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Abstract

In a deterministic world, a planning agent can be certain of the consequences of its
planned sequence of actions. Not so, however, in dynamic, stochastic domains where
Markov decision processes are commonly used. Unfortunately these suffer from the ‘curse of
dimensionality’: if the state space is a Cartesian product of many small sets (‘dimensions’),
planning is exponential in the number of those dimensions.

Our new technique exploits the intuitive strategy of selectively ignoring various di-
mensions in different parts of the state space. The resulting non-uniformity has strong
implications, since the approximation is no longer Markovian, requiring the use of a mod-
ified planner. We also use a spatial and temporal proximity measure, which responds to
continued planning as well as movement of the agent through the state space, to dynami-
cally adapt the abstraction as planning progresses.

We present qualitative and quantitative results across a range of experimental domains
showing that an agent exploiting this novel approximation method successfully finds solu-
tions to the planning problem using much less than the full state space. We assess and
analyse the features of domains which our method can exploit.

1. Introduction

In a deterministic world where a planning agent can be certain of the consequences of its
actions, it can plan a sequence of actions, knowing that their execution will necessarily
achieve its goals. This assumption is not appropriate for flexible, multi-purpose robots and
other intelligent software agents which need to be able to plan in the dynamic, stochastic
domains in which they will operate, where the outcome of taking an action is uncertain.

For small to medium-sized stochastic domains, the theory of Markov decision processes
provides algorithms for generating the optimal plan (Bellman, 1957; Howard, 1960; Puter-
man & Shin, 1978). This plan takes into account uncertainty about the outcome of taking
an action, which is specified as a distribution over the possible outcomes. For flexibility,
there is a reward function rather than a simple goal, so that the relative desirability or
otherwise of each situation can be specified.

However, as the domain becomes larger, these algorithms become intractable and ap-
proximate solutions become necessary (for instance Drummond & Bresina, 1990; Dean,
Kaelbling, Kirman, & Nicholson, 1995; Kim, 2001; Steinkraus, 2005). In particular where
the state space is expressed in terms of dimensions, or as a Cartesian product of sets, its
size and the resulting computational cost is exponential in the number of dimensions. On
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the other hand, fortunately, this results in a fairly structured state-space where effective
approximations often should be possible.

Our solution is based on selectively ignoring some of the dimensions, in some parts of
the state space, some of the time. In other words, we obtain approximate solutions by
dynamically varying the level of abstraction in different parts of the state space. There
are two aspects to this approach. Firstly, the varying level of abstraction introduces some
artefacts, and the planning algorithm must be somewhat modified so as to eliminate these.
Secondly, more interestingly, an appropriate abstraction must be selected and later modified
as planning and action progress.

Our work is an extension and synthesis of two existing approaches to approximate plan-
ning: the locality-based approximation of envelope methods (Dean et al., 1995) and the
structure-based approximation of uniform abstraction (Nicholson & Kaelbling, 1994; Dear-
den & Boutilier, 1997). Our work extends both of these by exploiting both structure and
locality, broadening the scope of problems that can be contemplated. Baum and Nicholson
(1998) introduced the main concepts while full details of our algorithms and experimental
results are presented in Baum’s (2006) thesis. There have been some studies of arbitrary
abstraction, for instance by Bertsekas and Tsitsiklis (1996). However, these are generally
theoretical and in any case they tended to treat the approximation as Markovian, which
would have resulted in unacceptable performance in practice. We improve on this by extend-
ing the planning algorithm to deal with the non-Markovian aspects of the approximation.
Finally, we use a measure of locality, introduced by Baum and Nicholson (1998), that is
similar to but more flexible than the influence measure of Munos and Moore (1999).

We assume that the agent continues to improve its plan while it is acting and that
planning failures are generally not fatal. We also deal with control error exclusively. Sensor
error is not considered and it is assumed that the agent can accurately discern the current
world state (“fully observable”), and that it accurately knows the state space, the goal or
reward function, and a distribution over the effect of its actions (no learning).

The remainder of this paper is organised as follows. Section 2 reviews the background,
introduces our abstraction and provides our framework. Section 3 discusses planning under
a static non-uniform abstraction, and Section 4 presents our method for initially selecting
the non-uniform abstraction based on the problem description. Section 5 presents a method
of changing the abstraction based on the policy planned, while Sections 6 and 7 introduce
a proximity measure and a method of varying the abstraction based on that measure,
respectively. Section 8 presents results based both on direct evaluation of the calculated
policy and on simulation. Finally, Section 9 discusses the results and Section 10 gives our
conclusions and outlines possible directions for future work.

2. Planning under Non-uniform Abstractions

In a non-deterministic world where a planning agent cannot be certain of the consequences
of its actions except as probabilities, it cannot plan a simple sequence of actions to achieve
its goals. To be able to plan in such dynamic, stochastic domains, it must use a more
sophisticated approach. Markov decision processes are an appropriate and commonly used
representation for this sort of planning problem.
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2.1 Illustrative Problems

To aid in exposition, we present two example problems here. The full set of experimental
domains is presented in Section 8.1.

The two illustrative problems are both from a grid navigation domain, shown in Figure 1.
They both have integer x and y coordinates from 0 to 9, three doors which can be either
open or closed and a damage indication which can be either yes or no. The agent can
move in one of the four cardinal directions, open a door if it is next to it, or do nothing.
The doors are fairly difficult to open, with probability of success 10% per time step, while
moving has an 80% chance of success, with no effect in the case of failure. Running into
a wall or into a closed door causes damage, which cannot be repaired. The transitions are
shown in Table 1. The agent starts in the location marked s0 in Figure 1 with the doors
closed and no damage, and the goal is to reach the location marked ∗ with no damage.
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Figure 1: The layout of the grid navigation domain. The blue arrows show the optimal
path (a) and a suboptimal path (b) through the 3Keys problem. The 3Doors

problem has the same grid layout (walls and doors) but with no keys.

The 3Keys problem also contains keys, which are required to open the doors. The agent
may have any one or more of them at any time. An additional action allows the agent to
pick up each key in the location as shown in the figure, and the open action requires the
corresponding key to be effective (there is no separate ‘unlock’ action). The 3Doors problem
contains no keys — the doors are unlocked but closed — and therefore no corresponding
keys or pickup action.

The optimal policy obtained by exact planning for the 3Doors problem simply takes
the shortest path through door 2. For the 3Keys problem, the optimal plan is to collect
keys 3 and 1, pass south through door 1 and east through door 3, shown in Figure 1(a). A
suboptimal plan is shown in Figure 1(b).
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pre-state post-state
x y d1 d2 d3 dmg → x y d1 d2 d3 dmg

Stay

· · · · · · → · · · · · ·

South

2 2 open · · · → 80% · 3 · · · ·
7 2 · open · · → 80% · 3 · · · ·
· 2 · · · · → · · · · · yes
· 9 · · · · → · · · · · yes
· y · · · · → 80% · y + 1 · · · ·

North

2 3 open · · · → 80% · 2 · · · ·
7 3 · open · · → 80% · 2 · · · ·
· 0 · · · · → · · · · · yes
· 3 · · · · → · · · · · yes
· y · · · · → 80% · y − 1 · · · ·

East

4 0 · · · · → 80% 5 · · · · ·
4 1 · · · · → 80% 5 · · · · ·
4 2 · · · · → 80% 5 · · · · ·
4 9 · · open · → 80% 5 · · · · ·
4 · · · · · → · · · · · yes
9 · · · · · → · · · · · yes
x · · · · · → 80% x+ 1 · · · · ·

West

5 0 · · · · → 80% 4 · · · · ·
5 1 · · · · → 80% 4 · · · · ·
5 2 · · · · → 80% 4 · · · · ·
5 9 · · open · → 80% 4 · · · · ·
5 · · · · · → · · · · · yes
0 · · · · · → · · · · · yes
x · · · · · → 80% x− 1 · · · · ·

Open

2 2 · · · · → 10% · · open · · ·
2 3 · · · · → 10% · · open · · ·
7 2 · · · · → 10% · · · open · ·
7 3 · · · · → 10% · · · open · ·
4 9 · · · · → 10% · · · · open ·
5 9 · · · · → 10% · · · · open ·
· · · · · · → · · · · · yes

Table 1: Transitions in the 3Doors problem, showing important and changed dimensions
only. First matching transition is used. Where a percentage is shown, the given
post-state will occur with that probability, otherwise the state is unchanged. Tran-
sitions without percentages are deterministic.
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2.2 Exact Planning

One approach to exact planning in stochastic domains involves using Markov Decision
Processes (MDPs). A MDP is a tuple

〈
S, A, T,R, s0

〉
, where S is the state space, A is the

set of available actions, T is the transition function, R is the reward function and s0 ∈ S
is the initial state. The agent begins in state s0. At each time step, the agent selects an
action a ∈ A, which, together with the current state, applies T to obtain a distribution over
S. The current state at the next time-step is random according to this distribution and we
write PrT (s, a, s

′) for the probability that action a taken in state s will result in the state
s′ at the next time-step. The agent is also given a reward at each time step, calculated by
R from the current state (and possibly also the action selected). The aim of the agent is
to maximise some cumulative function of these rewards, typically the expected discounted1

sum under a discounting factor γ. In a fully-observable MDP, the agent has full knowledge.
In particular, the agent is aware of T , R and the current state when selecting an action.
It is well-known that in a fully-observable MDP, the optimal solution can be expressed as
a policy π : S → A mapping from the current state to the optimum action. The planning
problem, then, is the calculation of this π. As a side-effect of the calculation, the standard
algorithms also calculate a value function V : S → R, the expected discounted sum of
rewards starting from each state. Table 2 summarises the notation used in this paper.

There are well known iterative algorithms, Bellman’s (1957) value iteration, Howard’s
(1960) policy iteration, and the modified policy iteration of Puterman and Shin (1978)
for computing the optimal policy π∗. However, as S becomes larger, the calculation of π∗

becomes more computationally expensive. This is particularly so if state space is structured
as a Cartesian product of dimensions, S = S1×S2×· · ·×SD, because then |S| is exponential
in D. Since the algorithms explicitly store V and usually π, which are functions of S, their
space complexity is therefore also exponential in D. Since they iterate over these arrays,
the time complexity is also at least exponential in D, even before any consideration of how
fast these iterative algorithms themselves converge. Typically, as D grows, planning in S
quickly becomes intractable. Since in practice the amount of computation allowed to the
agent is limited, this necessitates some approximations in the process.

In the 3Doors problem, there are six dimensions (two for the x and y coordinates, three
for the doors and one for damage), so that S = {0 . . . 9} × {0 . . . 9} × {open, closed} ×
{open, closed}× {open, closed}× {damage,no damage} and |S| = 12800. The action space
A is a set of five actions, A = {north, south, east,west, open}. The transition function
specifies the outcomes of taking each action in each state. The reward function R is 0 in
the agent is in the 〈7, 7〉 location (marked ∗ in the diagram) with no damage, −1 if it is
in any other location with no damage, and −2 if there is damage. Finally, s0 is the state
where the agent is in the 〈0, 0〉 location, the doors are closed, and there is no damage.

Exact planning is listed in our results with |S| and V ∗(s0) for comparison. If there is
no approximation, the planner must consider the whole state space S. |S| is therefore a
measure of the cost of this planning — directly in terms of space and indirectly in terms
of time. On the other hand, since the planning is exact, the optimal value function V ∗ will

1. While our illustrative problems have simple goals of achievement, we use time discounting in order to
remain general and for its mathematical convenience.
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symbol meaning
original abstract
S W ⊂ P(S) state space (specific state space / worldview, resp.)

