
Journal of Artificial Intelligence Research 45 (2012) 641-684 Submitted 11/12; published 12/12

Learning to Predict from Textual Data

Kira Radinsky kirar@cs.technion.ac.il

Sagie Davidovich mesagie@gmail.com

Shaul Markovitch shaulm@cs.technion.ac.il

Computer Science Department

Technion—Israel Institute of Technology

Haifa 32000, Israel

Abstract

Given a current news event, we tackle the problem of generating plausible predictions
of future events it might cause. We present a new methodology for modeling and predicting
such future news events using machine learning and data mining techniques. Our Pundit
algorithm generalizes examples of causality pairs to infer a causality predictor. To obtain
precisely labeled causality examples, we mine 150 years of news articles and apply semantic
natural language modeling techniques to headlines containing certain predefined causality
patterns. For generalization, the model uses a vast number of world knowledge ontologies.
Empirical evaluation on real news articles shows that our Pundit algorithm performs as
well as non-expert humans.

1. Introduction

Causality has been studied since antiquity, e.g., by Aristotle, but modern perceptions of
causality have been most influenced, perhaps, by the work of David Hume (1711–1776),
who referred to causation as the strongest and most important associative relation, that
which lies at the heart of our perception and reasoning about the world, as “it is constantly
supposed that there is a connection between the present fact and that which is inferred
from it.”

Causation is also important for designing computerized agents. When an agent, situ-
ated in a complex environment, plans its actions, it reasons about future changes to the
environment. Some of these changes are a result of its own actions, but many others are
a result of various chains of events not necessarily related to the agent. The process of
observing an event, and reasoning about future events that might be caused by it, is called
causal reasoning.

In the past, computerized agents could not operate in complex environments due to
their limited perceptive capabilities. The proliferation of the World Wide Web, however,
changed all that. An intelligent agent can act in the virtual world of the Web, perceiving the
current state of the world through extensive sources of textual information, including Web
pages, tweets, news reports, and online encyclopedias, and performing various tasks such
as searching, organizing, and generating information. To act intelligently in such a complex
virtual environment, the agent must be able to perceive the current state and reason about
future states through causal reasoning. Such reasoning ability can be extremely helpful
in conducting complex tasks such as identifying political unrest, detecting and tracking

c©2012 AI Access Foundation. All rights reserved.

Radinsky, Davidovich & Markovitch

social trends, and generally supporting decision making by politicians, businesspeople, and
individual users.

While many works have been devoted to extracting information from text (e.g., Banko,
Cafarella, Soderl, Broadhead, & Etzioni, 2007; Carlson, Betteridge, Kisiel, Settles, Hr-
uschka, & Mitchell, 2010), little has been done in the area of causality extraction, with
the works of Khoo, Chan, and Niu (2000) and Girju and Moldovan (2002) being notable
exceptions. Furthermore, the algorithms developed for causality extraction try to detect
causality and cannot be used to predict it, that is, to generate new events the given event
might cause.

Our goal in this paper is to provide algorithms that perform causal reasoning, in par-
ticular causality prediction, in textually represented environments. We have developed a
causality learning and prediction algorithm, Pundit, that, given an event represented in
natural language, predicts future events it can cause. Our algorithm is trained on examples
of causality relations. It then uses large ontologies to generalize over the causality pairs and
generate a prediction model. The model is represented by an abstraction tree, that, given
an input cause event, finds its most appropriate generalization, and uses learned rules to
output predicted effect events.

We have implemented our algorithm and applied it to a large collection of news reports
from the last 150 years. To extract training examples from the news corpus, we do not
use correlation, by means of which causality is often misidentified. Instead, we use textual
causality patterns (such as “X because Y” or “X causes Y”), applied to news headlines, to
identify pairs of structured events that are supposedly related by causality. The result is a
semantically-structured causality graph of 300 million fact nodes connected by more than
one billion edges. To evaluate our method, we tested it on a news archive from 2010, which
was not used during training. The results are judged by human evaluators.

To give some intuition about the type of predictions the algorithm generates, we present
here two examples of actual predictions made by our system. First, given the event “Magni-
tude 6.5 earthquake rocks the Solomon Islands,” the algorithm predicted that “a tsunami-
warning will be issued for the Pacific Ocean.” It learned this from past examples on which
it was trained, one of which was
〈7.6 earthquake strikes island near India, tsunami warning issued for Indian Ocean〉.
Pundit was able to infer that an earthquake occurring near an island would result in a
tsunami warning being issued for its ocean. Second, given the event “Cocaine found at
Kennedy Space Center,” the algorithm predicted that “a few people will be arrested.” This
was partially based on the past example 〈police found cocaine in lab → 2 people arrested〉.

The contributions of this work are threefold: First, we present novel and scalable algo-
rithms for generalizing causality pairs to causality rules. Second, we provide a new method
for using casualty rules to predict new events. Finally, we implement the algorithms in a
large scale system and perform an empirical study on realistic problems judged by human
raters. We make the extracted causality information publicly available for further research
in the field 1.

1. http://www.technion.ac.il/~kirar/Datasets.html

642

Learning to Predict from Textual Data

2. Learning and Predicting Causality

In this section, we describe the Pundit algorithm for learning and predicting causality. We
start with an overview of the learning and prediction process. During training, the learning
algorithm receives causality event pairs, extracted from historical news archives (Section
3). The algorithm then generalizes over the given examples using world knowledge and
produces an abstraction tree (AT)(Section 2.4). For each node in the AT, a prediction
rule is generated from the examples in the node (Section 2.5). Then, during the prediction
phase, the algorithm matches the given new event to nodes in the AT, and the associated
rule is applied on it to produce possible effect events (Section 2.6). Those events are then
filtered (Section 2.7) and an effect event output. The output event itself is also given in
natural language, in sentence-like form. The process is illustrated in Figure 1.

Implausible	

event	
 filter	

Figure 1: Structure of the Pundit prediction algorithm

2.1 Event Representation

The basic element of causal reasoning is an event. The Topic Tracking and Detection (TDT)
community (Allan, 2002) has defined an event as “a particular thing that happens at a spe-
cific time and place, along with all necessary preconditions and unavoidable consequences.”

643

Radinsky, Davidovich & Markovitch

Other philosophical theories consider events as exemplifications of properties by objects at
times (Kim, 1993). For example, Caesar’s death at 44 BC is Caesar’s exemplification of
the property of dying at time 44 BC. Those theories impose structure on events, where a
change in one of the elements yields a different event. For example, Shakespear’s death is a
different event from Caesar’s death, as the objects exemplifying the property are different.
In this section, we will discuss a way to represent events following Kim’s (1993) exemplifi-
cation theory that will allow us to easily compare them, generalize them, and reason about
them.

There are three common approaches for textual event representation: The first approach
describes an event at sentence level by running text or individual terms (Blanco, Castell,
& Moldovan, 2008; Sil, Huang, & Yates, 2010). Event similarity is treated as a distance
metric between the two events’ bag of words. While such approaches can be useful, they
often fail to perform fine-grained reasoning. Consider, for example, three events: ”US Army
bombs a warehouse in Iraq,” ”Iraq attacks US base,” and ”Terrorist base was attacked by
the US Marines in Kabul.” Representing these events by individual terms alone might yield
that the first two are more similar than the first and the last as they have more words in
common. However, such approaches disregard the fact the actors of the first and last event
are military groups and that Kabul and Iraq are the event locations. When these facts
are taken into account, the first and last events are clearly more similar than the first and
second.

The second approach describes events in a syntax-driven manner, where the event text is
transformed into syntax-based components, such as noun phrases (Garcia, 1997; Khoo et al.,
2000; Girju & Moldovan, 2002; Chan & Lam, 2005). In our example, this representation
again erroneously finds the second and third events to be most similar due to the syntactic
similarity between them. Using the first two approaches, it is hard to make practical
generalizations about events or to compare them in a way that takes into account all the
semantic elements that compose them.

The third approach is semantic (similar to the representation in Cyc; Lenat & Guha,
1990), and maps the atomic elements of each event to semantic concepts. This approach
provides grounds for canonic representation of events that are both comparable and gener-
alizable. In this work, we follow the third approach and represent events semantically.

Given a set of entities O that represent physical objects and abstract concepts in the
real world (e.g., people, instances, and types), and a set of actions P , we define an event as
an ordered set e = 〈P,O1, . . . , O4, t〉, where:

1. P is a temporal action or state that the event’s objects exhibit.

2. O1 is the actor that performed the action.

3. O2 is the object on which the action was performed.

4. O3 is the instrument with which the action was performed.

5. O4 is the location of the event.

6. t is a time-stamp.

644

Learning to Predict from Textual Data

For example, the event “The U.S Army destroyed a warehouse in Iraq with explosives,”
which occurred on October 2004, is modeled as: Destroy (Action); U.S Army (Actor);
warehouse (Object); explosives (Instrument); Iraq (Location); October 2004 (Time). This
approach is inspired by Kim’s (1993) property-exemplification of events theory.

2.2 Learning Problem Definition

We treat causality inference as a supervised learning problem. Let Ev be the universe of
all possible events. Let f : Ev × Ev → {0, 1} be the function

f(e1, e2) =

{
1 if e1 causes e2,

0 if otherwise.

We denote f+ = {(e1, e2)|f(e1, e2) = 1}. We assume we are given a set of possible positive
examples E ⊆ f+.

Our goal is not merely to test whether a pair of events is a plausible cause-effect pair
by f , but to generate for a given event e the events it can cause. For this purpose we define
g : Ev → 2Ev to be g(e) = {e′|f(e, e′) = 1}; that is, given an event, output the set of events
it can cause. We wish to build this predictor g using the examples E.

Learning f from E could have been solved by standard techniques for concept learning
from positive examples. The requirement to learn g, however, presents the challenging task
of structured prediction from positive examples.

2.3 Generalizing Over Objects and Actions

Our goal is to develop a learning algorithm that automatically produces a causality function
based on examples of causality pairs. The inferred causality function should be able to
predict the outcome of a given event, even if it was never observed before. For example, given
the training examples 〈earthquake in Turkey, destruction〉 and 〈earthquake in Australia,
destruction〉, and a current new event of “earthquake in Japan,” a reasonable prediction
would be “destruction.” To be able to handle such predictions, we must endow our learning
algorithm with generalization capacity. For example, in the above scenario, the algorithm
must be able to generalize Australia and Turkey to countries, and to infer that earthquakes
in countries might cause destruction. This type of inference and the knowledge that Japan
is also a country enables the algorithm to predict the effects of new events using patterns
in the past.

To generalize over a set of examples, each consisting of a pair of events, we perform
generalization over the components of these events. There are two types of components –
objects and actions.

To generalize over objects, we assume the availability of a semantic network Go = (V,E),
where the nodes V ⊆ O are the objects in our universe, and the labels on the edges are
relations such as isA, partOf and CapitalOf. In this work, we consider one of the largest
semantic networks available, the LinkedData ontology (Bizer, Heath, & Berners-Lee, 2009),
which we describe in detail in Section 3.

We define two objects to be similar if they relate to a third object in the same way.
This relation can be a label or a sequence of labels in the semantic network. For example,

645

Radinsky, Davidovich & Markovitch

Paris and London will be considered similar because their nodes are connected by the path
Capital−of−−−−−−−→ In−continent−−−−−−−−→ to the node Europe. We now formally define this idea.

Definition 1. Let a, b ∈ V . A sequence of labels L = l1, . . . , lk is a generalization path
of a, b, denoted by GenPath(a,b), if there exist two paths in G, (a, v1, l1), . . . (vk, vk+1, lk)
and (b, w1, l1), . . . (wk, wk+1, lk), s.t. vk+1 = wk+1.

Overgeneralization of events should be avoided – e.g., given two similar events, one
occurring in Paris and one in London, we wish to produce the generalization “city in Europe”

(
Capital−of−−−−−−−→ In−continent−−−−−−−−→ Europe) rather than the more abstract generalization “city on a

continent” (
Capital−of−−−−−−−→ In−continent−−−−−−−−→ IsA−−→ Continent). We wish our generalization to be as

specific as possible. We call this minimal generalization of objects.

Definition 2. The minimal generalization path, denoted by MGenPath(a, b), is defined
as the set containing the shortest generalization paths. We denote distGen(a, b) as the length
of the MGenPath(a, b).

Path-based semantic distances such as the one above were shown to be successful in
many NLP applications. For example, the semantic relatedness of two words was measured
by means of a function that measured the distance between words in a taxonomy (Rada,
Mili, Bicknell, & Blettner, 1989; Strube & Ponzetto, 2006). We build on this metric and
expand it to handle events that are structured and can contain several objects from different
ontologies.

To efficiently produce MGenPath, we designed an algorithm (described in Figure 2),
based on dynamic programming, that computes the MGenPath for all object pairs in G.
For simplicity, we describe an algorithm that computes a single path for each two nodes a
and b, rather than the set of all shortest paths. At step 1 a queue that holds all nodes with
the same generalization is initialized. At step 2, the algorithm identifies all nodes (a, b)
that have a common node (c) connecting to them via the same type of edge (l). c can be
thought of as a generalization of a and b. The Mgen structure maps a pair of nodes to
their generalization (Mgen.Gen) and their generalization path (MGen.Pred). At step 3,
in a dynamic programming manner, the algorithm iterates over all nodes (a, b) in Mgen for
which we found a minimal generalization in previous iterations, and finds two nodes – one
(x) connecting to a and one (y) connecting to b via the same type of edge l (step 3.4). Thus,
the minimal generalization of x and y is the minimal generalization of a and b, and the path
is the MGenPath of a, b with the addition of the edge type l. This update is performed
in steps 3.4.1–3.4.4. Eventually, when no more nodes with minimal generalization can be
expanded (i.e., the algorithm cannot find two nodes that connect to them via the same edge
type), it stops and returns Mgen (step 4). During prediction, if several Mgen exists, we
consider both during the prediction with their corresponding MGenPath.

