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Abstract

Traffic congestion in urban road networks is a costly problem that affects all major
cities in developed countries. To tackle this problem, it is possible (i) to act on the supply
side, increasing the number of roads or lanes in a network, (ii) to reduce the demand, re-
stricting the access to urban areas at specific hours or to specific vehicles, or (iii) to improve
the efficiency of the existing network, by means of a widespread use of so-called Intelligent
Transportation Systems (ITS). In line with the recent advances in smart transportation
management infrastructures, ITS has turned out to be a promising field of application for
artificial intelligence techniques. In particular, multiagent systems seem to be the ideal
candidates for the design and implementation of ITS. In fact, drivers can be naturally
modelled as autonomous agents that interact with the transportation management infras-
tructure, thereby generating a large-scale, open, agent-based system. To regulate such a
system and maintain a smooth and efficient flow of traffic, decentralised mechanisms for
the management of the transportation infrastructure are needed.

In this article we propose a distributed, market-inspired, mechanism for the manage-
ment of a future urban road network, where intelligent autonomous vehicles, operated by
software agents on behalf of their human owners, interact with the infrastructure in order
to travel safely and efficiently through the road network. Building on the reservation-
based intersection control model proposed by Dresner and Stone, we consider two different
scenarios: one with a single intersection and one with a network of intersections. In the
former, we analyse the performance of a novel policy based on combinatorial auctions for
the allocation of reservations. In the latter, we analyse the impact that a traffic assign-
ment strategy inspired by competitive markets has on the drivers’ route choices. Finally
we propose an adaptive management mechanism that integrates the auction-based traffic
control policy with the competitive traffic assignment strategy.

1. Introduction

Removing the human driver from the control loop through the use of autonomous vehi-
cles integrated with an intelligent road infrastructure can be considered as the ultimate,
long-term goal of the set of systems and technologies grouped under the name of Intelligent
Transportation Systems (ITS). Autonomous vehicles are already a reality. For instance,
three DARPA Grand Challenges1 have been held so far. The teams participating in the
latest event, the DARPA Urban Challenge, competed to build the best autonomous vehi-

1. http://archive.darpa.mil/grandchallenge/
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cles, capable of driving in traffic, performing complex manoeuvres such as merging, passing,
parking and negotiating with intersections. The results have shown for the first time that
autonomous vehicles can successfully interact with both manned and unmanned vehicular
traffic in an urban environment. Several car-makers expect the technology to be affordable
(and less obtrusive) in about a decade2. Another initiative that fosters this vision is Con-
nected Vehicle3, which promotes research and development of technologies that link road
vehicles directly to their physical surroundings, i.e., by vehicle-to-infrastructure wireless
communications. The advantages of such an integration span from improved road safety
to a more efficient operational use of the transportation network. For instance, vehicles
can exchange critical safety information with the infrastructure, so as to recognise high-risk
situations in advance and therefore to alert drivers. Furthermore, traffic signal systems can
communicate signal phase and timing information to vehicles to enhance the use of the
transportation network.

In this regard, some authors have recently paid attention to the potential of a tighter
integration of autonomous vehicles with the road infrastructure for future urban traffic man-
agement. In the reservation-based control system (Dresner & Stone, 2008), an intersection
is regulated by a software agent, called intersection manager agent, which assigns reser-
vations of space and time to each autonomous vehicle intending to cross the intersection.
Each vehicle is operated by another software agent, called driver agent. When a vehicle
is approaching an intersection, the driver requests that the intersection manager reserve
the necessary space-time slots to safely cross the intersection. The intersection manager,
provided with data such as vehicle ID, vehicle size, arrival time, arrival speed, type of turn,
etc., simulates the vehicle’s trajectory inside the intersection and informs the driver whether
its request is in conflict with the already confirmed reservations. If such a conflict does not
exist, the driver stores the reservation details and tries to meet them; otherwise it may try
again at a later time. The authors show through simulations that in situations of balanced
traffic, if all vehicles are autonomous, their delays at the intersection are drastically reduced
compared to traditional traffic lights.

In this article we explore how different lines of research in artificial intelligence and agent
technology can further improve the effectiveness and applicability of Dresner and Stone’s
approach, assuming that all vehicles are autonomous and capable of interacting with the
regulating traffic infrastructure. We extend the reservation-based model for intersection
control at two different levels.

1.1 Single Intersection

For a single intersection, our objective is to elaborate a new policy for the allocation of
reservations to vehicles that takes into account the drivers’ different attitudes regarding their
travel times. Instead of granting the disputed resources (intersection space and time) to the
first agent that requests them, we intend to allocate them to the agents that value them
the most, while maintaining an adequate level of efficiency and fairness of the system. Our
main contribution in this regard is the definition of an auction-based allocation policy for

2. See for example Alan Taub, General Motors Vice President of Global R&D, at the 18th World Congress
on Intelligent Transport Systems, October 17th, 2011.

3. http://www.its.dot.gov/connected vehicle/connected vehicle.htm
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assigning reservations. This policy models incoming requests as bids over an intersection’s
available space-time slots and tries to maximise the overall value of the accepted bids. Due
to the combinatorial nature of the auction and the restrictions of our scenario (mainly real-
time execution and safety), we define a specific auction protocol, adapt an algorithm for
winner determination for our purposes, and evaluate the behaviour of the approach.

1.2 Network of Intersections.

To extend Dresner and Stone’s approach to a network of intersections, we focus on the
problem of traffic assignment, conceived as a distributed choice problem where intersection
managers try to affect the decision making of the driver agents. In particular, we use markets
as mediators for our distributed choice and allocation problem (Gerding, McBurney, &
Yao, 2010). Our contribution to the attainment of the above objective is twofold. First,
we build a computational market where drivers must acquire the right to pass through
the intersections of the urban road network, implementing the intersection managers as
competitive suppliers of reservations which selfishly adapt the prices to match the actual
demand. Second, we combine the competitive strategy for traffic assignment with the
auction-based control policy at the intersection level into an adaptive, market-inspired,
mechanism for traffic management of reservation-based intersections.

The article is structured as follows. Section 2 provides an overview of the use of artificial
intelligence and agent technology in the field of ITS. In Section 3 we briefly review the key
elements of the reservation-based intersection control model that our work sets out from.
In Section 4 we present our policy for the allocation of reservations at a single intersection,
inspired by combinatorial auction theory. In Section 5 we extend the reservation-based
model to network of intersections. Finally, we conclude in Section 6.

2. Related Work

To achieve the goals pursued by the ITS vision there is an increasing need to understand,
model, and govern such systems at both the individual (micro) and the societal (macro)
level. Transportation systems may contain thousands of autonomous entities that need
to be governed, which raises significant technical problems concerning both efficiency and
scalability. The inherent distribution of traffic management and control problems, their
high degree of complexity, and the fact that the actors in traffic and transportation systems
(driver, pedestrians, infrastructure managers, etc.) fit the concept of autonomous agent
very well, allow for modelling ITS in terms of agents that interact so as to achieve their
goals, selfishly as well as cooperatively. Therefore, traffic and transportation scenarios are
extraordinarily appealing for multiagent technology (Bazzan & Klügl, 2008). In this section,
we outline some key dimensions of ITS and briefly review relevant literature on the use of
artificial intelligence and multiagent techniques in the field.

2.1 Traffic Control and Traffic Assignment

Traffic control refers to the regulation of the access to a disputed road transport resource.
Traffic control systems manage traffic along arterial roadways, employing traffic detectors,
traffic signals, and various means of communicating information to drivers. Freeway control
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systems manage traffic along highways, employing traffic surveillance systems, traffic control
measures on freeway entrance ramps (ramp metering), and lane management.

Traffic control at intersections, based on traffic lights, is the major control measure in
urban road networks. This type of control typically applies off-line optimisation on the basis
of historical data. TRANSYT (Robertson, 1969) is a well-known and frequently applied
signal control strategy, but it cannot adapt dynamically to changing demand patterns.
Other control techniques, such as SCOOT (Hunt, Robertson, Bretherton, & Winton, 1981),
use real-time traffic volume rather than historical data to run optimisation algorithms and
compute the optimal signal plan.

Traffic assignment refers to the problem of the distribution of traffic in a network, con-
sidering demands between several locations, and the capacity of the network. In general,
demand may change in a non-predictable way, due to changing environmental conditions,
exceptional events, or accidents. This, in turn, leads to under-utilisation of the overall net-
work capacity, whereby some links are heavily congested while capacity reserves are available
on alternative routes. To address this problem, different traffic management techniques, in-
volving information broadcast as well as control and optimisation, can be employed. For
example, route guidance and driver information systems (RGDIS) may be employed to im-
prove the network efficiency via direct or indirect recommendation of alternative routes (Pa-
pageorgiou, Diakaki, Dinopoulou, Kotsialos, & Wang, 2003). These communication devices
may be consulted by a potential road user to make a rational decision regarding whether
or not to carry out (or postpone) the intended trip, the choice of transport mode (car, bus,
underground, etc.), the departure time selection and the route choice.

Traffic control and assignment have different focuses and can therefore be combined
into a single management policy that takes explicitly into account the mutual interactions
between signal control policies and user route choices (Meneguzzer, 1997).

2.2 Isolated and Coordinated Traffic Control

Most traffic control strategies use control devices (e.g., traffic lights, variable message signs,
ramp meters) and surveillance devices (e.g., loop detectors, cameras) to manage a physical
traffic network. In isolated control, only a small portion of the network (e.g. a single
intersection) is modelled, and techniques from control theory are employed to determine
signal cycles so as to minimise the vehicles’ total delay. For instance, da Silva et al. proposed
a reinforcement learning system for traffic lights that copes with the dynamism of the
environment by incrementally building new models of the environmental state transitions
and rewards (da Silva, Basso, Bazzan, & Engel, 2006). When the traffic pattern changes,
an additional model is created and a new traffic signal plan is learned. The creation of new
models is controlled by a continuous evaluation of the prediction errors generated by each
partial model.