Sd — dimension d of the state space
D ∈ N

∗ number of dimensions
s ∈ S w ∈ W a state
s0 ∈ S — initial state
scur ∈ S — current state (in on-line planning)

sd ∈ Sd wd ⊆ Sd dimension d of the state s or w, resp.
A set of actions (action space)

a0 ∈ A default action
T T transition function (formal)

PrT:S×A×S→[0, 1] PrT:W×A×W→[0, 1] transition function (in use)

R : S → R R :W → R reward function (one-step reward)

V : S → R V :W → R value function (expected discounted sum of rewards)

γ ∈ [0, 1) discount factor for the reward
π : S → A π :W → A policy
π∗ : S → A — optimal policy
V ∗ : S → R — optimal value function (exact value function of π∗)

π̂, π̂i : S → A π̂, π̂i :W → A approximate policy, ith approximate policy
V ∗
π̂ : S → R — exact value function of π̂ (note: π̂ may be abstract)

V̂π̂ : S → R V̂π̂ :W → R approximate value function of π̂ (approx. to V ∗

π̂
)

Table 2: Summary of notation. The first column is the notation for the original MDP, the
second is the notation once non-uniform abstraction has been applied.

be obtained, along with the optimal policy π∗ ensuring that the agent will expect to obtain
that value. It is against these figures that all approximations must measure.

2.3 Uniform Abstraction

One method of approximation is to take advantage of these dimensions by ignoring some
of them — those that are irrelevant or only marginally relevant — in order to obtain an
approximate solution. It is uniform in the sense that the same dimensions are ignored
throughout the state space. Since this approach attacks the curse of dimensionality where
it originates, at the dimensions, it should be very effective at counteracting it.

Dearden and Boutilier use this to obtain an exact solution (Boutilier, 1997) or an ap-
proximate one (Boutilier & Dearden, 1996; Dearden & Boutilier, 1997). However, their ab-
stractions are fixed throughout execution, and dimensions are also deleted from the problem
in a pre-determined sequence. This makes their approach somewhat inflexible. Similarly,
Nicholson and Kaelbling (1994) propose this technique for approximate planning. They
delete dimensions from the problem based on sensitivity analysis, and refine their abstrac-
tion as execution time permits, but it is still uniform. Dietterich (2000) uses this kind of
abstraction in combination with hierarchical planning to good effect: a subtask, such as
‘Navigate to location t’, can ignore irrelevant dimensions, such as location of items to be
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picked up or even the ultimate destination of the agent. Generally, any time the problem
description is derived from a more general source rather than specified for the particular
problem, uniform abstraction will help. Gardiol and Kaelbling (2008) use it where some di-
mensions are relevant, but only marginally, so that ignoring them results in an approximate
solution that can be improved as planning progresses.

Unfortunately, however, at least with human-specified problems, one would generally
expect all or most mentioned dimensions to be in some way relevant. Irrelevant dimensions
will be eliminated by the human designer in the natural course of specifying the problem.
Depending on the domain and the situation some marginally relevant dimensions might be
included, but often, these will not be nearly enough for effective approximation.

We do not list comparisons against uniform abstraction in our results for this reason —
in most of our sample domains, it makes little sense. All or almost all of the dimensions
are important to solving the problem. Where this is not the case and methods exist for
effective uniform abstraction, they can be integrated with our approach easily.

2.4 Non-uniform Abstraction

Our approximation, non-uniform abstraction, replaces the state space S withW, a particu-
lar type of partition of S, as originally introduced by Baum and Nicholson (1998). We call
W the worldview, so members of W are worldview states while members of S are specific
states.2 Non-uniform abstraction is based on the intuitive idea of ignoring some dimensions
in some parts of the state space. For example, a door is only of interest when the agent is
about to walk through it, and can be ignored in those parts of the state space which are
distant from the door. In a particular member of the worldview wi ∈ W, each dimension is
either taken into account completely (concrete, refined in), or ignored altogether (abstract,
coarsened out). wi =

∏D
d=1 w

i
d and each wi

d is a singleton subset of the corresponding Sd
for concrete dimensions and equal to Sd for abstract dimensions.3 It is up to the worldview
selection and modification methods to ensure that W remains a partition at all times.

To give an example, in the 3Doors problem one possible worldview has the location and
damage dimensions concrete in every state, while the door dimensions are each concrete
only in states within two steps of the respective door.

Note that the domain is still fully-observable. This is not a question of lack of knowledge
about the dimensions in question, but wilful conditional ignorance of them during planning
as a matter of computational expediency. The approximation also subsumes both exact
planning and uniform abstraction. For exact planning, all dimensions can be set uniformly
concrete, so that |W| = |S| and each worldview state corresponds to one specific state. For
uniform abstraction, the combination of abstract and concrete dimensions can be fixed for
the entire worldview. They can be treated as special cases of our more general approach.4

2. Previously, we used the word ‘envelope’ for the same concept (Baum & Nicholson, 1998), however,
‘worldview’ better describes the approximation used than ‘envelope’.

3. We do not allow a dimension to be partially considered, we only abstract to the level of dimensions, not
within them. A dimension such as the x coordinate will either have a particular value, or it will be fully
abstract, but it will never be 5–9, for instance.

4. Our modified π calculation reduces to the standard algorithm for uniform or fully concrete worldviews,
so our planner obtains the standard results in these cases.
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On the other hand, the approximation is no longer Markovian. A dimension that is
abstracted away is indeterminate. In the notation of Markov Decision Processes, this can
only be represented by some distribution over the concrete states, but the dimension is not
stochastic — it has some specific (but ignored) value. The distinction is important because
for a truly stochastic outcome, it can be quite valid to plan to retry some action until it
‘succeeds’ (for instance, opening a door in the 3Doors problem). For a dimension which is
merely ignored, the agent will obtain the same outcome (door is closed) each time it moves
into the region where the dimension is not ignored, so that within the worldview, previous
states can appear to matter. We discuss this further in Section 3.

2.5 Comparison to Other Approaches

Non-uniform abstractions began to appear in the literature at first usually as a side-effect
of a structured method, where the state space is represented as a decision tree based on
the individual dimensions, such as Boutilier, Dearden, and Goldszmidt (1995, 2000). Note,
however, that the decision tree structure imposes a restriction on the kinds of non-uniform
abstraction that can be represented: the dimension at the root of the tree is considered
throughout the state space, and so on. This is a significant restriction and results in a
representation much more limited than our representation. A similar restriction affects
de Alfaro and Roy’s (2007) “magnifying-lens abstraction”, with the refinement that multi-
valued dimensions are taken bit-by-bit and the bits interleaved, so that each level of the
decision tree halves the space along a different dimension in a pre-determined order. As they
note, this would work well where these dimensions correspond to a more-or-less connected
space, as in a gridworld, but it would do less well with features like the doors of our
grid navigation domain. Magnifying-lens abstraction calculates upper and lower bounds to
the value function, rather than a single approximation, which is an advantage for guiding
abstraction selection and allows for a definite termination condition (which we lack). On
the other hand, it always considers fully-concrete states in part of the algorithm, limiting
its space savings to the square root of the state space, whereas our algorithm can work
with a mixture of variously abstract states not necessarily including any fully concrete
ones. Another related approach is variable grids used for discretisation, which can be
indirectly used for some discrete domains, as Boutilier, Goldszmidt, and Sabata (1999) do,
if dimensions can be reasonably approximated as continuous (for instance money). Unlike
our approach, variable grids are completely inapplicable to predicates and other binary or
enumerated dimensions. Some, such as Reyes, Sucar, and Morales (2009), use techniques
in some ways quite similar to ours for continuous MDPs, though they are quite different in
other ways: they consider refinement only, not coarsening; they use sampling, rather than
directly dealing with the domain model; and they use a different refinement method, where
each refinement is evaluated after the fact and then either committed or rolled back.

Perhaps the most similar to our approach is one of the modules of Steinkraus (2005),
the ignore-state-variables module. However, the module appears to be completely manual,
requiring input of which variables (dimensions) should be ignored in what parts of the state
space. It also uses the values of the dimensions from the current state scur, rather than a
distribution, which obviously restricts the situations in which it may be used (for instance,
in the 3Doors problem, the doors could not be ignored in the starting state). Finally, since
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Steinkraus (2005) does not analyse or report the relative contributions of the modules to
the solution, nor on the meta-planning problem of selecting and arranging the modules, it
is difficult to know to what extent this particular module is useful.

Other approaches take advantage of different features of different domains. For instance,
the “factored MDP” approach (used, for instance, by Boutilier et al., 2000, or Guestrin,
Koller, Parr, & Venkataraman, 2003) is suitable for domains where parts of the state and
action spaces can be grouped together so that within each group those actions or action
dimensions affect the corresponding states or state dimensions but interaction between the
groups is weak. St-Aubin, Hoey, and Boutilier (2000) iterate a symbolic representation in
the form of algebraic decision diagrams to produce approximate solutions, while Sanner
and Boutilier (2009) iterate a symbolic representation of a whole class of problems in a
domain, using symbolic dynamic programming, first-order algebraic decision diagrams and
linear value approximation, to pre-compute a generic solution which can then be used to
quickly solve specific problems of that class. While we focus only on the state space, oth-
ers approximate the action space, typically grouping actions (possibly hierarchically) into
“macro actions”, after Korf (1985). For instance Hauskrecht, Meuleau, Kaelbling, Dean,
and Boutilier (1998) or Botea, Enzenberger, Muller, and Schaeffer (2005) take this approach,
while Parr (1998) uses finite state automata for the macro actions and Srivastava, Immer-
man, and Zilberstein (2009) take it further by using algorithm-like plans with branches and
loops. Goldman, Musliner, Boddy, Durfee, and Wu (2007) reduce the state space while gen-
erating the (limited-horizon, undiscounted) MDP from a different, non-MDP representation
by only including reachable states, pruning those which can be detected as being clearly and
immediately poor, or inferior or equivalent to already-generated states. Naturally, many of
these approaches can be combined. For instance, Gardiol and Kaelbling (2004, 2008) com-
bine state space abstraction with the envelope work of Dean et al. (1995), while Steinkraus
(2005) uses a modular planner with a view of combining as many approaches as may be
appropriate for a given problem. For more details and further approaches and variants we
refer the reader to a recent survey of the field by Daoui, Abbad, and Tkiouat (2010).

2.6 Dynamic Approximate Planning

The top-level algorithm is shown as Algorithm 1. After some initialisation, consisting of
selecting the initial abstraction and setting the policy, value and proximity to a0, 0 and
proportionally to the size of each worldview state, respectively,5 the planner enters an
infinite loop in which it stochastically alternates among five possible calculations, each of
which is described in the following sections. Here and elsewhere in the algorithm, we use
stochastic choice as a default in the absence of a more directed method.

The agent is assumed to have processing power available while it is acting, so that it
can continually improve its policy, modify the approximation and updates the focus of its
planning based on the current state. This means that the agent does not need to plan so
well for unlikely possibilities, and can therefore expend more of its planning effort on the
most likely paths and on the closer future, expecting that when and if it reaches other parts
of the state space, it can improve the approximation as appropriate.

5. Initialising the approximate policy to action a0 constitutes a domain-specific heuristic — namely, that
there is a known default action a0 which is reasonably safe in all states, such as a “do nothing” action.
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Algorithm 1 High-level algorithm for Approximate Planning with Dynamic Non-uniform
Abstractions

do select initial abstraction /* Algorithm 3 */
for all worldview states w do

π̂(w)← a0; V̂ (w)← 0; ℓ
τP(w)←

|w|
|S|

do policy and value calculation /* Algorithm 2 */
loop

choose stochastically do

do policy and value calculation /* Algorithm 2 */
or

do policy-based refinement /* Algorithm 4 */
or

do proximity calculation /* Algorithm 5 */
or

do proximity-based refinement /* Algorithm 6 */
or

do proximity-based coarsening /* Algorithm 7 */
input latest current state; output the policy

Actual execution of the policy is assumed to be in a separate thread (‘executive’), so
that the planner does not have to concern itself with the timeliness requirements of the
domain: whenever an action needs to be taken, the executive simply uses the policy that it
most recently received from the planner.

Dean et al. (1995) call this recurrent deliberation, and use it with their locality-based
approximation. A similar architecture is used by the CIRCA system (Musliner, Durfee, &
Shin, 1995; Goldman, Musliner, Krebsbach, & Boddy, 1997) to guarantee hard deadlines.
In CIRCA terminology, the planner is the AIS (AI subsystem), and the executive is the
RTS (real-time subsystem).

An alternative to recurrent deliberation is pre-cursor deliberation, where the agent first
plans, and only when it has finished planning does it begin to act, making no further
adjustments to its plan or policy. Effectively, for the planner, the ‘current state’ is constant
and equal to the initial state throughout planning. In this work the pre-cursor mode is used
for some of the measurements, as it involves fewer potentially confounding variables.

