
Journal of Artificial Intelligence Research 45 (2012) 305-362 Submitted 4/12; published 10/12

A Tutorial on Dual Decomposition and Lagrangian Relaxation for
Inference in Natural Language Processing

Alexander M. Rush SRUSH@CSAIL.MIT.EDU

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Michael Collins MCOLLINS@CS.COLUMBIA.EDU

Department of Computer Science
Columbia University
New York, NY 10027, USA

Abstract
Dual decomposition, and more generally Lagrangian relaxation, is a classical method for com-

binatorial optimization; it has recently been applied to several inference problems in natural lan-
guage processing (NLP). This tutorial gives an overview of the technique. We describe example al-
gorithms, describe formal guarantees for the method, and describe practical issues in implementing
the algorithms. While our examples are predominantly drawn from the NLP literature, the material
should be of general relevance to inference problems in machine learning. A central theme of this
tutorial is that Lagrangian relaxation is naturally applied in conjunction with a broad class of com-
binatorial algorithms, allowing inference in models that go significantly beyond previous work on
Lagrangian relaxation for inference in graphical models.

1. Introduction

In many problems in statistical natural language processing, the task is to map some input x (e.g., a
string) to some structured output y (e.g., a parse tree). This mapping is often defined as

y∗ = argmax
y∈Y

h(y) (1)

where Y is a finite set of possible structures for the input x, and h : Y → R is a function that assigns
a score h(y) to each y in Y . For example, in part-of-speech tagging, x would be a sentence, and Y
would be the set of all possible tag sequences for x; in parsing, x would be a sentence and Y would
be the set of all parse trees for x; in machine translation, x would be a source-language sentence
and Y would be the set of all possible translations for x. The problem of finding y∗ is referred to
as the decoding problem. The size of Y typically grows exponentially with respect to the size of
the input x, making exhaustive search for y∗ intractable.

This paper gives an overview of decoding algorithms for NLP based on dual decomposition,
and more generally, Lagrangian relaxation. Dual decomposition leverages the observation that
many decoding problems can be decomposed into two or more sub-problems, together with linear
constraints that enforce some notion of agreement between solutions to the different problems.
The sub-problems are chosen such that they can be solved efficiently using exact combinatorial

c©2012 AI Access Foundation. All rights reserved.

RUSH & COLLINS

algorithms. The agreement constraints are incorporated using Lagrange multipliers, and an iterative
algorithm—for example, a subgradient algorithm—is used to minimize the resulting dual. Dual
decomposition algorithms have the following properties:

• They are typically simple and efficient. For example, subgradient algorithms involve two
steps at each iteration: first, each of the sub-problems is solved using a combinatorial algo-
rithm; second, simple additive updates are made to the Lagrange multipliers.

• They have well-understood formal properties, in particular through connections to linear pro-
gramming (LP) relaxations.

• In cases where the underlying LP relaxation is tight, they produce an exact solution to the
original decoding problem, with a certificate of optimality.1 In cases where the underlying LP
is not tight, heuristic methods can be used to derive a good solution; alternatively, constraints
can be added incrementally until the relaxation is tight, at which point an exact solution is
recovered.

Dual decomposition, where two or more combinatorial algorithms are used, is a special case of
Lagrangian relaxation (LR). It will be useful to also consider LR methods that make use of a single
combinatorial algorithm, together with a set of linear constraints that are again incorporated using
Lagrange multipliers. The use of a single combinatorial algorithm is qualitatively different from
dual decomposition approaches, although the techniques are very closely related.

Lagrangian relaxation has a long history in the combinatorial optimization literature, going back
to the seminal work of Held and Karp (1971), who derive a relaxation algorithm for the traveling
salesman problem. Initial work on Lagrangian relaxation/dual decomposition for decoding in sta-
tistical models focused on the MAP problem in Markov random fields (Komodakis, Paragios, &
Tziritas, 2007, 2011). More recently, decoding algorithms have been derived for several models
in statistical NLP, including models that combine a weighted context-free grammar (WCFG) with
a finite-state tagger (Rush, Sontag, Collins, & Jaakkola, 2010); models that combine a lexicalized
WCFG with a discriminative dependency parsing model (Rush et al., 2010); head-automata models
for non-projective dependency parsing (Koo, Rush, Collins, Jaakkola, & Sontag, 2010); alignment
models for statistical machine translation (DeNero & Macherey, 2011); models for event extraction
(Riedel & McCallum, 2011); models for combined CCG parsing and supertagging (Auli & Lopez,
2011); phrase-based models for statistical machine translation (Chang & Collins, 2011); syntax-
based models for statistical machine translation (Rush & Collins, 2011); models for semantic pars-
ing (Das, Martins, & Smith, 2012); models for parsing and tagging that make use of document-level
constraints (Rush, Reichart, Collins, & Globerson, 2012); models for the coordination problem in
natural language parsing (Hanamoto, Matsuzaki, & Tsujii, 2012); and models based on the inter-
section of weighted automata (Paul & Eisner, 2012). We will give an overview of several of these
algorithms in this paper.

While our focus is on examples from natural language processing, the material in this tutorial
should be of general relevance to inference problems in machine learning. There is clear relevance
to the problem of inference in graphical models, as described for example by Komodakis et al.
(2007, 2011); however one central theme of this tutorial is that Lagrangian relaxation is naturally

1. A certificate of optimality is information that allows a proof of optimality of the solution to be constructed in poly-
nomial time.

306

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

applied in conjunction with a much broader class of combinatorial algorithms than max-product
belief propagation, allowing inference in models that go significantly beyond graphical models.

The remainder of this paper is structured as follows. Section 2 describes related work. Section 3
gives a formal introduction to Lagrangian relaxation. Section 4 describes a dual decomposition
algorithm (from Rush et al., 2010) for decoding a model that combines a weighted context-free
grammar with a finite-state tagger. This algorithm will be used as a running example throughout
the paper. Section 5 describes formal properties of dual decomposition algorithms. Section 6 gives
further examples of algorithms, and section 7 describes practical issues. Section 8 gives an overview
of work on alternative optimization methods to the subgradient methods described in this tutorial.
Finally, section 9 describes the relationship to LP relaxations, and describes tightening methods.

2. Related Work

This tutorial draws on ideas from the fields of combinatorial optimization, machine learning, and
natural language processing. In this section, we give a summary of work from these fields that is
relevant to the methods we will describe.

2.1 Combinatorial Optimization

Lagrangian relaxation (LR) is a widely used method in combinatorial optimization, going back
to the seminal work of Held and Karp (1971) on the traveling salesman problem. See the work
of Lemaréchal (2001) and Fisher (1981) for surveys of LR methods, and the textbook of Korte
and Vygen (2008) for background on combinatorial optimization. Decomposing linear and integer
linear programs is also a fundamental technique in the optimization community (Dantzig & Wolfe,
1960; Everett III, 1963). There is a very direct relationship between LR algorithms and linear
programming relaxations of combinatorial optimization problems; again, see the textbook of Korte
and Vygen.

2.2 Belief Propagation, and Linear Programming Relaxations for Inference in MRFs

There has been a large amount of research on the MAP inference problem in Markov random fields
(MRFs). For tree-structured MRFs, max-product belief propagation (max-product BP) (Pearl, 1988)
gives exact solutions. (Max-product BP is a form of dynamic programming, which is closely re-
lated to the Viterbi algorithm.) For general MRFs where the underlying graph may contain cycles,
the MAP problem is NP-hard: this has led researchers to consider a number of approximate in-
ference algorithms. Early work considered loopy variants of max-product BP (see for example
Felzenszwalb & Huttenlocher, 2006, for the application of loopy max-product BP to problems in
computer vision); however, these methods are heuristic, lacking formal guarantees.

More recent work has considered methods based on linear programming (LP) relaxations of the
MAP problem. See the work of Yanover, Meltzer, and Weiss (2006), or section 1.6 of the work of
Sontag, Globerson, and Jaakkola (2010), for a description. Methods based on LP relaxations have
the benefit of stronger guarantees than loopy belief propagation. Inference is cast as an optimization
problem, for example the problem of minimizing a dual. Since the dual problem is convex, con-
vergence results from convex optimization and linear programming can be leveraged directly. One
particularly appealing feature of these methods is that certificates of optimality can be given when
the exact solution to the MAP problem is found.

307

RUSH & COLLINS

Komodakis et al. (2007, 2011) describe a dual decomposition method that provably optimizes
the dual of an LP relaxation of the MAP problem, using a subgradient method. This work is a
crucial reference for this tutorial. (Note that in addition, Johnson, Malioutov, & Willsky, 2007, also
describes LR methods for inference in MRFs.)

In this tutorial we focus on subgradient algorithms for optimization of the dual objective. See
section 8 for a discussion of alternative optimization approaches that have been developed within
the machine learning community.

2.3 Combinatorial Algorithms in Belief Propagation

A central idea in the algorithms we describe is the use of combinatorial algorithms other than max-
product BP. This idea is closely related to earlier work on the use of combinatorial algorithms within
belief propagation, either for the MAP inference problem (Duchi, Tarlow, Elidan, & Koller, 2007),
or for computing marginals (Smith & Eisner, 2008). These methods generalize loopy BP in a way
that allows the use of combinatorial algorithms. Again, we argue that methods based on Lagrangian
relaxation are preferable to variants of loopy BP, as they have stronger formal guarantees.

2.4 Linear Programs for Decoding in Natural Language Processing

Dual decomposition and Lagrangian relaxation are closely related to integer linear programming
(ILP) approaches, and linear programming relaxations of ILP problems. Several authors have
used integer linear programming directly for solving challenging problems in NLP. Germann, Jahr,
Knight, Marcu, and Yamada (2001) use ILP to test the search error of a greedy phrase-based trans-
lation system on short sentences. Roth and Yih (2005) formulate a constrained sequence labeling
problem as an ILP and decode using a general-purpose solver. Lacoste-Julien, Taskar, Klein, and
Jordan (2006) describe a quadratic assignment problem for bilingual word alignment and then de-
code using an ILP solver. Both the work of Riedel and Clarke (2006) and Martins, Smith, and Xing
(2009) formulates higher-order non-projective dependency parsing as an ILP. Riedel and Clarke de-
code using an ILP method where constraints are added incrementally. Martins et al. solve an LP
relaxation and project to a valid dependency parse. Like many of these works, the method presented
in this tutorial begins with an ILP formulation of the decoding problem; however, instead of em-
ploying a general-purpose solver we aim to speed up decoding by using combinatorial algorithms
that exploit the underlying structure of the problem.

3. Lagrangian Relaxation and Dual Decomposition

This section first gives a formal description of Lagrangian relaxation, and then gives a description
of dual decomposition, an important special case of Lagrangian relaxation. The descriptions we
give are deliberately concise. The material in this section is not essential to the remainder of this
paper, and may be safely skipped by the reader, or returned to in a second reading. However the
descriptions here may be useful for those who would like to immediately see a formal treatment of
Lagrangian relaxation and dual decomposition. All of the algorithms in this paper are special cases
of the framework described in this section.

308

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

3.1 Lagrangian Relaxation

We assume that we have some finite set Y , which is a subset of Rd. The score associated with any
vector y ∈ Y is

h(y) = y · θ
where θ is also a vector in Rd. The decoding problem is to find

y∗ = argmax
y∈Y

h(y) = argmax
y∈Y

y · θ (2)

Under these definitions, each structure y is represented as a d-dimensional vector, and the score
for a structure y is a linear function, namely y · θ. In practice, in structured prediction problems y is
very often a binary vector (i.e., y ∈ {0, 1}d) representing the set of parts2 present in the structure y.
The vector θ then assigns a score to each part, and the definition h(y) = y · θ implies that the score
for y is a sum of scores for the parts it contains.

We will assume that the problem in Eq. 2 is computationally challenging. In some cases, it
might be an NP-hard problem. In other cases, it might be solvable in polynomial time, but with an
algorithm that is still too slow to be practical.

The first key step in Lagrangian relaxation will be to choose a finite set Y ′ ⊂ Rd that has the
following properties:

• Y ⊂ Y ′. Hence Y ′ contains all vectors found in Y , and in addition contains some vectors that
are not in Y .

• For any value of θ ∈ Rd, we can easily find

argmax
y∈Y ′

y · θ

(Note that we have replaced Y in Eq. 2 with the larger set Y ′.) By “easily” we mean that this
problem is significantly easier to solve than the problem in Eq. 2. For example, the problem
in Eq. 2 might be NP-hard, while the new problem is solvable in polynomial time; or both
problems might be solvable in polynomial time, but with the new problem having significantly
lower complexity.

• Finally, we assume that
Y = {y : y ∈ Y ′ and Ay = b} (3)

for some A ∈ Rp×d and b ∈ Rp. The condition Ay = b specifies p linear constraints on y.
We will assume that the number of constraints, p, is polynomial in the size of the input.

The implication here is that the linear constraints Ay = b need to be added to the set Y ′, but these
constraints considerably complicate the decoding problem. Instead of incorporating them as hard
constraints, we will deal with these constraints using Lagrangian relaxation.

2. For example, in context-free parsing each part might correspond to a tuple 〈A → B C, i, k, j〉 where A → B C is
a context-free rule, and i, k, j are integers specifying that non-terminal A spans words i . . . j in the input sentence,
non-terminal B spans words i . . . k, and non-terminal C spans words (k + 1) . . . j. In finite-state tagging with a
bigram tagging model each part might be a tuple 〈A,B, i〉 whereA,B are tags, and i is an integer specifying that tag
B is seen at position i in the sentence, and that tag A is seen at position (i − 1). See the work of Rush et al. (2010)
for a detailed treatment of both of these examples.

309

RUSH & COLLINS

We introduce a vector of Lagrange multipliers, u ∈ Rp. The Lagrangian is

L(u, y) = y · θ + u · (Ay − b)

This function combines the original objective function y · θ, with a second term that incorporates
the linear constraints and the Lagrange multipliers. The dual objective is

L(u) = max
y∈Y ′

L(u, y)

and the dual problem is to find
min
u∈Rp

L(u)

A common approach—which will be used in all algorithms in this paper—is to use a subgradient
algorithm to minimize the dual. We set the initial Lagrange multiplier values to be u(0) = 0. For
k = 1, 2, . . . we then perform the following steps:

y(k) = argmax
y∈Y ′

L(u(k−1), y) (4)

followed by
u(k) = u(k−1) − δk(Ay(k) − b) (5)

where δk > 0 is the step size at the k’th iteration. Thus at each iteration we first find a structure
y(k), and then update the Lagrange multipliers, where the updates depend on y(k).

A crucial point is that y(k) can be found efficiently, because

argmax
y∈Y ′

L(u(k−1), y) = argmax
y∈Y ′

(
y · θ + u(k−1) · (Ay − b)

)
= argmax

y∈Y ′
y · θ′

where θ′ = θ + A>u(k−1). Hence the Lagrange multiplier terms are easily incorporated into the
objective function.

We can now state the following theorem:

Theorem 1 The following properties hold for Lagrangian relaxation:

a). For any u ∈ Rp, L(u) ≥ maxy∈Y h(y).

b). Under a suitable choice of the step sizes δk (see section 5), limk→∞ L(u(k)) = minu L(u).

c). Define yu = argmaxy∈Y ′ L(u, y). If ∃u such that Ayu = b, then yu = argmaxy∈Y y · θ (i.e.,
yu is optimal).

In particular, in the subgradient algorithm described above, if for any k we have Ay(k) = b,
then y(k) = argmaxy∈Y y · θ.

d). minu L(u) = maxµ∈Q µ · θ, where the set Q is defined below.

310

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Thus part (a) of the theorem states that the dual value provides an upper bound on the score for the
optimal solution, and part (b) states that the subgradient method successfully minimizes this upper
bound. Part (c) states that if we ever reach a solution y(k) that satisfies the linear constraints, then
we have solved the original optimization problem.

