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Abstract

Major advances in Question Answering technology were needed for IBM Watson1 to
play Jeopardy!2 at championship level – the show requires rapid-fire answers to challenging
natural language questions, broad general knowledge, high precision, and accurate confi-
dence estimates. In addition, Jeopardy! features four types of decision making carrying
great strategic importance: (1) Daily Double wagering; (2) Final Jeopardy wagering; (3)
selecting the next square when in control of the board; (4) deciding whether to attempt
to answer, i.e., “buzz in.” Using sophisticated strategies for these decisions, that properly
account for the game state and future event probabilities, can significantly boost a player’s
overall chances to win, when compared with simple “rule of thumb” strategies.

This article presents our approach to developing Watson’s game-playing strategies,
comprising development of a faithful simulation model, and then using learning and Monte-
Carlo methods within the simulator to optimize Watson’s strategic decision-making. Af-
ter giving a detailed description of each of our game-strategy algorithms, we then focus in
particular on validating the accuracy of the simulator’s predictions, and documenting per-
formance improvements using our methods. Quantitative performance benefits are shown
with respect to both simple heuristic strategies, and actual human contestant performance
in historical episodes. We further extend our analysis of human play to derive a number of
valuable and counterintuitive examples illustrating how human contestants may improve
their performance on the show.

1. Introduction

Jeopardy! is a fast-paced, demanding, and highly popular TV quiz show that originated in
the US, and now airs in dozens of international markets. The show features challenging
questions (called “clues” in the show’s parlance) drawn from a very broad array of topics;
the clues may embody all manner of complex and ambiguous language, including vague
allusions and hints, irony, humor and wordplay.

The rules of game play in regular episodes (Jeopardy! Gameplay, 2013) are as follows.
There are two main rounds of play, wherein each round uses a board containing 30 squares,
organized as five squares in six different categories, with each square containing a hidden
clue. Second-round clues have higher dollar values, presumably reflecting greater difficulty.
In typical play, a square will be selected according to category and dollar amount by the
player in control of the board, and its clue will be revealed and read aloud by the host.

1. Registered trademark of IBM Corp.
2. Registered trademark of Jeopardy Productions Inc.
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When the host finishes reading the clue, players may attempt to answer, i.e., “buzz in,”
by pressing a signaling device. The first player to buzz in obtains the right to attempt
to answer; if the answer is correct, the player’s score increases by the clue’s dollar value,
whereas if the answer is incorrect, the player’s score decreases by the dollar value, and the
clue is re-opened for the other players to attempt to answer on the “rebound.”

One clue in the first round, and two clues in the second round have a special “Daily
Double” status. The player who selected the clue has the exclusive right to answer, and she
must specify a wager between $5 and either her current score or the round limit, whichever
is greater. The game concludes with a single clue in the “Final Jeopardy” round. The
players write down sealed-bid wagers, and then have 30 seconds to write an answer after
the clue is revealed. The player finishing with the highest dollar-value score3 wins that
amount, and can continue playing on the next episode.

When IBM began contemplating building a computing system to appear on Jeopardy!

it was readily apparent that such an undertaking would be a hugely daunting challenge for
automated Question Answering (QA) technology. State-of-the-art systems at that time were
extremely poor at general open-domain QA, and had considerable difficulty if the questions
or the supporting evidence passages were not worded in a straightforward way. Building the
DeepQA architecture, and advancing its performance at Jeopardy! to a competitive level
with human contestants, would ultimately require intense work over a four-year period
by a team of two dozen IBM Researchers (Ferrucci, Brown, Chu-Carroll, Fan, Gondek,
Kalyanpur, ..., & Welty, 2010; Ferrucci, 2012).

Rather than discussing Watson’s QA performance, which is amply documented else-
where, the purpose of this paper is to address an orthogonal and significant aspect of
winning at Jeopardy!, namely, the strategic decision-making required in game play. There
are four types of strategy decisions: (1) wagering on a Daily Double (DD); (2) wagering in
Final Jeopardy (FJ); (3) selecting the next square when in control of the board; (4) decid-
ing whether to attempt to answer, i.e., “buzz in.” The most critical junctures of a game
often occur in the Final Jeopardy round and in playing Daily Doubles, where wagering is
required. Selecting a judicious amount to wager, based on one’s confidence, the specific
game situation, and the likely outcomes of the remaining clues, can make a big difference
in a player’s overall chance to win. Also, given the importance of Daily Doubles, it follows
that a player’s square selection strategy when in control of the board should result in a
high likelihood of finding a DD. Allowing one’s opponents to find the DDs can lead to dev-
astating consequences, especially when playing against Grand Champions of the caliber of
Ken Jennings and Brad Rutter. Furthermore, a contestant’s optimal buzz-in strategy can
change dramatically in certain specific end-game scenarios. For example, a player whose
score is just below half the leader’s score may need to make a “desperation buzz” on the
last clue in order to avoid a guaranteed loss. Conversely, at just above half the leader’s
score, the correct strategy may be to never buzz in.

There is scant prior literature on Jeopardy! game strategies, and nearly all of it is qual-
itative and heuristic, with the sole exception of Final Jeopardy strategy, where substantial
quantitative analysis is embodied in the J! Archive (2013) Wagering calculator. Addition-
ally, Dupee (1998) provides a detailed analysis of betting in Final Jeopardy, with particular

3. Multiple players may win if they finished tied for first place. This deviation from a strict zero-sum game
can lead to fascinating counter-intuitive strategies.
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emphasis on the so-called “two-thirds” scenario, where betting nothing may increase win-
ning chances for the second-place player, provided that he has at least two-thirds of the
leader’s score. Some qualitative guidelines for aggressive or conservative Daily Double bet-
ting are also given, depending on confidence in the category, ability to win the buzz, and
positioning for Final Jeopardy. A specific last-clue DD bet is presented where the best bet
either takes the lead, or drops to exactly half the leader’s score (i.e., a “lock-tie”), resulting
in extra chances to win. Harris (2006), one of the show’s top contestants, provides numerous
qualitative insights into strategic thinking at championship level, including the importance
of seeking DDs in the bottom rows, wagering to position for Final Jeopardy, and protecting
a lead late in the game by being cautious on the buzzer.

This article describes our team’s work in developing a collection of game-strategy algo-
rithms deployed in Watson’s live Jeopardy! contests against human contestants. To our
knowledge, this work constitutes the first-ever quantitative and comprehensive approach to
Jeopardy! strategy that is explicitly based on estimating and optimizing a player’s proba-
bility of winning in any given Jeopardy! game state. Our methods enable Watson to find
DDs faster than humans, and to calculate optimal wagers and buzz-in thresholds to a degree
of precision going well beyond human capabilities in live game play. A brief overview of our
work (Tesauro, Gondek, Lenchner, Fan, & Prager, 2012) recently appeared in a special issue
of the IBM Journal of Research and Development. The present article provides expanded
descriptions of each of our strategy algorithms, and presents substantial new quantitative
documentation of the performance advantages obtained by our approach, when compared
both to simple heuristic strategies as well as to actual human strategies.

The overall organization of the article is as follows. We first provide in section 1.1 a glos-
sary of important technical terms and notation used throughout the article. Section 2 then
overviews our general approach to developing a Jeopardy! simulator, which we use to sim-
ulate contests between Watson and human contestants. Studying game-playing programs
in simulation is a well-established practice in computer games research. However, modeling
Jeopardy! is a much more difficult undertaking than in traditional games like Checkers and
Chess, due to its rich language content and extensive imperfect information. It is essential
to model the statistical performance profiles of human contestants, as well as their tenden-
cies in wagering and square selection, by mining historical data on contestant performance
in thousands of previously aired episodes. In this respect, Jeopardy! is similar to other
imperfect-information games like Poker (Billings, Davidson, Schaeffer, & Szafron, 2002),
where effective dynamic modeling of one’s opponents is a requisite ingredient for strong
play by both computers and humans. The general overview is followed in sections 2.1-2.6
by specific designs and construction methodologies for our simulation component models,
emulating Daily Double placement, human performance in Daily Doubles, Final Jeopardy,
regular clues and square selection, as well as extensions of such models from single-game
to multi-game format. The modeling section concludes in section 2.7, which presents a
statistically meaningful validation study, documenting how well various game statistics pre-
dicted by the simulator match up with actual statistics in live matches between Watson

and human contestants. As detailed in Appendix 1, Watson played more than 100 such
“Sparring Games” before appearing on television, and the validation study specifically fo-
cuses on the final 55 games in which Watson faced off against extremely strong former
Jeopardy! champions.
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Section 3 presents specific techniques for designing, learning and optimizing Watson’s
four strategy modules over the course of many simulated games. These techniques span a
range of widely used methods in current AI/OR research studies. Specifically, section 3.1
details our approach to DD wagering, which combines nonlinear regression with Reinforce-
ment Learning to train a Game State Evaluator over the course of millions of simulated
games. Section 3.2 presents methods to calculate a Best-Response wagering strategy (a stan-
dard game-theoretic concept) in Final Jeopardy using either offline or online Monte-Carlo
sampling. Section 3.3 describes Watson’s square selection strategy, the most important in-
gredient of which is live Bayesian inference calculation of the probabilities of various squares
containing a Daily Double. Finally, section 3.4 documents how Watson computes buzz-in
thresholds in endgame states using a combination of Approximate Dynamic Programming
with online Monte-Carlo trials, i.e., “rollouts” (Tesauro & Galperin, 1996; Bertsekas &
Castanon, 1999).

As our work has led to many new insights into what constitutes effective Jeopardy!

strategy, section 4 of the paper presents some of the more interesting and counterintuitive
insights we have obtained, with the hope of improving human contestant performance. Sec-
tion 4.1 gives an overview of the most important decision boundaries we found in Watson’s
Best-Response FJ strategy. Section 4.2 discusses our most important finding regarding hu-
man DD wagering, namely that humans should generally bet more aggressively. Section 4.3
presents buzz threshold analysis yielding initial buzz thresholds that are surprisingly ag-
gressive, and rebound thresholds that are surprisingly conservative. Finally, section 4.4
discusses unusual and seemingly paradoxical implications of the “lock-tie” FJ scenario,
where the leader must bet $0 to guarantee a win.

After summarizing our work and lessons learned in section 5, Appendix 1 provides details
on Watson’s competitive record, and Appendix 2 gives mathematical details of the buzz
threshold calculation.

1.1 Glossary

In this section we provide definitions of various technical terms and notation used in subse-
quent sections to describe our simulation models, strategies, or aspects of Jeopardy! game
play.

• A, B and C - The players with the highest, second highest and third highest scores,
respectively, or their current scores.

• Accuracy - The probability that a player will answer a clue correctly, in situations
where answering is mandatory (Daily Doubles or Final Jeopardy).

• Anti-two-thirds bet - Potential counter-strategy for A in the Two-thirds Final Jeop-
ardy scenario (see “Two-thirds bet”). After a two-thirds bet, B’s score is at most
4B-2A. This will be less than A if B is less than three-fourths of A. Hence, A could
guarantee a win by small bet of at most 3A-4B. However, such a bet is vulnerable to
B making a large bet that significantly overtakes A.

• Average Contestant model - A model based on aggregate statistics of all J! Archive
regular episode data (excluding special-case contestant populations).
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• Bet to cover, Shut-out bet - Standard strategy for the leader, A, in Final Jeopardy.
A usually bets at least 2B-A (frequently 2B-A+1). After a correct answer, A’s score
is at least 2B, which guarantees a win.

• Board Control - The right to select the next clue; usually belonging to the player who
gave the last correct answer. Daily Doubles can only be played by the player with
control of the board.

• Buzz attempt rate - Parameter b in the regular clue simulation model, denoting the
average probability that a player will attempt to buzz in on a clue.

• Buzz correlation - In the regular clue model, a quantity ρij indicating the degree to
which the buzz-in decisions of player i and j tend to be the same on a given clue
(see “Correlation coefficient”). For two humans, ρij = ρb (empirically ∼ 0.2), whereas
ρij = 0 between a human and Watson.

• Buzzability - Short for “buzzer ability.” The probability of a given player winning a
contested buzz when multiple players buzz in.

• Buzzing In - Pressing a signaling device, indicating that a player wishes to attempt
to answer a clue. After the host finishes reading the clue, the first player to buzz in
is allowed to answer.

• Champion model - A model based on aggregate statistics of the 100 best players in
the J! Archive dataset, ranked according to number of games won.

• Correlation coefficient - In the simulator, a quantity ρij indicating the degree to which
randomized binary events (Buzz/NoBuzz or Right/Wrong) for players i and j tend
to be the same on a given clue. As a simple example, suppose i and j have 50%
chance each of answering Final Jeopardy correctly. Let P (xi, xj) denote the joint
probability that i has correctness xi and j has correctness xj. The correlation coeffi-
cient is then given by ρij = P (Right,Right) + P (Wrong,Wrong) - P (Right,Wrong) -
P (Wrong,Right). Note that if xi and xj are independent, then all four joint outcomes
are equally likely, so that ρij = 0. If xi and xj always match, then ρij = 1 and if they
always mismatch, then ρij = −1.

• Exhibition Match - (See Appendix 1) The televised two-game match, aired in Feb.
2011, in which Watson competed against Brad Rutter and Ken Jennings, arguably
the two best-ever human contestants (see “Multi-game format”).

• Grand Champion model - A model based on aggregate statistics of the ten best players
in the J! Archive dataset, ranked according to number of games won.

• Lockout, locked game - A game state in which the leader’s current score cannot be
surpassed by the opponents in play of the remaining clues, so that the leader has a
guaranteed win. Usually refers to Final Jeopardy states where the leader has more
than double the opponents’ scores.
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• Lock-tie - A Final Jeopardy situation in which the player in second place has exactly
half the leader’s score. The leader has a guaranteed win by betting $0, enabling the
second place player to achieve a tie for first place by betting everything and answering
correctly.

• Match equity - Objective function optimized by Watson in the two-game Exhibition
Match, defined as probability of finishing first plus 0.5 times probability of finishing
second. By contrast, Watson simply maximized probability of winning in the Sparring
Games.

• Multi-game format - A special-case format used in the finals of the Tournament of
Champions, and in the Exhibition Match with Ken Jennings and Brad Rutter. First,
second and third place are awarded based on point totals over two games. In the
event of a first-place tie, a sudden death tie-break clue is played. Depending on the
prize money, there can be a significant incentive to finish in second place.

