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Abstract

We study the behavior of the A∗ search algorithm when coupled with a heuristic h satisfying
(1 − ε1)h∗ ≤ h ≤ (1 + ε2)h∗, where ε1, ε2 ∈ [0, 1) are small constants and h∗ denotes the optimal
cost to a solution. We prove a rigorous, general upper bound on the time complexity of A∗ search
on trees that depends on both the accuracy of the heuristic and the distribution of solutions. Our
upper bound is essentially tight in the worst case; in fact, we show nearly matching lower bounds
that are attained even by non-adversarially chosen solution sets induced by a simple stochastic
model. A consequence of our rigorous results is that the effective branching factor of the search
will be reduced as long as ε1 + ε2 < 1 and the number of near-optimal solutions in the search tree
is not too large. We go on to provide an upper bound for A∗ search on graphs and in this context
establish a bound on running time determined by the spectrum of the graph.

We then experimentally explore to what extent our rigorous upper bounds predict the behavior
of A∗ in some natural, combinatorially-rich search spaces. We begin by applying A∗ to solve the
knapsack problem with near-accurate admissible heuristics constructed from an efficient approxi-
mation algorithm for this problem. We additionally apply our analysis of A∗ search for the partial
Latin square problem, where we can provide quite exact analytic bounds on the number of near-
optimal solutions. These results demonstrate a dramatic reduction in effective branching factor of
A∗ when coupled with near-accurate heuristics in search spaces with suitably sparse solution sets.

1. Introduction

The classical A∗ search procedure (Hart, Nilson, & Raphael, 1968) is a method for bringing heuristic
information to bear on a natural class of search problems. One of A∗’s celebrated features is that
when coupled with an admissible heuristic function, that is, one that always returns a lower bound
on the distance to a solution, A∗ is guaranteed to find an optimal solution. While the worst-case
behavior of A∗ (even with an admissible heuristic function) is no better than that of, say, breadth-
first search, both practice and intuition suggest that availability of an accurate heuristic should
decrease the running time. Indeed, methods for computing accurate admissible heuristic functions
for various search problems have been presented in the literature (see, e.g., Felner, Korf, & Hanan,
2004). In this article, we investigate the effect of such accuracy on the running time of A∗ search;
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specifically, we focus on rigorous estimates for the running time of A∗ when coupled with accurate
heuristics.

The initial notion of accuracy we adopt is motivated by the standard framework of approxi-
mation algorithms: if f(·) is a hard combinatorial optimization problem (e.g., the permanent of
a matrix, the value of an Euclidean traveling salesman problem, etc.), an algorithm A is an effi-
cient ε-approximation to f if A runs in polynomial time and (1 − ε)f(x) ≤ A(x) ≤ (1 + ε)f(x),
for all inputs x, where f(x) is the optimal solution cost for input x and A(x) is the solution cost
returned by algorithm A on input x. The approximation algorithms community has developed
efficient approximation algorithms for a wide swath of NP-hard combinatorial optimization prob-
lems and, in some cases, provided dramatic lower bounds asserting that various problems cannot be
approximated beyond certain thresholds (see Vazirani, 2001; Hochbaum, 1996, for surveys of this
literature). Considering the great multiplicity of problems that have been successfully addressed in
this way (including problems believed to be far outside of NP, like matrix permanent), it is natural to
study the behavior of A∗ when coupled with a heuristic function possessing such properties. Indeed,
in some interesting cases (e.g., Euclidean travelling salesman, matrix permanent, knapsack), hard
combinatorial problems can be approximated in polynomial time to within any fixed constant ε > 0;
in these cases, the polynomial depends on the constant ε. We remark, also, that many celebrated
approximation algorithms with provable performance guarantees proceed by iterative update meth-
ods coupled with bounds on the local change of the objective value (e.g., basis reduction in Lenstra,
Lenstra, & Lovasz, 1981, and typical primal-dual methods in Vazirani, 2002).

Encouraged both by the possibility of utilizing such heuristics in practice and the natural question
of understanding the structural properties of heuristics (and search spaces) that indeed guarantee
palatable performance on the part of A∗, we study the behavior of A∗ when provided with a heuristic
function that is an ε-approximation to the cost of a cheapest path to a solution. As certain natural
situations arise where approximation quality is asymmetric (i.e., the case of an admissible heuristic),
we slightly refine the notion of accuracy by distinguishing the multiplicative factors in the two sides
of an approximation: we say that a heuristic h is an (ε1, ε2)-approximation to the actual cost
function h∗, or simply (ε1, ε2)-approximate, if (1− ε1)h∗ ≤ h ≤ (1 + ε2)h∗. In particular, admissible
heuristics with ε-approximation are (ε, 0)-approximate. We will call a heuristic δ-accurate if it is
(ε1, ε2)-approximate and δ = ε1 + ε2. A detailed description appears in Section 2.1.

1.1 A Sketch of the Results

We initially model our search space as an infinite b-ary tree with a distinguished root. A problem
instance is determined by a set S of nodes of the tree—the “solutions” to the problem. The cost
associated with a solution s ∈ S is simply its depth. The search procedure is equipped with (i.) an
oracle which, given a node n, determines if n ∈ S, and (ii.) an heuristic function h, which assigns
to each node n of the tree an estimate of the actual length h∗(n) of the shortest (descending) path
to a solution. Let S be a solution set in which the first (and hence optimal) solution appears at
depth d. We establish a family of upper bounds on the number of nodes expanded by A∗: if h is an
(ε1, ε2)-approximation of h∗, then A∗ finds a solution of cost no worse than (1 + ε2)d and expands
no more than 2b(ε1+ε2)d + dNε1+ε2 nodes, where Nδ denotes the number of solutions at depth less
than (1 + δ)d. See Lemma 3.1 below for stronger results. We emphasize that this bound applies to
any solution space and can be generalized to search models with non-uniform branching factors and
non-uniform edge costs (see Section 5).

We go on to show that this upper bound is essentially tight; in fact, we show that the bound is
nearly achieved even by non-adversarially determined solution spaces selected according to a simple
stochastic rule (see Theorems 3.1 and 4.1.). We remark that these bounds on running time fall off
rapidly as the accuracy of the heuristics increases, as long as the number of near-optimal solutions
is not too large (although it may grow exponentially). For instance, the effective branching factor
of A∗ guided by an admissible δ-accurate heuristic will be reduced to bδ if Nδ = O(bδd). However,
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in the worst cases, which occur when the search space has an overwhelming number of near-optimal
solutions, A∗ still has to expand almost as many nodes as brute-force does, regardless of heuristic
accuracy. Likewise, strong guarantees on δ < 1 are, in general, necessary to effect appreciable
changes in average branching factor. This is discussed in Theorem 4.2.

After establishing bounds for the tree-based search model, we examine the time complexity of
A∗ on a graph by “unrolling” the graph into an equivalent tree and then bounding the number of
near-optimal solutions in the tree which are a “lift” of a solution in the original graph. This appears
in Section 6. Using spectral graph theory, we show that the number Nδ of lifted solutions on the
tree corresponding to a b-regular graph G is O(µ(1+δ)d), assuming the optimal solution depth d is
O(logb |G|) and the number solutions in G is constant, where µ is the second largest eigenvalue (in
absolute value) of the adjacency matrix of G. In particular, for almost all b-regular graphs in which
b does not grow with the size of graphs, we have µ ≤ 2

√
b, which yields the effective branching

factor of A∗ search on such graphs is roughly at most 8b(1+δ)/2 if the heuristic is δ-accurate. We
also experimentally evaluate these heuristics.

Experimental Results and the Relationship to A∗ in Practice. Of course, these upper
bounds are most interesting if they reflect the behavior of search problems in practice. The bounds
above guarantee, in general, that E, the number of nodes expanded by A∗ with a δ-accurate heuristic,
satisfies

E≤ 2bδd + dNδ .

Under the plausible condition that Nδ ≈ bδd, we have simply E ≈ cbδd node expansions for a
constant c that does not depend on δ (c may depend on k and/or other properties of the search
space). This suggests the hypothesis that for hard combinatorial problems with suitably sparse
near-optimal solutions,

E ≈ cbδd or, equivalently, logE ≈ log c+ δd log b . (1)

In particular, this suggests a linear dependence of logE on δ.
To explore this hypothesis, we conducted a battery of experiments on the natural search-tree

presentation of the well-studied Knapsack Problem. Here we obtain an admissible δ-accurate heuris-
tic by applying the Fully Polynomial Time Approximation Scheme (FPTAS) for the problem due
to the work of Ibarra and Kim (1975) (see also Vazirani, 2001, p. 70), which provides us with a
convenient method for varying δ without changing the other parameters of the search. We remark
that the natural search space for the problem is a quite irregular edge-weighted directed graph on
which A∗ can avoid reopening any node. Thus, this search space is equivalent to one of its spanning
subtrees in terms of A∗’s behaviors. In order to focus on computationally nontrivial examples, we
generate Knapsack instances from distributions that are empirically hard for the best known exact
algorithms (Pisinger, 2005). The results of these experiments yield remarkably linear behavior (of
logE as a function of δ) for a quite wide window of values: indeed, our tests yield R2 correlation
coefficients (of the least-square linear regression model) in excess of 90% with δ in the range (.5, 1)
for most Knapsack instances. See Section 7.1 for details.

While the experimental results discussed above for the Knapsack problem support the linear
scaling of (1), several actual parameters of the search are unknown: for example, we cannot rule
out the possibility that the approximation algorithm, when asked to produce an ε-approximation,
does not in fact produce a significantly better approximation. While this seems far-fetched, such
behavior could provide spurious evidence for linear scaling. To explore the hypothesis in more
detail, we additionally explore a more artificial search space for the partial Latin square completion
(PLS) problem in which we can provide precise control of δ (and, in fact, Nδ). The PLS problem is
featured in a number of benchmarks for local search and complete search methods. Roughly, this
is the problem of finding an assignment of values to the empty cells of a partially filled n× n table
so that each row and column in the completed table is a permutation of the set {1, . . . , n}. In our
formulation of the problem, the search space is a 2n-regular graph, thus the brute-force branching
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factor is 2n. On this search space, by controlling Nδ, we prove an asymptotic upper bound of
(1 + δ) (1 + 1/δ)

δ
nδ on the effective branching factor of A∗ coupled with any δ-accurate heuristic.

We also experimentally evaluate the effective branching factor of A∗ with the admissible δ-accurate
heuristic (1−δ)h∗, with which A∗ expands more nodes than with any admissible δ-accurate heuristic
strictly larger than (1− δ)h∗.

We remark that while the PLS problem itself is well-studied and natural, we invent specific search
space structure on the problem that allows us to analytically control the number of near-optimal
solutions. Unlike the Knapsack problem, where we can construct an efficient admissible δ-accurate
heuristic for every fixed δ thanks to the given FPTAS, known approximation algorithms for the PLS
problem are much weaker—they provide approximations for specific constants (1/e). To avoid this
hurdle, we construct instances of PLS with known solution, from which we extract the heuristics
(1 − δ)h∗. Despite these “planted” solutions and contrived heuristics, the infrastructure provides
an example of a combinatorially rich search space with known solution multiplicity and a heuristic
of known quality, and so provides a means for experimentally measuring the relationship between
heuristic accuracy and running time. Our empirical data results in remarkable agreement with the
theoretical upper bounds. More subtly, by empirically analyzing the linear dependence of logE on
δ, we see that the effective branching factor of A∗ using the heuristic (1 − δ)h∗ on the given PLS
search space is roughly (2n)0.8δ; see Section 7.2.

As far as we are aware, these are the first experimental results that explore the relationship
between δ and E. Understanding heuristic accuracy and solution space structure in general (and
the ensuing bounds on A∗ running time) for problems and heuristics of practical interest remains
an intriguing open problem. We remark that for problems such as the (n2 − 1)-puzzle, which have
been extensively used as test cases for A∗, it seems difficult to find heuristics with accuracy sufficient
to significantly reduce average branching factor. The best rigorous algorithms can only give rather
large constant guarantees (Ratner & Warmuth, 1990; Parberry, 1995): in particular, Parberry (1995)
shows that one can quickly compute solutions (and hence approximate heuristics) that are no more
than a factor 19 worse than optimal; the situation is somewhat better for random instances, where
he establishes a 7.5-factor. See Demaine’s (2001) work for a general discussion.

Observe that any search algorithm not privy to heuristic information requires Ω(bd) running
time, in general, to find a solution. High probability statements of the same kind can be made if the
solution space is selected from a sufficiently rich family. Such pessimistic lower bounds exist even
in situations where the search space is highly structured (Aaronson, 2004). Our results suggest that
accurate heuristic information can have a dramatic impact on A∗ search, even in face of substantial
solution multiplicity.

This article expands the conference article (Dinh, Russell, & Su, 2007) where the complexity of
A∗ with an ε-approximate heuristic function was studied over trees. In this article, we generalize this
to asymmetric approximation, develop analogous bounds over general search spaces, establishing a
connection to algebraic graph theory, and report on a battery of supporting experimental results.

1.2 Motivation and Related Work

The A∗ algorithm has been the subject of an enormous body of literature, often investigating its
behavior in relation to a specific heuristic and search problem combination, (e.g., Zahavi, Felner,
Schaeffer, & Sturtevant, 2007; Sen, Bagchi, & Zhang, 2004; Korf & Reid, 1998; Korf, Reid, &
Edelkamp, 2001; Helmert & Röger, 2008). Both space complexity (Korf, 1985) and time complexity
have been addressed at various levels of abstraction. Abstract formulations, involving accuracy
guarantees like those we consider, have been studied, but only in tree models where the search
space possesses a single solution. In this single solution framework, Gaschnig (1979) has given
exponential lower bounds of Ω(bdδ) on the time complexity for admissible δ-accurate heuristics, where

bδ
def
= bδ/(2−δ) ≤ bδ (see also Pearl, 1984, p. 180), while Pohl (1977) has studied more restrictive

(additive) approximation guarantees on h which result in linear time complexity. Average-case
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analysis of A∗ based on probabilistic accuracy of heuristics has also been given for single-solution
search spaces (Huyn, Dechter, & Pearl, 1980). These previous analysis suggested that the effect of
heuristic functions would reduce the effective branching factor of the search, which is consistent with
our results when applied to the single-solution model (the special case when Nδ = 1 for all δ > 0).
The single solution model, however, appears to be an inappropriate abstraction of most search
problems featuring multiple solutions, as it has been recognized that “. . . the presence of multiple
solutions may significantly deteriorate A∗’s ability to benefit from improved precision.” (Pearl, 1984,
p. 192) (emphasis added).

The problem of understanding the time complexity in terms of structural properties of h on
multiple-solution spaces has been studied by Korf and Reid (1998), Korf et al. (2001), and Korf
(2000), using an estimate based on the distribution of h(·) values. In particular, they studied an
abstract search space given by a b-ary tree and concluded that “the effect of a heuristic function is
to reduce the effective depth of a search rather than the effective branching factor” (Korf & Reid,
1998; Korf et al., 2001). For the case of accurate heuristics with controlled solution multiplicity, this
conclusion directly contradicts our findings, which indicate dramatic reduction in effective branching
factor for such cases. To explain this discrepancy, we observe that their analysis relies on an “equi-
librium assumption” that fails for accurate heuristics (in fact, it fails even for much weaker heuristic
guarantees, such as h(v) ≥ εh∗(v) for small ε > 0). The basic structure of their argument, however,
can be naturally adapted to the case of accurate heuristics, in which case it yields a reduction in
effective branching factor. We give a detailed discussion in Section 8.

As a follow-up to Korf and Reid (1998), Korf et al. (2001), and Korf’s (2000) work, Edelkamp
(2001) examined A∗ (indeed, IDA∗) on undirected graphs, relying on the equilibrium assumption.
Edelkamp’s new technique is the use of graph spectrum to estimate the number n(`) of nodes at
certain depth ` in the brute-force search tree (same as our cover tree). However, unlike our spectral
analysis, which is of the original search graph G, Edelkamp analyzed the spectrum of a related
“equivalence graph,” which has quite different structural properties. Specifically, Edelkamp found
that the asymptotic branching factor, defined by the ratio n(`)/n(`−1) for large `, equals the largest
eigenvalue of the adjacency matrix of the equivalence graph for certain Puzzle problems. To compare,
our spectral analysis depends on the second largest eigenvalue of the adjacency matrix AG of the
original search graph G, while the largest eigenvalue of AG always equals the branching factor,
assuming G is regular.

Additionally, the analyses of Korf and Reid (1998), Korf et al. (2001), and Korf (2000) (and
therefore, of Edelkamp, 2001) focus on a particular subclass of admissible heuristics, called consistent
heuristics. We remark that the heuristics used in our experiments for the Knapsack problem are
admissible but likely inconsistent. Zhang, Sturtevant, Holte, Schaeffer, and Felner (2009) and Zahavi
et al. (2007) discuss usages of inconsistent heuristics in practice.

Our work below explores both worst-case and average-case time complexity of A∗ search on
both trees and graphs with multiple solutions when coupled with heuristics possessing accuracy
guarantees. We make no assumptions regarding consistency or admissibility of the heuristics, though
several of our results can be naturally specialized to this case. In addition to studying the effect of
heuristic accuracy, our results also shed light on the sensitivity of A∗ to the distribution of solutions
and the combinatorial structure of the underlying search spaces (e.g., graph eigenvalues, which
measure, among other things, the extent of connectedness for graphs). As far as we are aware, these
are the first rigorous results combining search space structure and heuristic accuracy in a single
framework for predicting the behavior of A∗.

2. Preliminaries

A typical search problem is defined by a search graph with a starting node and a set of goal nodes
called solutions. Any instance of A∗ search on a graph, however, can be simulated by A∗ search on
a cover tree without reducing running time; this is discussed in Section 6.1. Since the number of
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expansions on the cover tree of a graph is larger than or equal to that on the original graph, it is
sufficient to upper bound the running time of A∗ search on the cover tree. With this justification,
we begin with considering the A∗ algorithm for search problems on a rooted tree.