We define a distance between actions using an ontology Gp, similarly to the way we
defined distance between objects. Specifically, we use the VerbNet (Kipper, 2006) ontology,
which is one of the largest English verb lexicons. It has mapping to many other online
resources, such as Wordnet (Miller, 1995). The ontology is hierarchical and is based on a
classification of the verbs to the Levin classes (Dang, Palmer, & Rosenzweig, 1998). This
resource has been widely used in many natural language processing applications (Shi &

646

Learning to Predict from Textual Data

Procedure Minimal Generalization Path(G)
(1) Q← new Queue
(2) Foreach {(a, c, l), (b, c, l) ∈ E(G)|

a, b, c ∈ V (AT), l ∈ Lables}
(2.1) Mgen(a, b).Gen = c
(2.2) Mgen(a, b).P red = l
(2.3) Mgen(a, b).Expanded = false
(2.4) Q.enqueue((a, b))

(3) While Q 6= ∅:
(3.1) (a, b)← Q.dequeue()
(3.2) If Mgen(a, b).Expanded 6= true:
Mgen(a, b).Expanded = true
(3.4) Foreach {(x, a, l), (y, b, l) ∈ E(AT)|

x, y ∈ V (AT), l ∈ Lables}
(3.4.1) Mgen(x, y).Gen = Mgen(a, b).Gen
(3.4.2) Mgen(x, y).P red = Mgen(a, b).P red||l
(3.4.3) Mgen(x, y).Expanded = false
(3.4.4) Q.enqueue((x, y))

(4)Return Mgen

Figure 2: Procedure for calculating the minimal generalization path for all object pairs

Mihalcea, 2005; Giuglea & Moschitti, 2006). Using this ontology we describe the connections
between verbs. Figure 10 shows a node in this ontology that generalizes the actions “hit”
and “kick.”

2.4 Generalizing Events

In order to provide strong support for generalization, we wish to find similar events that
can be generalized to a single abstract event. In our example, we wish to infer that both
〈earthquake in Turkey, destruction〉 and 〈earthquake in Australia, destruction〉 are examples
of the same group of events. Therefore, we wish to cluster the events in such a way that
events with similar causes and effects will be clustered together. As in all clustering methods,
a distance measure between the objects should be defined. Let ei = 〈P i, Oi

1, . . . , O
i
4, t

i〉 and
ej = 〈P j , Oj

1, . . . , O
j
4, t

j〉 be two events. In the previous subsection we defined a distance
function between objects (and between actions). Here, we define the similarity of two events
ei and ej to be a function of distances between their objects and actions:

SIM(ei, ej) = f
(
dist

Gp

Gen(P i, P j), distGo
Gen(Oi

1, O
j
1), . . . , distGo

Gen(Oi
4, O

j
4)
)
, (1)

where, distGGen is the distance function distGen in the graph G, and f is an aggregation
function. In this work, we mainly use the average as the aggregation function, but also
analyze several alternatives.

647

Radinsky, Davidovich & Markovitch

Likewise, a similarity between two pairs of cause-effect events 〈ci, ei〉 and 〈cj , ej〉 is
defined as:

SIM(〈ci, ei〉, 〈cj , ej〉) = f
(
SIM(ci, cj), SIM(ei, ej)

)
. (2)

Using the similarity measure suggested above, the clustering process can be thought of
as a grouping of the training examples in such a way that there is a low variance in their
effects and a high similarity in their cause. This is similar to information gain methods where
examples are clustered by their class. We use the HAC hierarchical clustering algorithm
(Eisen, Spellman, Brown, & Botstein, 1998) as our clustering method. The algorithm starts
by joining the closest event pairs together into a cluster. It then keeps repeating the process
by joining the closest two clusters together until all elements are linked into a hierarchical
graph of events we call an abstraction tree (AT). Distance between clusters is measured by
the distance of their representative events. To allow this, we assign to each node in the AT
a representative cause event, which is the event closest to the centroid of the node’s cause
events. During the prediction phase, the input cause event will be matched to one of the
created clusters, i.e., closest to the representative cause event of the cluster.

2.5 Causality Prediction Rule Generation

The last phase of the learning is the creation of rules that will allow us, given a cause event,
to generate a prediction about it. As the input cause event is matched against the node
centroid, a naive approach would be to return the effect event of the matched centroid. This,
however, would not provide us with the desired result. Assume an event ei=“Earthquake
hits Haiti” occurred today, and that is matched to a node represented by the centroid:
“Earthquake hits Turkey,” whose effect is “Red Cross help sent to Ankara.” Obviously,
predicting that Red Cross help will be sent to Ankara because of an earthquake in Haiti is
not reasonable. We would like to be able to abstract the relation between the past cause and
past effect and learn a predicate clause that connects them, for example “Earthquake hits
[Country Name]” yielding “Red Cross help sent to [Capital of Country].” During prediction,
such a clause will be applied to the input event ei, producing its predicted effect. In our
example, the logical predicate clause would be CapitalOf, as CapitalOf(Turkey)= Ankara.
When applied on the current event ei, CapitalOf(Haiti) = Port-au-Prince, the output will
now be “Red Cross help sent to Port-au-Prince.” Notice that the the clauses can only be
applied on certain types of objects – in our case, countries. The clauses can be of any length,
e.g., the pair 〈“suspect arrested in Brooklyn,” “Bloomberg declares emergency”〉 produces
the clause Mayor(BoroughOf(x)), as Brooklyn is a borough of New York, whose mayor is
Bloomberg.

We will now show how to learn such clauses for each node in the AT graph. Recall
that the semantic network graph GO is an edge-labeled graph, where each edge is a triplet
〈v1, v2, l〉, where l is a predicate (e.g., “CapitalOf”). The rule-learning procedure is divided
into two main steps. First, we find an undirected path pi of length at most k in GO

between any object of the cause event to any object of the effect event. Note that we do not
necessarily look for paths between two objects with the same role. In the above example,
we found a path between the location of the cause event (Brooklyn) to the actor of the
effect event (Bloomberg). Second, we construct a clause using the labels of the path pi as

648

Learning to Predict from Textual Data

the predicates. We call this the predicate projection of size k, pred = l1, . . . , lk from an
event ei to an event ej . During prediction, the projections will be applied to the new event
e = 〈P i, O1, . . . , O4, t〉 by finding an undirected path in GO from Oi with the sequence of
labels of pred. As k is unknown, the algorithm, for each training example 〈ct, et〉 in a node
in the AT, finds all possible predicate paths with increasing sizes of k from the objects of
ct to the objects of et in the GO graph. Each such path is weighted by the number of times
it occurred in the node, the support of the rule. The full predicate generation procedure
is described in Figure 3. The function LearnPredicateClause calls the inner function
FindPredicatePath for different k sizes and different objects from the given cause and
effect events. FindPredicatePath is a recursive function that tries to find a path between
the two objects in a graph of length k. It returns the labels of such a path if found. The
rule generated is a template for generating the prediction of a future event given the cause
event. An example of such a rule can be seen in Figure 4. Rules that return NULL are not
displayed in the figure. In this example, when we generate object O1 of the future event, we

try to apply the path
l1−→ l2−→ on the object O4 of the cause, thus generating possible objects

that can be object O1 of the prediction (see Section 2.6). Similarly, the path
l1−→ l2−→ is applied

on O2, generating more possible objects. For object O2 of the prediction, a simple path of
one label was generated. Therefore, during prediction, the possible objects for O2 are the
ones that connect to Ocause

4 with the label l8 (if any). For object O3 of the prediction, we
use the Ocause

3 . For O4 no special rule was generated (FindPredicatePath returned NULL

for all objects), and the final prediction will have Oeffect
4 .

2.6 Prediction

Given a trained model ĝ, it can be applied to a new event e = 〈P i, O1, . . . , O4, t〉 in order
to produce its effects. The process is divided into two main steps – propagating the event
in the AT to retrieve a set of matched nodes, and applying the rules of each matched node
to produce the possible effects.

Given a new event, Pundit traverses the AT starting from the root. For each node in
the search frontier, the algorithm computes the similarity (SIM(ei, ej)) of the input event
to the centroid of each of the children on this node, and expands those children with better
similarity than their parent. This idea can be stated intuitively as an attempt to find the
nodes which are the least general but still similar to the new event. The full algorithm is
illustrated in Figure 5. An illustration of the process can be seen in Figure 6. Here, an event
of a bombing in Baghdad is received as input. The system searches for the least general
cause event it has observed in the past (for simplicity we only show a short notation of the
cause events in the AT). In our case, it is a generalized cluster: “bombing in city.” Other
candidates selected are the “military communication” cluster and the “bombing” cluster
(as the node “bombing in worship area” has a lower score than “bombing”).

For each node retrieved in the previous stage, its predicate projection, pred, is applied
to the new event e = 〈P i, O1, . . . , O4, t〉. Informally, we can say that pred is applied by
finding an undirected path in GO from Oi with the labels of pred. This rule generates a
possible effect event from the retrieved node. The projection results are all the reached
objects in the vertex. The formal explanation is that pred can be applied if ∃V0 : O ⊆
V0,∃V1 . . . Vk : (V0, V1, l1), . . . (Vk−1, Vk, lk) ∈ Edges(GO). The projection results are all the

649

Radinsky, Davidovich & Markovitch

Procedure FindPredicatePath(curEntity, goalEntity, depth)
If curEntity = goalEntity Return ∅
Else

If depth = 0 Return NULL
Else

Foreach relation ∈ outEdges(curEntity)
solution← FindPredicatePath(relation(curEntity), goalEntity, depth− 1)
If solution 6= NULL

Foreach existingSolution ∈ Solutions :
Return Solutions

⋃
(existingSolution||relation||solution)

Return Solutions

Procedure LearnPredicateClause(〈P c, Oc
1, . . . , O

c
4, t

c〉, 〈P e, Oe
1, . . . , O

e
4, t

e〉, depth)
Foreach Oc

i ∈ Oc, Oe
j ∈ Oe, k ∈ {1 . . . depth}

rule(j) ← ∅
Foreach Oc

i ∈ Oc, Oe
j ∈ Oe, k ∈ {1 . . . depth}

rule(j) ← rule(j)
⋃ {〈Oc

i ,FindPredicatePath(Oc
i , O

e
j , k)〉}

Return rule

Figure 3: Procedure for generating a rule between two events by inferring paths between the two
events in the causality graph.

objects o ∈ Vk. The projection results of all the nodes are weighted by the similarity of
the target cause to the node MGen and then ranked by the support of the rule (for tie
breaking). If several MGen exists, the highest similarity is considered. See Figure 7 for
a complete formal description of the algorithm. In our example (Figure 6), the candidate
“bombing in [city]” has the following rules:

1. P effect = happen, Oeffect
1 = riot , Oeffect

4 = Ocause
4

2. P effect = happen, Oeffect
1 = riot , Oeffect

4 = Ocause
4

main−street−of←→

3. P effect = kill, Oeffect
2 = people

4. P effect = condemn, Oeffect
1 = O4

mayor−of←→ borough−of←→ , Oeffect
2 = attack

For clarity, for objects where no rule can be applied (the rule for the object is NULL), we
use the effect concept of the matched training example.

For the event Baghdad Bombing (O1 = Bombing, O4 = Baghdad), applying the rules
yields the following:

1. Baghdad Riots (P effect = happen, Oeffect
1 = riot , Oeffect

4 = Baghdad).

2. Caliphs Street Riots (P effect = happen, Oeffect
1 = riot , Oeffect

4 = Caliphs Street
main−street−of←→ Ocause

4).

650

Learning to Predict from Textual Data

O1

O2

O3

O4

Rule(cause, effect) =

{Ocause
3 ;}

{Ocause
4

l8 !}

�
Ocause

4
l1 ! l2 !, Ocause

2
l1 ! l3 !

Figure 4: An example of a generated rule

3. People killed (P effect = kill, Oeffect
2 = people).

4. This rule cannot be applied on the given event, as there is no outgoing edge of type
borough-of for the node Baghdad.

2.7 Pruning Implausible Effects

In some cases, the system generated implausible predictions. For example, for the event
〈lightning kills 5 people〉, the system predicted that 〈lightning will be arrested〉. This
prediction was based on generalized training examples in which people who killed other
people got arrested, such as: 〈Man kills homeless man,man is arrested〉. But if we could
determine how logical an event is, we could avoid such false predictions. In this section we
discuss how we filter them out.

The goal of our filtering component is different from that of the predictor. While the
predictor’s goal is to generate predictions about future events, this component’s goal is to
monitor those predictions. While the predictor learns a causality relation between events,
this component learns their plausibility.