• QA - Short for Question Answering. A computing system or a suite of Natural
Language Processing techniques used to search for, evaluate, and select candidate
answers to clues.

• Precision, Precision@b - For regular clues, the average probability that a player will
answer correctly on the fraction of clues (b) in which the player chooses to buzz in
and answer (Ferrucci et al., 2010).

• Rebound - The situation after the first player to buzz in gets the clue wrong, and the
remaining players then have another chance to buzz in and try to answer.

• Regular episode format - In regular episodes, a returning champion plays a single
game against two new challengers. First, second and third place are determined by
point totals in that game, and multiple players may finish tied for first. The player(s)
finishing first will continue to play in the next episode. There is little incentive to
finish second, as it only pays $1000 more than finishing third.

• Right/wrong correlation - In the regular clue model, a quantity ρij indicating the
degree to which the correctness of player i and j tend to be the same on a given clue
(see “Correlation coefficient”). For two humans, ρij = ρp (empirically ∼ 0.2), whereas
ρij = 0 between a human and Watson.

• Rollouts - Extensive Monte-Carlo simulations used to estimate the probability of a
player winning from a given game state.

• Sparring Games - (See Appendix 1) Two series of practice games (Series 1, 2) played
by Watson against former Jeopardy! contestants. Series 1 games were against con-
testants selected to be typical of “average” contestants appearing on the show. Series
2 games were played against “champions,” i.e., contestants who had reached the finals
or semi-finals of the annual Tournament of Champions.

• Tip-off effect - Information revealed in an initial incorrect answer that helps the re-
bound player deduce the correct answer. For example, a clue asking about a “New
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Jersey university” is likely to have only two plausible answers, Rutgers and Princeton.
After an initial answer “What is Princeton?” is ruled incorrect, the rebounder can be
highly confident that the correct answer is “What is Rutgers?”

• Two-thirds bet - A plausible Final Jeopardy strategy for B in cases where B has at
least two-thirds of A’s score. Assuming A makes a standard bet to cover of at least
2B-A, B’s winning chances are optimized by betting at most 3B-2A. With such a bet,
B will win whenever A is wrong, whereas for larger bets, B also needs to be right.
This strategy is vulnerable to a counter-strategy by A (see “Anti-two-thirds bet”).

2. Simulation Model Approach

Since we optimize Watson’s strategies over millions of synthetic matches, it is important
that the simulations be faithful enough to give reasonably accurate predictions of various
salient statistics of live matches. Developing such a simulator required significant effort,
particularly in the development of human opponent models.

The use of a simulator to optimize strategies is a well-established practice in computer
games research. Simulated play can provide orders of magnitude more data than live game
play, and does not suffer from overfitting issues that are commonly encountered in tuning
to a fixed suite of test positions. While it is usually easy to devise a perfect model of the
rules of play, simulation-based approaches can face a significant challenge if accurate models
of opponent strategies are required. In traditional two-player zero-sum perfect-information
board games (Backgammon, Checkers, Chess, etc.) such modeling is normally not required –
one can simply aim to compute the minimax-optimal line of play, as there is limited potential
to model and exploit suboptimal play by the opponents. By contrast, in repeated normal-
form games such as Prisoner’s Dilemma and Rock-Paper-Scissors, a one-shot equilibrium
strategy is trivial to compute but insufficient to win in tournament competitions (Axelrod,
1984; Billings, 2000). The best programs in these games employ some degree of adaptivity
and/or modeling based on the observed behaviors of their opponents. Poker is another
prominent game where opponent modeling is essential to achieve strong play (Billings et al.,
2002) . Playing an equilibrium strategy when the opponent is bluffing too much or too little
would forego an opportunity to significantly boost one’s expected profit.

In contrast to the above-mentioned games, the Jeopardy! domain introduces entirely
new modeling issues, arising from the natural language content in its category titles, clues,
and correct answers. Obviously our simulator cannot generate synthetic clues comparable
to those written by the show’s writers, nor can we plausibly emulate actual contestant re-
sponses. Even the most basic analysis of categories and clues (e.g., which categories tend
to be “similar,” co-occurrence likelihood of categories in a board, what type of information
is provided in clues, what type of mental process is needed to infer the correct response,
how the clue difficulty is calibrated based on the round and dollar value) seemed daunting
and the prospects for success seemed remote. Likewise, modeling the distributions of hu-
man contestant capabilities over thousands of categories, and correlations of abilities across
different categories, seemed equally implausible.

Due to the above considerations, our initial simulator design was based on an extremely
simplified approach. We avoided any attempt to model the game’s language content, and
decided instead to devise the simplest possible stochastic process models of the various
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events that can occur at each step of the game. Our plan was to examine how accurately
such a simulator could predict the outcomes of real Watson-vs-human Jeopardy! matches,
and refine the models as needed to correct gross prediction errors. As it turned out, our
simple simulation approach predicted real outcomes much more accurately than we initially
anticipated (see section 2.7 below), so that no major refinements were necessary.

The only noteworthy enhancement of our simple stochastic process models occurred in
2010, after Watson had acquired the ability to dynamically learn from revealed answers
in a category (Prager, Brown, & Chu-Carroll, 2012). The effect was substantial, as Wat-

son’s accuracy improved by about 4% from the first clue to the last clue in a category.
We captured this effect by using historical data: each category in a simulated game would
be paired with a randomly drawn historical category, where a sequence of five right/wrong
Watson answers was known from prior processing. Instead of stochastically generating
right/wrong answers for Watson, the simulator used the recorded sequence, which embod-
ied the tendency to do better on later clues in the category. The ability to simulate this
learning effect was instrumental in the ultimate development of Watson’s square selection
algorithm, as we describe in section 3.3.

Our stochastic process simulation models are informed by:

• (i) properties of the game environment (rules of play, DD placement probabilities,
etc.)

• (ii) performance profiles of human contestants, including tendencies in wagering and
square selection;

• (iii) performance profiles of Watson, along with Watson’s actual strategy algo-
rithms;

• (iv) estimates of relative “buzzability” of Watson vs. humans, i.e., how often a player
is able to win the buzz when two or more contestants are attempting to buzz in.

Our primary source of information regarding (i) and (ii) is a collection of comprehensive
historical game data available on the J! Archive (2013) web site. We obtained fine-grained
event data from approximately 3000 past episodes, going back to the mid-1990s, annotating
the order in which clues were played, right/wrong contestant answers, DD and FJ wagers,
and the DD locations. After eliminating games with special-case contestants (Teen, College,
Celebrity, etc. games), the remaining data provided the basis for our model of DD placement
(section 2.1), and models of human contestant performance in Daily Doubles (section 2.2),
Final Jeopardy (section 2.3), regular clues (section 2.4), and square selection (section 2.5).

We devised three different versions of each human model, corresponding to three dif-
ferent levels of contestant ability encountered during Watson’s matches with human con-
testants (see Appendix 1 for details). The “Average Contestant” model was fitted to all
non-tournament game data – this was an appropriate model of Watson’s opponents in the
Series 1 sparring games. The “Champion” model was designed to represent much stronger
opponents that Watson faced in the Series 2 sparring games; we developed this model
using data from the 100 best players in the dataset, ranked by number of games won. Fi-
nally, for our Exhibition Match with Ken Jennings and Brad Rutter, we devised a “Grand
Champion” model which was informed by performance metrics of the 10 best players. Since
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the Exhibition Match used a multi-game format (1st, 2nd and 3rd place determined by
two-game point totals), we developed specialized DD and FJ wagering models for Game 1
and Game 2 of the match, as described in section 2.6.

2.1 Daily Double Placement

We calculated the joint row-column frequencies in the J! Archive data of Round 1 and Round
2 DD placement; the Round 2 frequencies are illustrated in Figure 1. Our analysis confirms
well-known observations that DDs tend to be found in the lower rows (third, fourth and
fifth) of the board, and basically never appear in the top row. However, we were surprised
to discover that there are also column dependencies, i.e., some columns are more likely to
contain a DD than others. For example, DDs are most likely to appear in the first column,
and least likely to appear in the second column. (We can only speculate4 why the show’s
producers place DDs in this fashion.)

Figure 1: Illustration of row-column frequencies of second-round DD placement in ∼ 3000
previous Jeopardy! episodes. Red denotes high frequency and blue denotes low
frequency.

Additional analytic insights from the data include: (i) The two second-round DDs never
appear in the same column. (ii) The row location appears to be set independently of the
column location, and independently of the rows of other DDs within a game. (iii) The
Round 2 column-pair statistics are mostly consistent with independent placement, apart
from the constraint in (i). However, there are a few specific column pair frequencies that
exhibit borderline statistically significant differences from an independent placement model.

Based on the above analysis, the simulator assigns the DD location in Round 1, and
the first DD location in Round 2, according to the respective row-column frequencies. The

4. We noted that the second column often features “pop-culture” categories (TV shows, pop music, etc.)
which could account for its relative paucity of DDs.
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remaining Round 2 DD is assigned a row unconditionally, but its column is assigned condi-
tioned on the first DD column.

2.2 Daily Double Accuracy/Betting Model
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Figure 2: Average Round 2 mean DD bets of human contestants in first place (A), second
place (B) and third place (C), as a function of player score (left), and clues played
in round (right).

Based on the appropriate historical statistics in our J! Archive regular episode dataset,
we set the mean DD accuracy parameter in our human contestant models at 64% for Av-
erage Contestants, 75% for Champions, and 80.5% for Grand Champions. Bets made by
human contestants tend to be round number bets such as $1000 or $2000, and rarely exceed
$5000. The main dependencies we observed are that players in the lead tend to bet more
conservatively, and become extremely conservative near the end of the game, presumably
to protect their lead going into Final Jeopardy. These dependencies are clearly seen in
Figure 2, where we plot average bets as functions of player score and of clues played in the
second round.

While the above wagering tendencies were built into our Average Contestant model, we
surmised (correctly as it turned out) that much stronger Champion and Grand Champion
players would quickly realize that they need to bet DDs extremely aggressively when playing
against Watson. These models therefore employed an aggressive heuristic strategy which
would bet nearly everything, unless a heuristic formula indicated that the player was close
to a mathematically certain win.

2.3 Final Jeopardy Accuracy/Betting Model

The historical dataset obtained from J! Archive reveals that mean human accuracy in an-
swering Final Jeopardy correctly is approximately 50% for average contestants, 60% for
Champions, and 66% for Grand Champions. Furthermore, from statistics on the eight
possible right/wrong triples, it is also clear that accuracy is positively correlated among
contestants, with a correlation coefficient ρFJ ∼ 0.3 providing the best fit to the data. We
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use these parameter values in simulating stochastic FJ trials, wherein we implement draws
of three correlated random binary right/wrong outcomes, with means and correlations tuned
to the appropriate values. This is performed by first generating correlated real numbers
using a multi-variate normal distribution, and then applying suitably chosen thresholds to
convert to 0/1 outcomes at the desired mean rates (Leisch, Weingessel, & Hornik, 1998).
As many such draws are required to determine the precise win rate of a given FJ score com-
bination, we also implement a lower-variance simulation method. Rather than generating a
single stochastic outcome triple, the simulator evaluates all eight outcome triples, weighted
by analytically derived probabilities for each combination.
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Figure 3: Distribution of human FJ bets by first-place player “A” (left) and second-place
player “B” (right), normalized by leader score, as a function of B/A ratio.

The most important factor in FJ wagering is score positioning, i.e., whether a player is
in first place (“A”), second place (“B”) or third place (“C”). To develop stochastic process
models of likely contestant bets, we first discarded data from “lockout” games (where the
leader has a guaranteed win), and then examined numerous scatter-plots such as those
shown in Figure 3. We see a high density line in A’s bets corresponding to the well-known
strategy of betting to cover in case B’s score doubles to 2B. Likewise, there are two high
density lines in the plot of B’s bets, one where B bets everything, and one where B bets
just enough to overtake A. Yet there is considerable apparent randomization apart from
any known deterministic wagering principles.

After a thorough examination, we decided to segment the wagering data into six groups:
we used a three-way split based on strategic breakpoints (as detailed in section 4.1) in B’s
score relative to A’s score (less than 2/3, between 2/3 and 3/4, and more than 3/4), plus
a binary split based on whether or not B has at least double C’s score. We then devised
wagering models for A, B, and C5 that choose among various types of betting logic, with
probabilities based on observed frequencies in the data groups. As an example, our model
for B in the case (B ≥ 3/4 A, B≥ 2C) bets as follows: bet “bankroll” (i.e., nearly everything)

5. Curiously enough, we saw no evidence that C’s wagers vary with strategic situation, so we implemented
a single betting model for C covering all six groups.
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with 26% probability, “keepout C” (i.e., just below B-2C) with 27% probability, “overtake
A” (i.e., slightly above A-B) with 15% probability, “two-thirds limit” (i.e., just below 3B-2A)
with 8% probability, and various types of random bets with the remaining 24% probability
mass.

Real Model

A 65.3% 64.8%
B 28.2% 28.1%
C 7.5% 7.4%

Table 1: Comparison of actual human win rates with model win rates by historical replace-
ment in 2092 non-locked FJ situations from past episodes.

The betting models described above were designed solely to match human bet distribu-
tions, and were not informed by human FJ win rates. However, we subsequently verified
by a historical replacement technique that the models track actual human win rates quite
closely, as shown in Table 1. We first measured the empirical win rates of the A, B, C roles6

in 2092 non-locked FJ situations from past episodes. We then took turns recalculating the
win rate of one role after replacing the bets of that role by the bet distribution of the cor-
responding model. The models match the target win rates very well, considering that the
human bets are likely to reflect unobservable confidence estimates given the FJ category.

While we were satisfied that our human FJ model accurately fit the historical data, there
was nevertheless room for doubt as to how accurately it would predict human behavior in
the Sparring Games. Most notably, each of the six data groups used to estimate model
parameters contained only a few hundred samples, so that the error bars associated with
the estimated values were likely to be large. We could have addressed this by performing
so-called second order Monte-Carlo trials (Wu & Tsang, 2004), using Gaussian draws of
parameter values in each FJ trial instead of constant values, but we were concerned about
significantly higher computational overhead of such an approach. There were also possibili-
ties that contestant behavior might be non-stationary over time, which we did not attempt
to model, or that contestants might alter their behavior specifically to play against Wat-

son. As we discuss later in section 3.2, we generally accepted the FJ model as a basis for
optimizing Watson’s decisions, with the sole exception of the case whereWatson is A, and
the B player may plausibly make a “two-thirds bet” (see Glossary definition in section 1.1).