Problem Definition and Notations. Let T be a tree representing an infinite search space, and
let r denote the root of T . For convenience, we also use the symbol T to denote the set of vertices
in the tree T . Solutions are specified by a nonempty subset S ⊂ T of nodes in T . Each edge on T
is assigned a positive number called the edge cost. For each vertex v in T , let

• SubTree(v) denote the subtree of T rooted at v,

• Path(v) denote the path in T from root r to v,

• g(v) denote the total (edge) cost of Path(v), and

• h∗(v) denote the cost of the least costly path from v to a solution in SubTree(v). (We write
h∗(v) =∞ if no such solution exists.)

The objective value of this search problem is h∗(r), the cost of the cheapest path from the root r
to a solution. The cost of a solution s ∈ S is the value of g(s). A solution of cost equal to h∗(r) is
referred to as optimal.

The A∗ algorithm is a best-first search employing an additive evaluation function f(v) = g(v) +
h(v), where h is a function on T that heuristically estimates the actual cost h∗. Given a heuristic
function h : T → [0,∞], the A∗ algorithm using h for our defined search problem on the tree T is
described as follows:

Algorithm 1 A∗ search on a tree

1. Initialize Open := {r}.

2. Repeat until Open is empty:

(a) Remove from Open a node v at which the function f = g + h is minimum.

(b) If v is a solution, exit with success and return v.

(c) Otherwise, expand node v, adding all its children in T to Open.

3. Exit with failure.

It is known (e.g., Dechter & Pearl, 1985, Lemma 2) that at any time before A∗ terminates, there
is always a vertex v present in Open such that v lies on a solution path and f(v) ≤M , where M is
the min-max value defined as follows:

M
def
= min

s∈S

(
max

u∈Path(s)
f(u)

)
. (2)

This fact leads to the following node expansion conditions:

• Any vertex v expanded by A∗ (with heuristic h) must have f(v) ≤ M . (cf., Dechter & Pearl,
1985, Thm. 3). We say that a vertex v satisfying f(v) ≤M is potentially expanded by A∗.

• Any vertex v with
max

u∈Path(v)
f(u) < M

must be expanded by A∗ (with heuristic h) (cf., Dechter & Pearl, 1985, Thm. 5). In particular,
when the function f monotonically increases along the path from the root r to v, the node v
must be expanded if f(v) < M .
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The value of M will be obtained on the solution path with which A∗ search terminates (Dechter &
Pearl, 1985, Lemma 3), which implies that M is an upper bound for the cost of the solution found
by the A∗ search.

We remark that if h is a reasonable approximation to h∗ along the path to the optimal solution,
this immediately provides some control on M . In particular:

Proposition 2.1. (See also Davis, Bramanti-Gregor, & Wang, 1988) Suppose that for some α ≥ 1,
h(v) ≤ αh∗(v) for all vertices v lying on an optimal solution path; then M ≤ αh∗(r).

Proof. Let s be an optimal solution. For all v ∈ Path(s),

f(v) ≤ g(v) + αh∗(v) = g(v) + α(g(s)− g(v)) ≤ αg(s) .

Hence M ≤ max
v∈Path(s)

f(v) ≤ αg(s) = αh∗(r).

In particular, M = h∗(r) if the heuristic function satisfies h(v) ≤ h∗(v) for all v ∈ T , in which
case the heuristic function is called admissible. The observation above recovers the fact that A∗

always finds an optimal solution when coupled with an admissible heuristic function (cf., Pearl,
1984, Thm. 2, §3.1). Admissible heuristics also possess a natural dominance property (Pearl, 1984,
Thm. 7, p. 81): for any admissible heuristic functions h1 and h2 on T , if h1 is more informed than
h2, i.e., h1(v) > h2(v) for all v ∈ T \S, then A∗ using h1 dominates A∗ using h2, i.e., every node
expanded by A∗ using h1 is also expanded by A∗ using h2.

2.1 Approximate Heuristics

Recall from the introduction that we shall focus on heuristics providing an (ε1, ε2)-approximation to
the actual optimal cost to reach a solution:

Definition. Let ε1, ε2 ∈ [0, 1]. A heuristic function h is called (ε1, ε2)-approximate if

(1− ε1)h∗(v) ≤ h(v) ≤ (1 + ε2)h∗(v) for all v ∈ T .

An (ε1, ε2)-approximate heuristic is simply called ε-approximate if both ε1 ≤ ε and ε2 ≤ ε. If a
heuristic function h is (ε1, ε2)-approximate, we shall say that h has a heuristic error ε1 + ε2, or h is
(ε1 + ε2)-accurate.

As we will see below, these two approximation factors control the performance of A∗ search
in rather different ways: while ε1 only effects the running time of A∗, ε2 has impact on both the
running time and the quality of the solution found by A∗. Particularly, the special case ε2 = 0
corresponds to admissible heuristics, with which A∗ always finds an optimal solution. In general, by
Proposition 2.1, we have:

Fact 1. If h is (ε1, ε2)-approximate, then M ≤ (1 + ε2)h∗(r).

Hence, the solution found by A∗ using an (ε1, ε2)-approximate heuristic must have cost no more
than (1 + ε2)h∗(r) and thus exceeds the optimal cost by no more than a multiplicative factor equal
ε2.

Definition. Let δ ≥ 0. A solution of cost less than (1 + δ)h∗(r) is called a δ-optimal solution.

Assumptions. To simplify the analysis for now, we assume that the search tree T is b-ary and
that every edge is of unit cost unless otherwise specified. In this case, the cost g(v) is simply the
depth of node v in T and h∗(v) is the shortest distance from v to a solution that is a descendant of v.
Throughout, the parameters b ≥ 2 (the branching factor of the search space) and ε1 ∈ (0, 1], ε2 ∈ [0, 1]
(the quality of the approximation provided by the heuristic function) are fixed. We rule out the case
ε1 = 0 for simplicity.
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3. Upper Bounds on Running Time of A∗ on Trees

We are now going to establish upper bounds on the running time of A∗ search on the tree model.
We will first show a generic upper bound that applies to any solution space. We then apply this
generic upper bound to a natural stochastic solution space model.

3.1 A Generic Upper Bound

As mentioned in the introduction, we begin with an upper bound on the time complexity of A∗

search depending only on the “weight distribution” of the solution set, in addition to the heuristic’s
approximation factors. We shall, in fact, upper bound the number of potentially expanded nodes,
which is clearly an upper bound on the number of nodes actually expanded by A∗:

Lemma 3.1. Let S be a solution set whose optimal solutions lie at depth d. Then, for every γ ≥ 0,
the number of nodes expanded by A∗ search on the tree T with an (ε1, ε2)-approximate heuristic is
no more than

2b(γε1+ε2+1−γ)d + γ(1− ε1)dNγε1+ε2

nodes, where Nδ is the number of δ-optimal solutions.

The presence of the independent parameter γ offers a flexible way to apply the upper bound in
Lemma 3.1. In particular, applying Lemma 3.1 with γ = 1 and using the fact that 1 − ε1 ≤ 1, we
arrive at the upper bound of 2b(ε1+ε2)d + dNε1+ε2 mentioned in the introduction. This bound works
best when1 Nε1+ε2 = Θ(b(ε1+ε2)d). In general, if Nε1+ε2 = O(b(ε1+ε2)d), we should choose the least
γ ≥ 1 for which Nγε1+ε2 = O(b(ε1+ε2)d). In the opposite case, if Nε1+ε2 = Ω(b(ε1+ε2+c)d) for some
positive constant c ≤ 1− ε1, we can obtain a better bound by choosing γ = 1− c/(1− ε1) < 1, since
Nε1+ε2 dominates both terms Ω(b(γε1+ε2+1−γ)d) and Nγε1+ε2 given such a choice of γ.

Proof of Lemma 3.1. Let d = h∗(r) and let δ = γε1 + ε2. Consider a node v which does not lie on
any path from the root to a δ-optimal solution, so that h∗(v) ≥ (1 + δ)d− g(v). Then

f(v) ≥ g(v) + (1− ε1)[(1 + δ)d− g(v)] = (1− ε1)(1 + δ)d+ ε1g(v) .

Recall that a node is potentially expanded by A∗ if its f -value is less than or equal to M . Since
M ≤ (1 + ε2)d, the node v will not be potentially expanded if

(1− ε1)(1 + δ)d+ ε1g(v) > (1 + ε2)d . (3)

Since ε1 > 0, the inequality (3) is equivalent to

g(v) > (ε2/ε1 − δ/ε1 + 1 + δ)d = (γε1 + ε2 + 1− γ)d .

In other words, any node at depths in the range(
(γε1 + ε2 + 1− γ)d, (1 + ε2)d

]
can be potentially expanded only when it lies on the path from the root to some δ-optimal solution.
On the other hand, on each δ-optimal solution path, there are at most γ(1 − ε1)d nodes at depths
in
(
(γε1 + ε2 + 1− γ)d, (1 + ε2)d

]
. Pessimistically assuming that all nodes with depth no more than

(γε1 + ε2 + 1 − γ)d are potentially expanded in addition to those on paths to δ-optimal solutions

yields the statement of the lemma. (Note that as b ≥ 2,
∑`
i=0 b

i ≤ 2b` and that every potentially
expanded node v must have depth g(v) ≤ f(v) ≤M ≤ (1 + ε2)d.)

1. Recall some asymptotic notations: f(n) = Θ(g(n)) means there exist constants c1, c2 > 0 such that c1g(n) ≤
f(n) ≤ c2g(n) for sufficiently large n; f(n) = Ω(g(n)) means there exists a constant c > 0 such that cg(n) ≤ f(n)
for sufficiently large n.
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3.2 An Upper Bound on a Natural Search Space Model

While actual time complexity will depend, of course, on the precise structure of S and h, we show
below that this bound is essentially tight for a rich family of solution spaces. We consider a sequence
of search problems of “increasing difficulty,” expressed in terms of the depth d of the optimal solution.

A Stochastic Solution Space Model. For a parameter p ∈ [0, 1], consider the solution set S
which is obtained by independently placing each node of T into S with probability p. In this
setting, S is a random variable and is written Sp. When solutions are distributed according to Sp,
observe that the expected number of solutions at depth d is precisely pbd and that when p = b−d an
optimal solution lies at depth d with constant probability. For this reason, we focus on the specific
values pd = b−d and consider the solution set Spd for each d > 0. Recall that under this model, it
is likely for the optimal solutions to lie at depth d and, more generally, we can see that with very
high probability the optimal solutions of any particular subtree will be located near depth d (with
respect to the root of the subtree). We make this precise below.

Lemma 3.2. Suppose the solutions are distributed according to Spk . Then for any node v ∈ T and
t > 0,

1− 2bt−d ≤ Pr[h∗(v) > t] ≤ e−b
t−d

.

Proof. In the tree SubTree(v), there are n =
∑t
i=0 b

i = (bt+1−1)/(b−1) nodes at depths t or less,
so Pr[h∗(v) > t] = (1− b−d)n. We have

1− nb−d ≤ (1− b−d)n ≤ exp
(
−nb−d

)
.

The first inequality is obtained by applying Bernoulli’s inequality, and the last one is implied from
the fact that 1− x ≤ e−x for all x. Observing that

bt ≤ bt+1 − 1

b− 1
≤ 2bt

for b ≥ 2 completes the proof.

Observe that in the Spd model, conditioned on the likely event that the optimal solutions appear
at depth d, the expected number of δ-optimal solutions is Θ(bδd). In this situation, according to
Lemma 3.1, A∗ expands no more than O(b(γε1+ε2+1−γ)d) + O(db(γε1+ε2)d) vertices in expectation,
for any γ ≥ 0. The leading exponential term in this bound is equal to

max {(γε1 + ε2 + 1− γ)d, (γε1 + ε2)d} ,

which is minimal when γ = 1. This suggests the best upper bound that can be inferred from the
family of bounds in Lemma 3.1 is poly(d)b(ε1+ε2)d (for Spd).

Before discussing the average-case time complexity of A∗ search, we record the following well-
known Chernoff bound, which will be used to control the tail bounds in our analysis later.

Lemma 3.3 (Chernoff bound, Chernoff, 1952). Let Z be the sum of mutually independent indicator
random variables with expected value µ = E[Z]. Then for any λ > 0,

Pr[Z > (1 + λ)µ] <

[
eλ

(1 + λ)1+λ

]µ
.

A detailed proof can be found in the book of Motwani and Raghavan (1995). In several cases
below, while we do not know exactly the expected value of the variable to which we wish to apply
the tail bound in Lemma 3.3, we can compute sufficiently good upper bounds on the expected value.
In order to apply the Chernoff bound in such a case, we actually require a monotonicity argument:
If Z =

∑n
i=1Xi and Z ′ =

∑n
i=1X

′
i are sums of independent and identically distributed (i.i.d.)

indicator random variables so that E[Xi] ≤ E[X ′i], then Pr[Z > α] ≤ Pr[Z ′ > α] for all α. With this
argument and by applying Lemma 3.3 for λ = e− 1, we obtain:
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Corollary 3.1. Let Z be the sum of n i.i.d. indicator random variables so that E[Z] ≤ µ ≤ n, then

Pr[Z > eµ] < e−µ .

Adopting the search space whose solutions are distributed according to Spd , we are ready to
bound the running time of A∗ on average when guided by an (ε1, ε2)-approximate heuristic:

Theorem 3.1. Let d be sufficiently large. With probability at least 1−e−d−e−2d3

, A∗ search on the
tree T using an (ε1, ε2)-approximate heuristic function expands no more than 12d4b(ε1+ε2)d vertices
when solutions are distributed according to the random variable Spd .

Proof. Let X be the random variable equal to the total number of nodes expanded by the A∗ with
an (ε1, ε2)-approximate heuristic. Of course the exact value of, say, E[X] depends on h; we will prove
upper bounds achieved with high probability for any (ε1, ε2)-approximate h. Applying Lemma 3.1
with γ = 1, we conclude

X ≤ 2b(ε1+ε2)h∗(r) + (1− ε1)h∗(r)Nε1+ε2 .

Thus it suffices to control both h∗(r) and the number Nε1+ε2 of (ε1 + ε2)-optimal solutions.

We will utilize the fact that in the Spd model, the optimal solutions are unlikely to be located
far from depth d. To this end, let Efar be the event that h∗(r) > d + ∆ for some ∆ < d to be set

later. Lemma 3.2 immediately gives Pr[Efar] ≤ e−b
∆

.

Observe that conditioned on Efar, we have h∗(r) ≤ d+∆ and Nε1+ε2 ≤ Z, where Z is the random
variable equal to the number of solutions with depth no more than (1 + ε1 + ε2)(d+ ∆). We have

E[Z] ≤ b−d · 2b(1+ε1+ε2)(d+∆) = 2b(ε1+ε2)d+(1+ε1+ε2)∆ < 2b(ε1+ε2)d+3∆

and, applying the Chernoff bound in Corollary 3.1 to control Z,

Pr
[
Z > 2eb(ε1+ε2)d+3∆

]
≤ exp

(
−2b(ε1+ε2)d+3∆

)
≤ e−2b3∆

.

Letting Ethick be the event that Z ≥ 6b(ε1+ε2)d+3∆, observe

Pr[Ethick] ≤ Pr
[
Z > 2eb(ε1+ε2)d+3∆

]
≤ e−2b3∆

.

To summarize: when neither Efar nor Ethick occurs,

X ≤ 2b(ε1+ε2)(d+∆) + (1− ε1)(d+ ∆)6b(ε1+ε2)d+3∆

≤ 6(d+ ∆)b(ε1+ε2)d+3∆

≤ 12db(ε1+ε2)d+3∆ .

Hence,

Pr
[
X > 12db(ε1+ε2)d+3∆

]
≤ Pr[Efar ∨ Ethick]≤ e−b

∆

+ e−2b3∆

.

To infer the bound stated in our theorem, set b∆ = d so that b(ε1+ε2)d+3∆ = d3b(ε1+ε2)d, completing
the proof.

Remark By similar methods, other trade-offs between the error probability and the resulting bound
on the number of expanded nodes can be obtained.
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4. Lower Bounds on Running Time of A∗ on Trees

We establish that the upper bounds in Theorem 3.1 are tight to within a O(1/
√
d) term in the

exponent. We begin by recording the following easy fact about solution distances in this discrete
model.

Fact 2. Let ∆ ≤ h∗(r) be a nonnegative integer. Then for every solution s, there is a node v ∈
Path(s) such that h∗(v) = ∆.

Proof. Fix a distance ∆ ≤ h∗(r). We will prove the lemma by induction on the depth of solutions.
The lemma clearly holds for optimal solutions. Consider a solution s which may not be optimal,
and let v ∈ Path(s) be the node which is ∆ level far from s so that h∗(v) ≤ ∆. If h∗(v) < ∆, there
must be another solution s′ ∈ SubTree(v) that is closer to v. By the induction assumption, there
is a node v′ ∈ Path(s′) with h∗(v′) = ∆. This node v′ must be an ancestor of v, since the distance
between v and s′ is less than ∆ while the distance between v′ and s′ is at least ∆, completing the
proof.

We proceed now to the lower bound.

Theorem 4.1. Let d be sufficiently large. For solutions distributed according to Spd , with probability

at least 1 − b−
√
d, there exists an (ε1, ε2)-approximate heuristic function h so that the number of

vertices expanded by A∗ search on the tree T using h is at least b(ε1+ε2)d−4
√
d/8.

Proof. Our plan is to define a pathological heuristic function that forces A∗ to expand as many
nodes as possible. Note that the heuristic function here is allowed to overestimate h∗. Intuitively,
we wish to construct a heuristic function that overestimates h∗ at nodes close to a solution and
underestimates h∗ at nodes far from solutions, leading A∗ astray whenever possible. Recall that for
every vertex v, it is likely to have a solution lying at depth d of SubTree(v). Thus we can use the
quantity h∗(v) ≤ d−∆ to formalize the intuitive notion that the node v is close to a solution, where
the quantity ∆ < d will be determined later. Our heuristic function h is formally defined as follows:

h(v) =

{
(1 + ε2)h∗(v) if h∗(v) ≤ d−∆,

(1− ε1)h∗(v) otherwise.