The right way to perform such filtering is to utilize common sense knowledge for each
action. Such knowledge would state the type of the actor and the object that can perform
the action, the possible instruments with which the action can be preformed and the possible
locations. If such knowledge would have existed, it would have identified that for the action
arrest the object can be only human. However, such common sense knowledge is currently
not available. Therefore, we had to resort to the common practice of using statistical
methods.

651

Radinsky, Davidovich & Markovitch

Procedure Propagation(e = 〈P i, O1, . . . , O4, t〉)
(1) Candidates← {}
(2) Q← new Queue
(3) Q.enqueue(G.root)
(4) While Q 6= ∅:

(4.1) cur ← Q.dequeue()
(4.2) Foreach edge ∈ cur.OutEdges:

If SIM(e, edge.Source) > SIM(e, edge.Destination):
Candidates← Candidates

⋃

{(edge.Source, SIM(e, edge.Source))}
Else :
Q.enqueue(edge.Destination)

(5) Return Candidates

Figure 5: Procedure for locating candidates for prediction. The algorithm saves a set of
possible matched results (Candidates), and a queue holding the search frontier
(Q). In step 4, the algorithm traverses the graph. In step 4.2, for each edge,
the algorithm tests whether the similarity of the new event e to the parent node
(edge.Source) is higher than to the child node (edge.Destination). If the test
succeeds, the parent node, with its similarity score, is added to the possible
results. After all edges are exposed, the algorithm returns the possible results in
step 5.

“Baghdad
bombing”

0.2

0.3 0.7

0.8

0.75

0.65

“bombing”

“military”

“military
communication”

“bombing in
city”

“bombing in Kabul”

“bombing in
worship area” 0.2

Figure 6: An event of a bombing in Baghdad is received as input. The system searches
for the least general cause event it has observed in the past. In our case it is a
generalized cluster: “bombing in city”. The rule at this node now will be applied
on the Baghdad bombing to generate the prediction.

652

Learning to Predict from Textual Data

Procedure FindPredicatePathObjects(entity, path = 〈l1 . . . lk〉)
(1) Candidates← {}
(2) Q← new Queue
(3) Q.enqueue(entity)
(4) labelIndexInPath = 1
(5) If path.Count == 0: Return {entity}
(6) While Q 6= ∅:
cur ← Q.dequeue()

Foreach edge ∈ {edge ∈ cur.OutEdges|edge.label = path[labelIndexInPath]}:
If labelIndexInPath = k :
Candidates← Candidates

⋃{edge.Destination}
Else :

If labelIndexInPath > k: Return Candidates
Q.enqueue(edge.Destination)
labelIndexInPath← labelIndexInPath+ 1

(7) Return Candidates

Procedure ApplyPredicateClause(〈P,O1, . . . , O4, t〉, rule)
Foreach i = 1...4

Oprediction
i ← ∅

Foreach path = {Oj , {l1 . . . lk}} ∈ rule(i)
Oprediction

i

⋃
FindPredicatePathObjects(Oj , 〈l1 . . . lk〉)

Return 〈Oprediction
1 . . . Oprediction

4 〉

Figure 7: Procedure for applying a rule to a new given event. The main procedure is ApplyPredi-
cateClause. This procedure generates the objects of the predicted event O1 . . . O4 given
a rule. The rule is a list of lists of tuples. Each tuple is a concept and a path. For
each such tuple the function FindPredicatePathObjects is applied. This procedure finds
objects that have a path whose labels connect to the given concept. Those objects are
stored in Candidates (step 1). The algorithm holds a queue Q with the frontier (step
2). The queue first holds the given entity (step 3). The procedure holds a counter in-
dicating whether we followed the entire given path (step 4). The algorithm then checks
whether there is an edge with the label path[labelIndexInPath] going out of the object
at the head of the frontier. When the algorithm reaches the end of the given path
(labelIndexInPath = k), it returns the candidates.

In the information extraction literature, identifying the relationship between facts and
their plausibility has been widely studied. These methods usually estimate the prior prob-
ability of a relation by examining the frequency of its pattern in a large corpus, such as
the Web (Banko et al., 2007). For example, for the relation 〈People,arrest,People〉 these
methods return that this phrase was mentioned 188 times on the Web, and that the relation
〈People,arrest,[Natural Disaster]〉 was mentioned 0 times. Similarly, we estimate the prior
probability of an event to occur from its prior appearance in the New York Times, our

653

Radinsky, Davidovich & Markovitch

Procedure Pruning Implausible Effects(ev = 〈Pi, O1, . . . , O4, t〉, generalizationBound)
(1) Foreach j ∈ 1 . . . 4 :

generalizationPath = {}
For i ∈ 0 . . . generalizationBound
Gen(Oi)← FindPredicatePathObjects(Oj , generalizationPath)
generalizationPath ← generalizationPath

⋃{IsA}
(2) Return Averagei,j,i6=j(Maxo1∈Gen(Oi),o2∈Gen(Oj)PMCI(o1, o2, i, j))

Figure 8: A procedure for calculating the PMCI of an event. The procedure, at step 1,
first generates all generalizations of type IsA of an object (with a path whose
length is at most generalizationBound). For this purpose it uses the function
FindPredicatePathObjects (defined in Figure 7). The generalization procedure
is repeated on all objects comprising the event ev, and the result is stored in
Gen. The final result of the algorithm is calculated in step 2. For two objects
(o1, o2) in the generalization (Gen), which also contains the original objects, we
find the maximum PMCI. We then compute the final result by averaging over
this maximum PMCI.

primary source of news headlines. We then filter out events that, a priori, have very low
probability to occur.

We present the algorithm in Figure 8. We calculated how many times the semantic con-
cepts representing the event, or their immediate generalizations, actually occurred together
in the past in the same semantic roles. In our example, we check how many times lightning
or other natural phenomena were arrested. Formally, we define point-wise mutual concept
information (PMCI) between two entities or verbs oi, oj (e.g., lightning and arrest) in roles
ri, rj (e.g., actor and action) be defined as

PMCI(oi, oj , ri, rj) = log
p(oi@ri, oj@rj)

p(oi@ri)p(oj@rj)
. (3)

Given an event, we calculate the average PMCI of its components. The algorithm filters
out predicted events that have low average PMCI. We assume that the cause and effect
examples in the training are the ground truth, and should yield a high PMCI. Therefore,
we evaluate the threshold for filtering from this training data. That is, we collected all the
effects we observed in the training data and estimated their average PMCI on the entire
NYT dataset.

The reader should note that applying such rules might create a problem. If in the past
no earthquake occurred in Tokyo, the pruning procedure might return low plausibility. To
handle these type of errors, we calculate the PMCI of the upper level categories of entities
(e.g., natural disasters) rather than specific entities (e.g., earthquakes). We therefore restrict
ourselves to only the two upper level categories.

654

Learning to Predict from Textual Data

3. Implementation Details

In the previous section, we presented a high-level algorithm that requires training examples
T , knowledge about entities GO, and event action classes P . One of the main challenges of
this work was to build a scalable system to meet those requirements.

We present a system that mines news sources to extract events, constructs their canonical
semantic model, and builds a causality graph on top of those events. The system crawled,
for more than 4 months, several dynamic information sources (see Section 3.1 for details).
The largest information source was the NYT archive, on which optical character recognition
(OCR) was performed. The overall gathered data spans more than 150 consecutive years
(1851− 2009).

For generalization of the objects, the system automatically reads Web content and ex-
tracts world knowledge. The knowledge was mined from structured and semi-structured
publicly available information repositories. The generation of the causality graph was dis-
tributed over 20 machines, using a MapReduce framework. This process efficiently unites
different sources, extracts events, and disambiguates entities. The resulting causality graph
is composed of over 300 million entity nodes, one billion static edges (connecting the dif-
ferent objects encountered in the events), and over 7 million causality edges (connecting
events that were found by Pundit to cause each other). Each rule in the AT was generated
using an average of 3 instances with standard deviation of 2.

On top of the causality graph, a search and indexing infrastructure was built to enable
search over millions of documents. This highly scalable index allows a fast walk on the
graph of events, enabling efficient inference capabilities during the prediction phase of the
algorithm.

3.1 World Knowledge Mining

The entity graph Go is composed of concepts from Wikipedia, ConceptNet (Liu & Singh,
2004), WordNet (Miller, 1995), Yago (Suchanek, Kasneci, & Weikum, 2007), and OpenCyc;
the billion labeled edges of the graph Go are the predicates of those ontologies. In this
section we describe the process by which this knowledge graph is created and the search
system built upon it.

Our system creates the entity graph by collecting the above content, processing feeds,
and processing formatted data sets (e.g., Wikipedia). Our crawler then archives those doc-
uments in raw format, and transforms them into RDF (Resource Description Framework)
format (Lassila, Swick, Wide, & Consortium, 1998). The concepts are interlinked by hu-
mans as part of the Linked Data project (Bizer et al., 2009). The goal of Bizer et al.’s
(2009) Linked Data project is to extend the Web by interlinking multiple datasets as RDF
and by setting RDF links between data items from different data sources. Datasets include
DBPedia (a structured representation of Wikipedia), WordNet, Yago, Freebase, and more.
By September 2010 this had grown to 25 billion RDF triples, interlinked by around 395
million RDF links.

We use SPARQL queries as a way of searching over the knowledge graph. Experiments of
the performance of those queries on the Berlin benchmark (Bizer & Schultz, 2009) provided
evidence for the superiority of Virtuoso open source triple structures for our task.

655

Radinsky, Davidovich & Markovitch

3.2 Causality Event Mining and Extraction

Our supervised learning algorithm requires many learning examples to be able to generalize
well. As the amount of temporal data is extremely large, spanning over millions of articles,
the goal of obtaining human annotated examples becomes impossible. We therefore provide
an automatic procedure to extract labeled examples for learning causality from dynamic
content. In this work, we used the NYT archives for the years 1851 − 2009, WikiNews,
and the BBC – over 14 million articles in total (see data statistics in Table 1). Extracting
causal relations between events in text is a hard task. The state-of-the-art precision of
this task is around 37% (Do, Chan, & Roth, 2011). Our hypothesis is that most of the
information regarding an event can be found in the headlines. These are more structured
and therefore easier to analyze. Many times the headline itself can contain both the cause
and effect event. We assume that only some of the headlines are describing events and
developed an extraction algorithm to identify those headlines and to extract the events
from them. News headlines are quite structured, and therefore the accuracy of this stage
(performed on a representative subset of the data) is 78% (see Section 4.2.1). The system
mines unstructured natural language text found in those headlines, and searches for causal
grammatical patterns. We construct those patterns using causality connectors (Wolff, Song,
& Driscoll, 2002; Levin & Hovav, 1994). In this work we used the following connectors:

1. Causal Connectives: the words because, as, and after as the connectors.

2. Causal prepositions: the words due to and because of.

3. Periphrastic causative verbs: the words cause and lead to.

We constructed a set of rules for extracting a causality pair. Each rule is structured as:
〈Pattern, Constraint, Priority〉, where Pattern is a regular expression containing a causality
connector, Constraint is a syntactic constraint on the sentence on which the pattern can
be applied, and Priority is the priority of the rule if several rules can be matched. The
following constraints were composed:

1. Causal Connectives: The pattern [sentence1] after [sentence2] was used with the fol-
lowing constraints: [sentence1] cannot start with “when,” “how,” “where,” [sentence2]
cannot start with “all,” “hours,” “minutes,” “years,” “long,” “decades.” In the pattern
“After [sentence1], [sentence2]” we add the constraint that [sentence1] cannot start
with a number. This pattern can match the sentence “after Afghan vote, complaints
of fraud surface” but will not match the sentence “after 10 years in Lansing, state
lawmaker Tom George returns”. The pattern “[sentence1] as [sentence2]” was used
with the constraint of [sentence2] having a verb. Using the constraint, the pattern
can match the sentence “Nokia to cut jobs as it tries to catch up to rivals”, but not
the sentence “civil rights photographer unmasked as informer.”

2. Causal prepositions: The pattern [sentence1][“because of,” “due to”] [sentence2] only
required constraints that [sentence1] does not start with “when,” “how,” “where.”

3. Periphrastic causative verbs: The pattern [sentence1] [“leads to,” “Leads to,” “lead
to,” “Lead to,” “led to,” “Led to”] [sentence2] is used, where [sentence1] cannot con-

656

Learning to Predict from Textual Data

tain “when,” “how,” “where,” and the prefix cannot be “study” or “studies.” Addi-
tionally, as we consider periphrastic causative verbs, we do not allow additional verbs
in [sentence1] or [sentence2].

The result of a rule application is a pair of sentences – one tagged as a cause, and one
tagged as an effect.

Given a natural-language sentence (extracted from an article headline), representing an
event (either during learning or prediction), the following procedure transforms it into a
structured event:

1. Root forms of inflected words are extracted using a morphological analyzer derived
from WordNet (Miller, 1995) stemmer. For example, in the article headline from
10/02/2010: “U.S. attacks kill 17 militants in Pakistan”, the words “attacks,” “killed”
and “militants” are transformed to “attack,” “kill,” and “militant” respectively.

2. Part-Of-Speech tagging (Marneffe, MacCartney, & Manning, 2006) is performed, and
the verb is identified. The class of the verb is identified using the VerbNet vocabulary
(Kipper, 2006), e.g., kill belongs to P =murder class.