Conceptually, our approach can be divided into two broad parts: the open-ended prob-
lem of selecting a good abstraction and the relatively closed problem of planning within
that abstraction. Since the latter part is more closed, we deal with it first, in the next
section, covering Algorithm 2. We then explore the more open-ended part in Sections 5–7,
covering Algorithms 3–7.

3. Solving Non-uniformly Abstracted MDPs

Given a non-uniform abstraction, the simplest way to use it for planning is to take one
of the standard MDP algorithms, such as the modified policy iteration of Puterman and
Shin (1978), and adapt it to the non-uniform abstraction minimally. The formulae translate
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directly in the obvious fashion. π̂ becomes a function of worldview states instead of concrete
states, and so on, as shown in Algorithm 2 (using the simple variant for the update policy

for w procedure). Probabilities of transition from one worldview state to another are
approximated using a uniform distribution over the concrete states (or possibly some other
distribution, if more information is available).

Algorithm 2 policy and value calculation

repeat n times
for all worldview states w do

do update value for w
for all worldview states w do

do update policy for w
do update value for w

procedure update value for w
if PrT (w, π̂(w), w) = 1 then

/* optimisation — V̂ (w) can be calculated directly in this case */

V̂ (w)← R(w)
1−γ

else

V̂ (w)← R(w) + γ
∑

w′ PrT (w, π̂(w), w
′)V̂ (w′)

procedure update policy for w variant simple
π̂(w)← min argmaxa

∑
w′ PrT (w, a,w

′)V̂ (w′)

procedure update policy for w variant with Locally Uniform Abstraction
/* see Section 3.1 for discussion of Locally Uniform Abstraction */
absdims← {d : ∃w′∃a .PrT (w, a,w

′) > 0 ∧ w′ is abstract in d}

LUA← λw′. w̄′ :

{
w̄′ is abstract in d ∀d ∈ absdims

dimension d of w̄′ = dimension d of w′ ∀d /∈ absdims

V̄ ← λw̄′.
∑

w′′∈W
|w′′∩w̄′|
|w̄′| V̂ (w′′)

π̂(w)← min argmaxa
∑

w′ PrT (w, a,w
′)V̄ (LUA(w′))

Note that in Algorithm 2, A is considered an ordered set with a0 as its smallest element
and the minimum is used when the argmax gives more than one possibility. This has
two aspects: (a) as a domain-specific heuristic, for instance, breaking ties in favour of
the default action when possible, and (b) to avoid policy-based refinement (see Section 5)
based on actions that have equal value. Secondly, for efficiency,

∑
w′ can be calculated only

over states w′ with PrT (w, a,w
′) > 0, since other states will make no contribution to the

sum. Finally, the number n is a tuning parameter which is not particularly critical (we use
n = 10).

Of course, replacing the state space S by a worldviewW in this way does not, in general,
preserve the Markov property, since the actual dynamics may depend on aspects of the state
space that are abstracted in the worldview. In the simple variant we ignore this and assume
the Markov property anyway, on the grounds that this is, after all, an approximation.
Unfortunately, the resulting performance can have unacceptably large error, including the
outright non-attainment of goals.
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For instance, in the 3Doors problem, such a situation will occur at each of the three
doors whenever they are all abstract at s0 and concrete near the door in question. The
doors are relatively difficult to open, with only a 10% probability of success per try. On
the other hand, when moving from an area where they are abstract to an area where they
are concrete, the assumed probability that the door is already open is 50%. When the
calculations are performed, it turns out to be preferable to plan a loop, repeatedly trying
for the illusory 50% chance of success rather than attempting to open the door at only
10% chance of success. The agent will never reach the goal. Worse still, in some ways, it
will estimate that the quality of the solution is quite good, V̂π̂(s

0) ≈ −19.0, which is in
fact better even than the optimal solution’s V ∗(s0) ≈ −27.5, while the true quality of the
solution is very poor, V ∗

π̂ (s
0) = −100 000, corresponding to never reaching the goal (but not

incurring damage, either; figures are for discounting factor γ = 0.999 99).

Regions that take into account a particularly bad piece of information may seem un-
attractive, as described above, and vice versa. We call this problem the Ostrich effect, as
the agent is refusing to accept an unpleasant fact, like the mythical ostrich that buries its
head in the sand. Its solution, Locally Uniform Abstraction, is described in the next section.

If the abstracted approximation is simply treated as a MDP in which the agent does not
know which state it will reach (near closed door or near open door), it will not correspond
to the underlying process, which might reach a particular state deterministically (as it does
here). The problem is especially obvious in this example, when the planner plans a loop.
This is reminiscent of a problem noted by Cassandra, Kaelbling, and Kurien (1996), where
a plan derived from a POMDP failed — the actual robot got into a loop in a particular
situation when a sensor was completely reliable contrary to the model.

3.1 Locally Uniform Abstraction

The ostrich effect occurs when states of different abstraction are considered, for instance
one where a door is abstract and one where the same door is concrete and closed. The
solution is to make the abstraction locally uniform, and therefore locally Markovian for
the duration of the policy generation iterative step. By making the abstraction locally,
temporarily uniform, the iterative step of the policy generation algorithm never has to work
across the edge of an abstract region, and, since the same information is available in all the
states being considered at each point, there is no impetus for any of them to be favoured or
avoided on that basis (for instance, avoiding a state in which a door is concrete and closed
in favour of one where the door is abstract). The action chosen will be chosen based on the
information only and not on its presence or absence.

This is a modification to the update policy for w procedure of Algorithm 2: as
the states are considered one by one, the region around each state is accessed through a
function that returns a locally uniform version. States that are more concrete than the state
being considered will be averaged so as to ignore the distinctions. As different states are
considered, sometimes the states will be taken for themselves, sometimes their estimated
values V̂ will be averaged with adjacent states. This means that some of the dimensions
will only partially be considered at those states — in most cases, this will mean that
the more concrete region must extend one step beyond the region in which the dimension
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is immediately relevant. For a dimension to be fully considered at a state, the possible
outcomes of all actions at that state must also be concrete in that dimension.

The modified procedure proceeds as follows: first the dimensions that are abstract in
any possible outcome of the state being updated w are collected in the variable absdims.
Then the function LUA is constructed which takes worldview states w′ and returns potential
worldview states w̄′ which are like w′ but abstract in all the dimensions in absdims. As this
is the core of the modification, it is named LUA for ‘Locally Uniform Abstraction’. Since the
potential states returned by LUA are not, in general, members of W, and therefore do not
necessarily have a value stored in V̂ , a further function V̄ is constructed which calculates
weighted averages of the value function V̂ over potential states. As with the other sum,∑

w′′ can be calculated only over states w′′ with w′′ ∩ w̄′ 6= ∅ for efficiency. Finally, the
update step is carried out using the two functions LUA and V̄ .

Unfortunately, once the modification is applied, the algorithm may or may not con-
verge depending on the worldview. Failure to converge occurs when the concrete region is
too small — in some cases, the algorithm will cycle between two policies (or conceivably
more) instead of converging. One must be careful, therefore, with the worldview, to avoid
these situations, or else to detect them and modify the worldview accordingly. The policy-
based worldview refinement algorithm described in Section 5 below ensures convergence in
practice.

4. Initial Abstraction

At the beginning of planning, the planner must select an initial abstraction. Since the
worldview is never completely discarded by the planner, an infelicity at this stage may
impair the entire planning process, as the worldview-improvement algorithms can only
make up for some amount the weakness here.

There are different ways to select the initial abstraction. We propose one heuristic
method for selecting the initial worldview based on the problem description, with some
variants. Consider for example that each door in the 3Doors problem is associated with
two locations, that is, those immediately on either side. It makes sense, then, to consider
the status of the door in those two locations. This association can be read off the problem
specification. Intuitively, the structure of the solution is likely to resemble the structure
of the problem. This incorporates the structure of the transition function into the initial
worldview. The reward function is also incorporated, reflecting the assumption that the
dimensions on which the reward is based will be important.

We use a two-step method to derive the initial worldview, as shown in Algorithm 3.
Firstly, the reward function is specified based on particular dimensions. We make those
dimensions concrete throughout the worldview, and leave all other dimensions abstract. In
the 3Doors problem, these are the x and y and dmg dimensions, so after this step there are
10× 10× 2 = 200 states in the worldview.

Secondly, the transition function is specified by decision trees, one per action. We use
these to find the nexuses between the dimensions, that is, linking points, those points at
which the dimensions interact. Each nexus corresponds to one path from the root of the
tree to a leaf. For example, in the 3Doors problem, the decision tree for the “open” action
contains a leaf whose ancestors are x, y, d1 and a stochastic node, with the choices leading
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Algorithm 3 select initial abstraction

/* set the worldview completely abstract */
W ← {S}
/* reward step */
if reward step enabled then

for all dimensions d mentioned in the reward tree do

refine the whole worldview in dimension d
/* nexus step */
if nexus step enabled then

for all leaf nodes in all action trees do
for all worldview states w matching the pre-state do

refine w in the dimensions mentioned in the pre-state

to that leaf being labelled respectively 4, 2, closed and 10%. This corresponds to a nexus at
sx = 4, sy = 2 and sd1 = closed (the stochastic node is ignored in determining the nexus).
In total, there are four nexuses on each side of each door, in the two locations immediately
adjacent, as shown in Figure 2(a), connecting the relevant door dimension to the x and
y coordinates. The initial worldview is shown in Figure 2(b), with x, y and dmg concrete
everywhere and the doors abstract except that each is concrete in the one location directly
on each side of the door, corresponding to the location of the nexuses on Figure 2(a). After
both steps, |W| = 212, compared to |S| = 1600 specific states.
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Figure 2: Nexus step of the initial abstraction, showing (a) the location of the nexuses in
the 3Doors problem (there are four nexuses at each ×) and (b) the locations in
which the door dimensions will be concrete in the initial worldview.
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For the 3Keys problem, the location of the nexuses is the same as in Figure 2(a), except
there are more nexuses in each location and some of them also involve the corresponding
key dimensions. Thus, in the initial worldview, the locations shown in Figure 2(b) will be
concrete not only in corresponding door dimension, but also, when they are closed, in the
corresponding key dimension. In the states in which the doors are open, the key dimension
remains abstract. The initial worldview size for 3Keys is |W| = 224.

Due to the locally-uniform abstraction, these concrete door dimensions will be taken
into account only to a very minimal degree. If the worldview were to be used without
further refinement, it is to be expected that the resulting policies would be very poor. The
results6 bear out this expectation. The worldview initialization methods therefore are not
intended to be used on their own, but rather as the basis for further refinement. Thus,
the real test of the methods is how well they will work when coupled with the worldview
modification methods, described below.

5. Policy-Based Refinement

This section presents the first of the worldview modification methods, policy-based refine-
ment. This method modifies the worldview based directly on the current approximate
policy π̂. In particular, it refines states based on differences between the actions planned at
adjacent, differently-abstract states. Where such differences indicate that a dimension may
be important, any adjacent states that are abstract in that dimension are refined (i.e. that
dimension is made concrete at those states).

The method was previously introduced by Baum and Nicholson (1998), who showed,
using a small navigation domain example (the 3Doors problem of this paper), that this
refinement method resulted in a good policy, though not optimal. Here we present quanti-
tative results and consider more complex domains.

5.1 Motivation

The motivation for this method is twofold. Firstly, as already indicated, the method detects
areas in which a particular dimension is important, because it affects the action planned,
and ensures that it is concrete at adjacent states. Thus regions where a dimension is taken
into account will expand for as long as the dimension matters, and then stop. Secondly, the
method fulfils the requirements for choosing a worldview so as to avoid non-convergence in
the policy calculation, as mentioned in Section 3.1 above.

Dimensions are important where they affect the policy, since the policy is the planner’s
output. They are less important in parts of the state space where they do not affect
the policy. Thus, which dimensions need to be concrete and which can remain abstract
can be gleaned for each part of the state space by comparing the optimal actions for the
various states. Where the optimal actions are equal, states can be abstract, and where they
differ, states should be concrete. However, we do not have the optimal policy π∗. With an
approximate policy π̂ on a worldview, it is more difficult. However, the planner can compare
policies in areas where a dimension is concrete, and if it is found to be important there,
expand the area in which it is concrete. As policy-based refinement and policy calculation

6. Omitted here as they uninteresting, but presented by Baum (2006).
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alternate, refinement will continue until the area where the dimension is concrete covers the
whole region in which it is important.