In coordinated control, the settings of several control devices are adapted to each other,
so as to achieve a smooth traffic flow at the network level (i.e., “green waves”) rather
than at a single intersection. By allowing the individual devices to coordinate their actions
based on the information they receive from sensors and from each other, coherent traffic
control plans are often generated faster and more accurately compared to a human traffic
operator (van Katwijk, Schutter, & Hellendoorn, 2009). For instance, distributed constraint
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optimisation (DCOP) techniques have recently been applied to the coordination of control
devices (Junges & Bazzan, 2008). Each traffic signal agent is assigned to one or several
variables of the DCOP, which have inter-dependencies and conflicts (e.g., two neighbouring
intersections giving preference to different directions of traffic.). A mediator agent is in
charge of resolving these conflicts when they occur, recommending values for the variables
associated to the agents involved in the mediation.

2.3 Time Perspective

The time perspective refers to the stage in which the decision-making process of an ITS
application takes place. Operational decision-making in ITS refers to short term issues, such
as controlling traffic at an intersection. Tactical decision-making deals with medium-term
issues, such as anticipating congestion by diverting traffic on different routes or influencing
demand patterns. Finally, strategic decision-making typically involves long-term decisions,
e.g. planning the construction of new roads, highways or parking hubs.

Many AI-based ITS partially automate the operational part of road traffic control tasks.
Tactical and strategic decision-making is still mainly a human activity (e.g., carried on by
city planners). Some more recent decision-support systems address tactical questions as
well. InTRY S (Hernández, Ossowski, & Garćıa-Serrano, 2002), for instance, is a multiagent
system aimed at assisting operators in a traffic control centre to manage an urban motorway
network. The system is capable of engaging in dialogues with the operators, e.g. to diagnose
the causes of detected traffic problems, to construct coherent sets of driver information
messages, and to simulate the expected effects of such control plans.

2.4 Information to Drivers

Cooperative systems can improve dynamic routing and traffic management (Adler, Satapa-
thy, Manikonda, Bowles, & Blue, 2005), using information services aimed at giving advice to
drivers and efficiently assigning traffic among the network. This is a difficult problem as col-
lective route choice performed by selfish agents often leads to equilibrium strategies that are
far from social welfare optima (Roughgarden, 2003). Providing information about the con-
gestion of links or sharing partial views of vehicle choices, as in context-aware routing (Zutt,
van Gemund, de Weerdt, & Witteveen, 2010), may improve the system’s efficiency.

2.5 Domain Knowledge

Domain and topological knowledge can be exploited to structure both the architecture
and the reasoning models of ITS. For instance, Choy et al. propose a cooperative, hier-
archical, multiagent system for real-time traffic signal control (Choy, Srinivasan, & Cheu,
2003). The control problem is divided into various sub-problems, each of them handled
by an intelligent agent that applies fuzzy neural decision-making. The multiagent system
is hierarchical, since decisions made by lower-level agents are mediated by their respective
higher-level agents. The InTRY S system (Hernández et al., 2002) conceives the traffic
dynamics in terms of so-called problem areas, which are defined based on the expertise of
traffic engineers. Each problem area is controlled by a separate traffic control (software)
agent. Knowledge modelling and reasoning techniques are applied to integrate local control
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strategies (proposed by the different traffic control agents) into a coherent global plan for
the whole traffic network.

2.6 Learning and Adaptation

ITS often rely on learning techniques to adapt to changing or unknown traffic conditions.
For instance, traffic light agents may use reinforcement learning to minimise the overall
waiting time of vehicles (Steingrover, Schouten, Peelen, Nijhuis, & Bakker, 2005; Wiering,
2000). The control objective is global, although actions are local to the agents. The state of
the learning task is represented as an aggregation of the waiting times of individual vehicles
at the intersection. Traffic light agents learn a value function that estimates expected
waiting times of vehicles given different settings of traffic lights.

Several authors focus on self-organising and self-adapting mechanisms for traffic con-
trol (Gershenson, 2005; Lämmer & Helbing, 2008), where traffic lights self-organise with
no direct communication between them. The local interactions between neighbouring traf-
fic lights lead to emergent coordination patterns such as “green waves”. In this way, an
efficient, decentralised traffic light control is achieved, as a combination of two rules, one
that aims at optimising the flow and one that aims at stabilising it. In the TRY SA2

system (Hernández et al., 2002), traffic agents use a mechanism called structural cooper-
ation (Ossowski & Garćıa-Serrano, 1999) to locally coordinate their signal plan proposals
without the need to rely on dedicated domain (coordination) knowledge.

2.7 Market-Based Coordination

Being a complex system, traffic is well suited for the application of market-based coordi-
nation mechanisms at different levels. These mechanisms replicate the functioning of real
markets (i.e., auctions, bargaining, etc.) in order to coordinate the activities and goals
pursued by a set of agents. The agents that regulate the infrastructure can be built to
act as a team, i.e., they may share a global objective function that represents the system
designer’s preferences over all possible solutions, as it occurs in multi-robot domains (Dias,
Zlot, Kalra, & Stentz, 2006). In line with this perspective, Vasirani and Ossowski (2009b)
proposed a market-based policy for traffic assignment. The authors put forward a coopera-
tive learning model so as to coordinate the prices of several intersections. The experimental
results showed that, in general, an increase in the profit raised by a team of intersections is
aligned with reduced average travel times. A limitation of this work is the number of inter-
actions with the environment that are required in order for the price vector that maximises
overall profit to be learned.

If we extend the focus to include selfish driver agents and their interaction with the
infrastructure agents, a non-cooperative scenario arises. For instance, an auction-based
policy for intersection control is proposed in the work of Schepperle and Bohm (2007). In
this work, an intersection controlled by an intelligent agent starts an auction for the earliest
time slot among the vehicles that are approaching the intersection on each lane. The authors
assume that the agent that controls an intersection can detect if an approaching vehicle has
another vehicle in front of it. In this case, the former is not allowed to participate in
the auction (i.e., its bids are not processed), so as to ensure that only vehicles that do not
have physical impediments to cross the intersection are allowed to participate in the auction.
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Furthermore, since a non-combinatorial auction is run to allocate the earliest time-slot, only
one bidder (i.e., driver) is entitled to get a specific time-slot, which can lead to inefficiencies
in the assignments.

The field of transport economics also studies the allocation of resources used to move
road users from place to place (Small & Verhoef, 2007). However, it follows a more static
and analytical approach that requires extensive knowledge of supply and demand functions.
Such information is often hard to obtain and extract, so usually findings from the field are
hard to transfer directly to ITS.

2.8 Discussion

In this work, we mainly focus on the operational time perspective, since our aim is to
manage an advanced traffic infrastructure that regulates the route choices of autonomous
vehicles, while tactical and strategic decisions are left to the human users. In order to make
the proposed mechanisms broadly adoptable, we minimise the domain knowledge necessary
to set up our models. While the software agents that reside in the traffic management
infrastructure need to be aware of the remaining infrastructure agents, they do not require
expert knowledge related to the underlying traffic system. We focus on local adaptation
mechanisms, rather than learning techniques, to enforce emergent coordination among the
software agents that reside in the traffic management infrastructure. Furthermore, we
put forward a market-based coordination framework that involves both the infrastructure
and the drivers. The infrastructure agents coordinate their actions in an indirect way
as competitive market participants that aim to match supply with demand. The driver
agents participate in the allocation of the road network capacity through an auction-based
mechanism that regulates the assignment of the right to cross an intersection. Finally, we
recognise the importance of providing information to drivers in order to influence their
decision making. In particular, we assume the existence of propagation mechanisms, so
that the market price information is available to the drivers, thus potentially influencing
their collective behaviour4.

3. Reservation-Based Intersection Control

The applications of AI techniques and multiagent technology in the traffic domains that were
detailed in the previous section conceive that the ITS lies in the infrastructure and its com-
ponents (traffic lights, message signs, sensors, etc.), while the vehicles are usually treated as
particles of a traffic flow that a control policy cannot individually address. Nevertheless, the
continuous advances in software and hardware technologies will make a tighter integration
between vehicles and infrastructure possible. Even today, vehicles can be equipped with
features such as cruise control (Ioannou & Chien, 1993) and autonomous steering (Krogh
& Thorpe, 1986). Small-scale systems of autonomous guided vehicles (AGV) already exist,
for example in factory transport systems. If this trend continues, one day fully autonomous
vehicles will populate our road networks. In this case, given that the system will comprise a
variable (and possibly huge) number of vehicles, an open infrastructure is needed to control

4. Setting up such “price index boards” is technically feasible already today: for instance, the NYSE indexes
approximately 8500 stocks, whose price variations are spread worldwide almost immediately.
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Figure 1: Reservation-based protocol with FCFS policy

and schedule the transit of AGVs. In fact, nowadays centralised AGV control systems know
the number of the vehicles, their origins and destinations, before the route planning takes
place. In the case of an urban road traffic scenario, such an approach is certainly unfeasible.

In this section we present some details of the reservation-based system for intersection
control (Dresner & Stone, 2008) that are relevant for this work5. In particular we outline the
policy executed by intersection managers to process reservations requests (Section 3.1) and
analyse the impact that the distance at which the reservation is sent has on the performance
of the control mechanism (Section 3.2).

