
Journal of Artificial Intelligence Research 47 (2013) 393-439 Submitted 9/12; published 7/13

Lifted Variable Elimination:

Decoupling the Operators from the Constraint Language

Nima Taghipour nima.taghipour@cs.kuleuven.be

Daan Fierens daan.fierens@cs.kuleuven.be

Jesse Davis jesse.davis@cs.kuleuven.be

Hendrik Blockeel hendrik.blockeel@cs.kuleuven.be

KU Leuven, Department of Computer Science

Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

Lifted probabilistic inference algorithms exploit regularities in the structure of graphical
models to perform inference more efficiently. More specifically, they identify groups of
interchangeable variables and perform inference once per group, as opposed to once per
variable. The groups are defined by means of constraints, so the flexibility of the grouping
is determined by the expressivity of the constraint language. Existing approaches for exact
lifted inference use specific languages for (in)equality constraints, which often have limited
expressivity. In this article, we decouple lifted inference from the constraint language. We
define operators for lifted inference in terms of relational algebra operators, so that they
operate on the semantic level (the constraints’ extension) rather than on the syntactic
level, making them language-independent. As a result, lifted inference can be performed
using more powerful constraint languages, which provide more opportunities for lifting. We
empirically demonstrate that this can improve inference efficiency by orders of magnitude,
allowing exact inference where until now only approximate inference was feasible.

1. Introduction

Statistical relational learning or SRL (Getoor & Taskar, 2007; De Raedt, Frasconi, Kerst-
ing, & Muggleton, 2008) focuses on combining first-order logic with probabilistic graphical
models, which permits algorithms to reason about complex, uncertain, structured domains.
A major challenge in this area is how to perform inference efficiently. First-order logic can
reason on the level of logical variables: if a model states that for all X, P (X) implies Q(X),
then whenever P (X) is known to be true, one can infer Q(X), without knowing what X
stands for. Many approaches to SRL, however, transform their knowledge into a proposi-
tional graphical model before performing inference. By doing so, they lose the capacity to
reason on the level of logical variables: standard inference methods for graphical models
can reason only on the “ground” level, repeating the same inference steps for each different
value x of X, instead of once for all x.

To address this problem, Poole (2003) introduced the concept of lifted inference for
graphical models. The idea is to group together interchangeable objects, and perform
the inference operations once for each group instead of once for each object. Multiple
different algorithms have been proposed, based on variable elimination (Poole, 2003; de
Salvo Braz, Amir, & Roth, 2005; Milch, Zettlemoyer, Kersting, Haimes, & Kaelbling, 2008;
Sen, Deshpande, & Getoor, 2009b, 2009a; Choi, Hill, & Amir, 2010; Apsel & Brafman,

c©2013 AI Access Foundation. All rights reserved.

Taghipour, Fierens, Davis, & Blockeel

2011), belief propagation (Kersting, Ahmadi, & Natarajan, 2009; Singla & Domingos, 2008),
or various other approaches (Van den Broeck, Taghipour, Meert, Davis, & De Raedt, 2011;
Jha, Gogate, Meliou, & Suciu, 2010; Gogate & Domingos, 2011).

A group of interchangeable objects is typically defined by means of a constraint that
an object must fulfill in order to belong to that group. The type of constraints that are
allowed, and the way in which they are handled, directly influence the granularity of the
grouping, and hence, the efficiency of the subsequent lifted inference (Kisynski & Poole,
2009a). Among the approaches based on variable elimination, the most advanced system
(C-FOVE) uses a specific class of constraints, namely, conjunctions of pairwise (in)equalities.
This is the bare minimum required to be able to perform lifted inference. However, as we
will show, it unnecessarily limits the symmetries the model can capture and exploit.

In this article, we present an algorithm for lifted variable elimination that is based
on C-FOVE, but uses a constraint language that is extensionally complete, that is, for
any group of variables a constraint exists that defines exactly that group. To this aim,
C-FOVE’s constraint manipulation is redefined in terms of relational algebra operators.
This decouples the lifted inference algorithm from the constraint representation mechanism.
Consequently, any constraint language that is closed under these operators can be plugged
into the algorithm to obtain a working system. Apart from redefining existing operators,
we also define a novel operator, called lifted absorption, in this way. Furthermore, we
propose a concrete mechanism for constraint representation that is extensionally complete,
and briefly discuss how the operators can be implemented for this particular mechanism.
The new lifted inference algorithm, with this constraint representation mechanism, can
perform lifted inference with a much coarser granularity than its predecessors. Due to this,
it outperforms existing systems by several orders of magnitude on some problems, and solves
inference problems that until now could only be solved by approximate inference methods.

The basic ideas behind our approach have been explained in an earlier conference paper
(Taghipour, Fierens, Davis, & Blockeel, 2012). This article extends that paper by providing
precise and motivated definitions for the operators, up to the level where they can be
implemented. These definitions, at the same time, may help understand on a more intuitive
and semantic level how lifted variable elimination works, and can serve as a kind of gold
standard for other implementations of lifted variable elimination, as they provide a semantics
based reference point.

The paper is structured as follows. Section 2 illustrates the principles of lifted variable
elimination by example, and briefly states how this work improves upon the state of the art,
C-FOVE (Milch et al., 2008). Section 3 introduces formal notation and terminology, and
Section 4 provides a high-level outline of our lifted variable elimination algorithm. Section
5 describes in detail all the operators that the algorithm uses. Section 6 briefly discusses an
efficient representation for the constraints themselves. Section 7 empirically compares our
system’s performance with that of C-FOVE, and Section 8 concludes.

2. Lifted Variable Elimination by Example

Although lifted variable elimination builds on simple intuitions, it is relatively complicated,
and an accurate description of it requires a level of technical detail that is not conducive to a
clear understanding. For this reason, we first illustrate the basic principles of lifted inference

394

Decoupling Lifted Variable Elimination from the Constraint Language

on a simple example, and without referring to the technical terminology that is introduced
later. We start with describing the example; next, we illustrate variable elimination on this
example, and show how it can be lifted.

2.1 The Workshop Example

This example is from Milch et al. (2008). Suppose a new workshop is organized. If the
workshop is popular (that is, many people attend), it may be the start of a series. Whether
a person is likely to attend depends on the topic.

We introduce a random variable T , indicating the topic of the workshop, and a random
variable S, indicating whether the workshop becomes a series. We consider N people, and
for each person i, we include a random variable Ai that indicates whether i attends. Each
random variable has a finite domain from which it takes on values, i.e., {ai,ml, . . . } for T ,
{yes, no} for S, and {true, false} for each Ai.

The joint probability distribution of these variables can be specified by an undirected
graphical model. A set of factors captures dependencies between the random variables in
such a model. In our model, there are two kinds of factors. For each person i, there is a
factor φ1(Ai, S) that states how having a series depends on whether person i attends, and
a factor φ2(T,Ai) that states how i’s attendance depends on the topic. Note that all N
factors of the first type have the same potential function φ1, and all factors of the second
type have potential function φ2. This imposes a certain symmetry on the model: it implies
that S depends on each person’s attendance in exactly the same way, and all people have
the same topic preferences.

The model defines a joint probability distribution over the variables that is the normal-
ized product of the factors (normalized such that all joint probabilities sum to one):

Pr(T, S,A1, . . . , AN) =
1

Z

n
∏

i=1

φ1(Ai, S)

n
∏

i=1

φ2(T,Ai)

where Z is the normalization constant.

Undirected graphical models can be visualized as factor graphs (Kschischang, Frey, &
Loeliger, 2001), which have a node for each random variable and each factor, and an edge
between a factor and a random variable if that variable occurs in the factor. Figure 1 shows
a factor graph for our example.

2.2 Variable Elimination

From now on, we refer to the values taken by a variable by the corresponding lowercase
symbols (e.g., ai as shorthand for Ai = ai).

Suppose we want to compute the marginal probability distribution Pr(S).

Pr(S) =
∑

T

∑

A1

· · ·
∑

AN

Pr(T, S,A1, . . . , AN) (1)

=
1

Z

∑

T

∑

A1

· · ·
∑

AN

N
∏

i=1

φ1(Ai, S)

N
∏

i=1

φ2(T,Ai) (2)

395

Taghipour, Fierens, Davis, & Blockeel

S

T

A1 A2 A3 ... An

!1

!2!2

!1

Figure 1: A factor graph for the workshop example. Square nodes represent factors, round
nodes variables. Variables are labeled with their name, factors with their potential
function.

Usually, the normalization constant Z is ignored during the computations, and normaliza-
tion happens only at the very end. So, we can focus on how to compute

P̃r(S) =
∑

T

∑

A1

· · ·
∑

AN

N
∏

i=1

φ1(Ai, S)
N
∏

i=1

φ2(T,Ai). (3)

A straightforward way of computing P̃r(S) is to compute P̃r(s) for each possible value s
of S, and tabulate the results. We can compute P̃r(true) by iterating over all possible value
combinations (t, a1, . . . , an) of (T,A1, . . . , An) and computing

∏N
i=1 φ1(ai, true)

∏N
i=1 φ2(t, ai)

for each combination, and similarly for P̃r(false). If all variables are binary, there are 2N+1

such combinations, and for each combination 2N − 1 multiplications are performed. This
clearly does not scale.