Part (d) of the theorem gives a direct connection between the Lagrangian relaxation method and
an LP relaxation of the problem in Eq. 2. We now define the set Q. First, define ∆ to be the set of
all distributions over the set Y ′:

∆ = {α : α ∈ R|Y
′|,
∑
y∈Y ′

αy = 1,∀y 0 ≤ αy ≤ 1}

The convex hull of Y ′ is then defined as

Conv(Y ′) = {µ ∈ Rd : ∃α ∈ ∆ s.t. µ =
∑
y∈Y ′

αyy}

Finally, define the set Q as follows:

Q = {y : y ∈ Conv(Y ′) and Ay = b}

Note the similarity to Eq. 3: we have simply replaced Y ′ in Eq. 3 by the convex hull of Y ′. Y ′ is a
subset of Conv(Y ′), and hence Y is a subset ofQ. A consequence of the Minkowski-Weyl theorem
(Korte & Vygen, 2008, Thm. 3.31) is that Conv(Y ′) is a polytope (a bounded set that is specified by
an intersection of a finite number of half spaces), and Q is therefore also a polytope. The problem

max
µ∈Q

µ · θ

is therefore a linear program, and is a relaxation of our original problem, maxy∈Y y · θ.
Part (d) of theorem 1 is a direct consequence of duality in linear programming. It has the

following implications:

• By minimizing the dual L(u), we will recover the optimal value maxµ∈Q µ · θ of the LP
relaxation.

• If maxµ∈Q µ · θ = maxy∈Y y · θ then we say that the LP relaxation is tight. In this case the
subgradient algorithm is guaranteed3 to find the solution to the original decoding problem,

y∗ = argmax
µ∈Q

µ · θ = argmax
y∈Y

y · θ

• In cases where the LP relaxation is not tight, there are methods (e.g., see Nedić & Ozdaglar,
2009) that allow us to recover an approximate solution to the linear program, µ∗ = argmaxµ∈Q µ·
θ. Alternatively, methods can be used to tighten the relaxation until an exact solution is ob-
tained.

3. Under the assumption that there is unique solution y∗ to the problem maxy∈Y y · θ; if the solution is not unique then
subtleties may arise.

311

RUSH & COLLINS

3.2 Dual Decomposition

We now give a formal description of dual decomposition. As we will see, dual decomposition is
a special case of Lagrangian relaxation;4 however, it is important enough for the purposes of this
tutorial to warrant its own description. Again, this section is deliberately concise, and may be safely
skipped on a first reading.

We again assume that we have some finite set Y ⊂ Rd. Each vector y ∈ Y has an associated
score

f(y) = y · θ(1)

where θ(1) is a vector in Rd. In addition, we assume a second finite set Z ⊂ Rd
′
, with each vector

z ∈ Z having an associated score
g(z) = z · θ(2)

The decoding problem is then to find

argmax
y∈Y,z∈Z

y · θ(1) + z · θ(2)

such that
Ay + Cz = b

where A ∈ Rp×d, C ∈ Rp×d
′
, b ∈ Rp.

Thus the decoding problem is to find the optimal pair of structures, under the linear constraints
specified by Ay + Cz = b. In practice, the linear constraints often specify agreement constraints
between y and z: that is, they specify that the two vectors are in some sense coherent.

For convenience, and to make the connection to Lagrangian relaxation clear, we will define the
following sets:

W = {(y, z) : y ∈ Y, z ∈ Z, Ay + Cz = b}
W ′ = {(y, z) : y ∈ Y, z ∈ Z}

It follows that our decoding problem is to find

argmax
(y,z)∈W

(
y · θ(1) + z · θ(2)

)
(6)

Next, we make the following assumptions:

4. Strictly speaking, Lagrangian relaxation can also be viewed as a special case of dual decomposition: in the formula-
tion of this section we can set Z = Y , θ(2) = 0, and Ci,j = 0 for all i, j, thus recovering the Lagrangian relaxation
problem from the previous section. In this sense Lagrangian relaxation and dual decomposition are equivalent (we
can transform any Lagrangian relaxation problem to a dual decomposition problem, and vice versa). However, in our
view dual decomposition is more naturally viewed as a special case of Lagrangian relaxation, in particular because
the methods described in this tutorial go back to the work of Held and Karp (1971) (see section 6.3), which makes
use of a single combinatorial algorithm. In addition, Lagrangian relaxation appears to be a more standard term in
the combinatorial optimization literature: for example the textbook of Korte and Vygen (2008) has a description of
Lagrangian relaxation but no mention of dual decomposition; there are several tutorials on Lagrangian relaxation
in the combinatorial optimization literature (e.g., see Lemaréchal, 2001; Fisher, 1981), but we have found it more
difficult to find direct treatments of dual decompositon. Note however that recent work in the machine learning and
computer vision communities has often used the term dual decomposition (e.g., Sontag et al., 2010; Komodakis et al.,
2007, 2011).

312

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

• For any value of θ(1) ∈ Rd, we can easily find argmaxy∈Y y · θ(1). Furthermore, for any
value of θ(2) ∈ Rd

′
, we can easily find argmaxz∈Z z · θ(2). It follows that for any θ(1) ∈ Rd,

θ(2) ∈ Rd
′
, we can easily find

(y∗, z∗) = argmax
(y,z)∈W ′

y · θ(1) + z · θ(2) (7)

by setting
y∗ = argmax

y∈Y
y · θ(1), z∗ = argmax

z∈Z
z · θ(2)

Note that Eq. 7 is closely related to the problem in Eq. 6, but withW replaced byW ′ (i.e., the
linear constraints Ay + Cz = b have been dropped). By “easily” we again mean that these
optimization problems are significantly easier to solve than our original problem in Eq. 6.

It should now be clear that the problem is a special case of the Lagrangian relaxation setting,
as described in the previous section. Our goal involves optimization of a linear objective, over the
finite setW , as given in Eq. 6; we can efficiently find the optimal value over a setW ′ such thatW
is a subset ofW ′, andW ′ has dropped the linear constraints Ay + Cz = b.

The dual decomposition algorithm is then derived in a similar way to before. We introduce a
vector of Lagrange multipliers, u ∈ Rp. The Lagrangian is now

L(u, y, z) = y · θ(1) + z · θ(2) + u · (Ay + Cz − b)

and the dual objective is
L(u) = max

(y,z)∈W ′
L(u, y, z)

A subgradient algorithm can again be used to find minu∈Rp L(u). We initialize the Lagrange mul-
tipliers to u(0) = 0. For k = 1, 2, . . . we perform the following steps:

(y(k), z(k)) = argmax
(y,z)∈W ′

L(u(k−1), y, z)

followed by
u(k) = u(k−1) − δk(Ay(k) + Cz(k) − b)

where each δk > 0 is a stepsize.
Note that the solutions y(k), z(k) at each iteration are found easily, because it is easily verified

that

argmax
(y,z)∈W ′

L(u(k−1), y, z) =

(
argmax
y∈Y

y · θ′(1), argmax
z∈Z

z · θ′(2),

)

where θ′(1) = θ(1) + A>u(k−1) and θ′(2) = θ(2) + C>u(k−1). Thus the dual decomposes into two
easily solved maximization problems.

The formal properties for dual decomposition are very similar to those stated in theorem 1. In
particular, it can be shown that

min
u∈Rp

L(u) = max
(µ,ν)∈Q

µ · θ(1) + ν · θ(2)

313

RUSH & COLLINS

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet

Figure 1: An example parse tree.

where the set Q is defined as

Q = {(µ, ν) : (µ, ν) ∈ Conv(W ′) and Aµ+ Cν = d}

The problem

max
(µ,ν)∈Q

µ · θ(1) + ν · θ(2)

is again a linear programming problem, and L(u) is the dual of this linear program.

The descriptions of Lagrangian relaxation and dual decomposition that we have given are at a
sufficient level of generality to include a very broad class of algorithms, including all those intro-
duced in this paper. The remainder of this paper describes specific algorithms developed within this
framework, describes experimental results and practical issues that arise, and elaborates more on
the theory underlying these algorithms.

Note that in this section we have described the dual-decomposition approach with two compo-
nents. The generalization to more than two components is relatively straightforward; for example
see the work of Komodakis et al. (2007, 2011), see also the work of Martins, Smith, Figueiredo, and
Aguiar (2011).

4. An Example: Integration of a Parser and a Finite-State Tagger

We next describe a dual decomposition algorithm for decoding under a model that combines a
weighted context-free grammar and a finite-state tagger. The classical approach for this problem
is to use a dynamic programming algorithm, based on the construction of Bar-Hillel, Perles, and
Shamir (1964) for the intersection of a context-free language and a finite-state language. The dual
decomposition algorithm has advantages over exhaustive dynamic programming, in terms of both
efficiency and simplicity. We will use this dual decomposition algorithm as a running example
throughout this tutorial.

We first give a formal definition of the problem, describe motivation for the problem, and de-
scribe the classical dynamic programming approach. We then describe the dual decomposition
algorithm.

314

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

4.1 Definition of the Problem

Consider the problem of mapping an input sentence x to a parse tree y. Define Y to be the set of all
parse trees for x. The parsing problem is to find

y∗ = argmax
y∈Y

h(y) (8)

where h(y) is the score for any parse tree y ∈ Y .
We consider the case where h(y) is the sum of two model scores: first, the score for y under a

weighted context-free grammar; and second, the score for the part-of-speech (POS) sequence in y
under a finite-state part-of-speech tagging model. More formally, we define h(y) to be

h(y) = f(y) + g(l(y)) (9)

where the functions f , g, and l are defined as follows:

1. f(y) is the score for y under a weighted context-free grammar (WCFG). A WCFG consists of
a context-free grammar with a set of rules G, and a scoring function θ : G→ R that assigns a
real-valued score to each rule in G. The score for an entire parse tree is the sum of scores for
the rules it contains. As an example, consider the parse tree shown in Figure 1; for this tree,

f(y) = θ(S→ NP VP) + θ(NP→ N) + θ(N→ United)

+θ(VP→ V NP) + . . .

We remain agnostic as to how the scores for individual context-free rules are defined. As one
example, in a probabilistic context-free grammar, we would define θ(α → β) = log p(α →
β|α). As a second example, in a conditional random field (CRF) (Lafferty, McCallum, &
Pereira, 2001) we would define θ(α → β) = w · φ(α → β) where w ∈ Rq is a parameter
vector, and φ(α→ β) ∈ Rq is a feature vector representing the rule α→ β.

2. l(y) is a function that maps a parse tree y to the sequence of part-of-speech tags in y. For the
parse tree in Figure 1, l(y) would be the sequence N V D A N.

3. g(z) is the score for the part-of-speech tag sequence z under anm’th-order finite-state tagging
model. Under this model, if zi for i = 1 . . . n is the i’th tag in z, then

g(z) =
n∑
i=1

θ(i, zi−m, zi−m+1, . . . , zi)

where θ(i, zi−m, zi−m+1, . . . , zi) is the score for the sub-sequence of tags zi−m, zi−m+1, . . . , zi
ending at position i in the sentence.5

We again remain agnostic as to how these θ terms are defined. As one example, g(z) might
be the log-probability for z under a hidden Markov model, in which case

θ(i, zi−m . . . zi) = log p(zi|zi−m . . . zi−1) + log p(xi|zi)

5. We define zi for i ≤ 0 to be a special “start” POS symbol.

315

RUSH & COLLINS

where xi is the i’th word in the input sentence. As another example, under a CRF we would
have

θ(i, zi−m . . . zi) = w · φ(x, i, zi−m . . . zi)

where w ∈ Rq is a parameter vector, and φ(x, i, zi−m . . . zi) is a feature-vector representation
of the sub-sequence of tags zi−m . . . zi ending at position i in the sentence x.

The motivation for this problem is as follows. The scoring function h(y) = f(y) + g(l(y))
combines information from both the parsing model and the tagging model. The two models capture
fundamentally different types of information: in particular, the part-of-speech tagger captures in-
formation about adjacent POS tags that will be missing under f(y). This information may improve
both parsing and tagging performance, in comparison to using f(y) alone.6

Under this definition of h(y), the conventional approach to finding y∗ in Eq. 8 is to construct
a new context-free grammar that introduces sensitivity to surface bigrams (Bar-Hillel et al., 1964).
Roughly speaking, in this approach (assuming a first-order tagging model) rules such as

VP→ V NP

are replaced with rules such as
VPN,N → VN,V NPV,N (10)

where each non-terminal (e.g., NP) is replaced with a non-terminal that tracks the preceding and last
POS tag relative to that non-terminal. For example, NPV,N represents a NP that dominates a sub-tree
whose preceding POS tag was V, and whose last POS tag is N. The weights on the new rules are just
context-free weights from f(y). Furthermore, rules such as

V→ flies

are replaced with rules such as
VN,V → flies

The weights on these rules are the context-free weights from f(y) plus the bigram tag weights from
g(z), in this example for the bigram N V. A dynamic programming parsing algorithm—for example
the CKY algorithm—can then be used to find the highest scoring structure under the new grammar.

This approach is guaranteed to give an exact solution to the problem in Eq. 8; however it is
often very inefficient. We have greatly increased the size of the grammar by introducing the refined
non-terminals, and this leads to significantly slower parsing performance. As one example, consider
the case where the underlying grammar is a CFG in Chomsky-normal form, with G non-terminals,
and where we use a 2nd order (trigram) tagging model, with T possible part-of-speech tags. Define
n to be the length of the input sentence. Parsing with the grammar alone would take O(G3n3)
time, for example using the CKY algorithm. In contrast, the construction of Bar-Hillel et al. (1964)

6. We have assumed that it is sensible, in a theoretical and/or empirical sense, to take a sum of the scores f(y) and
g(l(y)). This might be the case, for example, if f(y) and g(z) are defined through structured prediction models (e.g.,
conditional random fields), and their parameters are estimated jointly using discriminative methods. If f(y) and g(z)
are log probabilities under a PCFG and HMM respectively, then from a strict probabilistic sense it does not make
sense to combine their scores in this way: however in practice this may work well; for example, this type of log-linear
combination of probabilistic models is widely used in approaches for statistical machine translation.

316

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

results in an algorithm with a run time of O(G3T 6n3).7 The addition of the tagging model leads
to a multiplicative factor of T 6 in the runtime of the parser, which is a very significant decrease
in efficiency (it is not uncommon for T to take values of say 5 or 50, giving values for T 6 larger
than 15, 000 or 15 million). In contrast, the dual decomposition algorithm which we describe next
takes O(k(G3n3 + T 3n)) time for this problem, where k is the number of iterations required for
convergence; in experiments, k is often a small number. This is a very significant improvement in
runtime over the Bar-Hillel et al. method.

4.2 The Dual Decomposition Algorithm

We now introduce an alternative formulation of the problem in Eq. 8, which will lead directly to the
dual decomposition algorithm. Define T to be the set of all POS tags. Assume the input sentence
has n words. For any parse tree y, for any position i ∈ {1 . . . n}, for any tag t ∈ T , we define
y(i, t) = 1 if parse tree y has tag t at position i, y(i, t) = 0 otherwise. Similarly, for any tag
sequence z, we define z(i, t) = 1 if the tag sequence has tag t at position i, 0 otherwise. As an
example, the following parse tree and tag sequence have y(4, A) = 1 and z(4, A) = 1:

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet United1 flies2 some3 large4 jet5

N V D A N

In addition, define Z to be the set of all possible POS tag sequences for the input sentence. We
then introduce the following optimization problem:

Optimization Problem 1 Find
argmax
y∈Y,z∈Z

f(y) + g(z) (11)

such that for all i ∈ {1 . . . n}, for all t ∈ T , y(i, t) = z(i, t).

Thus we now find the best pair of structures y and z such that they share the same POS sequence.
We define (y∗, z∗) to be the pair of structures that achieve the argmax in this problem. The crucial

7. To be precise, assume we have a finite-state automaton with Q states and a context-free chart with rule productions
〈A → B C, i, k, j〉 for all A,B,C ∈ G and 1 ≤ i < k < j ≤ n as well as productions 〈A → wi, i〉 for all A ∈ G
and i ∈ {1 . . . n}. (Here we use wi to refer to the i’th word in the sentence, and the set G to refer to the set of non-
terminals in the grammar. It follows that G = |G|.) Applying the Bar-Hillel intersection gives new rule productions
〈As1,s3 → Bs1,s2 Cs2,s3 , i, k, j〉 for s1, s2, s3 ∈ {1 . . . Q} as well as 〈As,t → wi, i〉 for s, t ∈ {1 . . . Q} where
(s, t) is a valid state transition in the FSA. After intersection, we can count the free variables to see that there are
O(G3n3Q3) rule productions, which implies that the CKY algorithm can find the best parse in O(G3n3Q3) time.
In the case of tagging, a 2nd-order tagging model can be represented as an FSA with |T |2 states, where each state
represents the previous two tags. After intersection, this yields an O(G3n3|T |6) time algorithm.

317

RUSH & COLLINS

claim, which is easily verified, is that y∗ is also the argmax to the problem in Eq. 8. In this sense,
solving the new problem immediately leads to a solution to our original problem.