Section 3.1 above noted that the planning algorithm requires a worldview chosen with
care. The algorithm described in this section detects situations that are potentially prob-
lematic under locally-uniform abstraction and modifies the worldview to preclude them.
Intuitively, the incorrect behaviour occurs where an ‘edge’ of a concrete region intersects
with a place where there are two fairly-similarly valued courses of action, corresponding to
two different paths to the goal.

5.2 Method

The method uses the transition function as the definition of adjacent states, so that world-
view states w and w′ are considered adjacent if ∃a .PrT (w, a,w

′) > 0. This definition is not
symmetrical in general, since the transition function is not, but that is not a problem for
this method, as can be seen below. The algorithm is shown as Algorithm 4.

Algorithm 4 policy-based refinement

candidates← ∅
for all worldview states w do

for all actions a do

for all w′ : Pr(w, a,w′) > 0 do

for all dimensions d : w is abstract in d and w′ is concrete in d do

construct w̄′ :

{
w̄′ is abstract in d
dimension d′ of w̄′ = dimension d′ of w′ ∀d′ 6= d

if ∃wa, wb . π̂(wa) 6= π̂(wb) and wa ∩ w̄′ 6= ∅ and wb ∩ w̄′ 6= ∅ then

/* policy is not the same throughout w̄′ */
candidates← candidates ∪ {(w, d)}

for all (w, d) ∈ candidates do

if w ∈ W then

/* replace w with a group of states concrete in d */

for all wnew :

{
wnew is concrete in d
dimension d′ of wnew = dimension d′ of w ∀d′ 6= d

do

W ←W ∪ {wnew}

π̂(wnew )← π̂(w); V̂ (wnew )← V̂ (w); ℓ
τP(wnew )← |wnew |

|w|
ℓ
τP(w)

W ←W \ {w} /* discarding also the stored π̂(w), V̂ (w) and ℓ
τP(w) */

Example In the 3Doors problem, for instance, applying this method during planning
increases the number of worldview states from the initial 212 to 220–231, depending on
the stochastic choices (recall that |S| = 1600 for comparison). It produces concrete regions
which are nice and tight around the doors, as shown in Figure 3, while allowing the algorithm
to converge to a reasonable solution. The solution is in fact optimal for the given initial
state s0, though that is simply a coincidence, since the s0 is not taken into account by the
algorithm and some other states have somewhat suboptimal actions (the agent would reach
the goal from these states, but not by the shortest route).
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Figure 3: Example of non-uniform abstraction for the (a) 3Doors and (b) 3Keys problems
with policy-based refinement. The x, y and dmg dimensions are concrete every-
where; d1, d2 and d3 indicate where the corresponding door is concrete; while k

d

1,
k
d

2 and k
d

3 indicate that the corresponding door is concrete and the corresponding
key is also concrete if the door is closed.

The worldview obtained by this method is often quite compact. For instance, rather
than refining a simple 2×3 rectangular region on each side of a door in 3Doors, as a human
might, this algorithm makes only 4 locations concrete on the approach side of each door,
which is enough to obtain a good solution. This can be seen on the north sides of doors
d1 and d2, as well as the west side of door d3 (3 concrete locations, due to the edge). On
the departure side of doors d2 and d3, it is even better — it makes no refinement at all:
south of door d2 and east of door d3, the action is to move toward the goal, regardless of
the status of the door — the actions are equal, so no refinement takes place.

The south side of door d1 seems rather less compact. The concrete area is in fact not
very big — 6 locations for 3Doors — but it seems excessive compared with the compact
concrete areas elsewhere. This can occur when there is a nexus close to a region where
the best action to take genuinely depends on the status of the dimension in the nexus,
but the difference is small. If somehow the agent found itself at 〈4, 3〉 — and policy-based
refinement is independent of scur — the optimal path genuinely would depend on whether
door d1 is open, the other path being slightly suboptimal in each case. While in theory
such a region could have arbitrarily large extent, it seems to be a relatively minor effect in
practice. Here, for instance, it adds a couple of states, which is about 1% of |W|, and it
was not found to be a real problem in any of the domains (or in the domains used in Baum,
2006).
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5.3 Limitations

Policy-based refinement can only deal with cases where a single dimension makes a dif-
ference. When two dimensions are needed in combination, it will often miss them. For
instance, in the 3Keys problem each key is quite distant from the corresponding door and
policy-based refinement will therefore never find the relationship between the two. At the
key, there appears to be no reason to pick it up, while at the door there appears to be no
means of unlocking it.

Obviously, this can be fixed ad hoc by rewarding picking up keys for its own sake.
Indeed, some domain formulations in the literature do exactly that, rewarding the agent
for partial achievement of the goal. However, that is not a clean solution. In effect, such
domain specifications ‘cheat’ by providing such hints.

Another problem is that policy-based refinement does not provide for coarsening the
worldview, or for modifying it in other ways, for instance as execution progresses and the
planner needs to update the plan. Indeed, policy-based refinement ignores the initial state
s0 altogether, or the current state scur in recurrent planning. Thus it produces the same
solution regardless of which part of the problem the agent has actually been asked to solve.
This is a waste of computation in solving those parts which the agent is unlikely to actually
visit, and — perhaps more importantly — carries the penalty of the corresponding loss of
quality in the relevant parts.

The following sections describe proximity-based worldview modification, which is needed
to solve domains where combinations of dimensions are important and which also makes
use of s0 or scur, as appropriate.

6. A Proximity Measure

In general, the worldview should be mostly concrete near the agent and its planned path
to the goal, to allow detailed planning, but mostly abstract elsewhere, to conserve compu-
tational resources. In this section we describe a measure (originally in Baum & Nicholson,
1998) which realises this concept, proximity ℓ

τP , which decreases both as a state is further
in the future and as it is less probable.7 This section extends the brief description of Baum
and Nicholson (1998). In the following section we then present new worldview modification
methods based directly on the measure.

6.1 Motivation

The proximity ℓ
τP is a realisation of the intuitive concept of states being near the agent and

likely to be visited, as opposed to those distant from the agent and unlikely. It naturally
takes into account the current state scur in recurrent planning, or the initial state s0 in
pre-cursor planning, unlike policy-based refinement which ignores them altogether. Thus a
planner selecting worldviews based on this proximity measure will produce solutions tailored
to the particular scur or s0 and will ignore parts of the MDP that are irrelevant or near-
irrelevant to performance from that state. Thus it saves computation that would otherwise

7. Baum and Nicholson (1998) used the word ‘likelihood’ for this measure. We now prefer ‘proximity’ to
avoid confusion with the other meanings of the word ‘likelihood’. Munos and Moore (1999) use the word
‘influence’ for a somewhat similar measure in continuous domains.
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be wasted in solving those parts which the agent is unlikely to actually visit, and — perhaps
more importantly — carries the advantage of the corresponding gain of quality in the
relevant parts. This allows the agent to deal with problems such as 3Keys which are beyond
the reach of policy-based refinement.

Implicitly, the agent plans that when and if it reaches those mostly-abstract parts of the
state space, it will improve the approximation as appropriate. The planner thus continually
improves the policy, modifies the approximation and updates the focus of its planning based
on the current state scur. This means refining the regions in which the agent finds itself or
which it is likely to visit, and coarsening away details from regions that it is no longer likely
to visit or those which it has already traversed.

There are three aspects to proximity: temporal, spatial and probabilistic. Firstly, the
temporal aspect indicates states that may be encountered in the near future, on an expo-
nentially decaying scale. The second aspect is spatial — the nearness of states (in terms of
the state space) to the agent and its planned path. The spatial aspect is somewhat indirect,
because any spatial structure of the domain is represented only implicitly in the transition
matrix, but the proximity measure will reflect it. These two aspects are combined in the
proximity to give a single real number between 0 and 1 for each state, denoted ℓ

τP — P
for proximity, ℓ for the spatial aspect and τ for the temporal aspect. This number can be
interpreted as a probability — namely the probability of encountering a state — and ℓ

τP
can be interpreted as the probability distribution over states, giving the final, probabilistic
aspect of proximity.

6.2 Calculation

The formula for the proximity ℓ
τP is similar to the formula for the value function. There

are three differences. Firstly, instead of beginning from the reward function it is based on
an ‘is current state’ function, cur. Secondly, the transition probabilities are time-reversed
(that is, the matrix is transposed). This is because the value calculation is based on the
reward function, which occurs in the future (after taking actions), while the ‘is current state’
function is based on the present, before taking actions. Since the order of taking actions and
the function upon which the formula is based is reversed in time, a similar reversal must
be applied to the transition probabilities. Thirdly, an estimated future policy ̂̂π is used
instead of π̂. In this estimate, ̂̂π is a stochastic policy defined by making ̂̂π(s) a distribution
over actions which assigns some constant probability to the current π̂(s) and distributes the
remaining probability mass among the other actions equally. This distributed probability
mass corresponds to the probability that the policy will change sometime in the future,
or, alternately, the probability that the currently-selected action is not yet correct. The
formula is therefore:

ℓ
τP(s)← cur(s) + γ

P

∑

s′

Pr
T

(s′, ̂̂π(s′), s)ℓτP(s′) (1)

where
γ
P
is the proximity discounting factor (0 ≤ γ

P
< 1)

and

cur(s) =

{
1− γ

P
if scur = s

0 otherwise
(2)
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The constant 1−γP was chosen for the current-state function so that
∑

s
ℓ
τP(s) converges

to 1, in other words so that ℓ
τP is a probability distribution. If checked in the near future,

the agent has a probability of ℓ
τP(s) of being in state s, assuming it will follow the policy π̂

and ‘near future’ is defined so that the probability of checking at time t is proportional to
γt
P
(that is, with γ

P
interpreted as a stopping probability). As with the value calculation,

one can instead solve the set of linear equations

ℓ
τP(s) = cur(s) + γ

P

∑

s′

Pr
T

(s′, ̂̂π(s′), s)ℓτP(s′) (3)

or, in matrix notation,

(I − γ
P
T T
̂̂π
)ℓτP = cur (4)

where T̂̂π
is the transition matrix induced by the stochastic policy ̂̂π and I is the identity

matrix. The implementation uses this matrix form, as shown in Algorithm 5. The proximity
measure needs little adjustment to work with the non-uniformly abstract worldview: s is
simply replaced by w in (1) and (2), with scur = s becoming scur ∈ w.

Algorithm 5 proximity calculation

solve this matrix equation for ℓ
τP as a linear system:

(I − γ
P
T T
̂̂π
)ℓτP = cur

The measure has two tuning parameters, the replanning probability and the discounting
factor γ

P
. The replanning probability controls the spatial aspect: it trades off focus on the

most likely path and planning for less likely eventualities nearby. Similarly, γ
P
controls the

temporal aspect: the smaller γ
P

is, the more ‘short sighted’ and greedy the planning will
be. Conversely, if γ

P
is close to 1, the planner will spend time planning for the future that

might have been better spent planning for the here-and-now. This should be set depending
on the reward discounting factor γ, and on the mode of the planner. Here we use γP = 0.95,
replanning probability 10%.

Example Proximities for the 3Doors problem are shown in Figure 4 for the initial sit-
uation (agent at 〈0, 0〉, all doors closed) and a possible situation later in the execution
(agent at 〈4, 2〉, all doors closed). Larger symbols correspond to higher proximity. One can
immediately see the agent’s planned path to the goal, as the large symbols correspond to
states the agent expects to visit. Conversely small proximities show locations that are not
on the agent’s planned path to the goal. For example, the agent does not expect to visit
any of the states in the south-western ‘room’, especially once it has already passed by door
1. Similarly, the proximities around the initial state are much lower when the agent is at
〈4, 2〉, as it does not expect to need to return.