However, we can improve efficiency by rearranging the computations. In the above com-
putation, the same multiplications are performed repeatedly. Since φ1(A1, S) and φ2(T,A1)
are constant in all Ai except A1, they can be moved out of the summations over Ai, i > 1,
so the right hand side of Equation 3 becomes:

∑

T

∑

A1

φ1(A1, S)φ2(T,A1)
∑

A2

· · ·
∑

AN

N
∏

i=2

φ1(Ai, S)

N
∏

i=2

φ2(T,Ai) (4)

Conversely, the factor starting with
∑

A2
is independent of A1, so it can be moved outside

of the summation over A1, giving

∑

T





∑

A2

· · ·
∑

AN

N
∏

i=2

φ1(Ai, S)
N
∏

i=2

φ2(T,Ai)









∑

A1

φ1(A1, S)φ2(T,A1)



 (5)

Repeating this for each Ai eventually yields

∑

T





∑

A1

φ1(A1, S)φ2(T,A1)



 . . .





∑

AN

φ1(AN , S)φ2(T,AN)



 (6)

396

Decoupling Lifted Variable Elimination from the Constraint Language

φ1(A1, S)

A1 S φ1

true true 1
false true 2
true false 2
false false 1

⊗

φ2(T,A1)

T A1 φ2

SRL true 3
SRL false 1
DB true 2
DB false 2

=

φ12(T,A1, S)

T A1 S φ12

SRL true true 3
SRL true false 6
SRL false true 2
SRL false false 1
DB true true 2
DB true false 4
DB false true 4
DB false false 2

∑

A1
φ12(T,A1, S) =

φ′
12(T, S)

T S φ′
12

SRL true 5
SRL false 7
DB true 6
DB false 6

Figure 2: Two example factors, their product, and the result of summing out A1 from the
product. The values of φ1 and φ2 are chosen arbitrarily for this illustration.

which shows that for each Ai, the product φ1(Ai, S)φ2(T,Ai) needs to be computed only
once for each combination of values for (T, S,Ai). When T is binary, there are eight such
combinations, reducing the total number of multiplications to 8N .

Note that the result of Formula 6 is a function of S; it can yield a different value for each
value s of S. In other words, it is a factor over S. Similarly, the result of φ1(A1, S)·φ2(T,A1)
depends on the values of S, T and A1 (is a factor over these variables), and after summation
over A1 a factor over S and T is obtained. Thus, the multiplications and summations in
Formula 6 are best seen as operating on factors, not individual numbers. Figure 2 illustrates
the process of multiplying and summing factors.

The result of Formula 6 can be computed as follows. First, multiply the factors φ1(A1, S)
and φ2(T,A1) for each value of A1, and sum out A1 from the product. This is exactly the
computation illustrated in Figure 2. After summing over all values of A1, the result depends
on T and S only; A1 no longer occurs in this factor, nor in any other factors. We say that
A1 has been eliminated. Note that the elimination consisted of first gathering all factors
containing A1, multiplying them, then summing over all possible values of A1.

After eliminating A1, we can repeat the process for all other Ai, each time obtaining a
factor over T and S. All those factors can then be multiplied and the result summed over
T , at which point a single factor over S is obtained. This factor equals P̃r(S).

The above computation is exactly what Variable Elimination (VE) does. Generally, VE
works as follows. It considers one variable at a time, in an order called the elimination
order. For each considered variable X, VE first retrieves all factors that involve X, then
multiplies these factors together into a single joint factor, and finally sums out X, thereby

397

Taghipour, Fierens, Davis, & Blockeel

eliminating X from the factor. Hence, in each step, the number of remaining variables
strictly decreases (by 1) and also the number of factors decreases (because the set of factors
involving X is replaced by a single factor).

The elimination order can heavily influence runtime. Unfortunately, finding the optimal
order is NP-hard. In the above example, the elimination order was A1, A2, . . . , AN , T , and
this resulted in a computation with 8N multiplications, which is O(N).

2.3 Lifted Inference: Exploiting Symmetries Among Factors

In the above example, by avoiding many redundant computations, VE obtained an expo-
nential speedup compared to the naive computation discussed before, reducing computation
time from O(2N) to O(N). N can still be large. Even more efficiency can be gained when
we know that certain factors have the same potential function.

In our example, VE computes the same product N times: in Expression 6, factors
φ1(Ai, S) and φ2(T,Ai) are the same for all i, and so is their product φ12(Ai, S, T) =
φ1(Ai, S)φ2(T,Ai). It also computes the sum

∑

Ai
φ12(Ai, S, T) N times. This redundancy

arises because in our probabilistic model all N people behave in the same way, i.e., all
Ai are interchangeable. The idea behind lifted inference is to exploit such symmetries,
and compute the product and sum only once. From the algorithmic perspective, lifted
variable elimination eliminates only one Ai variable, then exponentiates the resulting factor
(see formula below), and then sums out T . Mathematically, Expression 6 is computed as
follows:

∑

T





∑

A1

(φ1(A1, S)φ2(T,A1))





N

(7)

The way in which lifted variable elimination manipulates the set of variables {A1, . . . , AN}
is called lifted multiplication and lifted summing-out (a.k.a. lifted elimination). Note that
the number of operations required is now constant in N . Assuming N is already known,
the main operation here is computing the N -th power, which is O(logN) (logarithmic in
N if exact arithmetic is used, constant for floating point arithmetic). Thus, lifted variable
elimination runs in O(logN) time in this case.

2.4 Lifted Inference: Exploiting Symmetries within Factors

Now consider a second elimination order, where we first eliminate T and then the Ai:

P̃r(S) =
∑

A1,...,AN

∑

T

N
∏

i=1

φ1(Ai, S)

N
∏

i=1

φ2(T,Ai) =
∑

A1,...,AN

N
∏

i=1

φ1(Ai, S)

(

∑

T

N
∏

i=1

φ2(T,Ai)

)

(8)
With this order, regular variable elimination works as follows. The inner summation (elim-
ination of T) first multiplies all factors φ2(T,Ai) into a factor φ3(T,A1, . . . , AN), and then
sums out T :

∑

T

N
∏

i=1

φ2(T,Ai) =
∑

T

φ3(T,A1, . . . , AN) = φ′
3(A1, . . . , AN)

398

Decoupling Lifted Variable Elimination from the Constraint Language

Note that φ3 is a function of N +1 binary variables, so its tabular representation has 2N+1

entries, which makes the cost of this elimination O(2N+1). Substituting the computed φ′
3

into Equation (8) yields:

P̃r(S) =
∑

A1,...,AN

(

N
∏

i=1

φ1(Ai, S)

)

φ′
3(A1, . . . , AN)

Now we can multiply φ′
3(A1, . . . , AN) by φ1(A1, S) and sum out A1, then multiply the result

by φ1(A2, S) and sum out A2, and so on, until we obtain a factor φ′
4(S):

P̃r(S) = φ′
4(S)

This again involves N multiplications and summations with exponential complexity. In
summary, variable elimination computes the result in O(2N+1).

This elimination order also has symmetries that lifted inference can exploit. Let us
examine φ3(T,A1, . . . , AN), the product of factors φ2(T,Ai). For each assignment T = t
and (A1, . . . , AN) = (a1, . . . aN) ∈ {true, false}N :

φ3(t, a1, . . . , aN) = φ2(t, a1) . . . φ2(t, aN)

Note that, since each ai ∈ {true, false}, the multiplicands on the right hand side can
have only one of two values, φ2(t, true) or φ2(t, false). That is, for each ai = true there
is a φ2(t, true), and similarly for each ai = false, a φ2(t, false). This means that, with
At = {Ai|ai = true} and Af = {Ai|ai = false}, we can rewrite the above expression as:

φ3(t, a1, . . . , aN) =
∏

ai∈At

φ2(t, true)
∏

ai∈Af

φ2(t, false) = φ2(t, true)
|At| φ2(t, false)

|Af |.

This shows that to evaluate φ3(T,A1, . . . , AN) it suffices to know how many Ai are true (call
this number nt) and false (nf); we do not need to know the value of each individual Ai. We
can therefore restate φ3 in terms of a new variable #[A], called a counting variable, the value
of which is the two-dimensional vector (nt, nf). Generally, #[A] can take any value (x, y)
with x, y ∈ N and x+ y = N . We call such a value a histogram. It captures the distribution
of values among A = {A1, . . . , AN}. The reformulation of a factor in terms of a counting
variable is called counting conversion. Rewriting φ3(T,A1, . . . , AN) as φ∗

3(T,#[A]), we have

φ∗
3(t, (nt, nf)) = φ2(t, true)

nt φ2(t, false)
nf .