We then make the following two assumptions. Whether these assumptions are satisfied will
depend on the definitions of Y and f(y) (for assumption 1) and on the definitions of Z and g(z)
(for assumption 2). The assumptions hold when f(y) is a WCFG and g(z) is a finite-state tagger,
but more generally they may hold for other parsing and tagging models.

Assumption 1 Assume that we introduce variables u(i, t) ∈ R for i ∈ {1 . . . n}, and t ∈ T . We
assume that for any value of these variables, we can find

argmax
y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)


efficiently.

An example. Consider a WCFG where the grammar is in Chomsky normal form. The scoring
function is defined as

f(y) =
∑

X→Y Z
c(y,X → Y Z)θ(X → Y Z) +

∑
i,t

y(i, t)θ(t→ wi)

where we write c(y,X → Y Z) to denote the number of times that rule X → Y Z is seen in the
parse tree y, and as before y(i, t) = 1 if word i has POS t, 0 otherwise (note that y(i, t) = 1 implies
that the rule t → wi is used in the parse tree). The highest scoring parse tree under f(y) can be
found efficiently, for example using the CKY parsing algorithm. We then have

argmax
y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)

 =

argmax
y∈Y

 ∑
X→Y Z

c(y,X → Y Z)θ(X → Y Z) +
∑
i,t

y(i, t)(θ(t→ wi) + u(i, t))


This argmax can again be found easily using the CKY algorithm, where the scores θ(t → wi) are
simply replaced by new scores defined as θ′(t→ wi) = θ(t→ wi) + u(i, t).

Assumption 2 Assume that we introduce variables u(i, t) ∈ R for i ∈ {1 . . . n}, and t ∈ T . We
assume that for any value of these variables, we can find

argmax
z∈Z

g(z)−
∑
i,t

u(i, t)z(i, t)


efficiently.

An example. Consider a 1st-order tagging model,

g(z) =
n∑
i=1

θ(i, zi−1, zi)

318

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Initialization: Set u(0)(i, t) = 0 for all i ∈ {1 . . . n}, t ∈ T

For k = 1 to K

y(k) ← argmaxy∈Y

(
f(y) +

∑
i,t u

(k−1)(i, t)y(i, t)
)

[Parsing]

z(k) ← argmaxz∈Z

(
g(z)−∑i,t u

(k−1)(i, t)z(i, t)
)

[Tagging]

If y(k)(i, t) = z(k)(i, t) for all i, t Return (y(k), z(k))

Else u(k+1)(i, t)← u(k)(i, t)− δk(y(k)(i, t)− z(k)(i, t))

Figure 2: The dual decomposition algorithm for integrated parsing and tagging. δk for k = 1 . . .K
is the step size at the k’th iteration.

Then

argmax
z∈Z

g(z)−
∑
i,t

u(i, t)z(i, t)


= argmax

z∈Z

 n∑
i=1

θ(i, zi−1, zi)−
∑
i,t

u(i, t)z(i, t)


= argmax

z∈Z

n∑
i=1

θ′(i, zi−1, zi)

where
θ′(i, zi−1, zi) = θ(i, zi−1, zi)− u(i, zi)

This argmax can be found efficiently using the Viterbi algorithm, where we have new θ′ terms that
incorporate the u(i, t) values.

Given these assumptions, the dual decomposition algorithm is shown in Figure 2. The algorithm
manipulates a vector of variables u = {u(i, t) : i ∈ {1 . . . n}, t ∈ T }. We will soon see that each
variable u(i, t) is a Lagrange multiplier enforcing the constraint y(i, t) = z(i, t) in our optimization
problem. At each iteration the algorithm finds hypotheses y(k) and z(k); under assumptions 1 and 2
this step is efficient. If the two structures have the same POS sequence (i.e., y(k)(i, t) = z(k)(i, t)
for all (i, t)) then the algorithm returns this solution. Otherwise, simple updates are made to the
u(i, t) variables, based on the y(k)(i, t) and z(k)(i, t) values.

In a moment we’ll give an example run of the algorithm. First, though, we give an important
theorem:

Theorem 2 If at any iteration of the algorithm in Figure 2 we have y(k)(i, t) = z(k)(i, t) for all
(i, t), then (y(k), z(k)) is a solution to optimization problem 1.

319

RUSH & COLLINS

This theorem is a direct consequence of theorem 5 of this paper.
Thus if we do reach agreement between y(k) and z(k), then we are guaranteed to have an optimal

solution to the original problem. Later in this tutorial we will give empirical results for various NLP
problems showing how often, and how quickly, we reach agreement. We will also describe the
theory underlying convergence; theory underlying cases where the algorithm doesn’t converge; and
methods that can be used to “tighten” the algorithm with the goal of achieving convergence.

Next, consider the efficiency of the algorithm. To be concrete, again consider the case where
f(y) is defined through a weighted CFG, and g(z) is defined through a finite-state tagger. Each
iteration of the algorithm requires decoding under each of these two models. If the number of
iterations k is relatively small, the algorithm can be much more efficient than using the construction
of Bar-Hillel et al. (1964). As discussed before, assuming a context-free grammar in Chomsky
normal form, and a trigram tagger with T tags, the CKY parsing algorithm takes O(G3n3) time,
and the Viterbi algorithm for tagging takes O(T 3n) time. Thus the total running time for the dual
decomposition algorithm is O(k(G3n3 + T 3n)) where k is the number of iterations required for
convergence. In contrast, the construction of Bar-Hillel et al. results in an algorithm with running
time ofO(G3T 6n3). The dual decomposition algorithm results in an additive cost for incorporating
a tagger (a T 3n term is added into the run time), whereas the construction of Bar-Hillel et al. results
in a much more expensive multiplicative cost (a T 6 term is multiplied into the run time). (Smith &
Eisner, 2008, makes a similar observation about additive versus multiplicative costs in the context
of belief propagation algorithms for dependency parsing.)

4.3 Relationship of the Approach to Section 3

It is easily verified that the approach we have described is an instance of the dual decomposition
framework described in section 3.2. The set Y is the set of all parses for the input sentence; the set
Z is the set of all POS sequences for the input sentence. Each parse tree y ∈ Rd is represented as a
vector such that f(y) = y ·θ(1) for some θ(1) ∈ Rd: there are a number of ways of representing parse
trees as vectors, see the work of Rush et al. (2010) for one example. Similarly, each tag sequence
z ∈ Rd

′
is represented as a vector such that g(z) = z · θ(2) for some θ(2) ∈ Rd

′
. The constraints

y(i, t) = z(i, t)

for all (i, t) can be encoded through linear constraints

Ay + Cz = b

for suitable choices of A, C, and b, assuming that the vectors y and z include components y(i, t)
and z(i, t) respectively.

4.4 An Example Run of the Algorithm

We now give an example run of the algorithm. For simplicity, we will assume that the step size δk is
equal to 1 for all iterations k. We take the input sentence to be United flies some large jet. Initially,
the algorithm sets u(i, t) = 0 for all (i, t). For our example, decoding with these initial weights
leads to the two hypotheses

320

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

S

NP

A

United

N

flies

D

some

A

large

VP

V

jet United1 flies2 some3 large4 jet5

N V D A N

These two structures have different POS tags at three positions, highlighted in red; thus the two
structures do not agree. We then update the u(i, t) variables based on these differences, giving new
values as follows:

u(1, A) = u(2, N) = u(5, V) = −1

u(1, N) = u(2, V) = u(5, N) = 1

Any u(i, t) values not shown still have value 0. We now decode with these new u(i, t) values,
giving structures

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet United1 flies2 some3 large4 jet5

A N D A N

Again, differences between the structures are shown in red. We update the u(i, t) values to
obtain new values as follows:

u(5, N) = −1

u(5, V) = 1

with all other u(i, t) values being 0. (Note that the updates reset u(1, A), u(1, N), u(2, N) and
u(2, V) back to zero.)

We decode again, with the new u(i, t) values; this time, the two structures are

321

RUSH & COLLINS

 0

 20

 40

 60

 80

 100

<=1
<=2

<=3
<=4

<=10
<=20

<=50

%
 e

xa
m

pl
es

 c
on

ve
rg

ed

number of iterations

Figure 3: Convergence results from the work of Rush et al. (2010) for integration of a probabilistic
parser and a POS tagger, using dual decomposition. We show the percentage of examples
where an exact solution is returned by the algorithm, versus the number of iterations of
the algorithm.

S

NP

N

United

VP

V

flies

NP

D

some

A

large

N

jet United1 flies2 some3 large4 jet5

N V D A N

These two structures have identical sequences of POS tags, and the algorithm terminates, with
the guarantee that the solutions are optimal.

Rush et al. (2010) describe experiments using this algorithm to integrate the probabilistic parser
of Collins (1997) with the POS tagger of Toutanova, Klein, Manning, and Singer (2003). (In these
experiments the stepsize δk is not held constant, but is instead set using the strategy described in
section 7.2 of this paper.) Figure 3 shows the percentage of cases where exact solutions are returned
(we have agreement between y(k) and z(k)) versus the number of iterations of the algorithm. The
algorithm produces exact solutions on over 99% of all examples. On over 94% of the examples the
algorithm returns an exact solution in 10 iterations or fewer. So with these models at least, while
the dual decomposition algorithm is not guaranteed to give an exact solution, in this case it is very
successful at achieving this goal.

322

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

5. Formal Properties

We now give some formal properties of the algorithm described in the previous section. We first
describe three important theorems regarding the algorithm, and then describe connections between
the algorithm and subgradient optimization methods.

5.1 Three Theorems

Recall that the problem we are attempting to solve (optimization problem 1) is

argmax
y∈Y,z∈Z

f(y) + g(z)

such that for all i = 1 . . . n, t ∈ T ,
y(i, t) = z(i, t)

The first step will be to introduce the Lagrangian for this problem. We introduce a Lagrange
multiplier u(i, t) for each equality constraint y(i, t) = z(i, t): we write u = {u(i, t) : i ∈
{1 . . . n}, t ∈ T } to denote the vector of Lagrange mulipliers. Each Lagrange multiplier can take
any positive or negative value. The Lagrangian is

L(u, y, z) = f(y) + g(z) +
∑
i,t

u(i, t) (y(i, t)− z(i, t)) (12)

Note that by grouping the terms that depend on y and z, we can rewrite the Lagrangian as

L(u, y, z) =

f(y) +
∑
i,t

u(i, t)y(i, t)

+

g(z)−
∑
i,t

u(i, t)z(i, t)


Having defined the Lagrangian, the dual objective is

L(u) = max
y∈Y,z∈Z

L(u, y, z)

= max
y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)

+ max
z∈Z

g(z)−
∑
i,t

u(i, t)z(i, t)


Under assumptions 1 and 2 described above, the dual valueL(u) for any value of u can be calculated
efficiently: we simply compute the two max’s, and sum them. Thus the dual decomposes in a very
convenient way into two efficiently solvable sub-problems.

Finally, the dual problem is to minimize the dual objective, that is, to find

min
u
L(u)

We will see shortly that the algorithm in Figure 2 is a subgradient algorithm for minimizing the dual
objective.

Define (y∗, z∗) to be the optimal solution to optimization problem 1. The first theorem is as
follows:

Theorem 3 For any value of u,
L(u) ≥ f(y∗) + g(z∗)

323

RUSH & COLLINS

Hence L(u) provides an upper bound on the score of the optimal solution. The proof is simple:
Proof:

L(u) = max
y∈Y,z∈Z

L(u, y, z) (13)

≥ max
y∈Y,z∈Z:y=z

L(u, y, z) (14)

= max
y∈Y,z∈Z:y=z

f(y) + g(z) (15)

= f(y∗) + g(z∗) (16)

Here we use the shorthand y = z to state that y(i, t) = z(i, t) for all (i, t). Eq. 14 follows because
by adding the constraints y = z, we are optimizing over a smaller set of (y, z) pairs, and hence the
max cannot increase. Eq. 15 follows because if y = z, we have∑

i,t

u(i, t) (y(i, t)− z(i, t)) = 0

and hence L(u, y, z) = f(y) + g(z). Finally, Eq. 16 follows through the definition of y∗ and z∗.
The property that L(u) ≥ f(y∗) + g(z∗) for any value of u is often referred to as weak duality.

The value of infu L(u)− f(y∗)− g(z∗) is often referred to as the duality gap or the optimal duality
gap (see for example Boyd & Vandenberghe, 2004).

Note that obtaining an upper bound on f(y∗) + g(z∗) (providing that it is relatively tight) can
be a useful goal in itself. First, upper bounds of this form can be used as admissible heuristics for
search methods such as A* or branch-and-bound algorithms. Second, if we have some method that
generates a potential solution (y, z), we immediately obtain an upper bound on how far this solution
is from being optimal, because

(f(y∗) + g(z∗))− (f(y) + g(z)) ≤ L(u)− (f(y) + g(z))

Hence if L(u)− (f(y) + g(z)) is small, then (f(y∗) + g(z∗))− (f(y) + g(z)) must be small. See
section 7 for more discussion.

Our second theorem states that the algorithm in Figure 2 successfully converges to minu L(u).
Hence the algorithm successfully converges to the tightest possible upper bound given by the dual.
The theorem is as follows:

Theorem 4 Consider the algorithm in Figure 2. For any sequence δ1, δ2, δ3, . . . such that δk > 0
for all k ≥ 1, and

lim
k→∞

δk = 0 and
∞∑
k=1

δk =∞,

we have
lim
k→∞

L(uk) = min
u
L(u)

Proof: See the work of Shor (1985). See also Appendix A.3.
Our algorithm is actually a subgradient method for minimizing L(u): we return to this point in

section 5.2. For now though, the important point is that our algorithm successfully minimizes L(u).
Our final theorem states that if we ever reach agreement during the algorithm in Figure 2, we

are guaranteed to have the optimal solution. We first need the following definitions:

324

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Definition 1 For any value of u, define

y(u) = argmax
y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)


and

z(u) = argmax
z∈Z

g(z)−
∑
i,t

u(i, t)z(i, t)


The theorem is then:

Theorem 5 If ∃u such that
y(u)(i, t) = z(u)(i, t)

for all i, t, then
f(y(u)) + g(z(u)) = f(y∗) + g(z∗)

i.e., (y(u), z(u)) is optimal.

Proof: We have, by the definitions of y(u) and z(u),

L(u) = f(y(u)) + g(z(u)) +
∑
i,t

u(i, t)(y(u)(i, t)− z(u)(i, t))

= f(y(u)) + g(z(u))

where the second equality follows because y(u)(i, t) = z(u)(i, t) for all (i, t). But L(u) ≥ f(y∗) +
g(z∗) for all values of u, hence

f(y(u)) + g(z(u)) ≥ f(y∗) + g(z∗)

Because y∗ and z∗ are optimal, we also have

f(y(u)) + g(z(u)) ≤ f(y∗) + g(z∗)

hence we must have
f(y(u)) + g(z(u)) = f(y∗) + g(z∗)

Theorems 4 and 5 refer to quite different notions of convergence of the dual decomposition
algorithm. For the remainder of this tutorial, to avoid confusion, we will explicitly use the following
terms:

• d-convergence (short for “dual convergence”) will be used to refer to convergence of the dual
decomposition algorithm to the minimum dual value: that is, the property that limk→∞ L(u(k)) =
minu L(u). By theorem 4, assuming appropriate step sizes in the algorithm, we always have
d-convergence.

• e-convergence (short for “exact convergence”) refers to convergence of the dual decompo-
sition algorithm to a point where y(i, t) = z(i, t) for all (i, t). By theorem 5, if the dual
decomposition algorithm e-converges, then it is guaranteed to have provided the optimal so-
lution. However, the algorithm is not guaranteed to e-converge.

325

RUSH & COLLINS

5.2 Subgradients

The proof of d-convergence, as defined in theorem 4, relies on the fact that the algorithm in Figure 2
is a subgradient algorithm for minimizing the dual objective L(u). Subgradient algorithms are a
generalization of gradient-descent methods; they can be used to minimize convex functions that are
non-differentiable. This section describes how the algorithm in Figure 2 is derived as a subgradient
algorithm.

Recall that L(u) is defined as follows:

L(u) = max
y∈Y,z∈Z

L(u, y, z)

= max
y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)

+ max
z∈Z

g(z)−
∑
i,t

u(i, t)z(i, t)


and that our goal is to find minu L(u).

First, we note that L(u) has the following properties:

• L(u) is a convex function. That is, for any u(1) ∈ Rd, u(2) ∈ Rd, λ ∈ [0, 1],

L(λu(1) + (1− λ)u(2)) ≤ λL(u(1)) + (1− λ)L(u(2))

(The proof is simple: see Appendix A.1.)