6.3 Discussion

One interesting feature of the resulting numbers is that they emphasise absorbing and near-
absorbing states somewhat more than might be intuitively expected. However, considering
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Figure 4: Proximities in the 3Doors problem for s0 and a possible later scur; symbol size
logarithmic, proximities range from 2−37 to 2−1.4; γP = 0.95, replanning proba-
bility 10%.

that absorbing states are in general important, this is a good feature, especially since
normally the planner will try to minimise the probability of entering an absorbing state
(unless it is the goal). This feature should help ensure that absorbing states are kept in
mind as long as there is any chance of falling into them. Dean et al. (1995), for instance,
note that in their algorithm such undesirable absorbing states along the path to the goal
tend to come up as candidates for removal from consideration (due to the low probability of
reaching them with the current policy), and have to make special accommodation for them
so they are not removed from consideration. With the proximity measure emphasising these
states, such special handling is not necessary.

In contrast with this approach, Kirman (1994) uses the probabilities after Es steps,
where Es is (an estimate of) the number of steps the agent will take before switching from
the previous policy to the policy currently being calculated. This assumes that Es can be
estimated well, that the current policy is the policy in the executive, and that the one-
planning-cycle probability is an appropriate measure. In fact one would prefer at least a
two-planning-cycle look-ahead, so that the agent not only begins within the area of focus of
the new policy, but also remains there throughout the validity of that policy, and probably
longer, since the planner’s foresight should extend beyond its next thinking cycle. More
philosophically, this reliance on the planning cycle length is not very desirable, as it is an
artefact of the planner rather than intrinsic in the domain.

A somewhat related approach is prioritised sweeping (see for instance Barto, Bradtke,
& Singh, 1995). Like the present approach, it defines a measure of states which are in
some way ‘interesting’. Unlike this approach, it then applies that measure to determine
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the order in which the formulae of the π̂ and V̂ calculation are applied, so that they are
applied preferentially to the interesting states and less frequently to the uninteresting or
unimportant states. It is well-known that the order of calculation in the MDP planning
algorithms can be varied greatly without forfeiting convergence to the optimal policy, and
prioritised sweeping takes advantage of this. Often it is done on a measure such as change
in V̂ in previous calculations, but some approaches use look-ahead from the current state,
which is in some ways a very simple version of proximity (in fact, it corresponds to a
threshold on ℓ

τP with replanning probability set to 1). The proximity measure ℓ
τP might well

be a good candidate for this approach: apply π̂ and V̂ calculation to states chosen directly
according to ℓ

τP as a distribution.8

Munos and Moore (1999) use an ‘influence’ measure on their deterministic continuous
domains, which is very similar to ℓ

τP . In fact, the main difference is that their measure does
not have the two parameters — it re-uses the same γ and has no replanning probability
(effectively it is zero). This means that it cannot take into account replanning, neither in
the difference in the horizon that it entails, nor in the possibility that the policy may change
before it is acted upon. Absorbing states, for instance, would not be emphasised as they
are with proximities.

7. Proximity-Based Dynamic Abstraction

The proximity measure described in the previous section is used to focus the planner’s at-
tention to areas likely to be useful in the near future. Firstly, that means that the worldview
should be made to match the proximities, by refining and coarsening as appropriate. Sec-
ondly, since the proximity measure takes into account the current state, this method will
automatically update the worldview as the agent’s circumstances change in the recurrent
mode, that is, when planning and execution are concurrent.

7.1 Refinement

High proximity indicates states which the agent is likely to visit in the near future. The
planner should therefore plan for such states carefully. If they are abstract, this is reason
to refine them so as to allow more detailed planning. Such states with high proximity are
therefore considered candidates for refinement.

High proximity is defined by a simple threshold, as shown in Algorithm 6.
When refinement occurs, an anomaly sometimes appears. Like the anomaly which led to

the policy-based refinement method, it arises from different levels of abstraction, but here,
it is not an adjacent more abstract state that causes the problem, but rather a recently-
refined one. When a state is refined, the values V̂ of the new states are initially estimated
from the state’s previous value V̂ . However, typically, this means that some of them will
be overestimated and others underestimated. When the policy is being re-calculated, the
state with the overestimated value will be attractive.

Since the problem directly follows from the moment of refinement, it is self-correcting.
After a few iterations, the planner converges to the correct policy and values. However,

8. If retaining the theoretical guarantee of convergence to π
∗ is desired, care would have to be taken since

ℓ
τP is zero for states which are not reachable from the current state. In practice, of course, optimality or
otherwise as to unreachable states is immaterial.
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Algorithm 6 proximity-based refinement

stochastically choose a dimension d
for all worldview states w do

if ℓ
τP(w) > threshold and w is abstract in d then

/* replace w with a group of states concrete in d */

for all wnew :

{
wnew is concrete in d
dimension d′ of wnew = dimension d′ of w ∀d′ 6= d

do

W ←W ∪ {wnew}

π̂(wnew )← π̂(w); V̂ (wnew )← V̂ (w); ℓ
τP(wnew )← |wnew |

|w|
ℓ
τP(w)

W ←W \ {w} /* discarding also the stored π̂(w), V̂ (w) and ℓ
τP(w) */

while it is doing so, transient anomalies appear in the policy, and in the worst case, the
planner may replan for some other path, then refine more states and re-trigger the same
anomaly. Rather large parts of the state space can be spuriously refined in this way.

This occurs because of the combined π̂ and V̂ calculation phase, which may update
π̂ before V̂ has had a chance to converge. The solution is to create a variant phase, V̂
calculation only, which replaces the π̂ and V̂ calculation phase until the values stabilise.
We do this for two iterations, which appears to be sufficient. An alternative solution would
have been to copy the difference between values at adjacent, more concrete states where
possible, thus obtaining better estimated values at the newly-refined states. However, since
the simpler solution of V̂ -only calculation works satisfactorily, this more complex possibility
has not been further explored.

7.2 Coarsening

Low proximity indicates states which the agent is unlikely to visit in the near future. The
planner therefore need not plan for such states carefully. Usually, they will already be
abstract, never having been refined in the first place. However, if they are concrete — if
they have been previously refined — this is reason to coarsen them so as to free up memory
and CPU time for more detailed planning elsewhere. Such states with low proximity are
therefore considered candidates for coarsening.

Proximity-based coarsening is useful primarily in an on-line planning scenario with re-
current planning. As the agent itself moves through the state space and the current state
scur changes, so do the states that are likely to be visited in the near future. This is espe-
cially useful if the agent finds itself in some unexpected part of the state space, for instance
due to low-probability outcomes, or if the agent has planned a path leading only part way
to the goal (perhaps up to a partial reward). In any case, however, the parts of the state
space already traversed can be coarsened in favour of refinement in front of the agent.9

One might also imagine that as planning progresses, the planner may wish to concentrate
on different parts of the state space and that coarsening might be useful to cull abandoned
explorations and switch focus. However, we have not observed this with any of our domains

9. States already traversed cannot be discarded, even if the agent will never visit them again, since the
worldview is a partition and since the agent does not necessarily know whether it will need to revisit (or
end up revisiting) those states.
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and found that in pre-cursor mode, coarsening generally worsens the quality of the policies
with no positive contribution.

Coarsening proceeds in three steps, as shown in Algorithm 7. The first step is very
similar to proximity-based refinement: each time the ‘proximity-based coarsening’ phase is
invoked, the worldview is scanned for states with low proximity (below a threshold), which
are put in a list of candidates. The second step is more tricky. Coarsening needs to join
several states into one. However, the representation does not allow arbitrary partitions
as worldviews and therefore does not allow the coarsening-together of an arbitrary set of
worldview states. The planner must therefore find a group of states among these low-
proximity candidates which can be coarsened into a valid worldview state. Such groups can
be detected by the fact that they differ in one dimension only and have the same size as
the dimension, therefore covering it completely. Finally, the groups that have been found
are each replaced with a single more abstract state.

Algorithm 7 proximity-based coarsening

/* collect candidates for coarsening */
candidates← {w : ℓ

τP < threshold}

/* find groups of candidates that can be coarsened together */
/* partition candidates according to the pattern of abstract and concrete dimensions */
patterns← candidates / {(wa, wb) : ∀d .wa is concrete in d↔ wb is concrete in d}
groups← ∅
for all p ∈ patterns do

for all dimensions d do

if states in p are concrete in d then

/* partition p by all dimensions except d, giving potential groups */
potgroups← p / {(wa, wb) : ∀d′ 6= d .dimension d′ of wa = dimension d′ of wb}
/* add all potential groups that are the same size as dimension d to groups */
groups← groups ∪ {g ∈ potgroups : |g| = |Sd|}

/* replace each group of states with a single, more abstract state */
for all g ∈ groups do

if g ⊆ W then

stochastically choose wa from g

construct wnew :

{
wnew is abstract in d
dimension d′ of wnew = dimension d′ of wa ∀d′ 6= d

W ←W ∪ {wnew}
π̂(wnew )← π̂(wa); V̂ (wnew )← 1

|g|

∑
w∈g V (w); ℓ

τP(wnew )←
∑

w∈g
ℓ
τP(w)

W ←W \ g /* discarding also the stored π̂(w), V̂ (w) and ℓ
τP(w) for all w ∈ g */

In some cases, it may be impossible to coarsen a section of the worldview despite low
proximity, due to a situation somewhat akin to grid-lock. Probably the simplest example
is the one in Figure 5, which shows a worldview of five states in a three-dimensional binary
specific state space, with three of the states ignoring a different dimension each, while the
remaining two take into account all three. In this situation, no group of states can be
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S1 0 0 0 0 1 1 1 1

S2 0 0 1 1 1 1 0 0

S3 0 1 1 0 0 1 1 0

w1 w2 w3 w4 w5

Figure 5: A non-uniform worldview that cannot be immediately coarsened. The state space
has three binary dimensions (eight states). The worldview has two concrete states,
w1 and w4, and three abstract states, w2, w3 and w5, each abstract in a different
dimension.

coarsened in any single dimension. Before any coarsening is possible, one of the states must
first be refined, but if they all have low ℓ

τP they are not candidates for proximity-based
refinement. Because of this, integration of a uniform abstraction method into coarsening
would also not be as straightforward as for selecting the initial worldview or for refinement,
unless the worldview is kept uniform. However, even with a non-uniform worldview it would
not be difficult. For instance, the dimension could simply be removed only where possible
rather than everywhere.

8. Results

We run the algorithm over a range of different domains to demonstrate our approach. The
domains divide into two broad groups. The first group consists of the grid navigation
domain only. This was the domain on which intuition was gathered and preliminary runs
were done, however, so while problems in this domain show how well the approach performs,
they cannot show its generality. The second group consists of domains from the literature,
demonstrating how well our approach generalises.

8.1 Experimental Domains

We introduce our domains in this section. The first five problems are in the grid navigation
domain, two already described in Section 2.1, shown in Figure 1, with three additional
problems. The remaining domains are based on domains from the literature, in particular
as used by Kim (2001) and Barry (2009).

As described in Section 2.1, problems in the grid navigation domain shown in Figure 1
all have x and y dimensions of size 10, three door dimensions (binary: open/closed) and
a damage dimension (also binary). So far this is the 3Doors problem, while in the 3Keys

problem, there are keys which the agent must pick up keys to open the corresponding doors.
The three remaining problems are 1Key, shuttlebot and 10×10. The 1Key problem is
similar to 3Keys, except that the agent is only capable of holding one key at a time, so
that instead of three binary dimensions for the keys, there is one four-valued dimension
indicating which key the agent holds (or none). The shuttlebot problem introduces a
cyclic goal (with an extra ‘loaded’ dimension and with the damage dimension tri-valued)
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(a) grid navigation domain

Problem keys in world keys held at same time note dimensions |S|
3Doors 0 — 6 1 600
1Key 3 1 7 6 400
3Keys 3 1, 2 or 3 9 12 800
shuttlebot 0 — cyclic 7 4 800
10×10 0 — tiled 8 160 000

(b) robot4-k domain

Problem dimensions |S|
robot4-10 11 10 240
robot4-15 16 491 520
robot4-20 21 20 971 520
robot4-25 26 838 860 800

(c) factory domain

Problem dimensions |S|

s-factory 17 131 072
s-factory1 21 2 097 152
s-factory3 25 33 554 432

(d) tireworld domain

Problem locations initial goal route length dimensions |S|
tire-small 5 n1 n4 3 12 4 096
tire-medium 8 n0 n3 4 18 262 144
tire-large 19 n12 n3 1 40 1 099 511 627 776
tire-large-n0 19 n0 n3 3 40 1 099 511 627 776

Table 3: Experimental domains and problems, each with the dimensionality of the state
space and its size.

while the 10×10 variant increases the size of the problem by tiling the grid 10× in each
direction (by having two extra dimensions, xx and yy, of size 10). Table 3(a) summarises
the problems in this domain.