3. A syntactic template matching the verb is applied to extract the semantic relations
and thus the roles of the words (see example in Figure 10). Those templates are based
on VerbNet, which supplies for each verb class a set of syntactic templates. These
templates match the syntax to the thematic roles of the entities in the sentence. We
match the templates even if they are not continuous in the sentence tree. This allows
the match of a sentence even where there is an auxiliary verb between the subject
and the main transitive verb. In our example, the template is “NP1 V NP2,” which
transforms NP1 to “Agent”, and NP2 to “Patient.” Therefore, we match U.S. attacks
to be the Actor, and the militant to be the Patient . If no template can be matched,
the sentence is transformed into a typed-dependency graph of grammatical relations
(Marneffe et al., 2006). In the example, U.S. attacks is identified as the subject of
the sentence (candidate for Actor), militants as the object (candidate for Patient),
and Pakistan as the preposition (using Locations lexicons). Using this analysis, we
identify that the Location is Pakistan.

4. Each word in Oi is mapped to a Wikipedia-based concept. If a word matches more
than one concept, we perform disambiguation by computing the cosine similarity
between the body of the news article and the body of the Wikipedia article associated
with the concept. For example, U.S was matched to several concepts, such as United
States, University of Salford, and Us (Brother Ali album). The most similar by
content was the Wikipedia concept United States. If a word in Oi is not found in
Wikipedia, it is treated as a constant, i.e., generalization will not be applied on it,
but it will be used during similarity calculation. That is, distGen(const1, const2) = 0
if const1 = const2, or distGen(const1, const2) = k otherwise. In our experiments, we
set k = 4, as it was the length of the longest distance found between two concepts in
GO.

5. The time of the event t is the time of the publication of the article in the news, e.g.,
t =10/02/2010.

657

Radinsky, Davidovich & Markovitch

Data Source Number of Titles Extracted

NYT 14,279,387
BBC 120,445
WikiNews 25,808

Table 1: Data Summary.

Event1	

Weapons	

warehouse	

bombard	

US	
 Army	

1/2/1987	

11:00AM	
 +(2h)	
 Kabul	

Missiles	

LocaGon	

Instrument	

Ac
Go

n	

Time-­‐
frame	

Event2	

Troops	

kill	

1/2/1987	

11:15AM	
 +(3h)	

Ac
Go

n	

Time-­‐
frame	

US	

Army	

Time	

5	

QuanGfier	

Afghan	

APribute	

“US	
 Army	
 bombards	
 a	
 weapons	

warehouse	
 in	
 Kabul	
 with	
 missiles”	

“5	
 Afghan	
 troops	
 were	
 killed”	

Figure 9: A pair of events in the causality graph. The first represents a cause event and the
second represents the effect event. Both were extracted from the headline pub-
lished on 1/2/1987: 5 Afghan troops killed after US army bombards warehouse
in Kabul.

In our example, the final result is the event e = 〈Murder-Class, United States of America,
Militant, NULL, Pakistan, 10/02/2010〉 . The final result of this stage is a causality graph
composed of causality event pairs. Those events are structured as described in Section 2.1.
We illustrate such a pair in Figure 9.

In certain cases, additional heuristics were needed in order to deal with the brevity of
news language. We used the following heuristics:

1. Missing Context – In “McDonald’s recalls glasses due to cadmium traces,” the ex-
tracted event “cadmium traces” needs additional context – “Cadmium traces [in Mc-
Donald’s glasses].” If an object is missing, the first sentence ([sentence1]) subject is
used.

658

Learning to Predict from Textual Data

Class Hit-18.1
Roles and Restrictions:
Agent[int control] Patient[concrete] Instrument[concrete]
Members: bang, bash, hit, kick, . . .
Frames:
Example Syntax Semantics

Paula hit the ball Agent V Patient

cause(Agent, E)
manner(during(E),
directedmotion, Agent)
!contact(during(E),

Agent, Patient)
manner(end(E),forceful,

Agent)
contact(end(E), Agent,

Patient)

Figure 10: VerbNet Template.

2. Missing entities and verbs – the text “22 dead” should be structured to the event “22
[people] [are] dead.” If a number appears as the subject, the word people is added
and used as the subject, and “be” is added as the verb.

3. Anaphora resolution – the text “boy hangs himself after he sees reports of Hussein’s
execution” is modeled as “[boy1] sees reports of Hussein’s execution” causes “[boy1]
hangs [boy1]” (Lappin & Leass, 1994).

4. Negation – the text “Matsui is still playing despite his struggles” should be modeled as:
“[Matsui] struggles” causes the event “Matsui is [not] playing”. Modeling preventive
connectors (e.g., despite) requires negation of the modeled event.

4. Experimental Evaluation

In this section, we describe a set of experiments performed to evaluate the ability of our
algorithms to predict causality. We first evaluate the predictive precision of our algorithm,
continue with analyzing each part of the algorithm separately, and conclude with a quali-
tative evaluation.

4.1 Prediction Evaluation

The prediction algorithm was trained using news articles from the period 1851− 2009. The
world knowledge used by the algorithm was based on Web resource snapshots (Section 3)
dated until 2009. The evaluation was performed on separate data – Wikinews articles from
the year 2010. We refer to this data as the test data.

As the task tackled by our algorithm has not been addressed before, we could not find
any baseline algorithm to compare against. We therefore decided to compare our algorithm’s
performance to that of human predictors. Our algorithm and its human competitors were
assigned the basic task of predicting what event a given event might cause. We evaluate
each such prediction using two metrics. The first metric is accuracy : whether the predicted

659

Radinsky, Davidovich & Markovitch

event actually occurred in the real world. There are two possible problems with this metric.
First, a predicted event, though plausible, still might not actually have occurred in the real
world. Second, the predicted event might have happened in the real world but was not
caused by the given event, for example, in trivial predictions that are always true (“the
sun will rise”). We therefore use an additional metric, event quality, the likelihood that the
predicted event was caused by the given event.

The experiments were conducted as follows:

1. Event identification – our algorithm assumes that the input to the predictor h is an
event. To find news headlines that represent an event, we randomly sample n = 1500
headlines from the test data. For each headline, a human evaluator is requested to
decide whether the headline is an event that can cause other events. We denote the
set of headlines labeled as events as E. We again randomly sample k = 50 headlines
from E. We denote this group as C.

2. Algorithm event prediction – on each headline ci ∈ C, Pundit performs event extrac-
tion, and produces an event Pundit(ci) with the highest score of being caused by the
event represented by ci. Although the system provides a ranked list of results, to
simplify the human evaluation of theses results, we consider only the highest score
prediction. If there is a tie for the top score, we pick one at random. The results of
this stage are the pairs: {(ci, Pundit(ci))|ci ∈ C}.

3. Human event prediction – For each event ci ∈ C, a human evaluator is asked to predict
what that event might cause. Each evaluator is instructed to read a given headline
and predict its most likely outcome, using any online resource and with no time limit.
The evaluators are presented with empty structured forms with the 5 fields for the
output event they need to provide. The human result is denoted as human(ci). The
results of this stage are the pairs: {(ci, human(ci))|ci ∈ C}.

4. Human evaluation of the results –

(a) Quality: We present m = 10 people with a triplet (ci, human(ci), Pundit(ci)).
The human evaluators are asked to grade (ci, human(ci)) and (ci, Pundit(ci))
on a scale of 0-4 (0 is a highly implausible prediction and 4 is a highly plausible
prediction). They were allowed to use any resource and were not limited by time.
The human evaluators were different from those who performed the predictions.

(b) Accuracy: For each predicted event, we checked the news (and other Web re-
sources), up to a year after the time of the cause event, to see whether the
predicted events were reported.

Human evaluation was conducted using Amazon Mechanical Turk, an emerging utility
for performing user study evaluations, which was shown to be very precise for certain tasks
(Kittur, Chi, & Suh, 2008). During the evaluation, tasks are created by routing a question
to random users and obtaining their answers. We filtered the raters using a CAPTCHA.
We restricted to only US-based users, as the events used by our system are extracted from
the NYT. We did not perform any other manual filtering of the results. The average times
for all human tasks are reported in table 2. We observed that the most time-consuming

660

Learning to Predict from Textual Data

Human Event Human Event Human Evaluation Human Evaluation
Identification Prediction (Quality) (Accuracy)

1 min 26 sec 4 min 10 sec 1 min 44 sec 6 min 24 sec

Table 2: Response times of human evaluators for the different evaluation tasks.

[0-1) [1-2) [2-3) [3-4] Average

Quality

Pundit 0 2 19 29 3.08
Humans 0 3 24 23 2.86

Table 3: Quality results. The histogram of the rankings of the users for humans and the
algorithm.

task for humans was to verify that the event indeed happened in the past. The other time-
consuming task was Human Event Prediction. This is not surprising, as both cases required
more use of external resources, whereas the quality evaluation only measured whether those
events make sense. Additionally, we manually investigated the human evaluations in each
category, and did not find correlation between the response time and quality of the human
prediction. As we used Mechanical Turk, we do not know which external resources the
evaluators used. We measured inter-rater reliability using Fleiss’ kappa statistical test,
where κ measures the consistency of the ratings. For the raters in our test, we obtained
κ = 0.3, which indicates fair agreement (Landis & Koch, 1977; Viera & Garrett, 2005).
This result is quite significant, for the following reasons:

1. Conservativeness of this measure.

2. Subjectivity of the predictions – asking people whether a prediction makes sense often
leads to high variance in responses.

3. Small dataset – the tests were performed with 10 people asking to categorize into 5
different scales of plausibility over 50 examples.

4. Lack of formal guidelines for evaluating the plausibility of a prediction – no instruc-
tions were given to the human evaluators regarding what should be considered plau-
sible and what is not.

Additionally, for comparison, similar tasks in natural language processing, such as sentence
formality identification (Lahiri, Mitra, & Lu, 2011), usually reach kappa values of 0.1− 0.2.

The quality evaluation yielded that Pundit’s average predictive precision is 3.08/4 (3 is
a “plausible prediction”), as compared to 2.86/4 for the humans. For each event, we average
the results of the m rankers, producing an average score for the algorithm’s performance
on the event, and an averaged score for the human predictors (see Table 3). We performed
a paired t-test on the k paired scores. The advantage of the algorithm over the human
evaluators was found to be statistically significant, with p ≤ 0.05.

661

Radinsky, Davidovich & Markovitch

Algorithm Average Accuracy

Pundit 63%
Humans 42%

Table 4: Prediction accuracy for both human and algorithm.

The accuracy results are reported in Table 4. We performed a Fisher’s exact test (as
the results are binary) on the k paired scores. The results were found to be statistically
significant, p ≤ 0.05.

4.2 Component Analysis

In this section, we report the results of our empirical analysis of the different parts of the
algorithm.

4.2.1 Evaluation of the Extraction Process

In Section 3.1, we described a process for extracting causality pairs from the news. These
pairs are used as a training set for the learning algorithm. This process consists of two
main parts: causality identification and event extraction. We perform a set of experiments
to provide insights on this extracted training data quality.

Causality Extraction Experiment The first step in building a training set consists of
using causality patterns to extract pairs of sentences for which the causality relation holds.
To assess the quality of this process, we randomly sampled 500 such pairs from the training
set and presented them to human evaluators. Each pair was evaluated by 5 humans. We
filtered the raters using a CAPTCHA and filtered out outliers. The evaluators were shown
two sentences the system believed to be causally related and they were asked to evaluate
the plausibility of this relation on a scale of 0-4.

The results show that the averaged precision of the extracted causality events is 3.11 out
of 4 (78%), where 3 means a plausible causality relation, and 4 means a highly plausible
causality relation. For example, the causality pair: “pulling over a car” → “2 New Jersey
police officers shot,” got a very high causality precision score, as this is a plausible cause-
effect relation, which the system extracted from the headline “2 New Jersey Police Officers
Shot After Pulling Over a Car.”

For comparison, other temporal rule extraction systems (Chambers, Wang, & Jurafsky,
2007) reach precision of about 60%. The better performance of our system can be explained
by our use of specially crafted templates (we did not attempt to solve the general problem
of temporal information extraction).

Most causality pairs extracted were judged to be of high quality. The main reason for
errors was that some events, although reported in the news and matching the templates we
have described, are not common-sense causality knowledge. For example, “Aborted landing
in Beirut” → “Hijackers fly airliner to Cyprus”, was rated unlikely to be causally related,
although the event took place on April 09, 1988.

662

Learning to Predict from Textual Data

Action Actor Object Instrument Location Time

Quality Precision 93% 74% 76% 79% 79% 100%

Table 5: Extraction precision for each of the 5 event components using the causality pat-
terns.

Actor Object Instrument Location Action
Matching Matching Matching Matching Matching

84% 83% 79% 89% 97%

Table 6: Entity-to-ontology matching precision.

Event Extraction Experiment After a pair of sentences is determined to have a casu-
alty relation, our algorithm extracts a structured event from each of the sentences. This
event includes the following roles: action, actor, object, instrument, and time.

To assess the the quality of this process, we used the 500 pairs from the previous ex-
periment and presented each of the 1000 associated sentences to 5 human evaluators. The
evaluators were shown a sentence together with its extracted roles: action, actor, object,
instrument, and time, and they were asked to mark each role assignment as being right or
wrong.

Table 5 shows that the precision for the extracted event components ranges from 74 −
100%. In comparison, other works (Chambers & Jurafsky, 2011) for extracting entities for
different types of relations reach 42− 53% precision. The higher precision of our results is
mainly due to the use of domain-specific templates.