Observe that the chance for a node to be overestimated is small since, by Lemma 3.2,

Pr[v is overestimated] = Pr[h∗(v) ≤ d−∆] ≤ 2b−∆ (4)

for any node v. Also note that if a node v does not have any overestimated ancestor, then the f
values will monotonically increase along the path from root to v.

Naturally, we also wish to ensure that the optimal solution is not too close to the root. Let Eclose

be the event that h∗(r) ≤ d−∆. Again by Lemma 3.2,

Pr[Eclose] ≤ 2b−∆ .

We then will see that conditioned on the event Eclose, which means “h∗(r) > d − ∆,” every
solution will be “obscured” by an overestimated node that is not too close to a solution. Concretely,
up to issues of integrality, Fact 2 asserts that for every solution s, there must be a node v on the
path from the root to s with h∗(v) = d−∆, as long as d−∆ < h∗(r).

Assume Eclose: then whenever h∗(v) = d −∆, we have g(v) ≥ h∗(r) − (d −∆) > 0 and h(v) =
(1 + ε2)(d − ∆), and thus f(v) > (1 + ε2)(d − ∆). Since every solution is “obscured” by some
overestimated node whose f value is larger than (1+ε2)(d−∆), we have M > (1+ε2)(d−∆), where
M is the min-max value defined in (2). It follows that a node v must be expanded if Path(v) does
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not contain any overestimated node and f(v) ≤ (1 + ε2)(d −∆). When Path(v) does not contain
an overestimated node, we have f(v) = g(v) + (1− ε1)h∗(v), so

f(v) ≤ (1 + ε2)(d−∆)⇔ (1− ε1)h∗(v) ≤ (1 + ε2)(d−∆)− g(v) ,

since ε1 < 1. Therefore, we say a node v is required if there is no overestimated node in Path(v) and
(1− ε1)h∗(v) ≤ (1 + ε2)(d−∆)− g(v). To recap, conditioned on Eclose, the set of required nodes is
a subset of the set of nodes expanded by A∗ search using our defined heuristic function. We will use
the Chernoff bound to control the size of R` which denotes the set of non-required nodes at depth
`.

Let v be a node at depth ` < (ε1 + ε2)d. Equation (4) implies

Pr[∃ an overestimated node in Path(v)] ≤ 2`b−∆ < 1/16 .

The last inequality holds for sufficiently large d, as long as ∆ = poly(d). On the other hand, if
ε1 < 1, we have

Pr
[
v ∈ R`

]
= Pr

[
h∗(v) >

(1 + ε2)(d−∆)− `
1− ε1

]
≤ exp

(
−b

(1+ε2)(d−∆)−`
1−ε1

−d
)

(by Lemma 3.2)

= exp

(
−b

(ε1+ε2)d−(1+ε2)∆−`
1−ε1

)
. (5)

Now set ` = (ε1 + ε2)d− (1 + ε2)∆− logb 4. Then Equation (5) implies

Pr
[
v ∈ R`

]
≤ exp

(
−b

logd 4

1−ε1

)
≤ e−4 ≤ 1/16 .

In the case ε1 = 1, the event “(1 − ε1)h∗(v) > (1 + ε2)(d −∆) − `” never happens given the value
of ` that has been set. Hence, in any case, Pr

[
v ∈ R`

]
≤ 1/8 so that E

[∣∣R`∣∣] ≤ b`/8. Applying the
Chernoff bound in Corollary 3.1 again yields

Pr
[∣∣R`∣∣ > eb`/8

]
≤ exp(−b`/8) .

Let Ethin be the event that
∣∣R`∣∣ ≥ b`/2. Since b`/2 > eb`/8,

Pr[Ethin] ≤ exp(−b`/8) .

Putting the pieces together, we have

Pr
[
A∗ expands less than b`/2 nodes

]
≤ Pr[Eclose ∨ Ethin] ≤ 2b−∆ + e−b

`/8 .

Setting ∆ = 2
√
d we have ` = (ε1 + ε2)d− 2(1 + ε2)

√
d− logb 4, and thus

Pr
[
A∗ expands less than b(ε1+ε2)d−4

√
d/8 nodes

]
≤ b−

√
d

for sufficiently large d.

For contrast, we now explore the behavior of A∗ with an adversarially selected solution set; this
achieves a lower bound which is nearly tight (in comparison with the general upper bound on the
worst-case running time of A∗ obtained by setting γ = 0 in the bound of Lemma 3.1 above).
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Theorem 4.2. For any d > 1, there exists a solution set S whose optimal solutions lie at depth d
and an (ε1, ε2)-approximate heuristic function h such that the A∗ on the tree T using h expands at
least b(1+ε2)d−1−ε2/ε1 nodes.

Proof. Consider a solution set S in which all ε2-optimal solutions share an ancestor u lying at depth
1. Furthermore, S contains every node at depth (1 + ε2)d that is not a descendant of u, where
d = h∗(r).

Now define an (ε1, ε2)-approximate heuristic h as follows: h(u) = (1 + ε2)h∗(u) and h(v) =
(1−ε1)h∗(v) for all v 6= u. With this heuristic, every ε2-optimal solution is “hidden” from the search
procedure by its ancestor u. Precisely, since f(u) = 1 + (1 + ε2)(d − 1) = (1 + ε2)d − ε2, every
ε2-optimal solution s (which is a descendant of u) will have

max
v∈Path(s)

f(v) ≥ f(u) = (1 + ε2)d− ε2 .

Thus M ≥ (1 + ε2)d− ε2, where M is the min-max value defined in Equation (2).
Let v be any node at depth ` ≤ (1 + ε2)d that does not lie inside of SubTree(u). Note that the

f values monotonically increase along the path from root r to v, which implies that the node v must
be expanded if f(v) < M . On the other hand, since every non-descendant of u at depth (1 + ε2)d is
a solution, we have `+ h∗(v) ≤ (1 + ε2)d, and thus

f(v) ≤ `+ (1− ε1)[(1 + ε2)d− `] = (1− ε1)(1 + ε2)d+ ε1` .

Hence, the node v must be expanded if (1− ε1)(1 + ε2)d+ ε1` < (1 + ε2)d− ε2, which is equivalent
to ` < (1 + ε2)d− ε2/ε1. It follows that the number of nodes expanded by A∗ is at least

(1+ε2)d−1−ε2/ε1∑
`=0

b` −
(1+ε2)d−2−ε2/ε1∑

`=0

b` = b(1+ε2)d−1−ε2/ε1 .

According to Theorem 4.2, if we set ε2 = 0 and let ε1 be arbitrarily small provided ε1 > 0, then
we can obtain a near-accurate heuristic which forces A∗ to expand at least as many as bd−1 nodes.
This lower bound partially explains why A∗ can perform so poorly, even with an almost perfect
heuristic, in certain applications (Helmert & Röger, 2008): The adversarially-chosen solution set
given in the proof of Theorem 4.2 has an overwhelming number of near-optimal solutions. Indeed,

Nε+ε2 ≥ b(1+ε2)d − b(1+ε2)d−1 ≥ b(1+ε2)d−1

for any ε > 0.

5. Generalizations: Non-uniform Edge Costs and Branching Factors

In this section, we discuss how the generic upper bounds of Lemma 3.1 can be generalized to apply
to more natural search models such as those with non-uniform branching factors and non-uniform
edge costs; in Section 6, we show how these can be extended to general graph search models.

Now we consider a general search tree without the assumptions of uniform branching factor and
uniform edge costs. From the same argument given in the proof of Lemma 3.1, we derive the assertion
that when the heuristic is (ε1, ε2)-approximate, any node of cost more than (γε1 + ε2 + 1− γ)c∗ will
not be potentially expanded if it does not lie on a (γε1 + ε2)-optimal solution path, where γ is an
arbitrary nonnegative number and c∗ = h∗(r) is the optimal solution cost.

Hence, the number of nodes potentially expanded by A∗ with an (ε1, ε2)-approximate heuristic
is bounded by

F
(
(γε1 + ε2 + 1− γ)c∗

)
+R

(
(γε1 + ε2 + 1− γ)c∗, γε1 + ε2

)
. (6)
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Here F (ξ) is the number of nodes with cost no more than ξ, which we call free nodes; R(ξ, δ) is the
number of nodes with cost in the range (ξ, (1 + ε2)c∗] that lie on a δ-optimal solution path, which
we call restricted nodes.

To bound the number of free and restricted nodes, respectively, we assume that the branching
factors are upper bounded and edge costs are lower bounded. Let B ≥ 2 be the maximal branching
factor and let m be the minimal edge cost. Since any node with cost no more than ξ must lie at
depth no larger than ξ/m, we have

F (ξ) ≤ 2Bξ/m .

On each δ-optimal solution path, there are at most ((1 + ε2)c∗ − ξ)/m nodes of cost in the range
(ξ, (1 + ε2)c∗]. Thus,

R(ξ, δ) ≤ (1 + ε2)c∗ − ξ
m

×Nδ .

Letting ξ = (γε1 + ε2 + 1− γ)c∗, δ = γε1 + ε2, and applying the bounds for F (ξ) and R(ξ, δ) to the
bound in (6), we obtain another upper bound on the number of expanded nodes when the heuristic
is (ε1, ε2)-approximate:

2B(γε1+ε2+1−γ)c∗/m +Nγε1+ε2(1− ε1)γc∗/m (7)

for any γ ≥ 0. This equation (7) is a generalized version of the bound in Lemma 3.1. Substituting
γ = 1 in (7), we arrive at the following simpler upper bound on the number of expanded nodes:

2B(ε1+ε2)c∗/m +Nε1+ε2(1− ε1)c∗/m . (8)

6. Bounding Running Time of A∗ on Graphs

In previous parts, we have established bounds on the running time of A∗ on the tree model. Now
we will apply those bounds to A∗ on the graph model. In order to do that, we will first unroll the
graph into a cover tree, and then bound the number of solutions lifted to the cover tree.

6.1 Unrolling Graphs into Trees

The preceding generic upper bounds are developed for tree-based models; in this section we discuss
a natural extension to general graph search models. The principal connection is obtained by “un-
rolling” a graph into a tree on which A∗ expands at least as many nodes as it does on the original
graph (including repetitions). More specifically, given a directed graph G and starting node x0 in G,
we define a cover tree T (G) whose nodes are in one-to-one correspondence with finite-length paths
in G from x0. We shall write a path (x0, . . . , x`) in G as a node in T (G). The root of T (G) is
(x0). The parent of a node (x0, x1, . . . , x`) in T (G) is the node (x0, x1, . . . , x`−1), and the edge cost
between the two nodes (x0, x1, . . . , x`−1) and (x0, x1, . . . , x`) in T (G) equals the cost of the edge
(x`−1, x`) in G. Hence, for each node P in T (G), the cost value g(P ) is equal to the total edge
cost on the path P in G. A node (x0, . . . , x`) in T (G) is designated as a solution whenever x` is a
solution in G.

A node in T (G) that corresponds to a path ending at node x ∈ G will be called a copy of x.
Observe that a solution in G may “lift” multiple times to solutions in T (G), as each node in G may
have multiple copies in T (G). Figure 1 illustrates an example of unrolling a graph into a cover tree.
In this example, node s is a solution in the graph and its first two copies in the cover tree correspond
to the paths (0, 3, s) and (0, 5, 3, s), where 0 is the starting node in the given graph.

The A∗ search on graph G is described in Algorithm 2 below, in which h(x) is the heuristic
at node x, g(x) is the cost of the current path from x0 to x, and c(x, x′) denotes the cost of the
edge (x, x′) in G. We assume the value of h(x) depends only on x, i.e., h(x) does not depend on
a particular path from x0 to x. Unlike A∗ search on a tree, for each node x in Open or Closed,
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Figure 1: Unrolling a graph into a cover tree.

Algorithm 2 also keeps track of the current path P from x0 to x through the pointers, and the
current f -value of x is equal to g(P ) + h(x). This current path is the cheapest path from x0 to x
that passes only nodes that have been expanded.

Algorithm 2 A∗ search on a graph (Pearl, 1984, p. 64)

1. Initialize Open := {x0} and g(x0) := 0.

2. Repeat until Open is empty.

(a) Remove from Open and place on Closed a node x for which the function f = g + h is
minimum.

(b) If x is a solution, exit with success and return x.

(c) Otherwise, expand x, generating all its successors. For each successor x′ of x,

i. If x′ is not on Open or Closed, estimate h(x′) and calculate f(x′) = g(x′) + h(x′)
where g(x′) = g(x) + c(x, x′), and put x′ to Open with pointer back to x.

ii. If x′ is on Open or Closed, compare g(x′) and g(x) + c(x, x′). If g(x) + c(x, x′) <
g(x′), direct the pointer of x′ back to x and reopen x′ if it is in Closed.

3. Exit with failure.

Now consider A∗ search on the cover tree T (G) of graph G using the same heuristic function h:
for each node P in T (G), set the heuristic value h(P ) to be equal to h(x) if P is a copy of node
x ∈ G, i.e., P is a path in G from x0 to x. Observe that the cover tree T (G) and the graph G share
the same threshold M (defined in Equation (2)). Hence, whenever a node x ∈ G is expanded with
current path P , we must have g(P ) + h(x) ≤ M , which implies that P is potentially expanded by
A∗ search on the cover tree T (G). This shows the following fact:

Fact 3. The number of node expansions by A∗ on G is no more than the number of nodes potentially
expanded by A∗ on T (G) using the same heuristic.

Here, by node expansion, we mean an execution of the expand step of A∗, i.e. Step (2c). Note
that, in general, a node in G can be expanded many times along different paths.

Remark The running time of A∗ on the cover tree can also be used to upper bound the running time
of iterative-deepening A∗ (IDA∗) on the graph. Recall that the running time of IDA∗ is dominated
by its last iteration. On the other hand, the last iteration of IDA∗ on G is merely depth-first search
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on the cover tree T (G) up to the cost threshold M . Hence, the number of expansions in the last
iteration of IDA∗ is no more than the number of nodes potentially expanded by A∗ on the cover
tree.

So, to upper-bound time complexity of A∗ or IDA∗ on a graph, it suffices to unroll the graph
into the cover tree and apply upper bounds on the number of nodes potentially expanded by A∗ on
the cover tree. In particular, the bound in Equation (7) can be applied directly to the A∗ search on
G.

Note that while these bounds can be applied directly, the problem of determining exactly how
solutions in G lift to solutions in the cover tree depends on delicate structural properties of G—
specifically, it depends on the growth of the number of distinct paths from x0 to a solution as
a function of the length of these paths. In particular, in order to obtain general results on the
complexity of A∗ in this model, we must invoke some measure of the connectedness of the graph G.
Below we show how to bound the complexity of A∗ in terms of spectral properties of G. We choose
this approach because it offers a single parameter notion of connectedness (the second eigenvalue)
that is both analytically tractable and can actually be analyzed or bounded for many graphs of
interest, including various families of Cayley graphs and combinatorial graphs by methods such as
conductance.

6.2 An Upper Bound via Graph Spectra

We shall consider an undirected2 graph G on n vertices as the search space. Let x0 be the starting
node and let S be the set of solutions in G. For simplicity, assume G is b-regular (2 < b � n) and
the edge costs are uniformly equal to one, so the cover tree T (G) is b-ary and has uniform edge cost.
We assume, additionally, that |S| is treated as a constant when n→∞.

By Fact 3 and Lemma 3.1, the number of node expansions by A∗ on G with an (ε1, ε2)-
approximate heuristic is at most 2b(ε1+ε2)d + dNε1+ε2 , where d is the optimal solution cost, which
equals the optimal solution depth in T (G), and Nδ is the number of δ-optimal solutions in T (G).
Our goal now is to upper bound Nδ (of the cover tree T (G)) in terms of spectral properties of G.

We introduce the principal definitions of spectral graph theory below, primarily to set down
notation. A more complete treatment of spectral graph theory can be found in the work of Chung
(1997).

Graph Spectra. For a graph G, let A be the adjacency matrix of G: A(x, y) = 1 if x is adjacent
to y, and 0 otherwise. This is a real, symmetric matrix (AT = A) and thus has real eigenvalues

b = µ1 ≥ µ2 ≥ . . . ≥ µn ≥ −b, by the spectral theorem (Horn & Johnson, 1999). Let Â = 1/b · A
denote the normalized adjacency matrix of G; then Â has eigenvalues 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1,
which are referred to as the spectrum of G, where λi = µi/b. These eigenvalues, along with their
associated eigenvectors, determine many combinatorial aspects of the graph G. In most applications

of graph eigenvalues, however, only the critical value µ = µ(G)
def
= max {|µ2|, |µn|} is invoked

and, moreover, the real parameter of interest is the gap between λ = µ/b and the largest eigenvalue
λ1 = 1 of the normalized adjacency matrix. Intuitively, λ measures the “connectedness” of G.
Sparsely connected graphs have λ ≈ 1; for the n-cycle, for example, λ = 1−O(1/n). The hypercube
on N = 2n vertices has λ = 1 − Θ(1/ logN). Similar bounds on µ and λ, are known for many
families of Cayley graphs. Random graphs, even of constant degree b ≥ 3, achieve λ = o(1) with
high probability. In fact, a recent result of Friedman (2003) strengthens this:

Theorem 6.1. (Friedman, 2003) Fix a real c > 0 and an integer b ≥ 2. Then with probability
1− o(1) (as n→∞),

µ(Gn,b) ≤ 2
√
b− 1 + c

2. While one can produce an analogous cover tree in the directed case, the spectral machinery we apply in the next
section is somewhat complicated by the presence of directed edges. See the work of Chung (2006) and Horn and
Johnson (1999, Perron-Frobenius theorem) for details.
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where Gn,b is a random b-regular graph on n vertices.