• L(u) is not differentiable. In fact, it is easily shown that it is a piecewise linear function.

The fact that L(u) is not differentiable means that we cannot use a gradient descent method to
minimize it. However, because it is nevertheless a convex function, we can instead use a subgradient
algorithm. The definition of a subgradient is as follows:

Definition 2 (Subgradient) A subgradient of a convex function L : Rd → R at u is a vector γ(u)

such that for all v ∈ Rd,
L(v) ≥ L(u) + γ(u) · (v − u)

The subgradient γ(u) is a tangent at the point u that gives a lower bound to L(u): in this sense
it is similar8 to the gradient for a convex but differentiable function.9 The key idea in subgradient
methods is to use subgradients in the same way that we would use gradients in gradient descent
methods. That is, we use updates of the form

u′ = u− δγ(u)

where u is the current point in the search, γ(u) is a subgradient at this point, δ > 0 is a step size, and
u′ is the new point in the search. Under suitable conditions on the stepsizes δ (e.g., see theorem 4),
these updates will successfully converge to the minimum of L(u).

8. More precisely, for a function L(u) that is convex and differentiable, then its gradient at any point u is a subgradient
at u.

9. It should be noted, however, that for a given point u, there may be more than one subgradient: this will occur, for
example, for a piecewise linear function at points where the gradient is not defined.

326

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

S(flies)

NP(United)

N

United

VP(flies)

V

flies

NP(jet)

D

some

A

large

N

jet *0 United1 flies2 some3 large4 jet5

Figure 4: A lexicalized parse tree, and a dependency structure.

So how do we calculate the subgradient for L(u)? It turns out that it has a very convenient
form. As before (see definition 1), define y(u) and z(u) to be the argmax’s for the two maximization
problems in L(u). If we define the vector γ(u) as

γ(u)(i, t) = y(u)(i, t)− z(u)(i, t)

for all (i, t), then it can be shown that γ(u) is a subgradient of L(u) at u. The updates in the
algorithm in Figure 2 take the form

u′(i, t) = u(i, t)− δ(y(u)(i, t)− z(u)(i, t))

and hence correspond directly to subgradient updates.
See Appendix A.2 for a proof that the subgradients take this form, and Appendix A.3 for a proof

of convergence for the subgradient optimization method.

6. Other Examples

In this section we describe other examples of dual decomposition algorithms. Our first example,
also from the work of Rush et al. (2010), is a dual decomposition algorithm that combines two
parsing models. Our second example, from the work of Komodakis et al. (2007, 2011), is a dual
decomposition algorithm for inference in Markov random fields. Finally, we describe the algorithm
of Held and Karp (1971) for the traveling salesman problem, and the algorithm of Chang and Collins
(2011) for decoding of phrase-based translation models.

6.1 Combined Constituency and Dependency Parsing

Rush et al. (2010) describe an algorithm for finding the highest scoring lexicalized context-free
parse tree for an input sentence, under a combination of two models: a lexicalized probabilistic
context-free grammar, and a discriminative dependency parsing model.

Figure 4 shows an example of a lexicalized context-free tree. We take Y to be the set of all
lexicalized trees for the input sentence, and f(y) to be the score of the tree y under a lexicalized
parsing model—specifically, f(y) is the log-probability of y under the model of Collins (1997).
Under this model, each lexicalized rule in y receives a score that is a log probability, and the log
probability of y is a sum of the log probabilities for the rules that it contains.

327

RUSH & COLLINS

 0

 20

 40

 60

 80

 100

<=1
<=2

<=3
<=4

<=10
<=20

<=50

%
 e

xa
m

pl
es

 c
on

ve
rg

ed

number of iterations

Figure 5: Convergence results from the work of Rush et al. (2010) for integration of a lexicalized
probabilistic context-free grammar, and a discriminative dependency parsing model. We
show the percentage of examples where an exact solution is returned by the algorithm,
versus the number of iterations of the algorithm.

Our second model is a dependency parsing model. An example dependency parse is also shown
in Figure 4. The set of all possible dependency parses for the sentence is Z; each parse z receives
a score g(z) under the dependency parsing model. We use the discriminative dependency parsing
model of Koo, Carreras, and Collins (2008) (see also McDonald, 2006).

For any lexicalized parse tree y, there is a mapping to an underlying dependency structure l(y).
The decoding problem we consider is to find

argmax
y∈Y

f(y) + g(l(y)) (17)

The motivation for this problem is that it will allow us to inject information from the dependency
parsing model g(z) into the lexicalized parsing model of Collins (1997); Rush et al. (2010) show
that this gives significant improvements in parsing accuracy.

The problem can be again solved exactly using a dynamic programming approach, where a
dynamic program is created that is an intersection of the two models (there is a clear analogy to
the Bar-Hillel et al. (1964) method for construction of a dynamic program for the intersection of a
PCFG and an HMM). However this dynamic program is again relatively inefficient.

We develop a dual decomposition algorithm in a very similar way to before. For any dependency
(i, j) where i ∈ {0 . . . n} is the head word (we use 0 to denote the root symbol) and j ∈ {1 . . . n},
j 6= i, is the modifier, we define y(i, j) = 1 if y contains the dependency (i, j), and y(i, j) = 0
otherwise. We define similar variables z(i, j) for dependency structures. We can then reformulate
the problem in Eq. 17 as:

Optimization Problem 2 Find
argmax
y∈Y,z∈Z

f(y) + g(z) (18)

such that for all (i, j), y(i, j) = z(i, j).

328

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

A Lagrangian is introduced for this problem, which is very similar to that in Eq. 12, and a
subgradient algorithm is used to minimize the resulting dual. We introduce Lagrange multipliers
u(i, j) for all dependencies (i, j), whose initial values are u(0)(i, j) = 0 for all i, j. At each iteration
of the algorithm we find

y(k) = argmax
y∈Y

f(y) +
∑
i,j

u(k−1)(i, j)y(i, j)


using a dynamic programming algorithm for lexicalized context-free parsing (a trivial modification
of the original algorithm for finding argmaxy f(y)). In addition we find

z(k) = argmax
z∈Z

g(z)−
∑
i,j

u(k−1)(i, j)z(i, j)


using a dynamic programming algorithm for dependency parsing (again, this requires a trivial mod-
ification to an existing algorithm). If y(k)(i, j) = z(k)(i, j) for all (i, j) then the algorithm has
e-converged, and we are guaranteed to have a solution to optimization problem 2. Otherwise, we
perform subgradient updates

u(k)(i, j) = u(k−1)(i, j)− δk(y(k)(i, j)− z(k)(i, j))

for all (i, j), then go to the next iteration.
Rush et al. (2010) describe experiments with this algorithm. The method e-converges on over

99% of examples, with over 90% of examples e-converging in 10 iterations or less. Figure 5 shows
a histogram of the number of examples that have e-converged, versus the number of iterations of the
algorithm. The method gives significant gains in parsing accuracy over the model of Collins (1997),
and significant gains over a baseline method that simply forces the lexicalized CFG parser to have
the same dependency structure as the first-best output from the dependency parser.10

6.2 The MAP Problem for Pairwise Markov Random Fields

Markov random fields (MRFs), and more generally graphical models, are widely used in machine
learning and statistics. The MAP problem in MRFs— the problem of finding the most likely setting
of the random variables in an MRF—is an inference problem of central importance. In this section
we describe the dual decomposition algorithm from the work of Komodakis et al. (2007, 2011) for
finding the MAP solution in pairwise, binary, MRFs. Pairwise MRFs are limited to the case where
potential functions consider pairs of random variables, as opposed to larger subsets; however, the
generalization of the method to non-pairwise MRFs is straightforward.

A commonly used approach for the MAP problem in MRFs is to use loopy max-product be-
lief propagation. The dual decomposition algorithm has advantages in terms of stronger formal
guarantees, as described in section 5.

10. Note that Klein and Manning (2002) describe a method for combination of a dependency parser with a constituent
based parser, where the score for an entire structure is again the sum of scores under two models. In this approach
an A* algorithm is developed, where admissible estimates within the A* method can be computed efficiently using
separate inference under the two models. There are interesting connections between the A* approach and the dual
decomposition algorithm described in this section.

329

RUSH & COLLINS

The MAP problem is as follows. Assume we have a vector y of variables y1, y2, . . . , yn, where
each yi can take two possible values, 0 or 1 (the generalization to more than two possible values
for each variable is straightforward). There are 2n possible settings of these n variables. An MRF
assumes an underlying undirected graph (V,E), where V = {1 . . . n} is the set of vertices in the
graph, and E is a set of edges. The MAP problem is then to find

argmax
y∈{0,1}n

h(y) (19)

where
h(y) =

∑
{i,j}∈E

θi,j(yi, yj)

Here each θi,j(yi, yj) is a local potential associated with the edge {i, j} ∈ E, which returns a real
value (positive or negative) for each of the four possible settings of (yi, yj).

If the underlying graph E is a tree, the problem in Eq. 19 is easily solved using max-product
belief propagation, a form of dynamic programming. In contrast, for general graphs E, which may
contain loops, the problem is NP-hard. The key insight behind the dual decomposition algorithm
will be to decompose the graph E into m trees T1, T2, . . . , Tm. Inference over each tree can be
performed efficiently; we use Lagrange multipliers to enforce agreement between the inference
results for each tree. A subgradient algorithm is used, where at each iteration we first perform
inference over each of the trees T1, T2, . . . , Tm, and then update the Lagrange multipliers in cases
where there are disagreements.

For simplicity, we describe the case where m = 2. Assume that the two trees are such that
T1 ⊂ E, T2 ⊂ E, and T1 ∪ T2 = E.11 Thus each of the trees contains a subset of the edges in
E, but together the trees contain all edges in E. Assume that we define potential functions θ(1)

i,j for

(i, j) ∈ T1 and θ(2)
i,j for (i, j) ∈ T2 such that

∑
{i,j}∈E

θi,j(yi, yj) =
∑

{i,j}∈T1

θ
(1)
i,j (yi, yj) +

∑
{i,j}∈T2

θ
(2)
i,j (yi, yj)

This is easy to do: for example, define

θmi,j(yi, yj) =
θi,j(yi, yj)

#(i, j)

for m = 1, 2 where #(i, j) is 2 if the edge {i, j} appears in both trees, 1 otherwise.
We can then define a new problem that is equivalent to the problem in Eq. 19:

Optimization Problem 3 Find

argmax
y∈{0,1}n,z∈{0,1}n

∑
{i,j}∈T1

θ
(1)
i,j (yi, yj) +

∑
{i,j}∈T2

θ
(2)
i,j (zi, zj)

such that yi = zi for i = 1 . . . n.

11. It may not always be possible to decompose a graph E into just 2 trees in this way. Komodakis et al. (2007, 2011)
describe an algorithm for the general case of more than 2 trees.

330

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Note the similarity to our previous optimization problems. Our goal is to find a pair of structures,
y ∈ {0, 1}n and z ∈ {0, 1}n. The objective function can be written as

f(y) + g(z)

where
f(y) =

∑
{i,j}∈T1

θ
(1)
i,j (yi, yj)

and
g(z) =

∑
{i,j}∈T2

θ
(2)
i,j (zi, zj)

We have a set of constraints, yi = zi for i = 1 . . . n, which enforce agreement between y and z.
We then proceed as before—we define a Lagrangian with a Lagrange multiplier ui for each

constraint:

L(u, y, z) =
∑

{i,j}∈T1

θ
(1)
i,j (yi, yj) +

∑
{i,j}∈T2

θ
(2)
i,j (zi, zj) +

n∑
i=1

ui(yi − zi)

We then minimize the dual
L(u) = max

y,z
L(u, y, z)

using a subgradient algorithm. The algorithm is initialized with u(0)
i = 0 for i = 1 . . . n. At each

iteration of the algorithm we find

y(k) = argmax
y∈{0,1}n

 ∑
{i,j}∈T1

θ
(1)
i,j (yi, yj) +

∑
i

u
(k−1)
i yi


and

z(k) = argmax
z∈{0,1}n

 ∑
{i,j}∈T2

θ
(2)
i,j (zi, zj)−

∑
i

u
(k−1)
i zi


These steps can be achieved efficiently, because T1 and T2 are trees, hence max-product belief prop-
agation produces an exact answer. (The Lagrangian terms

∑
i u

(k−1)
i yi and

∑
i u

(k−1)
i zi are easily

incorporated.) If y(k)
i = z

(k)
i for all i then the algorithm has e-converged, and we are guaranteed to

have a solution to optimization problem 3. Otherwise, we perform subgradient updates of the form

u
(k)
i = u

(k−1)
i − δk(y(k)

i − z
(k)
i)

for i = {1 . . . n}, then go to the next iteration. Intuitively, these updates will bias the two inference
problems towards agreement with each other.

Komodakis et al. (2007, 2011) show good experimental results for the method. The algorithm
has some parallels to max-product belief propagation, where the ui values can be interpreted as
“messages” being passed between sub-problems.

331

RUSH & COLLINS

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Figure 6: An illustration of the approach of Held and Karp (1971). On the left is a tour of the
vertices 1 . . . 7. On the right is a 1-tree over the vertices 1 . . . 7. A 1-tree consists of a tree
over vertices 2 . . . 7, together with 2 additional edges that include vertex 1. The tour on
the left is also a 1-tree (in fact every tour is also a 1-tree).

6.3 The Held and Karp Algorithm for TSPs

Our next example is the approach of Held and Karp (1971) for traveling salesman problems (TSPs),
which is notable for being the original paper on Lagrangian relaxation. This algorithm is not an
instance of dual decomposition. Instead of leveraging two or more combinatorial algorithms, in
combination with agreement constraints, it makes use of a single combinatorial algorithm, together
with a set of linear constraints that are again incorporated using Lagrange multipliers. While the use
of two or more combinatorial algorithms, as seen in dual decomposition, is a very useful technique,
broadening our scope to algorithms that make use of a single combinatorial algorithm will be very
useful. For NLP decoding algorithms that leverage a single combinatorial algorithm, see the algo-
rithm of Chang and Collins (2011) for decoding of phrase-based translation models (we describe
this algorithm in the next section), and the algorithm of Rush and Collins (2011) for decoding of
syntax-based translation models.

A TSP is defined as follows. We have an undirected graph (V,E) with vertices V = {1, 2, . . . , n},
and edges E. Each edge e ∈ E has a score θe ∈ R. Any subset of the edges E can be represented
as a vector y = {ye : e ∈ E}, where ye = 1 if the edge is in the subset, and ye = 0 otherwise. Thus
y is a vector in {0, 1}|E|. A tour of the graph is a subset of the edges that corresponds to a path
through the graph that begins and ends at the same vertex, and includes every other vertex exactly
once. See Figure 6 for an example of a tour. We use Y ⊂ {0, 1}|E| to denote the set of all possible
tours. The traveling salesman problem is to find

argmax
y∈Y

∑
e∈E

yeθe

This problem is well-known to be NP-hard.12

A key idea in the work of Held and Karp (1971) is that of a 1-tree, which, like a tour, is a subset
of E. Held and Karp define a 1-tree as follows:

A 1-tree consists of a tree on the vertex set {2, 3, . . . , n}, together with two distinct
edges at vertex 1... Thus, a 1-tree has a single cycle, this cycle contains vertex 1, and
vertex 1 always has degree two.

12. In many presentations of the traveling salesman problem the goal is to find a minimum cost tour: for consistency with
the rest of this tutorial our presentation considers the maximization problem, which is equivalent.

332

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Figure 6 shows an example 1-tree. We define Y ′ to be the set of all possible 1-trees. It follows that
Y is a subset of Y ′, because every tour is also a 1-tree.

Crucially, it is possible to find
argmax
y∈Y ′

∑
e∈E

yeθe

using an efficient algorithm. In the first step, we find the maximum scoring spanning tree over
the vertices {2, 3, . . . , n}, using a maximum spanning tree algorithm. In the second step, we add
the two highest scoring edges that include vertex 1. It is simple to show that the resulting 1-tree is
optimal. Thus while search over the set Y is NP-hard, search over the larger set Y ′ can be performed
easily. The Lagrangian relaxation algorithm will explicitly leverage this observation.