We performed additional experiments to evaluate the matching of every entity from the
above experiment to the world-knowledge ontology. The matching was based on semantic
similarity. Each ranker was asked to indicate whether the extracted entity was mapped
correctly to a Wikipedia URI. The results are summarized in Table 6.

4.2.2 Evaluation of the Event Similarity Algorithm

Both the learning and prediction algorithms strongly rely on the event similarity function
dist described in Section 2.4. To evaluate the quality of this function, we randomly sampled
30 events from the training data and found for each the most similar event from the entire
past data (according to the similarity function). A human evaluator was then asked to
evaluate the similarity of these events on a scale of 1–5. We repeated the experiment,
replacing the average aggregator function f with minimum and maximum functions.

The results are presented in Table 7. The general precision of the average function
was high (3.9). Additionally, the average function performed substantially (confirmed by
a t-test) better than over the minimum and maximum. This result indicates that dis-
tance functions that aggregate over several objects of the structured event (rather than just
selecting the minimum or maximum of one of the events) yield the highest performance.

663

Radinsky, Davidovich & Markovitch

Minimum Maximum Average

1.9 3.5 3.9

Table 7: Comparison of the different aggregations for the event-similarity f .

4.2.3 The Importance of Abstraction

Given a cause event whose effect we wish to predict, we use the algorithm described in
Section 2.4 to identify similar generalized events. To evaluate the importance of this stage,
we compose an alternative matching algorithm, similar to the nearest-neighbor approach
(as applied by the work by Gerber, Gordon, & Sagae, 2010), that matches the cause event to
the cause events of the training data. Instead of building an abstraction tree, the algorithm
simply finds the closest cause in the past based on text similarity. We then rank the matched
results using TF-IDF measure.

We applied both our original algorithm and this baseline algorithm on the 50 events
used for prediction. For each event, we asked a human evaluator to compare the prediction
of the original and the baseline algorithm. The results showed that in 83% of the cases
the predictions with generalization were rated as more plausible than those of the nearest-
neighbor approach without generalization.

4.2.4 Analysis of Rule Generation Application

In order to generate an appropriate prediction with respect to the given cause event, a
learned rule is applied, as described in Section 2.5. We observe that in 31% of the predic-
tions, a non-trivial rule was generated and applied (that is, a non-NULL rule that does not
simply output the effect it observed in the matched past cause-effect pair example). Out of
those, the application predicted correctly in more than 90% of the cases and generated a
plausible object in the effect. These results indicate that generalization and rule-generation
techniques are essential to the performance of the algorithm.

4.2.5 Analysis of Pruning Implausible Causation

To eliminate situations in which a generated prediction is implausible, we devised an al-
gorithm (Section 2.7) that prevents implausible predictions. We randomly selected 200
predictions from the algorithm predictions based on the human-labeled events extracted
from the Wikinews articles (see Section 4.1). A human rater was requested to label pre-
dictions that are considered implausible. We then applied our filtering rules on the 200
predictions as well. The algorithm found 15% of the predictions to be implausible with 70%
precision and 90% recall with respect to the human label. A qualitative example of a filtered
prediction is “Explosion will surrender” for the cause event “Explosion in Afghanistan kills
two.”

4.3 Qualitative Analysis

For a better understanding of the algorithm’s strengths and weaknesses we now present
some examples of results. Given the event “Louisiana flood,” the algorithm predicted that
[number] people will flee. The prediction process is illustrated in Figure 11.

664

Learning to Predict from Textual Data

1. Raw data:

The above prediction was based on the following raw news articles:

(a) 150000 flee as hurricane nears North Carolina coast.

(b) A million flee as huge storm hits Texas coast.

(c) Thousands flee as storm whips coast of Florida.

(d) Thousands in Dallas Flee Flood as Severe Storms Move Southwest.

2. Causality pair extraction:

The “as” template was used to process the above headlines into the following struc-
tured events:

(a) Cause Event : near (Action); hurricane (Actor); Coast(Object); North Carolina
(Object Attribute) ; (Instrument); Carolina (Location); 31 Aug 1993 (Time).
Effect Event : flee (Action); People (Actor); 150000(Actor Attributes); Carolina
(Location); 31 Aug 1993 (Time).

(b) Cause Event : hit (Action); Storm (Actor); Huge (Actor Attributes); Coast(Object);
Texas (Object Attribute); Texas (Location); 13 Sep 2008 (Time).
Effect Event : flee (Action); People (Actor); million(Actor Attributes); Texas
(Location); 13 Sep 2008 (Time).

(c) Cause Event : whip (Action); Storm (Actor); Coast(Object); Florida (Object
Attribute); Florida (Location); March 19, 1936 (Time).
Effect Event : flee (Action); People (Actor); thousands(Actor Attributes); Florida
(Location); March 19, 1936 (Time).

(d) Cause Event : move (Action); Storm (Actor); Severe (Actor Attributes); Dallas
(Location); May 27, 1957 (Time).
Effect Event : flee (Action); People (Actor); thousands(Actor Attributes);
Flood(Object); Dallas (Location); May 27, 1957 (Time).

3. Learning the abstraction tree:

The above four events were clustered together in the AT. They were clustered in the
same node because the causes were found to be similar: the actors were all weather
hazards and the location was a state of the United States. The effects were found
to be similar as the actions and actors were similar across all events, and the actor
attributes were all numbers. For this generalization, the following world knowledge
was used:

(a) Storm, hurricane and flood are “weather hazards” (extracted from the in-category
relation in Wikipedia).

(b) Carolina, Texas, and California are located in the “United States” (extracted
from the located-in relation in Yago).

4. Prediction:

665

Radinsky, Davidovich & Markovitch

During the prediction, the event “Louisiana flood” (which did not occur in the training
examples) was found most similar to the above node, and the node rule output was
that [number] people will flee.

• 150000 flee as hurricane
nears north Carolina coast.
• A million flee as
huge storm hits
Texas coast.

Cause Event: near (Action);
hurricane (Actor);
Coast(Object);
North Carolina (Object Attribute) ;
 (Instrument); Carolina (Location);
31 Aug 1993 (Time).
Effect Event: flee (Action);
People (Actor);
150000(Actor Attributes);
Carolina (Location);
31 Aug 1993 (Time).

…

• Storm, Hurricane and Flood →௜௡ ௖௔௧௘௚௢௥௬ →
`Weather hazards''

• Carolina, Texas, California, Nebraska →௅௢௖௔௧௘ௗ ௜௡ →
``United States''

Louisiana(Location);
Flood (Actor)

people (Actor);
flee (Action)

Implausible	

event	
 filter	

Figure 11: Examples of a prediction

As another example, given the event “6.1 magnitude aftershock earthquake hits Haiti,”
the highest matching predictions were: “[number] people will be dead,” “[number] people
will be missing,” “[number] magnitude aftershock earthquake will strike island near Haiti”
and “earthquake will turn to United States Virgin Islands.” The first three predictions seem
very reasonable. For example, the third prediction came from a rule that natural disasters
hitting countries next to a shore tend to affect nearby countries. In our case it predicted
that the earthquake will affect the United States Virgin Islands, which are geographically
close to Haiti. The fourth prediction, however, is not very realistic as an earthquake cannot
change its course. It was created from a match with a past example of a tornado hitting
a country on a coast. The implausible causation filters this prediction, as it has very low
PMCI, and the output of the system is “[number] people will be dead”. This example is
also interesting, as it issues a prediction using spatial locality (the United States Virgin
Islands are [near] Haiti).

Additional examples out of the 50 in the test and their predictions can be seen in Table
8.

666

Learning to Predict from Textual Data

Cause event Human-predicted effect event Algorithm-predicted ef-
fect event

Al-Qaida demands hostage
exchange

Al-Qaida exchanges
hostage

A country will refuse
the demand

Afghanistan’s parliament re-
jects Karzai’s cabinet nomina-
tions

Parliament accepts
Karzai’s cabinet nom-
inations

Many critics of rejec-
tion

Remains of 1912 expedition
plane found in Antarctica

Europe museums vie for re-
mains

Enduring mystery
will be solved in
Antarctica

North Korea seeks diplomatic
relations with the US

UN officials offer mediation
services

North Korea rift will
grow

Volcano erupts in Democratic
Republic of Congo

Scientists in Republic of
Congo investigate lava beds

Thousands of people
flee from Congo

Iceland’s President vetoes re-
payment of Ice save losses

Banks in Reykjavik report
record withdrawals

Official administra-
tion reaction issued

Death toll from Brazil mud-
slides rises to sixty

Rescuers in Brazil aban-
don rescue efforts

Testimonies will be
heard

7.0 magnitude earthquake
strikes Haitian coast

Tsunami in Haiti affects
coast

Tsunami warning is
issued

2 Palestinians reportedly shot
dead by Israeli troops

Israeli citizens protest against
Palestinian leaders

Israeli troops will
face scrutiny

Professor of Tehran Univer-
sity killed in bombing

Tehran students remember
slain professor in memorial
service

Professor funeral
will be held

Alleged drug kingpin arrested
in Mexico

Mafia kills people with guns in
town

Kingpin will be sent
to prison

UK bans Islamist group Islamist group would adopt
another name in the UK

Group will grow

China overtakes Germany as
world’s biggest exporter

German officials suspend tar-
iffs

Wheat price will fall

Cocaine found at Kennedy
Space Center

Someone will be fired People will be arrested

Table 8: Human and algorithm predictions for events. Predictions in bold were labeled by
the evaluators as correct predictions.

4.4 Discussion

In our experiments we only report the precision of our algorithms. Further experiments
measuring the recall of the system are necessary. However, in our experiments each valida-
tion step required human intervention. For example, validating that a prediction occurred in
the future news. In order to perform a full recall experiment one should apply the algorithm
on all the news headlines reported on a certain day and measure the appearance of all the

667

Radinsky, Davidovich & Markovitch

corresponding predictions in the future news. Unfortunately, performing human validation
on such a large prediction space is hard. We leave the task of performing experiments to
provide a rough estimate of recall to future work.

It is common practice to compare system performance to previous systems tackling the
same problem. However, the ambitious task we tackled in this work had no immediate
baselines to compare with. That is, there was no comparable system neither in scale nor in
the ability to take an arbitrary cause event in natural language and output an effect event in
natural language. Instead, we compared to the only agents we know capable of performing
such a task – humans.

Although the results indicate the superiority of the system over such human agents, we
do no claim that the system predictions perform better than humans. We rather provide
evidence that the system provides similar predictions to that of humans, and sometimes
even outperforms human ability to predict, as can be supported by the superiority of the
system in the accuracy evaluation.

To fully support the claim of superiority of the system over humans, wider experiments
should be performed. Experiments larger by an order of magnitude can provide results
with higher agreement between raters and shed light on the different types of events where
the system’s performance is better. Additionally, more experiments comparing the system
performance to that of experts in the fields of each individual prediction can be valuable
as well. At this point, we assume the performance of experts would be higher than that
of our algorithm. The main reason for this is the causality knowledge used to train the
algorithms. This knowledge is extracted from headlines that tend to have simple causality
contents, which is easily understandable by the general population. This type of knowledge
limits the complexity of the predictions that can be made by Pundit. Pundit predictions
therefore that tend to be closer to common knowledge of the average human. In order to
predict more complex events we would need to rely on better training examples than news
headlines alone.

The evaluation presented in this section provides evidence of the quality of the pre-
dictions that the system can provide. Our results are impressive in the sense that they
are comparable to that of humans, thus providing evidence to the ability of a machine to
perform one of the most desirable goals of general AI.

5. Related Work

We are not aware of any work that attempts to perform the task we face: receive arbitrary
news events in natural language representation and predict events they can cause. Several
works, however, deal with related tasks. In general, our work does not focus on better in-
formation extraction or causality extraction techniques, but rather on how this information
can be leveraged for prediction. We present novel methods of combining world knowledge
with event extraction methods to represent coherent events, and present novel methods for
rule extraction and generalization using this knowledge.

5.1 Prediction from Web Behavior, Books and Social Media

Several works have focused on using search-engine queries for prediction in both traditional
media (Radinsky, Davidovich, & Markovitch, 2008) and blogs (Adar, Weld, Bershad, &

668

Learning to Predict from Textual Data

Gribble, 2007). Ginsberg et al. (2009) used queries for predicting H1N1 influenza out-
breaks. In the context of causality recognition, Gordon, Bejan, and Sagae (2011) present a
methodology for mining blogs to extract common-sense causality. The evaluation is done on
a human-labeled dataset where each test consists of a fact and two possible effects. Apply-
ing point-mutual information to personal blog stories, the authors select the best prediction
candidate. The work differs from ours in that the authors focus on personal common-
sense mining and do not consider whether their predictions actually occurred. Other works
focused on predicting Web content change itself. For example, Kleinberg (2002, 2006) devel-
oped general techniques for summarizing the temporal dynamics of textual content and for
identifying bursts of terms within content. Similarly, Amodeo, Blanco, and Brefeld (2011)
built a time series model over publication dates of documents relevant to a query in order to
predict future bursts. Social media were used to predict riots (Kalev, 2011) and movie box
office sales (Asur & Huberman, 2010; Joshi, Das, Gimpel, & Smith, 2010; Mishne, 2006).
Other works (Jatowt & Yeung, 2011; Yeung & Jatowt, 2011; Michel, Shen, Aiden, Veres,
Gray, Google Books Team, Pickett, Hoiberg, Clancy, Norvig, Orwant, Pinker, Nowak, &
Aiden, 2011) have explored the use of text mining techniques over news and books to explain
how culture develops, and what people’s expectations and memories are.