The next two domains are based on those of Kim (2001). Firstly, the robot4-k domain,
which are based on Kim’s (2001) ROBOT-k domain but reducing the number of actions to
four. The robot4-k domain problems consist of a cycle of k rooms as shown in Figure 6,
where each room has a light, analogous to the doors of the 3Doors problem in that they
enable the agent to move. The four actions in our variant are to go forward, turn the light
in the current room on or off, or do nothing. The original formulation allowed the agent
any combination of toggling lights and going forward, for a total of 2k+1 actions, but we
have reduced this as our approach is not intended to approximate in the action space. The
goal is to move from the first room to the last. There are k+1 dimensions for a state space
of k2k states, as listed in Table 3(b).
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Figure 6: The robot4-k domain.
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Figure 7: The factory domain.

Kim’s (2001) factory domain10 is a series of variants on a simple manufacturing prob-
lem, represented purely in predicates (that is, dimensions of size 2). The agent is to make a
product from two parts which must be drilled, painted and so on and finally joined together.
Figure 7 shows a very simplified diagram, omitting most of the interactions and options —
for instance, to achieve the painted predicate, the agent may spray, dip or handpaint the
object; to connect the two objects, it may use glue or a bolt (and only the latter requires
that they be drilled); and so on. Unlike the other domains, partial rewards are available to
the agent for achieving certain subgoals. The problems used here are listed in Table 3(c).

The final domain is the tireworld domain from the 2006 ICAPS IPC competition
(Littman, Weissman, & Bonet, 2006) as used by Barry (2009). In this domain, a robotic
car is trying to drive from point A to point B. The car has room to carry one spare tire
and some locations have additional spare tires at them. At these locations, if the car is
not carrying a spare, it can pick one up. If there are n locations for the car, there will be
2n + 2 binary dimensions in the problem, as follows: n dimensions are used to represent
the location of the car. The only valid states are states where only one location dimension
is true, but this is not explicitly stated anywhere in the domain.11 Another n dimensions
are used to represent which locations have a spare tire and which do not. The final two
dimensions represent whether the car is carrying a spare and whether it has a flat tire.

10. This domain was previously used by Hoey, St.-Aubin, Hu, and Boutilier (1999) and is based on the
builder domain of Dearden and Boutilier (1997) which was “adapted from standard job-shop scheduling
problems used to test partial-order planners”.

11. We touch on this aspect in our discussion in Section 9, but in any case include the domain without
change in order to facilitate comparison with the literature.
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Figure 8: The tireworld domain problems, indicating the initial ( ·©) and goal (⊙©) locations.

Barry (2009) uses two of the tireworld problems, labelled ‘small’ and ‘large’. The
small tireworld problem has 5 locations for 12 variables and 14 actions, while the large
one has 19 locations for 40 variables and 100 actions. Curiously, in the large problem, there
is a direct road between the initial and goal locations, so that it only takes a single action
to solve the problem. This makes it difficult to assess whether Barry’s method has, in fact,
scaled up. In addition to these two, we created a medium-sized tireworld, with 8 locations
and 18 variables, by removing locations from the large tireworld and moving the initial
location to n0, further from the goal. These variants are listed in Table 3(d) and shown in
Figure 8. The final variant, tire-large-n0, not shown, is identical to the large tireworld
except the initial location is again moved to n0.

8.2 Direct Evaluation of Policies with Pre-cursor Deliberation

With the smaller problems such as 3Doors, 1Key, and 3Keys, we can directly evaluate the
approximate policies produced by the planner running with pre-cursor deliberation. These
problems are small enough that we can use an exact algorithm to calculate the actual value
function corresponding to these approximate policies. As noted in Section 2.6, this can be
useful as it involves fewer potentially confounding variables, but it does not exploit the full
potential of our approach.12

Table 4(a) shows such results for policy-based refinement only — that is, with the
proximity-based methods (Algorithms 5, 6 and 7) disabled. For each problem, the table
lists the size of the problem |S| and the value of the optimal solution at the initial state

12. Proximity-based coarsening (Algorithm 7) is primarily aimed at regions of state space that the agent
has already traversed, but with pre-cursor deliberation there is no traversal. Coarsening would therefore
be expected to bring limited benefit with pre-cursor deliberation and direct evaluation would not be
meaningful to evaluate its performance. It is therefore only evaluated with recurrent deliberation.
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V ∗(s0), representing the costs and results for exact planning. These are followed by the
size of the worldview |W| as an absolute number and as a percentage of |S|, the planner’s
estimate of the value of its solution at the initial state V̂π̂(s

0), and the actual value of its
solution at the initial state V ∗

π̂ (s
0). In the first half of each part of the table the discounting

factor is γ = 0.999 99, while in each second half it is γ = 0.95. Averages over 10 runs
are shown and the planner is run to π̂1000. π̂1000 was chosen as an approximation to π̂∞
— it is assumed that 1 000 phases is sufficient for the planner to converge. In practice,
convergence generally took place much earlier. It is not detected, however, because of the
overall assumption that the planner continues to plan forever, responding to any changing
inputs, which makes convergence somewhat irrelevant.
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γ problem |S| V ∗(s0) |W| |W|
|S| V̂π̂(s

0) V ∗
π̂ (s

0)

(a) policy-based refinement only
0.999 99 3Doors 1 600 −27.50 226.4 14% −22.50 −27.50

1Key 6 400 −79.47 326.8 5.1% −37 512.20 −100 000.00
3Keys 12 800 −61.98 262.0 2.0% −25 015.60 −100 000.00

0.95 3Doors 1 600 −14.63 222.6 14% −13.22 −14.63
1Key 6 400 −19.59 296.8 5.6% −15.23 −20.00
3Keys 12 800 −18.99 245.7 1.9% −14.56 −20.00

(b) proximity-based refinement only
0.999 99 3Doors 1 600 −27.50 1 381.7 86% −27.50 −27.50

1Key 6 400 −79.47 4 166.7 65% −60 031.79 −60 031.79
3Keys 12 800 −61.98 4 262.8 33% −70 018.59 −70 018.59

0.95 3Doors 1 600 −14.63 1 363.2 85% −14.63 −14.63
1Key 6 400 −19.59 2 828.2 44% −19.92 −19.92
3Keys 12 800 −18.99 4 230.6 33% −19.70 −19.70

(c) both policy- and proximity-based refinement
0.999 99 3Doors 1 600 −27.50 1 361.7 85% −27.50 −27.50

1Key 6 400 −79.47 4 635.5 72% −20 063.57 −20 063.57
3Keys 12 800 −61.98 5 948.2 46% −30 043.39 −30 043.39

0.95 3Doors 1 600 −14.63 1 359.5 85% −14.63 −14.63
1Key 6 400 −19.59 4 036.1 63% −19.67 −19.67
3Keys 12 800 −18.99 3 748.8 29% −20.00 −20.00

Table 4: Results for direct evaluation of policies with pre-cursor deliberation with three
different refinement methods, evaluated after 1 000 phases.
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The results in part (a) of the table divide neatly into two types: without keys (3Doors
problem), the planner succeeds in all ten runs, getting perfect policies for the given starting
state. In the other two problems, 1Key and 3Keys, planning invariably fails. In these two
problems, the agent must pick up a key while far from the door it opens, and this version
of the planner simply cannot think ahead to that extent. For all three of these, the planner
is somewhat optimistic, estimating a better value than it obtains and in some cases even
better than optimum. For instance, in the 3Doors problem with γ = 0.999 99, the planner’s
estimate of the value V̂π̂(s

0) is −22.50, which is better than both the true value and the
optimum, V ∗

π̂ (s
0) = V̂ ∗(s0) = −27.50. The fractional |W| in the table are due to its being

averaged over ten runs. The final size of the worldview sometimes depends to some extent
on the order in which the dimensions or the states are refined, and this order is randomised
between the runs. For instance, in the 3Doors problem with γ = 0.999 99, W has various
sizes ranging from 220 to 231 states at the end of each of the ten runs, with an average of
226.4.

The results in part (a) are similar for the two values of γ. The main difference is that the
smaller γ leads to smaller numbers. For instance, the value indicating failure is −100 000
when γ = 0.999 99 but only −20 when γ = 0.95. The values tend to be in multiples of 1

1−γ
,

and with the smaller value of γ here, 1
1−γ

is 20 rather than 100 000. In some cases, this
smaller range can make differences less obvious: for instance, in the the estimated value
column (V̂π̂(s

0)), it is not very clear whether the numbers are approximations to −1× 1
1−γ

(and a failure to reach the goal) or 0 × 1
1−γ

minus a small number (representing success).

While units represent once-off rewards or costs, multiples of 1
1−γ

represent rewards or costs
to be obtained in perpetuity. However, this is the expected and desired behaviour. A smaller
γ represents a disinterest in the distant future, so that a reward or cost in perpetuity is not
much more important than a once-off reward or cost.

Table 4(b) shows the results of ten runs in pre-cursor mode to π̂1000 with proximity-
based refinement only (no policy-based refinement and no coarsening) for each problem
and γ. As can be seen, the 3Doors problem is solved optimally in all cases. This is not
surprising, as it is not a complex problem.

The 1Key and 3Keys problems are more interesting. The figures in Table 4(b) arise as the
average of about 1

3 successful runs, which have values close to or equal to the optimal values
V ∗(s0), and about 2

3 unsuccessful runs which have values of −100 000. For γ = 0.999 99,
the planner found a successful policy in 4 of the 10 runs in the 1Key problem and 3 times
out of 10 in the 3Keys problem. Similarly for the γ = 0.95 case (2 times and 3 times,
respectively), but since the optimal path is quite long compared with 1

1−γ
, so that success

means a reward of −19.59 (or −18.99) while failure is punished by −20, the effect is more
difficult to discern.

Table 4(c) shows the results for proximity-based refinement and policy-based refine-
ment combined (no coarsening). Naturally, the 3Doors problem for which either refinement
method alone already obtained the optimal policy shows no improvement. Only the world-
view size |W| differs slightly from Table 4(b), as policy-based refinement is sometimes more
directed, so the |W| tend to be slightly smaller than with the more exploratory proximity-
based refinement alone, but larger than with policy-based refinement alone.
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The other two problems, 1Key and 3Keys, show improvement compared with either of
the refinement methods alone. They are now solved in 3

4 of the runs for γ = 0.999 99 —
the values −20 063.57 and −30 043.39 represent averages between 2 and 3 unsuccessful runs
and 8 and 7 successful ones, compared with 4 and 3 successful runs for proximity-based
refinement only and no successful runs for policy-based refinement only. For γ = 0.95, the
1Key problem is again solved on 8 of the runs, but due to the discounting and the length
of the path, the goal is very near the horizon. Again, with success meaning a reward of
−19.59 while a failure receives −20, the distinction is not very great. The 3Keys problem
with γ = 0.95 did not find a solution at all with these parameters, so it receives a uniform
−20 for each of its runs, for a suboptimality of about one unit.

The behaviour during these runs is generally quite straightforward. Typically, after
initially calculating that the agent cannot reach the goal with the initial worldview, the
worldview size gradually increases, then plateaus — there is no coarsening here, nor move-
ment of the agent, so no other behaviour is really possible. In the successful runs, the
planner plans a route to the goal at some point during the increase, when the worldview be-
comes sufficient, and V̂π̂(s

0) quickly reaches its final value. Rarely, the V̂π̂(s
0) may oscillate

once or twice first. We omit the graphs here, but they are presented by Baum (2006).

8.3 Evaluation by Simulation with Recurrent Deliberation

In larger problems, performance can be evaluated by simulation, running the agent in
a simulated world and observing the reward that it collects. In such problems, direct
evaluation is not possible because calculating the actual value function using an exact
algorithm is no longer tractable. Simulation with recurrent delibertion is also the context
in which coarsening can be evaluated. For comparison, this section presents results for the
3Keys problem evaluated by simulation, both without and with coarsening.