Next, we note that

Y = {y : y ∈ Y ′, and for all i ∈ {1, 2, . . . , n}, ∑e:i∈e ye = 2}

Each constraint of the form ∑
e:i∈e

ye = 2 (20)

corresponds to the property that the i’th vertex should have exactly two incident edges. Thus if we
add the constraint that each vertex has exactly two incident edges, we go from the set of 1-trees to
the set of tours. Constraints of the form in Eq. 20 are linear in the ye variables, and are therefore
easily incorporated into a Lagrangian.

Held and Karp introduce the following optimization problem:

Optimization Problem 4 Find
argmax
y∈Y ′

∑
e∈E

yeθe

such that for all i ∈ {1, 2, . . . , n}, ∑e:i∈e ye = 2.

It is clear that this is equivalent to finding the highest scoring tour in the graph.
As before, we deal with the equality constraints using Lagrange multipliers. Define the La-

grange multipliers to be a vector u = {ui : i ∈ {1 . . . n}}. The Lagrangian is

L(u, y) =
∑
e∈E

yeθe +
n∑
i=1

ui

(∑
e:i∈e

ye − 2

)

and the dual objective is
L(u) = max

y∈Y ′
L(u, y)

The subgradient algorithm takes the following form. Initially we set u(0)
i = 0 for i = 1 . . . n.

At each iteration we find

y(k) = argmax
y∈Y ′

(∑
e∈E

yeθe +
n∑
i=1

u
(k−1)
i

(∑
e:i∈e

ye − 2

))
(21)

If the constraints are satisfied, i.e., if for all i∑
e:i∈e

y(k)
e = 2

333

RUSH & COLLINS

then the algorithm terminates, with a guarantee that the structure y(k) is the solution to optimization
problem 4. Otherwise, a subgradient step is used to modify the Lagrange multipliers. It can be
shown that the subgradient of L(u) at u is the vector g(u) defined as

g(u)(i) =
∑
e:i∈e

y(u)
e − 2

where y(u) = argmaxy∈Y ′ L(u, y). Thus the subgradient step is for all i ∈ {1 . . . n},

u
(k)
i = u

(k−1)
i − δk

(∑
e:i∈e

y(k)
e − 2

)
(22)

Note that the problem in Eq. 21 is easily solved. It is equivalent to finding

y(k) = argmax
y∈Y ′

∑
e∈E

yeθ
′
e

with modified edge weights θ′e: for an edge e = {i, j}, we define

θ′e = θe + u
(k−1)
i + u

(k−1)
j

Hence the new edge weights incorporate the Lagrange multipliers for the two vertices in the edge.
The subgradient step in Eq. 22 has a clear intuition. For vertices with greater than 2 incident

edges in y(k), the value of the Lagrange multiplier ui is decreased, which will have the effect of
penalising any edges including vertex i. Conversely, for vertices with fewer than 2 incident edges,
ui will increase, and edges including that vertex will be preferred. The algorithm manipulates the
ui values in an effort to enforce the constraints that each vertex has exactly two incident edges.

We note that there is a qualitative difference between this example and our previous algorithms.
Our previous algorithms had employed two sets of structures Y and Z , two optimization problems,
and equality constraints enforcing agreement between the two structures. The TSP relaxation in-
stead involves a single set Y . The two approaches are closely related, however, and similar theorems
apply to the TSP method (the proofs are trivial modifications of the previous proofs). We have

L(u) ≥
∑
e∈E

y∗eθe

for all u, where y∗ is the optimal tour. Under appropriate step sizes for the subgradient algorithm,
we have

lim
k→∞

L(u(k)) = min
u
L(u)

Finally, if we ever find a structure y(k) that satisfies the linear constraints, then the algorithm has
e-converged, and we have a guaranteed solution to the traveling salesman problem.

6.4 Phrase-Based Translation

We next consider a Lagrangian relaxation algorithm, described in the work of Chang and Collins
(2011), for decoding of phrase-based translation models (Koehn, Och, & Marcu, 2003). The input
to a phrase-based translation model is a source-language sentence with n words, x = x1 . . . xn. The
output is a sentence in the target language. The examples in this section will use German as the
source language, and English as the target language. We will use the German sentence

334

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

wir müssen auch diese kritik ernst nehmen

as a running example.
A key component of a phrase-based translation model is a phrase-based lexicon, which pairs

sequences of words in the source language with sequences of words in the target language. For
example, lexical entries that are relevent to the German sentence shown above include

(wir müssen, we must)
(wir müssen auch, we must also)
(ernst, seriously)

and so on. Each phrase entry has an associated score, which can take any value in the reals.
We introduce the following notation. A phrase is a tuple (s, t, e), signifying that the subse-

quence xs . . . xt in the source language sentence can be translated as the target-language string e,
using an entry from the phrase-based lexicon. For example, the phrase (1, 2,we must) would spec-
ify that the sub-string x1 . . . x2 can be translated as we must. Each phrase p = (s, t, e) receives a
score θ(p) ∈ R under the model. For a given phrase p, we will use s(p), t(p) and e(p) to refer to its
three components. We will use P to refer to the set of all possible phrases for the input sentence x.

A derivation y is then a finite sequence of phrases, p1, p2, . . . pL. The length L can be any
positive integer value. For any derivation y we use e(y) to refer to the underlying translation defined
by y, which is derived by concatenating the strings e(p1), e(p2), . . . e(pL). For example, if

y = (1, 3, we must also), (7, 7, take), (4, 5, this criticism), (6, 6, seriously) (23)

then

e(y) = we must also take this criticism seriously

The score for any derivation y is then defined as

h(y) = g(e(y)) +
∑
p∈y

θ(p)

where g(e(y)) is the score (log-probability) for e(y) under an n-gram language model.
The set Y of valid derivations is defined as follows. For any derivation y, we define y(i) for

i = 1 . . . n to be the number of times that source word i is translated in the derivation. More
formally,

y(i) =
∑
p∈y

[[s(p) ≤ i ≤ t(p)]]

where [[π]] is 1 if the statement π is true, 0 otherwise. The set of valid derivations is then

Y = {y ∈ P∗ : for i = 1 . . . n, y(i) = 1}

where P∗ is the set of finite length sequences of phrases. Thus for a derivation to be valid, each
source-language word must be translated exactly once. Under this definition, the derivation in Eq. 23
is valid. The decoding problem is then to find

y∗ = argmax
y∈Y

h(y) (24)

335

RUSH & COLLINS

This problem is known to be NP-hard. Some useful intuition is as follows. A dynamic programming
approach for this problem would need to keep track of a bit-string of length n specifying which of
the n source language words have or haven’t been translated at each point in the dynamic program.
There are 2n such bit-strings, resulting in the dynamic program having an exponential number of
states.

We now describe the Lagrangian relaxation algorithm. As before, the key idea will be to define
a set Y ′ such that Y is a subset of Y ′, and such that

argmax
y∈Y ′

h(y) (25)

can be found efficiently. We do this by defining

Y ′ = {y ∈ P∗ :
∑n
i=1 y(i) = n}

Thus derivations in Y ′ satisfy the weaker constraint that the total number of source words translated
is exactly n: we have dropped the y(i) = 1 constraints. As one example, the following derivation
is a member of Y ′, but is not a member of Y:

y = (1, 3, we must also), (1, 2, we must), (3, 3, also), (6, 6, seriously) (26)

In this case we have y(1) = y(2) = y(3) = 2, y(4) = y(5) = y(7) = 0, and y(6) = 1. Hence
some words are translated more than once, and some words are translated 0 times.

Under this definition of Y ′, the problem in Eq. 25 can be solved efficiently, using dynamic
programming. In contrast to the dynamic program for Eq. 24, which keeps track of a bit-string of
length n, the new dynamic program merely needs to keep track of how many source language words
have been translated at each point in the search.

We proceed as follows. Note that

Y = {y : y ∈ Y ′, and for i = 1 . . . n, y(i) = 1}

We introduce a Lagrange multiplier u(i) for each constraint y(i) = 1. The Lagrangian is

L(u, y) = h(y) +
n∑
i=1

u(i) (y(i)− 1)

The subgradient algorithm is as follows. Initially we set u(0)(i) = 0 for all i. At each iteration we
find

y(k) = argmax
y∈Y ′

L(u(k−1), y) (27)

and perform the subgradient step

u(k)(i) = u(k−1)(i)− δk(y(k)(i)− 1) (28)

If at any point we have y(k)(i) = 1 for i = 1 . . . n, then we are guaranteed to have the optimal
solution to the original decoding problem.

336

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

The problem in Eq. 27 can be solved efficiently, because

argmax
y∈Y ′

L(u(k−1), y)

= argmax
y∈Y ′

g(e(y)) +
∑
p∈y

θ(p) +
n∑
i=1

u(k−1)(i) (y(i)− 1)


= argmax

y∈Y ′

g(e(y)) +
∑
p∈y

θ′(p)


where

θ′(p) = θ(p) +

t(p)∑
i=s(p)

u(k−1)(i)

Thus we have new phrase scores, θ′(p), which take into account the Lagrange multiplier values
for positions s(p) . . . t(p). The subgradient step in Eq. 28 has a clear intuition. For any source
language word i that is translated more than once, the associated Lagrange multiplier u(i) will
decrease, causing phrases including word i to be penalised at the next iteration. Conversely, any
word translated 0 times will have its Lagrange multiplier increase, causing phrases including that
word to be preferred at the next iteration. The subgradient method manipulates the u(i) values in
an attempt to force each source-language word to be translated exactly once.

The description we have given here is a sketch: Chang and Collins (2011) describe details of the
method, including a slightly more involved dynamic program that gives a tighter relaxation than the
method we have described here, and a tightening method that incrementally adds constraints when
the method does not initially e-converge. The method is successful in recovering exact solutions
under a phrase-based translation model, and is far more efficient than alternative approaches based
on general-purpose integer linear programming solvers.

7. Practical Issues

This section reviews various practical issues that arise with dual decomposition algorithms. We
describe diagnostics that can be used to track progress of the algorithm in minimizing the dual, and
in providing a primal solution; we describe methods for choosing the step sizes, δk, in the algorithm;
and we describe heuristics that can be used in cases where the algorithm does not provide an exact
solution. We will continue to use the algorithm from section 4 as a running example, although our
observations are easily generalized to other Lagrangian relaxation algorithms.

The first thing to note is that each iteration of the algorithm produces a number of useful terms,
in particular:

• The solutions y(k) and z(k).

• The current dual value L(u(k)) (which is equal to L(u(k), y(k), z(k)).

In addition, in cases where we have a function l : Y → Z that maps each structure y ∈ Y to a
structure l(y) ∈ Z , we also have

• A primal solution y(k), l(y(k)).

337

RUSH & COLLINS

-19

-18

-17

-16

-15

-14

-13

 0 10 20 30 40 50 60

V
al

ue

Round

Current Primal
Current Dual

Figure 7: Graph showing the dual value L(u(k)) and primal value f(y(k)) + g(l(y(k))), versus
iteration number k, for the subgradient algorithm on a translation example from the work
of Rush and Collins (2011).

• A primal value f(y(k)) + g(l(y(k))).

By a “primal solution” we mean a pair (y, z) that satisfies all constraints in the optimization problem.
For example, in optimization problem 1 (the combined HMM and PCFG problem from section 4) a
primal solution has the properties that y ∈ Y , z ∈ Z , and y(i, t) = z(i, t) for all (i, t).

As one example, in the algorithm in Figure 2, at each iteration we produce a parse tree y(k).
It is simple to recover the POS sequence l(y(k)) from the parse tree, and to calculate the score
f(y(k))+g(l(y(k))) under the combined model. Thus even if y(k) and z(k) disagree, we can still use
y(k), l(y(k)) as a potential primal solution. This ability to recover a primal solution from the value
y(k) does not always hold—but in cases where it does hold, it is very useful. It will allow us, for
example, to recover an approximate solution in cases where the algorithm hasn’t e-converged to an
exact solution.

We now describe how the various items described above can be used in practical applications of
the algorithm.

7.1 An Example Run of the Algorithm

Figure 7 shows a run of the subgradient algorithm for the decoding approach for machine translation
described in the work of Rush and Collins (2011). The behavior is typical of cases where the
algorithm e-converges to an exact solution. We show the dual value L(u(k)) at each iteration, and
the value for f(y(k)) + g(l(y(k))). A few important points are as follows:

• Because L(u) provides an upper bound on f(y∗) + g(z∗) for any value of u, we have

L(u(k)) ≥ f(y(k)) + g(l(y(k)))

at every iteration.

• On this example we have e-convergence to an exact solution, at which point we have

L(u(k)) = f(y(k)) + g(z(k)))

338

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

-19

-18

-17

-16

-15

-14

-13

 0 10 20 30 40 50 60

V
al

ue

Round

Best Primal
Best Dual

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60

V
al

ue

Round

Gap

Figure 8: The graph on the left shows the best dual value L∗k and the best primal value p∗k, versus
iteration number k, for the subgradient algorithm on a translation example from the work
of Rush and Collins (2011). The graph on the right shows L∗k − p∗k plotted against k.

with (y(k), z(k)) guaranteed to be optimal (and in addition, with z(k) = l(y(k))).

• The dual values L(u(k)) are not monotonically decreasing—that is, for some iterations we
have

L(u(k+1)) > L(u(k))

even though our goal is to minimize L(u). This is typical: subgradient algorithms are not in
general guaranteed to give monotonically decreasing dual values. However, we do see that
for most iterations the dual decreases—this is again typical.

• Similarly, the primal value f(y(k)) + g(z(k)) fluctuates (goes up and down) during the course
of the algorithm.

The following quantities can be useful in tracking progress of the algorithm at the k’th iteration:

• L(u(k)) − L(u(k−1)) is the change in the dual value from one iteration to the next. We will
soon see that this can be useful when choosing the step size for the algorithm (if this value is
positive, it may be an indication that the step size should decrease).

• L∗k = mink′≤k L(u(k′)) is the best dual value found so far. It gives us the tightest upper bound
on f(y∗) + g(z∗) that we have after k iterations of the algorithm.

• p∗k = maxk′≤k f(y(k′)) + g(l(y(k′))) is the best primal value found so far.

• L∗k−p∗k is the gap between the best dual and best primal solution found so far by the algorithm.
Because L∗k ≥ f(y∗) + g(z∗) ≥ p∗k, we have

L∗k − p∗k ≥ f(y∗) + g(z∗)− p∗k
hence the value for L∗k−p∗k gives us an upper bound on the difference between f(y∗)+g(z∗)
and p∗k. If L∗k − p∗k is small, we have a guarantee that we have a primal solution that is close
to being optimal.

Figure 8 shows a plot of L∗k and p∗k versus the number of iterations k for our previous exam-
ple, and in addition shows a plot of the gap L∗k − p∗k. These graphs are, not surprisingly, much
smoother than the graph in Figure 7. In particular we are guaranteed that the values for L∗k and p∗k
are monotonically decreasing and increasing respectively.

339

RUSH & COLLINS

-16

-15.5

-15

-14.5

-14

-13.5

-13

 0 5 10 15 20 25 30 35 40

V
al

ue

Round

0.01
0.005

0.0005

Figure 9: Graph showing the dual value L(u(k)) versus the number of iterations k, for different
fixed step sizes.

7.2 Choice of the Step Sizes δk
Figure 9 shows convergence of the algorithm for various choices of step size, where we have chosen
to keep the stepsize constant at each iteration. We immediately see a potential dilemma arising.
With too small a step size (δ = 0.0005), convergence is smooth—the dual value is monotonically
decreasing—but convergence is slow. With too large a step size (δ = 0.01), convergence is much
faster in the initial phases of the algorithm, but the dual then fluctuates quite erratically. In practice
it is often very difficult to choose a constant step size that gives good convergence properties in both
early and late iterations of the algorithm.

Instead, we have found that we often find improved convergence properties with a choice of
step size δk that decreases with increasing k. One possibility is to use a definition such as δk = c/k
or δk = c/

√
k where c > 0 is a constant. However these definitions can decrease the step size

too rapidly—in particular, they decrease the step size at all iterations, even in cases where progress
is being made in decreasing the dual value. In many cases we have found that a more effective
definition is

δk =
c

t+ 1

where c > 0 is again a constant, and t < k is the number of iterations prior to k where the dual value
increases rather than decreases (i.e., the number of cases for k′ ≤ k where L(u(k′)) > L(u(k′−1))).
Under this definition the step size decreases only when the dual value moves in the wrong direction.