Our work differs from the above in several ways: First, we present a general-purpose
prediction algorithm rather than a domain-specific one. Second, unlike the above works,
ours combines a variety of heterogenous online sources, including world knowledge mined
from the Web. Finally, we focus on generation of future event predictions represented
entirely in natural language, and provide techniques to enrich and generalize historical
events for the purpose of future event prediction.

5.2 Textual Entailment

A related topic to our work is that of textual entailment (TE) (Glickman, Dagan, & Koppel,
2005). A text t is said to entail a textual hypothesis h if people reading it agree that
the meaning of t implies the truth of h. TE can be divided into three main categories:
recognition, generation, and extraction. In this section, we provide a short summary of
the first two categories. For a more detailed overview we refer the reader to the survey by
Androutsopoulos and Malakasiotis (2010). We then discuss the specific task of causality
extraction from text in Section 5.3.4.

5.2.1 Textual Entailment recognition

In this task, pairs of texts are given as input, and the output is whether TE relations hold
for the pair. Some approaches map the text to logical expressions (with some semantic en-
richment, using WordNet, for example) and perform logical entailment checks, usually using
theorem provers (Raina, Ng, & Manning, 2005; Bos & Markert, 2005; Tatu & Moldovan,
2005). Other approaches map the two texts to a vector space model, where each word
is mapped to strongly co-occurring words in the corpus (Mitchell & Lapata, 2008), and
then similarity measures over those vectors are applied. Some measure syntactic similar-
ity by applying graph similarity measure on the syntactic dependency graphs of the two
texts (Zanzotto, Pennacchiotti, & Moschitti, 2009). Similarly, other methods measure the
semantic distance similarity between the words in text (Haghighi, 2005), usually exploiting

669

Radinsky, Davidovich & Markovitch

other resources such as WordNet as well. The last set of approaches represents the two texts
in a single feature vector and trains a machine learning algorithm, which later, given two
new texts represented via a vector, can determine whether they entail each other (Bos &
Markert, 2005; Burchardt, Pennacchiotti, Thater, & Pinkal, 2009; Hickl, 2008). For exam-
ple, Glickman et al. (2005) show a naive Bayes classifier trained on lexical features, i.e., the
number of times that words of t appeared with words of h. Other features usually include
polarity (Haghighi, 2005), whether the theorem prover managed to prove entailment (Bos
& Markert, 2005), or tagging of the named entities to the categories people, organizations,
or locations.

5.2.2 Textual Entailment Generation

Here we discuss TE generation, where, given an expression, the system should output a
set of expressions that are entailed by the input. This task is most closely related to
the one presented in this work: in TE generation, a text is received and an entailed text is
generated as output. Androutsopoulos and Malakasiotis (2010) mention that no benchmarks
exist to evaluate this task, and the most common and costly approach is to evaluate using
human judges. We also encountered this difficulty in our own task, and performed human
evaluation.

TE generation methods can be divided into two types: those that use machine trans-
lation techniques and those that use template-based techniques. Those that use machine
translation techniques try to calculate the set of transformations with the highest prob-
ability, using a training corpus. Quirk, Brockett, and Dolan (2004) cluster news articles
referring to the same event, select pairs of similar sentences, and apply the aforementioned
techniques. Other methods use template-based approaches on large corpora, such as the
Web. Some methods (Idan, Tanev, & Dagan, 2004) start with an initial seed of sentences
(composed of entities), and use a search engine to find other entities for which these entail-
ment relations hold. Those relations are used as templates. To find additional entities for
which these relations hold, the relations themselves are then searched again. The TE gener-
ation system, given a text, matches it to a template and outputs all the texts that matched
this template. Others (Ravichandran, Ittycheriah, & Roukos, 2003) also add additional
filtering techniques on those templates.

Our work is most closely related to the template-based approach. We have crafted a
new set of templates to extract causality pairs from the news.

5.3 Information Extraction

Information Extraction is the study of automatic extraction of information from unstruc-
tured sources. We categorizes the types of information extracted into three types: entities,
relationships between entities, and higher-order structures such as tables and lists. The
most closely related tasks to ours are those of entity extraction and relation extraction; for
the rest we refer the reader to the survey by Sarawagi (2008). The former task, similar to
our process of extracting concepts, deals with extracting noun phrases from text. In the
latter task, given a document and a relation as input, the problem is to extract all entity
pairs in the document for which this relation holds. Whereas the above works deal only
with one element of our problem – extraction of information needed to understand a given

670

Learning to Predict from Textual Data

causality, we deal with the actual causality prediction. We do not claim to create more
precise information extraction methods, but rather try to leverage all this knowledge to
perform an important AI task – future event prediction.

5.3.1 Entity Extraction

For entity extraction, two categories of methods exist – rule-based and statistical methods.
Rule-based methods (Riloff, 1993; Riloff & Jones, 1999; Jayram, Krishnamurthy, Raghavan,
Vaithyanathan, & Zhu, 2006; Shen, Doan, Naughton, & Ramakrishnan, 2007; Ciravegna,
2001; Maynard, Tablan, Ursu, Cunningham, & Wilks, 2001; Hobbs, Bear, Israel, & Tyson,
1993) define contextual patterns consisting a regular expression over features of the entities
in the text (e.g., the entity word, part-of-speech tagging). Those rules are either manually
coded by a domain expert or learned using bottom-up (Ciravegna, 2001; Califf & Mooney,
1999) or top-down learners (Soderland, 1999). Others follow statistical methods that define
numerous features over the sentence and then treat the problem as a classification problem,
applying well-known machine learning algorithms (e.g., Hidden Markov Models; Agichtein
& Ganti, 2004; Borkar, Deshmukh, & Sarawagi, 2001). Our system does not deal with the
many challenges in this field, as we propose a large scale domain-specific approach driven
by specific extraction templates.

5.3.2 Relation Extraction

Relation extraction has been developed widely in the last years from large text corpora
(Schubert, 2002) and, in particular, from different Web resources, such as general Web
content (Banko et al., 2007; Carlson et al., 2010; Hoffmann, Zhang, & Weld, 2010), blogs
(Jayram et al., 2006), Wikipedia (Suchanek et al., 2007), and news articles (e.g., the topic
detection and tracking task (Section 5.3.3)). Given two entities, the first task in this do-
main is to classify their relationship. Many feature-based methods (Jiang & Zhai, 2007;
Kambhatla, 2004; Suchanek, 2006) and rule-based methods (Aitken, 2002; Mcdonald, Chen,
Su, & Marshall, 2004; Jayram et al., 2006; Shen et al., 2007) have been developed for this
task. Most methods use different features extracted from the text, such as the words, the
grammar features, such as parse tree and dependency graphs, and features extra ion from
external relation repositories (e.g., Wikipedia Infobox) to add additional features (Nguyen
& Moschitti, 2011; Hoffmann, Zhang, Ling, Zettlemoyer, & Weld, 2011). Labeled training
examples, from which those feature are extracted, are then fed into a machine learning clas-
sifier, sometimes using transformations such as kernels (Zhao & Grishman, 2005; Zhang,
Zhang, Su, & Zhou, 2006; Zelenko, Aone, & Richardella, 2003; Wang, 2008; Culotta &
Sorensen, 2004; Bunescu & Mooney, 2005; Nguyen, Moschitti, & Riccardi, 2009), which,
given new unseen entities, will be able to classify them into those categories.

Given a relation, the second common task in this domain is to find entities that satisfy
this relation. Out of all information extraction tasks, this task is most relevant to ours, as
we try to find structured events for which the causality relation holds. Most works in this
domain focus on large collections, such as the Web, where labeling all entities and relations
is infeasible (Agichtein & Gravano, 2000; Banko et al., 2007; Bunescu & Mooney, 2007;
Rosenfeld & Feldman, 2007; Shinyama & Sekine, 2006; Turney, 2006). Usually seed entity
databases are used, along with some manual extraction templates, and then expanded and

671

Radinsky, Davidovich & Markovitch

filtered iteratively. Sarawagi states that “in spite of the extensive research on the topic,
relationship extraction is by no means a solved problem. The accuracy values still range
in the neighborhood of 50%–70% even in closed benchmark datasets . . . In open domains
like the Web, the state-of-the-art systems still involve a lot of special case handling that
cannot easily be described as principled, portable approaches.” (Sarawagi, 2008, p. 331).
Similarly, in our task the size of our corpus does not allow us to assume any labeled sets.
Instead, like the common approaches presented here, we also start with a predefined set of
patterns.

5.3.3 Temporal Information Extraction

The temporal information extraction task deals with extraction and ordering of events from
many events over time. Temporal information extraction can be categorized into three
main subtasks – predicting the temporal order of events or time expressions described in
text, predicting the relation between those events, and identifying when the document was
written. This task has been found to be important in many natural language processing
applications, such as question answering, information extraction, machine translation and
text summarization, all of which require more than mere surface understanding. Most of
these approaches (Ling & Weld, 2010; Mani, Schiffman, & Zhang, 2003; Lapata & Las-
carides, 2006; Chambers et al., 2007; Tatu & Srikanth, 2008; Yoshikawa, Riedel, Asahara,
& Matsumoto, 2009) learn classifiers that predict a temporal order of a pair of events from
predefined features of the pair.

Other related works deal with topic detection and tracking (Cieri, Graff, Liberman,
Martey, & Strassel, 2000). This area includes several tasks (Allan, 2002). In all of them,
multiple, heterogenous new sources are used, including audio. The story segmentation task
aims to segment data into its constituent stories. The topic tracking task – e.g., the work by
Shahaf and Guestrin (2010) – aims to find all stories discussing a certain topic. A subtask
of this is the link detection task which, given a pair of stories, aims to classify whether
they are on the same topic. The topic detection task – e.g. the works by Ahmed, Ho,
Eisenstein, Xing, Smola, and Teo (2011) and Yang, Pierce, and Carbonell (1998) – aims to
detect clusters of topic-cohesive stories in a stream of topics. The first-story detection task
aims to identify the first story on a topic (Jian Zhang & Yang, 2004). In this paper, we
focused on short text headlines and the extraction of events from them. Our work differs
from that of temporal information extraction, in that we generate predictions of future
events, whereas temporal information extraction tasks focus on identifying and clustering
the text corpus into topics.

5.3.4 Causality Pattern Extraction and Recognition

In the first stage of our learning process we extract causality pairs from text. Causality
extraction has been discussed in the literature in the past, and can be divided into the
following subgroups:

1. Use of handcrafted domain-specific patterns. Some studies deal with causality extrac-
tion using specific domain knowledge. Kaplan and Berry-Rogghe (1991) used scientific
texts to create a manually designed set of propositions which were later applied on

672

Learning to Predict from Textual Data

new texts to extract causality. These methods require handcrafted domain knowledge,
which is problematic to obtain for real-world tasks, especially in large amounts.

2. Use of handcrafted linguistic patterns. These works use a more general approach
by applying linguistic patterns. For example, Garcia (1997) manually identified 23
causative verb groups (e.g., to result in, to lead to, etc.). If a sentence contained one
of those verbs, it was classified as containing a causation relation. A precision of 85%
was reported. Khoo et al. (2000) used manually extracted graphical patterns based
on syntactic parse trees, reporting accuracy of about 68% on an English medical
database. Similarly, Girju and Moldovan (2002) defined lexicon-syntactic patterns
(pairs of noun phrases with a causative verb in between) with additional semantic
constraints.

3. Semi-supervised pattern learning approaches. This set of approaches uses supervised
machine learning techniques to identify causality in text. For example, Blanco et al.
(2008) and Sil et al. (2010) use syntactic patterns as features that are later fed into
classifiers, whose output is whether the text implies causality or the cause and effect
themselves.

4. Supervised pattern learning approaches. There have been many works on design
inference rules to discover extraction patterns for a given relation using training ex-
amples (Riloff, 1996; Riloff & Jones, 1999; Agichtein & Gravano, 2000; Lin & Pantel,
2001). Specifically, Chan and Lam (2005) dealt with the problem of creating syntactic
patterns for cause-effect extraction.

In the domain of causality pattern extraction, our work most resembles the handcrafted
linguistic patterns pattern approaches. We evaluated their performance on our specific
domain. Since our goal was to obtain a very precise set of examples to feed into our
learning, we chose to follow such an approach as well.

5.4 Learning Causality

We have drawn some of our algorithmic motivation from work in the machine learning
community. In this section, we give a partial review of the main areas of machine learning
that are relevant to our work.

5.4.1 Bayesian Causal Inference

The functional causal model (Pearl, 2000) assumes a set of observables X1 . . . Xn, which are
the vertices of a directed acyclic graph G. The semantics of the graph is that parents of a
node are its directed causes. It was shown to satisfy Reichenbach’s common cause principle,
which states that for a node Z with children X, Y , if X and Y are statistically dependent,
then there is a Z causally influencing both. This model, similar to a Bayesian network,
satisfies several conditions: (1) Local Causal Markov condition: a node is statistically
independent of non-descendants, given its parents; (2) Global Causal Markov condition: d-
separation criterion; (3) Factorization criterion: P (X1, . . . , Xn) =

∏
i P (Xi|Parents(Xi)).