φ∗
3 has 2(N +1) possible input combinations (two values for t and N +1 values for (nt, nf),

since nt+nf = N). It can be tabulated in time O(N), using the recursive formula φ∗
3(t, (nt+

1, nf − 1)) = φ∗
3(t, (nt, nf)) ·φ1(t, true)/φ2(t, false). Note that VE’s computation of φ3 was

O(2N).
Because φ∗

3 has only 2(N+1) possible input states, instead of 2N+1, we can now eliminate
T in O(N):

∑

T

N
∏

i=1

φ2(T,Ai) =
∑

T

φ∗
3(T,#[A]) = φ′

3(#[A])

399

Taghipour, Fierens, Davis, & Blockeel

Using this result, we continue with the elimination:

P̃r(S) =
∑

A1,...,AN

N
∏

i=1

φ1(Ai, S) φ
′
3(#[A])

Using counting conversion a second time, we can reformulate the result of
∏N

i=1 φ1(Ai, S)
as φ4(#[A], S), which gives:

P̃r(S) =
∑

A1,...,AN

φ4(#[A], S) φ′
3(#[A]) =

∑

A1,...,AN

φ43(#[A], S) (9)

In itself, the final summation still enumerates all 2N joint states of variables A, computes
the histogram (nt, nf) and φ43((nt, nf), S) for each state, and adds up all the φ43. But we
can do better: all states that result in the same histogram (nt, nf) have the same value for

φ43((nt, nf), S), and we know exactly how many such joint states there are, namely
(

N
nt

)

=
N !

nt!nf !
. We will call this the multiplicity of the histogram (nt, nf), denoted Mul((nt, nf)).

Thus, we can compute φ43((nt, nf), S) just once for each histogram (nt, nf) and multiply it
by its multiplicity:

∑

A1,...,AN

φ43(#[A], S) =
∑

#[A]

Mul(#[A]) · φ43(#[A], S)

This way we enumerate over N + 1 possible values of #[A] instead of 2N possible states of
A. To summarize, we can reformulate Equation (9) as

P̃r(S) =
∑

A1,...,AN

φ43(#[A], S) =
∑

#[A]

Mul(#[A]) · φ43(#[A], S) = φ5(S)

which shows that #[A] can be eliminated with O(N) operations.

The whole computation of P̃r(S) thus has complexity O(N), instead of O(2N) for VE
with this elimination order. This reduction in complexity is possible due to symmetries in
the model that allow us to treat all variables A as one unit #[A].

2.5 Capturing the Symmetries

It is clear that lifting can yield important speedups, if certain symmetries among factors or
among the inputs of a single factor are present. To exploit these, it is essential that one can
indicate which variables are interchangeable and hence induce these symmetries.

In our workshop example, assume, for instance, that not every person has the same
preferences with respect to topics, but there are two types of people, and different potentials
(φ2a and φ2b) are associated with each type of person. It is clear that instead of Formula 7,

∑

T





∑

A1

φ1(A1, S)φ2(T,A1)





N

,

400

Decoupling Lifted Variable Elimination from the Constraint Language

we then need to compute

∑

T





∑

Ak

φ1(Ak, S)φ2a(T,Ak)





Na




∑

Al

φ1(Al, S)φ2b(T,Al)





Nb

where Ak and Al are random members from the first and second group, and Na and Nb the
cardinality of these groups. In order to do this, we need to be able to state for which Ai

φ2a is relevant, and for which φ2b is. (For this particular computation, it actually suffices
to know the size of each group, but that is not true in general; for instance, to compute the
marginal distribution of A5, we need to know which group A5 is in.)

Our main contribution is related to this particular point. At the time of writing, the
C-FOVE system (Milch et al., 2008) is considered the state of the art in lifted variable elim-
ination. By introducing counting variables, it can capture within-factor symmetries better
than its predecessor, FOVE. However, as it turns out, C-FOVE is less good at capturing
symmetries among multiple factors, compared to FOVE. This is because groups of variables
or factors are defined by means of constraints, and C-FOVE uses a constraint language that
is more limited than FOVE’s; essentially, it only allows for conjunctive constraints.

There are two reasons why it is important to be able to group variables with as much
flexibility as possible. First, it gives more flexibility to the user who has to specify the
graphical model itself. Second, during inference, it may become necessary to “split up”
groups into subgroups.

We cannot go into detail about the constraint based representation at this point (we will
do that later), but basically, during lifted inference, one may have a set of interchangeable
variables that could in principle be treated as one group, but are not because the system
cannot represent this group. It then needs to partition the group into smaller groups,
possibly up to the level of individuals. For instance, assume the groups in our above example
are {A1, A2, A5, A6, A7} and {A3, A4, A8}. Further assume that the constraint language is
such that sets of variables Ai are defined using constraints of the form {Ai|l ≤ i ≤ u}.
Neither group can be represented using one single constraint. For instance, the first group
consists of the union of {Ai|1 ≤ i ≤ 2} and {Ai|5 ≤ i ≤ 7}. Using this constraint language,
we get four groups of size 2, 3, 2 and 1 instead of two groups of size 5 and 3. As a result,
the computation actually performed will contain four exponentiated factors instead of two:

∑

T





∑

A1

φ1(A1, S)φ2a(T,A1)





2



∑

A5

φ1(A5, S)φ2a(T,A5)





3





∑

A3

φ1(A3, S)φ2b(T,A3)





2



∑

A8

φ1(A8, S)φ2b(T,A8)





1

Generally, during lifted inference, groups may be split repeatedly. Unnecessary splits can
substantially hurt efficiency, as each one causes a duplication of work. Since the duplicated
work may include further splitting, the overall effect can be exponential in the number of
consecutive splits.

Ideally, the constraint language should have the property that for each group of variables,
there exists a constraint that represents exactly that group of variables. In that case, it is

401

Taghipour, Fierens, Davis, & Blockeel

never necessary to split a group into subgroups just because the group cannot be represented.
We call such a language “extensionally complete”. The main contribution of this article
is that it shows how to perform lifted variable elimination with an extensionally complete
constraint language. To this aim, first, a lifted variable elimination algorithm is defined
in a way that is independent of the constraint representation mechanism, by defining its
operators in terms of relational algebra expressions. We call this algorithm GC-FOVE. To
make GC-FOVE operational, some kind of constraint representation mechanism is of course
needed. Any constraint language L can be plugged into GC-FOVE, as long as it is closed
with respect to the relational algebra operators used by GC-FOVE. Second, we propose an
extensionally complete constraint representation language that is based on trees. Such a
language is necessarily closed with respect to the relational algebra operators, and therefore
suitable for GC-FOVE. The resulting system, GC-FOVETREES, can perform inference at
a higher level of granularity, and therefore more efficiently, than C-FOVE, which does not
use an extensionally complete constraint language. The effect of this is visible in particular
when evidence is given (which breaks symmetries and hence causes group splitting); in such
cases, GC-FOVE achieves exponential speedups compared to C-FOVE.

This ends our informal introduction to lifted variable elimination and the main contri-
bution this articles makes to it. In the following sections, we first introduce formal notation
and terminology, then present our contributions in more detail.

3. Representation

Lifted inference exploits symmetries in a probabilistic model. Such symmetries often occur
in models that have repeating structures, such as plates (Getoor & Taskar, 2007, Ch. 7),
or, more generally, in probabilistic-logical models. Probabilistic-logical modeling languages
(also called probabilistic-relational languages) combine the representational and inferential
aspects of first-order logic with that of probability theory.

First-order logic languages refer to objects (possibly of various types) in some universe,
and properties of, or relationships between, these objects. Formulas in these languages can
express that some property holds for a particular object, or for an entire set of objects.
For instance, the fact that all humans are mortal could be written as ∀x : Human(x) →
Mortal(x). Probabilistic-logical models can, in a similar way, express probabilistic knowl-
edge about all objects. For instance, they could state that for each human, there is a prior
probability of 20% that he or she smokes: ∀x : P (Smokes(x)|Human(x)) = 0.2. It is
this ability to make (probabilistic) statements about entire sets of objects that allows these
languages to compactly express symmetries in a model. Many different languages exist for
representing probabilistic-logical models (e.g., see Getoor & Taskar, 2007). We use a repre-
sentation formalism based on undirected graphical models that is closely related to the one
used in earlier work on lifted variable elimination (Poole, 2003; de Salvo Braz, 2007; Milch
et al., 2008).

The concepts introduced in this section have also been introduced in earlier work (de
Salvo Braz, 2007; Milch et al., 2008). Differences arise in terminology and notation as we
emphasize the constraint part.

402

Decoupling Lifted Variable Elimination from the Constraint Language

3.1 A Constraint-based Representation Formalism

An undirected model is a factorization of a joint distribution over a set of random vari-
ables (Kschischang et al., 2001). Given a set of random variables X = {X1,X2, . . . ,Xn},
a factor consists of a potential function φ and an assignment of a random variable to each
of φ’s inputs. For instance, the factorization f(X1,X2,X3) = φ(X1,X2)φ(X2,X3) contains
two different factors (even if their potential functions are the same).

Likewise, in our probabilistic-logical representation framework, a model is a set of fac-
tors. The random variables they operate on are properties of, and relationships between,
objects in the universe. We now introduce some terminology to make this more concrete.
We assume familiarity with set and relational algebra (union ∪, intersection ∩, difference
\, set partitioning, selection σC , projection πX , attribute renaming ρ, join ⊲⊳); see, for
instance, the work of Ramakrishnan and Gehrke (2003).

The term “variable” can be used in both the logical and probabilistic context. To
avoid confusion, we use the term logvar to refer to logical variables, and randvar to refer to
random variables. We write variable names in uppercase, and their values in lowercase. Sets
or sequences of logvars are written in boldface, sets or sequences of randvars in calligraphic;
their values are written in boldface lowercase.