We remark that for any non-bipartite connected graph with diameter D, we always have µ ≤
b − 1/(Dn). Under stronger conditions, when the graph is vertex-transitive (which is to say that
for any pair v0, v1 of vertices of G there is an automorphism of G sending v0 to v1), one has
µ ≤ b − Ω(1/D2) (Babai, 1991). While vertex transitivity is a strong condition, it is satisfied by
many natural algebraic search problems (e.g., 15-puzzle-like search spaces and the Rubik’s cube).

The principal spectral tool we apply in this section is described in Lemma 6.1 below. We begin
with some notation.

Notations. Any function φ on G can be viewed as a column vector indexed by the vertices in G
and vice versa. For each vertex x ∈ G, let 1x denote the function on G that has value 1 at x and
0 at every vertex other than x. For any real-valued functions φ, ϕ on G, define the inner product
〈φ, ϕ〉 =

∑
x∈G φ(x)ϕ(x). We shall use ‖ · ‖ to denote the L2-norm, i.e., ‖φ‖ =

√
〈φ, φ〉 for any

function φ on G.
Recall that since Â is symmetric and real, by spectral theorem (Horn & Johnson, 1999), there

exist associated eigenfunctions φ1, . . . , φn that form an orthonormal basis for the space of real-valued
functions on G, where φi is the eigenfunction associated with the eigenvalue λi of Â. In particular,
we have Âφi = λiφi and ‖φi‖ = 1 for all i, and 〈φi, φj〉 = 0 for all i 6= j. In this basis, we can write
φ =

∑n
i=1 〈φ, φi〉φi for any real-valued function φ on G.

Lemma 6.1. Let G be an undirected b-regular graph with n vertices, and λ = µ(G)/b. For any
probability distributions p and q on vertices of G, and any integers s, t ≥ 0,∣∣∣∣〈Âsp, Âtq〉− 1

n

∣∣∣∣ ≤ λs+t(‖p‖ · ‖q‖ − 1

n

)
.

Proof. Write p =
∑n
i=1 aiφi and q =

∑n
j=1 bjφj where ai = 〈p, φi〉 , bj = 〈q, φj〉. Then

〈
Âsp, Âtq

〉
=

〈
n∑
i=1

aiλ
s
iφi,

n∑
j=1

bjλ
t
jφj

〉
=

n∑
i,j=1

aibjλ
s
iλ
t
j 〈φi, φj〉 =

n∑
i=1

λs+ti aibi .

By the Cauchy-Schwartz inequality,

n∑
i=1

|aibi| ≤

√√√√( n∑
i=1

a2
i

)(
n∑
i=1

b2i

)
= ‖p‖ · ‖q‖ .

Without loss of generality, assume φ1(x) = 1/
√
n for all vertices x ∈ G. Since p is a probability

distribution,

a1 = 〈p, φ1〉 =
∑
x∈G

p(x)φ1(x) =
1√
n

∑
x∈G

p(x) =
1√
n
.

Similarly, b1 = 1√
n

. Thus, a1b1 = 1
n . So we have∣∣∣∣〈Âsp, Âtq〉− 1

n

∣∣∣∣ =

∣∣∣∣∣
n∑
i=2

λs+ti aibi

∣∣∣∣∣
≤ λs+t

n∑
i=2

|aibi| (as λ = max
2≤i≤n

|λi|)

≤ λs+t
(
‖p‖ · ‖q‖ − 1

n

)
,

completing the proof of the lemma.
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With Lemma 6.1 in hand, we establish the following bound on the number of paths of a prescribed
length ` connecting a pair of vertices. We then apply this to control the number of ε-optimal solutions
in the cover tree of G. Let P`(u, v) denote the number of paths in G of length ` from u to v.

Lemma 6.2. Let G be an undirected b-regular graph with n vertices, and µ = µ(G). For any vertices
u, v in G and ` ≥ 0, ∣∣∣∣P`(u, v)− b`

n

∣∣∣∣ ≤ µ`(1− 1

n

)
< µ` .

Proof. Since P`(u, v) is the number of `-length paths from u to v, we have P`(u, v) = b`p(`)(v), where
p(`)(v) is the probability that a natural random walk on G of length ` starting from u ends up at

v. Since p(`) = Â`1u and p(`)(v) =
〈
1v, p

(`)
〉
, we have P`(u,v)

b`
=
〈
1v, Â

`1u

〉
. Applying Lemma 6.1

yields ∣∣∣∣P`(u, v)

b`
− 1

n

∣∣∣∣ =

∣∣∣∣〈1v, Â
`1u

〉
− 1

n

∣∣∣∣ ≤ λ`(‖1v‖ · ‖1u‖ − 1

n

)
= λ`

(
1− 1

n

)
.

As λ = µ/b, multiplying both sides of the last inequality by b` completes the proof for the lemma.

The major consequence of Lemma 6.2 in our application is the following bound on the number
of ε-optimal solutions in T (G).

Theorem 6.2. Let G be an undirected b-regular graph with n vertices, and µ = µ(G). For sufficiently
large n and any ε ≥ 0, the number of ε-optimal solutions in T (G) is

Nε < 2|S|
(
b(1+ε)d

n
+ µ(1+ε)d

)
,

where d is the depth of optimal solutions in T (G), and S is the set of solution nodes in G.

Proof. For each solution s ∈ S, the number of copies of s at level ` in T (G) equals P`(x0, s), which
is less than b`/n + µ` by Lemma 6.2. Hence, the number of solutions at level ` in T (G) is∑

s∈S
P`(x0, s) < |S|

(
b`

n
+ µ`

)
. (9)

Summing up both sides of (9) for ` ranging from d to (1 + ε)d, we have

Nε =

(1+ε)d∑
`=d

∑
s∈S

P`(x0, s) < |S|

 1

n

(1+ε)d∑
`=d

b` +

(1+ε)d∑
`=d

µ`

 .

When n is sufficiently large, we have µ ≥ 2. Thus,

Nε < |S|
(

1

n
2b(1+ε)d + 2µ(1+ε)d

)
.

Note that b(1+ε)d/n = O(1) if d = O(logb n). As mentioned earlier (Theorem 6.1), most b-regular
graphs have µ ≤ 2

√
b− 1 + o(1) ≤ 2

√
b. Assuming G has this spectral property and d = O(logb n),

Theorem 6.2 gives

Nε = O(µ(1+ε)d) = O
(

2(1+ε)db(1+ε)d/2
)
.

In such cases, the number of node expansions by A∗ on G using an (ε1, ε−ε1)-approximate heuristic
is O(d2(1+ε)db(1+ε)d/2), which implies the effective branching factor of A∗ is roughly bounded by
21+εb(1+ε)/2 < 8b(1+ε)/2.
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7. Experimental Results

As discussed in the introduction, the bounds established thus far guarantee that E, the number of
nodes expanded by A∗ using a δ-accurate heuristic, satisfies

E ≤ 2bδd + dNδ ≈ cbδd

under the assumption that Nδ ≈ bδd. (Here, as before, b is the branching factor, d is the optimal
solution depth, and c is some constant.) This suggests the hypothesis that for hard combinatorial
problems with suitably sparse near-optimal solutions,

logE ≈ δd log b+ ξ . (10)

where ξ is a constant determined by the search space and heuristic but independent from δ. In
particular, this suggests a linear dependence of logE on δ. We experimentally investigated this
hypothesized relationship with a family of results involving the Knapsack problem and the partial
Latin square problem. As far as we are aware, these are the first experimental results specifically
investigating this dependence.

We remark that in order for such an experimental framework to really cast light on the bounds we
have presented for A∗, one must be able to furnish a heuristic with known approximation guarantees.

7.1 A∗ Search for Knapsack

We begin with describing a family of experimental results for A∗ search coupled with approximate
heuristics for solving the Knapsack problem. This problem has been extremely well-studied by a
wide variety of fields including finance, operations research, and cryptography (Kellerer, Pferschy,
& Pisinger, 2004). As the Knapsack problem is NP-hard (Karp, 1972), no efficient algorithm can
solve it exactly unless NP = P. Despite that, this problem admits an FPTAS (Vazirani, 2001, p.
70), an algorithm that will return an ε-approximation to the optimal solution in time polynomial in
both 1/ε and the input size. We use this FPTAS to construct approximate admissible heuristics for
the A∗ search, which yields an exact algorithm for Knapsack that may expand far fewer nodes than
straightforward exhaustive search. (Indeed, the resulting algorithm is, in general, more efficient than
exhaustive search.)

7.1.1 A Search Model for Knapsack

Consider a Knapsack instance given by n items, and let [n] = {1, . . . , n}. Each item i ∈ [n] has
weight wi > 0 and profit pi > 0. The knapsack has capacity c > 0. The task is to find a set of items
with maximal total profit such that its total weight is at most c. This Knapsack instance will be
denoted as a tuple 〈[n], p, w, c〉. The Knapsack instance restricted to a subset X ⊂ [n] is denoted
〈X, p,w, c〉. For each subset X ⊂ [n], we will let w(X) and p(X) denote the total weight and the
total profit, respectively, of all items in X, i.e., w(X) =

∑
i∈X wi and p(X) =

∑
i∈X pi.

Search Space. We represent the Knapsack instance 〈[n], p, w, c〉 as a search space as follows. Each
state (or node) in the search space is a nonempty subset X ⊂ [n]. A move (or edge) from one state
X to another state is taken by removing an item from X. The cost of such a move is the profit of
the removed item. A state X ⊂ [n] is designated as a solution if w(X) ≤ c. The initial state is the
set [n]. See Figure 2 for an example of the search space with n = 4.

This search space is an irregular directed graph whose out-degrees span in a wide range, from 2
to n − 1. Moreover, for any two states X1, X2 with X2 ⊂ X1 ⊂ [n], there are |X1 \X2|! paths on
this search graph from X1 to X2. Moreover, every path from X1 to X2 has the same cost equal to
p(X1)− p(X2). This feature of the search graph makes A∗ behave like it does on a spanning subtree
of the graph: no state in this search graph will be reopened. Hence, for any state X ⊂ [n], the cost
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{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

Figure 2: The search space for a Knapsack instance given by the set of 4 items {1, 2, 3, 4}. Solution
states and edge costs are not indicated in this figure.

of any path from the starting state to X is

g(X) = p([n] \X) = p([n])− p(X) ,

and the cheapest cost to reach a solution from a state X ⊂ [n] is

h∗(X) = p(X)−Opt(X) ,

where Opt(X) is the total profit of an optimal solution to the Knapsack instance 〈X, p,w, c〉, i.e.,

Opt(X)
def
= max {p(X ′) | X ′ ⊂ X and w(X ′) ≤ c} .

Observe that a solution state X∗ ⊂ [n] on the search space 〈[n], p, w, c〉 is optimal if and only if
g(X∗) is minimal, or equivalently, p(X∗) is maximal, which means that X∗ is an optimal solution
to the Knapsack instance 〈[n], p, w, c〉.

Heuristic Construction. Fix a constant δ ∈ (0, 1). In order to prove the linear dependence of
logE on δ, we wish to have an efficient δ-accurate heuristic Hδ on the aforementioned Knapsack
search space 〈[n], p, w, c〉. Moreover, in order to guarantee that the solution returned by the A∗

search is optimal, we insist that Hδ be admissible, so Hδ must satisfy:

(1− δ)h∗(X) ≤ Hδ(X) ≤ h∗(X) ∀X ⊂ [n] .

The main ingredient for constructing such a heuristic is an FPTAS described in the book of Vazirani
(2001, p. 70). This FPTAS is an algorithm, denoted A, that returns a solution with total profit
at least (1− ε)Opt(X) to each Knapsack instance 〈X, p,w, c〉 and runs in time O

(
|X|3/ε

)
, for any

ε ∈ (0, 1). For each nonempty subset X ⊂ [n], let Aε(X) denote the total profit of the solution
returned by algorithm A with error parameter ε to the Knapsack instance 〈X, p,w, c〉. Then we
have for any ε ∈ (0, 1),

(1− ε)Opt(X) ≤ Aε(X) ≤ Opt(X) ,

which implies

p(X)− Aε(X)

1− ε
≤ h∗(X) ≤ p(X)−Aε(X) . (11)

Thus we may work with the heuristic Hδ(X) = p(X) − Aε(X)
1−ε , which guarantees admissibility.

However, this definition of Hδ does not guarantee δ-approximation for Hδ: with this definition, the
condition (1− δ)h∗(X) ≤ Hδ(X) is equivalent to

(1− δ)h∗(X) ≤ p(X)− Aε(X)

1− ε
, (12)
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which does not always hold. Since h∗(X) ≤ p(X)−Aε(X), the condition of (12) will be satisfied if

(1− δ)(p(X)−Aε(X)) ≤ p(X)− Aε(X)

1− ε
. (13)

Hence, we will define Hδ(X) = p(X) − Aε(X)
1−ε if Equation (13) holds. Otherwise, we will define

Hδ(X) differently, still ensuring that it is δ-approximate and admissible. Note that if X is not a
solution, at least one item in X must be removed in order to reach a solution contained in X, thus
h∗(X) = p(X)−Opt(X) ≥ m, where m is the smallest profit of all items. This gives another option
to define Hδ(X) that will guarantee the admissibility. In summary, we define the heuristic function
Hδ as follows: for all non-solution state X,

Hδ(X)
def
=

{
p(X)− Aε(X)

1−ε if (13) holds

m otherwise,
(14)

where ε will be determined later so that Hδ is δ-approximate. If X is a solution, we simply set
Hδ(X) = 0, because h∗(X) = 0 in this case. Then Hδ is admissible, regardless of ε.

To make sure that Hδ is δ-approximate, it remains to consider the case when (13) does not hold,

i.e., p(X)− Aε(X)
1−ε < (1− δ)(p(X)−Aε(X)), for any non-solution state X. In such a case, we have

p(X)−Aε(X) ≤ ε

(1− ε)δ
Aε(X) ≤ ε

(1− ε)δ
(p([n])−m) . (15)

The last inequality is due to the assumption that X is not a solution. Now we want to choose ε such
that

ε

(1− ε)δ
(p([n])−m) ≤ m

1− δ
(16)

which, combining with (11) and (15), will imply (1 − δ)h∗(X) ≤ m = Hδ(X). Therefore, we will
choose ε such that

ε−1 = 1 +
(
δ−1 − 1

)
(p([n])/m− 1) .

Since the running time to compute Aε(X) is O
(
|X|3ε−1

)
, the running time to compute Hδ(X)

will be O
(
|X|3δ−1p([n])/m

)
, which is polynomial in both n and δ−1 if all the profits are bounded

some range [m,poly(n)m]. The A∗ search using the heuristic Hδ for the given Knapsack space
〈[n], p, w, c〉 is described in Algorithm 3 below.

7.1.2 Experiments

In order to avoid easy instances, we focus on two families of Knapsack instances identified and studied
by Pisinger (2005) that are difficult for existing exact algorithms, including dynamic programming
algorithms and branch-and-bound algorithms:

Strongly Correlated: For each item i ∈ [n], choose its weight wi as a random integer in the
range [1, R] and set its profit pi = wi + R/10. This correlation between weights and profits
reflects a real-life situation where the profit of an item is proportional to its weight plus some
fixed charge.

Subset Sum: For each item i ∈ [n], choose its weight wi as a random integer in the range [1, R]
and set its profit pi = wi. Knapsack instances of this type are instances of the subset sum
problem.

For our tests we set the data range parameter R := 1000 and choose the knapsack capacity as
c = (t/101)

∑
i∈[n] wi, where t is a random3 integer in the range [30, 70].

3. In the paper of Pisinger (2005), t is a fixed integer between 1 and 100, and the average runtime of all tests
corresponding to all values of t was reported.
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Algorithm 3 A∗ Search for Knapsack

Input: 〈n, p, w, c, δ〉; where n is the number of items, pi and wi are the profit and weight of item
i ∈ [n], c is the capacity of the knapsack, and δ ∈ (0, 1) is an error parameter for the heuristic.
Oracle: The FPTAS algorithm A for the Knapsack problem described by Vazirani (2001, p. 70).
Notation: For each subset X ⊂ [n] of items, let p(X) =

∑
i∈X pi, w(X) =

∑
i∈X wi.

Output: a subset X∗ ⊂ [n] of items such that w(X∗) ≤ c and p(X∗) is maximal.

1. Put the start node [n] on Open. Let m = min1≤i≤n pi. Set ε such that

ε−1 = 1 +
(
δ−1 − 1

)
(p([n])/m− 1) .

2. Repeat until Open is empty:

(a) Remove from Open and place on Closed a node X for which g(X) +h(X) is minimum.

(b) If w(X) ≤ c, exit with success and return X, an optimal solution.

(c) Otherwise, expand X: For each item i ∈ X, let X ′ = X \ {i},
i. If X ′ is not on Open or Closed, set g(X ′) := g(X) + p(i) = p([n]) − p(X ′), and

compute the heuristic h(X ′) as follows:

A. If X ′ is a solution, set h(X ′) := 0.

B. Otherwise, run algorithm A on the Knapsack input 〈X ′, p, w, c〉 with error param-
eter ε, and let A(X ′) denote the total profit of the solution returned by algorithm
A. Then set

h(X ′) :=

{
p(X ′)− A(X′)

1−ε if p(X ′)− A(X′)
1−ε ≥ (1− δ)(p(X ′)−A(X ′))

m otherwise.

Then put X ′ to Open with pointer back to X.

ii. Otherwise (X ′ is on Open or Closed, so g(X ′) has been calculated), if g(X)+p(i) <
g(X ′), direct the pointer of X ′ back to X and reopen X ′ if it is in Closed.
[Remark: Since all paths from the starting node to X ′ have the same cost, the
condition g(X) + p(i) < g(X ′) never holds. In fact, this step can be discarded.]

3. Exit with failure.
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After generating a Knapsack instance 〈[n], p, w, c〉 of either type described above, we run a series
of the A∗ search using the given heuristic Hδ, with various values of δ, as well as breath first search
(BFS), to solve the Knapsack instance. When each search finishes, the values of E and d are reported,
where E is the number of nodes (states) expanded by the search, and d is the depth of the optimal
solution found by the search. In this Knapsack search space, k equals the number of items removed
from the original set [n] to obtain the optimal solution found by the search. The overall runtime for
each search, including the time for computing the heuristic, is also reported. In addition, we report
the optimal value h∗([n]) and the minimal edge cost m (i.e., minimal profit) of the search space for
each Knapsack instance tested.