3.1 Protocol

The reservation-based control system proposed by Dresner and Stone assumes the existence
of two different kinds of software agents: intersection manager agents and driver agents. The
intersection manager agent controls the space of an intersection and schedules the crossing
of each vehicle. The driver agent is the entity that autonomously operates the vehicle (in
the following we will use the terms “intersection manager” and “driver” for short, to refer to
the software agents that control an intersection and a vehicle respectively). The protocol,
using the first-come-first-served policy (FCFS), is summarised in Figure 1. Each driver,

5. We remark that in this work we engineered the basic aspects of the reservation-based system. We did
not consider more advanced features, such as acceleration within the intersections, safety buffers or edge
tiles. The basic functioning of the reservation-based intersection that we assume in this work is the same
in every experimental scenario that we compare. In this way a fair comparison between different policies
for the allocation of reservations is guaranteed.
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(request reservation
:sender D-3548

:receiver IM-05629
:content(

:arrival time 08:03:15
:arrival speed 23km/h
:lane 2
:type of turn LEFT

)
)

Figure 2: Example of a REQUEST message

when approaching the intersection, contacts the intersection manager by sending a REQUEST
message (1). The message contains the vehicle’s ID, the arrival time, the arrival speed, the
lane occupied by the vehicle in the road segment that approaches the intersection and the
intended type of turn (see Figure 2 for an example of REQUEST message). The intersection
manager calculates the distance d(r) from which the driver is sending the reservation request
r (2). If the distance is greater than the maximum reservation distance di of the lane that
the driver is occupying (3), the request is rejected without processing it (4). Otherwise,
the intersection manager proceeds to evaluate whether it can be accommodated or not.
First, the driver’s ID is parsed (5), and if the driver already has a prior reservation (6), this
reservation is removed (7). Then, with the information contained in the REQUEST message,
the intersection manager simulates the vehicle trajectory, calculating the space needed by
the vehicle over time in order to check if there are potential conflicts (8). If so (9), the
intersection manager updates the maximum reservation distance di (10) and replies with a
REJECTION message (11). Otherwise, the maximum reservation distance di is updated to
infinite (12) and the intersection manager replies with a CONFIRMATION message (13), which
implies that the driver’s request is accepted.

The FCFS policy implies that if two drivers send requests that require the same space-
time slots inside the intersection, the driver that sends the request first will obtain the
reservation. In extreme cases this policy is clearly inefficient. Consider the case of a set of
n vehicles, v1, v2, . . . , vn, such that v1’s request has conflicts with every other vehicle, but
that v2, . . . , vn do not have conflicts with one another. If v1 sends its request first, it will
be granted and all other vehicles’ requests will be rejected. On the other hand, if it sends
its request last, the other n − 1 vehicles will have their requests confirmed, whilst only v1

will have to wait. Nevertheless, FCFS has the advantage of being a simple policy, which
only needs the minimum amount of information necessary to implement a reservation-based
intersection control.

3.2 Reservation Distance

The protocol detailed above would be prone to deadlock situations, if it did not make use
of the reservation distance filter. Consider two vehicles, A and B, with A moving in front of
B (see Figure 3). Suppose also that B cannot safely overtake A. If A and B send a request
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B A

B sends the request 
rst and gets the 

reservation A's request is 
rejected, thus A 
must stop at the 

intersection

Given that A cannot 
cross, also B must 

stop at the 
intersection

Figure 3: Potential deadlock situation.

for the same space-time slots inside the intersection, the first request that the intersection
manager receives will be accepted, and the second one will be rejected. If vehicle B, which
is behind vehicle A, obtains the reservation, the result will be that vehicle A is not able
to cross because it does not hold a confirmed reservation. This in turn prevents vehicle B
making use of its reservation. If vehicle B always sends its request first, then a deadlock
situation arises, with vehicle A physically blocking vehicle B, and vehicle B blocking vehicle
A by getting the disputed reservation.

To avoid the occurrence of these deadlock situations, Dresner and Stone proposed the
use of the reservation distance as a heuristic criterion for filtering out reservation requests
that could generate deadlock situations. Since the drivers communicate the time at which
they plan to arrive at the intersection, as well as what their speed will be when they get
there (quantities which the drivers have no incentive to misrepresent), it is possible to
approximate a vehicle’s distance from the intersection, given a reservation request by that
vehicle. This heuristic approximation, called the reservation distance d(r), is calculated as
d(r) = va · (ta − t), where va is the proposed arrival speed of the vehicle, ta is the proposed
arrival time of the vehicle, and t is the current time.

This approximation assumes that the vehicle is maintaining a constant speed. The
reservation processing policy uses it as follows. For each lane i, the policy has a variable di,
initialised to infinity, that represents the maximum distance from which a driver can send
a reservation request. For each reservation request r from lane i, the policy computes the
reservation distance, d(r). If d(r) > di, r is rejected. If, on the other hand, d(r) ≤ di, r is
processed as normal. If r is rejected after being processed as normal, di ← min(di, d(r)).
Otherwise, di ← ∞. While the use of the reservation distance does not guarantee that
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mutually blocking situations never occur, it does prevent these situations from degenerating
into deadlocks.

4. Single Intersection

For a single reservation-based intersection, the problem that the intersection manager has to
solve is allocating the reservations among a set of drivers in a way that a specific objective is
maximised. This objective can be, for instance, minimising the average delay caused by the
presence of the regulated intersection. In this case, the simplest policy to adopt is allocating
a reservation to the first agent that requests it, as occurs with the FCFS policy proposed
by Dresner and Stone in their original work. Another work in line with this objective takes
inspiration from adversarial queuing theory for the definition of several alternative control
policies that aim at minimising the average delay (Vasirani & Ossowski, 2009a)

However, these policies ignore the fact that in the real world, depending on the context
and their personal situation, people value the importance of travel times and delays quite
differently. Since processing the incoming requests to grant the associated reservations can
be considered as the process of assigning resources to agents that request them, one may
be interested in an intersection manager that aims to allocate the disputed resources to
the agents that value them the most. In line with approaches from mechanism design, we
assume that the more a human driver is willing to pay for the desired set of space-time slots,
the more they value the good. Therefore, we rely on combinatorial auction theory (Krishna,
2002) for the definition of an auction-based policy for the allocation of resources.

4.1 Auction-Based Policy

To formalise an auction-based policy for processing incoming reservation requests, it is
necessary to specify the auction design space. This includes the definition of the disputed
resources, the rules that regulate the bidding and the clearing policy.

4.1.1 Auctioned Resources

The first step for the design of any auction is the definition of the resources (or items)
to be allocated. The nature of items determines which type of auction can be employed
to allocate them. In our scenario, the auctioned good is the use of the space inside the
intersection at a given time. We model an intersection as a discrete matrix of space slots.
Let S be the set of the intersection space slots, S = {s1, s2, . . . , sm}. Let tnow be the current
time, and T = {tnow + τ,∀τ ∈ N} the set of future time-steps. The set of items that a
bidder can bid for is the set I = S × T . Due to the nature of the problem, a bidder is
only interested in bundles of items over the set I. In the absence of acceleration in the
intersection, a reservation request (Figure 4) implicitly defines which space slots at which
time the driver needs in order to pass through the intersection6. Thus, the items must
necessarily be allocated through a combinatorial auction.

6. This computation is easily done by the intersection manager, which knows the geometry of the inter-
section. If the vehicles were to calculate the trajectory, they would need to know the geometry of every
intersection they pass through.
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t4 t4

t4 t4

Figure 4: Bundle of items defined by a reservation request.

4.1.2 Bidding Rules

The bidding rules define the form of a valid bid accepted by the auctioneer (Wurman,
Wellman, & Walsh, 2001). In our scenario, a bid over a bundle of items is implicitly defined
by the reservation request. Given the parameters arrival time, arrival speed, lane and type
of turn, the auctioneer (i.e., the intersection manager) is able to determine which space slots
are needed at which time. Thus, the additional parameter that a driver must include in its
reservation request is the value of its bid, i.e., the amount of money that it is willing to pay
for the requested reservation.

A bidder is allowed to withdraw its bid and to submit a new one. This may happen,
for instance, when a driver that submitted a bid b, estimating to be at the intersection
at time t, realises that, due to changing traffic conditions, it will more likely to be at the
intersection at time t +∆t, thus making the submitted bid b useless for the driver. In this
case the driver has no guarantees of safety regarding its crossing of the intersection. Thus,
the rational thing to do in this case, as the driver would not want to risk being involved in
a car accident, is resubmitting the bid with the updated arrival time. However, the new bid
must be greater than or equal to the value of the previous one. This constraint avoids the
situation whereby a bidder “blocks” one or several slots for itself, by acquiring them early
and with overpriced bids. Even though this would oblige others to try to reserve alternative
slots, and thus make the desired slot less disputed, the bidder cannot take advantage of
this, as it cannot withdraw its initial bid and resubmit lower bids in order to obtain the
same reservation at a lower price.
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Figure 5: Auction policy

4.1.3 Auction Policy

The auction policy (see Figure 5) starts with the auctioneer waiting for bids for a cer-
tain amount of time ∆t. Once the new bids are collected, they constitute the bid set.
Then, the auctioneer executes the algorithm for the winner determination problem (WDP),
and the winner set is built, containing the bids whose reservation requests have been ac-
cepted. During the WDP algorithm execution, the auctioneer still accepts incoming bids,
but they will only be included in the bid set of the next round. Then the auctioneer sends a
CONFIRMATION message to all bidders that submitted the bids contained in the winner set,
while a REJECTION message is sent to the bidders that submitted the remaining bids. Then
a new round begins, and the auctioneer collects new incoming bids for a certain amount of
time7.

4.1.4 Winner Determination Algorithm

Since the auction must be performed in real-time, both the bid collection and the winner
determination phase must be time-bounded, that is, they must occur within a specific time
window. This implies that optimal and complete algorithms for the WDP (Leyton-Brown,
Shoham, & Tennenholtz, 2000; Sandholm, 2002) are not suited for this kind of auction. An
algorithm with anytime properties is needed (Hoos & Boutilier, 2000), so that the longer
the algorithm keeps executing, the better the solution it finds.