The vocabulary of our representation includes a finite set of predicates and a finite set
of constants. A constant represents an object in our universe. A term is either a constant
or a logvar. A predicate P has an arity n and a finite range (range(P)); it is interpreted
as a mapping from n-tuples of objects (constants) to the range. An atom is of the form
P (t1, t2, . . . , tn), where the ti are terms. A ground atom is an atom where all ti are constants.
A ground atom represents a random variable; this implies that its interpretation, an element
of range(P), corresponds to the assignment of a value to the random variable. Hence, the
range of a predicate corresponds to the range of the random variables it can represent, and
is not limited to {true, false} as in logic.

Logvars have a finite domain, which is a set of constants. The domain of a logvar
X is denoted D(X). A constraint is a relation defined on a set of logvars, i.e., it is a
pair (X, CX), where X = (X1,X2, . . . ,Xn) is a tuple of logvars, and CX is a subset of
D(X) = ×iD(Xi) (Dechter, 2003). Hence, CX is a set, whose elements (tuples) indicate the
allowed combinations of value assignments for the variables in X. For ease of exposition, we
identify a constraint with its relation CX, and write C instead of CX when X is apparent
from the context. We assume an implicit ordering of values in CX’s tuples according to the
order of logvars in X. For instance with X = (X1,X2), the constraint CX = {(a, b), (c, d)}
indicates that there are two possibilities: either X1 = a and X2 = b, or X1 = c and X2 = d.
A constraint that contains only one tuple is called singleton.

A constraint may be defined extensionally, by listing the tuples that satisfy it, or inten-
sionally, by means of some logical condition, expressed in a constraint language. We call a
constraint language L extensionally complete if it can express any relation over logvars X,
i.e., for any subset of D(X), there is a constraint CX ∈ L whose extension is exactly that
subset.

A constrained atom is of the form P (X)|C, where P (X) is an atom and C is a constraint
on X. A constrained atom P (X)|C represents a set of ground atoms {P (x)|x ∈ C}, and
hence a set of randvars. For consistency with the literature, we call such a constrained atom

403

Taghipour, Fierens, Davis, & Blockeel

a parametrized randvar (PRV), and use calligraphic notation to denote it. Given a PRV V,
we use RV (V) to denote the set of randvars it represents; we also say these randvars are
covered by V.

A valuation of a randvar (set of randvars) is an assignment of a value to the randvar
(an assignment of values to all randvars in the set).

Example 1. The PRV V = Smokes(X)|C, with C = {x1, . . . , xn}, represents n randvars
{Smokes(x1), . . . Smokes(xn)}.

A factor f = φf (Af) consists of a sequence of randvars Af = (A1, . . . , An) and a
potential function φf : ×n

i=1range(Ai) → R
+. The product of two factors, f1 ⊗ f2, is

defined as follows. Factor f = φ(A) is the product of f1 = φ1(A1) and f2 = φ2(A2) if
and only if A = A1 ∪ A2 and for all a ∈ D(A): φ(a) = φ1(a1)φ2(a2) with πAi

(a) = ai for
i = 1, 2. That is, a assigns to each randvar in Ai the same value as ai. We use

∏

to denote
multiplication of multiple factors. Multiplying a factor by a scalar c means replacing its
potential φ by φ′ : x 7→ c · φ(x).

An undirected model is a set of factors F . It represents a probability distribution PF
on randvars A =

⋃

f∈F Af as follows: PF (A) =
1
Z

∏

f∈F φf (Af), with Z a normalization
constant such that

∑

a∈range(A) PF (a) = 1.
A parametric factor or parfactor has the form φ(A)|C, with A = {Ai}

n
i=1 a sequence

of atoms, φ a potential function on A, and C a constraint on the logvars appearing in A.1

The set of logvars occurring in A is denoted logvar(A); the set of logvars in C is denoted
logvar(C). A factor φ(A′) is a grounding of a parfactor φ(A) if A′ can be obtained by
instantiating X = logvar(A) with some x ∈ C. The set of groundings of a parfactor g is
denoted gr(g).

Example 2. Parfactor g1 = φ1(Smokes(X))|X ∈ {x1, . . . , xn} represents the set of factors
gr(g1) = {φ1(Smokes(x1)), . . . , φ1(Smokes(xn))}.

A set of parfactors G is a compact way of defining a set of factors F = {f |f ∈ gr(g)∧g ∈
G} and the corresponding probability distribution PG(A) =

1
Z

∏

f∈F φf (Af).

3.2 Counting Formulas

Milch et al. (2008) introduced the idea of counting formulas and (parametrized) counting
randvars.

A counting formula is a syntactic construct of the form #Xi∈C [P (X)], where Xi ∈ X is
called the counted logvar.

A grounded counting formula is a counting formula in which all arguments of the atom
P (X), except for the counted logvar, are constants. It defines a counting randvar (CRV),
the meaning of which is as follows. First, we define the set of randvars it covers as
RV (#X∈C [P (X)]) = RV (P (X)|X ∈ C). The value of the CRV is determined by the values
of the randvars it covers. More specifically, it is a histogram that indicates, given a valu-
ation of RV (P (X)|X ∈ C), how many different values of X occur for each r ∈ range(P).
Thus, its value is of the form {(r1, n1), (r2, n2), . . . , (rk, nk)}, with ri ∈ range(P) and ni the

1. We use the definition of Kisynski and Poole (2009a) for parfactors, as it allows us to simplify the notation.

404

Decoupling Lifted Variable Elimination from the Constraint Language

corresponding count. Given a histogram h, we will also write h(v) for the count of v in h.
Note that the range of a CRV, i.e., the set of all possible histograms it can take as a value,
is determined by k = |range(P)| and |C|.

Example 3. #X∈{x1,x2,x3}[P (X, y, z)] is a grounded counting formula. It covers the rand-
vars P (x1, y, z), P (x2, y, z) and P (x3, y, z). It defines a CRV, the value of which is deter-
mined by the values of these three randvars; if P (x1, y, z) = true, P (x2, y, z) = false and
P (x3, y, z) = true, the CRV takes the value {(true, 2), (false, 1)}.

The concept of a CRV is somewhat complicated. A CRV behaves like a regular randvar
in some ways, but not all. It is a construct that can occur as an argument of a factor, like
regular randvars, but in that role it actually stands for a set of randvars, all of which are
arguments of the factor. A factor of the form φ∗(· · · ,#X∈C [P (X)], · · ·) is equivalent to a
factor of the form φ(· · · , P (X1), P (X2), . . . , P (Xk), · · ·), with P (Xi) all the instantiations
of X obtainable by instantiating X with a value from C, and with φ returning for any
valuation of the P (Xi) the value that φ∗ returns for the corresponding histogram.

Example 4. The factor φ∗(#X∈{x1,x2,x3}[P (X, y, z)]) is equivalent to a factor
φ(P (x1, y, z), P (x2, y, z), P (x3, y, z)). If φ∗({(true, 2), (false, 1)}) = 0.3, this implies that
φ(false, true, true) = φ(true, false, true) = φ(true, true, false) = 0.3.

As illustrated in Section 2.4, counting formulas are useful for capturing symmetries
within a potential function. Recall the workshop example. Whether a person attends
a workshop depends on its topic, and this dependence is the same for each person. We
can represent this with a single parfactor φ(T,A(X))|X ∈ {x1, . . . , xn} that represents
n ground factors. Eliminating T requires multiplying these n factors into a single factor
φ′(T,A(x1), A(x2), . . . , A(xn)) before summing out T . The potential function φ′ is high-
dimensional, so a tabular representation for it would be very costly. However, it contains a
certain symmetry: φ′ depends only on how many times each possible value for A(xi) occurs,
not on where exactly these occur. By representing the factor using a potential function φ∗

that has only two arguments, T and the CRV #X∈{x1,...,xn}[A(X)], it can be represented
more concisely, and computed more efficiently. For instance, to sum out A(X), we do not
need to enumerate all possible (2n) value combinations of the A(xi) and sum the correspond-
ing φ′(T,A(x1), . . . , A(xn)), we just need to enumerate all possible (n + 1) values for the
histogram of #X∈{x1,...,xn}[A(X)] and sum the corresponding φ∗(T,#X∈{x1,...,xn}[A(X)]),
each multiplied by its multiplicity.

Note the complementarity between PRVs and CRVs. While the randvars covered by a
PRV occur in different factors, the randvars covered by a CRV occur in one and the same
factor. Thus, PRVs impose a symmetry among different factors, whereas CRVs impose a
symmetry within a single factor.

A parametrized counting randvar (PCRV) is of the form #X [P (X)] |CX. In this notation
we write the constraint on the counted logvar X as part of the constraint CX on all variables
in X. Similar to the way in which a PRV defines a set of randvars through its groundings,
a PCRV defines a set of CRVs through its groundings of all variables in X \ {X}.

Example 5. #Y [Friend(X,Y)] |C represents a set of CRVs, one for each x ∈ πX(C),
indicating the number of friends x has. If C = D(X) × D(Y) with D(X) = D(Y) =

405

Taghipour, Fierens, Davis, & Blockeel

{ann, bob, carl}, we might for instance have #Y [Friend(ann, Y)]|C = {(true, 1), (false, 2)}
(Ann has one friend, and two people are not friends with her).