To specify appropriate size n for each Knapsack instance type, we ran a few exploratory exper-
iments and identified the largest possible value of n for which most search instances would finish
within a few hours. Then we chose those values of n (n = 23 for the Strongly Correlated type, and
n = 20 for the Subset Sum type) for our final experiments. Observing that the optimal solution
depths resulted from Knapsack instances of these sizes are fairly small, ranging from 5 to 15, we
selected sample points for δ in the high interval [0.5, 1) with a distance between two consecutive
points large enough so that the sensitiveness of E to δ can be seen. In particular, we selected eight
sample points for δ from 8/16 = 0.5 to 15/16 = 0.9375 with the distance of 1/16 = 0.0625 between
two consecutive points. In our final experiments, we generated 20 Knapsack instances of each type
with the selected parameters for n and δ.

Experimental Results. Results for our final experiments are shown in Tables 1, 2, 3, 4, 5, and 6,
in which the rows corresponding to breath first search are indicated with “BFS” under the column
of δ. These data show, as expected, that A∗ search outperforms breath first search in terms of
the number of nodes expanded and, naturally, that the smaller δ, the fewer nodes A∗ expands. As
a result, the effective branching factor of A∗ will decrease as δ decreases (as long as all optimal
solutions in the given search space are located at the same depth). Recall that if A∗ expands E
nodes and finds a solution at depth d, then its effective branching factor is the branching factor of a
uniform tree of depth d and E nodes (Russell & Norvig, 1995, p. 102), i.e., the number b∗ satisfying
E = 1 + b∗ + (b∗)2 + · · ·+ (b∗)d. Clearly, (b∗)d ≤ E and, if b∗ ≥ 2, we have E ≤ 2(b∗)d. As we shall
focus solely on values of b∗ ≥ 2, we simply use E1/d as a proxy for effective branching factor, content
that this differs from the actually quantity by a factor no more than 21/d. (Of course, as b∗ grows
this error decays even further). The effective branching factors, calculated as E1/d, of A∗ search
and breath first search for Knapsack instances of type Strongly Correlated are shown in Tables 1,
2, and 3. Note that for Knapsack instances of the Subset Sum type, one cannot directly compare
effective branching factors, as the optimal solutions found by different search instances can appear
at different depths.

Our primary goal in these experiments is to investigate the proposed linear dependence which,
in this case of non-uniform branching factors and non-uniform edge costs, we may express

logE ≈ δd log bBFS + ξ , (17)

where d is the average optimal solution depth, bBFS is the effective branching factor of breath first
search, and ξ is a constant not depending on δ. To examine to what extend our data supports
this hypothesis, we calculate the least-squares linear fit (or “linear fit” for short) of logE (for
each Knapsack instance, varying δ) using the least-squares linear regression model, and measure
the coefficient of determination R2. In our experiments, 17 out of 20 Knapsack instances of type
Strongly Correlated and all 20 Knapsack instances of type Subset Sum have the R2 value at least
0.9. For these instances, over 90% of the variation in logE depends linearly on δ, a remarkable fit.
See Figure 5 for detailed histograms of R2 values for our Knapsack instances. The median R2 is
0.9534 for Knapsack instances of type Strongly Correlated, and is 0.9797 for those of type Subset
Sum. Graphs of logE and its linear fit for Knapsack instances with the median R2 among those of
the same type are shown in Figures 3 and 4. Note that as there are an even number of instances of

707



Dinh, Dinh, Michel, & Russell

each type, there is no single instance with the median value. The instances shown in these graphs
actually have the R2 value below the median.

0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

Heuristic error δ

lo
g

1
0
E

Knapsack instance of type Strongly Correlated with median R2

Instance 17
Linear fit
BFS

Figure 3: Graph of log10E and its least-squares linear fit for the Knapsack instance of type Strongly
Correlated with the median R2 (see data in Table 3).

0.5 0.6 0.7 0.8 0.9 1

5.15

5.2

5.25

5.3

Heuristic error δ

lo
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1
0
E

Knapsack instance of type Subset Sum with median R2

Instance 14
Linear fit
BFS

Figure 4: Graph of log10E and its least-squares linear fit for the Knapsack instance of type Subset
Sum with the median R2 (see data in Table 5).

Remark Of course, there may be instances that poorly fit our prediction of linear dependence, such
as instance #20 of Strongly Correlated type whose R2 value is only 0.486, though those instances
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rarely show up in our experiments. In such an instance, the A∗ search using heuristic function Hδ

may explore even fewer nodes than the A∗ search using Hδ−∆ does, for some small ∆ > 0. This
phenomenon can be explained by the degree to which we can control the accuracy of our heuristic
function Hδ. In particular, we can only guarantee that Hδ is admissible and δ-approximate, while
in reality it may provide an approximation better than δ to all nodes that are opened. Note that Hδ

is not proportional to (1 − δ). Hence, Hδ may be occasionally more accurate than Hδ−∆ for some
small ∆ > 0, resulting in fewer nodes expanded.
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Figure 5: Histograms of the R2 values for Knapsack instances.

To analyze more deeply how our data fit the model of Equation (17), we calculate the slope of
the least-squares linear fit of log10E for each Knapsack instance of type Strongly Correlated. Note
that for such an instance, every search has the same optimal solution depth, denoted d, and thus,
d = d. Our data, given in Figure 6, show that for all but one instance with the worst R2 value, the
slope a of the linear fit of log10E is fairly close to d log10 bBFS, which is the slope of the hypothesized
line given in Equation (17). Specifically, for any Knapsack instance of type Strongly Correlated,
except instance #20,

0.73d log10 bBFS ≤ a ≤ 1.63d log10 bBFS .

7.2 A∗ Search for Partial Latin Square Completion

The experimental results discussed above for the Knapsack problem support the hypothesis of linear
scaling (cf., Equation (1) or (10)). However, several structural features of the search space and
heuristic are unknown: for example, we cannot rule out the possibility that the approximation
algorithm, when asked to produce an ε-approximation, does not in fact produce a significantly
better approximation; likewise, we have no explicit control on the number of near-optimal solutions.
In order to explore the hypothesis in more detail, we experimentally and analytically investigate a
search space for the partial Latin square completion problem in which we can provide precise analytic
control of heuristic error δ as well as the number of δ-optimal solutions Nδ.

7.2.1 The Partial Latin Square completion (PLS) Problem

A Latin square of order n is an n × n table in which each row and column is a permutation of the
set [n] = {1, . . . , n}. If only a few cells in an n × n table are filled with values from [n] in such a
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Knapsack instance type: Strongly Correlated

Instance
Optimal
solution
depth d

Effective branching
factor of breath first
search bBFS

Slope of
linear fit a

a/(d log10 bBFS)
Coefficient of
determination R2

1 11 4.2092 7.6583 1.1154 0.9395
2 9 5.3928 4.8966 0.7435 0.9183
3 6 10.8551 10.1038 1.6260 0.9647
4 7 8.2380 6.4279 1.0027 0.9710
5 7 8.0194 5.0882 0.8040 0.9161
6 6 10.6780 6.4511 1.0454 0.9696
7 7 8.7068 7.9087 1.2021 0.9436
8 8 6.7742 6.5616 0.9872 0.9782
9 6 11.4102 8.6847 1.3690 0.9571
10 9 5.5412 6.3690 0.9517 0.9461
11 7 8.3260 9.7685 1.5161 0.9689
12 5 18.0486 7.7848 1.2392 0.9314
13 7 8.0308 6.0376 0.9533 0.9646
14 5 15.0964 7.3004 1.2385 0.9676
15 6 10.0070 4.4219 0.7368 0.8788
16 9 5.7863 7.1815 1.0466 0.8698
17 7 8.3155 9.1738 1.4247 0.9498
18 8 6.9106 9.2837 1.3823 0.9729
19 7 8.3602 7.1807 1.1123 0.9770
20 7 7.0964 1.0055 0.1688 0.4860

Figure 6: Slopes of the least-squares linear fits of log10E (varying δ) for the Knapsack instances of
type Strongly Correlated. Details of these least-squares linear fits are given in Tables 1, 2, and 3.
The R2 values for these Knapsack instances are also included in this figure.

way that no value appears twice in a single row or column, then the table is called a partial Latin
square. A completion of a partial Latin square L is a Latin square that can be obtained by filling
the empty cells in L, see Figure 7 for an example. Note that not every partial Latin square has a
completion. Since the problem of determining whether a partial Latin square has a completion is
NP-complete (Colbourn, 1984), its search version (denoted PLS), i.e., given a partial Latin square
L find a completion of L if one exists, is NP-hard.

1 2
5 1 4

3 2
1 3
4

1 2 3 4 5
2 3 5 1 4
3 5 4 2 1
4 1 2 5 3
5 4 1 3 2

Figure 7: A 5× 5 partial Latin square (right) and its unique completion (left).

The PLS problem (also known as partial quasi-group completion) has been used in the recent
past as a source of benchmarks for the evaluation of search techniques in constraint satisfaction
and Boolean satisfiability (Gomes & Shmoys, 2002). Indeed, partially filled Latin squares carry
embedded structures that are the trademark of real-life applications in scheduling and time-tabling.
Furthermore, hard instances of the partially filled Latin square trigger “heavy-tail” behaviors in
backtrack search algorithms which are common-place in real-life applications and require random-
ization and or restarting (Gomes, Selman, & Kautz, 1998). Additionally, the PLS problem exhibits
a strong phase transition phenomena at the satisfiable/unsatisfiable boundary (when 42% of the
cells are filled) which can be exploited to produce hard instances. We remark that the underlying
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structure of Latin squares can be found in other real-word applications including scheduling, time-
tabling (Tay, 1996), error-correcting code design, psychological experiments design and wavelength
routing in fiber optics networks (Laywine & Mullen, 1998; Kumar, Russell, & Sundaram, 1996).

7.2.2 A Search Model for PLS

Fix a partial Latin square L of order n with c > 0 completions. We divide the cells of the n×n table
into two types: the black cells, those that have been filled in L, and the white cells, those that are
left blank in L. Let k be the number of white cells. The white cells are indexed from 0 to k− 1 in a
fixed order, e.g., left to right and top to bottom of the table. The task of A∗ search now is to find a
completion of L. Hard instances are obtained when the white cells are uniformly distributed within
every row and every column and when the density of black cells is (n2 − k)/n2 ≈ 42% to tap into
the phase transition. We further insure that the number of completions is c = O(1) (c is exactly 1
for the experiments).

To structure the search space for this problem, we place the white cells on a virtual circle so that
the white cells of index i and (i+ 1) mod k are adjacent. We can move along the circle, each step is
either forward (from a white cell of index i to the cell of index (i+ 1) mod k) or backward (from a
white cell of index i to the cell of index (i− 1) mod k) and may set the content of the current cell.
Formally, we define the search graph, denoted GL, for the PLS instance given by L as follows: Each
state (or node) of GL is a pair (α, p), in which p ∈ {0, . . . k − 1} indicates the index of the current
white cell, and α : {0, . . . , k − 1} → {0, . . . , n} is a function representing the current assignment of
values to the white cells (we adopt the convention that α(j) = 0 means the white cell of index j
has not been filled). There is a directed link (or edge) from state (α, p) to state (β, q) in the search
graph GL if and only if q = (p± 1) mod k, β(q)6= 0, and α(j) = β(j) for all j 6= q. In other words,
the link from state (α, p) to state (β, q) represents the step consisting of moving from the white
cell of index p to the white cell of index q, and setting the value β(q) to the white cell of index q.
Figure 8 illustrates the links from one state to another in GL. The cost of every link in GL is a unit.
Obviously, this search graph is regular and has (out-)degree of 2n.

The starting state is (α0, 0) where α0(j) = 0 for all j. A goal state (or solution) is of the form
(α∗, p), where α∗ is the assignment corresponding to a completion of L, and p ∈ {0, . . . , k − 1}. So,
a solution on the cover tree of GL is a path in the search graph GL from the starting state to a
goal state, and the length of an optimal solution is equal to k. We will show that the number of
δ-optimal solutions in the cover tree of GL is not too large.

Lemma 7.1. Let L be an n × n partial Latin square with k white cells. Let α∗ be the assignment
corresponding to a completion of L. For any 0 ≤ t < k, the number of paths of length k + t in GL

from the starting state to a goal state of the form (α∗, ·) is no more than 2
(
t+ 2 + t

(
k+t
t

))
nt.

Proof. We represent a path in GL of length k + t from the starting state as a pair 〈P,~v〉, in which
P is a (k + t)-length path in the circle of white cells starting from the white cell of index 0, and
~v = (v1, . . . , vk+t) is a sequence of values in [n] with vi being the value assigned to the white cell
visited at the ith step of the path P . Consider a pair 〈P,~v〉 that represents a path in GL ending up at
a goal state (α∗, ·). Since α∗(j) 6= 0 for all j, every white cell must be visited at some non-zero step
of P . Let sj > 0 be the last step at which the white cell of index j is visited. Then we must have
vsj = α∗(j) for all j ∈ {0, . . . , k − 1}. Given such a path P , there are nt ways of assigning values to
the white cells in order to eventually obtain the assignment α∗. Thus, the number of (k + t)-length
paths in GL from the starting state to a goal state (α∗, ·) is equal to |Pt|nt, where Pt is the set of
(k + t)-length paths on the circle of white cells that start at white cell of index 0 and visit every
white cell.

It remains to upper bound |Pt|. Consider a path P ∈ Pt; our strategy is to bound the number of
backward (or forward) steps in P . As t < k, there are at least k − t ≥ 1 white cells visited exactly
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Figure 8: The links connecting states in a PLS search graph. The label 〈+1, v〉 (resp., 〈−1, v〉) on
the links means moving forward (resp., backward) and setting value v ∈ [n] to the next white cell.

once in P . Let w be the index of a white cell that is visited exactly once in P and let s be the step
at which the white cell w is visited.

Assume the step s is a forward step, i.e., the white cell visited at step s − 1 is (w − 1) mod k.
Let w0 be the farthest white cell from w in the backward direction that is visited before step s.
Precisely, w0 = (w− `) mod k, where ` is the maximal number in {0, . . . , k − 1} for which the white
cell (w− `) mod k is visited before step s. Let wj = (w0 + j) mod k, for j = 0, . . . , k− 1. Note that
w` = w. Then the set of white cells visited at the first s steps is {w0, w1, . . . , w`}, and by deleting
some steps among the first s steps in P we will obtain the path (w0, w1, . . . , w`) from w0 to w` in
the forward direction. Each of the white cells w`+1, . . . , wk−1 must be visited at a step after step
s and also in the forward direction because the white cell w` is visited only once and at a forward
step. Thus, by deleting t steps from P we obtain a path visiting the white cells w0, w1, . . . , wk−1 in
the forward direction. Let s0, . . . , sk−1 be the steps in P that are not deleted, where wj is visited
at step sj in P , and 1 ≤ s0 < s1 < . . . < sk−1 ≤ k+ t. Then steps s1, . . . , sk−1 are all forward steps
(step s0 can be forward or backward). Moreover, the number of backward steps and the number of
forward steps between sj−1 and sj must be equal for all j = 1, . . . , k − 1. Let ∆ be the number of
deleted steps before s0 and after sk−1 so that there are exactly (t −∆)/2 backward steps between
s0 and sk. This shows there are at most ∆ + 1 + (t−∆)/2 = 1 + (t+ ∆)/2 ≤ t+ 1 backward steps
in P . Note that there at most

(
k+t
j

)
paths in Pt that have exactly j backward steps. Path P has

t + 1 backward steps only when ∆ = t (and thus sj = sj−1 + 1 for all j = 1, . . . , k − 1) and every
step from 1 to s0 and after sk−1 is backward. There are t+ 1 such paths in Pt, each corresponding
to a choice of s0 ∈ {1, . . . , t+ 1}.

Similarly, if the step s is a backward step, then there are at most t+ 1 forward steps in P . Also,
there are t+ 1 paths in Pt that have exactly t+ 1 forward steps, and at most

(
k+t
j

)
paths in Pt that
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have exactly j forward steps. Hence,

|Pt| ≤ 2

t+ 1 +

t∑
j=0

(
k + t

j

) ≤ 2

(
t+ 2 + t

(
k + t

t

))
.

The last inequality holds since the coefficient
(
k+t
j

)
increases as j increases for j < (k + t)/2.

The upper bound in Lemma 7.1 is achieved when t = 0. In fact, there are four ways to visit
every white cell in k steps starting from the white cell 0: taking either k forward steps or k backward
steps or one backward step followed by k − 1 forward steps or one forward steps followed by k − 1
backward steps. So the number of optimal solutions in the cover tree of GL is equal to 4c, since
there are c completions of the initial partial Latin square.

Theorem 7.1. Let L be an n × n partial Latin square with k white cells and c completions. For
any 0 < δ < 1, the number of nodes expanded by A∗ search on GL with a δ-accurate heuristic is no
more than B(δ), where

B(δ) =

{
2(2n)δk + 4ck if δk < 1 ,

2(2n)δk + 4ck
(
bδkc+ 2 + bδkc

(
k+bδkc
bδkc

))
nbδkc if δk ≥ 1 .

Proof. By Lemma 3.1, the number of nodes expanded by A∗ search on GL with a δ-accurate heuristic
is upper-bounded by 2(2n)δk +kNδ, where Nδ is the number of δ-optimal solutions in the cover tree
of GL. So, we only need to bound Nδ.

If δk < 1, then Nδ equals the number of optimal solutions, which implies the upper bound of
2(2n)δk + 4ck on the number of expanded nodes by A∗.

In the general case, let ` = bδkc. Since δk < k, by Lemma 7.1, we have

Nδ ≤ c
∑̀
t=0

2

(
t+ 2 + t

(
k + t

t

))
nt

≤ 2c
∑̀
t=0

(t+ 2)nt + 2c

(
k + `

`

)(∑̀
t=0

tnt

)

≤ 4c(`+ 2)n` + 4c

(
k + `

`

)
`n` .