7.3 Recovering Approximate Solutions

Figure 10 shows a run of the algorithm where we fail to get e-convergence to an exact solution. In
section 9.4 we will describe one possible strategy, namely tightening the relaxation, which can be
used to produce an exact solution in these cases. Another obvious strategy, which is approximate,
is to simply choose the best primal solution generated after k iterations of the algorithm, for some
fixed k: i.e., to choose y(k′), l(y(k′)) where

k′ = argmax
k′≤k

f(y(k′)) + g(l(y(k′)))

340

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

-30

-25

-20

-15

-10

-5

 0

 0 10 20 30 40 50 60 70

V
al

ue

Round

Best Primal

Current Primal
Current Dual

Figure 10: Graph showing the dual value L(u(k)) and primal value f(y(k)) + g(l(y(k))), versus
iteration number k, for the subgradient algorithm on a translation example from the
work of Rush and Collins (2011), where the method does not e-converge to an exact
solution.

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

Maximum Number of Dual Decomposition Iterations

% validation UAS
% certificates

% match K=5000
 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

P
er

ce
nt

ag
e

Maximum Number of Dual Decomposition Iterations

f score
% certificates

% match K=50

Figure 11: Figures showing effects of early stopping for the non-projective parsing algorithm of
Koo et al. (2010) (left graph) and combined constituency and dependency parsing (right
graph). In each case we plot three quantities versus the number of iterations, k: 1) the
accuracy (UAS or f-score); 2) the percentage of cases where the algorithm e-converges
giving an exact solution, with a certificate of optimality; 3) the percentage of cases where
the best primal solution up to the k’th iteration is the same as running the algorithm to
e-convergence.

As described before, we can use L∗k − p∗k as an upper bound on the difference between this approx-
imate solution and the optimal solution.

7.4 Early Stopping

It is interesting to also consider the strategy of returning the best primal solution early in the al-
gorithm in cases where the algorithm does eventually e-converge to an exact solution. In practice,
this strategy can sometimes produce a high quality solution, albeit without a certificate of optimal-
ity, faster than running the algorithm to e-convergence. Figure 11 shows graphs for two problems:
non-projective dependency parsing (Koo et al., 2010), and combined constituency and dependency

341

RUSH & COLLINS

parsing (Rush et al., 2010). In each case we show how three quantities vary with the number of
iterations of the algorithm. The first quantity is the percentage of cases where the algorithm e-
converges, giving an exact solution, with a certificate of optimality. For combined constituency and
dependency parsing it takes roughly 50 iterations for most (over 95%) of cases to e-converge; the
second algorithm takes closer to 1000 iterations.

In addition, we show graphs indicating the quality of the best primal solution generated up to
iteration k of the algorithm, versus the number of iterations, k. An “early stopping” strategy would
be to pick some fixed value for k, and to simply return the best primal solution generated in the first k
iterations of the algorithm. We first plot the accuracy (f-score, or dependency accuracy respectively)
for the two models under early stopping: we can see that accuracy very quickly asymptotes to its
optimal value, suggesting that returning a primal solution before e-convergence can often yield high
quality solutions. We also plot the percentage of cases where the primal solution returned is in fact
identical to the primal solution returned when the algorithm is run to e-convergence. We again see
that this curve asymptotes quickly, showing that in many cases the early stopping strategy does in
fact produce the optimal solution, albeit without a certificate of optimality.

8. Alternatives to Subgradient Optimization

This tutorial has focused on subgradient methods for optimization of the dual objective. Several
alternative optimization algorithms have been proposed in the machine learning literature; in this
section we give an overview of these approaches.

Wainwright, Jaakkola, and Willsky (2005) describe an early and important algorithm for Markov
random fields (MRFs) based on LP relaxations, tree-reweighted message passing (TRW). Follow-
ing the work of Kolmogorov (2006), we use TRW-E to refer to the edge-based variant of TRW, and
TRW-T to refer to the tree-based algorithm. Kolmogorov (2006) derives a further variant, TRW-S
(the “S” refers to the sequential nature of the algorithm). All three algorithms—TRW-E, TRW-T,
and TRW-S—are motivated by the LP relaxation for MRFs, but none of them have a guarantee
of converging to the optimal value of the LP. TRW-S has the strongest guarantee of the three algo-
rithms, namely that it monotonically improves the dual value, but it may not converge to the optimal
dual value.

Yanover et al. (2006) describe experiments comparing TRW-based algorithms to generic LP
solvers for MRF problems (specifically, the LP solver they use is CPLEX13). The TRW-based al-
gorithms are considerably more efficient than CPLEX, due to the fact that the TRW-based methods
leverage the underlying structure of the MRF problem. The various Lagrangian relaxation algo-
rithms described in the current paper can all be viewed as specialized algorithms for solving LP
relaxations, which explicitly leverage combinatorial structure within the underlying problem.

Komodakis et al. (2007, 2011) give experiments comparing the subgradient method to the TRW-
S and TRW-T algorithms. In these experiments TRW-S generally performs better than TRW-T. In
several cases TRW-S finds the optimal dual solution faster than the subgradient method; in other
cases TRW-S appears to get stuck (as expected given its lack of convergence guarantee), while the
subgradient method finds the global optimum. Overall, the subgradient method is competitive with
TRW-S: it may initially make slower progress on the dual objective, but has the benefit of guaranteed
convergence to the global optimum of the LP relaxation.

13. http://www.ilog.com/products/cplex/

342

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Another important class of algorithms for optimizing the dual of the LP are block coordinate
descent algorithms: for example the MPLP algorithm of Globerson and Jaakkola (2007). See the
work of Sontag et al. (2010) for a discussion of these methods. Like TRW-S, the MPLP algorithm
is guaranteed to monotonically improve the dual value, but is not guaranteed to converge to the
global optimum of the MRF LP. In several experimental settings, the MPLP algorithm produces
better dual values in early iterations than subgradient methods, but can get stuck at a non-optimal
solution (Jojic, Gould, & Koller, 2010; Martins, Figueiredo, Aguiar, Smith, & Xing, 2011; Meshi
& Globerson, 2011). Another complication of MPLP is that it requires computing max-marginals
for the sub-problems at each iteration instead of MAP assignments. Max-marginals may be slower
to compute in practice, and for some combinatorial problems computation may be asymptotically
slower. (For example, for the directed spanning tree models from Koo et al., 2010, the MAP problem
can be solved in O(n2) time where n is the length of the input sentence, but we are not aware of an
algorithm that solves the max-marginal problem in better than O(n4) time.)

In other work, Jojic et al. (2010) describe an accelerated method for MRF inference, using the
method of Nesterov (2005) to smooth the objective in the underlying decomposition. The method
has a relatively fast rate of convergence (O(1/ε) time to reach a solution that is ε-close to optimal).
Experiments from the work of Jojic et al. (2010) show a decrease in the number of iterations required
compared to subgradient; however in the work of Martins et al. (2011) the accelerated method
requires more iterations than the subgradient algorithm. In both sets of experiments, MPLP makes
more initial progress than either method. Accelerated subgradient also requires computing sub-
problem marginals, which has similar disadvantages as MPLP’s requirement of max-marginals.

Recently, Martins et al. (2011) proposed an augmented Lagrangian method for inference using
the alternating direction method of multipliers (ADMM). See the tutorial of Boyd, Parikh, Chu,
Peleato, and Eckstein (2011) on ADMM. The augmented Lagrangian method further extends the
objective with a quadratic penalty term representing the amount of constraint violation. ADMM
is a method for optimizing this augmented problem that is able to maintain similar decomposibil-
ity properties as dual decomposition. Like the subgradient method, ADMM is guaranteed to find
the optimum of the LP relaxation. Martins et al. (2011) show empirically that ADMM requires a
comparable number of iterations to MPLP to find a good primal solution, while still being guar-
anteed to optimize the LP. A challenge of ADMM is that the extra quadratic term may complicate
sub-problem decoding, for example it is not clear how to directly decode the parsing problems pre-
sented in this work with a quadratic term in the objective. Several alternative approaches have been
proposed: Martins et al. (2011) binarize the combinatorial sub-problems into binary-valued factor
graphs; Meshi and Globerson (2011) avoid the problem by instead applying ADMM to the dual of
the LP; Martins (2012) and Das et al. (2012) use an iterative active set method that utilizes MAP
solutions of the original sub-problems to solve the quadratic version. Martins (2012) also describes
recent results on ADMM that give a O(1/ε) bound for relaxed primal convergence.

9. The Relationship to Linear Programming Relaxations

This section describes the close relationship between the dual decomposition algorithm and linear
programming relaxations. This connection will be very useful in understanding the behavior of the
algorithm, and in particular in understanding the cases where the algorithm does not e-converge to
an exact solution. In addition, it will suggest strategies for “tightening” the algorithm until an exact
solution is found.

343

RUSH & COLLINS

9.1 The Linear Programming Relaxation

We continue to use the algorithm from section 4 as an example; the generalization to other problems
is straightforward. First, define the set

∆y = {α : α ∈ R|Y|,
∑
y

αy = 1,∀y 0 ≤ αy ≤ 1}

Thus ∆y is a simplex, corresponding to the set of probability distributions over the finite set Y .
Similarly, define

∆z = {β : β ∈ R|Z|,
∑
z

βz = 1, ∀z 0 ≤ βz ≤ 1}

as the set of distributions over the set Z .
We now define a new optimization problem, as follows:

Optimization Problem 5 Find

max
α∈∆y ,β∈∆z

∑
y

αyf(y) +
∑
z

βzg(z) (29)

such that for all i, t, ∑
y

αyy(i, t) =
∑
z

βzz(i, t) (30)

This optimization problem is a linear program: the objective in Eq. 29 is linear in the variables
α and β; the constraints in Eq. 30, together with the constraints in the definitions of ∆y and ∆z , are
also linear in these variables.

This optimization problem is very similar to our original problem, optimization problem 1. To
see this, define ∆′y as follows:

∆′y = {α : α ∈ R|Y|,
∑
y

αy = 1,∀y αy ∈ {0, 1}}

Thus ∆′y is a subset of ∆y, where the constraints 0 ≤ αy ≤ 1 have been replaced by αy ∈ {0, 1}.
Define ∆′z similarly. Consider the following optimization problem, where we replace ∆y and ∆z in
Eq. 29 by ∆′y and ∆′z respectively:

Optimization Problem 6 Find

max
α∈∆′y ,β∈∆′z

∑
y

αyf(y) +
∑
z

βzg(z) (31)

such that for all i, t, ∑
y

αyy(i, t) =
∑
z

βzz(i, t) (32)

344

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

This new problem is equivalent to our original problem, optimization problem 1: choosing
vectors α ∈ ∆′y and β ∈ ∆′z is equivalent to choosing a single parse in Y , and a single POS
sequence in z. In this sense, optimization problem 5 is a relaxation of our original problem, where
constraints of the form αy ∈ {0, 1} and βz ∈ {0, 1} are replaced with constraints of the form
0 ≤ αy ≤ 1 and 0 ≤ βz ≤ 1.

Note that optimization problem 6 is an integer linear program, because the objective is again
linear in the α and β variables, and the constraints on these variables combine linear constraints
with integer constraints (that each αy and βz must be either 0 or 1). It is also worth noting that ∆y

is actually the convex hull of the finite set ∆′y. The points in ∆′y form the vertices of the polytope
∆y.

A useful theorem, which is central to the relationship between linear programming and combi-
natorial optimization problems, is the following:

Theorem 6 For any finite set Y , and any function f : Y → R,

max
y∈Y

f(y) = max
α∈∆y

∑
y∈Y

αyf(y)

where ∆y is as defined above.

The proof is simple, and is given in Appendix A.4.

9.2 The Dual of the New Optimization Problem

We now describe the dual problem for the linear program in Eqs. 29 and 30. This will again be a
function M(u) of a vector of dual variables u = {u(i, t) : i ∈ {1 . . . n}, t ∈ T }. A crucial result
will be that the two dual functions M(u) and L(u) are identical.

Our new Lagrangian is

M(u, α, β) =
∑
y

αyf(y) +
∑
z

βzg(z) +
∑
i,t

u(i, t)

(∑
y

αyy(i, t)−
∑
z

βzz(i, t)

)

=

∑
y

αyf(y) +
∑
i,t

u(i, t)
∑
y

αyy(i, t)


+

∑
z

βzg(z)−
∑
i,t

u(i, t)
∑
z

βzz(i, t)


The new dual objective is

M(u) = max
α∈∆y ,β∈∆z

M(u, α, β)

Note that once again we have simply maximized out over the primal (α and β) variables, ignoring
the constraints in Eq. 30. The dual problem is to find

min
u
M(u)

Two theorems regarding the dual problem are then as follows:

345

RUSH & COLLINS

Theorem 7 Define (α∗, β∗) to be the solution to the optimization problem in Eqs. 29 and 30. Then

min
u
M(u) =

∑
y

α∗yf(y) +
∑
z

β∗zg(z)

Proof. This follows immediately by results from linear programming duality see the textbook
of Korte and Vygen (2008) for more details.

Note that we now have equality in the above, in contrast to our previous result,

min
u
L(u) ≥ f(y∗) + g(z∗)

where the dual function only gave an upper bound on the best primal solution.
Our second theorem is as follows:

Theorem 8 For any value of u,

M(u) = L(u)

Thus the two dual functions are identical. Given that the subgradient algorithm we have de-
scribed minimizesL(u), it therefore also minimizes the dual of the linear program in Eqs. 29 and 30.

Proof. We have

M(u) = max
α∈∆y

∑
y

αyf(y) +
∑
i,t

u(i, t)
∑
y

αyy(i, t)

+

max
β∈∆z

∑
z

βzg(z)−
∑
i,t

u(i, t)
∑
z

βzz(i, t)


= max

y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)

+

max
z∈Z

g(z)−
∑
i,t

u(i, t)z(i, t)


= L(u)

where we have used theorem 6 to give

max
α∈∆y

∑
y

αyf(y) +
∑
i,t

u(i, t)
∑
y

αyy(i, t)

 = max
y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)


and we have used a similar result to replace the max over ∆z by the max over Z .

346

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3

Figure 12: A simple example with three possible parse trees and three possible POS sequences.

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3

Y
x

a

He

a

is

y1

x

b

He

b

is

y2

x

c

He

c

is

y3

Z a

He

b

is

z1

b

He

a

is

z2

c

He

c

is

z3

Figure 13: Illustration of two solutions that satisfy the constraints in Eq. 30. On the left, the solution
α = [0, 0, 1], β = [0, 0, 1] puts weight 1 on y3 and z3. On the right, the fractional
solution α = [0.5, 0.5, 0] and β = [0.5, 0.5, 0] puts 0.5 weight on y1/y2 and z1/z2.

347

RUSH & COLLINS

9.3 An Example

We now give an example that illustrates these ideas. Through this example we will also illustrate
what happens when the algorithm fails to e-converge.

We assume that there are three possible parse trees, Y = {y1, y2, y3}, and three possible tag
sequences, Z = {z1, z2, z3}, shown in Figure 12. We will write distributions over these sets as
vectors such as α = [0, 0, 1] or β = [0.5, 0.5, 0].

Now consider pairs of vectors (α, β) that satisfy the constraints in Eq. 30. Figure 13 illustrates
two possible solutions. One such pair, which we will denote as (α1, β1), is α1 = [0, 0, 1], β1 =
[0, 0, 1]. It is easily verified that under this definition∑

y∈Y
α1
yy(1, c) =

∑
z∈Y

β1
zz(1, c) =

∑
y∈Y

α1
yy(2, c) =

∑
z∈Y

β1
zz(2, c) = 1

with all other expected values being equal to 0: hence (α1, β1) satisfies the constraints. This po-
tential solution is integral, in that it puts weight 1 on a single parse tree/POS-tag sequence, with all
other structures having weight 0.

A second pair that satisfies the constraints is α2 = [0.5, 0.5, 0], β2 = [0.5, 0.5, 0]. Under these
definitions, ∑

y∈Y
α2
yy(1, a) =

∑
z∈Y

β2
zz(1, a) =

∑
y∈Y

α2
yy(1, b) =

∑
z∈Y

β2
zz(1, b) = 0.5

and ∑
y∈Y

α2
yy(2, a) =

∑
z∈Y

β2
zz(2, a) =

∑
y∈Y

α2
yy(2, b) =

∑
z∈Y

β2
zz(2, b) = 0.5

with all other expected values being equal to 0. The pair (α2, β2) is a fractional solution, in that it
puts fractional (0.5) weight on some structures.

Next, consider different definitions for the functions f(y) and g(z). Consider first the definitions
f = [0, 0, 1] and g = [0, 0, 1] (we write f = [0, 0, 1] as shorthand for f(y1) = 0, f(y2) = 0,
f(y3) = 1). The solution to the problem in Eqs. 29 and 30 is then the pair (α1, β1).