2.4 Regular Clue Model

Our stochastic process model of regular (non-DD) clues generates a random correlated
binary triple indicating which players attempt to buzz in, and a random correlated binary
triple indicating whether or not the players have a correct answer. In the case of a contested
buzz, a buzz winner is randomly selected based on the contestants’ relative “buzzability”
(ability to win a contested buzz, assumed equal in all-human matches). As mentioned in
the Glossary of section 1.1, the buzz-in outcomes are governed by two tunable parameters,
mean “buzz attempt rate” b and “buzz correlation” ρb. The right/wrong outcomes are

6. The human win rates sum to 101%, reflecting ∼1% chance of a first-place tie.
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Figure 4: Frequencies of seven possible regular-clue outcomes in J! Archive average contes-
tant dataset.

likewise governed by two parameters, mean “precision@b” (Ferrucci et al., 2010) or simply
mean “precision” p, and “right/wrong correlation” ρp. We set the four parameter values b,
ρb, p, and ρp by running extensive Monte-Carlo simulations for many different parameter
combinations, and selecting the combination yielding the best fit to observed historical
frequencies of the seven possible outcomes for regular clues, as depicted in Figure 4. The
outcome statistics are derived from J! Archive records of more than 150K regular clues.
The parameter values we obtained for average contestants are: b = 0.61, ρb = 0.2, p = 0.87
and ρp = 0.2. The right/wrong correlation is derived directly from rebound statistics, and
is particular noteworthy: while a positive value is reasonable, given the correlations seen
in FJ accuracy, it might be surprising due to the “tip-off” effect on rebounds. When the
first player to buzz gives a wrong answer, this eliminates a plausible candidate and could
significantly help the rebound buzzer to deduce the right answer. We surmise that the data
may reflect a knowledge correlation of ∼ 0.3 combined with a tip-off effect of ∼ −0.1 to
produce a net positive correlation of 0.2.

In the Champion model, there is a substantial increase in attempt rate (b = 0.80) and
a slight increase in precision (p = 0.89). In the Grand Champion model, we estimated
further increases in these values, to b = 0.855 and p = 0.915 respectively. As depicted in
Figure 5, we also developed a refined model by segregating the regular clue data according
to round and dollar value (i.e., row number), and estimating separate (b, p) values in each
case. Such refinements make the simulations more accurate, but do not meaningfully impact
the optimization of Watson’s wagering and square selection strategies. While we expect
that a slight improvement in Watson’s endgame buzzing could have been achieved using
separate (b, p) values, there was insufficient data for Champions and Grand Champions to
estimate such values. Hence the deployed algorithm used constant (b, p) values for all clues.

2.5 Square Selection Model

Most human contestants tend to select in top-to-bottom order within a given category, and
they also tend to stay within a category rather than jumping across categories. There is a
further weak tendency to select categories moving left-to-right across the board. Based on
these observations, and on the likely impact of Watson’s square selection, we developed
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Figure 5: Estimates of Average Contestant buzz attempt rate (b) and precision (p) as a
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6-10 denote second round clues.

an Average Contestant model of square selection which stays in the current category with
60% probability, and otherwise jumps to a random different category. When picking within
a category there is high probability (∼90%) of picking the topmost available square. By
contrast, we model Champion and Grand Champion square selection as DD seeking based
on the known row statistics of DD placement. Strong players generally exhibit more Daily
Double seeking when selecting squares, and when playing against Watson, they quickly
adopt overt DD seeking behavior.

2.6 Multi-game Wagering Model

In most Jeopardy! contests, the winner is determined by performance in a single game.
However, the show also conducts several annual tournaments, such as the Tournament of
Champions, in which the final match utilizes point totals over two games to determine first,
second and third place. This clearly implies that wagering strategies must differ in Game 1
and Game 2 of the match, and both need to be different from single-game wagering.

Since there is very limited multi-game match data available from J! Archive (only about
two dozen Tournament of Champions final matches), it would be quite difficult to model the
expected wagering of Jennings and Rutter in our Exhibition Match purely from historical
data. Fortunately, we were able to make some educated guesses that considerably simplified
the task. First, we predicted that they would wager DDs very aggressively in both games,
unless they had an overwhelming lead. This implied that we could continue to use the
aggressive heuristic DD model for single games, with a revised definition of what constitutes
an “overwhelming” match lead. Second, we also expected them to bet very aggressively in
Final Jeopardy of the first game. This meant that we could treat Game 1 FJ as if it were
a DD situation, and again use the revised aggressive heuristic model.
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The only situation requiring significant modeling effort was Game 2 FJ. We generalized
the definition of “A,” “B,” and “C” roles for matches, based on the sum of Game 1 score plus
two times Game 2 score. With this definition, all of the established single-game strategies
for A, B and C carry over to two-game matches.

Given the limited available match data, only crude estimates could be assigned of the
probabilities of various betting strategies. However, it is clear from the data that the
wagering of human champions is much more coherent and logical than the observed wagering
in regular episodes, and champion wagers frequently satisfy multiple betting constraints.
These observations guided our development of revised betting models for Game 2 FJ. As
an example, in the case where B has a legal generalized two-thirds bet (suitably defined for
two-game matches), and B can also keep out C, our model for B bets as follows: “bankroll”
bet with 35% probability, bet a small random amount that satisfies both the two-thirds and
keepout-C limits with 43% probability, or bet to satisfy the larger of these two limits with
22% probability.

2.7 Model Validation

Our first efforts to validate the simulator’s predictions occurred about half-way through
Watson’s first series of Sparring Games. At that point in time, the simulator had only
been used to develop Watson’s Final Jeopardy wagering algorithm, so the simulator was
basically running a model of Watson with heuristic strategies against the Average Con-
testant model. The predicted outcomes were “ex-post” (after the fact) predictions, in that
we needed data from the live games to set certain simulation parameter values, particularly
relating to Watson’s buzzability. We were encouraged to see that the predicted rates of
Watson winning a game (62%), leading going into Final Jeopardy (72%) and winning by
lockout (27%) were within the standard error over 42 games of the actual rates (64%, 76%,
and 26% respectively). There were more significant deviations on the low side in predicted
final scores of Watson (15800 vs. 18400 actual) and of the humans (9300 vs. 10900 actual)
but both were still within 95% confidence intervals.

By the start of the second series of Sparring Games, we were able to make “ex-ante”
(before the fact) predictions, beforeWatson had actually played against human champions.
These predictions were based mostly on using J! Archive data to tune parameters of the
Champion model, as well as semi-educated guesses regarding the improvement in buzzability
of human champions, and how aggressively they would seek out and wager on the Daily
Doubles. The actual vs. predicted statistics are reported below in Table 2. Most of the
ex-ante simulation stats turned out to be remarkably close to the actual results; only the
rates of Watson leading in FJ, Watson’s board control (i.e., how often Watson selected
the next square) and human lockout rate differed by more than one standard error.

We then examined how much improvement could be obtained by ex-post recalibration of
the Champion model, based on actual stats in the Sparring Games. As seen in Table 2, our
best ex-post predictions failed to significantly improve on the ex-ante predictions. While
there was notable improvement inWatson FJ lead and human lockout rates, the predictions
of Watson lockout rate and human final score were noticeably worse.
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Statistic Actual Ex-ante sim Ex-post sim

Watson win rate 0.709 ± 0.061 0.724 0.718
Watson lockout 0.545 ± 0.067 0.502 0.493
Watson FJ lead 0.891 ± 0.042 0.806 0.830

Watson board control 0.500 ± 0.009 0.516 0.515
Watson DDs found 0.533 ± 0.039 0.520 0.517
Watson final score 23900 ± 1900 24950 24890
Human final score 12400 ± 1000 12630 13830
Human lockout 0.018 ± 0.018 0.038 0.023

Table 2: Comparison of actual mean statistics (± std. error) in 55 Series 2 Sparring Games
vs. ex-ante and ex-post predicted results in 30k simulation trials.

3. Optimizing Watson’s Strategies Using the Simulation Model

The simulator described in the previous section enables us to estimate Watson’s perfor-
mance for a given set of candidate strategy modules, by running extensive contests between
a simulation model of Watson and two simulated human opponents. TheWatson stochas-
tic process models use the same performance metrics (i.e., average attempt rate, precision,
DD and FJ accuracies) as in the human models. The parameter values were estimated
from J! Archive test sets, and were updated numerous times as Watson improved over
the course of the project. The Watson model also estimates buzzability, i.e., its likelihood
to win the buzz against humans of various ability levels. These estimates were initially
based on informal live demo games against IBM Researchers, and were subsequently re-
fined based on Watson’s performance in the Sparring Games. We estimated Watson’s
buzzability against two humans at ∼80% for average contestants, 73% for Champions, and
70% for Grand Champions.

Computation speed was an important factor in designing strategy modules, since wa-
gering, square selection and buzz-in decisions need to be made in just a few seconds. Also,
strategy runs onWatson’s “front-end,” a single server with just a few cores, as its 3000-core
“back-end” was dedicated to QA computations. As a result, most of Watson’s strategy
modules run fast enough so that hundreds of thousands of simulated games can be performed
in just a few CPU hours. This provides a solid foundation for evaluating and optimizing
the individual strategy components, which are presented below. Some strategy components
(endgame buzz threshold, endgame DD betting, and Game 2 FJ betting) are based on
compute-intensive Monte-Carlo trials; these are too slow to perform extensive offline evalu-
ation. Instead, these strategies perform live online optimization of a single strategy decision
in a specific game state.

3.1 Daily Double Wagering

We implemented a principled approach to DD betting, based on estimating Watson’s
likelihood of answering the DD clue correctly, and estimating how a given bet will impact
Watson’s overall winning chances if he gets the DD right or wrong. The former estimate
is provided by an “in-category DD confidence” model. Based on thousands of tests on
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historical categories containing DDs, the model estimates Watson’s DD accuracy given
the number of previously seen clues in the category that Watson got right and wrong.

To estimate impact of a bet on winning chances, we follow the work of Tesauro (1995)
in using Reinforcement Learning (Sutton & Barto, 1998) to train a Game State Evalua-
tor (GSE) over the course of millions of simulated Watson-vs-humans games. Given a
feature-vector description of a current game state, the GSE implements smooth nonlinear
function approximation using a Multi-Layer Perceptron (Rumelhart, Hinton, & Williams,
1987) neural network architecture, and outputs an estimate of the probability that Watson

will ultimately win from the current game state. The feature vector encoded information
such as the scores of the three players, and various measures of the remaining amount of
play in the game (number of remaining DDs, number of remaining clues, total dollar value
of remaining clues, etc.).

The combination of GSE with in-category confidence enables us to estimate E(bet), i.e.
the “equity” (expected winning chances) of a bet, according to:

E(bet) = pDD ∗ V (SW + bet, ...) + (1− pDD) ∗ V (SW − bet, ...) (1)

where pDD is the in-category confidence, SW is Watson’s current score, and V () is the
game state evaluation after the DD has been played, and Watson’s score either increases
or decreases by the bet. We can then obtain an optimal risk-neutral bet by evaluating
E(bet) for every legal bet, and selecting the bet with highest equity. During the Sparring
Games, our algorithm only evaluated round-number bets (i.e., integer multiples of $100),
due both to computational cost as well as the possibility to obtain extra winning chances
via a first-place tie or a “lock-tie” scenario as described in section 1.1. For the Exhibition
Match, tie finishes were not possible, and we had sped up the code to enable evaluation of
non-round wagers. This accounted for the strange wager values that were the subject of
much discussion in the press and among viewers.

In practice, a literal implementation of risk-neutral betting according to Equation 1
takes on a frightening amount of risk, and furthermore, the calculation may contain at least
three different sources of error: (i) the GSE may exhibit function approximation errors; (ii)
the simulator used to train the GSE may exhibit modeling errors; (iii) confidence estimates
may have errors due to limited test-set data. We therefore chose to adjust the risk-neutral
analysis according to two established techniques in Risk Analytics. First, we added a
penalty term to Equation 1 proportional to a bet’s “volatility” (i.e., standard deviation over
right/wrong outcomes). Second, we imposed an absolute limit on the allowable “downside
risk” of a bet, defined as the equity difference between the minimum bet and the actual
bet after getting the DD wrong. Due to function approximator bias, the latter technique
actually improved expectation in some cases, in addition to reducing risk. We observed this
in certain endgame states where the neural net was systematically betting too much, due
to underestimation of lockout potential.

The overall impact of risk mitigation was a nearly one-third reduction in average risk
of an individual DD bet (from 16.4% to 11.3%), at the cost of reducing expected winning
chances over an entire game by only 0.3%. Given that Watson finds on average ∼1.5-2.0
DDs per game (depending on how aggressively the opponents also seek DDs), this implies
that the equity cost per DD bet of risk mitigation is quite small, and we regarded the overall
tradeoff as highly favorable.
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3.1.1 Illustrative Example

Figure 6 illustrates how the DD bet analysis operates, and how the resulting bet depends
strongly on in-category confidence. The example is taken from one of the Sparring Games,
where Watson got four consecutive clues right in the first category at the start of Double
Jeopardy, and then found the first DD in attempting to finish the category. At this point,
Watson’s score was 11000 and the humans each had 4200. Watson’s in-category confi-
dence took its maximum value, 75%, based on having gotten four out of four correct answers
previously in the category. Watson chose to wager $6700, which is a highly aggressive bet
by human standards. (Fortunately, he got the DD clue right!)
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Figure 6: (left) Equity estimates getting the DD right (top curve) and wrong (bottom
curve). (right) Bet equity curves at five differences in-category confidence levels,
from 45% to 85%. Black dots show how the optimal risk-neutral bet increases
with confidence.

The left figure shows neural net equity estimates for getting the DD right (top curve)
and wrong (bottom curve) at various bet amounts. These curves are extremely smooth
with gently decreasing slopes. The right plot shows the resulting equity-vs-bet curve at
Watson’s actual 75% confidence level (magenta curve), along with four other curves at
different confidence values ranging from 45% to 85%. Black dots on each curve indicate the
best risk-neutral bet, and we can see how the bet steadily increases with confidence, from
$5 at 45%, to approximately $9300 at the actual 75%, and finally to the entire $11000 at a
(hypothetical) confidence of 85%.