Some definitions from the previous section need to be extended slightly in order to
accommodate PCRVs. First, because CRVs are not regular randvars, they are not included
in the set of randvars covered by the PRCV; that is, RV (#Xi

[P (X)]|C) = RV (P (X)|C).
Second, since a counting formula “binds” the counted logvar (it is no longer a parameter of
the resulting PCRV), we define logvar(#Xi

[P (X)]) = X\{Xi}. Thus, generally, logvar(A)
refers to all the logvars occurring in A, excluding the counted logvars. Note that logvar(C)
remains unchanged: it refers to all logvars in C, whether they appear as counted or not.

We end this section with two definitions that will be useful later on.

Definition 1 (Count function) Given a constraint CX, for any Y ⊆ X and Z ⊆ X−Y,
the function CountY|Z : CX → N is defined as follows:

CountY|Z(t) = |πY(σZ=πZ(t)(CX))|

That is, for any tuple t, this function tells us how many values for Y co-occur with t’s value
for Z in the constraint. We define CountY|Z(t) = 1 when Y = ∅.

Definition 2 (Count-normalized constraint) For any constraint CX, Y ⊆ X and Z ⊆
X−Y, Y is count-normalized w.r.t. Z in CX if and only if

∃n ∈ N : ∀t ∈ CX : CountY|Z(t) = n.

When such an n exists, we call it the conditional count of Y given Z in CX, and denote it
CountY|Z(CX).

Example 6. LetX be {P,C} and let the constraint CX be (P,C) ∈ {(ann, eric), (bob, eric),
(carl, f inn), (debbie, f inn), (carl, gemma), (debbie, gemma)}. SupposeCX indicates the par-
ent relationship: Ann is a parent of Eric, etc. Then {P} is count-normalized w.r.t. {C}
because all children (i.e., all instantiations of C in CX: Eric, Finn and Gemma) have two par-
ents according to CX, or formally, for all tuples t ∈ CX it holds that Count{P}|{C}(t) = 2.
Conversely, {C} is not count-normalized w.r.t. {P} because not all parents have equally
many children. For instance, Count{C}|{P}((ann, eric)) = 1 (Ann has 1 child), but
Count{C}|{P}((carl, f inn)) = 2 (Carl has 2 children).

4. The GC-FOVE Algorithm: Outline

We now turn to the problem of performing lifted inference on models specified using the
above representation. The algorithm we introduce for this is called GC-FOVE (for Gener-
alized C-FOVE). At a high level, it is similar to C-FOVE (Milch et al., 2008), the current
state-of-the-art system in lifted variable elimination, but it differs in the definition and
implementation of its operators.

Recall how standard variable elimination works. It eliminates randvars one by one, in a
particular order called the elimination order. Elimination consist of multiplying all factors
the randvar occurs in into one factor, then summing out the randvar.

406

Decoupling Lifted Variable Elimination from the Constraint Language

Similarly, GC-FOVE visits PRVs (as opposed to individual randvars) in a particular
order. Ideally, it eliminates each PRV by multiplying the parfactors in which it occurs
into one parfactor, then summing out the PRV, using the lifted multiplication and lifted
summing-out operators. However, these operators are not always immediately applicable:
it may be necessary to refine the involved parfactors and PRVs to make them so. This is
done using other operators, which we call enabling operators.2

A high-level description of GC-FOVE is shown in Algorithm 1. Like C-FOVE, it makes
use of a number of operators, and repeatedly selects and performs one of the possible
operators on one or more parfactors. It uses the same greedy heuristic as C-FOVE for this
selection, choosing the operation with the minimum cost, where the cost of each operation
is defined as the total size (number of rows in tabular form) of all the potentials it creates.

The main difference between C-FOVE and GC-FOVE is in the operators used. Four of
GC-FOVE’s operators (multiply, sum-out, count-convert and ground-logvar) are
a straightforward generalization of a similar operator in C-FOVE, the difference being that
we provide definitions that work for any constraint representation language that is closed
under relational algebra, instead of definitions that are specific for the constraint language
used by C-FOVE. Three other operators (expand, count-normalize and split) also have
counterparts in C-FOVE, but need to be redefined more substantially because they directly
concern constraint manipulation. The lifted absorption operator (absorb) is completely
new.

GC-FOVE in itself does not specify a particular constraint language. In practice, con-
straints have to be represented one way or another, so some constraint representation mecha-
nism has to be plugged in. In this article, we propose a tree-based representation mechanism
for constraints. Important advantages of this mechanism are that, on the one hand, any
extensional set can be represented by these trees, and on the other hand, constraints can
still be manipulated efficiently.

The generalization of the operators, the new absorption operator, and the tree-based
constraint language are the main contributions of this paper. Together, they greatly improve
the efficiency of inference, as will be clear from the experimental section. Before describ-
ing the operators in detail, we illustrate the importance of using an expressive constraint
language.

4.1 Constraint Language

In C-FOVE, a constraint is a set of pairwise (in)equalities between a single logvar and a
constant, or between two logvars. Thus, in a single parfactor, C-FOVE can represent, for in-
stance, Friend(X,Y)|X 6= ann, but not Friend(X,Y)|(X,Y) ∈ {(ann, bob), (bob, carl)}).
Table 1 provides some more examples of PRVs that C-FOVE can/cannot represent, and
Figure 3 illustrates this visually. Basically, C-FOVE can only use conjunctive constraints,
not disjunctive ones, and C-FOVE’s operators are defined to operate directly on this rep-
resentation. GC-FOVE, on the other hand, allows a constraint to be any relation on the
logvars, and can therefore handle all these PRVs. Because it has no restrictions whatsoever
regarding the constraints it can handle, it can maximally exploit opportunities for lifting.

2. Technically speaking, multiplication is also an enabling operator as summing-out can only be applied
after multiplication.

407

Taghipour, Fierens, Davis, & Blockeel

GC-FOVE
Inputs:
G: a model
Q: the query randvar
Algorithm:
while G contains other randvars than Q:

if there is a PRV V that can be eliminated by lifted absorption
G← apply operator absorb to eliminate V in G

else if there is a PRV V that can be eliminated by lifted summing-out
G← apply sum-out to eliminate V in G

else apply an enabling operator (one of multiply, count-convert, expand,
count-normalize, split or ground-logvar) on some parfactors in G

end while
return G

Algorithm 1: Outline of the GC-FOVE algorithm.

PRV C-FOVE GC-FOVE

Friend(X,Y) yes yes
Friend(ann, Y) yes yes
Friend(X,Y)|X 6= ann yes yes
Friend(X,Y)|X ∈ {ann, bob} yes∗ yes
Friend(X,Y)|(X,Y) ∈ {(ann, bob), (bob, carl)}) no yes

Table 1: Examples of parametrized random variables that can / cannot be represented using
a single constraint by C-FOVE. Though the fourth constraint (yes∗) is disjunctive,
C-FOVE can represent it using a conjunction of inequality constraints. This is not
the case for the fifth constraint. GC-FOVE can represent all constraints.

The expressiveness of the constraint representation language, and the way the con-
straints are handled by the operators, are crucial to the efficiency of lifted variable elimina-
tion. The reason is that variables continuously need to be re-grouped (i.e., constraints need
to be rewritten) during inference. For instance, we can multiply φ1(P (X))|{x1, x2, x3} and
φ2(P (X))|{x1, x2, x3} directly, resulting in a parfactor of the form φ12(P (X))|{x1, x2, x3},
but we cannot multiply φ1(P (X))|{x1, x2, x3} and φ2(P (X))|{x2, x3, x4, x5} into a single
parfactor because their PRVs do not match. The solution is to split constraints and parfac-
tors so that matching parfactors arise. In this particular case, a model with three parfactors
arises: φ1(P (x1)), φ12(P (X))|{x2, x3} and φ2(P (X))|{x4, x5}. GC-FOVE’s operations re-
sult in this model. C-FOVE, however, when splitting constraints, separates off one tuple at a
time (“splitting based on substitution”, Milch et al., 2008), which here results in four parfac-
tors: φ1(P (x1)); φ12(P (X))|X 6= x1,X 6= x4,X 6= x5; φ2(P (x4)); and φ2(P (x5)) (assuming
the domain of X is {x1, x2, . . . , x5}). In this case, C-FOVE could in fact represent the sepa-
rate factors φ2(P (x4)) and φ2(P (x5)) as one parfactor φ2(P (X))|X 6= x1,X 6= x2,X 6= x3,
but it does not do so (only the intersection of two constraints is kept on the lifted level),

408

Decoupling Lifted Variable Elimination from the Constraint Language

a b c d e f

a
b
c
d
e
f

a b c d e f

a
b
c
d
e
f

a b c d e f

a
b
c
d
e
f

a b c d e f

a
b
c
d
e
f

a b c d e f

a
b
c
d
e
f

a b c d e f

a
b
c
d
e
f

Figure 3: In each schema, the gray area indicates a PRV of the form Friend(X,Y)|CXY

(with a standing for ann, b for bob, etc.) C-FOVE can only handle PRVs that
can be defined by conjunctive constraints; this includes the top three schemas,
but not the bottom ones. GC-FOVE can handle all PRVs.

and in general, for non-unary predicates, this is not possible, as Table 1 shows. Because of
its restricted constraint language, C-FOVE often has to create finer-grained partitions than
necessary. GC-FOVE, because it uses an extensionally complete constraint language, does
not suffer from this problem.