Alternatively, consider the definitions f = [1, 1, 2] and g = [1, 1,−2]. In this case the following
situation arises:

• The pair (α1, β1) achieves score 0 under the objective in Eq. 29, whereas the pair (α2, β2)
achieves a score of 2. Thus the solution to the problem in Eqs. 29 and 30 is (α2, β2), which is
a fractional solution.

• By theorem 7, minuM(u) is equal to the value for the optimal primal solution, i.e., minuM(u) =
2. Hence minu L(u) = 2.

• In contrast, the solution to the original optimization problem 1 is (y∗, z∗) = (y3, z3): in fact,
(y3, z3) is the only pair of structures that satisfies the constraints y(i, t) = z(i, t) for all (i, t).
Thus f(y∗) + g(z∗) = 0. We have

min
u
L(u) = 2 > f(y∗) + g(z∗) = 0

Thus there is a clear gap between the minimum dual value, and the score for the optimal
primal solution.

348

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Round

D
ua

l
k y(k) z(k)

1 y3 z2

2 y2 z1

3 y1 z1

4 y1 z1

5 y2 z2

6 y1 z1

7 y2 z2

8 y1 z1

9 y2 z2

Figure 14: Figures showing progress of the subgradient algorithm for f = [1, 1, 2] and g =
[1, 1,−2]. The graph shows the dual value L(u(k)) versus number of iterations k. The
table shows the hypotheses y(k) and z(k) versus number of iterations k. In later iterations
the method alternates between hypotheses (y1, z1) and (y2, z2).

Figure 14 shows a trace of the subgradient method on this problem. After nine iterations the
method has reached L(u(9)) = 2.06, which is close to the optimal dual value. In this case, however,
the algorithm does not reach agreement between the structures y(k) and z(k). Instead, it reaches a
point where it alternates between solutions (y(1), z(1)), and (y(2), z(2)). Thus the dual d-converges to
its minimum value, but the primal solutions generated alternate between the structures y1, y2, z1, z2

that have greater than 0 weight in the fractional solution (α2, β2). This behavior is typical of cases
where there is a duality gap, i.e., where minu L(u) is strictly greater than f(y∗) + g(z∗).

9.4 Fixing E-Convergence: Tightening Approaches

We now describe a “tightening” approach that can be used to fix the issue of non-convergence given
in the previous example.

Consider again the problem of integrated CFG parsing and HMM tagging. Assume that the input
sentence is of length n. The first approach is as follows. We introduce new variables y(i, t1, t2) for
i = 1 . . . (n − 1), t1 ∈ T , t2 ∈ T , with y(i, t1, t2) = 1 if y(i, t1) = 1 and y(i + 1, t2) = 1, 0
otherwise. Thus the new variables track tag bigrams. Similarly, we introduce variables z(i, t1, t2)
for tag sequences z ∈ Z . We now define the set of constraints to be

y(i, t) = z(i, t)

for all i ∈ {1 . . . n}, t ∈ T (the same constraints as before), and in addition

y(i, t1, t2) = z(i, t1, t2)

for all i ∈ {1 . . . n− 1}, t1 ∈ T , t2 ∈ T .
We then proceed as before, using Lagrange multipliers u(i, t) to enforce the first set of con-

straints, and Lagrange multipliers v(i, t1, t2) to enforce the second set of constraints. The dual

349

RUSH & COLLINS

decomposition algorithm will require us to find

y(k) = argmax
y∈Y

f(y) +
∑
i,t

u(k−1)(i, t)y(i, t) +
∑
i,t1,t2

v(k−1)(i, t1, t2)y(i, t1, t2) (33)

and
z(k) = argmax

z∈Z
g(z)−

∑
i,t

u(k−1)(i, t)z(i, t)−
∑
i,t1,t2

v(k−1)(i, t1, t2)z(i, t1, t2) (34)

at each iteration, followed by updates of the form

u(k)(i, t)← u(k−1)(i, t)− δ(y(k)(i, t)− z(k)(i, t))

and
v(k)(i, t1, t2)← v(k−1)(i, t1, t2)− δ(y(k)(i, t1, t2)− z(k)(i, t1, t2))

It can be shown that if g(z) is defined through a bigram HMM model, the above method is
guaranteed to e-converge to an exact solution. In fact, the underlying LP relaxation is now tight, in
that only integral solutions are possible.

The problem with this approach is that finding the argmax in Eq. 33 is now expensive, due to
the v(i, t1, t2)y(i, t1, t2) terms: in fact, it requires the exact dynamic programming algorithm for
intersection of a bigram HMM with a PCFG. Thus we end up with an algorithm that is at least as
expensive as integration of a bigram HMM with a PCFG using the construction of Bar-Hillel et al.
(1964).14

A second approach, which may be more efficient, is as follows. Rather than introducing all
constraints of the form of Eq. 33, we might introduce a few selected constraints. As an example,
with the previous non-convergent example we might add the single constraint

y(1, a, b) = z(1, a, b)

We have a single Lagrange multiplier v(1, a, b) for this new constraint, and the dual decomposition
algorithm requires the following steps at each iteration:

y(k) = argmax
y∈Y

f(y) +
∑
i,t

u(k−1)(i, t)y(i, t) + v(k−1)(1, a, b)y(1, a, b) (35)

and
z(k) = argmax

z∈Z
g(z)−

∑
i,t

u(k−1)(i, t)z(i, t)− v(k−1)(1, a, b)z(1, a, b) (36)

and updates
u(k)(i, t)← u(k−1)(i, t)− δ(y(k)(i, t)− z(k)(i, t))

and
v(k)(1, a, b)← v(k−1)(1, a, b)− δ(y(k)(1, a, b)− z(k)(1, a, b))

Figure 15 shows a run of the subgradient algorithm with this single constraint added. The
fractional solution (α2, β2) is now eliminated, and the method e-converges to the correct solution.

Two natural questions arise:

14. If g(z) is defined through a bigram HMM, then clearly nothing has been gained in efficiency over the Bar-Hillel et al.
(1964) method. If g(z) is more complex, for example consisting of a trigram model, the dual decomposition method
may still be preferable.

350

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

Round

D
ua

l
k y(k) z(k)

7 y3 z2

8 y2 z3

9 y1 z2

10 y3 z1

11 y2 z3

12 y1 z2

13 y3 z1

14 y2 z3

15 y1 z2

16 y3 z3

Figure 15: Figures showing progress of the subgradient algorithm for f(y) = [1, 1, 2] and g(z) =
[1, 1,−2], with the additional constraint y(1, a, b) = z(1, a, b) incorporated in the La-
grangian. The graph shows the dual value L(u(k)) versus number of iterations k. The
table shows the hypotheses y(k) and z(k) versus number of iterations k.

• Which constraints should be added? One strategy is to first run the subgradient method with
the basic constraints, as shown in Figure 14. Some heuristic is used to determine that the
dual is no longer decreasing at a significant rate. At that point, it can be determined that
the algorithm is oscillating between solutions (y1, z1) and (y2, z2), and that the additional
constraint y(1, a, b) = z(1, a, b) would rule out these solutions; hence this constraint is added.

• When is this more efficient than adding all constraints in Eq. 33? Our toy example is too
simple to illustrate the benefit of only adding selected constraints. To understand the benefit,
consider the case where the sentence length n is reasonably large. In that case, we might
add bigram constraints at only a few positions in the sentence: in practice the CKY decoding
algorithm will only need to introduce the Bar-Hillel et al. (1964) machinery at these selected
points, which can be much more efficient that introducing all constraints.

For examples of methods that tighten dual decomposition/Lagrangian relaxation techniques us-
ing additional constraints, see the work of Sontag, Meltzer, Globerson, Jaakkola, and Weiss (2008),
Rush and Collins (2011), Chang and Collins (2011), and Das et al. (2012). This is related to pre-
vious work on non-projective dependency parsing (Riedel & Clarke, 2006) that incrementally adds
constraints to an integer linear program solver.

9.5 Compact Linear Programs

The LP relaxations that we have described have a very large set of variables: that is, one variable
for each member of Y and Z . In most cases of interest, the sets Y and Z will be exponential in size.

In this section we describe how to derive equivalent linear programs with far fewer variables.
This is a problem of practical interest: for many problems, we have found it beneficial to implement
the underlying LP relaxation within a generic LP solver, as a way of debugging dual decomposition

351

RUSH & COLLINS

algorithms. This is practical with the compact LPs that we describe in this section, but is clearly
impractical with the exponential-size linear programs described in the previous section.

First, consider the abstract description of Lagrangian relaxation given in section 3. The LP
relaxation was

argmax
µ∈Q

µ · θ

where
Q = {y : y ∈ Conv(Y ′) and Ay = b}

where A ∈ Rp×d and b ∈ Rp. Recall that Conv(Y ′) is the convex hull of the set Y ′. Next, assume
that Conv(Y ′) can itself be defined through a polynomial number of linear constraints: that is,

Conv(Y ′) = {y ∈ Rd : Cy = e, y ≥ 0} (37)

for some C ∈ Rq×d and e ∈ Rq, where the number of constraints, q, is polynomial. In this case we
have an explicit characterization of the set Q as

Q = {y ∈ Rd : Cy = e, y ≥ 0 and Ay = b}

Because d, p, and q are all polynomial in size, the resulting linear program is polynomial in size. In
this sense it is “compact”.

The remaining question is whether a characterization of the form of Eq. 37 exists, and if so, how
it is defined. Recall that we made the assumption that for any value of θ,

argmax
y∈Y ′

y · θ (38)

can be found using a combinatorial algorithm. For many combinatorial algorithms, there are LP
formulations that are polynomial in size: these formulations lead directly to definitions of C and
e.15 For example, Martin, Rardin, and Campbell (1990) give such a construction for dynamic pro-
gramming algorithms, which includes parsing algorithms for weighted context-free grammars, the
Viterbi algorithm, and other dynamic programs used in NLP. Martins et al. (2009) make use of a
construction for directed spanning trees (see also Magnanti & Wolsey, 1994), and apply it to non-
projective dependency parsing. Korte and Vygen (2008) describe many other such constructions. In
short, given a combinatorial algorithm that solves the problem in Eq. 38, it is often straightforward
to find a recipe for constructing a pair (C, e) that completely characterizes Conv(Y ′).

It is straightforward to extend this idea to the LP for dual decomposition. Consider again our
running example, (optimization problem 1),

argmax
y∈Y,z∈Z

f(y) + g(z)

such that for all i = 1 . . . n, t ∈ T ,
y(i, t) = z(i, t)

Rush et al. (2010) give a full description of the compact LP for this problem: we give a sketch here.

15. There is one subtlety here: in some cases additional auxilliary variables may need to be introduced. See for exam-
ple the spanning tree construction of Magnanti and Wolsey (1994). However the number of auxilliary variables is
generally polynomial in number, hence this is benign.

352

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Define each y to be a vector in {0, 1}d that specifies which context-free rules y contains. It
follows that Y is a subset of {0, 1}d. We then have

f(y) = y · θ

where θ ∈ Rd is a vector specifying the weight for each rule. Similarly, define z to be a vector in
{0, 1}d′ that specifies the trigrams that z contains (assuming that g(z) is a trigram tagging model).
It follows that Z is a subset of {0, 1}d′ . We can then write

g(z) = z · θ′

for some θ′ ∈ Rd
′
. The compact LP is then

argmax
µ∈Conv(Y),ν∈Conv(Z)

µ · θ + ν · θ′

such that for all i = 1 . . . n, t ∈ T ,
µ(i, t) = ν(i, t)

Again, the existence of combinatorial algorithms for the problems argmaxy∈Y y·θ and argmaxz∈Z z·
θ′ implies explicit representations

Conv(Y) = {µ ∈ Rd : Aµ = b, µ ≥ 0}

and
Conv(Z) = {ν ∈ Rd

′
: Cν = e, ν ≥ 0}

where A, b, C and e are polynomial in size. Rush et al. (2010) describe this construction in detail
for the case where a weighted CFG is combined with a finite-state tagger.

9.6 Summary

To summarize, the key points of this section were as follows:

• We introduced a linear programming problem that was a relaxation of our original problem.
The function L(u) was shown to be the dual of this linear programming relaxation.

• In cases where the optimal solution to the underlying LP is fractional, the subgradient method
will still d-converge to minu L(u). However the primal solutions (y(k), z(k)) will alternate
between different solutions that do not satisfy the y(i, t) = z(i, t) constraints.

• In practice, tightening methods can be used to improve convergence. These methods selec-
tively introduce constraints in an effort to improve convergence of the method, with the cost
of increased complexity in finding y(k) and/or z(k). The precise constraints to be added can be
chosen by identifying constraints that are frequently violated during the subgradient method.

• Finally, we described methods that construct a compact linear program that is equivalent to
the original LP relaxation. This linear program is often small enough to be solved by a generic
LP solver; this can be useful in debugging dual decomposition or Lagrangian relaxation algo-
rithms.

353

RUSH & COLLINS

10. Conclusions

A broad class of inference problems in statistical NLP and other areas of machine learning are
amenable to Lagrangian relaxation (LR) methods. LR methods make use of combinatorial algo-
rithms in combination with linear constraints that are introduced using Lagrange multipliers: it-
erative methods are used to minimize the resulting dual objective. LR algorithms are simple and
efficient, typically involving repeated applications of the underlying combinatorial algorithm, in
conjunction with simple additive updates to the Lagrange multipliers. They have well-understood
formal properties: the dual objective is an upper bound on the score for the optimal primal solution;
there are close connections to linear programming relaxations; and crucially, they have the potential
of producing an exact solution to the original inference problem, with a certificate of optimality. Ex-
periments on several NLP problems have shown the effectiveness of LR algorithms for inference:
LR methods are often considerably more efficient than existing exact methods, and have stronger
formal guarantees than the approximate search methods that are often used in practice.

Acknowledgments

We thank the anonymous reviewers for helpful comments. Tommi Jaakkola and David Sontag in-
troduced us to dual decomposition and Lagrangian relaxation for inference in probabilistic models;
this work would not have happened without them. We have benefited from many discussions with
Yin-Wen Chang, Terry Koo, and Roi Reichart, who with Tommi and David were collaborators on
our work on dual decomposition/Lagrangian relaxation for NLP. We also thank Shay Cohen, Yoav
Goldberg, Mark Johnson, Andre Martins, Ryan McDonald, and Slav Petrov for feedback on earlier
drafts of this paper. Columbia University gratefully acknowledges the support of the Defense Ad-
vanced Research Projects Agency (DARPA) Machine Reading Program under Air Force Research
Laboratory (AFRL) prime contract no. FA8750-09-C-0181. Alexander Rush was supported by a
National Science Foundation Graduate Research Fellowship.

Appendix A. Proofs

In this section we derive various results for the combined parsing and tagging problem. Recall that
in this case the Lagrangian is defined as

L(u, y, z) = f(y) + g(z) +
∑

i∈{1...n},t∈T
u(i, t)(y(i, t)− z(i, t))

and that the dual objective is L(u) = maxy∈Y,z∈Z L(u, y, z). Here n is the number of words in the
sentence, and T is a finite set of part-of-speech tags.

We first prove that L(u) is a convex function; we then derive the expression for subgradients
of L(u); we then give a convergence theorem for the algorithm in Figure 2, which is a subgradient
algorithm for minimization of L(u).

Finally, we give a proof of theorem 6.

A.1 Proof of Convexity of L(u)

The theorem is as follows:

354

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Theorem 9 L(u) is convex. That is, for any u(1) ∈ Rd, u(2) ∈ Rd, λ ∈ [0, 1],

L(λu(1) + (1− λ)u(2)) ≤ λL(u(1)) + (1− λ)L(u(2))

Proof: Define
(y∗, z∗) = arg max

y∈Y,z∈Z
L(u∗, y, z)

where u∗ = λu(1) + (1− λ)u(2). It follows that

L(u∗) = L(u∗, y∗, z∗)

In addition, note that

L(u(1), y∗, z∗) ≤ max
y∈Y,z∈Z

L(u(1), y, z) = L(u(1))

and similarly
L(u(2), y∗, z∗) ≤ L(u(2))

from which it follows that

λL(u(1), y∗, z∗) + (1− λ)L(u(2), y∗, z∗) ≤ λL(u(1)) + (1− λ)L(u(2))

Finally, it is easy to show that

λL(u(1), y∗, z∗) + (1− λ)L(u(2), y∗, z∗) = L(u∗, y∗, z∗) = L(u∗)

hence
L(u∗) ≤ λL(u(1)) + (1− λ)L(u(2))

which is the desired result.

