an algorithm for sparse directed graphs running
in O

(
nm+ n2 log log n

)
time (Pettie, 2004). In theory, this algorithm is thus faster than

Johnson (in worst cases, for large graphs) when m ∈ o (n log n).12 However, currently no
implementation exists (as confirmed through personal communication with Pettie, June
2011). The upper bound of O

(
n2wd

)
on the run time of Snowball is smaller than this

established upper bound when the induced width is small (i.e. when wd ∈ o (log log n)),
and, of course, for chordal graphs and graphs of constant treewidth.

We are familiar with one earlier work to compute shortest paths by leveraging low
treewidth. Chaudhuri and Zaroliagis (2000) present an algorithm for answering (point-to-
point) shortest path queries with O

(
w3
dn log n

)
preprocessing time and query time O

(
w3
d

)
.

A direct extension of their results to APSP would imply a run time of O
(
n2w3

d

)
on general

graphs and O
(
nmw2

d

)
on chordal graphs. Our result of computing APSP on general graphs

in O
(
n2wd

)
and in O (nm) on chordal graphs is thus a strict improvement.

A large part of the state-of-the-art in point-to-point shortest paths is focused on road
networks (with positive edge weights). These studies have a strong focus on heuristics, rang-
ing from goal-directed search and bi-directional search to using or creating some hierarchical
structure, see for example (Geisberger, Sanders, Schultes, & Delling, 2008; Bauer, Delling,
Sanders, Schieferdecker, Schultes, & Wagner, 2008). One of these hierarchical heuristics has
some similarities to the idea of using chordal graphs. This heuristic is called contraction.
The idea there is to distinguish important (core) vertices, which may be possible end points,
from vertices that are never used as a start or end point. These latter vertices are then
removed (bypassed) one-by-one, connecting their neighbours directly.

Other restrictions on the input graphs for which shortest paths are computed can also
be assumed, and sometimes lead to algorithms with tighter bounds. For example, for
unweighted chordal graphs, APSP lengths can be determined inO

(
n2
)

time (Balachandhran
& Rangan, 1996; Han, Sekharan, & Sridhar, 1997) if all pairs at distance two are known.
See (Dragan, 2005) for an overview and unification of such approaches. Considering only
planar graphs, recent work shows that APSP be found in O

(
n2 log2 n

)
(Klein, Mozes, &

Weimann, 2010), which is an improvement over Johnson in cases where m ∈ ω
(
n log2 n

)
.

In the context of planning and scheduling, a number of similar APSP problems need
to be computed sequentially, potentially allowing for a more efficient approach using dy-
namic algorithms. Even and Gazit (1985) provide a method where addition of a single edge
can require O

(
n2
)

steps, and deletion O
(
n4/m

)
on average. Thorup (2004) and Deme-

12. We explain our use of the notation x ∈ o (f(n)) in Footnote 1 on page 354.

380

Computing APSP by Leveraging Low Treewidth

trescu and Italiano (2006) later give an alternative approach with an amortized run time of
O
(
n2(log n+ log2 n+m

n)
)
. Especially in the context of planning and scheduling, it is not es-

sential that the shortest paths between all time points be maintained. Often, it is sufficient
when the shortest paths of a selection of pairs are maintained. Above, we already mentioned
the P3C algorithm by Planken et al. (2008) for the single-shot case; Planken et al. (2010)
describe an algorithm that incrementally maintains the property of partial path consistency
on chordal graphs in time linear in the number of edges.

6. Conclusions and Future Work

In this paper we give three algorithms for computing all-pairs shortest paths, with a run
time bounded by (i) O

(
n2
)

for graphs of constant treewidth, matching earlier results that
also required O

(
n2
)

(Chaudhuri & Zaroliagis, 2000); (ii) O (nm) on chordal graphs, im-
proving over the earlier O

(
nmw2

d

)
; and (iii) O

(
n2wd

)
on general graphs, showing again an

improvement over previously known tightest bound of O
(
n2w3

d

)
. In these bounds, wd is the

induced width of the ordering used; experimentally we have determined this to be bounded
by the treewidth to the power 2.5 for most of our benchmarks.

These contributions are obtained by applying directed path consistency combined with
known graph-theoretic techniques, such as a vertex elimination and tree decomposition, to
computing shortest paths. This supports the general idea that such techniques may help
in solving graphically-representable combinatorial problems, but the main contribution of
this article is more narrow, focusing on improving the state of the art for this single, but
important problem of computing APSP.