The theoretical literature on the inference and learning of causality models is extensive.
Those models resemble our work in the use of structural models. The literature on inference

673

Radinsky, Davidovich & Markovitch

and learning of causality models is extensive, but to our knowledge there are no solutions
that scale to the scope of tasks discussed in this paper. In contrast with Bayesian approach,
the causality graph in our work contains less detailed information. Our work combines
several linguistic resources that were learned from data with several heuristics to build the
causality graph.

5.4.2 Structured Learning

An important problem in the machine learning field is structured learning, where the input
or the output of the classifier is a complex structure, such as relational domain, where each
object is related to another, either in time or in its features. Our task resembles structured
learning in that we also use structured input (structured events given as input) and produce
a structured event as output.

Many generative models have been developed, including hidden Markov models, Markov
logic networks, and conditional random fields, among others. Other approaches use trans-
formations, or kernels, that unite all the objects, ignoring the structure, and then feed it
into a standard structured classifier, e.g., kernelized conditional random fields (Lafferty,
Zhu, & Liu, 2004), maximum margin Markov networks (Taskar, Guestrin, & Koller, 2003),
and others (Bakir, Hofmann, Schölkopf, Smola, Taskar, & Vishwanathan, 2007). When
dealing with complex output, such as annotated parse trees for natural language problems,
most approaches define a distance metric in the label space between the objects, and they
again apply standard machine learning algorithms, e.g., structured support vector machines
(Joachims, 2006).

5.4.3 Learning from Positive Examples (One Class Classification)

As our system is only fed examples of the sort “a causes b,” and no examples of the sort “a
does not cause b,” we must deal with the problem of learning from positive examples only.
This is a challenge for most multi-class learning mechanisms, which require both negative
and positive examples. Some theoretical studies of the possibility of learning from only
positive unlabeled data are provided in the work by Denis (1998) (probably approximately
correct (PAC) learning) and Muggleton (1996) (Bayesian learning).

Most works (Tax, 2001; Manevitz & Yousef, 2000; Manevitz, Yousef, Cristianini, Shawe-
Taylor, & Williamson, 2001) in this domain develop algorithms that use one-class SVM
(Vapnik, 1995) and learn the support using only positive distribution. They construct
decision boundaries around the positive examples to differentiate them from all possible
negative data. Tax and Duin (1991) use a hyper-sphere with some defined radius around
some of the positive class points (support vector data description method). Some also use
kernel tricks before finding this sphere (Tax, 2001). Schölkopf et al. (1999, 2000) develop
methods that try to separate the surface region of the positive labeled data from the region
of the unlabeled data.

6. Conclusions

Much research has been carried out on information extraction and ontology building. In
this work, we discuss how to leverage such knowledge into a large-scale AI problem of event

674

Learning to Predict from Textual Data

prediction. We present a system that is trained to predict future events, using a cause event
as input. Each event is represented as a tuple of one predicate and 4 general semantic roles.
The event pairs used for training are extracted automatically from news headlines using
simple syntactic patterns. Generalization to unseen events is achieved by:

1. Creating an abstraction tree (AT) that contains entities from observed events together
with their subsuming categories extracted from available online ontologies.

2. Finding predicate paths connecting entities from cause events to entities in the effect
events, where the paths are again extracted from available ontologies.

We discuss the many challenges of building such a system: obtaining a large enough dataset,
representing the knowledge, and developing the inference algorithms required for such a
task. We perform large-scale mining and apply natural language techniques to transform
the raw data of over 150 years of history archives into a structured representation of events,
using a mined Web-based object hierarchy and action classes. This shows the scalability
of the proposed method, which is crucial to any method that requires large amounts of
data to work well. However, more engineering design and analysis should be performed to
scale it to the entire knowledge of the web and provide real-time alerts. We also show that
the numerous resources built by different people for different purposes (e.g., the different
ontologies) can in fact be merged via a concept-graph to build a system that can work well
in practice.

We perform large-scale learning over the large data corpus and present novel inference
techniques. We consider both rule extraction and generalization. We propose novel methods
for rule generalization using existing ontologies, which we believe can be useful for many
other related tasks. Tasks such as entailment and topic tracking can benefit from the
concepts of understanding sequences and their generalizations.

In this work we only scratch the surface of what can be a real-time fully functional
prediction system. Due to the complexity of the problem, the size of the system and it
many components, errors are unavoidable. For example, errors due to noise during event
extraction, noise during the similarity calculation between events, etc. Although we perform
experiments analyzing the different components of the system and their errors in addition
to the overall system performance, we believe that additional training examples and better
sources of knowledge and deeper ontologies can bring many improvements to our algorithms.
For future work, we suggest the following directions and extensions:

1. Better event extraction and event matching – Event extraction techniques, e.g., as
proposed by Do et al. (2011) can provide higher analysis of the data from the entire
text rather than just the titles. Event similarity can be enriched in many ways, e.g.,
in this work we compared three aggregation functions f , however, a more coherent
way of learning the weights of Oi from past data can be applied.

2. Analysis of knowledge sources – We believe that more in-depth analysis of the different
types of knowledge obtained from the Web and their individual contributions should
be studied. In this work, we did not explore the sensitivity of the system to the initial
noise of the conceptual networks, and we believe that proper analysis of those and
better networks can provide higher prediction accuracy, as already being carried on
by the LinkedData community.

675

Radinsky, Davidovich & Markovitch

3. Large scale experiments – Performance of larger experiments with humans over larger
periods of times, and even comparison to experts can provide more insights on the
performance and reliability of the system. Automation of such experiments without
human involvement to measure accuracy of predictions will make it possible to provide
richer metrics of performance, such as recall.

4. Time effect – In this work, all events were treated similarly, even events from 100
years ago. For future directions, we wish to investigate how to give decaying weight
to information about events in the system, as causality learned from an event that
took place in 1851 might be less relevant to the prediction in 2010. However, much
common-sense knowledge can still be used even if learned from events that happened
a long time ago. For example, the headlines “Order Restored After Riots” (1941) and
“Games Suspended After Riot” (1962) are still relevant today.

Our experimental evaluation showed that the predictions of the Pundit algorithm are at
least as good as those of non-expert humans. We believe that our work is one of the first to
harness the vast amount of information available on the Web to perform event prediction
that is general purpose, knowledge based, and human-like.

References

Adar, E., Weld, D. S., Bershad, B. N., & Gribble, S. D. (2007). Why we search: visualizing
and predicting user behavior. In Proceedings of the International Conference on the
World Wide Web (WWW).

Agichtein, E., & Ganti, V. (2004). Mining reference tables for automatic text segmentation.
In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

Agichtein, E., & Gravano, L. (2000). Snowball: extracting relations from large plain-text
collections. In Proceedings of Joint Conference on Digital Libraries (JCDL), pp. 85–
94.

Ahmed, A., Ho, Q., Eisenstein, J., Xing, E. P., Smola, A. J., & Teo, C. H. (2011). Unified
analysis of streaming news. In Proceedings of the International Conference on the
World Wide Web (WWW).

Aitken, J. (2002). Learning information extraction rules: An inductive logic programming
approach. In Proceedings of the 15th European Conference on Artificial Intelligence
(ECAI), pp. 355–359.

Allan, J. (Ed.). (2002). Topic Detection and Tracking: Event-based Information Organiza-
tion, Vol. 12. Kluwer Academic Publishers, Norwell, MA, USA.

Amodeo, G., Blanco, R., & Brefeld, U. (2011). Hybrid models for future event prediction.
In Proceedings of the ACM Conference on Information and Knowledge Management
(CIKM).

Androutsopoulos, I., & Malakasiotis, P. (2010). A survey of paraphrasing and textual
entailment methods. Journal of Artificial Intelligence Research (JAIR), 38, 135–187.

Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. In ArxiV.

676

Learning to Predict from Textual Data

Bakir, G. H., Hofmann, T., Schölkopf, B., Smola, A. J., Taskar, B., & Vishwanathan, S.
V. N. (2007). Predicting Structured Data. MIT Press.

Banko, M., Cafarella, M. J., Soderl, S., Broadhead, M., & Etzioni, O. (2007). Open informa-
tion extraction from the web. In Proceedings of the International Joint Conferences
on Artificial Intelligence (IJCAI).

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data – the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS).

Bizer, C., & Schultz, A. (2009). The berlin sparql benchmark. International Journal on
Semantic Web and Information Systems (IJSWIS).

Blanco, E., Castell, N., & Moldovan, D. (2008). Causal Relation Extraction. In Proceedings
of the International Conference on Language Resources and Evaluation (LREC).

Borkar, V., Deshmukh, K., & Sarawagi, S. (2001). Automatic text segmentation for extract-
ing structured records. In Proceedings of ACM SIGMOD International Conference on
Management of Data (KDD).

Bos, J., & Markert, K. (2005). Recognising textual entailment with logical inference. In
Proceedings of the Human Language Technology Conference Conference on Empirical
Methods in Natural Language Processing (HLT EMNLP).

Bunescu, R., & Mooney, R. (2007). Learning to extract relations from the web using
minimal supervision. In Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 576–583.

Bunescu, R. C., & Mooney, R. J. (2005). A shortest path dependency kernel for relation
extraction. In Proceedings of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing (HLT EMNLP), pp. 724–731.

Burchardt, A., Pennacchiotti, M., Thater, S., & Pinkal, M. (2009). Assessing the impact of
frame semantics on textual entailment. Natural Language Engineering, 15, 527–550.

Califf, M. E., & Mooney, R. J. (1999). Relational learning of pattern-match rules for infor-
mation extraction. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI), pp. 328–334.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E., & Mitchell, T. (2010).
Toward an architecture for never-ending language learning. In Proceedings of the
Association for the Advancement of Artificial Intelligence (AAAI).

Chambers, N., & Jurafsky, D. (2011). Template-Based Information Extraction without the
Templates. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL).

Chambers, N., Wang, S., & Jurafsky, D. (2007). Classifying temporal relations between
events. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics (ACL) (Poster).

Chan, K., & Lam, W. (2005). Extracting causation knowledge from natural language texts.
International Journal of Information Security (IJIS), 20, 327–358.

677

Radinsky, Davidovich & Markovitch

Cieri, C., Graff, D., Liberman, M., Martey, N., & Strassel, S. (2000). Large, multilingual,
broadcast news corpora for cooperative research in topic detection and tracking: The
tdt-2 and tdt-3 corpus efforts. In Proceedings of the International Conference on
Language Resources and Evaluation (LREC).

Ciravegna, F. (2001). Adaptive information extraction from text by rule induction and
generalisation. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI).

Culotta, A., & Sorensen, J. (2004). Dependency tree kernels for relation extraction. In
Proceedings of the 42nd Meeting of the Association for Computational Linguistics
(ACL), pp. 423–429.

Dang, H. T., Palmer, M., & Rosenzweig, J. (1998). Investigating regular sense extensions
based on intersective levin classes. In Proceedings of the International Conference on
Computational Linguistics (COLING).

Denis, F. (1998). PAC learning from positive statistical queries. In Proceedings of the
International Conference on Algorithmic Learning Theory (ALT), pp. 112–126.

Do, Q., Chan, Y., & Roth, D. (2011). Minimally supervised event causality identification. In
Proceedings of the Conference on Empirical Methods on Natural Language Processing
(EMNLP).

Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and
display of genome-wide expression patterns. PNAS, 95, 14863–14868.

Garcia, D. (1997). Coatis, an NLP system to locate expressions of actions connected by
causality links. In Proceedings of Knowledge Engineering and Knowledge Management
by the Masses (EKAW).

Gerber, M., Gordon, A. S., & Sagae, K. (2010). Open-domain commonsense reasoning using
discourse relations from a corpus of weblog stories. In Proceedings of Formalisms and
Methodology for Learning by Reading, NAACL-2010 Workshop.

Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L.
(2009). Detecting influenza epidemics using search engine query data. Nature, 457,
1012–1014.

Girju, R., & Moldovan, D. (2002). Text mining for causal relations. In Proceedings of
the Annual International Conference of the Florida Artificial Intelligence Research
Society (FLAIRS), pp. 360–364.

Giuglea, A.-M., & Moschitti, A. (2006). Shallow semantic parsing based on framenet, verb-
net and propbank. In Proceedings of the the 17th European Conference on Artificial
Intelligence (ECAI 2006).

Glickman, O., Dagan, I., & Koppel, M. (2005). A probabilistic classification approach for
lexical textual entailment. In Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI).

Gordon, A. S., Bejan, C. A., & Sagae, K. (2011). Commonsense causal reasoning using
millions of personal stories. In Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI).

678

Learning to Predict from Textual Data

Haghighi, A. D. (2005). Robust textual inference via graph matching. In Proceedings of the
Human Language Technology Conference Conference on Empirical Methods in Natural
Language Processing (HLT EMNLP).

Hickl, A. (2008). Using discourse commitments to recognize textual entailment. In Proceed-
ings of the International Conference on Computational Linguistics (COLING).

Hobbs, J. R., Bear, J., Israel, D., & Tyson, M. (1993). Fastus: A finite-state processor for
information extraction from real-world text. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1172–1178.

Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., & Weld, D. S. (2011). Knowledge-based
weak supervision for information extraction of overlapping relations. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (HLT).

Hoffmann, R., Zhang, C., & Weld, D. S. (2010). Learning 5000 relational extractors. In Pro-
ceedings of the 48th Annual Meeting of the Association for Computational Linguistics
(ACL).