Figure 9 shows a representative sample of the results for simulation on the 3Keys problem
with both refinement methods and no coarsening, which is the same combination of options
as shown in Table 4(c) in the previous section, evaluated by simulation rather than directly.
Each small graph shows a different individual run. As can be seen, the agent behaves
reasonably when working in the recurrent planning mode against the simulation.

The left vertical axes on the graphs represent reward R, plotted with thick red lines.
In run 1 of Figure 9, for instance, the agent starts off receiving a reward of −1 for each
step, meaning ‘not at goal, no damage’ in this domain. From about 180 onwards, it receives
a reward of 0 per step, meaning ‘at goal, no damage’. The right vertical axes are the
worldview size |W|, with thin blue lines. They are shown as details throughout this section,
that is, scaled to the actual worldview sizes rather than the full 1–|S| ranges. Taking run 1
in Figure 9 again, we see that |W| grows relatively quickly until about 80, then continues
to grow slowly and eventually levels out a little below 5 000. The full state space, for
comparison, is 12 800. In run 2, the agent received reward similarly, but the state space
grew longer, eventually levelling out somewhat above 7000. In runs 3 and 4, the agent
failed to reach the goal and continued receiving the reward of −1 throughout. In run 3, the
worldview size levelled out a little over 3000, while in run 4 it steadily grew to about 5000.

The horizontal axes are simulated world time, corresponding to the discrete time-steps
of the MDP. There are two other time-scales in the simulation: wall clock time, indicating
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Figure 9: Simulation results, 3Keys problem, policy-based and proximity-based refinement,
no coarsening (four runs). Reward (left axes, thick red lines) and worldview size
|W| (right axes, thin blue lines; detail) against world time (horizontal axes).

the passage of real time, and the number of phases the planner has performed. The simu-
lation is configured to take 1 time step per 10s of wall clock time. The number of phases
is not controlled and is simply given by the speed of the (1.5GHz IntelR©) CPU and an im-
plementation coded for flexibility rather than efficiency. Ideally, the agent should gradually
move in the general direction of the goal during planning, as this simplifies the problem,
but not so fast that the agent runs too far ahead of the abstraction in the planner.

The planner algorithm does not terminate, since the planner is assumed to keep planning
(and the agent to keep acting) indefinitely. In goal-oriented domains, such as most of the
examples in this paper, one might consider achieving the goal to be such a termination
condition, but (a) the example domains assume that the agent will continue with the same
goal as a goal of maintenance, albeit trivial, (b) it does not apply at all to non-goal-oriented
domains and (c) even in goal-oriented domains it is not clear how to apply the condition in
the case where the agent fails to reach the goal. In the simulation, therefore, runs were either
terminated manually, when they succeeded or when it appeared that no further progress
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Figure 10: Simulation results illustrating the effect of coarsening on worldview size, 3Keys
problem, policy-based refinement, proximity-based refinement and coarsening
(two runs).

was likely to be made, or run for a fixed number of world time steps, selected based on the
manually-terminated runs with some allowance for variation.

Because there is no coarsening in Figure 9, the worldview sizes are monotonic increasing.
Different runs refined differently — both the domain and the algorithm are stochastic. At
the beginning of planning, the agent is receiving a reward of −1 per step, because it is not
yet at the goal. As the worldview size increases, the planner eventually finds a policy which
leads to the goal in runs 1 and 2, as can be seen by the better reward 0 obtained in those
runs. There is a simple relationship between worldview size and performance: runs which
worked with a worldview of about 5 000 or larger generally succeeded, those with smaller
worldviews generally did not. On the vast majority of the runs (> 90%), the agent reached
the goal.

When coarsening (Algorithm 7) is activated, compared to the situation when it is turned
off, the reward gathered by the agent declines slightly, but it still reaches the goal on the
vast majority of runs (> 90%). Figure 10 shows two of the runs, one successful and one
unsuccessful, for the 3Keys problem with proximity-based coarsening as well as the two
refinement methods, in contrast with Figure 9 where only the two refinement methods are
used. Note the effect of the interleaving of the refinement and coarsening: the worldview
size |W| (thin blue line) is no longer monotonic, instead being alternately increased and
decreased, which shows up as a jagged line on the graph. Slightly fewer of the runs reach
the goal. Some decline in solution quality is expected, however, since the goal of coarsening
is to reduce the size of the worldview.

For completeness, we have also tested the agent with both proximity-based methods
(Algorithms 6 and 7) active but with the policy-based refinement (Algorithm 4) deactivated.
In this configuration, the agent collects no reward — it generally takes some steps toward
the goal, but without the more directed policy-based refinement, the largely exploratory
proximity-based methods do not discover the keys and consequently cannot reach the goal.
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8.4 The Effect of the Discounting Factor

The shuttlebot problem is similar to the 3Doors problem but requires the agent to move
back and forth between two locations repeatedly. It is interesting because in preliminary
runs in pre-cursor mode it was not solved at all for γ = 0.999 99 while being solved optimally
for γ = 0.95. It was considered whether the γ = 0.999 99 case might behave better under
simulation, if the agent took advantage of the possibility of planning only for the nearest
reward and then replanning once that reward is obtained. After all, the agent could function
well even if none of the policies were a good solution by itself. However, as illustrated in
Figure 11, the agent’s behaviour was very similar to the pre-cursor case: for γ = 0.999 99,
(a) refinement only, run 1, and (b) with coarsening, run 2, it would pick up the reward
immediately adjacent to s0, but no more than that. Again, setting the planner’s discounting
factor γ to 0.95, (c) with coarsening, runs 3 and 4, provided much better performance.13

Note again the effect of the balance of refinement and coarsening in (b) and (c): the
worldview size |W| is nice and steady throughout the runs (though admittedly at a fair
fraction of |S| = 4800).

8.5 Initial Worldview

For some of the problems, the standard initial worldviews are too large for the planner. Even
modified, smaller initial worldviews obtained by only enabling the nexus step of Algorithm 3
and disabling the reward step are too large. Disabling both the reward and the nexus steps
results in a singleton initial worldview, W = {S}, which treats the entire state space S
as a single (very) abstract worldview state. Unfortunately, this means that the planner
starts with very little in the way of hints as to the direction in which to refine and, at least
initially, no other information on which to base this crucial decision. The upshot is that it
collects no reward. In some cases it remains at the initial state s0, in others moves around
the state space — sometimes for some distance, other times in a small loop — but it does
not reach the goal or any of the subgoals.14

This is the situation with the factory domain problems of Kim (2001), and in fact the
agent collected no reward during any of the simulated runs, even though in quite a few runs
substantial actions were taken. A similar result occurs for the 10x10 problem (in our grid
navigation domain). No reward was obtained by the agent in this problem, because the
standard initial worldview is somewhat too large for the planner and, again, the singleton
initial worldview does badly. At best, on some runs, the agent took a few limited steps in
the general direction of the goal.

An interesting case is the tireworld domain. Again, tire-large is too large with the
standard initial worldview and fails to obtain a solution with the reward step of the initial
worldview only. However, with a manually-chosen initial worldview that refines the locations
along the path from the start state to the goal before planning begins, the planner solves
not only tire-large, but also tire-large-n0 in 40% of the runs (in one of them after less
than one minute, although that is atypical).

13. The rewards appear as two horizontal lines in runs 3 and 4, one solid and one broken, because the task
is cyclic, and the agent collects a reward of 1 twice in each cycle and a reward of 0 on all the other steps.

14. Further details of these unsuccessful runs, including the |W| behaviour, are given by Baum (2006).
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(a) γ = 0.999 99, no coarsening (one run)
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(c) γ = 0.95, with coarsening (two runs)
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Figure 11: Simulation results illustrating the effect of the discounting factor, shuttlebot
problem, policy-based and proximity-based refinement.

8.6 Worldview Size and Quality

Finally, we consider the effect of worldview size and quality on the robot4 domain, where
the agent moves through a series of rooms with lights. This domain is an excellent example
where the simulated agent works well. In all runs of the robot4-10 and robot4-15 problems
the agent thought for a small amount of time, then quickly moved to the goal and stayed
there, with only very small worldviews, as can be seen in Figure 12 for the robot4-15
problem. Four representative runs are shown, two with the two refinement methods only
(runs 1 and 2) and two with all three methods (runs 3 and 4). In all four runs, the worldview
sizes |W| are reasonable — consider that the full state space contains almost half a million
states, so that a 1 000-state worldview represents just a fifth of a percent. Despite this small
worldview size, however, the planner is effective. After only a few dozen phases, the agent
has reached the goal. The planner works well for robot4-10 and robot4-15.

For comparison, Kim’s (2001) largest ROBOT-k problem is ROBOT-16, though since
ROBOT-16 has 216+1 = 131 072 actions while our robot4-k domain problems have 4, a
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(b) with proximity-based coarsening (two runs)
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Figure 12: Simulation results, robot4-15 problem, γ = 0.999 99, policy-based and prox-
imity-based refinement, with and without proximity-based coarsening.

direct comparison would not be valid. On the other hand, our values of k (10, 15 and
so on) are not necessarily powers of 2, since, unlike that of Kim, our domain specification
always considers room numbers atomic rather than binary numbers, so there is no particular
advantage to powers of 2.

The results for the robot4-20 problem are beginning to be more interesting than those
for robot4-10 and robot4-15. In Figure 13(a), showing two of the runs with no coarsening
(runs 1 and 2), the agent succeeds reasonably promptly and with reasonable worldview
sizes. However, as illustrated in Figure 13(b), when coarsening is active the planner fails to
reach the goal on some of the runs (about 40%, for example, run 3) and succeeds on others
(about 60%, for example, run 4). The state space contains almost 21 million states, so the
successful worldviews in Figure 13 are of the order of 0.01% of the full state space size.

Figure 14 shows four representative runs of the robot4-25 problem, again (a) two with-
out coarsening (runs 1 and 2) and (b) two with all three methods (runs 3 and 4). This prob-
lem has a state space of 25× 225 ≈ 839 million states, and the effect noted for robot4-20 is
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(a) no coarsening (two runs)
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(b) with proximity-based coarsening (two runs)
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Figure 13: Simulation results, robot4-20 problem, γ = 0.999 99, policy-based and prox-
imity-based refinement, with and without proximity-based coarsening.

much more pronounced here: without coarsening, the planner tends to much larger world-
views15 These large worldviews then cause the planner to run slowly. As noted in Section 8.3
above, the horizontal axes are world time, not planning time. The relation between the two
varies quite significantly between the runs — from more than two policies per time step
with the smaller worldviews to less than one in ten time steps when the worldviews grew
large.

As far as reaching the goal is concerned, the two cases are similar. Again, the successful
runs are those which maintain a reasonably-sized worldview, such as runs 2 and 4. Runs
where the worldview size grows big invariably fail (runs 1 and 3). The difference is that this
time, the smallest successful worldview, run 4 in Figure 14, used around 2 000 well-chosen
worldview states, which is just 0.000 24% of the full state space. If the worldview grows
beyond a miniscule fraction of the state space — and even the 19 243-state worldview of

15. Note that run 1 is plotted with a different scale on the worldview size |W| axis compared to runs 2, 3
and 4. This makes the details of their behaviour easier to see, but makes the size of run 1 less obvious.
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(a) no coarsening (two runs)
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(b) with proximity-based coarsening (two runs)
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Figure 14: Simulation results, robot4-25 problem, γ = 0.999 99, policy-based and prox-
imity-based refinement, with and without proximity-based coarsening. Note the
different scales on the worldview size |W| axis for run (a)1.

run 1 in Figure 14 is only 0.002 3% — the planner will stall and no further progress will be
possible. Even in this challenging environment, the agent reaches the goal in almost half
the runs.

9. Discussion

Section 8 presented results across a range of experimental domains showing that our method
successfully finds solutions to the planning problem using much less than the full state space,
as well as some of its limitations. In this section we discuss these results and analyse the
features of domains which our method can exploit and those which give it difficulty.