From the results of our extensive experiments we can make recommendations as to
which algorithm is best suited for which type of problems. Only for very small instances,
Floyd–Warshall should be used; this is probably mostly thanks to its simplicity, yielding a
very straightforward implementation with low overhead. Snowball can exploit the fact that
a perfect elimination ordering can be efficiently found for chordal graphs, which makes it
the most efficient algorithm for this class of graphs. From all our experiments on different
types of general graphs, we conclude that Snowball consistently outperforms Johnson (and
Floyd–Warshall), except when the induced width is very high. Our experiments also show
that Snowball always outperforms both Chleq–APSP and Snowball–Separators. Although the
latter has a better bound on its run time, surprisingly its actual performance is worse than
Snowball on all instances of our benchmark sets. This holds even for those instances for
which Snowball–Separators performs significantly fewer updates. Thus, we conclude that the
additional bookkeeping required by Snowball–Separators does not pay off.

Regarding these experiments, it must be noted that, although we did the utmost to
obtain a fair comparison, a constant factor in the measurements depends in a significant
way on the exact implementation details (e.g. whether a lookup-table or a heap is used),
as is also put forward in earlier work on experimentally comparing shortest path algo-
rithms (Mondou, Crainic, & Nguyen, 1991; Cherkassky, Goldberg, & Radzik, 1996). In our
own implementation a higher constant factor for the Snowball algorithms may be caused by
adhering to the object-oriented paradigm, i.e. inheriting from the DPC and P3C superclasses,
and choosing to reuse code rather than inlining method calls. Nonetheless, we are confident
that the general trends we identified hold independently of such details.

381

Planken, De Weerdt, & Van der Krogt

Note that strictly speaking, the algorithms introduced in this paper compute all-pairs
shortest distances. If one wants to actually trace shortest paths, the algorithms can be
extended to keep track of the midpoint whenever the distance matrix is updated, just like
one does for Floyd–Warshall. Then, for any pair of vertices, the actual shortest path in the
graph can be traced in O (n) time.

In our current implementation of Snowball–Separators, we used a priority queue to decide
heuristically which clique tree node to visit next, giving precedence to nodes connected by
a large separator to the part of the clique tree already visited. As noted before, we defer
answering the question whether an optimal ordering can be found efficiently to future work.
We remark that using the minimum-degree heuristic for triangulation provides Snowball with
a natural edge, delaying the processing of vertices where the number of iterations of the
middle loop is small until k grows large.

Cherkassky and Goldberg (1999) compared several innovative algorithms for single-
source shortest paths that gave better efficiency than the standard Bellman–Ford algorithm
in practice, while having the same worst-case bound of O (nm) on the run time. In future
work, we will investigate if any of these clever improvements can also be exploited in Snowball.

Snowball–Separators can be improved further in a way that does not influence the theoret-
ical complexity but may yield better performance in practice. Iterating over Vother can be
seen as a reverse traversal of the part of the clique tree visited before, starting at c’s parent.
Then, instead of always using the separator between the current clique node (containing k)
and its parent for all previously visited vertices in Vother, we can keep track of the smallest
separator encountered during this backwards traversal for no extra asymptotic cost. Since
it was shown in Table 1 that the largest minimal separator is often hardly smaller than the
induced width, it might well pay off to search for smaller separators. We plan to implement
this improvement in the near future.

Another possible improvement is suggested by the following observation on DPC. A
variant of DPC can be proposed where edge directionality is taken into account: during
iteration k, only those neighbours i, j < k are considered for which there is a directed path
i→ k → j, resulting in the addition of the arc i→ j. This set of added arcs would often be
much smaller than twice the number of edges added by the standard DPC algorithm, and
while the graph produced by the directed variant would not be chordal, the correctness of
Snowball would not be impacted.

Furthermore, we would like to also experimentally compare our algorithms to the recent
algorithms by Pettie (2004) and the algorithms for graphs of constant treewidth by Chaud-
huri and Zaroliagis (2000) in future work. In addition, we are interested in more efficient
triangulation heuristics, or triangulation heuristics with a guaranteed quality, to be able
to give a guaranteed theoretical bound on general graphs. Another direction, especially
interesting in the context of planning and scheduling, is to use the ideas presented here to
design a faster algorithm for dynamic all-pairs shortest paths: maintaining shortest paths
under edge deletions (or relaxations) and additions (or tightenings).