7. For safety reasons the auctioneer cannot spend too much time collecting bids, nor can it deallocate
previously granted reservations. Therefore it is possible that a low-valued bid, in the winner set at round
k, impedes the allocation of the disputed reservation to some high-valued bids, submitted at round k+n.
In this case, the second bidder should slow down and resubmit a new (possibly winning) bid. Although
in theory the bid-delay relation (Figure 7) could be worsened by the unrelated sequence of auctions, in
practice the effect is negligible.
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Algorithm 1 Winner determination algorithm
B ← allBids
W ← ∅
start ← currentT ime
while currentT ime − start < 1 sec do

A ← ∅
for step = 1 to |B| do

step ← step + 1
random ← drawUniformDistribution(0, 1)
if random < wp then

b ← selectRandomlyFrom(B \ A)
else

highest ← selectHighestFrom(B \ A)
secondHighest ← selectSecondHighestFrom(B \ A)
if highest.age ≥ secondHighest.age then

b ← highest
else

random ← drawUniformDistribution(0, 1)
if random < np then

b ← secondHighest
else

b ← highest
end if

end if
end if
A ← A

⋃
{b} \ N (b)

if A.value > W.value then
W ← A

end if
end for

end while

Algorithm 1 sketches how the winner determination problem is solved. The algorithm
starts initialising the set B containing all the bids received so far. The winner set W
is initialised to the empty set. Once the initialisation has been concluded, the algorithm
executes the main loop for 1 second. Within the main loop, a stochastic search is performed
for a number of steps equal to the number of bids in B. Set A contains the candidate bids
for the winner set. Then, with probability wp (walk probability8), a random bid is selected
from the set of bids that are not actually in the candidate winner set (B \ A), while, with
probability 1−wp, the highest and the second highest bids are evaluated. The highest bid
is selected if its age (i.e., the number of steps since a bid was last selected to be added to a
candidate solution) is greater than or equal to the age of the second highest bid. Otherwise,

8. The probability of adding a random, not previously allocated bid to the candidate winner set.
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Figure 6: Simulator of a single intersection

with probability np (novelty probability9) the second highest, and with probability 1 − np
the highest bid is selected. Finally bid b is added to the candidate solution A and all its
neighbours N (b), that is, the set of bids over bundles that share with b at least one item,
are removed from A. Finally, if the value of A (i.e., the sum of the bids in A) is greater
than the value of the best-so-far winner set, W, the best solution found so far is updated.

4.2 Simulation Environment

The simulator we use for the evaluation of our auction-based policy is a custom, microscopic,
time-and-space-discrete simulator, with simple rules for acceleration and deceleration. The
simulated area is modelled as a grid, and subdivided in lanes (see Figure 6). Each lane is
3m wide, and subdivided in 12 squared tiles of 0.25m each. Each vehicle is modelled as a
rectangle of 8×16 tiles, or equivalently, as a rectangle of 2m×4m, and has a preferred speed
in the interval [30, 50]km/h. The simulation environment generates the origin-destination
pair randomly. When a vehicle is spawned inside the simulation, it is inserted at the
beginning of one of the 4 incoming links, randomly selected, and a destination is randomly
assigned to it. The destination implies the type of turn (left, right or straight) that the
vehicle will perform at the intersection as well as the lane it will use to travel (the left-
most lane in case of left turn, the right-most lane in case of right turn, any lane for going
straight). The preferred speed is assigned using a normal distribution with mean 40km/h
and variance 5km/h, while being limited by the interval [30, 50].

9. The probability of adding to the candidate winner set the second highest bid rather then the “greedy”
bid, i.e., the highest in value.
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Since the link used to approach the intersection is relatively short, we assume that each
vehicle will travel in its pre-assigned lane, without changing it. Therefore, we only need
a car-following model to simulate the vehicle dynamics, and no lane-changing model is
needed. The car-following model we use is the Intelligent Driver Model (Treiber, Hennecke,
& Helbing, 2000). In this model, the decision of any driver to accelerate or to brake depends
only on its own speed, and on the speed of the vehicle immediately ahead of it. Specifically,
the acceleration dv/dt of a given vehicle depends on its speed v, on the distance s to the
front vehicle, and on the speed difference ∆v (positive when approaching) :

dv

dt
= a ·

[

1 −
(

v

vp

)
−

(
s∗

s

)2
]

(1)

where

s∗ = s0 +
(

v · T +
v ·∆v

2 ·√a · g

)
(2)

and a is the acceleration, g is the deceleration10, v is the actual speed, vp is the preferred
speed, s0 is the minimum gap, T is the time headway.

The acceleration is divided into an acceleration towards the preferred speed on a free
road, and braking decelerations induced by the front vehicle. The acceleration on a free
road decreases from the initial acceleration a to 0 when approaching the preferred speed vp.

The braking term is based on a comparison between the “preferred distance” s∗, and
the current gap s with respect to the front vehicle. If the current gap is approximately
equal to s∗, then the braking deceleration essentially compensates the free acceleration
part, so the resulting acceleration is nearly zero. This means that s∗ corresponds to the
gap when following other vehicles in steady traffic conditions. In addition, s∗ increases
dynamically when approaching slower vehicles and decreases when the front vehicle is faster.
As a consequence, the imposed deceleration increases with decreasing distance to the front
vehicle, increasing its own speed, and increasing speed difference to the front vehicle. The
aforementioned parameters were set to vp = 50km/h, T = 1.5s, s0 = 2m, a = 0.3m/s2,
b = 3m/s2. The speed of a vehicle is updated every second, and its position, since the space
is discrete, is updated to the tile closest to the new position in the continuous space.

4.3 Experimental Results

We create different traffic demands by varying the expected number of vehicles (λ) that,
for every O-D pair, are spawned in an interval of 60 seconds, using a Poisson distribution.
We spawned vehicles for a total time of 30 minutes. Table 1 shows the number of vehicles
that have been generated for different values of λ.

The main goal of this set of experiments is to test whether the policy based on com-
binatorial auction (CA) enforces an inverse relation between money spent by the bidders
and their delay. The delay measures the increase in travel time due to the presence of the
intersection. It is computed as the difference between the travel time when the intersection

10. a and g are different parameters with different values, since usually a vehicle decelerates (i.e., brakes)
more strongly than it accelerates.
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λ 1 5 10 15 20 25 30
# of vehicles 29 136 285 438 633 716 832

Table 1: Traffic demands for a single intersection

is regulated by the intersection manager, and the travel time that would arise if the vehicle
could travel unhindered through the intersection. The bid that a driver is willing to submit
is drawn from a normal distribution with mean 100 cents and variance 25 cents, since the
willingness of human drivers to pay is usually normally (or log-normally) distributed (Hen-
sher & Sullivan, 2003). Thus, the agents are not homogeneous in the sense that the amount
of money that they are offering differs from one to another. In this population, we track
the delay of a subset of drivers, which are endowed with 10, 50, 100, 150, 200, 1000, 1500,
2000 and 10000 cents. This endowment is entirely allocated as a bid. We also evaluate the
auction-based policy with respect to the average delay of the entire population of drivers.

For the WDP algorithm, we set the walk probability wp = 0.15 and the novelty prob-
ability np = 0.5, as these values produced the best results in auctions of similar type and
size (Hoos & Boutilier, 2000). In all the experiments, we give the intersection manager one
second to execute the WDP algorithm and return a solution. To give more time to bid-
ders to submit their bids, before starting another auction, the intersection manager waits
another second to collect incoming bids11. To determine if one second is enough for the
winner determination algorithm to produce acceptable results, we performed the follow-
ing experimental analysis. According to the results reported by Hoos and Boutilier, given
an auction with 100 bids, the winner determination algorithm is able to find the optimal
solution with a probability of 0.6, which tends to 1 if the algorithm is allowed to run for
more than 10 seconds. This is encouraging, but in order to justify the adequacy of the
stochastic algorithm for our particular problem, we need to show that, in the context of
the auction-based policy for reservation-based intersection control, it produces results that
are reasonably close to the optimum, despite the relatively short time (1 second in the ex-
periments) that the algorithm has to return a solution. Given that the average number of
submitted bids for a single auction is between 3 for low traffic demand (λ = 1) and 80 for
high traffic demand (λ = 30), we performed several experiments to compare the solution
provided by the algorithm with 1 second of run-time with the solution provided by the al-
gorithm with 100 seconds. The solution provided by the second execution of the algorithm
is assumed to be the best approximation of the optimal solution. The result was that the
winner determination algorithm is able to find a solution whose value is at least 95% of the
optimal solution value with a probability between 96.1% for high traffic demand (λ = 30)
and 99.2% for low traffic demand (λ = 1).

Figure 7 plots (in logarithmic scale) the relation between travel time and bid value
for different values of λ. All the error bars denote 95% confidence intervals. There is a
sensible decrease of the delay experienced by the drivers that bid from 100 to 150 cents,
which represent 49.8% of drivers whose bid is greater than the mean bid. Still, such delay
reduction tends to settle for drivers that bid more than 1000 cents.

11. Nevertheless, the intersection manager runs a separate thread that receives incoming bids also during
the WDP algorithm execution.
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Figure 7: Bid-delay relation for various values of λ and normally distributed endowments

We remark that the auction-based policy also uses the reservation distance as pre-
processing step, which guarantees that a driver’s bid cannot be rejected indefinitely. In
fact, a vehicle is allowed to approach the intersection and slow down until it reaches the
intersection edge. At that point, if its request is rejected because another driver submitted
a higher value bid, the reservation distance is updated to the stopped vehicle’s distance.
Therefore, in the following time step, only this driver will be allowed to submit a bid with its
preferred value. The result is, of course, that this driver will suffer greater delays compared
to other drivers that are willing to pay more12.

The auction-based allocation policy has proven to be effective regarding its main goal,
that is, rewarding lower delays to those drivers that value their disputed reservations the
most. However, it is worth analysing the impact that such a policy has on the intersection’s
average delay. Figure 8a plots the average delay for different traffic demands (λ ∈ [1, 30]).
Again, the error bars denote 95% confidence intervals. When traffic demand is low, the per-
formance of the CA policy and the FCFS is approximately the same. However, when traffic
demand increases, there is a noticeable increase of the average delay when the intersection
manager applies CA. This was somewhat expected, because the CA policy aims to grant
a reservation to the driver that values it the most, rather than maximising the number of
granted requests. Thus, a bid b, whose value is greater than the sum of n bids that share
some items with b, is likely to be selected in the winner set. If so, only 1 vehicle will be
allowed to transit, while n other vehicles will have to slow down and try again. This fact
is highlighted also by the average rejected requests (Figure 8b). Since all the non-winning
bids are rejected, the number of rejected requests with the CA policy is up to four times
greater than with the FCFS policy.