We also note the effect of risk mitigation, which reduced Watson’s actual bet from
$9300 to $6700. According to extensive Monte-Carlo analysis of this bet, risk mitigation
reduced Watson’s equity by only 0.2% (from 76.6% to 76.4%), but it entailed significantly
less downside risk (more than 10%) in the event that Watson got the DD wrong. With
a protection-to-cost ratio of over 50 to 1, we consider risk mitigation to have provided in
this case an inexpensive form of disaster insurance, and the Watson team members were
relieved to see that Watson did not risk his lead on this DD bet.
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3.1.2 Endgame Monte-Carlo Wagers

For the Series 2 Sparring Games, we significantly boosted the simulation speed for regular
clues and Final Jeopardy. This enabled replacement of neural net wagering in endgame
states by a routine based on live Monte-Carlo trials. This analysis gives essentially perfect
knowledge of which bet achieves the highest win rate in simulation, although it is still subject
to modeling errors and confidence estimation errors. It also eliminated the primary weakness
inWatson’s DD strategy, as neural net misevaluations in endgames often resulted in serious
errors that could considerably exceed 1% equity loss. As detailed below in section 3.1.3,
usage of Monte-Carlo analysis for endgame wagers yielded a quite significant reduction
(more than a factor of two) in Watson’s overall error rate in DD betting.

With few clues remaining before Final Jeopardy, the dependence of equity on a player’s
score can exhibit complex behavior and discontinuities, in contrast to the smooth monotone
behavior observed in early and mid-game states. A striking example is plotted in Figure 7.
This was an endgame DD bet from the Series 2 Sparring Games where Watson had 19800,
the humans had 13000 and 14300, and there were only four remaining clues (two $400 and
two $800). Watson was 4-for-4 in the category, which translated into 71.8% DD confidence.
(We opted for a more conservative estimate than the 75% figure mentioned earlier, due to
possible confidence estimation errors.)

We see on the left that the right/wrong equity curves exhibit complex acceleration and
deceleration, as well as periodic jumps with periodicity of $400. These may reflect scores
where a discrete change occurs in the combinations of remaining squares needed to reach
certain FJ breakpoints, such as a lockout. The equity-vs-bet curve on the right also displays
interesting multi-modal behavior. There is a peak “lead-preserving bet” around $3000. At
$6400, the curve begins a steep ascent – this is the point at which a lockout becomes
mathematically possible. The curve continues to rise until about $12000, where a correct
answer assures the lockout, and then it falls off.
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Figure 7: MC DD bet analysis. (left) Equity estimates getting the DD right (top curve)
and wrong (bottom curve). (right) Bet equity curve at Watson’s estimated
in-category confidence of 71.8%.
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3.1.3 Performance Metrics and Error Analysis

We assessed the performance of neural net DD wagering by two different methods. First,
we noted an improved win rate in simulations when compared to Watson’s previous DD
wagering algorithm, a set of heuristic betting rules that tried to safely add toWatson’s lead
or safely catch up, without dropping below certain strategically important score breakpoints.
While the heuristic rules embodied sound logic, they suffered a major limitation of not taking
Watson’s in-category confidence into account, so that they would generate the same wager
regardless of confidence.

Using the heuristic DD betting rules, Watson’s simulated win rate was 61%. With
neural net DD wagering using a default confidence value for every DD, the win rate improved
to 64%. When we added emulation of live DD confidence values to the simulation, the result
was a further jump in win rate, to 67%. We regarded this as a quite significant performance
improvement, given that the DD betting algorithm is only used about 1.5-2.0 times per
game.

The second performance metric utilizes extensive offline Monte-Carlo analysis of many
neural network bets to estimate average “equity loss” per DD bet, i.e., the average difference
between the equity of the true best bet, with highest simulated win rate, and the equity
of the bet selected by the neural net. This figure was approximately 0.6% per DD bet,
which was quite good, as it implied that the overhead to improve Watson’s win rate
via improved DD wagering was less than 1.2%. Most of the equity loss was due to large
errors in endgame states. As mentioned earlier, we substantially reduced the loss rate
by implementing DD wagering in endgames based on live Monte-Carlo simulations. This
reduced Watson’s average equity loss per DD bet from 0.6% to ∼0.25%, with about half of
that loss rate resulting from deliberately imposed risk mitigation. Hence we were satisfied
that Watson’s DD algorithm was close enough to optimal for all practical purposes.

3.1.4 Human DD Error Analysis

An interesting and nontrivial question arising from the above analysis is how does Wat-

son’s equity loss rate in DD wagering compare with that of human contestants. The main
difficulty in attempting such analysis is that contestants’ confidence in answering the DD
clue correctly is largely unobservable in historical data. We have no way to know their
confidence in the category, and their knowledge on previous clues in the category is only
revealed if they won the buzz and gave an answer. In the absence of confidence information,
it is hard to ascribe an error level to any individual DD bet, although we may be able to
assess average wagering error over an entire population of contestants.

We devised two methods that respectively should provide lower and upper bounds on
population average wagering error, given sufficient samples of historical DD bets. The
first method is a historical replacement technique similar to those presented in sections 2.3
and 3.2. For each historical DD, we first use the Average Contestant simulator to run
many trials starting from the actual outcome state of the DD, reflecting the contestant’s
actual bet and actual right or wrong answer. We then replace the contestant’s bet with
some algorithmically computed bet, wherein confidence is estimated solely from observable
information, and we rerun trials from the modified outcome state, where the contestant’s
score is changed due to the change of bet. Averaged over many DDs, the equity difference
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between human bets and algorithmic bets should indicate which approach is better. If the
algorithmic bets prove to be better, the equity difference should provide a lower bound on
the true human error rate: since the algorithm does not have access to private confidence
information, it would presumably obtain even better results given such information.

There could be issues with such an approach in faithfully simulating what would have
happened if the contestant had bet differently, as changing the bet might have changed
subsequent square selection (DD seeking) and subsequent DD wagering. We minimized these
issues by limiting the analysis to last-DD situations. Our historical dataset contained more
than 2200 regular episodes where both DDs were played in the second round. By analyzing
last-DD states in these episodes, we avoid having to simulate subsequent DD wagers, and
the effect of subsequent square selection should be minimal since there are no more DDs to
be found. Also, the last-DD states allow us to use endgame Monte-Carlo for algorithmic
wagering, which should give stronger results than neural net wagering. Confidence estimates
in the Monte-Carlo calculation were based on the historical mean accuracy on second-round
DDs given the row location. This ranges from ∼72% for the top two rows to ∼57% for the
bottom row.

As seen in Table 3, results of the analysis showed that contestant bets on average
obtained about 2.9% less equity per bet than Monte-Carlo algorithmic bets. As this should
constitute a lower bound on the true human error rate in last-DD states, whereas Watson’s
error rate is 0.25% overall and near-perfect in endgames states, this provides compelling
evidence of Watson’s superiority to human contestants, at least for last-DD wagers.

Our second analysis method ignores the actual right/wrong contestant answers, and
instead uses the Monte-Carlo analysis to calculate the equity loss of a human bet, assuming
that the row-based mean DD accuracies provide “correct” confidence estimates. This type
of analysis should overestimate human errors, as it unduly penalizes small bets based on
low private confidence, and large bets based on high private confidence. Results of this
analysis on the last-DD dataset show an average error rate of 4.0% per DD bet. This result
is consistent with an estimated lower bound on the error rate of 2.9%, and in combination,
both results provide reasonable evidence that the actual human error rate lies in between
the estimated bounds.

Last-DD Player Lower Bound Upper Bound Avg. Human Bet Avg. MC Bet

All 2.9% 4.0% $2870 $6220
A (leader) 0.9% 2.2% $2590 $5380

B,C (trailer) 4.8% 5.5% $3120 $6970

Table 3: Lower and upper bounds on average equity loss rates of historical human contestant
wagers on the last DD of the game. The average human bets vs. recommended
MC bets (at default confidence values) are also displayed.

A closer examination of the analysis reveals that humans systematically wager these
DDs far too conservatively. After segregating the data according to whether the DD player
is leading or trailing, we found that this conservatism is manifest in both cases. Leading
players on average bet $2590, whereas the average recommended MC bet is $5380. For
trailing players, the average bet is $3120 vs. an average recommended bet of $6970. A
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more startling finding is that these errors are far more costly to trailers than to leaders, in
terms of equity loss. The lower and upper bounds on error rate for leaders are 0.9% and
2.2%, while for trailers, the respective bounds are 4.8% and 5.5%! We further discuss the
implications of these results for human contestants in section 4.2.

3.1.5 Multi-game DD Wagering

As mentioned in section 2.6, Game 1 and Game 2 of our Exhibition Match required distinct
wagering strategies, with both differing from single-game wagering. We trained separate
neural networks for Game 1 and Game 2. The Game 2 net was trained first, using a plausible
artificial distribution of Game 1 final scores.

Having trained the Game 2 neural net, we could then estimate the expected probabilities
of Watson ending the match in first, second, or third place, starting from any combination
of Game 1 final scores, by extensive offline Monte-Carlo simulations. We used this to create
three lookup tables, for the cases where Watson ends Game 1 in first, second, or third
place, of Watson match equities at various Game 1 final score combinations, ranging from
(0, 0, 0) to (72000, 72000, 0) in increments of 6000. (Since adding or subtracting a constant
from all Game 1 scores has no effect on match equities, we can without loss of generality
subtract a constant so that the lowest Game 1 score is zero.) Since match equities are
extremely smooth over these grid points, bilinear interpolation provides a fast and highly
accurate evaluation of Game 1 end states. Such lookup tables then enabled fast training of
a Game 1 neural net, using simulated matches that only played to the end of Game 1, and
then assigned expected match-equity rewards using the tables.

Based on our earlier experience, we added a heuristic “lockout-potential” feature to the
Game 2 input representation, using a heuristic sigmoidal formula to estimate the probability
that Watson would win the match by lockout, given the Game 1 and Game 2 scores and
the dollar value of remaining clues. This feature appeared to enable highly accurate Game
2 evaluations and eliminated the large endgame equity losses that we had observed in using
the single-game neural net.

An important and difficult new issue we faced in the Exhibition Match format was how
to assign relative utilities to finishing in first, second and third place. Unlike the Sparring
Games where the only reasonable objective was to finish first, the team extensively debated
how much partial credit should be ascribed to a second-place finish, in which Watson

defeated one of the two greatest Jeopardy! contestants of all time. Ultimately we decided to
base the match DD wagering on full credit for first, half credit for second, and zero credit
for a third place finish. Such an objective acts as an additional type of risk control, where
Watson would only prefer a large bet over a smaller and safer bet if the large bet’s upside
(increased chances to win) exceeded its downside (increased chances of finishing third).
There was unanimous team consensus that such a risk would always be worth taking.

Defining Watson’s match equity as probability of finishing first plus 0.5 times proba-
bility of finishing second, we estimated Watson’s average match equity loss per DD bet at
about 0.3% in Game 1 and 0.55% in Game 2. The majority of loss in each case was due to
risk controls.
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3.2 Final Jeopardy Wagering

Our approach to Final Jeopardy wagering involves computation of a “Best-Response” strat-
egy (Fudenberg & Tirole, 1991) (a standard game-theoretic concept) to the human FJ model
presented in section 2.3. We considered attempting to compute a Nash Equilibrium strat-
egy (Fudenberg & Tirole, 1991), but decided against it for two reasons. First, due to the
imperfect information in Final Jeopardy (contestants know their own confidence given the
category title, but do not know the opponents’ confidence), we would in principle need to
compute a Bayes-Nash equilibrium (BNE), which entails considerably more modeling and
computational challenges. Second, it seems far-fetched to assume that Watson’s opponents
would play their part of a Nash equilibrium or BNE, since average contestants have not
studied game theory.

By using a Best-Response instead of a BNE strategy (assuming we could calculate it), we
aim to more effectively exploit typical human wagering “errors” as recorded in the historical
data. We realized that this potentially exposes Watson to two types of risk. First, if
Watson’s live opponents turned out to use BNE or other more sophisticated strategies
than those built into our human models, Watson might do better by playing the BNE
strategy. We judged this risk to be sufficiently rare that Watson would surely do better
over the course of many Sparring Games by simply playing the Best-Response. Second,
since the Best-Response is essentially a deterministic strategy, a contestant who observed
Watson play many Final Jeopardy rounds might be able to detect and optimally exploit
Watson’s wagering strategy. However, such observations were limited by the procedures
for conducting the Sparring Games, as any contestant would only play 2-3 games against
Watson, and would observe only another 1-2 games as a spectator. In some situations, we
were additionally able to randomize Watson’s bet over a range of bets with approximately
equal expected outcomes; this made it more difficult for humans to inferWatson’s wagering
logic from a limited number of observations.

Computation of the Best-Response proceeds as follows. First, we consult an “FJ prior
accuracy” regression model to estimate Watson’s confidence given the category title. This
model was trained on samples of Watson’s performance in thousands of historical FJ
categories, using NLP-based feature vector representations of the titles. Second, given
Watson’s confidence and the human accuracy/correlation parameters, we derive analytic
probabilities of the eight possible right/wrong outcomes. Third, for a given FJ score combi-
nation, we draw on the order of 10000 Monte-Carlo samples of bets from the human models.
Finally, we evaluate the equity of every legal bet, given the human bets and the right/wrong
outcome probabilities, and select the bet with highest equity.

Our initial implementation of the above algorithm was too slow to use in live play. For-
tunately, after extensive offline analysis using Watson’s default confidence, we discovered
that the Best-Response output could be expressed in terms of a fairly simple set of logical
betting rules. For example, one of the rules for B stipulates:

If B has at least two-thirds of A, and B has less than 2C, check whether 2C-B
(the amount to cover C’s doubled score) is less than or equal to 3B-2A (the
maximum two-thirds bet). If so, then bet 2C-B, otherwise bet everything.