Acknowledgments

Roman van der Krogt is supported by Science Foundation Ireland under Grant number
08/RFP/CMS1711.

382

Computing APSP by Leveraging Low Treewidth

We offer our sincere gratitude to our reviewers for their comments, which helped us
improve the clarity of the article and strengthen our empirical results.

This article is based on a conference paper with the same title, which has received an
honourable mention for best student paper at the International Conference on Automated
Planning and Scheduling (Planken, de Weerdt, & van der Krogt, 2011).

Appendix A. Johnson’s Heap

In the experiments in this paper, we presented the results for Johnson using a Fibonacci
heap, because only then the theoretical bound of O

(
nm+ n2 log n

)
time is attained. In

practice, using a binary heap for a theoretical bound of O (nm log n) time turns out to be
more efficient on some occasions, as we show by the results in this section.

Figure 16 shows the run times of Johnson with a binary heap and with a Fibonacci
heap on all of the benchmark sets listed in Table 1. On the diamonds, HTN, and New
York benchmarks the binary heap is a few percent faster than the Fibonacci heap, but the
slope of the lines in this doubly logarithmic scale is the same, so we can conclude that
the average-case run time has similar asymptotic behavior. However, for larger job-shop
problems, a binary heap is a factor 2 slower than a Fibonacci heap, and on our chordal
graph benchmark problems even a factor 10. Our benchmark problems on scale-free graphs
with a fixed number of vertices help explaining this difference.

In Figure 17, the run time of both variants of Johnson can be found for scale-free graphs
with 1,000 vertices, with the number of edges varying from about 2,000 to almost 80,000.
Here, we see that only for the sparsest scale-free graphs with about 2, 000 edges, the binary
heap is slightly faster, but when more edges are considered, using the Fibonacci heap
significantly outperforms using the binary heap. In particular, the run time of the Fibonacci
heap implementation increases only slowly with the number of edges, while the run time of
the binary heap increases much more significantly. This can be explained by the fact that
when running Dijkstra’s algorithm as a subroutine in Johnson, each update of a (candidate)
shortest path can be done in amortized constant time with a Fibonacci heap, while in a
binary heap this has a worst-case cost of O (log n) time per update. The number of updates
is bounded by m for each run of Dijkstra’s algorithm, yielding a bound of O (nm) updates
for Johnson. For the binary heap this O (nm log n) bound accounts for a significant part of
the run time, while with a Fibonacci heap other operations (such as extracting the minimum
element from the heap) have a bigger relative contribution to the run time.

Based on the results over all benchmark sets, we conclude that although Johnson with a
binary heap can help reducing the actual run time in sparse graphs, Johnson with a Fibonacci
heap is overall the better choice if m can be large.

383

Planken, De Weerdt, & Van der Krogt

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of vertices (log scale)

htn

job shop

ny

diamonds

chordal

scale-free

Binary
Fibonacci

Figure 16: Run times of Johnson with a binary heap and with a Fibonacci heap on the
benchmark problem sets listed in Table 1.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2000 4000 8000 16000 32000 64000

tim
e

to
 s

ol
ve

 (
m

s,
 lo

g
sc

al
e)

number of edges (log scale)

Binary
Fibonacci

Figure 17: Run times of Johnson with a binary heap and with a Fibonacci heap on scale-free
graphs with 1,000 vertices and increasing number of edges.

384

Computing APSP by Leveraging Low Treewidth

References

Albert, R., & Barabási, A.-L. (2002). Statistical Mechanics of Complex Networks. Reviews
of Modern Physics, 74 (1), 47–97.

Arnborg, S., Corneil, D. G., & Proskurowski, A. (1987). Complexity of Finding Embeddings
in a k -Tree. SIAM Journal on Algebraic and Discrete Methods, 8 (2), 277–284.

Balachandhran, V., & Rangan, C. P. (1996). All-pairs-shortest-length on strongly chordal
graphs. Discrete applied mathematics, 69 (1-2), 169–182.

Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., & Wagner, D. (2008).
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algo-
rithm. In Experimental Algorithms (WEA 2008), Vol. 5038 of LNCS, pp. 303–318.
Springer.