12. Although we focus on technical problems and not social or political ones, one may wonder whether it is
fair that “rich” drivers can travel faster than “poor” drivers using a road-infrastructure that is a public
good. Nevertheless, we could argue that through the money raised by the auction-based policy “rich”
drivers contribute much more to the maintenance and extension of the public road infrastructure than
“poor” drivers.
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Figure 8: Average delay (a) and average rejected requests (b)

4.4 Discussion

The principle of optimising the use of the available resources is not the unique guiding
principle of a traffic controller. In the real world, depending on the context and their
personal situation, drivers value the importance of travel times and delays quite differently.
Thus, it makes sense to elaborate control policies that are aware of these different valuations
and that reward the drivers that value the disputed resources the most. In this respect,
we evaluated a control policy for reservation-based intersections that relies on an auction
mechanism. With such a policy, drivers that submit high-value bids usually experience
significant reductions in their individual delays (about 30% less compared to drivers that
submit low-value bids).

However, since the objective of this policy is not maximising the number of granted
reservations, it pays a social cost, in the form of greater average travel times. This fact
might limit the applicability of the CA policy in high load situations. In this case, additional
mechanisms to reduce the number of vehicles that approach a single intersection are needed.

It is also worth noting how it is possible that a driver, even with a theoretically infinite
amount of money, cannot experience zero delay when approaching an intersection. This
is because an auction carried on in a realistic traffic scenario is quite different from a
synthetic auction that has been set-up for benchmarking purposes (Hoos & Boutilier, 2000).
The auctions that arise in the traffic scenario are affected by the high level of dynamism,
uncertainty and noise, intrinsic to the domain. For example, in high load situations, the
reservation distance plays an important role, since it filters out many potentially winning
bids coming from a greater distance13. Figure 9 plots how the reservation distance decreases
over time for different traffic demands. In high load situations, the reservation distance
tends to be small, therefore a wealthy driver must reach this reservation distance in order
to participate in the auction and acquire a reservation, thus increasing its travel time. The
estimation of the arrival time also greatly affects the performance of the auction. In fact, in

13. As outlined in Section 3.2, the reservation distance is the maximum distance at which a driver is allowed
to request a reservation.
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Figure 9: Reservation distance

high load situations, such an estimation is much more noisy and uncertain, and it is likely
that a driver must resubmit a reservation request with the updated arrival time. In this
way, it is possible that an agent wins an auction at time t and then, due to a new estimation
of the arrival time, must resubmit its bid at time t +∆t. The bidders that participate in
the auction at time t +∆t are obviously different from those that participated at time t, so
there is no guarantee that the agent might win the auction again.

Furthermore, a real-world scenario such as urban traffic limits the auction design space
and the applicable solution methods for winner determination and payments calculation.
In fact, we gave priority to the winner determination problem, adapting a local search algo-
rithm to our needs, while for the payments calculation we did not adopt any sophisticated
method, i.e., a winner pays a price that is exactly the bid that was submitted. This, as
with any first-price payment mechanism, could in principle lead to malicious behaviours,
with drivers that try to acquire reservations by submitting bids that are lower than the
real valuations they have. In single item auctions it is computationally easy to set up an
incentive compatible payment mechanism, such as the second-price (Vickrey) mechanism.
Unfortunately, extending this mechanism to combinatorial auctions in not (computation-
ally) straightforward, since the equivalent truth-revealing mechanism in the combinatorial
world, the Vickrey-Clarke-Groves (VCG) payment mechanism (Clarke, 1971; Groves, 1973;
Vickrey, 1961), is NP-complete. Therefore, although a driver agent could potentially acquire
a reservation by submitting a bid b̂ that is lower than its real valuation b, from a practical
point of view this exclusively affects the revenues that the auctioneer should gain if every
bidder were truth-telling, which is not our primary concern. Another possible weakness is
the fact that a bidder could start bidding lower than their real valuation and then rais-
ing their bid if they are not able to acquire it, thus leading to a communication overhead
between bidders and auctioneer. Nevertheless, only the bidders within the reservation dis-
tance are able to submit a bid, thus the number of bids that the intersection manager may
receive simultaneously is necessarily bounded.
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5. Network of Intersections

In the single intersection scenario we analysed the performance of an auction-based policy
for the allocation of reservations. In that context, the driver was modelled as a simple agent
that selects the preferred value for the bid that will be submitted to the auctioneer. If we
focus on an urban road network with multiple intersections, it is interesting to notice that
the decision space of a driver is much broader. In fact, drivers are involved in complex and
mutually dependent decisions such as route choice and departure time selection. At the same
time, this scenario opens new possibilities for intersection managers to affect the behaviour
of drivers. For example, an intersection manager may be interested in influencing the
collective route choice performed by the drivers, using variable message signs, information
broadcast, or individual route guidance systems, so as to evenly distribute the traffic over
the network. This problem is called traffic assignment.

In Section 5.1 we evaluate how market-inspired methods (Gerding et al., 2010) can be
applied as traffic assignment strategies for networks of reservation-based intersections. The
idea is that, if there is a market where drivers acquire the necessary reservations to pass
through the intersections of the urban network, this market, and the intersection managers
that operate in it from the supply side, can be designed to work as a traffic assignment
system. In particular, we model the intersection managers so that they apply a competitive
pricing strategy to compete among themselves for the supply of the reservations that are
traded. Finally, in Section 5.2 we combine this traffic assignment strategy with the auction-
based control policy into an integrated mechanism for traffic management of urban road
networks.

5.1 Competitive Traffic Assignment (CTA)

Traffic assignment strategies aim at influencing the collective route choice of drivers in order
to use the road network capacity efficiently. Therefore, we can see the traffic assignment
problem as a distributed choice and allocation problem, since a set of resources (i.e., the
links capacity) must be allocated to a set of agents (i.e., the drivers). To this regard,
markets as mediators for distributed resource allocation problems have been applied to
several socio-technical systems (Gerding et al., 2010).

Setting out from the approach outlined in the work by Vasirani and Ossowski (2011), we
follow this metaphor and model each intersection manager as a provider of the resources, in
this case, the reservations of the intersection it manages. Thus, each intersection manager
is free to establish a price for the reservations it provides. On the other side of the market,
each driver is modelled as a buyer of these resources. Provided with the current prices of
the reservations, it chooses the route, according to its personal preferences about travel
times and monetary costs. Each intersection manager is modelled so as to compete with
all others for the supply of the reservations that are traded. Therefore, our goal as market
designers is making the intersection managers adapt their prices towards a price vector that
accounts for an efficient allocation of the resources.
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5.1.1 CTA Pricing Strategy

Let L be the set of incoming links of a generic intersection. For each incoming link l ∈ L,
the intersection manager defines the following variables:

• Current price pt(l): is the price applied by the intersection manager to the reservations
sold to the drivers that come from the incoming link l.

• Total demand dt(l | pt(l)): represents the total demand of reservations from the
incoming link l that the intersection manager observes at time t, given the current
price pt(l). It is given by the number of vehicles that want to cross the intersection
coming from link l at time t.

• Supply s(l): defines the reservations supplied by the intersection manager for the
incoming link l. It is a constant and represents the number of vehicles that cross the
intersection coming from link l that the intersection manager is willing to serve.

• Excess demand zt(l | pt(l)): is the difference between the total demand at time t and
the supply, zt(l | pt(l)) = dt(l | pt(l)) − s(l).

Given the set of all the intersection managers that are operating in the market, J , we
define the price vector pt as the vector of the prices applied by each intersection manager
to each of its controlled links:

pt = [ pt
1(l

1) pt
1(l

2) . . . pt
|J |(l

h) ] (3)

where p1(l1) is the price applied by intersection manager 1 to its controlled link l1, p1(l2)
is the price applied by the same intersection manager to another link l2 of its intersection,
and p|J |(lh) is the price applied by the |J |th intersection manager to its last controlled link
lh.

In particular, we say that a price vector pt maps the supply with the demand if the excess
demand zt(l | pt(l)) is 0 for all links of the network. This price vector, which corresponds
to the market equilibrium price, can be computed through a Walrasian auction (Codenotti,
Pemmaraju, & Varadarajan, 2004), where each buyer (i.e., driver) communicates to the
suppliers (i.e., intersection managers) the route that it is willing to choose, given the current
price vector pt. With this information, each intersection manager computes the demand
dt(l | pt(l)) as well as the excess demand zt(l | pt(l)) for each of its controlled links. Then,
each intersection manager adjusts the prices pt(l) for all the incoming links, lowering them
if there is excess supply ( zt(l | pt(l)) < 0 ) and raising them if there is excess demand
( zt(l | pt(l)) > 0 ). The new price vector pt+1 is communicated to the drivers that
iteratively choose their new desired route, on the basis of the new price vector pt+1. Once
the equilibrium price is computed, the trading transactions take place and each driver buys
the required reservations at the intersections that lay on its route.

The Walrasian auction relies on quite strict assumptions, which make a direct imple-
mentation in the traffic domain hard. For instance, the set of buyers is assumed to be fixed
during the auction, which means for the traffic domain that new drivers may not join an
auction until it terminates. Also the fact that no transactions can take place at disequi-
librium prices is a strict assumption for the traffic domain. It is unreasonable for all the
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Algorithm 2 Intersection manager price update
t ← 0
for all l ∈ L do

pt(l) ← δ
s(l) ← 0.5 · µopt · $(l)

end for
while true do

for all l ∈ L do
dt(l) ← evaluateDemand
zt(l) ← dt(l) − s(l)

pt(l) ← pt(l) + pt(l) · zt(l)
s(l)

end for
t ← t + 1

end while

drivers to wait to reach the equilibrium point before choosing the desired route and starting
to travel. Finally, a driver is probably willing to transfer money to an intersection manager
when it is spatially close to it, that is, when it is already travelling along its desired route.