Thus in the Series 1 Sparring Games, we deployed the rule-based encapsulation of the
Best-Response calculation, but with one specific exception where Watson is A, and the
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B player may reasonably consider a so-called “two-thirds” bet, i.e., a small bet that aims
to guarantee a win whenever A is wrong, assuming A makes the standard shut-out bet
(2B-A+1). In some of these situations, the Best-Response calculation calls for Watson

to counter B by making a small, tricky “anti-two-thirds” bet. Whether this really wins
more often depends on exact model parameter values, which have considerable uncertainty,
as discussed earlier in section 2.3. Moreover, if Watson bets small and gets FJ wrong,
it suggests shakiness in his ability to play Final Jeopardy, which might be exploited in
subsequent games, as well as generally looking bad. Conversely, if Watson bets small and
gets FJ right, it risks an embarrassing loss where Watson could have won but failed to
bet enough to win. For all these reasons, the team preferred to override the Best-Response
calculation, and to have Watson simply make the standard bet in this scenario. This
proved to be a judicious choice in hindsight, as there were five games in Series 1 where the
Best-Response would have bet anti-two-thirds, but B did not bet two-thirds in any of those
games.

For the Series 2 Sparring Games, the Best-Response computation had been sped up
enough to enable live wager computations. The team continued to debate whether to allow
anti-two-thirds bets, and ultimately decided it was worth the risk if Watson had unusually
low confidence (as happens, for example, in categories such as US Presidents, Shakespeare,
and US Cities). As it turned out, there were only two games in this series where the Best-
Response would have bet anti-two-thirds. B bet two-thirds in one game but not in the other
game. Watson did not have low confidence in either FJ category, so there were no live test
results of the anti-two-thirds strategy.

We assessed the performance of the Best-Response strategy via the historical replace-
ment technique presented in section 2.3; results are displayed in Table 4. The first column
gives the actual human win rates in the A, B, C roles. The second column shows win rates
for the constrained Best-Response deployed in the Series 1 Sparring Games, in which A
always bets to cover 2B. Note that this algorithm considerably improves over actual human
results as B and C, and provides a smaller but noticeable improvement over human A bets.
We attribute the latter gain partly to more consistent betting, and partly to judicious bets
in some cases to tie 2B, rather than trying to surpass 2B by $1. The last column gives
results for the full Best-Response algorithm including general Best-Response bets as A.
There is nearly a 1% improvement in A’s win rate over the constrained Best-Response; this
provides support for the efficacy of anti-two-thirds and other sophisticated strategies, but
is not quite statistically significant at 2092 trials.

Human Constrained Best-Response Full Best-Response

A 65.3% 67.0% 67.9%
B 28.2% 34.4% 34.4%
C 7.5% 10.5% 10.5%

Table 4: Comparison of actual human win rates with win rates of the constrained and
full Best-Response strategies, by historical replacement in 2092 non-locked FJ
situations from past episodes.
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For the Exhibition Match, we devised live Best-Response algorithms for Game 1 and
Game 2 based on Monte-Carlo samples of the human betting models of section 2.6, and
probabilities of the eight right/wrong outcomes given Watson’s FJ category confidence.
For the first-game FJ, we can’t evaluate directly from the FJ outcomes since there is still
a second game to play. The evaluation is instead based on interpolation over the lookup
tables discussed in section 3.1.5 denoting Watson’s match equities from various first-game
score combinations.

Due to modeling uncertainties in Game 2 FJ, we devoted much effort to interpreting
the Best-Response output in terms of logical betting rules, as well as deciding whether any
Best-Response decisions should be overridden. We ultimately decided to allow Watson to
venture an anti-two-thirds bet as A only if the predicted category confidence was unusually
low; otherwise Watson would always bet to guarantee a win as A by answering correctly.
For wagering as B, the betting rules would only attempt to finish ahead of A if it did not
diminish Watson’s chances of finishing ahead of C. This naturally emerged from the match
utility function which assigned half-credit for a second place finish. Finally, for wagering
as C, the Best-Response output was too complex to derive human-interpretable rules, so
Watson was prepared to run the live calculation in this case. As it turned out, all of the
above work was superfluous, since Watson had a lockout in Game 2 of the Exhibition
Match.

3.3 Square Selection

We considered four different factors that could conceivably be relevant to the optimal overall
objective for Watson in deciding which square to select in a given game state:

• Selecting a Daily Double square: Finding the DDs quickly can provide an excellent
opportunity for Watson to significantly boost his game standing, while also denying
that opportunity to the other players. The potential downside is that Watson may
only have a small bankroll to wager, and may have little or no evidence as to assess
his likelihood of answering the DD clue correctly.

• Retaining control of the board: this involves estimating categories and/or square
values where Watson has the greatest chance to win the buzz and answer correctly.
This would give Watson another chance to try to find a DD, if the selected square
turns out to be a regular clue.

• Learning the “essence” of a category, i.e., gathering information about the category
such as the type of correct answers, so as to improve accuracy on subsequent clues
in the category (Prager et al., 2012). This consideration would suggest selecting low-
value squares first, so that accuracy would be improved on higher-value squares.

• Maximizing expected score change: This concept seeks the best combination of high
expected accuracy with highest dollar value of available clues to obtain the biggest
boost in Watson’s score on the next square.

We used the simulator to systematically investigate numerous weighted combination of
the above four factors. These studies were performed using Champion and Grand Cham-
pion human models, which featured overt DD seeking, aggressive DD wagering, and high
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DD accuracy. Our results showed that, prior to all DDs being revealed, finding DDs is
overwhelmingly the top factor in maximizing Watson’s win rate, and retaining control is
second in importance. Learning the essence of a category appears to provide an effective
strategy only after all DDs have been found, and maximizing expected score change did not
appear to be useful in improving Watson’s win rate.

These findings led us to deploy an algorithm that selects squares as follows. First, if
there are any unrevealed DDs, a square i∗ is selected that maximizes pDD(i)+αpRC(i) where
pDD(i) is the probability that square i contains a DD, pRC(i) is an estimated probability
that Watson will retain control of the board if i does not contain a DD, and α = 0.1 yielded
the best win rate. The first term is calculated using Bayesian inference, as described below
in section 3.3.1. The second probability is estimated by combining the simulation model
of human performance on regular clues with a model of Watson that adjusts its attempt
rate, precision and buzzability as function of number of right/wrong answers previously
given in the category. Second, after all DDs in the round have been found, the algorithm
then switches to selecting the lowest dollar value in the category with the greatest potential
for learning about the category: this is based on the number of unrevealed clues in the
category and their total dollar value.

3.3.1 Bayesian DD Probability Calculation

We calculate pDD(i), the probability that square i contains a DD, according to principles
of Bayesian inference: we combine Bayesian prior probabilities, taken from historical fre-
quencies of DD locations, with evidence from revealed questions according to Bayes’ rule,
to obtain posterior probabilities. The computation is easy to perform incrementally as each
individual question is revealed, and works somewhat differently in Round 1 than in Round
2, due to the different number of available DDs.

In Round 1, there is only one DD, so computation of posterior probabilities is easy. Let
p(i) denote the prior probability that square i contains a DD. Let p(¬i) = 1− p(i) denote
the prior probability that i does not contain a DD. Now assume that a square j is revealed
not to contain a DD. The posterior probability p(i|¬j) according to Bayes’ rule is given by:

p(i|¬j) =
p(¬j|i)p(i)

p(¬j)
(2)

where p(¬j|i) = 1 by definition, assuming i 6= j. Of course, once the DD has been revealed,
all p(i) values for other squares are set to zero.

In Round 2, there are two DDs, and their probabilities are not independent, since both
DDs cannot be located in the same column, plus there are column pair frequencies in
the historical data that may not be explainable by an independent placement model. We
therefore maintain a joint probability distribution p(i, j) indicating the probability that
squares i and j both contain DDs. We initialize p(i, j) to prior values, using joint DD
location frequencies in the historical data. Now assume that square k is revealed not to
contain a DD. The posterior probability p(i, j|¬k) is computed according to Bayes’ rule as:

p(i, j|¬k) =
p(¬k|i, j)p(i, j)

p(¬k)
(3)
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where p(¬k) = 1−p(k) is the marginal distribution of a single DD, integrating over possible
locations of the second DD, and p(¬k|i, j) = 1 if k 6= i and k 6= j, else it equals 0. Note
that the constraint of two DDs never appearing in the same column is enforced by setting
the prior p(i, j) = 0 if squares i and j are in the same column. This guarantees that the
posterior will always equal 0, since Bayes’ rule performs multiplicative updates.

If a square k is discovered to contain a DD, then the rest of the board can be updated
similarly:

p(i, j|k) =
p(k|i, j)p(i, j)

p(k)
(4)

where p(k|i, j) = 1 if k = i or k = j, else it equals 0.

3.3.2 Square Selection Performance Metrics

Live DD strategy No live DD strategy Win rate DDs found Board control

LRTB LRTB 0.621 0.322 0.512
Simple DD seeking LRTB 0.686 0.510 0.518
Bayes (max pDD) LRTB 0.709 0.562 0.520
Bayes (max pDD) Post-DD learning 0.712 0.562 0.520

max(pDD + 0.1pRC ) Post-DD learning 0.714 0.562 0.520

Table 5: Simulation results in two-game matches vs. Grand Champions using various square
selection strategies (500k trials). LRTB denotes left-to-right, top-to-bottom square
selection.

In Table 5 we report on extensive benchmarking of Watson’s performance using five
different combinations of various square selection algorithms. The first column denotes
strategy when there are available DDs to be played in the round, while the second column
denotes strategy after all DDs in the round have been played. These experiments utilized
the two-game match format with Grand Champion models of the human contestants. As
stated earlier, these human models employ aggressive DD and FJ wagering, and simple DD
seeking using the known row statistics when DDs are available. Simulations of Watson use
right/wrong answers drawn from historical categories, so that Watson will exhibit learning
from revealed answers in a category. As an interesting consequence of Watson’s learning,
we model human square selection with no remaining DDs according to an “anti-learning”
strategy, intended to frustrateWatson’s learning, by selecting at the bottom of the category
with greatest potential benefit from learning. We actually observed this behavior in informal
testing with very strong human players (Ed Toutant and David Sampugnaro) just before
the Exhibition Match, and there was evidence that Jennings and Rutter may have selected
some clues in the Exhibition based on this concept.

Results in Table 5 show that the weakest performance is obtained with an extremely
simple baseline strategy of Left-to-Right, Top-to-Bottom (LRTB), i.e., always selecting the
uppermost square in the leftmost available column, while our actual deployed strategy in
the Exhibition gives the strongest performance. Consistent with all our earlier findings,

231



Tesauro, Gondek, Lenchner, Fan & Prager

we see in Table 5 that DD seeking is extremely important, especially when playing against
strong humans that overtly seek DDs. Our Bayesian DD seeking method is significantly
better than simple DD seeking based solely on the row frequencies of DDs. When Watson

and humans all use simple DD seeking, Watson finds 51.0% of the DDs (roughly in line
with its 51.8% average board control) and its match win rate is 68.6%. When Watson

switches to Bayesian DD seeking, its rate of finding DDs jumps to 56.2%, even though
board control is virtually unchanged at 52.0%, and its win rate increases by 2.3% to 70.9%.
On the other hand, if Watson does no DD seeking, and simply uses Left-to-Right, Top-to-
Bottom selection, its rate of finding DDs plunges to 32.2% and its overall win rate drops to
62.1%.

The additional effects of seeking to retain control of the board, and selecting categories
with greatest potential for learning after all DDs are revealed, are smaller but statistically
significant after 500k trials. We find that optimizing the weight on pRC increases win rate
by 0.2%, and maximizing learning potential with no remaining DDs adds another 0.3% to
Watson’s win rate.

3.4 Confidence Threshold for Attempting to Buzz

Watson will attempt to buzz in if the confidence in its top-rated answer exceeds an ad-
justable threshold value. In the vast majority of game states, the threshold was set to a
default value near 50%. While we did not have analysis indicating that this was an optimal
threshold, we did have a strong argument that a 50% threshold would maximize Watson’s
expected score, which ought to be related to maximizing Watson’s chance to win. Fur-
thermore, it was clear that general default buzzing at 50% confidence was better than not
buzzing, since Watson’s expected score change (0) would be the same in both cases, but
the opponents would have a much better chance to improve their scores if Watson did not
buzz.

From an approximate threshold calculation based on a “Max-Delta” objective (described
in Appendix 2), we had suggestive evidence that the initial buzz threshold should be more
aggressive. Subsequent more exact Monte-Carlo analysis for endgames (Appendix 2) and
for early game states (section 4.3) provides substantial backing for an aggressive initial
threshold below 50%. Nevertheless, since Watson tended to be slightly overconfident in
the vicinity of 50% nominal confidence, and since many of Watson’s wrong answers in this
vicinity clearly revealed the correct answer to the opponents, the 50% default threshold
may have been a prudent choice.

Near the end of the game the optimal buzz threshold may vary significantly from the
default value. One special-case modified buzz policy that we devised for endgames uses a
“lockout-preserving” calculation. For Round 2 states with no remaining DDs, if Watson

has a big lead, we calculate whether he has a guaranteed lockout by not buzzing on the
current square. If so, and if the lockout is no longer guaranteed if Watson buzzes and is
wrong, we prohibit Watson from buzzing, regardless of confidence.

In principle, there is an exact optimal binary buzz-in policy within our simulation model
~B∗(c,D) = (B∗

0(c,D), B∗
1(c,D), B∗

2 (c,D), B∗
3 (c,D)) for any game state with a clue currently

in play, given Watson’s confidence c and the dollar value D of the current clue. The policy
components B∗

i (c,D) result from testing whether c exceeds a set of optimal threshold values
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{θ∗i , i = 0, 1, 2, 3}. There are four such values corresponding to the four possible states in
which Watson may buzz: the initial state, first rebound where human #1 answered incor-
rectly, first rebound where human #2 answered incorrectly, and the second rebound where
both humans answered incorrectly. The optimal policy can be calculated using Dynamic
Programming (DP) techniques (Bertsekas, 1995). This involves writing a recursion relation
between the value of a current game state with K clues remaining before FJ, and values of
the possible successor states with K − 1 clues remaining:

VK(s) =

∫

ρ(c)
5

∑

j=1

p(Dj) max
~B(c,Dj)

∑

δ

p(δ| ~B, c)VK−1(s
′(δ,Dj))dc (5)

where ρ(c) is the probability density of Watson’s confidence, p(Dj) denotes the probability
that the next square selected will be in row j with dollar value Dj = $400 ∗ j, the max

operates over Watson’s possible buzz/no-buzz decisions, p(δ| ~B, c) denotes the probabil-
ity of various unit score-change combinations δ, and s′ denotes various possible successor
states after the Dj square has been played, and a score change combination δ occurred.
(See Appendix 2 for a detailed discussion of how the recursion relation in Equation 5 is
calculated.)