Bodlaender, H. L. (1986). Classes of graphs with bounded tree-width. Tech. rep. RUU-CS-
86-22, Utrecht University.

Bodlaender, H. L. (1996). A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM Journal on Computing, 25 (6), 1305–1317.

Bouchitté, V., Kratsch, D., Müller, H., & Todinca, I. (2004). On Treewidth Approximations.
Discrete Applied Mathematics, 136 (2-3), 183–196.

Bresina, J. L., Jónsson, A. K., Morris, P. H., & Rajan, K. (2005). Activity Planning for
the Mars Exploration Rovers. In Proc. of the 15th Int. Conf. on Automated Planning
and Scheduling, pp. 40–49.

Bui, H. H., & Yorke-Smith, N. (2010). Efficient Variable Elimination for Semi-Structured
Simple Temporal Networks with Continuous Domains. Knowledge Engineering Re-
view, 25 (3), 337–351.

Castillo, L., Fernández-Olivares, J., & González, A. (2002). A Temporal Constraint Network
Based Temporal Planner. In Proc. of the 21st Workshop of the UK Planning and
Scheduling Special Interest Group, pp. 99–109, Delft, The Netherlands.

Castillo, L., Fernández-Olivares, J., & González, A. (2006). Efficiently Handling Temporal
Knowledge in an HTN planner. In Proc. of the 16th Int. Conf. on Automated Planning
and Scheduling, pp. 63–72.

Chan, T. (2005). All-Pairs Shortest Paths with Real Weights in O
(
n3/ log n

)
Time. In

Algorithms and Datastructures, LNCS, pp. 318–324. Springer.

Chaudhuri, S., & Zaroliagis, C. D. (2000). Shortest Paths in Digraphs of Small Treewidth.
Part I: Sequential Algorithms. Algorithmica, 27 (3), 212–226.

Cherkassky, B. V., Goldberg, A. V., & Radzik, T. (1996). Shortest paths algorithms: theory
and experimental evaluation. Mathematical programming, 73 (2), 129–174.

Cherkassky, B. V., & Goldberg, A. V. (1999). Negative-cycle detection algorithms. Mathe-
matical Programming, 85, 277–311.

Chleq, N. (1995). Efficient Algorithms for Networks of Quantitative Temporal Constraints.
In Proc. of the 1st Int. Workshop on Constraint Based Reasoning, pp. 40–45.

385

Planken, De Weerdt, & Van der Krogt

Conrad, P. R., Shah, J. A., & Williams, B. C. (2009). Flexible execution of plans with
choice. In Proc. of the 19th Int. Conf. on Automated Planning and Scheduling.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algo-
rithms, 2nd edition. MIT Press.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal Constraint Networks. Artificial Intel-
ligence, 49 (1–3), 61–95.

Demetrescu, C., & Italiano, G. F. (2006). Fully Dynamic All-Pairs Shortest Paths with
Real Edge Weights. Journal of Computer and System Sciences, 72 (5), 813–837.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.. Numerische
Mathematik, 1, 269–271.

Dragan, F. F. (2005). Estimating all pairs shortest paths in restricted graph families: a
unified approach. Journal of Algorithms, 57 (1), 1–21.

Even, S., & Gazit, H. (1985). Updating Distances in Dynamic Graphs. Methods of Opera-
tions Research, 49, 371–387.

Fiedler, N. (2008). Analysis of Java implementations of Fibonacci Heap. http://tinyurl.

com/fibo-heap.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5 (6),
345.

Fredman, M., & Tarjan, R. E. (1987). Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms. Journal of the ACM, 34 (3), 596–615.

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In Proc. of the Int. Workshop
on Experimental Algorithms, pp. 319–333. Springer.

Girvan, M., & Newman, M. E. J. (2002). Community Structure in Social and Biological
Networks. Proc. of the National Academy of Sciences of the USA, 99 (12), 7821–7826.

Golumbic, M. (2004). Algorithmic Graph Theory and Perfect Graphs. Elsevier.

Graham, R. L., Knuth, D. E., & Patashnik, O. (1989). Concrete Mathematics: A Foundation
for Computer Science (1st edition). Addison-Wesley.

Han, K., Sekharan, C. N., & Sridhar, R. (1997). Unified All-Pairs Shortest Path Algorithms
in the Chordal Hierarchy. Discrete Applied Mathematics, 77 (1), 59–71.