The second inequality holds because
(
k+t
t

)
≤
(
k+`
`

)
for all t ≤ `. The last inequality is obtained by

applying the fact that
∑`
t=0 tn

t ≤ 2`n` and
∑`
t=0 n

t ≤ 2n` for all integers n ≥ 2 and ` ≥ 0, which
can be proved easily by induction on `. Hence, the number of nodes expanded by A∗ is no more
than

2(2n)δk + 4ck

(
`+ 2 + `

(
k + `

`

))
n` .

Corollary 7.1. Suppose 0 < δ < 1. Then the number of nodes expanded by A∗ search on GL with
a δ-accurate heuristic is

O
(
k3/2 (1 + δ)

k
(1 + 1/δ)

δk
nδk
)
.

Proof. By Theorem 7.1, all we need is an upper bound on the binomial coefficient
(
k+`
`

)
for large k,

where ` = bδkc. Since both k and ` are large, we will bound this binomial coefficient using Stirling’s
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formula, which asserts that n! ≈
√

2πn
(
n
e

)n
. More precisely, write n! =

√
2πn

(
n
e

)n
λn, then λn → 1

as n→∞. We have (
k + `

`

)
=

(k + `)!

k!`!

=

√
2π(k + `)

(
k+`
e

)k+`
λk+`

√
2πk

(
k
e

)k
λk ·
√

2π`
(
`
e

)`
λ`

=
λk+`

λkλ`
·
√
k + `√
2πk`

· (k + `)k+`

kk``
.

By Stirling’s formula, the term λk+`/λkλ` is O(1). Since

k + `

`
= 1 +

k

bδkc
≤ 1 +

k

δk − 1
≤ 1 + 2/δ

for k > 2/δ, the term
√
k + `/

√
2πk` is O(1/

√
k). The remaining term is

(k + `)k+`

kk``
=

(
1 +

`

k

)k (
1 +

k

`

)`
≤ (1 + δ)k

(
1 +

1

δ

)δk
since ` ≤ δk and the function g(x) = (1 + k/x)

x
monotonically increases for x > 0. Hence,(

k + `

`

)
= O

(
1√
k

(1 + δ)k
(

1 +
1

δ

)δk)
.

From Theorem 7.1, the number of nodes expanded by A∗ is no more than

B(δ) = 2(2n)δk +O

(
k2

(
k + `

`

)
nδk
)

= O

(
k3/2(1 + δ)k

(
1 +

1

δ

)δk
nδk

)
.

It follows from the above corollary that the effective branching factor of A∗ using a δ-accurate
heuristic on GL is asymptotically at most (1 + δ) (1 + 1/δ)

δ
nδ, which is significantly smaller than

the brute-force branching factor of 2n, since both (1 + δ)nδ and (1 + 1/δ)
δ

converge to 1 as δ → 0.

7.2.3 Experiments

Given the search model for the PLS problem described above, we provide experimental results of
A∗ search on a few PLS instances, each of which is determined by a large partial Latin square with
a single completion. For each PLS instance in our experiments, we run A∗ search with different
heuristics of the form (1− δ)h∗ given by various values of δ ∈ [0, 1). We emphasize that by the dom-
inance property of admissible heuristics, the number of nodes expanded by A∗ using any admissible
δ-accurate heuristic strictly larger than (1 − δ)h∗ is less than or equal to that by the A∗ using the
heuristic (1− δ)h∗. In other words, the heuristic (1− δ)h∗ is worse than most admissible δ-accurate
heuristics.

To build the oracle for the heuristic (1 − δ)h∗ on a search graph GL, we use the information
about the completion of the partial Latin square L to compute h∗. Consider a partial Latin square
L with k white cells, and an arbitrary state (α, p) in GL. We will show how to compute the optimal
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cost h∗(α, p) to reach a goal state in GL from state (α, p). Let X(α) be the set of white cells at
which α disagrees with the completion of L, then h∗(α, p) is equal to the length of the shortest
paths on the cycle starting from p and then visiting every point in X(α). The case in which
|X(α) \ {p} | ≤ 1 is easy to handle, so we shall assume |X(α) \ {p} | ≥ 2 from now on. In particular,
suppose X(α) \ {p} = {p1, . . . , p`} with ` > 1, where pj is the jth point in X(α) \ {p} that is visited
when moving forward (clockwise) from p; see Figure 9. There are two types of paths on the cycle
starting from p and visiting every point in X(α)\{p}: type I includes those that do not visit p, type
II includes those visiting p. Let `1 and `2 be the length of the shortest paths of type I and type II,
respectively. Then

h∗(α, p) =

{
min {`1, `2} if p 6∈ X(α) ,

min {`1 + 2, `2} if p ∈ X(α) .

So now we only need to compute `1 and `2. Computing `1 is straightforward: it is realized by either
moving forward from p to p` or moving backward from p to p1. That is

`1 = min {p` − p, p− p1}

where z
def
= z mod k for any integer z. To compute `2, we consider two options for each j: option

(a) moving forward from p to pj and then moving backward from pj to pj+1, option (b) moving
backward from p to pj+1 and then moving forward from pj+1 to pj . Thus,

`2 = min
1≤j<`

(
min {pj − p, p− pj+1}+ pj − pj+1

)
.

moving forward

p1

p2

pjpj+1

pm−1

pm

p− 1 p p+ 1

Figure 9: Layout of the points in X(α).

Now we describe our experiments in detail. We generate six partial Latin squares with orders
from 10 to 20 in the following way. Initially, we generate several partial Latin squares obtained at or
near the phase transition with white cells uniformly distributed within every row and column. Each
instance is generated from a complete Latin square with a suitably chosen random subsets of its
cells cleared. Each candidate partial Latin square is solved again with an exhaustive backtracking
search method to find all completions. The subset of candidates with exactly one completion is
retained for the experiments. For each partial Latin square L and each chosen value of δ, we record
the total number E of nodes expanded by A∗ on the search graph GL with the (1− δ)h∗ heuristic.
Then, as in the Knapsack experiments, the effective branching factor of A∗ is calculated as E1/k,
since the optimal solution depth in GL equals the number of white cells in L. Our first purpose is to
compare these effective branching factors obtained from experiments to our upper bound obtained
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from theoretical analysis. Recall from Theorem 7.1 that E ≤ B(δ), where in this case

B(δ) =

{
2(2n)δk + 4k if δk < 1 ,

2(2n)δk + 4k
(
bδkc+ 2 + bδkc

(
k+bδkc
bδkc

))
nbδkc if δk ≥ 1 .

Therefore, we calculate the theoretical upper bound B(δ)
1/k

on the effective branching factor E1/k.

For deeper comparison, we calculate the multiplicative gap B(δ)
1/k
/E1/k between our theoretical

bound and the actual values. In our empirical results given in Tables 7 and 8, these multiplicative
gaps are close to 1 when δ is small and k is large. Notice that for each given k, the upper bounds
of B(δ) are almost the same for the δ’s with the same value of bδkc. This is why the multiplicative
gaps for those δ’s sometimes increase when δ decrease. However, the multiplicative gaps decrease
as bδkc decreases, for each fixed k. Our upper bounds in the cases with δk < 1 are much tighter
than in the others (with the same k) because in the cases of δk < 1 we can compute the number of
δ-optimal solutions exactly. Also observe that, for each fixed δ, the multiplicative gaps decrease as k
increases. Finally, the experiments show a dramatic gap between the effective branching factors and
the corresponding brute-force branching factor, which equals 2n. In fact, for each instance, both the

effective branching factor E1/k and our theoretical upper bound B(δ)
1/k

approach 1 as δ approaches
0.

As in the experiments for the Knapsack problem, our data for the partial Latin square problem
also support the linear dependance of logE on δ. In particular, all but one partial Latin square
instances have the R2 larger than 0.9 (the worst one has R2 value equal to 0.8698). The median R2

value for our partial Latin square instances is 0.9304. The graph for the instance with the median
R2 is shown in Figure 10.

0 0.5 1 1.5 2 2.5 3

·10−2

2

3

4

5

6

Heuristic error δ

lo
g

1
0
E

Partial Latin Square instance with median R2

Instance 4
Linear fit

Figure 10: Graph of log10E and its least-squares least-squares linear fit (or “Linear fit”) for the
partial Latin square instance with the median R2 (see data in Table 8).

We also investigate how the slope of the least-squares linear fit of logE approximates the slope
of d log b in the hypothesized linear dependence of Equation (10). Recall that in this case, the
branching factor is b = 2n and the optimal solution depth is d = k. Figure 11 shows that, for every
PLS instance in our experiment, the slope α of the least-squares linear fit of log10E approximates
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to k log10(2n) by a factor of 0.8, i.e., α ≈ 0.8k log10(2n). In other words, our experimental results
for the PLS indicate the following relationship:

log10E ≈ δ · 0.8k log10(2n) + ξ , or equivalently, E ≈ (2n)0.8δk .

Thus, empirically, the effective branching factor of A∗ search using the heuristic (1−δ)h∗ on the given
PLS search space approximates to (2n)0.8δ. By the dominance property of admissible heuristics,
this is also an empirical upper bound on the effective branching factor of A∗ using any admissible
δ-accurate on the same search space.

Instance # n k
Slope of linear
fit line α

α/(k log10(2n))

1 10 44 43.3901 0.7580
2 12 63 73.7527 0.8482
3 14 86 98.3613 0.7903
4 16 113 142.7056 0.8390
5 18 143 179.1665 0.8050
6 20 176 225.4152 0.7995

Figure 11: Slopes of the least-squares linear fits of log10E for the partial Latin square instances.

8. Reduction in Depth vs. Branching Factor; Comparison with Previous
Work

In this section we compare our results with those obtained by Korf et al. (Korf & Reid, 1998; Korf
et al., 2001). As mentioned in the introduction, they concluded that “the effect of a heuristic function
is to reduce the effective depth of a search rather than the effective branching factor.” Considering
the striking qualitative difference between their findings and ours, it seems interesting to discuss
why their conclusions do not apply to accurate heuristics.

They study the b-ary tree search model, as above, and permit multiple solutions. However, their
analysis depends critically on the following equilibrium assumption:

Equilibrium Assumption: The number of nodes at depth i with heuristic value not exceeding `
is biP (`), where P (`) is the probability that h(v) ≤ ` when v is chosen uniformly at random among
all nodes of given depth, in the limit of large depth.

We remark that while the equilibrium assumption is a strong structural requirement, it holds in
expectation for a rich class of “symmetric” search spaces. To be specific, for any state-transitive
search space,4 like the Rubik’s cube, the quantity biP (`) is precisely the expected number of vertices
at depth i with h(v) ≤ ` if the goal state (or initial state) is chosen uniformly at random. Korf
et al. (2001) observe that under the equilibrium assumption, one can directly control the number
of expanded nodes of total weight no more than `, a quantity we denote E(`): indeed, in this case
E(`) =

∑
i≤` b

iP (`− i). With this in hand, they consider the ratio

E(`)

E(`− 1)
=

∑`
i=0 b

iP (`− i)∑`−1
i=0 b

iP (`− 1− i)
= b ·

∑`
i=0 b

i−1P (`− i)∑`
i=1 b

i−1P (`− i)
≥ b , (18)

and conclude that E(d) ≥ bd−1E(1); thus the effective branching factor is

d

√
bd−1E(1) ≈ b d

√
E(1)

4. We say that a search space is state-transitive if the structure of the search graph is independent of the starting
node. Note that any Cayley graph has this property, so natural search spaces formed from algebraic problems
like the Rubik’s cube or 15-puzzle, with the right choice of generators, have this property.
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if the optimal solution lies at depth d.
A difficulty with this approach is that even in the presence of a mildly accurate heuristic satis-

fying, for example,
h(v) ≥ εh∗(v) for small, constant, ε > 0 ,

the actual values of these quantities satisfy

E(1) = E(2) = · · · = E(t) = 0

for all t ≤ εd. (Even the root of the tree has h(root) ≥ ε · d.) Observe, then, that if E(εd) = 1 the

argument above actually results in an effective branching factor of d
√
bd−εdE(εd) =

d
√
b(1−ε)d = b1−ε,

yielding reduction in the branching factor. Indeed, applying this technique to infer estimates on
the complexity of A∗, even assuming the equilibrium assumption, appears to require control of
the threshold quantity `0 at which the quantities

∑
biP (`0 − i) become non-negligible. Of course,

the equilibrium assumption may well apply to heuristics with weaker or, for example, nonuniform
accuracy.

One perspective on this issue can be obtained by considering the case of search on a b-regular
(non-bipartite, connected) graph G = (V,E) and observing that the selection of a node “uniformly
at random from all nodes of a given depth, in the limit of large depth” is, in this case, equivalent
to selection of a random node in the graph. If we again consider a mildly accurate heuristic h for
which, say, h(v) ≥ εh∗(v) for a small constant ε, we have biP (`) ≤ bi Prv[ε · dist(v, S) ≤ `], where v
is chosen uniformly at random in the graph, S is the set of solution nodes, and dist(v, S) denotes
the length of the shortest path from v to a node of S. As

Pr
v

[dist(v, S) ≤ `/ε] =
|{v | dist(v, S) ≤ `/ε}|

|V |
≤ |S| · b

`·ε−1

|V |

in any b-regular graph, we can only expect the relation of equation (18) to hold past the threshold
value `0 ≈ ε logb(|S|/|V |).
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Appendix A: Tables of Experimental Results

# n
Heuristic
error δ

Total
node
expansions
E

Optimal
solution
depth d

Search
time
(seconds)

h∗([n])/m

Effective
branching

factor
d√
E

log10 E

Linear
fit to
log10 E

R2

1 23 0.5 5627 11 125 10887/200 2.192473 3.7503 3.7956
23 0.5625 5882 11 101 10887/200 2.201325 3.7695 4.2742
23 0.625 167660 11 858 10887/200 2.985026 5.2244 4.7529
23 0.6875 211946 11 744 10887/200 3.049315 5.3262 5.2315
23 0.75 772257 11 1341 10887/200 3.42966 5.8878 5.7102
23 0.8125 1470135 11 1318 10887/200 3.636376 6.1674 6.1888
23 0.875 6118255 11 2025 10887/200 4.139674 6.7866 6.6674
23 0.9375 7154310 11 1653 10887/200 4.198968 6.8546 7.1461
23 BFS 7347748 11 1101 4.209164 6.8662

0.9395

2 23 0.5 44481 9 622 7820/157 3.284459 4.6482 4.7018
23 0.5625 45537 9 507 7820/157 3.293033 4.6584 5.0078
23 0.625 372163 9 1497 7820/157 4.158822 5.5707 5.3139
23 0.6875 474221 9 1293 7820/157 4.272327 5.6760 5.6199
23 0.75 1358735 9 1751 7820/157 4.802412 6.1331 5.9259
23 0.8125 2508134 9 1734 7820/157 5.140898 6.3994 6.2320
23 0.875 3508255 9 1469 7820/157 5.336203 6.5451 6.5380
23 0.9375 3569052 9 1047 7820/157 5.3464 6.5526 6.8441
23 BFS 3857597 9 566 5.392783 6.5863

0.9183

3 23 0.5 94 6 6 5991/121 2.132331 1.9731 1.9674
23 0.5625 125 6 7 5991/121 2.236068 2.0969 2.5989
23 0.625 5528 6 98 5991/121 4.204955 3.7426 3.2304
23 0.6875 9002 6 105 5991/121 4.560962 3.9543 3.8619
23 0.75 31800 6 206 5991/121 5.628654 4.5024 4.4934
23 0.8125 109080 6 301 5991/121 6.912326 5.0377 5.1248
23 0.875 879884 6 707 5991/121 9.788983 5.9444 5.7563
23 0.9375 1477032 6 560 5991/121 10.671652 6.1694 6.3878
23 BFS 1636093 6 224 10.855121 6.2138

0.9647

4 23 0.5 3696 7 86 6343/154 3.233523 3.5677 3.7471
23 0.5625 21847 7 256 6343/154 4.16786 4.3394 4.1489
23 0.625 44166 7 303 6343/154 4.608759 4.6451 4.5506
23 0.6875 53464 7 258 6343/154 4.73628 4.7281 4.9524
23 0.75 253321 7 553 6343/154 5.914977 5.4037 5.3541
23 0.8125 760792 7 788 6343/154 6.921191 5.8813 5.7558
23 0.875 1975195 7 957 6343/154 7.93182 6.2956 6.1576
23 0.9375 2317663 7 694 6343/154 8.115082 6.3651 6.5593
23 BFS 2574876 7 383 8.23801 6.4108

0.9710

5 23 0.5 23645 7 305 6785/205 4.215217 4.3737 4.3803
23 0.5625 30501 7 285 6785/205 4.371357 4.4843 4.6983
23 0.625 72597 7 429 6785/205 4.947855 4.8609 5.0163
23 0.6875 308417 7 754 6785/205 6.083628 5.4891 5.3343
23 0.75 968504 7 1074 6785/205 7.164029 5.9861 5.6523
23 0.8125 1681026 7 1047 6785/205 7.751179 6.2256 5.9703
23 0.875 1833872 7 823 6785/205 7.848145 6.2634 6.2883
23 0.9375 1833644 7 585 6785/205 7.848005 6.2633 6.6064
23 BFS 2132977 7 306 8.019382 6.3290

0.9161

6 23 0.5 1981 6 46 5012/148 3.543894 3.2969 3.4645
23 0.5625 12316 6 139 5012/148 4.80557 4.0905 3.8677
23 0.625 21699 6 151 5012/148 5.281289 4.3364 4.2709
23 0.6875 26575 6 131 5012/148 5.462761 4.4245 4.6741
23 0.75 131561 6 290 5012/148 7.131615 5.1191 5.0773
23 0.8125 395118 6 431 5012/148 8.566192 5.5967 5.4805
23 0.875 1080314 6 547 5012/148 10.129585 6.0336 5.8837
23 0.9375 1282206 6 409 5012/148 10.423006 6.1080 6.2869
23 BFS 1482293 6 219 10.677978 6.1709