We implemented an exact DP solver which successively expands the root state to all
successor states with K − 1,K − 2, ..., 0 clues remaining, where 0 denotes Final Jeopardy
states. The FJ states are evaluated by Monte-Carlo trials, and values are propagated
backward according to Equation 5 to ultimately compute the optimal buzz policy in the
root node state. While this computation is exact within our modeling assumptions, it is
too slow to use in live play if K ≥ 2, due to very high branching factor in the search tree.

In order to achieve acceptable real-time computation taking at most ∼1-2 seconds, we
therefore implemented an Approximate DP calculation in which Equation 5 is only used
in the first step to evaluate VK in terms of VK−1, and the VK−1 values are then based
on plain Monte-Carlo trials (Tesauro & Galperin, 1996; Ginsberg, 1999; Sheppard, 2002).
Due to slowness of the exact DP calculation, we were unable to estimate accuracy of the
approximate method for K > 5. However, we did verify that Approximate DP usually
gave quite good threshold estimates (within ∼5% of the exact value) for K ≤ 5 remaining
squares, so this was our switchover point to invoke Approximate DP as deployed in the
live Series 2 Sparring Games against human champions. An analogous algorithm based on
match equities was also deployed in Game 2 of the Exhibition Match, but was indifferent
on the final five clues in the live game, since Watson had a guaranteed win after either
buzzing or not buzzing.

3.4.1 Illustrative Examples

The Approximate DP buzz-in algorithm easily handles, for example, a so-called “desperation
buzz” on the last clue, where Watson must buzz in and answer correctly to avoid being
locked out (e.g., suppose Watson has 4000, the human contestants have 10000 and 2000,
and the final clue value is $1200). Generally speaking, optimal endgame buzzing shows the
greatest deviation from default buzzing near certain critical score breakpoints, such as the
crossover from third to second place, or from second to first place. When a player’s score is
just below one of these breakpoints, aggressive buzzing is usually correct. Conversely, with
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a score just above a critical breakpoint, players should buzz much more conservatively, to
guard against dropping below the breakpoint.

The most critical breakpoint is where a contestant achieves a guaranteed lockout. In
near-lockout situations, the algorithm may generate spectacular movements of the buzz
threshold that are hard to believe on first glance, but which can be appreciated after detailed
analysis. An example taken from the Sparring Games is a last-clue situation whereWatson

had 28000, the humans had 13500 and 12800, and the clue value was $800. The (initially)
surprising result is that the optimal buzz threshold drops all the way to zero! This is because
after buzzing and answering incorrectly, Watson is no worse off than after not buzzing.
In either case, the human B player must buzz and answer correctly in order to avoid the
lockout. On the other hand, buzzing and answering correctly secures the win for Watson,
so this is a risk-free chance to try to buzz and win the game.

A more complex example occurred in a later game, where there were two squares re-
maining (the current one was $1200 and the final one was $2000), and Watson had 31600,
vs. 13000 and 6600 for the humans. Once again, any correct answer by Watson wins the
game. The analysis shows that Watson can buzz regardless of confidence on both this
clue and the next clue, and do just as well or better than not buzzing. On the first clue,
if Watson buzzes and is wrong, B needs to buzz and answer correctly, to reach a score
of 14200, otherwise Watson has a lockout at 30400. Now suppose Watson also gets the
second clue wrong, dropping to 28400. The score pair (28400, 14200) is now just as good
for Watson as the state (31600, 14200) if Watson did not attempt either clue. In both
cases, Watson has a guaranteed win unless B answers correctly. In fact, if B is alert,
she might deliberately not answer at (28400, 14200) as it is a “lock-tie” situation; this is
actually better for Watson than (31600, 14200), although our simulator does not model
such behavior.

A critical example of the converse situation, where B’s buzz-in threshold is much higher
than normal, occurred in an earlier game. On the final clue ($2000 value) Watson (A)
had 25200, B had 12800, and C had 2600, and Watson answered incorrectly on the initial
buzz, dropping to 23200. Despite being a Jeopardy! champion, B unfortunately buzzed on
the rebound and answered incorrectly, thereby locking himself out. Our analysis shows that
the rebound buzz is a massive blunder (although understandable in the heat of live play):
it offers no improvement in FJ chances if B is right, and forfeits any chance to win if B is
wrong. If the roles were reversed, Watson would have buzzed fairly aggressively on the
initial buzz, to prevent A from achieving the lockout, but never would have buzzed on the
rebound.

Finally, Figure 8 presents a $2000 last-square situation where we fix the human scores
at (13000, 6600) and systematically study how Watson’s initial buzz threshold varies with
score. There are several examples of huge threshold changes as breakpoints are crossed.
For example, Watson’s threshold goes from very aggressive (0.12) just below 13000, to
fairly conservative (0.65) just above 13000. There is additional complex behavior arising
from specific score combinations involving all three players. For example, at 6400 Watson

can take extra risk of answering incorrectly, due to the chance that A may also answer
incorrectly. This creates a situation where A=B+C and Watson has extra chances to
achieve a tie for first place. The same principle applies at 10400, where A=B+C arises if
Watson is wrong and A is right. A different combination comes into play at 10800 where
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Figure 8: Watson’s initial buzz threshold vs. score on the last clue ($2000) before FJ.

Watson has extra incentive not to buzz: if either A or C are right, Watson can bet to
cover 2C and it will still constitute a two-thirds bet.

Figure 8 also shows huge swings whereWatson is close to achieving a lockout. At 23000,
Watson will never buzz, since there is no chance to get a lockout. At 25000, Watson has
a free shot to try for the lockout, as discussed earlier. At 27000, Watson has a provisional
lockout but needs to take some risk to block a correct answer by B, and at 29000, Watson

has a free shot to prevent B from answering.

4. Lessons for Human Contestants

Now that Watson has retired as a Jeopardy! contestant, any future impact of our work
in improving Jeopardy! performance will relate specifically to human contestants. In this
section, we present a number of interesting insights that may help future contestants improve
their overall winning chances.

4.1 Basics of Final Jeopardy Strategy

The observed FJ wagers in our J! Archive dataset suggest that many contestants appearing
on the show devote scant effort to learning good strategies for FJ wagering, apart from the
elementary concept of A wagering at least 2B-A to cover B’s doubled score. While we don’t
intend in this section to provide a definitive treatise on FJ strategy, we can illustrate what
we found to be the most important regions and separating boundaries in FJ strategy space
in a single plot, shown below in Figure 9.

Since FJ scenarios are scale invariant, any scenario is uniquely determined by two vari-
ables: B’s score relative to A, and C’s score relative to B. The ratio of B to A is the most
important quantity in Final Jeopardy, and the most important breakpoint (apart from
B<A/2 which is a lockout) is B=2A/3, illustrated by the solid red line. All contestants
should be familiar with the implications of this scenario, which is analogous to the game of
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Matching Pennies, where A wins if the pennies match, and B wins if the pennies mismatch.
If B has at least two-thirds of A, B can secure a win whenever A is wrong by making a
small “two-thirds” bet ≤(3B-2A), assuming that A bets to cover 2B. However, this strategy
is vulnerable to A making a small “anti-two-thirds” bet, which would give B no chance to
win. Conversely, A’s anti-two-thirds bet is vulnerable to B making a large bet to overtake
A. A related breakpoint is the case where B≥3A/4: in this situation B’s two-thirds bet can
overtake A, so that A’s anti-two-thirds option is eliminated.

Other important breakpoints include C=B/2 (green line): below this line, B can keep
out C with a small bet ≤(B-2C), while above the line, B needs to bet at least (2C-B) to cover
C’s doubled score. The latter case may lead to a dilemma if (2C-B) exceeds the maximum
two-thirds bet (3B-2A). The demarcation where this dilemma occurs is the magenta curve
(2B=A+C), which is also known as the “equal spacing” breakpoint, since A-B=B-C.

Breakpoints that primarily affect C are the curves C=(A-B) (dark orange) and C=2(A-
B) (gray). Basically, C needs to be able to reach the 2(A-B) curve to have any chance to
win, so that C has no chance below the (A-B) curve. For scenarios lying between the two
curves, C has a “minimum rational” bet of at least 2(A-B)-C, although a larger bet may be
reasonable, for example, if C≥A/2 (dotted black curve) and can overtake A. Such a scenario
would also dissuade A from trying an anti-two-thirds bet against B.

When C has at least 2(A-B), the general rule is to bet small enough to stay above this
value. An additional upper bound emerging from our Best Response calculation occurs
when C≥2B/3 (blue line), in cases where B had more than 3A/4. In this case, B has an
incentive to bet to cover 2C, so that C has an opportunity to execute a two-thirds bet
against B, which may yield more wins than simply staying above 2(A-B).
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Figure 9: Illustration of important Final Jeopardy strategy regions and boundaries, as a
function of B’s score relative to A, and C’s score relative to B.
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4.2 More Aggressive DD Wagering

As we mentioned earlier in section 3.1.4, our analysis indicates that human contestants
systematically err on the conservative side in DD wagering, given their actual likelihood of
answering the DD clue correctly. This may reflect underestimation or ignorance of their
likely DD accuracy, as well as a lack of quantitative means to estimate the impact of a
score increase or decrease on one’s overall winning chances. Another possibility is that
contestants may recognize at some level that an aggressive bet is called for, but are too risk
averse to actually try it.

In this section we present a specific historical example to illustrate how our analysis
works, and to motivate the potential advantages of more aggressive wagering, as long as
the player has reasonably good confidence in being able to answer correctly. Our example
wager is taken from a J! Archive episode which aired during the last decade. The second
place player “B” found the last DD on the $800 clue in a category where one previous clue
($400) had been played; this clue was answered correctly by B. At that point, the scores
were all quite close, with B having 10400 while the opponents had 11400 and 9400. There
were eight remaining clues to be played, worth a total of $10800. B chose to wager only
$1000, got the DD right, and ultimately won the game.

We of course do not know B’s confidence in this situation, but we suspect it was reason-
ably good, because: (a) $800 second-round DDs tend to be easy, with average contestant
accuracy of about 72%; (b) B had already answered correctly the one previous clue in the
category; (c) wagers of $1000 tend not to be indicative of unusually low DD accuracy. Given
the above considerations, we suspect that B had at least a 70% chance of answering the DD
correctly, and the low wager was due to a desire to avoid dropping into third place after an
incorrect answer.

As one might surmise from reading section 3.1.4, our analysis suggests that at 70% con-
fidence, the best wager is a True Daily Double, $10400. A plot of Monte-Carlo right/wrong
equity curves, and equity at 70% confidence, as a function of amount wagered is shown in
Figure 10. Note that for large bets, the red curve has a smaller magnitude slope than the
green curve, and it decelerates more rapidly. Once the bet is sufficiently large, there is little
incremental equity loss in increasing the bet, since the player has almost no chance to win at
that point. Conversely, there is strong incremental gain from increasing the bet and getting
the DD right. These factors tilt the calculation decidedly in favor of a maximal bet. Para-
doxically, the almost certain loss after getting the DD wrong may be exactly why humans
avoid betting True DDs in this situation. Many psychological studies have documented “ir-
rational” preferences for taking immediate gains, or avoiding immediate losses, which have
been attributed to so-called “hyperbolic discounting” (Ainslie, 2001). Since Jeopardy! is an
undiscounted game, correcting any natural tendencies towards overly short-term thinking
may be advisable for prospective contestants.

After a $1000 bet, B is either tied for first or tied for second, but the game is still very
close so there is little change in equity. MC estimates B’s equity at 39% if right and 31%
if wrong. However, after a true DD wager, B would either obtain a commanding lead with
20800 and an estimated equity of 70% after answering correctly, or drop to zero with only
about 3% equity after answering incorrectly. The equity difference between these two bets
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is compelling at 70% confidence: betting $1000 gives 36.6% equity, while betting $10400
gives 49.9% equity, a hefty improvement of 13.3% in overall winning chances.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2000  4000  6000  8000  10000  12000

D
D

 p
la

y
e
r 

w
in

p
ro

b

DD bet

Historical (10400, 11400, 9400) last DD

DD wrong equity
DD right equity

Equity @ 70% confidence

Figure 10: Equities after getting the DD right or wrong and at 70% confidence, in the
example historical last-DD situation with scores (10400, 11400, 9400).

4.3 Counterintuitive Buzz-in Thresholds

Probably the most counterintuitive result of our analysis of buzz-in confidence thresholds is
that attempting to answer may be correct even if a player has negative equity expectation
in doing so. When we discussed Watson’s 50% default threshold with human contestants
during the Sparring Games, many of them seemed surprised at such a low value, and some
even objected vociferously. While their arguments were not based on quantitative equity
estimates, they seem to intuitively recognize that Watson’s game standing would diminish
on average after buzzing at 50% confidence, since Watson’s score change would be zero
on average, but one of the opponent scores would likely increase. We tried to explain that
this is clearly better than the alternative of not buzzing, where Watson would again have
zero expected score change, but the unimpeded opponents would have greater chances for
a score increase.

Having developed an offline Monte-Carlo method for computing buzz-in thresholds for
human contestants (see Appendix 2 for details), we will compare the actual MC results
with a simple approximate formula for the threshold, derived below, which gives insight into
how a negative-expectation threshold comes about. A more complex analytic calculation,
yielding closed-form analytic expressions for all four threshold values, is detailed in the
“Max-Delta approximation” section of Appendix 2. This analysis also agrees closely with
our MC results.

We consider equities for one player (the “strategic” player) relative to a baseline state,
with equity E000, where the clue expires with no score change. We aim to calculate a
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confidence threshold θ0 on the initial buzz such that if the player’s confidence c = θ0, then
the equities buzzing and not buzzing are equal, i.e., ENB(c) = EB(c).

Let N = ENB − E000 denote the expected equity change if the player does not buzz,
either initially on any rebound. This will depend on how often the opponents buzz and
their precision, but for good opponents, N should be some negative value. In our MC
simulations of early-game states with the refined Average Contestant model (where b and p
are estimated based on round and clue row number), N is approximately -0.86% for a $1000
clue in the first round. In order to understand the effects of correlated opponent buzzing
and precision, we also ran simulations with a corresponding uncorrelated model, obtaining
N ∼-0.96% in the same situation.