Han, Y. (2008). A Note of an O
(
n3/ log n

)
-time Algorithm for All-Pairs Shortest Paths.

Information Processing Letters, 105 (3), 114–116.

Heggernes, P. (2006). Minimal triangulations of graphs: A survey. Discrete Mathematics,
306 (3), 297–317. Minimal Separation and Minimal Triangulation.

Johnson, D. B. (1977). Efficient Algorithms for Shortest Paths in Sparse Networks. Journal
of the ACM, 24 (1), 1–13.

Kjærulff, U. (1990). Triangulation of Graphs - Algorithms Giving Small Total State Space.
Tech. rep., Aalborg University.

386

Computing APSP by Leveraging Low Treewidth

Klein, P. N., Mozes, S., & Weimann, O. (2010). Shortest Paths in Directed Planar Graphs
with Negative Lengths: A Linear-space O

(
n log2 n

)
-time Algorithm. ACM Transac-

tions on Algorithms, 6 (2), 1–18.

Mondou, J. F., Crainic, T. G., & Nguyen, S. (1991). Shortest path algorithms: A computa-
tional study with the C programming language. Computers & Operations Research,
18 (8), 767–786.

Pettie, S. (2004). A New Approach to All-pairs Shortest Paths on Real-weighted Graphs.
Theoretical Computer Science, 312 (1), 47–74.

Planken, L. R., de Weerdt, M. M., & van der Krogt, R. P. J. (2008). P3C: A New Algorithm
for the Simple Temporal Problem. In Proc. of the 18th Int. Conf. on Automated
Planning and Scheduling, pp. 256–263.

Planken, L. R., de Weerdt, M. M., & van der Krogt, R. P. J. (2011). Computing all-
pairs shortest paths by leveraging low treewidth. In Proc. of the 21st Int. Conf. on
Automated Planning and Scheduling, pp. 170–177.

Planken, L. R., de Weerdt, M. M., & Yorke-Smith, N. (2010). Incrementally Solving STNs
by Enforcing Partial Path Consistency. In Proc. of the 20th Int. Conf. on Automated
Planning and Scheduling, pp. 129–136.

Ranise, S., & Tinelli, C. (2003). The SMT-LIB Format: An Initial Proposal. In Proc. of
Pragmatics of Decision Procedures in Automated Reasoning.

Rose, D. J. (1972). A Graph-Theoretic Study of the Numerical Solution of Sparse Positive
Definite Systems of Linear Equations. In Read, R. (Ed.), Graph theory and computing,
pp. 183–217. Academic Press.

Rossi, F., Venable, K. B., & Yorke-Smith, N. (2006). Uncertainty in soft temporal con-
straint problems: A general framework and controllability algorithms for the fuzzy
case. Journal of AI Research, 27, 617–674.

Satish Kumar, T. K. (2005). On the Tractability of Restricted Disjunctive Temporal Prob-
lems. In Proc. of the 15th Int. Conf. on Automated Planning and Scheduling, pp.
110–119.

Shah, J. A., & Williams, B. C. (2008). Fast Dynamic Scheduling of Disjunctive Temporal
Constraint Networks through Incremental Compilation. In Proc. of the 18th Int. Conf.
on Automated Planning and Scheduling, pp. 322–329.

Stergiou, K., & Koubarakis, M. (2000). Backtracking algorithms for disjunctions of temporal
constraints. Artificial Intelligence, 120 (1), 81–117.

Strichman, O., Seshia, S. A., & Bryant, R. E. (2002). Deciding Separation Formulas with
SAT. In Proc. of the 14th Int. Conf. on Computer Aided Verification, Vol. 2404 of
LNCS, pp. 209–222. Springer.

Tarjan, R. E., & Yannakakis, M. (1984). Simple Linear-time Algorithms to Test Chordality
of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hyper-
graphs. SIAM Journal on Computing, 13 (3), 566–579.

387

Planken, De Weerdt, & Van der Krogt

Thorup, M. (2004). Fully-dynamic All-Pairs Shortest Paths: Faster and Allowing Negative
Cycles. In Algorithm Theory, Vol. 3111 of LNCS, pp. 384–396. Springer.

Warshall, S. (1962). A Theorem on Boolean Matrices. Journal of the ACM, 9 (1), 11–12.

388