0.9696

7 23 0.5 1834 7 51 6187/122 2.925499 3.2634 2.8110
23 0.5625 1956 7 43 6187/122 2.952538 3.2914 3.3053
23 0.625 2039 7 36 6187/122 2.970119 3.3094 3.7996
23 0.6875 23275 7 159 6187/122 4.20573 4.3669 4.2939
23 0.75 30974 7 138 6187/122 4.380978 4.4910 4.7882
23 0.8125 173886 7 332 6187/122 5.605434 5.2403 5.2825
23 0.875 675468 7 526 6187/122 6.80457 5.8296 5.7768
23 0.9375 3440759 7 984 6187/122 8.586333 6.5367 6.2711
23 BFS 3793204 7 568 8.706789 6.5790

0.9436

Table 1: Results for the Knapsack instances of type Strongly Correlated.
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# n
Heuristic
error δ

Total
node
expansions
E

Optimal
solution
depth d

Search
time
(seconds)

h∗([n])/m

Effective
branching

factor
d√
E

log10 E

Linear
fit to
log10 E

R2

8 23 0.5 8299 8 129 6400/153 3.089429 3.9190 3.7753
23 0.5625 8741 8 105 6400/153 3.109533 3.9416 4.1854
23 0.625 58455 8 335 6400/153 3.943235 4.7668 4.5955
23 0.6875 93500 8 332 6400/153 4.181686 4.9708 5.0056
23 0.75 216413 8 479 6400/153 4.644195 5.3353 5.4157
23 0.8125 536713 8 558 6400/153 5.202568 5.7297 5.8258
23 0.875 2569955 8 1066 6400/153 6.327624 6.4099 6.2359
23 0.9375 4096150 8 1027 6400/153 6.707288 6.6124 6.6460
23 BFS 4434697 8 655 6.7742 6.6469

0.9782

9 23 0.5 430 6 19 5835/121 2.747334 2.6335 2.3749
23 0.5625 460 6 16 5835/121 2.778388 2.6628 2.9177
23 0.625 5313 6 84 5835/121 4.177245 3.7253 3.4605
23 0.6875 9507 6 91 5835/121 4.602643 3.9780 4.0033
23 0.75 11268 6 75 5835/121 4.734867 4.0518 4.5461
23 0.8125 88158 6 229 5835/121 6.671297 4.9453 5.0889
23 0.875 790402 6 646 5835/121 9.615562 5.8978 5.6317
23 0.9375 2008558 6 673 5835/121 11.232611 6.3029 6.1745
23 BFS 2206805 6 334 11.410219 6.3438

0.9571

10 23 0.5 14162 9 192 6762/171 2.892252 4.1511 4.1618
23 0.5625 15321 9 162 6762/171 2.917641 4.1853 4.5599
23 0.625 178178 9 669 6762/171 3.832024 5.2509 4.9579
23 0.6875 214332 9 574 6762/171 3.911497 5.3311 5.3560
23 0.75 872080 9 1052 6762/171 4.571533 5.9406 5.7541
23 0.8125 2128661 9 1306 6762/171 5.048042 6.3281 6.1521
23 0.875 3942938 9 1379 6762/171 5.405911 6.5958 6.5502
23 0.9375 4543001 9 1118 6762/171 5.491674 6.6573 6.9482
23 BFS 4924992 9 721 5.541159 6.6924

0.9461

11 23 0.5 315 7 19 6465/106 2.274582 2.4983 2.1619
23 0.5625 330 7 15 6465/106 2.289748 2.5185 2.7724
23 0.625 974 7 29 6465/106 2.672619 2.9886 3.3830
23 0.6875 22374 7 232 6465/106 4.182076 4.3497 3.9935
23 0.75 26883 7 195 6465/106 4.293214 4.4295 4.6040
23 0.8125 199464 7 514 6465/106 5.716412 5.2999 5.2146
23 0.875 783863 7 751 6465/106 6.950792 5.8942 5.8251
23 0.9375 2579423 7 880 6465/106 8.240087 6.4115 6.4356
23 BFS 2773773 7 406 8.326044 6.4431

0.9689

12 23 0.5 1029 5 35 5073/106 4.003899 3.0124 2.5015
23 0.5625 1163 5 29 5073/106 4.103136 3.0656 2.9880
23 0.625 1310 5 25 5073/106 4.201983 3.1173 3.4746
23 0.6875 3968 5 50 5073/106 5.244624 3.5986 3.9611
23 0.75 14820 5 92 5073/106 6.826053 4.1708 4.4477
23 0.8125 75333 5 212 5073/106 9.449244 4.8770 4.9342
23 0.875 363263 5 380 5073/106 12.943277 5.5602 5.4208
23 0.9375 1710935 5 589 5073/106 17.646017 6.2332 5.9073
23 BFS 1915195 5 283 18.048562 6.2822

0.9314

13 23 0.5 6701 7 154 6072/122 3.520395 3.8261 3.6957
23 0.5625 7084 7 127 6072/122 3.548459 3.8503 4.0730
23 0.625 43514 7 379 6072/122 4.598978 4.6386 4.4504
23 0.6875 71911 7 383 6072/122 4.941148 4.8568 4.8277
23 0.75 85427 7 313 6072/122 5.064232 4.9316 5.2050
23 0.8125 376321 7 573 6072/122 6.259049 5.5756 5.5824
23 0.875 1441947 7 862 6072/122 7.583154 6.1589 5.9597
23 0.9375 1963475 7 655 6072/122 7.925079 6.2930 6.3371
23 BFS 2154280 7 324 8.030775 6.3333

0.9646

14 23 0.5 418 5 15 4636/140 3.343761 2.6212 2.8386
23 0.5625 3629 5 63 4636/140 5.151781 3.5598 3.2949
23 0.625 7016 5 74 4636/140 5.877842 3.8461 3.7512
23 0.6875 8503 5 62 4636/140 6.108217 3.9296 4.2075
23 0.75 51480 5 162 4636/140 8.756443 4.7116 4.6637
23 0.8125 178163 5 258 4636/140 11.22441 5.2508 5.1200
23 0.875 550403 5 352 4636/140 14.064884 5.7407 5.5763
23 0.9375 668276 5 246 4636/140 14.621475 5.8250 6.0326
23 BFS 784088 5 110 15.096385 5.8944

0.9676

Table 2: Results for the Knapsack instances of type Strongly Correlated.
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# n
Heuristic
error δ

Total
node
expansions
E

Optimal
solution
depth d

Search
time
(seconds)

h∗([n])/m

Effective
branching

factor
d√
E

log10 E

Linear
fit to
log10 E

R2

15 23 0.5 15713 6 218 5825/211 5.004682 4.1963 4.3104
23 0.5625 17658 6 184 5825/211 5.102977 4.2469 4.5868
23 0.625 126261 6 536 5825/211 7.082907 5.1013 4.8631
23 0.6875 172936 6 466 5825/211 7.464159 5.2379 5.1395
23 0.75 511397 6 647 5825/211 8.942515 5.7088 5.4159
23 0.8125 809884 6 600 5825/211 9.654663 5.9084 5.6922
23 0.875 814774 6 435 5825/211 9.664355 5.9110 5.9686
23 0.9375 814389 6 291 5825/211 9.663593 5.9108 6.2450
23 BFS 1004228 6 140 10.007034 6.0018

0.8788

16 23 0.5 1851 9 44 7275/117 2.306987 3.2674 2.7061
23 0.5625 1870 9 36 7275/117 2.309606 3.2718 3.1549
23 0.625 2504 9 35 7275/117 2.385756 3.3986 3.6038
23 0.6875 2551 9 29 7275/117 2.390691 3.4067 4.0526
23 0.75 22976 9 113 7275/117 3.052011 4.3613 4.5015
23 0.8125 43228 9 122 7275/117 3.274048 4.6358 4.9503
23 0.875 267829 9 283 7275/117 4.009547 5.4279 5.3992
23 0.9375 2798746 9 842 7275/117 5.203904 6.4470 5.8480
23 BFS 7270715 9 1104 5.786254 6.8616

0.8698

17 23 0.5 656 7 33 6501/102 2.525892 2.8169 2.3428
23 0.5625 665 7 26 6501/102 2.530814 2.8228 2.9162
23 0.625 711 7 21 6501/102 2.555112 2.8519 3.4895
23 0.6875 17143 7 192 6501/102 4.025961 4.2341 4.0629
23 0.75 28608 7 194 6501/102 4.331527 4.4565 4.6363
23 0.8125 190546 7 514 6501/102 5.679181 5.2800 5.2096
23 0.875 844063 7 813 6501/102 7.024655 5.9264 5.7830
23 0.9375 2558990 7 895 6501/102 8.23073 6.4081 6.3564
23 BFS 2749381 7 405 8.315545 6.4392

0.9498

18 23 0.5 683 8 14 6012/164 2.261011 2.8344 2.7250
23 0.5625 772 8 13 6012/164 2.295896 2.8876 3.3052
23 0.625 18190 8 114 6012/164 3.407839 4.2598 3.8855
23 0.6875 24869 8 107 6012/164 3.543703 4.3957 4.4657
23 0.75 136138 8 280 6012/164 4.382757 5.1340 5.0459
23 0.8125 308550 8 323 6012/164 4.854737 5.4893 5.6262
23 0.875 2311528 8 889 6012/164 6.244352 6.3639 6.2064
23 0.9375 4805568 8 1083 6012/164 6.842552 6.6817 6.7866
23 BFS 5201719 8 790 6.910641 6.7161

0.9729

19 23 0.5 2854 7 65 5503/119 3.116279 3.4555 3.2041
23 0.5625 3140 7 56 5503/119 3.159085 3.4969 3.6529
23 0.625 11500 7 121 5503/119 3.802767 4.0607 4.1017
23 0.6875 38170 7 210 5503/119 4.51369 4.5817 4.5505
23 0.75 51667 7 185 5503/119 4.713203 4.7132 4.9993
23 0.8125 270043 7 412 5503/119 5.969239 5.4314 5.4481
23 0.875 1107776 7 682 5503/119 7.302863 6.0445 5.8969
23 0.9375 2600747 7 772 5503/119 8.249784 6.4151 6.3457
23 BFS 2854529 7 415 8.360249 6.4555

0.9770

20 23 0.5 158012 7 866 6592/295 5.529298 5.1987 5.5119
23 0.5625 505837 7 1173 6592/295 6.52918 5.7040 5.5748
23 0.625 589456 7 965 6592/295 6.673447 5.7705 5.6376
23 0.6875 700571 7 797 6592/295 6.840134 5.8455 5.7005
23 0.75 682245 7 631 6592/295 6.814281 5.8339 5.7633
23 0.8125 682583 7 484 6592/295 6.814763 5.8342 5.8262
23 0.875 682855 7 357 6592/295 6.815151 5.8343 5.8890
23 0.9375 682455 7 235 6592/295 6.814581 5.8341 5.9518
23 BFS 906305 7 123 7.096418 5.9573

0.4860

Table 3: Results for the Knapsack instances of type Strongly Correlated.
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# n
Heuristic
error δ

Total node
expansions E

Optimal
soln. depth d

Search time,
seconds

h∗([n])/m log10 E
Linear fit
to log10 E

R2

1 20 0.5 731425 11 1090 5509/28 5.8642 5.8687
20 0.5625 761013 15 878 5509/28 5.8814 5.8803
20 0.625 782339 12 716 5509/28 5.8934 5.8919
20 0.6875 805295 12 579 5509/28 5.9060 5.9036
20 0.75 828252 12 463 5509/28 5.9182 5.9152
20 0.8125 845545 10 360 5509/28 5.9271 5.9268
20 0.875 865626 11 267 5509/28 5.9373 5.9384
20 0.9375 885943 14 179 5509/28 5.9474 5.9500
20 BFS 900630 13 80 5.9545

0.9918

2 20 0.5 67164 6 259 2984/28 4.8271 4.8311
20 0.5625 71824 9 208 2984/28 4.8563 4.8558
20 0.625 76627 7 168 2984/28 4.8844 4.8804
20 0.6875 80614 8 136 2984/28 4.9064 4.9050
20 0.75 84553 8 107 2984/28 4.9271 4.9297
20 0.8125 90166 9 82 2984/28 4.9550 4.9543
20 0.875 96506 7 58 2984/28 4.9846 4.9790
20 0.9375 99536 7 35 2984/28 4.9980 5.0036
20 BFS 104144 8 10 5.0176

0.9959

3 20 0.5 222293 11 533 3687/26 5.3469 5.3552
20 0.5625 232989 12 432 3687/26 5.3673 5.3706
20 0.625 244871 8 353 3687/26 5.3889 5.3861
20 0.6875 256250 9 285 3687/26 5.4087 5.4015
20 0.75 266235 9 226 3687/26 5.4253 5.4170
20 0.8125 274056 8 173 3687/26 5.4378 5.4324
20 0.875 279890 11 126 3687/26 5.4470 5.4479
20 0.9375 283160 9 81 3687/26 5.4520 5.4633
20 BFS 291239 9 28 5.4642

0.9649

4 20 0.5 290608 10 329 3883/56 5.4633 5.4734
20 0.5625 304974 10 272 3883/56 5.4843 5.4834
20 0.625 313598 9 225 3883/56 5.4964 5.4935
20 0.6875 323477 9 185 3883/56 5.5098 5.5035
20 0.75 331235 9 151 3883/56 5.5201 5.5136
20 0.8125 336665 10 121 3883/56 5.5272 5.5237
20 0.875 340874 9 92 3883/56 5.5326 5.5337
20 0.9375 342644 9 64 3883/56 5.5348 5.5438
20 BFS 360837 8 33 5.5573

0.9369

5 20 0.5 851515 11 740 7731/77 5.9302 5.9348
20 0.5625 873968 14 609 7731/77 5.9415 5.9421
20 0.625 893378 12 498 7731/77 5.9510 5.9494
20 0.6875 912734 14 410 7731/77 5.9603 5.9567
20 0.75 927408 13 335 7731/77 5.9673 5.9641
20 0.8125 940724 12 267 7731/77 5.9735 5.9714
20 0.875 950209 12 206 7731/77 5.9778 5.9787
20 0.9375 958343 13 142 7731/77 5.9815 5.9860
20 BFS 967863 12 88 5.9858

0.9687

6 20 0.5 75858 10 488 2327/11 4.8800 4.8895
20 0.5625 81410 8 363 2327/11 4.9107 4.9155
20 0.625 88494 6 287 2327/11 4.9469 4.9416
20 0.6875 94585 9 225 2327/11 4.9758 4.9676
20 0.75 100329 7 177 2327/11 5.0014 4.9936
20 0.8125 106409 5 134 2327/11 5.0270 5.0197
20 0.875 110656 9 94 2327/11 5.0440 5.0457
20 0.9375 114601 9 55 2327/11 5.0592 5.0717
20 BFS 117496 4 11 5.0700

0.9833

7 20 0.5 712138 11 1178 6456/33 5.8526 5.8590
20 0.5625 748095 12 947 6456/33 5.8740 5.8727
20 0.625 778565 15 765 6456/33 5.8913 5.8864
20 0.6875 799378 11 618 6456/33 5.9028 5.9001
20 0.75 823236 13 490 6456/33 5.9155 5.9138
20 0.8125 844925 13 378 6456/33 5.9268 5.9275
20 0.875 870175 13 280 6456/33 5.9396 5.9412
20 0.9375 897407 12 185 6456/33 5.9530 5.9549
20 BFS 909075 14 80 5.9586

0.9895

Table 4: Results for the Knapsack instances of type Subset Sum.
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# n
Heuristic
error δ

Total node
expansions E

Optimal
soln. depth d

Search time,
seconds

h∗([n])/m log10 E
Linear fit
to log10 E

R2

8 20 0.5 252054 10 2274 3514/7 5.4015 5.4113
20 0.5625 279643 12 1607 3514/7 5.4466 5.4416
20 0.625 299328 9 1159 3514/7 5.4761 5.4719
20 0.6875 324182 11 878 3514/7 5.5108 5.5023
20 0.75 340530 9 666 3514/7 5.5322 5.5326
20 0.8125 361756 10 494 3514/7 5.5584 5.5629
20 0.875 385942 10 344 3514/7 5.5865 5.5932
20 0.9375 423848 9 201 3514/7 5.6272 5.6236
20 BFS 454094 9 42 5.6571

0.9925

9 20 0.5 284146 9 628 4494/34 5.4535 5.4677
20 0.5625 301301 8 507 4494/34 5.4790 5.4812
20 0.625 318308 7 412 4494/34 5.5028 5.4947
20 0.6875 330924 9 334 4494/34 5.5197 5.5083
20 0.75 338590 9 263 4494/34 5.5297 5.5218
20 0.8125 345335 9 203 4494/34 5.5382 5.5353
20 0.875 351027 10 146 4494/34 5.5453 5.5489
20 0.9375 356374 10 92 4494/34 5.5519 5.5624
20 BFS 369094 8 34 5.5671

0.9282

10 20 0.5 812828 11 1078 6963/39 5.9100 5.9193
20 0.5625 852539 13 874 6963/39 5.9307 5.9298
20 0.625 881657 15 711 6963/39 5.9453 5.9403
20 0.6875 903389 12 579 6963/39 5.9559 5.9508
20 0.75 923450 15 466 6963/39 5.9654 5.9613
20 0.8125 941277 11 356 6963/39 5.9737 5.9717
20 0.875 954861 14 266 6963/39 5.9799 5.9822
20 0.9375 970871 14 180 6963/39 5.9872 5.9927
20 BFS 985526 12 88 5.9937

0.9593

11 20 0.5 872387 12 527 7270/102 5.9407 5.9456
20 0.5625 892404 13 441 7270/102 5.9506 5.9507
20 0.625 907719 12 366 7270/102 5.9580 5.9558
20 0.6875 920529 12 306 7270/102 5.9640 5.9609
20 0.75 930373 12 260 7270/102 5.9687 5.9660
20 0.8125 939495 13 214 7270/102 5.9729 5.9711
20 0.875 945766 12 169 7270/102 5.9758 5.9762
20 0.9375 948094 11 125 7270/102 5.9769 5.9813
20 BFS 961185 11 85 5.9828