4.2 Lifted Absorption

Absorption (van der Gaag, 1996) is an additional operator in VE that is known to increase
efficiency. It consists of removing a random variable from a model when its valuation is
known, and rewriting the model into an equivalent one that does not contain the variable.
C-FOVE, like its predecessors, does not use absorption, and including it might in fact have
detrimental effects due to breaking of symmetries. GC-FOVE’s extensionally complete
constraint language, however, not only makes it possible to use absorption more effectively,
it even allows for lifting it.

4.3 Summary of Contributions

We are now at a point where we can summarize the contributions of this work more precisely.

1. We present the first description of lifted variable elimination that decouples the lifted
inference algorithm from the constraint representation it uses. This is done by taking
the C-FOVE algorithm and redefining its operators so that they become independent
from the underlying constraint mechanism. This is achieved by defining the operators

409

Taghipour, Fierens, Davis, & Blockeel

in terms of relational algebra operators. This redefinition generalizes the operators
and clarifies on a higher level how they work.

2. We present a mechanism for representing constraints that is extensionally complete.
It is closed under the relational algebra operators, and allows for executing them
efficiently. In itself, this is a minor contribution, but it is necessary in order to obtain
an operational system.

3. We present a new operator, called lifted absorption.

4. We experimentally demonstrate the practical impact of the above contributions.

5. We contribute the software itself.

Contributions 1 and 3 (our main contributions) are the subject of Section 5. Contribu-
tion 2 is detailed in Section 6, and Contribution 4 in Section 7. Contribution 5 is at
http://dtai.cs.kuleuven.be/ml/systems/gc-fove.

5. GC-FOVE’s Operators

This section provides detailed information on GC-FOVE’s operators. These can concep-
tually be split into two categories: operators that manipulate potential functions, and
operators that refine the model so that the first type of operators can be applied. We
will start with three operators that belong to the first category: lifted multiplication, lifted
summing-out and counting conversion. These can be seen as generalized versions of the
corresponding C-FOVE operators; algorithmically, they are similar. Next, we discuss split-
ting, shattering, expansion, and count normalization. Because they operate specifically on
the constraints, these differ more strongly from C-FOVE’s operators. We will systemati-
cally compare them to the latter, showing each time that C-FOVE’s constraint language
and operators force it to create more fine-grained models than necessary, while GC-FOVE,
because of its extensionally complete constraint language, can always avoid this: whatever
the set of interchangeable randvars is, this set can be represented by one constraint. Finally,
we discuss lifted absorption, which is completely new, and grounding, which is again similar
to its C-FOVE counterpart.

In the following, G refers to a model (i.e., a set of parfactors), and G1 ∼ G2 means that
models G1 and G2 define the same probability distribution.

5.1 Lifted Multiplication

The lifted multiplication operator multiplies whole parfactors at once, instead of sepa-
rately multiplying the ground factors they cover (Poole, 2003; de Salvo Braz, 2007; Milch
et al., 2008). Figure 4 illustrates this for two parfactors g1 = φ1(S(X))|C and g2 =
φ2(S(X), A(X))|C, where C = (X ∈ {x1, . . . , xn}). Lifted multiplication is equivalent
to n multiplications on the ground level.

The above illustration is deceptively simple, for several reasons. First, the naming of
the logvars suggests that logvar X in g1 corresponds to X in g2. In fact, g2 could have
multiple logvars, with different names. An alignment between the parfactors is necessary,
showing how logvars in different parfactors correspond to each other (de Salvo Braz, 2007).

410

Decoupling Lifted Variable Elimination from the Constraint Language

φ1(S(X)) φ2(S(X), A(X))

φ1(S(x1))

...

φ1(S(xn))

φ2(S(x1), A(x1))

...

φ2(S(xn), A(xn))

⊗

⊗

⊗

φ3(S(X), A(X))
Lifted

Multiplication
−−−−−−−−−→

Ground
Multiplications
−−−−−−−−−→

φ3(S(x1), A(x1))

...

φ3(S(xn), A(xn))

φ1 φ2S(x1) A(x1) S(x1) A(x1)φ3

⊗

φ1 φ2 φ3

⊗

...

S(xn) S(xn)A(xn) A(xn)

...Ground
Multiplications
−−−−−−−−−→

Figure 4: Lifted Multiplication with a 1:1 alignment between parfactors. The equivalent of
the lifted operation (top), is shown at the level of ground factors (middle), and
also in terms of factor graphs (bottom). ⊗ denotes (par)factor multiplication.

The alignment must constrain the aligned logvars to exactly the same values in g1 and
g2 (otherwise, they cannot give identical PRVs in both parfactors). We formalize this as
follows.

Definition 3 (substitution) A substitution θ = {X1 → t1, . . . ,Xn → tn} = {X →
t} maps each logvar Xi to a term ti, which can be a constant or a logvar. When all ti
are constants, θ is called a grounding substitution, and when all are different logvars, a
renaming substitution. Applying a substitution θ to an expression α means replacing each
occurrence of Xi in α with ti; the result is denoted αθ.

Definition 4 (alignment) An alignment θ between two parfactors g = φ(A)|C and g′ =
φ′(A′)|C ′ is a one-to-one substitution {X→ X′}, with X ⊆ logvar(A) and X′ ⊆ logvar(A′),
such that ρθ(πX(C)) = πX′(C ′) (with ρ the attribute renaming operator).

An alignment tells the multiplication operator that two atoms in two different parfactors
represent the same PRV, so it suffices to include it in the resulting parfactor only once.
Including it twice is not wrong, but less efficient: some structure in the parfactor is then
lost. For this reason, it is useful to look for “maximal” alignments which map as many
PRVs to each other as possible.

Example 7. Consider g1 = φ1(S(X), F (X,Y))|CX,Y and g2 = φ2(S(X
′), F (X ′, Y ′))|CX′,Y ′

with CX,Y = CX′,Y ′ = {xi}
n
1 × {yj}

m
1 . Using the maximal alignment {X → X ′, Y →

411

Taghipour, Fierens, Davis, & Blockeel

Y ′)}, we get the product parfactor φ3(S(X), F (X,Y))|CX,Y . This alignment establishes
a 1:1 association between each ground factor φ1(S(xi), F (xi, yj)) and the corresponding
φ2(S(xi), F (xi, yj)). If, however, we multiply g1 and g2 with the alignment {X → X ′},
the result is a parfactor φ′

3(S(X), F (X,Y), F (X,Y ′))|(X,Y, Y ′) ∈ {xi}
n
1 × {yj}

m
1 × {yk}

m
1 ,

which for each xi unnecessarily multiplies each factor φ1(S(xi), F (xi, yj)) with all factors
φ2(S(xi), F (xi, yk)), k = 1, . . . ,m. In other words, it unnecessarily creates a direct depen-
dency between all pairs of randvars F (xi, yj), F (xi, yk).

A second complication is that a single randvar may participate in multiple factors within
a certain parfactor, and the number of such factors it appears in may differ across parfac-
tors. Consider parfactors g1 = φ1(S(X))|X ∈ {xi}

n
1 and g2 = φ2(S(X), F (X,Y))|(X,Y) ∈

{xi}
n
1×{yi}

m
1 . For each xi, φ1(S(xi)) shares randvar S(xi) withm factors φ2(S(xi), F (xi, yj)),

j = 1, . . . ,m. Multiplication should result in a single parfactor φ3(S(xi), F (xi, Y))|Y ∈
{yi}

m
1 that covers m factors φ3(S(xi), F (xi, yj)), and is equivalent to the product of one

factor φ1(S(xi)) and m factors φ2(S(xi), F (xi, yj)). This means we must find a φ3 such
that ∀v,w : φ3(v,w)

m = φ1(v)
∏m

i=1 φ2(v,w). This gives φ3(v,w) = φ1(v)
1/mφ2(v,w). The

exponentiation of φ1 to the power 1/m is called scaling. The result of this multiplication
for a single xi is the same regardless of xi, so finally, the product of the parfactors g1 and
g2 will be the parfactor

φ3(S(X), F (X,Y)) = φ1(S(X))1/m · φ2(S(X), F (X,Y)) | (X,Y) ∈ {xi}
n
1 × {yj}

m
1 .

Figure 5 illustrates this multiplication graphically.
An alignment between parfactors is called 1 : 1 if all non-counted logvars in the parfactors

are mapped to each other, and is called m:n otherwise. Multiplication based on an m:n
alignment involves scaling, and requires that the non-aligned logvars be count-normalized
(Definition 2, p. 406) with respect to the aligned logvars in the constraints (otherwise there
is no single scaling exponent that is valid for the whole parfactor).

Operator 1 formally defines the lifted multiplication. Note that this definition does not
assume any specific format for the constraints.

5.2 Lifted Summing-Out

Once a PRV occurs in only one parfactor, it can be summed out from that parfactor (Milch
et al., 2008). We begin with an example of lifted summing-out, which will help motivate
the formal definition of the operator.