Thus, we implement a pricing strategy that aims to reach the equilibrium price - as in
the Walrasian auction - but that works on a continuous basis, with drivers that leave and
join the market dynamically, and with transactions that take place continuously. To reach
general equilibrium, each intersection manager applies the price update strategy sketched
in Algorithm 2. At time t, each intersection manager independently computes the excess
demand zt(l | pt(l)) and updates the price pt(l) using the formula (Codenotti et al., 2004):

pt+1(l) ← max
[
δ, pt(l) + pt(l) · zt(l | pt(l))

s(l)

]
(4)

where

• δ is the minimum price that an intersection manager charges for the reservations that
it sells.

• s(l) is the supply of the intersection manager, that is, the number of vehicles above
which the intersection manager considers there is excess demand and starts to raise
prices.

We claim that drivers that travel through road network links with low demand shall not
incur any costs. For this reason, we choose δ = 0. To define the supply s(l), we rely on
the fundamental diagram of traffic flow (Gerlough & Huber, 1975). Let µopt be the density
that maximises the traffic flow on link l (see Figure 10). We choose s(l) = 0.5 · µopt · $(l),
where $(l) is the length of link l. In other words, the intersection manager considers that
there is excess demand when the density reaches 50% of optimal density. In this way the
intersection manager aims to avoid exceeding µopt by raising prices and diverting drivers to
different routes before reaching µopt.
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Figure 10: Fundamental diagram of traffic flow

5.1.2 Driver Model

Unlike the single intersection scenario, in this case we need a reasonable driver model for
the route choice. The route choice problem is modelled as a multi-attribute utility-function-
maximisation problem. Given that the traffic system is regulated by a market mechanism,
the driver must take into consideration different aspects of a route to determine its utility
value. A route ρ is modelled as an ordered list of links, ρ = [l1 . . . lN ]. A generic link
lk is characterised by two attributes: the estimated travel time E[T (lk)] and the price of
reservations K(lk). For sake of simplicity, the estimation is based on the travel time at
free flow, and does not consider real-time information of traffic conditions (see Equation 5,
where $(lk) is the length of link lk, and vmax(lk) is the maximum allowed speed on link lk).
The price of reservations of link lk is always 0, unless the link lk is one of the incoming link
of an intersection (lk = l), in which case the price is pt(l) (Equation 6).

E[T (lk)] =
$(lk)

vmax(lk)
(5)

K(lk) =
{

pt(l) if lk = l ∈ L
0 otherwise (6)

The summatory of the estimated travel time over all the links of ρ gives the estimated travel
time of the entire route ρ:

E[T (ρ)] =
N∑

k=1

E[T (lk)] (7)

Similarly, the summatory of the price of reservations over all the links of ρ gives the price
of the entire route ρ:

K(ρ) =
N∑

k=1

K(lk) (8)
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Let C = {ρ1, . . . , ρM} be the choice set, that is, the set of routes available to a driver. The
set C is built using a k-shortest paths algorithm (Yen, 1971), with k = 10. Let uT (ρ) be
the normalised utility of route ρ against the estimated travel time attribute (Equation 9),
where MT = max

ρi∈C
E[T (ρi)] and mT = min

ρi∈C
E[T (ρi)].

uT (ρ) =
MT − E[T (ρ)]

MT − mT
(9)

Let uK(ρ) be the normalised utility of route ρ against the reservations cost attribute (Equa-
tion 10), where MK = max

ρi∈C
K(ρi) and mK = min

ρi∈C
K(ρi).

uK(ρ) =
MK − K(ρ)
MK − mK

(10)

The driver multi-attribute utility of route ρ is then defined as:

U(ρ) = wT · uT (ρ) + wK · uK(ρ) (11)

where wT is the weight of the estimated travel time attribute and wK is the weight of the
cost of reservations attribute. Basically, if wT = 1 the driver utility only considers the
attribute related to the estimated travel time (i.e., it prefers the shortest route, no matter
the price of the reservations), if wK = 1 the driver utility only considers the attribute
related to the cost of reservations (i.e., it prefers the cheapest route, no matter the travel
time), while for every other combination of the weights wT and wK the driver considers
the trade-off between estimated travel time and cost of reservations. In the experiments we
draw wT from a uniform distribution over the interval [0, 1], and we set wK = 1 − wT .

Once the utility of the routes that form the choice set C has been computed, the driver
must choose one of these alternatives. In this work, we model the driver as a deterministic
utility maximiser that always selects the route with the highest utility value. Since the
price of the incoming links of an intersection is changing dynamically, the term uK(ρ) in
Eq. 11 may change during the journey. For this reason, the driver continuously evaluates
the utility of the route it is following and, in case that a different route becomes more
attractive, it may react and change on-the-fly how to reach its destination, selecting a route
different from the original one.

5.1.3 Simulation Environment

The experimental evaluation is performed on a hybrid mesoscopic-microscopic simulator,
where the traffic flow on the roads is modelled at mesoscopic level (Schwerdtfeger, 1984),
while the traffic flow inside the intersections is modelled at microscopic level (Nagel &
Schreckenberg, 1992).

In a mesoscopic model vehicle dynamics is governed by the average traffic density on the
link it traverses rather than the behaviour of other vehicles in the immediate neighbourhood
as in microscopic models. A road network is modelled as a graph, where the nodes represent
intersections and the edges represent the lanes of a road. An edge, also called stretch, is
subdivided into sections (of typically 500m length) for which a constant traffic condition is
assumed. A vehicle i that at time t is driving on a link lk is characterised by its position
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xt
i ∈ [0, $(lk)], and its speed vt

i . At each time step, a new target speed for each vehicle is
computed, using the formula:

v̂t+∆t
i = (1 − xt

i

$(lk)
) · y(lk) +

xt
i

$(lk)
· y(lk+1) (12)

where y(lk) is the reference speed of link lk and y(lk+1) is the reference speed of link lk+1.
Such reference speeds are calculated by taking into consideration the mean speed of the link
and the vehicle’s desired speed. The mean speed of the link is calculated with a speed-density
function that for a given link’s density µ(lk) returns the link’s mean speed (Schwerdtfeger,
1984).

The equation above takes into consideration the fact that the closer the vehicle is to
the next link lk+1, the higher is the effect of the link reference speed on the vehicle target
speed. If the new target speed v̂t+∆t

i is higher (lower) than the current speed vt
i , the vehicle

accelerates (decelerates) with a vehicle-type specific maximum acceleration (deceleration).
The new speed is then denoted by vt+∆t

i . Finally, the vehicle position is updated using the
formula:

xt+∆t
i = xt

i +
1
2
· (vt

i + vt+∆t
i ) ·∆t (13)

If xt+∆t
i ≥ $(lk), the vehicle is placed in the next link of its route, the densities for link lk

and lk+1 are updated accordingly, and the position is reset to xt+∆t
i − $(lk).

The mesoscopic model described above does not offer the necessary level of detail to
model a reservation-based intersection. For this reason, when a vehicle enters an intersec-
tion, its dynamics switches into a microscopic, cellular-based, simulator (Nagel & Schreck-
enberg, 1992), similar to the simulation environment used in Section 4.2. Still, the cells that
compose the intersection’s area are more coarse grained (5 meters), and for simplicity we
assume that the vehicles cross the intersection at a constant speed, so that any additional
tuning of parameters, such as slowdown probability or acceleration/deceleration factors, is
not necessary.

5.1.4 Experimental Results

Although our work does not depend on the underlying road network, we chose a (simplified)
topology of the entire urban road network of the city of Madrid for our empirical evaluation
(see Figure 11). The network is characterised by several freeways that connect the city
centre with the surroundings and a ring road. Each large dark vertex in Figure 11 - if it
connects three or more links - is modelled as a reservation-based intersection. We aim to
recreate a typical high load situation (i.e., the central, worst part of a morning peak), with
more than 11,000 vehicles departing within a time window of 50 minutes (see Table 2). The
vehicles that travel to and from 7 destinations outside the city (marked with O1 up to O7

in Figure 11) form the traffic under evaluation.
The market-inspired traffic assignment strategy is compared with a network of FCFS

reservation-based intersections. In the latter, the drivers’ route choice only takes into con-
sideration the expected travel time at free flow, since there is no notion of price.

We focus on two different types of metrics, one related to the vehicles and one related
to the network. The network-related metric is the density variation over time at 7 critical
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Figure 11: Urban road network

Destination
O1 O2 O3 O4 O5 O6 O7

Origin

O1 - 323 355 336 311 349 271
O2 223 - 221 248 191 214 229
O3 300 364 - 343 358 368 362
O4 208 233 229 - 218 199 204
O5 199 228 261 216 - 238 209
O6 290 316 398 386 374 - 337
O7 224 231 214 235 219 253 -

Table 2: OD Matrix (# of vehicles)

intersections (marked with c1 . . . c7 in Figure 11), which connect the freeways going toward
the city centre with the ring road. The vehicle-related metric is the average travel time,
grouped by the origin-destination (O-D) pair. For a given O-D pair, we compute the average
travel time of the vehicles that go from O to D. This measurement is then averaged over 30
runs. Furthermore, for each O-D pair we compute the improvement %∆ of CTA over FCFS
based on the average travel times. Table 3 shows the average travel time of the drivers,
according to their origin-destination pairs, when the reservations are allocated through the
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competitive traffic assignment (CTA) and when they are granted with the usual FCFS
policy. Using CTA we observe a net reduction of the average travel time for 30 of 42 origin-
destination pairs. Such reduction is generally noteworthy for the busiest14 routes, such as
O6-O2, O6-O3 and O7-O3. Along the some of the less demanded O-D pairs, FCFS is the
best performing policy. This happens when on the most preferred route from O to D the
traffic density is already low enough to assure free flow, but there exist alternative routes
with even lower demand, and CTA keeps diverting traffic along these potentially longer and
thus slower routes.