Idan, I. S., Tanev, H., & Dagan, I. (2004). Scaling web-based acquisition of entailment
relations. In Proceedings of the Conference on Empirical Methods on Natural Language
Processing (EMNLP), pp. 41–48.

Jatowt, A., & Yeung, C. (2011). Extracting collective expectations about the future from
large text collections. In Proceedings of the ACM Conference on Information and
Knowledge Management (CIKM).

Jayram, T. S., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., & Zhu, H. (2006).
Avatar information extraction system. IEEE Data Engineering Bulletin, 29, 40–48.

Jian Zhang, Z. G., & Yang, Y. (2004). A probabilistic model for online document clustering
with application to novelty detection. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).

Jiang, J., & Zhai, C. (2007). A systematic exploration of the feature space for relation
extraction. In Proceedings of the Human Language Technologies and the Conference
of the North American Chapter of the Association for Computational Linguistics (HLT
NAACL), pp. 113–120.

Joachims, T. (2006). Structured output prediction with support vector machines. In Yeung,
D.-Y., Kwok, J., Fred, A., Roli, F., & de Ridder, D. (Eds.), Structural, Syntactic, and
Statistical Pattern Recognition, Vol. 4109 of Lecture Notes in Computer Science, pp.
1–7. Springer Berlin / Heidelberg.

Joshi, M., Das, D., Gimpel, K., & Smith, N. A. (2010). Movie reviews and revenues: An
experiment in text regression. In Proceedings of the North American Chapter of the
Association for Computational Linguistics - Human Language Technologies (NAACL
HLT).

Kalev (2011). Culturomics 2.0: Forecasting large-scale human behavior using global news
media tone in time and space. First Monday, 15 (9).

679

Radinsky, Davidovich & Markovitch

Kambhatla, N. (2004). Combining lexical, syntactic and semantic features with maximum
entropy models for information extraction. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 178–181.

Kaplan, R., & Berry-Rogghe, G. (1991). Knowledge-based acquisition of causal relationships
in text. Knowledge Acquisition, 3, 317–337.

Khoo, C., Chan, S., & Niu, Y. (2000). Extracting causal knowledge from a medical database
using graphical patterns. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 336–343.

Kim, J. (1993). Supervenience and mind. Selected Philosophical Essays.

Kipper, K. (2006). Extending verbnet with novel verb classes. In Proceedings of the Inter-
national Conference on Language Resources and Evaluation (LREC).

Kittur, A., Chi, H., & Suh, B. (2008). Crowdsourcing user studies with mechanical turk. In
Proceedings of the ACM CHI Conference on Human Factors in Computing Systems
is the premier International Conference of human-computer interaction (CHI).

Kleinberg, J. (2006). Temporal dynamics of on-line information systems. Data Stream
Management: Processing High-Speed Data Streams. Springer.

Kleinberg, J. (2002). Bursty and hierarchical structure in streams. In Proceedings of the
Annual ACM SIGKDD Conference (KDD).

Lafferty, J., Zhu, X., & Liu, Y. (2004). Kernel conditional random fields: Representation and
clique selection. In The 21st International Conference on Machine Learning (ICML).

Lahiri, S., Mitra, P., & Lu, X. (2011). Informality judgment at sentence level and exper-
iments with formality score. In Proceedings of the 12th International Conference on
Computational Linguistics and Intelligent Text Processing (CICLing).

Landis, & Koch (1977). The measurement of observer agreement for categorical data.
Biometrics, 33 (1), 74–159.

Lapata, M., & Lascarides, A. (2006). Learning sentence-internal temporal relations. Journal
of Artificial Intelligence Research (JAIR), 27, 85–117.

Lappin, S., & Leass, H. (1994). An algorithm for pronominal anaphora resolution. Compu-
tational Linguistics, 20, 535–561.

Lassila, O., Swick, R. R., Wide, W., & Consortium, W. (1998). Resource description frame-
work (rdf) model and syntax specification..

Lenat, D. B., & Guha, R. V. (1990). Building Large Knowledge-Based Systems: Represen-
tation and Inference in the Cyc Project. Addison-Wesley.

Levin, B., & Hovav, M. R. (1994). A preliminary analysis of causative verbs in english.
Lingua, 92, 35–77.

Lin, D., & Pantel, P. (2001). Dirt-discovery of inference rules from text. In Proceedings of
the Annual ACM SIGKDD Conference (KDD).

Ling, X., & Weld, D. (2010). Temporal information extraction. In Proceedings of the
Association for the Advancement of Artificial Intelligence (AAAI).

680

Learning to Predict from Textual Data

Liu, H., & Singh, P. (2004). Conceptnet: A practical commonsense reasoning toolkit. BT
Technology Journal, 22, 211–226.

Manevitz, L. M., & Yousef, M. (2000). Document classification on neural networks using
only positive examples. In Proceedings of 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR), pp. 304–
306.

Manevitz, L. M., Yousef, M., Cristianini, N., Shawe-Taylor, J., & Williamson, B. (2001).
One-class svms for document classification. Journal of Machine Learning Research,
2, 139–154.

Mani, I., Schiffman, B., & Zhang, J. (2003). Inferring temporal ordering of events in news.
In Proceedings of the North American Chapter of the Association for Computational
Linguistics - Human Language Technologies (NAACL HLT).

Marneffe, M., MacCartney, B., & Manning, C. (2006). Generating typed dependency parses
from phrase structure parses. In Proceedings of the International Conference on Lan-
guage Resources and Evaluation (LREC).

Maynard, D., Tablan, V., Ursu, C., Cunningham, H., & Wilks, Y. (2001). Named entity
recognition from diverse text types. In Recent Advances in Natural Language Process-
ing Conference (RANLP), pp. 1172–1178.

Mcdonald, D. M., Chen, H., Su, H., & Marshall, B. B. (2004). Extracting gene pathway
relations using a hybrid grammar: The arizona relation parser. Bioinformatics, 20,
3370–3378.

Michel, J., Shen, Y., Aiden, A., Veres, A., Gray, M., Google Books Team, Pickett, J.,
Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M., & Aiden, E.
(2011). Quantitative analysis of culture using millions of digitized books. Science,
331, 176–182.

Miller, G. (1995). Wordnet: A lexical database for english. Journal of Communications of
the ACM (CACM), 38, 39–41.

Mishne, G. (2006). Predicting movie sales from blogger sentiment. In Proceedings of the
Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium.

Mitchell, J., & Lapata, M. (2008). Vector-based models of semantic composition. In Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics (ACL).

Muggleton, S. (1996). Learning from positive data. In Proceedings of the Inductive Logic
Programming Workshop, pp. 358–376.

Nguyen, T.-V. T., & Moschitti, A. (2011). Joint distant and direct supervision for relation
extraction. In Proceedings of the The 5th International Joint Conference on Natural
Language Processing (IJCNLP).

Nguyen, T.-V. T., Moschitti, A., & Riccardi, G. (2009). Convolution kernels on constituent,
dependency and sequential structures for relation extraction. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.

681

Radinsky, Davidovich & Markovitch

Quirk, C., Brockett, C., & Dolan, W. (2004). Monolingual machine translation for para-
phrase generation. In Proceedings the Conference on Empirical Methods on Natural
Language Processing (EMNLP), pp. 142–149.

Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a
metric to semantic nets. IEEE Transactions on Systems, Man and Cybernetics, 19 (1),
17–30.

Radinsky, K., Davidovich, S., & Markovitch, S. (2008). Predicting the news of tomorrow
using patterns in web search queries. In Proceedings of the IEEE/WIC International
Conference on Web Intelligence (WI).

Raina, R., Ng, A. Y., & Manning, C. D. (2005). Robust textual inference via learning
and abductive reasoning. In Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI).

Ravichandran, D., Ittycheriah, A., & Roukos, S. (2003). Automatic derivation of surface text
patterns for a maximum entropy based question answering system. In Proceedings of
the North American Chapter of the Association for Computational Linguistics: Short
Papers (NAACL Short), pp. 85–87.

Riloff, E. (1993). Automatically constructing a dictionary for information extraction
tasks. In Proceedings of the Association for the Advancement of Artificial Intelligence
(AAAI), pp. 811–816.

Riloff, E. (1996). Automatically Generating Extraction Patterns from Untagged Text. In
Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI).

Riloff, E., & Jones, R. (1999). Learning dictionaries for information extraction by multi-level
bootstrapping. In Proceedings of the Association for the Advancement of Artificial
Intelligence (AAAI).

Rosenfeld, B., & Feldman, R. (2007). Using corpus statistics on entities to improve semi-
supervised relation extraction from the web. In Proceedings of the 45th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 600–607.

Sarawagi, S. (2008). Information extraction. Foundations and Trends in Databases, 1 (3),
261–377.

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. (2000). Support
vector method for novelty detection. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), pp. 582–588.

Schölkopf, B., Williamson, R. C., Smola, A., & Shawe-Taylor, J. (1999). Sv estimation of a
distribution’s support. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS).

Schubert, L. (2002). Can we derive general world knowledge from texts?. In Proceedings of
the Second Conference on Human Language Technology (HLT).

Shahaf, D., & Guestrin, C. (2010). Connecting the dots between news articles. In Proceedings
of the Annual ACM SIGKDD Conference (KDD).

682

Learning to Predict from Textual Data

Shen, W., Doan, A., Naughton, J. F., & Ramakrishnan, R. (2007). Declarative information
extraction using datalog with embedded extraction predicates. In Proceedings of the
Conference on Very Large Data Bases (VLDB), pp. 1033–1044.

Shi, L., & Mihalcea, R. (2005). Putting pieces together: Combining framenet, verbnet
and wordnet for robust semantic parsing. In Proceedings of the Sixth International
Conference on Intelligent Text Processing and Computational Linguistics (CICLing),
pp. 100–111.

Shinyama, Y., & Sekine, S. (2006). Preemptive information extraction using unrestricted
relation discovery. In Proceedings of the North American Chapter of the Association
for Computational Linguistics - Human Language Technologies (NAACL HLT).

Sil, A., Huang, F., & Yates, A. (2010). Extracting action and event semantics from web
text. In Proceedings of the Association for the Advancement of Artificial Intelligence
(AAAI) Fall Symposium on Commonsense Knowledge.

Soderland, S. (1999). Learning information extraction rules for semi-structured and free
text. Machine Learning, 34.

Strube, M., & Ponzetto, S. P. (2006). Wikirelate! computing semantic relatedness using
wikipedia. In Proceedings of the Association for the Advancement of Artificial Intel-
ligence (AAAI).

Suchanek, F. M. (2006). Combining linguistic and statistical analysis to extract relations
from web documents. In Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), pp. 712–717.

Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago: a core of semantic knowledge.
In Proceedings of the International Conference on the World Wide Web (WWW).

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin markov networks. In Proceedings
of the Annual Conference on Neural Information Processing Systems (NIPS).

Tatu, M., & Moldovan, D. (2005). A semantic approach to recognizing textual entailment. In
Proceedings of the Human Language Technology Conference Conference on Empirical
Methods in Natural Language Processing (HLT EMNLP).

Tatu, M., & Srikanth, M. (2008). Experiments with reasoning for temporal relations between
events. In Proceedings of the International Conference on Computational Linguistics
(COLING).

Tax, D. (2001). One class classification. In PhD thesis, Delft University of Technology.

Tax, D. M. J., & Duin, R. P. W. (1991). Support vector domain description. Pattern
Recognition Letters, 20, 1191–1199.

Turney, P. D. (2006). Expressing implicit semantic relations without supervision. In Pro-
ceedings of the 44th Annual Meeting of the Association for Computational Linguistics
(ACL).

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, NY, USA.

Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa
statistic. Family Medicine, 37 (5), 360–363.

683

Radinsky, Davidovich & Markovitch

Wang, M. (2008). A re-examination of dependency path kernels for relation extraction. In
Proceedings of the Third International Joint Conference on Natural Language Pro-
cessing (ACL IJCNLP).

Wolff, P., Song, G., & Driscoll, D. (2002). Models of causation and causal verbs. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics
(ACL).

Yang, Y., Pierce, T., & Carbonell, J. (1998). A study on retrospective and online event
detection. In Proceedings of ACM SIGIR Special Interest Group on Information Re-
trieval (SIGIR).

Yeung, C., & Jatowt, A. (2011). Studying how the past is remembered: Towards computa-
tional history through large scale text mining. In Proceedings of the ACM Conference
on Information and Knowledge Management (CIKM).

Yoshikawa, K., Riedel, S., Asahara, M., & Matsumoto, Y. (2009). Jointly identifying tem-
poral relations with markov logic. In Proceedings of the Third International Joint
Conference on Natural Language Processing (ACL IJCNLP).

Zanzotto, F. M., Pennacchiotti, M., & Moschitti, A. (2009). A machine learning approach
to textual entailment recognition. Natural Language Engineering, 15, 551–582.

Zelenko, D., Aone, C., & Richardella, A. (2003). Kernel methods for relation extraction.
Journal of Machine Learning Research, 3, 1083–1106.

Zhang, M., Zhang, J., Su, J., & Zhou, G. (2006). A composite kernel to extract relations
between entities with both flat and structured features. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pp. 825–832.

Zhao, S., & Grishman, R. (2005). Extracting relations with integrated information using
kernel methods. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 419–426.

684