Now consider the case where the player buzzes initially. For confidence values c in the
vicinity of θ0, if the player loses the buzz, we argue that the outcome should again be N :
since rebound thresholds are higher than θ0, as shown below, the player will not buzz on
any rebounds. Hence buzzing should only differ from not buzzing when the player wins the
buzz. After winning the buzz and answering correctly, the player’s equity will increase by
some positive equity gain G. For early $1000 first-round clues, G appears to be ∼+3.25%,
regardless of whether the opponents are correlated or uncorrelated with the player. After an
incorrect answer, due to approximate linearity of equity with respect to score changes early
in the game, the player will have an equity loss ∼ −G, plus a likely further loss when the
opponents play the rebound. For uncorrelated opponents, the extra loss should be about
N , while for correlated opponents, it should be some lesser but still negative value N ′,
due to the fact that rebound precision is less than initial buzz precision in the correlated
model. Assuming N ′ = N for simplicity, confidence values c where buzzing is better than
not buzzing are determined by the following inequality:

cG+ (1− c)(N −G) ≥ N (6)

Rearranging terms, we obtain: c ≥ θ0 = G/(2G−N). SinceN is negative, the confidence
threshold will be less than G/2G, i.e., less than 50%. For the above quoted values of G
and N , equation 6 yields a threshold value of θ0 = 0.436 in the uncorrelated model, and
θ0 = 0.442 in the correlated model.

We now compare with the actual MC threshold calculation, seen in Table 6, for one
player (the leader) in a typical early game situation, where the first column has been
played, the scores are (1800, -600, 1000), and the DD has not been played. Similar threshold
values are robustly obtained in most early states, regardless of whether the player is leading
or trailing. As per section 3.4, θ0 denotes the initial threshold, θ1 and θ2 denote the
first rebound thresholds, and θ3 denotes the second rebound threshold. Note that the θ0
values for $1000 clues in the correlated and uncorrelated models match very well with the
approximate formula values. As they are also statistically equal, this suggests that the MC
calculation for θ0 is robust in that there is no sensitive dependence on an assumed modest
level of contestant correlation.

We also note an increase in first rebound thresholds for both models, and a further
increase in second rebound thresholds. This makes sense as the expected loss when not
buzzing, N , should diminish when the opponents are not eligible to buzz. For double
rebounds, N should equal 0, leading to a threshold of 0.5 according to the approximate
formula. The increase in rebound thresholds is modest for the uncorrelated model, but quite
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significant for the correlated model. This is due to positive correlation of precision, implying
that a player’s posterior confidence is reduced after observing one or both opponents answer
incorrectly.

Similar experiments for $200 clues obtain a more aggressive initial threshold (42% vs
44%). This is as expected: since $200 clues are easier, the opponents are more likely to
buzz and answer correctly if the strategic player does not buzz. Hence the magnitude of
N relative to G should increase, yielding a lower threshold. While not shown in Table 6,
thresholds for $400, $600, and $800 clues take on plausible intermediate values between the
$200 and $1000 limiting cases.

clue value (ρb, ρp) θ0 θ1 θ2 θ3
$1000 (0.2, 0.2) 0.44 0.67 0.68 0.78
$1000 (0, 0) 0.44 0.49 0.50 0.53

$200 (0.2, 0.2) 0.42 0.69 0.68 0.83
$200 (0, 0) 0.42 0.47 0.48 0.54

Table 6: Early buzz-in thresholds in correlated and uncorrelated refined Average Contestant
models, based on 800K MC trials of the 20 end-of-clue states. Test position scores
(1800, -600, 1000), one column played, DD remains to be played.

In summary, while human contestants do not make precise confidence estimates, we
suspect that their buzz attempts are safely above 50%, where they are more likely to be
right than wrong. We would also be surprised if they became more cautious on rebounds,
after one or both opponents answered incorrectly. By contrast, our analysis suggests that
early in the game, it may be profitable to make slightly more speculative buzz attempts on
the initial buzz, where the odds are even or slightly against getting it right. An important
caveat is that such speculative guesses should not have a strong “tip-off” effect that would
significantly aid a rebounder.

We would also advocate exercising caution on rebounds. Despite the tip-off effect, there
is clear historical evidence that human precision is positively correlated, and declines on
rebounds. As seen in our correlated threshold calculation, contestants should have well
above 50% initial confidence to venture a rebound attempt, especially on a double rebound.

4.4 Lock-Tie Implications

We conclude this section by examining some of the strange and amusing consequences of
the “Lock-Tie” scenario in Final Jeopardy, where B’s score is exactly half of A’s score. In
this scenario, A is likely to bet nothing, so that B can achieve a tie for first place by betting
everything and getting FJ right. This is decidedly preferable to having more than half of
A’s score, where B would need to get FJ right and A to get FJ wrong in order to win. The
preference of B for a lower score can lead to some unusual strategy decisions (to say the
least) near the end of the game. For example, Dupee (1998) discusses DD wagering on the
last clue before Final Jeopardy, where the DD player has 7100 and the opponents have 9000
and 1000. Dupee advocates wagering $2600, which takes the lead with 9700 if correct, and
drops to a lock-tie at 4500 if incorrect.
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Watson’s analysis turns up many such last-clue DD situations where lock-tie considera-
tions lead to unusual or even paradoxical bets. For example, in episode 5516, Greg Lindsay7

faced a last-clue DD decision, trailing with 6200 vs. 19200 and 9500. Greg wagered $6000
and ultimately won the game. However, Watson regards this as a serious error, and recom-
mends wagering $3400 instead, which achieves a lock-tie at 9600 after a correct answer. We
also frequently find Watson wagering more than necessary on a last-clue DD to achieve a
lockout. In one such example, Watson had 26000 and the opponents had 19800 and 4400.
Watson only needed to bet $13600 to secure the lockout, but this puts Watson at 12400
after answering incorrectly. Watson instead bet $16100, which also achieves a lockout if
correct, but drops to a second-place lock-tie score of 9900 after answering incorrectly.

Watson also discovered that the lock-tie can influence wagering several squares before
the end of the game. In our analysis of historical last-DD human bets, we found a class of
situations where the DD player is trailing badly, and Watson recommends betting exactly
$100 less than a True Daily Double. An example situation is where the DD player has 5000,
the opponents have 21400 and 2800, and there are five remaining clues after the DD to be
played, worth a total of $6000. Watson recommends betting $4900, which certainly seems
weird and inconsequential, but there appears to be a real point to it. Note that the leader’s
score of 21400 happens to be an odd multiple of 200 (107x200). Since all remaining clues
are even multiples of 200, the leader’s score entering FJ will always be an odd multiple of
200. Now, in order to reach a lock-tie FJ, it follows that the DD player’s score must be
an odd multiple of 100. This is achieved by wagering $4900, with appreciable chances of a
lock-tie, instead of $5000 which makes the lock-tie impossible. As the $4900 bet offers 7.2%
equity instead of 6.4%, the lock-tie potential constitutes a substantial portion of overall
winning chances in this situation.

Finally, we note that lock-ties can provide an incentive for players to intentionally give
wrong answers. We were first alerted to this possibility by puzzle editor Peter Gordon, who
emailed a last-clue DD scenario where Watson has 6000 and the opponents have 10000
and -1000. Peter recommended that Watson bet $1000 and get it wrong on purpose! Such
a course of action would only require Watson to get FJ right in order to win, whereas after
a large DD bet to take the lead, Watson needs to get both the DD clue and FJ right in
order to win.

In subsequent testing of Watson’s buzz-in strategy, we found a number of fascinating
last-clue scenarios where Watson reported that buzz/wrong on the rebound offers better
equity than either buzz/right or not buzzing. It turns out that these scenarios all occur
when A=2B-V, where V is the value of the last clue, and C is out of contention. (As an
example, suppose A=18800, B=10000, C=7600 and V=1200.) This situation allows B a
double chance to achieve a lock-tie! First of all, B should never buzz initially, both because
a wrong answer results in getting locked out, and because A may buzz and get it right,
which results in a lock-tie. Additionally, A may buzz and get it wrong, reducing A’s score
to A-V = 2(B-V). If this happens, B can again reach a lock-tie by buzzing and answering
incorrectly. This scenario is not as remote as one might think – it seems to occur about
once per season – and in the majority of cases, the lock-tie is spoiled by incorrect behavior
of B.

7. Greg Lindsay was the only contestant to win three Sparring Games against Watson.

241



Tesauro, Gondek, Lenchner, Fan & Prager

5. Conclusions

By combining an original simulation model of Jeopardy! with state-of-the-art statistical
learning and optimization techniques, we created a set of real-time game strategy algorithms
that made Watson a much more formidable Jeopardy! contestant. As we have documented
in detail, our strategy methods resulted in a significant boost in Watson’s expected win
rate in the Sparring Games and in the Exhibition Match, when compared with simple
heuristic strategies. For DD wagering, our neural net method obtained a 6% improvement
in win rate compared with our prior heuristic, and we estimate a further 0.6% improvement
by using live Monte-Carlo analysis for endgame DDs. For FJ betting, simulations show a
3% improvement over a simple heuristic that always bets to cover when leading, and bets
everything when trailing. As seen in Table 5, our best square selection method improves over
heuristics by ∼3-9%, depending on how much DD seeking is done by the heuristic. We have
no data on heuristic endgame buzzing, but a conservative guess is that our Approximate
DP method would achieve ∼0.5% to 1% greater win rate. The aggregate benefit of these
individual strategy improvements appears to be additive, since simulations put Watson’s
win rate at 50% using all baseline strategies, versus 70% using all advanced strategies.

There is also ample evidence that each of our strategy algorithms exceeds human ca-
pabilities in real-time decision making. Historical replacement shows that Watson’s Best-
Response FJ wagering clearly outperforms human wagers. Watson is also better at finding
DDs than humans, as seen from the excess fraction of DDs found relative to its average
board control. According to simulations, this translates into a greater overall win rate.

In the cases of Daily Double wagering and endgame buzzing, it is clear that humans are
incapable in real time of anything like the precise equity estimates, confidence estimates, and
complex calculations performed by our algorithms to evaluate possible decisions. Watson’s
error rate improves over humans by an order of magnitude in last-DD situations, as we saw
in section 3.1.4. There is likely to be a lesser but still significant improvement on earlier
DDs. It is difficult to identify human buzzing errors: a failure to buzz is indistinguishable
from losing the buzz, and even if a contestant buzzes and is wrong, the decision may be
correct at high enough confidence. We surmise that in most cases, human buzz errors are
small. Our algorithm’s main advantage is likely in handling special-case endgame states
where humans can make major errors, such as mishandling a lock-tie or needlessly locking
themselves out.

In addition to boosting Watson’s results, our work provides the first-ever means of
quantitative analysis applicable to any Jeopardy! game state and covering all aspects of
game strategy. Consequently, we have unearthed a wealth of new insights regarding what
constitutes effective strategy, and how much of a difference strategy can make in a contes-
tant’s overall ability to win. While we have illustrated numerous examples of such insights
throughout the paper, we expect that even greater understanding of proper Jeopardy! strat-
egy will be obtained by further development and deployment of algorithms based on our
approaches. Just as top humans in classic board games (Chess, Backgammon, etc.) now
use computer software as invaluable study aids, we envision that studying with Jeopardy!

strategy software could become a vital part of contestant preparation to appear on the
show. Toward that end, we are currently developing a version of our DD wager calculator
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to be deployed on J! Archive. This will nicely complement the existing FJ wager calculator,
and will make our DD analysis widely accessible for study by prospective contestants.

For simulation modelers, perhaps the most important take-home lesson from our work
on Watson is a reminder of the merits of starting from an approach based on extreme
simplification. It is generally appreciated that simulation predictions may be insensitive
to many low-level details. However, given the central role of the natural language clues
and category titles in Jeopardy! gameplay, it is at least mildly surprising that successful
simulation models may completely ignore the natural language content. One might have
also thought that simple mean-rate models would be inadequate, as they fail to capture
potentially important hot and cold streaks in specific categories, as well as variance across
contestants in general QA ability. Such factors are apparently not critically important to
model for purposes of optimizing Watson’s strategies. Finally, it was not clear that we
could adequately predict expected outcomes of Watson vs. two humans from scant live-
game data. We had only crude estimates of relative buzzability, etc., and made no attempt
to model the impact of Watson’s unusual gameplay on human performance, or the tip-
off benefit to humans when Watson answers incorrectly. Despite these limitations, the
validation studies of section 2.7 demonstrate remarkably accurate predictions of performance
metrics.

Looking beyond the immediate Jeopardy! domain, we also foresee more general appli-
cability of our high-level approach to coupling Decision Analytics to QA Analytics, which
consists of building a simulation model of a domain (including other agents in the domain),
simulating short-term and long-term risks and rewards of QA-based decisions, and then
applying learning, optimization and Risk Analytics techniques to develop effective decision
policies. We are currently investigating applications of this high-level approach in health
care, dynamic pricing, and security (i.e., counter-terrorism) domains.
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Appendix A. Watson’s Competitive Record

Prior to appearing on Jeopardy!, Watson played more than 100 “Sparring Games” against
former Jeopardy! contestants in a realistic replica of a TV studio, which was constructed
at the IBM Research Center in Yorktown Heights, NY. The studio featured real Jeopardy!
contestant lecterns and signaling devices, and made use of the actual JPI (Jeopardy Pro-
ductions Inc.) game-control system. The content for each game (categories, clues, answers)
was supplied directly by JPI, and consisted of actual Jeopardy! episodes that had already
been taped, but not yet aired. (This eliminated the possibility that contestants could have
previously seen the content used in their games.) A professional actor, Todd Crain, was
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hired to host the games. To incentivize the contestants, they were paid $1000 for each
first-place finish, and $250 for each second-place finish.

An initial series of 73 games took place between Oct. 2009 and Mar. 2010. Contestants
were recruited by JPI, most of whom had appeared on the show only once or twice, and none
had appeared in more than three episodes. We considered these players as representative of
“average” human contestants that appear on the show. Results in this series of games were
that Watson finished first in 47 games (64.4%), second in 15 games (20.5%), and third
in 11 games (15.1%). We also note that 21 of Watson’s 47 wins were by “lockout,” i.e.,
guaranteed wins where Watson could not be caught in Final Jeopardy.