To evaluate the effects of the trading activity between drivers and intersection managers
it is worth observing the density variation over time at the critical intersections c1 to c7,
plotted in Figure 12. In general, density tends to be lower with CTA compared with the
system regulated by FCFS intersection managers. At the least demanded intersections c1,
c2 and c7, that is, those intersections whose density is below the density that maximises
traffic flow (see Figure 10), there is no substantial difference between CTA and FCFS. These
critical intersections are less demanded due to the topology of the network. In fact, fewer
origins are located in the northern part (O1, O2 and O7).

At the critical intersections c3, c4 and c6, the vehicle density with CTA is always below
the density that results from the use of FCFS, especially in the case of intersections c4 and
c6 where with CTA the density exceeds the optimal one by only a small extent and for a
limited period of time.

At intersection c5, the density has a higher peak around 9:30, but the density starts to
exceed the optimal density later and begins to fall below the optimal density earlier. We
calculated the integral of the density curves, measured in the interval when the curve is
above the optimal density (Eq. 14)

∫ t2

t1

µCTA(t)dt and
∫ t2

t1

µFCFS(t)dt (14)

where µCTA and µFCFS are the density functions, t1 = min( t | µCTA(t) > µopt, t | µFCFS(t) >
µopt ) and t2 = max( t | µCTA(t) < µopt, t | µFCFS(t) > µopt ). This metric is lower when
the reservations are allocated through the competitive market (70.24 veh · h/km versus
105.07 veh · h/km).

The result of the application of the market-inspired traffic assignment strategy is a
more balanced urban network, since the price fluctuations force demand to change towards
less expensive intersections. Such fluctuations contribute to creating a system in dynamic
equilibrium, where unused intersections became cheaper while congested ones became more
expensive. The effect is that average travel time decreases, although there are no guarantees
that those drivers that pay more are rewarded with lower travel times.

14. We empirically noticed in the experiments that the southern part of the network tends to be more
congested during the simulation. This is due to the fact that 4 of 7 origins/destinations (O3, O4, O5,
O6) are located in the southern part.
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Destination
O1 O2 O3 O4 O5 O6 O7

Origin

CTA - 12.09
± 0.27

19.58
± 0.80

26.70
± 1.04

30.75
± 0.83

21.17
± 0.20

14.13
± 0.12

O1 FCFS - 11.98
± 0.31

22.89
± 1.17

35.13
± 1.80

43.57
± 1.89

21.35
± 0.40

13.83
± 0.09

%∆ - -0.8% 14.4% 24.0% 29.4% 0.8% -2.2%

CTA 11.26
± 0.17

- 14.17
± 0.72

19.02
± 0.66

23.72
± 0.83

24.00
± 0.40

20.88
± 0.23

O2 FCFS 10.15
± 0.06

- 16.50
± 1.06

25.87
± 1.51

31.05
± 2.03

38.09
± 1.82

19.51
± 0.15

%∆ -11.0% - 14.1% 26.5% 23.6% 37.0% -7.0%

CTA 15.57
± 0.33

10.79
± 0.14

- 9.18
± 0.08

13.99
± 0.37

18.54
± 0.32

24.95
± 0.42

O3 FCFS 13.35
± 0.09

9.76
± 0.03

- 12.21
± 0.62

17.64
± 0.92

23.69
± 6.34

31.73
± 1.36

%∆ -16.7% -10.6% - 24.8% 20.7% 21.7% 21.4%

CTA 24.79
± 0.77

20.39
± 0.60

11.62
± 0.41

- 8.21
± 0.27

14.35
± 0.48

21.66
± 0.75

O4 FCFS 26.94
± 1.31

22.58
± 1.06

13.92
± 0.82

- 10.05
± 0.48

15.74
± 0.73

22.74
± 0.99

%∆ 8.0% 9.7% 16.5% - 18.3% 8.8% 4.8%

CTA 26.80
± 0.84

22.83
± 0.71

16.30
± 0.67

7.47
± 0.20

- 11.11
± 0.24

19.47
± 0.63

O5 FCFS 32.17
± 1.83

30.61
± 1.70

21.54
± 1.39

8.83
± 0.31

- 10.77
± 0.26

17.66
± 0.52

%∆ 16.7% 25.4% 24.3% 15.4% - -3.1% -10.3%

CTA 23.17
± 0.50

27.31
± 0.55

25.30
± 0.89

16.40
± 0.73

12.12
± 0.46

- 16.58
± 0.89

O6 FCFS 22.51
± 0.40

57.01
± 3.13

41.05
± 2.59

24.68
± 1.62

19.02
± 1.50

- 13.73
± 0.32

%∆ -2.9% 52.1% 38.4% 33.6% 36.3% - -20.8%

CTA 15.05
± 0.22

23.52
± 0.33

31.67
± 0.82

24.44
± 0.97

19.12
± 0.69

11.69
± 0.11

-

O7 FCFS 14.31
± 0.10

23.26
± 0.40

56.42
± 3.01

34.99
± 2.15

31.24
± 2.06

12.00
± 0.20

-

%∆ -5.2% -1.1% 43.9% 30.2% 38.8% 2.5% -

Table 3: Average travel time in minutes (± 95%CI): CTA vs. FCFS
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Figure 12: Density variation over time at the critical intersections under evaluation
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5.2 An Integrated Mechanism for Traffic Management (CA-CTA)

In Section 4.1, we introduced an auction-based policy for the control of a single intersection.
The experimental results showed that this policy was quite effective in allocating the reser-
vations to the drivers that value them the most. Drivers that bid high usually experience
a great reduction in delay (about 30%), compared to those drivers that submit low-value
bids. However, this policy on its own showed a couple of drawbacks. First, it fosters the
attainment of a user optimum rather than a global one. It therefore pays a social price, in
the form of greater average delay for the entire population of drivers. Furthermore, it is
possible that even wealthy drivers, in high-load situations, could not get a reservation, for
example due to the decreasing reservation distance.

On the other hand, one of the results of the experimental evaluation of Section 5.1 was
that a traffic assignment strategy can make the task of traffic controllers easier, enforcing
a better distribution of traffic demand. Therefore, it seems reasonable to combine the
auction-based policy with the competitive traffic assignment strategy into an integrated,
market-inspired, mechanism for traffic management.

5.2.1 CA-CTA Mechanism

We adapt the competitive traffic assignment strategy (CTA) to combine it with the auction-
based policy (CA) into an integrated mechanism for traffic management (CA-CTA). Since
the intersection manager is the supplier of the reservations that are allocated through the
combinatorial auction, it may control the reserve price of the auctioned reservations, i.e.,
the minimum price at which the intersection manager is willing to sell. We model the
intersection managers in such a way that they compete for the provision of reservations
to the drivers, raising the reserve price in case of increasing demand or lowering it in case
of decreasing demand. The reservations are allocated through the CA policy defined in
Section 4.1. However, only bids whose value is above the reserve price are accepted in the
bid set.

For each incoming link l of a generic intersection, the intersection manager independently
computes the excess demand zt(l | pt

r(l)) and updates the reserve price pt
r(l) using the

formula:

pt+1
r (l) ← max

[
δr, pt

r(l) + pt
r(l) ·

zt(l | pt
r(l))

s(l)

]
(15)

where δr is the minimum reserve price, and s(l) is the number of vehicles that the intersection
manager is willing to serve. As in Section 5.1, we choose δr = 0 and s(l) = 0.5 · µopt · $(l),
where $(l) is the length of link l, and µopt is the density that maximises the traffic flow on
link l (see Figure 10).

5.2.2 Driver Model

To empirically evaluate CA-CTA we need to define a driver route choice model that takes
into consideration the fact that reservations are now allocated through a combinatorial
auction with a reserve price. We assume that each driver holds a private valuation of the
bids that it is willing to submit to pass through the intersections of its chosen route, defined
by the variable b. Given the monetary constraint, the driver selects the most preferred route
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ρ, taking into consideration the estimated travel time associated with the route. A route ρ
is modelled again as an ordered list of links, ρ = [l1 . . . lN ], each of them characterised by
two attributes, namely estimated travel time and reserve price.

The travel time estimation is based, as before, on the travel time at free flow (Equa-
tion 5). The reserve price of a link is defined as:

K(lk) =
{

pt
r(l) if lk = l ∈ L

0 otherwise (16)

The price of link lk is always 0, unless the link lk is one of the incoming link of an intersection
(lk = l), in which case the price is equal to the reserve price pt

r(l) established by the
intersection manager. The summatory of the travel time over all the links of ρ gives the
estimated travel time at free flow of the entire route ρ:

E[T (ρ)] =
N∑

k=1

E[T (lk)] (17)

Given b, the driver builds the choice-set C as the set of the routes whose intersections have
a reserve price lower than the desired bid b:

C =
{
ρ1, . . . , ρM | K(lk) ≤ b ∀lk ∈ ρi

}

Once the choice-set is built, the driver selects the shortest route ρ = argmin
ρi∈C

E[T (ρi)].

5.2.3 Experimental Results

We again recreate a typical high load situation, using the same network topology and OD
matrix of Figure 11 and Table 2. We are interested in two different types of properties. From
one side we must evaluate whether or not the integrated management mechanism (traffic
control+traffic assignment) guarantees lower delays to the drivers that submit higher bids
(user optimum). For this purpose, we calculate the average (percentage) increase of the
travel times D, calculated according to Equation 18, where T (ρi) is the observed travel
time for vehicle i from its origin to its destination along route ρi, and mT is the travel time
from the same origin to the same destination along the shortest route if the vehicle could
cross each intersection unhindered15. For simplicity, we refer to the percentage increase of
the travel time as normalised delay.