Example 8. Consider parfactor g = φ(S(X), F (X,Y))|C, in which C = {(xi, yi,j) : i ∈
{1, . . . , n}, j ∈ {1, . . . ,m}} (Figure 6). Note that Y is count-normalized w.r.t X in C. As-
sume we want to sum out randvars F (xi, yi,j) ∈ RV (F (X,Y)|C) on the ground level. Each
randvar F (xi, yi,j) appears in exactly one ground factor φ(S(xi), F (xi, yi,j)) (see Figure 6
(middle)). We can therefore sum out each F (xi, yi,j) from its factor independently from the
others, obtaining a factor φ′(S(xi)) =

∑

F (xi,yi,j)
φ(S(xi), F (xi, yi,j)). Since the m ground

factors φ(S(xi), F (xi, yi,j)) have the same potential φ, summing out their second argument
always results in the same potential φ′, so we can compute φ′ just once and, instead of stor-
ing m copies of the resulting factor φ′(S(xi)), store a single factor φ′′(S(xi)) = φ′(S(xi))

m.
In the end, we obtain n such factors, one for each S(xi), i = 1, . . . , n. We can represent

412

Decoupling Lifted Variable Elimination from the Constraint Language

φ1(S(X)) ⊗

φ1

φ2

S(x1)

Ground
Multiplications
−−−−−−−−−→

φ2(S(X), F (X,Y))

φ1(S(x1))











φ2(S(x1), F (x1, y1))
...
φ2(S(x1), F (x1, ym))

⊗

...










φ2(S(xn), F (xn, y1))
...
φ2(S(xn), F (xn, ym))

φ1(S(xn)) ⊗

Scaling φ1
−−−−−−→

Scaling φ1
−−−−−−→

Scaling φ1
−−−−−−→

⊗ φ2(S(X), F (X,Y))
∏m

i=1
φ1(S(X))1/m











φ1(S(x1))
1/m

...
φ1(S(x1))

1/m











φ1(S(xn))1/m

...
φ1(S(xn))1/m

φ2(S(x1), F (x1, y1))
...
φ2(S(x1), F (x1, ym))

φ2(S(xn), F (xn, y1))
...
φ2(S(xn), F (xn, ym))

⊗

⊗

⊗

⊗

Lifted
Multiplications
−−−−−−−−−→

φ3(S(X), F (X,Y))











φ3(S(x1), F (x1, y1))
...
φ3(S(x1), F (x1, ym))











φ3(S(xn), F (xn, y1))
...
φ3(S(xn), F (xn, ym))

φ2

F (x1, y1)

F (x1, ym)

...

φ1

φ2

φ2

...

...

S(xn)

F (xn, y1)

F (xn, ym)

Scaling φ1
−−−−−−→

Scaling φ1
−−−−−−→

φ2

S(x1)

φ2

F (x1, y1)

...

φ
1/m
1

...
φ

1/m
1

⊗

⊗

φ2

φ2

...

φ
1/m
1

...
φ

1/m
1

⊗

⊗

...

S(xn)

F (xn, y1)

F (xn, ym)

F (x1, ym)

S(x1)

F (x1, y1)

F (x1, ym)

...

φ3

φ3

...

φ3

φ3

S(xn)

F (xn, y1)

F (xn, ym)

Ground
Multiplications
−−−−−−−−−→

Figure 5: Lifted Multiplication with a m:n alignment between parfactors. The equivalent
of the lifted operation (top), is shown at the level of ground factors (middle), and
also in terms of factor graphs (bottom).

this result using a single parfactor g′ = φ′′(S(X))|C ′, with C ′ = {x1, . . . , xn} = πX(C).
Lifted summing-out directly computes g′ from g in one operation. Note that to have a
single exponent for all φ′′, Y must be count-normalized w.r.t. X in C.

Like its C-FOVE counterpart, our lifted summing-out operator requires a one-to-one
mapping between summed-out randvars and factors; that is, each summed-out randvar
appears in exactly one factor, and all these factors are different. This is guaranteed when
the eliminated atom contains all the logvars of the parfactor, since there is a different
ground factor for each instantiation of the logvars. Further, lifted summing-out may result
in identical factors on the ground level, which is exploited by computing one factor and
exponentiating. This is the case when there is a logvar that occurs only in the eliminated
atom, but not in the other atoms (such as Y in F (X,Y) in the above example).

As already illustrated in Section 2.4, counting randvars require special attention in
lifted summing-out. A formula like φ(#X [P (X)])|X ∈ {x1, . . . , xk} is really a shorthand
for a factor φ(P (x1), P (x2), . . . , P (xk)) whose value depends only on how many arguments
take particular values. In principle, we need to sum out over all combinations of values of
P (Xi). We can replace this by summing out over all values of #X [P (X)], on the condition
that we take the multiplicities of the latter into account. The multiplicity of a histogram

413

Taghipour, Fierens, Davis, & Blockeel

Operator multiply

Inputs:
(1) g1 = φ1(A1)|C1: a parfactor in G
(2) g2 = φ2(A2)|C2: a parfactor in G
(3) θ = {X1 → X2}: an alignment between g1 and g2
Preconditions:
(1) for i = 1, 2: Yi = logvar(Ai) \Xi is count-normalized w.r.t. Xi in Ci

Output: φ(A)|C, with
(1) C = ρθ(C1) ⊲⊳ C2.
(2) A = A1θ ∪A2, and
(3) for each valuation a of A, with a1 = πA1θ(a) and a2 = πA2

(a) :

φ(a) = φ
1/r2
1 (a1) · φ

1/r1
2 (a2), with ri = CountYi|Xi

(Ci)

Postcondition: G ∼ G \ {g1, g2} ∪ {multiply(g1, g2, θ)}

Operator 1: Lifted multiplication. The definition assumes, without loss of generality, that
the logvars in the parfactors are standardized apart, i.e., the two parfactors do not share
variable names (this can always be achieved by renaming logvars).

h = {(r1, n1), (r2, n2), . . . , (rk, nk)} is a multinomial coefficient, defined as

Mul(h) =
n!

∏k
i=1 ni!

.

As multiplicities should only be taken into account for (P)CRVs, never for regular PRVs,
we define for each PRV A and for each value v ∈ range(A): Mul(A, v) = 1 if A is a regular
PRV, and Mul(A, v) = Mul(v) if A is a PCRV. This Mul function is identical to Milch
et al.’s (2008) num-assign.

With all this in mind, the formal definition of the lifted summing-out in Operator 2
is mostly self-explanatory. Precondition (1) ensures that all randvars in the summed-out
P(C)RV occur exclusively in this parfactor. Precondition (2) ensures that each summed
out randvar occurs in exactly one, separate, ground factor. Precondition (3) ensures that
logvars occurring exclusively in the eliminated PRV are count-normalized with respect to
the other logvars in that PRV, so that there is one unique exponent for exponentiation.

5.3 Counting Conversion

Counting randvars may be present in the original model, but they can also be introduced
into parfactors by an operation called counting conversion (Milch et al., 2008) (see also
Section 2.4). To see why this is useful, consider a parfactor g = φ(S(X), F (X,Y))|C, with
C = {xi}

n
i=1×{yj}

m
j=1, and assume we want to eliminate S(X)|C. To do that, we first need

to make sure each S(xi) occurs in only one factor. On the ground level, this can be achieved
for a given S(xi) by multiplying all factors φ(S(xi), F (xi, yj)) in which it occurs. This results
in a single factor φ′(S(xi), F (xi, y1), . . . , F (xi, ym)) =

∏

j φ(S(xi), F (xi, yj)) (see Figure 7).
This is a high-dimensional factor, but because it equals a product of identical potentials φ,
its F (xi, yj) arguments are mutually interchangeable: all that matters is how often values
v1, v2, . . . occur among them, not where they occur. This is exactly the kind of symmetry

414

Decoupling Lifted Variable Elimination from the Constraint Language

...

...

φ(S(X), F (X,Y))
P

RV (F (X,Y))
−−−−−−−−−→

φ(S(x1), F (x1, y1))
...
φ(S(x1), F (x1, ym))

φ(S(xn), F (xn, y1))
...
φ(S(xn), F (xn, ym))

P

F (x1,y1)

−−−−−−−→

P

F (x1,ym)

−−−−−−−→

P

F (xn,y1)

−−−−−−−→

P

F (xn,ym)
−−−−−−−→

...

...

∏m
i=1

φ′(S(X))











φ′(S(xn))
...
φ′(S(xn))





















φ′(S(x1))
...

φ′(S(x1))











φ′(S(X))mExponentiate
−−−−−−−−→

φ′(S(x1))
m

φ′(S(xn))m

...
...

S(x1)

F (x1, y1)

F (x1, ym)

...

...
S(xn)

F (xn, y1)

F (xn, ym)

P

F (x1,y1)

−−−−−−−→

φ

φ

φ

φ

P

F (x1,ym)

−−−−−−−→

P

F (xn,y1)

−−−−−−−→

P

F (xn,ym)
−−−−−−−→

...

...

...

S(x1) ...

...
S(xn)

φ′

φ′

φ′

φ′

...

S(x1) (φ′)m

(φ′)m
S(xn)

Figure 6: Lifted summing-out. The equivalent of the lifted operation (top), is shown at the
level of ground factors (middle), and also in terms of factor graphs (bottom).

that CRVs aim to exploit. The factor φ′(S(xi), F (xi, y1), . . . , F (xi, ym)) can therefore be
replaced by a two-dimensional φ′′(S(xi), h) with h a histogram that indicates how often each
possible value in the range of F (xi, yj) occurs. Thus, by introducing a CRV, we can define
a two-dimensional φ′′ with that CRV as an argument, as opposed to the high-dimensional
φ′. As argued in Section 2.4, this reduces the size of the potential function, and hence
computational complexity, exponentially.