Watson additionally played a second series of 55 games during Fall 2010, this time
against much stronger human opposition. These were contestants who had competed in the
show’s annual Tournament of Champions, and had done well enough to reach the final or
semi-final rounds. Watson was also considerably improved in all respects, and in particular,
its full complement of advanced quantitative strategies was deployed in these games. (By
contrast, the only advanced strategy in most of the Series 1 games was for Final Jeopardy
betting.) Results in this series were as follows: Watson finished first in 39 games (70.9%),
second in 8 games (14.55%) and third in 8 games (14.55%). Watson’s rate of winning by
lockout also improved, to 30 out of 39 games (76.9%), vs. 21/47 = 44.7% in the previous
series.

Finally, as witnessed by millions of viewers, Watson played a two-game Exhibition
match against Ken Jennings and Brad Rutter, arguably the two best human Jeopardy!

contestants of all time. Watson took the $1,000,000 first-place prize by lockout, with a
total score of 77,147. Ken Jennings took second place ($300,000) with a score of 24,000,
and Brad Rutter finished in third place ($200,000) with a score of 21,600.

Appendix B. Buzz Threshold Calculation Details

This Appendix presents computational details of our method for calculating initial buzz and
rebound buzz decisions in an endgame state with no remaining Daily Doubles, a current
selected square with dollar value D, and K remaining squares to be played after the current
square. We assume that we are optimizing the buzz decision of one player (the “strategic”
player), and that the two opponents are “non-strategic” players in that their buzz decisions
are determined by some fixed stochastic process. We further assume that the opponents’
buzz decisions do not change going from the initial buzz to a rebound or second rebound. By
default the strategic player is Watson, although we have also developed a similar method
to compute confidence thresholds for human contestants.

The calculation as invoked by Watson in live play assumes that Watson’s confidence
is not yet known, since computation must begin before the QA system has returned a
confidence value. We therefore pre-compute buzz decisions over discretized confidence values
between 0 and 1 with discretization interval typically set to 0.01.

B.1 Calculation for Watson vs. Two Humans

Calculation proceeds by diagramming a tree of possible events starting from the initial buzz
state and leading to all possible end-of-clue states, each corresponding to a different score
change combination. We denote the end-of-clue equities by Exyz, where the first index
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denotes Watson’s score change, and possible values of x, y and z are “+” (the player’s
score increased by D), “0” (score remained unchanged), and “-” (score decreased by D).
Since at most one contestant can have a score increase, there are a total of 20 end-of-clue
states: 12 where a contestant got the clue right, and eight where no one got it right.

The tree allows for the possibility that Watson may buzz or may not buzz in each of
the four live states (0=initial buzz, 1=rebound with human #1 wrong, 2=rebound with
human #2 wrong, 3=rebound with both humans wrong) where Watson is eligible to buzz.
Descending the tree starting from the initial buzz state, it assigns transition probabilities to
every branch, using our regular-clue model of human performance, along with probabilities
that Watson will win a contested buzz when one or two humans are attempting to buzz.

Having defined the tree, the transition probabilities, and a set of end-of-clue states, the
algorithm first estimates the end-of-clue equities by Monte-Carlo trials over the remaining
clues and Final Jeopardy. The MC trials make use of the stochastic process models of
human and Watson performance on regular clues that we presented earlier.

One useful trick we employ here is to reuse each MC trial over remaining clues in each
of the 20 end-of-clue states, instead of generating independent trials in those states. This
is done by first performing a trial in the (0, 0, 0) state, where no player attempted to buzz
in, and then offsetting the sequence of scores and the scores going into FJ by the specific
score change of each end-of-clue state. This enables faster computation and achieves more
statistically significant comparisons between states than would result from independent
trials. Additionally, while each trial is being performed, we monitor at each step whether
Watson has achieved a guaranteed lockout given the starting scores and the specific score
change combinations of each end-of-clue state. If so, we mark the trial as a guaranteed win
for that end-of-clue state: this obviates the need to simulate FJ in that trial, and makes the
simulations more faithful, since Watson actually uses lockout-preserving buzzing in live
play.

Having evaluated the end-of-clue states as described above, the calculation works back-
wards to evaluate progressively higher interior tree nodes. We first calculate confidence-
independent values of the Watson-ineligible states where Watson buzzes and is wrong.
There are three such states: IS0 (Watson wrong on the initial buzz), IS1 (Watson wrong
after human #1 is wrong) and IS2 (Watson wrong after human #2 is wrong). Formulas
for these values are written below.

To establish notation in these formulas, recall that our human models generate correlated
binary events at the start of a regular clue indicating whether the contestants attempt to
buzz, and whether they have a correct answer. These binary variables persist as the clue is
played, so that their buzz decisions and correctness do not change during rebounds. With
this in mind, we let b00, b01, b10, b11 denote the probabilities of the four possible buzz/no-
buzz joint decisions for a pair of humans, and p00, p01, p10, p11 denote probabilities of the
four possible joint right/wrong outcomes. We typically assume symmetric human models
where b01 = b10 and p01 = p10. We further let pH = p10 + p11 = p01 + p11 denote the single-
contestant human precision, and bH = b10 + b11 = b01 + b11 denote the single-contestant
human buzz attempt rate. These values may be fixed for all clue values, or we may use
estimated values that depend on round and row number, as depicted in Figure 5.
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With the above notation, the formula for IS0 value is:

V (IS0) = b00E−00 + pH(b10 + b11/2)(E−+0 + E−0+) + (1− pH)b10(E−−0 + E−0−)

+p01b11(E−−+ + E−+−)/2 + p00b11E−−− (7)

Similarly, values of the IS1 and IS2 states are given by:

V (IS1) =
b10
bH

E−−0 +
b11
bH

(

p01E−−+ + p00E−−−

1− pH

)

(8)

V (IS2) =
b01
bH

E−0− +
b11
bH

(

p10E−+− + p00E−−−

1− pH

)

(9)

Note in the above expressions that we require conditional probabilities for the remaining
eligible human to buzz and answer correctly, given that the first human buzzed and answered
incorrectly. Using unconditional probabilities would correspond to a model that re-draws
buzz/no-buzz and right/wrong outcomes on each rebound, which is not consistent with our
model.

Next we evaluate the live states LS0, LS1, LS2, LS3 where Watson is eligible to buzz,
starting from the double-rebound state LS3, and working backwards to the first rebound
states LS1 and LS2, and finally the initial-buzz state LS0. We compute separate evaluations
in the cases where Watson buzzes or does not buzz; the larger of these determines the
optimal policy and optimal value function.

At a given Watson confidence level c, the values of the double-rebound state when
Watson buzzes or does not buzz are given respectively by:

VB(LS3, c) = cE+−− + (1− c)E−−− (10)

VNB(LS3, c) = E0−− (11)

ThusWatson’s optimal buzz decision B∗(LS3, c) = argmaxB,NB{VB(LS3, c), VNB(LS3, c)}
and the optimal state value is: V ∗(LS3, c) = max{VB(LS3, c), VNB(LS3, c)}.

Figure 11: Event tree for live state 2, where human #2 buzzed initially and was wrong.
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Calculation of the first rebound state values proceeds as diagrammed in Figure 11,
which considers the LS2 state where human #2 buzzed first and answered incorrectly.
Red arrows indicate outcomes where Watson does not buzz. Green and brown arrows
indicate respective cases where Watson wins the buzz and loses the buzz. Z1 denotes the
probability that Watson wins a contested buzz against one human. The analogous tree for
LS1 is obtained by interchanging human #1 ↔ #2 indices.

VNB(LS2, c) =
b01
bH

E00− +
b11
bH

[

p10E0+− + p00V
∗(LS3, c)

1− pH

]

(12)

VB(LS2, c) =
b11Z1 + b01

bH
[cE+0− + (1− c)V (IS2)]

+
b11(1− Z1)

bH

[

p10E0+− + p00V
∗(LS3, c)

1− pH

]

(13)

Figure 12: Event tree for live state 0, i.e., the initial buzz state.

Finally, Figure 12 illustrates the analysis of the initial buzz state LS0. Z2 denotes the
probability that Watson wins the buzz when both humans are buzzing.

VNB(LS0, c) = b00E000 + (b10 + b11/2)[pH (E0+0 + E00+) +

(1− pH)(V ∗(LS1, c) + V ∗(LS2, c))] (14)

VB(LS0, c) = b00(cE+00 + (1− c)E−00)

+((b01 + b10)Z1 + b11Z2)(cE+00 + (1− c)V (IS0))

+(b10(1− Z1) + b11(1− Z2)/2)(pHE0+0 + (1− pH)V ∗(LS1, c))

+(b01(1− Z1) + b11(1− Z2)/2)(pHE00+ + (1− pH)V ∗(LS2, c)) (15)
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B.2 Calculation for Human vs. Two Humans

Here we present an extension of the above calculation where the “strategic” player is a
human instead of Watson. This scenario introduces additional complexity in that, unlike
Watson, the strategic player’s performance is correlated with that of the opponents (and
vice versa).

Our approach hypothesizes a mechanism to generate correlated private confidence esti-
mates (c0, c1, c2) for each player when the current clue is revealed, drawn from a suitable
multi-variate confidence distribution. We assume that the non-strategic players attempt
to buzz in when their private confidence value exceeds a fixed threshold, chosen so that
the probability mass above the threshold matches the desired attempt rate, and the first
moment above the threshold matches the desired precision. In the uniform (b, p) model over
all clues, as described in section 2.4, we would match the target values b = 0.61, p = 0.87
by using Beta distribution for each player, Beta(0.69, 0.40), with a buzz threshold value set
to 0.572. However, we obtain a more accurate and meaningful threshold model for humans
by fitting a different Beta distribution to each (b, p) parameter combination estimated by
round and row number, as plotted in Figure 5.

We obtain correlated draws from the resulting multi-variate Beta distribution via the
“copula” technique (Nelsen, 1999). This entails drawing ~x = (x0, x1, x2) from a suitably
correlated multi-variate normal distribution, mapping to the respective CDF values ~X =
(X0,X1,X2) which lie in the unit interval, and then mapping these values to the inverse
CDF of the Beta distribution. Since the confidence draws are correlated, this will result
in correlated buzzing by the non-strategic players. We further obtain correlated precision
by similarly generating correlated uniform numbers in the unit interval to compare with
the players’ confidence values as a basis for assigning right/wrong answers. A correlation
coefficient of ∼ 0.4 matches the observed precision correlation in Average Contestants.

With such a model of correlated confidence-based buzzing and precision, we are now
equipped to make necessary modifications to the calculations described in Equations 7-15
and Figures 11,12. In every case, the opponent attempt rates and precisions need to be
conditioned on the strategic player’s confidence value c. We can make accurate numeric
estimates of these conditional probabilities by running many millions of trials with the
simulation model, discretizing the observed c in each trial, and recording at each discrete
level the number of times that 0, 1 or 2 opponents buzzed, and 0, 1, or 2 opponents had a
correct answer. Additionally, when considering buzzing on a first or second rebound, the
strategic player needs to estimate a posterior confidence given that one or two opponents
have already buzzed and answered incorrectly. This can result in a significant drop in
estimated confidence: for example, an initial confidence of 80% will drop to a posterior
value of only 50% in the double-rebound state LS3. Finally, in any of the ineligible states
IS0, IS1, IS2, the expected opponent precisions must also be conditioned upon the strategic
player buzzing and answering incorrectly.

B.3 Max-Delta Approximation

We developed a greatly simplified analytic approximation to the calculations given in Equa-
tions 7-15 by making the following assumptions: (i) the current game state is far from the
end of the game (i.e., the current clue value D is much smaller than the total value of all
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remaining clues); (ii) all three players have intermediate probabilities of winning (i.e., not
close to 0 or 1). Under these assumptions, a player’s equity change at the end of the clue
should be approximately linear in the score changes of the three players. Intuitively, we may
write: ∆E ∼ (χ1∆(S0 − S1) + χ2∆(S0 − S2)), where S0 is the player’s score and S1, S2 are
the opponent scores, recognizing that the chances of winning depend on score positioning
relative to the opponents. If we further assume that the opponent scores are similar (which
is often true early in the game), we then have χ1 ≃ χ2 ≃ χ, an overall scaling factor. As
the clue value D is also an overall scaling factor, we can express the Max-Delta objective
of the buzz decision by rewriting the end-of-clue equities Exyz appearing in Equations 7-15
as Exyz = 2x− y − z.

To further facilitate analytic calculation, we also assume that the opponents’ buzz at-
tempts and the precisions of the three players are all uncorrelated. The equities of the
ineligible states {IS0,IS1,IS2} then reduce to:

V (IS0) = −2(1− b)2 − 6bp(1− b/2)− 2(1 − p)b(1 − b)− 4p(1− p)b2

V (IS1) = V (IS2) = b− 1− 2bp (16)

We can similarly rewrite the equities in the four live states {LS0,LS1,LS2,LS3} after
buzzing or not buzzing. For the double-rebound state LS3, these reduce to VB(LS3) = 4c
and VNB(LS3) = 2. At the threshold confidence c = θ3, we have 4θ3 = 2, so that θ3 = 0.5.
By likewise equating the buzz/no-buzz equities in the other live states, we can obtain closed-
form analytic expressions for the respective thresholds {θ0, θ1, θ2}. For the first-rebound
thresholds, we have:

θ1 = θ2 =
2 + b2(1− Z1)(1− 2p) + b(2p − 3)(1− Z1)

(b(Z1 − 1) + 1)(b(2p − 1) + 4)
(17)

This expression assumes that θ1, θ2 ≤ θ3 so that the player will not buzz in the second-
rebound state. Finally, the initial buzz threshold θ0 (again assuming no-buzz in the rebound
states) is:

θ0 =
wm+ 2(1− b)2 − 2wV (IS0)

4(1 − b)2 + 4w − 2wV (IS0)
(18)

where m = −2p + 2(1 − p)(1 + b− 2bp) is the total equity change after losing the buzz to
either opponent, and w = b(1 − b)Z1 + 0.5b2Z2 is the probability of beating one opponent
on the buzzer.

For average human contestants, we set b = 0.61, p = 0.87, Z1 = 1/2, and Z2 = 1/3,
yielding first-rebound thresholds θ1 = θ2 = 0.478 and initial buzz threshold θ0 = 0.434. The
four Max-Delta thresholds computed here are quite close to the uncorrelated Monte-Carlo
values reported in Table 6 for simulations of average contestants in early game states.
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