D =
T (ρi) − mT

mT
(18)

On the other hand, we would like to set up a system that is fair to the entire population
of drivers, guaranteeing lower average delays (global optimum). Thus, we compare our
integrated mechanism with a network of intersections governed by intersection managers
that apply the FCFS control policy. We assume that in this case the drivers choose the
shortest route from their origin to their destination, since there are no other incentives to

15. This ratio enables us to aggregate the results of drivers even though they have different origins and/or
destinations.
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Figure 13: Relation between normalised delay and bid (a) and moving average of travel
time (b)

diverge from that route. The aim is to evaluate the global performance (in terms of average
travel time) of our integrated mechanism compared to the straightforward application of the
FCFS policy to a network of intersections, and to detect any potential social cost similar
to that reported in Section 4.3. The metrics we use to assess the performance are the
average delay for every O-D pair, and the moving average of the travel time. The latter
is intended to measure how the average travel time evolves during the simulation. This
metric is initialised to 0 and calculated as follows: once a driver i concludes its trip, the
travel time T (ρi) is computed and the moving average travel time T is updated according
to Equation 19, where n is the number of drivers that have completed their trips so far.

T = T +
T (ρi) − T

n + 1
(19)

In the following tables and figures we refer to the two configurations with the abbreviations
CA-CTA (which stands for “combinatorial auction-competitive traffic assignment”) and
FCFS.

Figure 13a plots the relation between bid value and normalised delay of the population
of drivers16. It is still possible to appreciate an inverse relation between these two quan-
tities: the drivers that submit bids between 150 and 200 cents reduce the delay by about
50% compared to those which bid less than 50 cents. Also at the network level, granting
reservations with a combinatorial auction (the “CA” component of the CA-CTA policy)
ensures that those drivers that submit higher bids experience lower delays (user optimum).

To assess the social cost incurred by CA-CTA at the global level, we measure the moving
average of the travel time, that is, how the average travel time of the entire population of
drivers, computed over all the O-D pairs, evolves during the simulation. We compare CA-
CTA with FCFS and, for completeness, with CTA17. The results, with 95% confidence

16. The error bars denote 95% confidence intervals.
17. In order to evaluate CA-CTA and CTA under the same experimental conditions we ran a new set of

experiments using CTA in combination with the driver model detailed in Section 5.2.2.
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Destination
O1 O2 O3 O4 O5 O6 O7

Origin

CA-CTA - 12.22
± 0.26

13.65
± 0.31

25.12
± 3.40

27.13
± 2.03

23.13
± 0.34

13.75
± 0.11

O1 FCFS - 11.98
± 0.31

22.89
± 1.17

35.13
± 1.80

43.57
± 1.89

21.35
± 0.40

13.83
± 0.09

%∆ - -2.0% 40.3% 28.5% 37.7% -8.3% 0.5%

CA-CTA 12.16
± 0.21

- 10.51
± 0.14

19.58
± 1.38

24.17
±1.74

26.54
± 0.67

22.21
± 0.37

O2 FCFS 10.15
± 0.06

- 16.50
± 1.06

25.87
± 1.51

31.05
± 2.03

38.09
± 1.82

19.51
± 0.15

%∆ -19.8% - 36.4% 24.3% 22.1% 30.3% -13.8%

CA-CTA 15.05
± 0.69

12.51
± 0.62

- 9.01
± 0.22

13.27
± 0.46

18.72
± 0.68

26.76
± 1.02

O3 FCFS 13.35
± 0.09

9.76
± 0.03

- 12.21
± 0.62

17.64
± 0.92

23.69
± 6.34

31.73
± 1.36

%∆ -12.7% -28.2% - 26.2% 24.8% 21% 15.7%

CA-CTA 20.79
± 1.23

18.45
± 0.93

10.52
± 0.41

- 7.32
± 0.15

13.02
± 1.02

23.12
± 1.53

O4 FCFS 26.94
± 1.31

22.58
± 1.06

13.92
± 0.82

- 10.05
± 0.48

15.74
± 0.73

22.74
± 0.99

%∆ 22.8% 18.3% 24.4% - 27.2% 17.3% -1.7%

CA-CTA 24.59
± 1.10

20.82
± 1.26

12.62
± 0.63

7.91
± 0.48

- 10.01
± 0.28

21.88
± 1.41

O5 FCFS 32.17
± 1.83

30.61
± 1.70

21.54
± 1.39

8.83
± 0.31

- 10.77
± 0.26

17.66
± 0.52

%∆ 23.6% 32.0% 41.4% 10.4% - 7.0% -23.9%

CA-CTA 25.08
± 1.53

26.72
± 0.40

18.12
± 1.26

15.78
± 1.35

10.85
± 0.28

- 14.55
± 0.69

O6 FCFS 22.51
± 0.40

57.01
± 3.13

41.05
± 2.59

24.68
± 1.62

19.02
± 1.50

- 13.73
± 0.32

%∆ -11.4% 53.1% 55.8% 36.1% 42.9% - -6.0%

CA-CTA 15.73
± 0.32

24.18
± 0.52

22.12
± 2.28

26.86
± 2.59

16.81
± 0.99

11.43
± 0.29

-

O7 FCFS 14.31
± 0.10

23.26
± 0.40

56.42
± 3.01

34.99
± 2.15

31.24
± 2.06

12.00
± 0.20

-

%∆ -9.9% -3.9% 60.8% 23.2% 46.2% 4.7% -

Table 4: Average travel time in minutes (± 95%CI): CA-CTA vs. FCFS

interval error bars, are plotted in Figure 13b. In the beginning, the average travel time
is similar for all the scenarios, but as the number of drivers that populate the network
(i.e., its load) increases, it grows significantly faster with FCFS than with the CA-CTA
policy. In terms of average travel times CTA is the best performing policy. CA-CTA has a
slightly inferior performance, but it does enforce an inverse relationship between bid value
and delay (see Figure 13a). The fact that both CA-CTA and CTA outperforms FCFS
is an indication that, in general, a traffic assignment strategy (the “CTA” component of
both policies) improves travel time. In fact, with FCFS drivers always select the shortest
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route, which in some cases is not the best route choice. Furthermore, granting reservations
through an auction (the “CA” component of the CA-CTA policy) ensures that bid value
and delay reduction are correlated.

Table 4 shows the average travel time of the drivers, according to their O-D pairs, when
the intersection managers use the CA-CTA mechanism, compared to the FCFS policy.
With CA-CTA, there is a net reduction of the average travel time for more than 70% of the
O-D pairs if compared to FCFS. Furthermore, at the 30 intersections at which CA-CTA
outperforms FCFS, the relative improvement (%∆) is usually more substantial than the
relative losses at the remaining 12 intersections. The travel time reduction is particularly
noteworthy for the busy routes O6-O2, O6-O3 and O7-O3 with gains that exceed 50%. On
the O-D pairs on which CA-CTA performs worst (especially O5-O7 and O3-O2, with losses
of more than 20%) the assignment strategy is not able to sufficiently reduce demand at
the intersection, thus considerably increasing the travel time due to the social cost of the
combinatorial auction.

6. Conclusions

In this article we studied a distributed mechanism for the control and management of a
future urban road network, where intelligent autonomous vehicles, controlled by drivers,
interact with the infrastructure in order to travel on the links of the network. In this last
section we summarise and discuss the main contributions, and we propose some future lines
of work.

The first objective was the extension of the reservation-based intersection control sys-
tem (Dresner & Stone, 2008). We focused on modelling a policy that relied on the theory of
combinatorial auctions (Krishna, 2002) to allocate reservations to the drivers. From empir-
ical experimentation, we discovered that the combinatorial auction-based policy guarantees
reduced delay to those drivers that value their time the most, i.e., those that submit higher
bids. However, this new policy showed that it paid a social cost, in term of greater average
delays, especially when traffic demand was high.

The second objective of this work was to go beyond the single intersection setting, and
extending the reservation-based model to a network of intersections. Building on the findings
reported by Vasirani and Ossowski (2011), we realised that a traffic assignment strategy
could make the task of a traffic control policy easier, by better distributing the traffic flow
in the network. We studied a market-inspired traffic assignment strategy that tackled the
problem from the adaptation perspective. In this model, the intersection managers behaved
selfishly, competing with all the others for the supply of the reservations at the intersections.
The experimental evaluation showed that in this way the available resources were efficiently
allocated to the drivers, generating a more balanced network.

Finally, we combined the competitive strategy for traffic assignment with the auction-
based policy for traffic control, in order to develop an adaptive, market-inspired, mechanism
for traffic management. The demand-response pricing policy acted on the distribution of
vehicles in the network, adapting the reserve price (i.e., the minimum price at which the
intersection manager is willing to sell) and generating a system in dynamic equilibrium,
where unused intersections became cheaper while highly demanded ones became more ex-
pensive. If demand at particularly disputed intersections was lowered by the reserve price
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fluctuations, the social cost of the auction-based control policy was lowered too (at intersec-
tion level). Therefore, a more homogeneous distribution of vehicles over the network led to
a better use of network resources, and thus to lower average travel times. In this way, the
entire population of drivers was rewarded with lower average travel times and, at the same
time, the traffic control policy enforced an inverse relation between bid value and delay,
rewarding the drivers that valued the reservations the most with reduced delays.

For future work, other economic models can be implemented, such as continuous double
auctions. Furthermore, this work assumed a driver decision making model that exclusively
took into consideration the route choice, which was modelled as a utility maximisation
problem. In order to capture the inherent complexity of urban traffic systems, it is important
to extend and enrich the driver behavioural model. For example, the driver could be
implemented as a two layer decision maker, where a reactive, rule-based layer provides
short-term decisions about car-following and lane-changing, and a cognitive, BDI-style,
layer is in charge of making the more complex decisions such as route choice and departure
time selection (Rossetti, Bampi, Liu, Vliet, & Cybis, 2000).

Finally, in this article only interactions between the vehicles and the infrastructure take
place. Thus, no collaboration at all is possible between vehicles. Nevertheless, vehicle-to-
vehicle communication is receiving great attention from the scientific and engineering com-
munity (Biswas, Tatchikou, & Dion, 2006). In particular, vehicle-to-vehicle communication
could be used to enrich the action space of a driver, e.g. through the option of dynamically
joining or abandoning coalitions of vehicles, based on the idea of platoons (Varaiya, 1993).
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