A.2 Subgradients of L(u)

For any value of u ∈ Rd, as before define

(y(u), z(u)) = argmax
y∈Y,z∈Z

L(u, y, z)

or equivalently,

y(u) = argmax
y∈Y

f(y) +
∑
i,t

u(i, t)y(i, t)


and

z(u) = argmax
z∈Z

g(z)−
∑
i,t

u(i, t)z(i, t)


Then if we define γ(u) as the vector with components

γ(u)(i, t) = y(u)(i, t)− z(u)(i, t)

355

RUSH & COLLINS

for i ∈ {1 . . . n}, t ∈ T , then γ(u) is a subgradient of L(u) at u.
This result is a special case of the following theorem:16

Theorem 10 Define the function L : Rd → R as

L(u) = max
i∈{1...m}

(ai · u+ bi)

where ai ∈ Rd and bi ∈ R for i ∈ {1 . . .m}. Then for any value of u, if

j = argmax
i∈{1...m}

(ai · u+ bi)

then aj is a subgradient of L(u) at u.

Proof: For aj to be a subgradient at the point u, we need to show that for all v ∈ Rd,

L(v) ≥ L(u) + aj · (v − u)

Equivalently, we need to show that for all v ∈ Rd,

max
i∈{1...m}

(ai · v + bi) ≥ max
i∈{1...m}

(ai · u+ bi) + aj · (v − u) (39)

To show this, first note that

aj · u+ bj = max
i∈{1...m}

(ai · u+ bi)

hence
max

i∈{1...m}
(ai · u+ bi) + aj · (v − u) = bj + aj · v ≤ max

i∈{1...m}
(ai · v + bi)

thus proving the theorem.

A.3 Convergence Proof for the Subgradient Method

Consider a convex function L : Rd → R, which has a minimizer u∗ (i.e., u∗ = argmin
u∈Rd L(u)).

The subgradient method is an iterative method which initializes u to some value u(0) ∈ Rd, then
sets

u(k+1) = u(k) − δkgk
for k = 0, 1, 2, . . ., where δk > 0 is the stepsize at the k’th iteration, and gk is a subgradient at u(k):
that is, for all v ∈ Rd,

L(v) ≥ L(u(k)) + gk · (v − u(k))

The following theorem will then be very useful in proving convergence of the method (the
theorem and proof is taken from Boyd & Mutapcic, 2007):

16. To be specific, our definition of L(u) can be written in the form maxi∈{1...m} (ai · u+ bi) as follows. Define the
integerm to be |Y|× |Z|. Define (y(i), z(i)) for i ∈ {1 . . .m} to be a list of all possible pairs (y, z) such that y ∈ Y
and z ∈ Z . Define bi = f(y(i)) + g(z(i)), and ai to be the vector with components ai(l, t) = y(i)(l, t)− z(i)(l, t)
for l ∈ {1 . . . n}, t ∈ T . Then it can be verifed that L(u) = maxi∈{1...m} (ai · u+ bi).

356

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Theorem 11 Assume that for all k, ||gk||2 ≤ G2 where G is some constant. Then for any k ≥ 0,

min
i∈{0...k}

L(u(i)) ≤ L(u∗) +
||u(0) − u∗||2 +G2∑k

i=0 δ
2
i

2
∑k
i=0 δi

Proof: First, given the updates u(k+1) = u(k) − δkgk, we have for all k ≥ 0,

||u(k+1) − u∗||2 = ||u(k) − δkgk − u∗||2
= ||u(k) − u∗||2 − 2δkgk · (u(k) − u∗) + δ2

k||gk||2

By the subgradient property,

L(u∗) ≥ L(u(k)) + gk · (u∗ − u(k))

hence
−gk · (u(k) − u∗) ≤ L(u∗)− L(u(k))

Using this inequality, together with ||gk||2 ≤ G2, gives

||u(k+1) − u∗||2 ≤ ||u(k) − u∗||2 + 2δk
(
L(u∗)− L(u(k))

)
+ δ2

kG
2

Taking a sum over both sides of i = 0 . . . k gives
k∑
i=0

||u(i+1) − u∗||2 ≤
k∑
i=0

||u(i) − u∗||2 + 2
k∑
i=0

δi
(
L(u∗)− L(u(i))

)
+

k∑
i=0

δ2
iG

2

and hence

||u(k+1) − u∗||2 ≤ ||u(0) − u∗||2 + 2
k∑
i=0

δi
(
L(u∗)− L(u(i))

)
+

k∑
i=0

δ2
iG

2

Finally, using ||u(k+1) − u∗||2 ≥ 0 and
k∑
i=0

δi
(
L(u∗)− L(u(i))

)
≤
(

k∑
i=0

δi

)(
L(u∗)− min

i∈{0...k}
L(u(i))

)
gives

0 ≤ ||u(0) − u∗||2 + 2

(
k∑
i=0

δi

)(
L(u∗)− min

i∈{0...k}
L(u(i))

)
+

k∑
i=0

δ2
iG

2

Rearranging terms gives the result in the theorem.
This theorem has a number of consequences. As one example, for a constant step-size, δk = h

for some h > 0,

lim
k→∞

(
||u(0) − u∗||2 +G2∑k

i=1 δ
2
i

2
∑k
i=1 δi

)
=
Gh

2

hence in the limit the value for
min

i∈{1...k}
L(u(i))

is within Gh/2 of the optimal solution. A slightly more involved argument shows that under the
assumptions that δk > 0, limk→∞ δk = 0, and

∑∞
k=0 δk =∞,

lim
k→∞

(
||u(0) − u∗||2 +G2∑k

i=1 δ
2
i

2
∑k
i=1 δi

)
= 0

See Boyd and Mutapcic for the full derivation.

357

RUSH & COLLINS

A.4 Proof of Theorem 6

Recall that our goal is to prove that

max
y∈Y

f(y) = max
α∈∆y

∑
y∈Y

αyf(y)

We will show this by proving: (1) maxy∈Y f(y) ≤ maxα∈∆y

∑
y∈Y αyf(y), and (2) maxy∈Y f(y) ≥

maxα∈∆y

∑
y∈Y αyf(y).

First, consider case (1). Define y∗ to be a member of Y such that

f(y∗) = max
y∈Y

f(y)

Next, define αy∗ = 1, and αy = 0 for y 6= y∗. Then we have∑
y∈Y

αyf(y) = f(y∗)

Hence we have found a setting for the α variables such that∑
y∈Y

αyf(y) = max
y∈Y

f(y)

from which it follows that
max
α∈∆y

∑
y∈Y

αyf(y) ≥ max
y∈Y

f(y)

Next, consider case (2). Define α∗ to be a setting of the α variables such that∑
y

α∗yf(y) = max
α∈∆y

∑
y∈Y

αyf(y)

Next, define y∗ to be a member of Y such that

f(y∗) = max
y:α∗y>0

f(y)

It is easily verified that
f(y∗) ≥

∑
y

α∗yf(y)

Hence we have found a y∗ ∈ Y such that

f(y∗) ≥ max
α∈∆y

∑
y

α∗yf(y)

from which it follows that
max
y∈Y

f(y) ≥ max
α∈∆y

∑
y

α∗yf(y)

358

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

References

Auli, M., & Lopez, A. (2011). A comparison of loopy belief propagation and dual decomposition
for integrated ccg supertagging and parsing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, pp. 470–480,
Portland, Oregon, USA. Association for Computational Linguistics.

Bar-Hillel, Y., Perles, M., & Shamir, E. (1964). On formal properties of simple phrase structure
grammars. In Language and Information: Selected Essays on their Theory and Application,
pp. 116–150.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and
statistical learning via the alternating direction method of multipliers. Now Publishers.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge Univ Pr.

Boyd, S., & Mutapcic, A. (2007). Subgradient Methods. Course Notes for EE364b, Stanford
University, Winter 2006-07.

Chang, Y., & Collins, M. (2011). Exact Decoding of Phrase-based Translation Models through
Lagrangian Relaxation. In To appear proc. of EMNLP.

Collins, M. (1997). Three Generative, Lexicalised Models for Statistical Parsing. In Proc. ACL, pp.
16–23.

Dantzig, G., & Wolfe, P. (1960). Decomposition principle for linear programs. In Operations
research, Vol. 8, pp. 101–111.

Das, D., Martins, A., & Smith, N. (2012). An exact dual decomposition algorithm for shallow
semantic parsing with constraints. Proceedings of* SEM.[ii, 10, 50].

DeNero, J., & Macherey, K. (2011). Model-Based Aligner Combination Using Dual Decomposi-
tion. In Proc. ACL.

Duchi, J., Tarlow, D., Elidan, G., & Koller, D. (2007). Using combinatorial optimization within max-
product belief propagation. In Advances in Neural Information Processing Systems (NIPS).

Everett III, H. (1963). Generalized lagrange multiplier method for solving problems of optimum
allocation of resources. Operations Research, 399–417.

Felzenszwalb, P., & Huttenlocher, D. (2006). Efficient belief propagation for early vision. Interna-
tional journal of computer vision, 70(1), 41–54.

Fisher, M. L. (1981). The lagrangian relaxation method for solving integer programming problems.
Management Science, 27(1), pp. 1–18.

Germann, U., Jahr, M., Knight, K., Marcu, D., & Yamada, K. (2001). Fast decoding and optimal
decoding for machine translation. In Proceedings of the 39th Annual Meeting on Association
for Computational Linguistics, pp. 228–235. Association for Computational Linguistics.

Globerson, A., & Jaakkola, T. (2007). Fixing max-product: Convergent message passing algorithms
for map lp-relaxations. In NIPS.

Hanamoto, A., Matsuzaki, T., & Tsujii, J. (2012). Coordination structure analysis using dual decom-
position. In Proceedings of the 13th Conference of the European Chapter of the Association
for Computational Linguistics, pp. 430–438, Avignon, France. Association for Computational
Linguistics.

359

RUSH & COLLINS

Held, M., & Karp, R. M. (1971). The traveling-salesman problem and minimum spanning trees:
Part ii. Mathematical Programming, 1, 6–25. 10.1007/BF01584070.

Johnson, J., Malioutov, D., & Willsky, A. (2007). Lagrangian relaxation for map estimation in
graphical models. In 45th Annual Allerton Conference on Communication, Control and Com-
puting.

Jojic, V., Gould, S., & Koller, D. (2010). Fast and smooth: Accelerated dual decomposition for
MAP inference. In Proceedings of International Conference on Machine Learning (ICML).

Klein, D., & Manning, C. (2002). Fast exact inference with a factored model for natural language
parsing. Advances in neural information processing systems, 15(2002).

Koehn, P., Och, F. J., & Marcu, D. (2003). Statistical phrase-based translation. In Proceedings of
the 2003 Conference of the North American Chapter of the Association for Computational
Linguistic s on Human Language Technology, NAACL ’03, pp. 48–54.

Kolmogorov, V. (2006). Convergent tree-reweighted message passing for energy minimization.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(10), 1568–1583.

Komodakis, N., Paragios, N., & Tziritas, G. (2007). MRF Optimization via Dual Decomposition:
Message-Passing Revisited. In Proc. ICCV.

Komodakis, N., Paragios, N., & Tziritas, G. (2011). Mrf energy minimization and beyond via dual
decomposition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, pp. 1–1.

Koo, T., Carreras, X., & Collins, M. (2008). Simple semi-supervised dependency parsing. In Proc.
ACL/HLT.

Koo, T., Rush, A. M., Collins, M., Jaakkola, T., & Sontag, D. (2010). Dual decomposition for
parsing with non-projective head automata. In EMNLP.

Korte, B., & Vygen, J. (2008). Combinatorial Optimization: Theory and Algorithms. Springer
Verlag.

Lacoste-Julien, S., Taskar, B., Klein, D., & Jordan, M. (2006). Word alignment via quadratic assign-
ment. In Proceedings of the main conference on Human Language Technology Conference of
the North American Chapter of the Association of Computational Linguistics, pp. 112–119.
Association for Computational Linguistics.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional Random Fields: Probabilistic Models
for Segmenting and Labeling Sequence Data. In Proc. ICML, pp. 282–289.

Lemaréchal, C. (2001). Lagrangian Relaxation. In Computational Combinatorial Optimization, Op-
timal or Provably Near-Optimal Solutions [based on a Spring School], pp. 112–156, London,
UK. Springer-Verlag.

Magnanti, T. L., & Wolsey, L. A. (1994). Optimal trees. Tech. rep. 290-94, Massachusetts Institute
of Technology, Operations Research Center.

Martin, R., Rardin, R., & Campbell, B. (1990). Polyhedral characterization of discrete dynamic
programming. Operations research, 38(1), 127–138.

Martins, A. (2012). The Geometry of Constrained Structured Prediction: Applications to Inference
and Learning of Natural Language Syntax. Ph.D. thesis.

360

A TUTORIAL ON DUAL DECOMPOSITION FOR NATURAL LANGUAGE PROCESSING

Martins, A., Figueiredo, M., Aguiar, P., Smith, N., & Xing, E. (2011). An augmented lagrangian
approach to constrained map inference. In International Conference on Machine Learning.

Martins, A., Smith, N., & Xing, E. (2009). Concise Integer Linear Programming Formulations for
Dependency Parsing. In Proc. ACL, pp. 342–350.

Martins, A., Smith, N., Figueiredo, M., & Aguiar, P. (2011). Dual decomposition with many over-
lapping components. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, pp. 238–249, Edinburgh, Scotland, UK. Association for Computational
Linguistics.

McDonald, R. (2006). Discriminative Training and Spanning Tree Algorithms for Dependency
Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, USA.

Meshi, O., & Globerson, A. (2011). An alternating direction method for dual map lp relaxation.
Machine Learning and Knowledge Discovery in Databases, 470–483.

Nedić, A., & Ozdaglar, A. (2009). Approximate primal solutions and rate analysis for dual subgra-
dient methods. SIAM Journal on Optimization, 19(4), 1757–1780.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical Programming,
103(1), 127–152.

Paul, M. J., & Eisner, J. (2012). Implicitly intersecting weighted automata using dual decomposi-
tion. In Proc. NAACL.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(2nd edition). Morgan Kaufmann Publishers.

Riedel, S., & Clarke, J. (2006). Incremental integer linear programming for non-projective depen-
dency parsing. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, pp. 129–137. Association for Computational Linguistics.

Riedel, S., & McCallum, A. (2011). Fast and robust joint models for biomedical event extraction. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
pp. 1–12, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Roth, D., & Yih, W. (2005). Integer linear programming inference for conditional random fields. In
Proceedings of the 22nd international conference on Machine learning, pp. 736–743. ACM.

Rush, A., Reichart, R., Collins, M., & Globerson, A. (2012). Improved parsing and pos tagging
using inter-sentence consistency constraints. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, pp. 1434–1444, Jeju Island, Korea. Association for Computational Linguistics.

Rush, A., & Collins, M. (2011). Exact Decoding of Syntactic Translation Models through La-
grangian Relaxation. In Proc. ACL.

Rush, A., Sontag, D., Collins, M., & Jaakkola, T. (2010). On Dual Decomposition and Linear
Programming Relaxations for Natural Language Processing. In Proc. EMNLP.

Shor, N. Z. (1985). Minimization Methods for Non-differentiable Functions. Springer Series in
Computational Mathematics. Springer.

Smith, D., & Eisner, J. (2008). Dependency parsing by belief propagation. In Proc. EMNLP, pp.
145–156.

361

RUSH & COLLINS

Sontag, D., Globerson, A., & Jaakkola, T. (2010). Introduction to dual decomposition for inference.
In Sra, S., Nowozin, S., & Wright, S. J. (Eds.), Optimization for Machine Learning. MIT
Press.

Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., & Weiss, Y. (2008). Tightening LP relaxations
for MAP using message passing. In Proc. UAI.

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech tagging
with a cyclic dependency network. In HLT-NAACL.

Wainwright, M., Jaakkola, T., & Willsky, A. (2005). MAP estimation via agreement on trees:
message-passing and linear programming.. In IEEE Transactions on Information Theory,
Vol. 51, pp. 3697–3717.

Yanover, C., Meltzer, T., & Weiss, Y. (2006). Linear Programming Relaxations and Belief
Propagation–An Empirical Study. In The Journal of Machine Learning Research, Vol. 7,
p. 1907. MIT Press.

362