0.9409

12 20 0.5 544749 13 997 5752/35 5.7362 5.7422
20 0.5625 572592 8 804 5752/35 5.7578 5.7579
20 0.625 596732 12 656 5752/35 5.7758 5.7736
20 0.6875 622826 9 528 5752/35 5.7944 5.7893
20 0.75 644836 11 420 5752/35 5.8094 5.8050
20 0.8125 662145 12 329 5752/35 5.8210 5.8207
20 0.875 682257 11 242 5752/35 5.8339 5.8364
20 0.9375 705866 11 158 5752/35 5.8487 5.8521
20 BFS 720827 13 64 5.8578

0.9901

13 20 0.5 592766 10 1824 7445/30 5.7729 5.7767
20 0.5625 628513 10 1319 7445/30 5.7983 5.7963
20 0.625 662306 11 1040 7445/30 5.8211 5.8159
20 0.6875 684651 13 828 7445/30 5.8355 5.8355
20 0.75 713728 12 645 7445/30 5.8535 5.8552
20 0.8125 745263 10 487 7445/30 5.8723 5.8748
20 0.875 781953 11 344 7445/30 5.8932 5.8944
20 0.9375 824260 11 216 7445/30 5.9161 5.9140
20 BFS 861415 11 74 5.9352

0.9963

14 20 0.5 137368 8 561 3509/22 5.1379 5.1513
20 0.5625 148933 7 450 3509/22 5.1730 5.1713
20 0.625 157793 10 363 3509/22 5.1981 5.1913
20 0.6875 165368 9 289 3509/22 5.2185 5.2113
20 0.75 172383 9 226 3509/22 5.2365 5.2314
20 0.8125 179983 7 173 3509/22 5.2552 5.2514
20 0.875 186068 9 123 3509/22 5.2697 5.2714
20 0.9375 191426 8 73 3509/22 5.2820 5.2914
20 BFS 197634 10 18 5.2959

0.9761

Table 5: Results for the Knapsack instances of type Subset Sum.
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# n
Heuristic
error δ

Total node
expansions E

Optimal
soln. depth d

Search time,
seconds

h∗([n])/m log10 E
Linear fit
to log10 E

R2

15 20 0.5 34937 9 1022 3124/9 4.5433 4.5311
20 0.5625 38617 6 772 3124/9 4.5868 4.5760
20 0.625 41757 10 529 3124/9 4.6207 4.6209
20 0.6875 45036 9 353 3124/9 4.6536 4.6658
20 0.75 49231 10 272 3124/9 4.6922 4.7107
20 0.8125 54428 7 186 3124/9 4.7358 4.7556
20 0.875 62409 9 128 3124/9 4.7952 4.8006
20 0.9375 75602 7 72 3124/9 4.8785 4.8455
20 BFS 84284 8 8 4.9257

0.9739

16 20 0.5 476547 10 3224 5442/11 5.6781 5.6718
20 0.5625 498939 11 2097 5442/11 5.6980 5.6976
20 0.625 523867 10 1536 5442/11 5.7192 5.7235
20 0.6875 558927 10 1181 5442/11 5.7474 5.7493
20 0.75 592373 9 911 5442/11 5.7726 5.7751
20 0.8125 626403 10 675 5442/11 5.7969 5.8010
20 0.875 668497 12 468 5442/11 5.8251 5.8268
20 0.9375 725325 12 281 5442/11 5.8605 5.8527
20 BFS 768536 13 71 5.8857

0.9947

17 20 0.5 641544 15 3751 7157/11 5.8072 5.8045
20 0.5625 666837 11 2791 7157/11 5.8240 5.8256
20 0.625 702032 12 1991 7157/11 5.8464 5.8468
20 0.6875 737893 14 1495 7157/11 5.8680 5.8679
20 0.75 772405 14 1124 7157/11 5.8878 5.8891
20 0.8125 810089 14 827 7157/11 5.9085 5.9102
20 0.875 852271 14 570 7157/11 5.9306 5.9313
20 0.9375 902227 12 337 7157/11 5.9553 5.9525
20 BFS 964897 14 86 5.9845

0.9988

18 20 0.5 321490 9 1215 4631/20 5.5072 5.5047
20 0.5625 338267 10 952 4631/20 5.5293 5.5293
20 0.625 358571 9 760 4631/20 5.5546 5.5540
20 0.6875 379827 10 600 4631/20 5.5796 5.5786
20 0.75 399061 9 466 4631/20 5.6010 5.6033
20 0.8125 419052 10 356 4631/20 5.6223 5.6279
20 0.875 443204 9 252 4631/20 5.6466 5.6525
20 0.9375 486366 10 157 4631/20 5.6870 5.6772
20 BFS 508524 10 47 5.7063

0.9932

19 20 0.5 104698 7 251 3373/44 5.0199 5.0322
20 0.5625 110845 8 206 3373/44 5.0447 5.0482
20 0.625 116893 10 169 3373/44 5.0678 5.0641
20 0.6875 122710 8 137 3373/44 5.0889 5.0800
20 0.75 128398 6 110 3373/44 5.1086 5.0959
20 0.8125 131887 9 84 3373/44 5.1202 5.1119
20 0.875 133658 10 60 3373/44 5.1260 5.1278
20 0.9375 134205 5 37 3373/44 5.1278 5.1437
20 BFS 142348 8 13 5.1534

0.9349

20 20 0.5 275501 10 352 5262/94 5.4401 5.4489
20 0.5625 286961 9 292 5262/94 5.4578 5.4594
20 0.625 296924 9 240 5262/94 5.4726 5.4699
20 0.6875 305914 7 196 5262/94 5.4856 5.4804
20 0.75 315286 9 159 5262/94 5.4987 5.4909
20 0.8125 322234 8 126 5262/94 5.5082 5.5013
20 0.875 324077 9 94 5262/94 5.5106 5.5118
20 0.9375 324471 10 65 5262/94 5.5112 5.5223
20 BFS 348398 9 32 5.5421

0.9299

Table 6: Results for the Knapsack instances of type Subset Sum.
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# n k
Heuristic
error δ

Total
node
expansions
E

Effective
branching
factor
E1/k

Upper
bound
B(d)1/k

B(d)1/k

E1/k
log10 E

Linear
fit to
log10 E

R2

1 10 44 0 87 1.10682761 1.12498287 1.01640297 1.9395 1.2674
10 44 0.0025 87 1.10682761 1.12509476 1.01650406 1.9395 1.3758
10 44 0.005 87 1.10682761 1.12524953 1.01664390 1.9395 1.4843
10 44 0.0075 87 1.10682761 1.12546320 1.01683694 1.9395 1.5928
10 44 0.01 87 1.10682761 1.12575740 1.01710275 1.9395 1.7013
10 44 0.0125 87 1.10682761 1.12616102 1.01746741 1.9395 1.8097
10 44 0.015 87 1.10682761 1.12671203 1.01796524 1.9395 1.9182
10 44 0.0175 87 1.10682761 1.12745936 1.01864044 1.9395 2.0267
10 44 0.02 87 1.10682761 1.12846421 1.01954830 1.9395 2.1352
10 44 0.0225 87 1.10682761 1.12980027 1.02075541 1.9395 2.2436
10 44 0.025 135 1.11793532 1.29413023 1.15760743 2.1303 2.3521
10 44 0.0275 177 1.12483883 1.29413756 1.15050932 2.2480 2.4606
10 44 0.03 219 1.13029527 1.29414775 1.14496431 2.3404 2.5691
10 44 0.0325 261 1.13481129 1.29416190 1.14042036 2.4166 2.6775
10 44 0.035 289 1.13744262 1.29418158 1.13779944 2.4609 2.7860
10 44 0.0375 317 1.13983570 1.29420890 1.13543461 2.5011 2.8945
10 44 0.04 345 1.14203051 1.29424685 1.13328571 2.5378 3.0030
10 44 0.0425 359 1.14306342 1.29429954 1.13230772 2.5551 3.1114
10 44 0.045 373 1.14405770 1.29437264 1.13138755 2.5717 3.2199
10 44 0.0475 531 1.15327789 1.48549510 1.28806345 2.7251 3.3284
10 44 0.05 2530 1.19493326 1.48549548 1.24316189 3.4031 3.4369
10 44 0.0525 3458 1.20344942 1.48549601 1.23436514 3.5388 3.5454
10 44 0.055 5709 1.21724042 1.48549674 1.22038072 3.7566 3.6538
10 44 0.0575 8539 1.22842928 1.48549775 1.20926599 3.9314 3.7623
10 44 0.06 10183 1.23335496 1.48549917 1.20443766 4.0079 3.8708
10 44 0.0625 13956 1.24222170 1.48550113 1.19584220 4.1448 3.9793
10 44 0.065 16041 1.24615895 1.48550386 1.19206612 4.2052 4.0877
10 44 0.0675 18293 1.24988516 1.48550766 1.18851532 4.2623 4.1962
10 44 0.07 23400 1.25689894 1.68167021 1.33795181 4.3692 4.3047
10 44 0.0725 33251 1.26697571 1.68167024 1.32731056 4.5218 4.4132
10 44 0.075 54989 1.28154406 1.68167029 1.31222199 4.7403 4.5216
10 44 0.0775 69492 1.28838000 1.68167036 1.30525960 4.8419 4.6301
10 44 0.08 85507 1.29446689 1.68167046 1.29912203 4.9320 4.7386
10 44 0.0825 99904 1.29905304 1.68167059 1.29453574 4.9996 4.8471
10 44 0.085 118924 1.30420852 1.68167077 1.28941863 5.0753 4.9555
10 44 0.0875 139520 1.30895150 1.68167103 1.28474663 5.1446 5.0640
10 44 0.09 158117 1.31267920 1.68167138 1.28109852 5.1990 5.1725
10 44 0.0925 181666 1.31682768 1.88726770 1.43319261 5.2593 5.2810
10 44 0.095 258998 1.32748452 1.88726771 1.42168717 5.4133 5.3894
10 44 0.0975 475269 1.34592652 1.88726771 1.40220709 5.6769 5.4979

0.9482

2 12 63 0 125 1.07965322 1.09187259 1.01131786 2.0969 1.3953
12 63 0.0025 125 1.07965322 1.09196102 1.01139977 2.0969 1.5797
12 63 0.005 125 1.07965322 1.09210593 1.01153399 2.0969 1.7641
12 63 0.0075 125 1.07965322 1.09234240 1.01175301 2.0969 1.9485
12 63 0.01 125 1.07965322 1.09272569 1.01210802 2.0969 2.1328
12 63 0.0125 125 1.07965322 1.09334029 1.01267728 2.0969 2.3172
12 63 0.015 125 1.07965322 1.09430956 1.01357504 2.0969 2.5016
12 63 0.0175 295 1.09446915 1.21404534 1.10925497 2.4698 2.6860
12 63 0.02 599 1.10684330 1.21404945 1.09685756 2.7774 2.8704
12 63 0.0225 789 1.11169422 1.21405622 1.09207747 2.8971 3.0547
12 63 0.025 979 1.11550813 1.21406738 1.08835368 2.9908 3.2391
12 63 0.0275 1093 1.11746021 1.21408579 1.08646892 3.0386 3.4235
12 63 0.03 1207 1.11922136 1.21411611 1.08478640 3.0817 3.6079
12 63 0.0325 1759 1.12593198 1.34843434 1.19761616 3.2453 3.7923
12 63 0.035 8006 1.15334431 1.34843446 1.16915170 3.9034 3.9767
12 63 0.0375 18159 1.16843520 1.34843466 1.15405173 4.2591 4.1610
12 63 0.04 31829 1.17889026 1.34843500 1.14381723 4.5028 4.3454
12 63 0.0425 39898 1.18312592 1.34843555 1.13972277 4.6010 4.5298
12 63 0.045 53605 1.18868491 1.34843647 1.13439352 4.7292 4.7142
12 63 0.0475 63934 1.19201428 1.34843797 1.13122636 4.8057 4.8986
12 63 0.05 151470 1.20844644 1.48271141 1.22695666 5.1803 5.0829
12 63 0.0525 240217 1.21732463 1.48271142 1.21800824 5.3806 5.2673
12 63 0.055 418262 1.22808758 1.48271144 1.20733363 5.6214 5.4517
12 63 0.0575 569663 1.23412462 1.48271147 1.20142768 5.7556 5.6361
12 63 0.06 823942 1.24137536 1.48271152 1.19441030 5.9159 5.8205
12 63 0.0625 1.03E+06 1.24580697 1.48271161 1.19016159 6.0134 6.0049
12 63 0.065 1.39E+06 1.25172483 1.62031036 1.29446211 6.1431 6.1892
12 63 0.0675 3.35E+06 1.26929396 1.62031036 1.27654461 6.5244 6.3736
12 63 0.07 6.43E+06 1.28251719 1.62031037 1.26338296 6.8080 6.5580

0.9693

Table 7: Results for partial Latin square instances.
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# n k
Heuristic
error δ

Total
node
expansions
E

Effective
branching
factor
E1/k

Upper
bound
B(d)1/k

B(d)1/k

E1/k
log10 E

Linear
fit to
log10 E

R2

3 14 86 0 171 1.06161017 1.07034588 1.00822873 2.2330 1.4986
14 86 0.0025 171 1.06161017 1.07042098 1.00829948 2.2330 1.7445
14 86 0.005 171 1.06161017 1.07057335 1.00844300 2.2330 1.9904
14 86 0.0075 171 1.06161017 1.07087962 1.00873150 2.2330 2.2363
14 86 0.01 171 1.06161017 1.07148429 1.00930108 2.2330 2.4822
14 86 0.0125 247 1.06615920 1.16291112 1.09074810 2.3927 2.7281
14 86 0.015 429 1.07302532 1.16291347 1.08377077 2.6325 2.9740
14 86 0.0175 555 1.07624311 1.16291827 1.08053493 2.7443 3.2199
14 86 0.02 667 1.07854600 1.16292811 1.07823691 2.8241 3.4658
14 86 0.0225 737 1.07979831 1.16294821 1.07700503 2.8675 3.7117
14 86 0.025 6959 1.10835983 1.26274158 1.13928848 3.8425 3.9576
14 86 0.0275 27506 1.12621485 1.26274166 1.12122626 4.4394 4.2035
14 86 0.03 57104 1.13582148 1.26274182 1.11174321 4.7567 4.4494
14 86 0.0325 90923 1.14198131 1.26274214 1.10574676 4.9587 4.6953
14 86 0.035 122879 1.14598774 1.36083647 1.18747908 5.0895 4.9412
14 86 0.0375 259053 1.15596951 1.36083648 1.17722523 5.4134 5.1871
14 86 0.04 463344 1.16381138 1.36083648 1.16929298 5.6659 5.4330
14 86 0.0425 665871 1.16872905 1.36083649 1.16437295 5.8234 5.6789
14 86 0.045 925306 1.17320907 1.36083651 1.15992669 5.9663 5.9248
14 86 0.0475 1.29E+06 1.17776024 1.45985179 1.23951526 6.1109 6.1707

0.9335

4 16 113 0 225 1.04909731 1.05563497 1.00623170 2.3522 1.6772
16 113 0.0025 225 1.04909731 1.05570312 1.00629666 2.3522 2.0340
16 113 0.005 225 1.04909731 1.05588217 1.00646733 2.3522 2.3907
16 113 0.0075 225 1.04909731 1.05634285 1.00690645 2.3522 2.7475
16 113 0.01 799 1.06092884 1.12838087 1.06357828 2.9025 3.1042
16 113 0.0125 1719 1.06814635 1.12838284 1.05639348 3.2353 3.4610
16 113 0.015 2317 1.07097198 1.12838808 1.05361121 3.3649 3.8178
16 113 0.0175 2731 1.07253118 1.12840202 1.05209251 3.4363 4.1745
16 113 0.02 50236 1.10053004 1.20572650 1.09558708 4.7010 4.5313
16 113 0.0225 144797 1.11088842 1.20572656 1.08537144 5.1608 4.8881
16 113 0.025 258735 1.11660964 1.20572671 1.07981041 5.4129 5.2448
16 113 0.0275 516942 1.12346988 1.28088203 1.14011248 5.7134 5.6016
16 113 0.03 1.97E+06 1.13686805 1.28088203 1.12667607 6.2952 5.9584

0.9274

5 18 143 0 285 1.04031952 1.04542550 1.00490809 2.4548 1.8665
18 143 0.0025 285 1.04031952 1.04549145 1.00497148 2.4548 2.3144
18 143 0.005 285 1.04031952 1.04572413 1.00519515 2.4548 2.7623
18 143 0.0075 743 1.04731385 1.10463010 1.05472691 2.8710 3.2103
18 143 0.01 2579 1.05646789 1.10463134 1.04558912 3.4115 3.6582
18 143 0.0125 3659 1.05905525 1.10463580 1.04303887 3.5634 4.1061
18 143 0.015 39137 1.07675277 1.16693654 1.08375532 4.5926 4.5540
18 143 0.0175 246338 1.09069423 1.16693656 1.06990257 5.3915 5.0019
18 143 0.02 535932 1.09663904 1.16693665 1.06410278 5.7291 5.4498

0.9120

6 20 176 0 351 1.03386057 1.03797380 1.00397851 2.5453 1.9462
20 176 0.0025 351 1.03386057 1.03804139 1.00404389 2.5453 2.5098
20 176 0.005 351 1.03386057 1.03837263 1.00436428 2.5453 3.0733
20 176 0.0075 2425 1.04527681 1.08739144 1.04029040 3.3847 3.6368
20 176 0.01 4125 1.04843662 1.08739402 1.03715761 3.6154 4.2004
20 176 0.0125 107153 1.06802045 1.13899860 1.06645766 5.0300 4.7639
20 176 0.015 619190 1.07871841 1.13899862 1.05588132 5.7918 5.3275

0.8698

Table 8: Results for partial Latin square instances.
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