On smaller problems, we could directly evaluate the policies produced by our method
in pre-cursor mode, allowing us to better isolate the behaviour of the planner. Without the
proximity-based methods, the worldviews were quite small and the planner could only solve
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the 3Doors problem. However, even this is better than a uniform abstraction, which could
do very little here. Even an oracle could at best remove one door and its key in 3Keys or
two doors in 3Doors, giving a 25% relative worldview size — however, if the planner then
used a uniform distribution over the removed dimension, the agent would fail anyway, since
opening the doors that were left in the worldview would be harder than hoping for the best
on the assumed-50%-open door which is actually closed. To succeed, it would also have to
deduce that the abstracted doors should be considered closed, a considerable feat. This is a
function of the sample domains. In other circumstances, uniform abstraction could be very
effective, either as a pre-processing step to our approach or integrated with ourW selection
methods.

We expected that turning on proximity-based refinement (Algorithms 5 and 6) would
lead to larger worldviews. In general, one would expect larger worldviews to yield better
solutions and smaller worldviews to yield worse solutions, but for lower computational cost.
This means that proximity-based refinement should, in general, improve the solution quality.
The results corresponded to this expectation. The worldviews were indeed larger and the
solution quality was higher.

In larger problems, performance could only be evaluated by simulation, running the
agent in a simulated world and observing the reward that it collects. In such problems,
direct evaluation was not possible because calculating the actual value function using an
exact algorithm was no longer tractable. Section 8.3 therefore presented results for the
3Keys problem for comparison with those obtained by direct evaluation of policies with
pre-cursor deliberation discussed above. As can be seen, the results correspond, cross-
confirming the evaluation methods.

In addition, simulation with recurrent delibertion is the context in which coarsening
could be evaluated. When proximity-based coarsening was activated, compared to the
situation when it is turned off, the reward gathered by the agent declines slightly. This
impression of worse performance is somewhat misleading. It is due to the fact that this first
comparison takes place on one of the small problems, which the planner was able to solve
without any coarsening, and in fact without any abstraction at all. Thus, the disadvantages
(lower reward collected) are much more apparent than the advantages (lower computational
cost).

On larger problems, where working without abstractions was not an option, the balance
was reversed. In fact, and somewhat counterintuitively, in some of the larger problems
with coarsening active, the successful runs had smaller worldviews than the unsuccessful
runs. Clearly, it is not the size of the worldview that determines success, but its quality. A
good worldview enabled efficient calculation of policies that progress toward the goal while
remaining small. A poor worldview simply grew larger. In the smaller problems, a growing
worldview may have eventually covered most of the state space in detail, thus masking the
effect. The planner would find a good policy effectively without any real approximation.
In larger problems, where finding a good policy without approximation was not feasible,
a similarly growing worldview simply slowed the planner down until no further progress
was made. In this situation, the worldview-reducing action of proximity-based coarsening
became crucial, ensuring that at the least the worldview remained tractably small and
thereby enabled the planner to deal with the problem.
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As can be seen from the results, coarsening was successful in this task some of the
time. When the agent paused to replan part-way to the goal, it reduces the size of the
worldview to keep it more relevant to the changing circumstances. In other runs, however,
the worldview size grew beyond the capabilities of the planner. In some cases, such as in
the 10x10 problem, it settled at a higher balance. In others, it appears to have simply
continued growing. In the latter case, it would not appear to be a simple question of
tuning the parameters: when it did find balance, it was at an appropriate worldview size.
There appears to be some other factor, some other quality of the worldview determining
the success or failure of those runs — whether they find balance and reach the goal or grow
too big and fail.

A number of problems were solved poorly or not at all due to our initial abstraction
selection algorithm (Algorithm 3). On these problems, the algorithm produced either a large
worldview that exceeded available memory (either immediately or very shortly afterwards),
so that planning was not possible, or a small worldview in which planning was ineffective.
It could not be set to produce a medium-sized worldview, none of the four combinations of
options produced one. In some problems, only the singleton worldview was possible — that
is, both steps of initial abstraction selection disabled, resulting in a worldview aggregating
all states into a single, maximally abstract worldview state — leading typically to no reward
being collected by the agent. At best, it would take a few actions in the general direction
of the goal(s). This is considerably worse than previous work. For instance, Kim (2001)
obtains approximate solutions for the problems and for their larger variants, as do others
who use this domain or a variant, including Hoey et al. (1999) and their originators, Dearden
and Boutilier (1997).

It was the necessity of using a singleton initial worldview which understandably greatly
hurt the performance. An infelicity at the worldview initialisation stage could impair the
entire planning process, since the worldview was never completely discarded by the planner.
The worldview-improvement algorithms could have made up for some amount of weakness
in the initial worldview, but a singleton worldview was a poor starting point indeed. This is
similar to an observation made by Dean et al. (1995) in their work using a reduced envelope
of states (that is, a subset of the state space). Their high level algorithms, like those here,
work regardless of the initial envelope (worldview). In practice, however, it is better for
the initial envelope to be chosen with some intelligence, for instance to contain at least a
possible path to the goal (for goal-oriented domains). They find this path using a simple
depth first search, and while this itself is not directly applicable to worldviews with their
gradations of abstraction, the overall concept remains: a reasonable initial worldview is
crucial.

The tireworld results confirm this. Here the initial worldview with the reward step
enabled was small, since the domain only rewards a single dimension, and planning was
ineffective. Once the planner was given a better initial worldview — one which it could
have plausibly calculated — it became quite effective, even in the modified tire-large-n0

where the initial state was deliberately moved further from the goal. It seems, then, that
while our basic approach is general, our worldview selection and modification methods are
less so. This is good — worldview selection is the less fundamental apect of our approach
and can be easily supplemented by additional methods or even just tuning. In domains like
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tireworld, it seems that a modified predicate solver that can generate plausible trajectories
from the current state to a goal would do well as part of worldview selection.

It is interesting to compare this with the results of Sanner and Boutilier (2009) for
tireworld, which they only describe in passing as “extremely poorly approximated” before
going on to manually tweak the domain for their planner, adding the information that the
locations are mutually exclusive. This makes planning much easier and largely invalidates
any comparison between approaches.16 It is a fair question, however, to what extent this is a
weakness of their planner and to what extent it is an artefact of the domain. Its combination
of representation and narrative seems rather unfortunate, as the narrative with its obvious
1-of-n intuition will tend to obscure the real features (and the real applicability) of the
propositional representation and hinder rather than help intuition. This would not occur
with a tighter fit between representation and narrative.

Others, of course, solve the tireworld domain well. Some, such as Barry, Kaelbling, and
Lozano-Prez (2010), generate the full policy, while others take advantage of the initial state,
as our planner would do. It is difficult to know to what extent their planners are adapted
to the domain and to what extent they are flexible. It seems that only in recent years has it
become common for planners to be tested on domains to which the researchers do not have
access during development, as with some of the ICAPS IPC domains, rather than being
to a greater or lesser degree hand-tuned, usually unconsciously, to the particulars of one
or another domain, as ours was undoubtedly unconsciously tuned to the grid navigation
domain.

An interesting side point is provided by the shuttlebot problem, which was not solved
at all for γ = 0.999 99 (other than collecting the trivial reward immediately adjacent to
s0) while being solved optimally for γ = 0.95. Since the simulator itself does not have any
intrinsic discounting factor — it reports each reward as it is collected — one can see that
even though the planner was working with a discounting factor γ = 0.95, it provided a
better solution to the γ = 0.999 99 case than when it worked with γ = 0.999 99 in the first
place.

In some ways this better behaviour with the smaller planner discounting factor is reason-
able, because while the agent’s horizon is represented by the world discounting factor, the
horizon of any particular policy — and therefore the planner — is effectively much shorter,
as the policy will be supplanted by a new one relatively soon. Thus, it may be useful on
occasion to set the planner’s discounting factor γ lower than the true world discounting fac-
tor in order to facilitate planning. However, this may lead to suboptimal, “short-sighted”
policies.

10. Conclusions

The theory of Markov decision processes provides algorithms for optimal planning. However,
in larger domains these algorithms are intractable and approximate solutions are necessary.
Where the state space is expressed in terms of dimensions, its size and the resulting com-
putational cost is exponential in the number of dimensions. Fortunately, this also results in
a structured state-space where effective approximations are possible.

16. Similarly, Kolobov, Mausam, and Weld (2008) report results on a variant of tireworld rather than on
tireworld itself, without providing an explanation.
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Our approach is based on selectively ignoring some of the dimensions in some parts
of the state space in order to obtain an approximate solutions at a lower computational
cost. This non-uniform abstraction is dynamically adjusted as planning and (in on-line
situations) execution progress, and different dimensions may be ignored in different parts of
the state space. This has strong implications, since the resulting approximation is no longer
Markovian. However, the approach is both intuitive and practical. It is the synthesis of
two existing approaches: the structure-based approximation of uniform abstraction and the
dynamic locality-based approximation of envelope methods. Like the envelope methods, it
can be limited by its reliance on the initial worldview (or envelope): if that is poor, it will
tend to perform poorly overall. Our approach subsumes uniform abstraction completely —
it can be treated as a special case of our more general method.

This paper extends the preliminary work of Baum and Nicholson (1998) by modifying
the worldview based on the proximity measure, both enlarging and reducing its size, and by
evaluating the behaviour against a simulation. This allows us to test the approach on larger
problems, but more importantly demonstrates both the full strength of the approach and its
limits in terms of the domain features that it can exploit and those that it can exploit only
with adjustment or not at all. The abstraction becomes truly dynamic, reacting to changes
in the agent’s current state and enabling planning to be tailored to the agent’s situation
as it changes. As shown by the qualitative and quantitative results presented both here
and by Baum (2006), the approach can be effective and efficient in calculating approximate
policies to guide the agent in the simulated worlds.

10.1 Future Work

One possible direction for future research would be to find worldview initialisation and
modification methods that result in smaller yet still useful worldviews, probably domain-
specific, to extend the method to further domains, either larger or with different features.
For example, the factory and tireworld domains are goal-oriented and based on predicates,
and a worldview selection or modification method based on a predicate-oriented solver could
find possible paths to the goal and ensure that relevant preconditions are concrete along
that path.

Interestingly, in the 10x10 problem, while the proximity-based methods did not keep
the worldview size small, they did seem to find a balance at a larger but stil moderate
size. Thus another possibility might be to tune the proximity-based methods or develop
self-tuning variants.

At a number of points, for instance phase selection, our algorithm uses stochastic choice
as a default. This could be replaced by heuristics, learning, or other more directed methods.

One could adapt our method to work with other types of MDPs, such as undiscounted
or finite-horizon ones, or combine it with other approaches that approximate different as-
pects of the domains and the planning problem, as described in Section 2.5. For example,
as mentioned in that section, Gardiol and Kaelbling (2004, 2008) combine hierarchical state
space abstraction somewhat similar to ours with the envelope work of Dean et al. (1995).
Many other combinations would likely be fruitful for planning in domains which have fea-
tures relevant to multiple methods. Similarly, additional refinement or coarsening methods
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could be added, for instance as one based on the after-the-fact refinement criterion with
roll-back of Reyes et al. (2009).

On a more theoretical side, one could look for situations in which optimality can be
guaranteed, as Hansen and Zilberstein (2001) do with their LAO* algorithm for the work of
Dean et al. (1995), observing that if an admissible heuristic is used to evaluate fringe states,
rather than a pragmatically chosen V (out), the algorithm can be related to heuristic search
and acquires a stopping criterion with guaranteed optimality (or ε-optimality). Perhaps a
similar condition could be developed for our approach, with a rather different heuristic.

There are two basic directions in which this work can be further extended in a more
fundamental way, relaxing one of the MDP assumptions, perfect observability or knowledge
of the transition probabilities. A Partially Observable Markov Decision Process (POMDP)
gives the agent an observation instead of the current state, with the observation partly
random and partly determined by the preceding action and the current state. While the
optimal solution is known in principle, it is quite computationally expensive, since it trans-
forms the POMDP into a larger, continuous, many-dimensional MDP on the agent’s beliefs.
As such, the non-uniform abstraction approach could be applied in two different ways: ei-
ther to the original POMDP, a fairly direct translation, or to the transformed MDP. The
other extension would be to apply the technique when the agent has to learn the transition
probabilities. In particular, the application of our technique to exploration17 would be very
interesting — the agent would have to somehow learn about distinctions within single ab-
stract states, so as to distinguish which of them should be refined and which should remain
abstract.
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