In many situations where lifted elimination cannot immediately be applied, counting
conversion makes it applicable. The conditions of the sum-out operator (Section 5.2) state
that an atom Ai can only be eliminated from a parfactor g if Ai has all the logvars in
g. When an atom has fewer logvars than the parfactor, counting conversion modifies the
parfactor by replacing another atom Aj by a counting formula, which removes this counted
logvar from logvar(A). For instance, in the above example, S(X) does not have the logvar
Y in g = φ(S(X), F (X,Y))|C and cannot be eliminated from the original parfactor g, but
a counting conversion on Y replaces F (X,Y) with #Y [F (X,Y)], allowing us to sum out
S(X) from the new parfactor g′ = φ(S(X),#Y [F (X,Y)])|C.

415

Taghipour, Fierens, Davis, & Blockeel

Operator sum-out

Inputs:
(1) g = φ(A)|C: a parfactor in G
(2) Ai: an atom in A, to be summed out from g1
Preconditions
(1) For all PRVs V, other than Ai|C, in model G: RV (V) ∩RV (Ai|C) = ∅
(2) Ai contains all the logvars X ∈ logvar(A) for which πX(C) is not singleton.
(3) Xexcl = logvar(Ai) \ logvar(A \Ai) is count-normalized w.r.t.

Xcom= logvar(Ai) ∩ logvar(A \ Ai) in C
Output: φ′(A′)|C ′, such that
(1) A′ = A \ Ai

(2) C ′ = πXcom(C)
(3) for each assignment a′ = (. . . , ai−1, ai+1, . . .) to A

′,

φ
′

(. . . , ai−1, ai+1, . . .) =
∑

ai∈range(Ai)
Mul(Ai, ai) φ(. . . , ai−1, ai, ai+1, . . .)

r

with r = CountXexcl|Xcom(C)

Postcondition: PG\{g}∪{sum-out(g,Ai)} = ΣRV (Ai|C)PG

Operator 2: The lifted summing-out operator.

Operator 3 formally defines counting conversion. It is mostly self-explanatory, apart
from the preconditions. Precondition 1 makes sure that counting conversion, on the ground
level, corresponds to multiplying factors that only differ in one randvar (i.e., are the same up
to their instantiation of the counted logvar). Precondition 2 guarantees that the resulting
histograms have the same range. Precondition 3 is more difficult to explain. It imposes
a kind of independence between the logvar to be counted and already occurring counted
logvars. Though not explicitly mentioned there, this precondition is also required for C-
FOVE’s counting operation; it implies that no inequality constraint should exist between
X and any counted logvar X#. A similar condition for FOVE’s counting elimination is
mentioned by de Salvo Braz (2007).

To see why precondition 3 is necessary, consider the parfactor g = φ(S(X),#Y [A(Y)])
|(X,Y) ∈ {(x1, y2), (x1, y3), (x2, y1), (x2, y3), (x3, y1), (x3, y2)}, which does not satisfy it.
This parfactor represents three factors of the form φ(S(xi),#Y [A(Y)])|Y ∈ {y1, y2, y3}\{yi},
which contribute to the joint distribution with the product

φ(S(x1),#Y ∈{y2,y3}[A(Y)]) · φ(S(x2),#Y ∈{y1,y3}[A(Y)]) · φ(S(x3),#Y ∈{y1,y2}[A(Y)]).

Counting conversion on logvar X turns g into a factor of the form

φ′(#X [S(X)],#Y [A(Y)])

that should be equivalent. Note that φ′ depends only on #X [S(X)] and #Y [A(Y)].
Now consider valuations V1: [S(x1), S(x2), S(x3), A(y1), A(y2), A(y3)] = [t, t, f, t, t, f]

and V2: [S(x1), S(x2), S(x3), A(y1), A(y2), A(y3)] = [t, t, f, t, f, t]. For both valuations,
#X [S(X)] = (2, 1) and #Y [A(Y)] = (2, 1), so φ′(#X [S(X)],#Y [A(Y)]) must return the
same value under V1 and V2. The original parfactor, however, returns φ(S(t), (1, 1)) ·
φ(S(t), (1, 1)) · φ(S(f), (2, 0)) under V1, and φ(S(t), (1, 1)) · φ(S(t), (2, 0)) · φ(S(f), (1, 1))

416

Decoupling Lifted Variable Elimination from the Constraint Language

...

...

φ(S(X), F (X,Y)) φ′′(S(X), #Y [F (X,Y)])

...
...

S(x1)

F (x1, y1)

F (x1, ym)

...

...
S(xn)

F (xn, y1)

F (xn, ym)

φ

φ

φ

φ

...

S(x1) ...
φ′

F (x1, ym)

F (x1, ym)

...
φ′

⊗

⊗

F (xn, y1)

F (xn, ym)

S(xn)

S(x1) ...

F (x1, ym)

F (x1, ym)

#
Counting
−−−−−−→

Counting
−−−−−−→

φ′′

...#

φ′′

...

S(xn)

F (xn, y1)

F (xn, ym)

φ(S(x1), F (x1, y1))
...

φ(S(x1), F (x1, ym))

φ(S(xn), F (xn, y1))
...

φ(S(xn), F (xn, ym))

⊗
φ′′(S(x1),#Y [F (x1, Y)])φ′(S(x1), F (x1, y1), . . . , F (x1, ym))

φ′(S(xn), F (xn, y1), . . . , F (xn, ym))

}

⊗

}

φ′′(S(xn),#Y [F (xn, Y)])

Counting Conversion
−−−−−−−−−−−−−−→

=

=

Figure 7: Counting conversion. The equivalent of the lifted operation (top), is shown at
the level of ground factors (middle), and also in terms of factor graphs (bottom).

under V2, which may be different. Since the original parfactor can distinguish valuations
that no factor of the form φ′(#X [S(X)],#Y [A(Y)]) can, counting conversion cannot be
applied in this case.

In contrast, consider g′ = φ(S(X),#Y [A(Y)])|(X,Y) ∈ {x1, x2, x3}×{y1, y2, y3}, which
is similar to g, except that its constraint satisfies precondition 3. All three factors repre-
sented by g′ differ only in their first argument, randvar S(xi); they have the same counting
randvar #Y [A(Y)]|Y ∈ {y1, y2, y3} as their second argument (this was not the case for g).
Their product, thus, can be represented by a parfactor φ′(#X [S(X)],#Y [A(Y)])|(X,Y) ∈
{x1, x2, x3} × {y1, y2, y3}, which is derived from g′ by a counting conversion.

5.4 Splitting and Shattering

When the preconditions for lifted multiplication, lifted summing-out and counting conver-
sion are not fulfilled, it is necessary to reformulate the model in terms of parfactors that
do fulfill them. For instance, if g1 = φ1(S(X))|X ∈ {x1, x2, x3} and g2 = φ2(S(X))|X ∈
{x1, x2, x3, x4, x5}, we cannot multiply g1 and g2 directly without creating unwanted de-

417

Taghipour, Fierens, Davis, & Blockeel

Operator count-convert

Inputs:
(1) g = φ(A)|C: a parfactor in G
(2) X: a logvar in logvar(A)
Preconditions
(1) there is exactly one atom Ai ∈ A with X ∈ logvar(Ai)
(2) X is count-normalized w.r.t logvar(A) \ {X} in C
(3) for all counted logvars X# in g: πX,X#(C) = πX(C)× πX#(C)

Output: φ′(A′)|C, such that
(1) A′ = A \ {Ai} ∪ {A

′
i} with A′

i = #X [Ai]
(2) for each assignment a′ to A′ with a′i = h:

φ′(. . . , ai−1, h, ai+1, . . .) =
∏

ai∈range(Ai)
φ(. . . , ai−1, ai, ai+1, . . .)

h(ai)

with h(ai) denoting the count of ai in histogram h
Postcondition: G ∼ G \ {g} ∪ {count-convert(g,X)}.

Operator 3: The counting conversion operator.

pendencies. However, we can replace g2 with g2a = φ2(S(X))|X ∈ {x1, x2, x3} and g2b =
φ2(S(X))|X ∈ {x4, x5}. The resulting model is equivalent, but in this new model, we can
multiply g1 with g2a, resulting in g3 = φ3(S(X))|X ∈ {x1, x2, x3}.

The above is a simple case of splitting parfactors (Poole, 2003; de Salvo Braz, 2007;
Milch et al., 2008). Basically, splitting two parfactors partitions each parfactor into a part
that is shared with the other parfactor, and a part that is disjoint. The goal is to rewrite the
P(C)RVs and parfactors into a proper form. Two P(C)RVs (V1,V2) are proper if RV (V1)
and RV (V2) are either identical or disjoint; two parfactors are proper if all their P(C)RVs
are proper. A pair of parfactors can be written into proper form by applying the following
procedure, until all their P(C)RVs are proper. Choose a P(C)RV V1 from one parfactor,
compare it to a P(C)RV V2 from the other, and rewrite the first parfactor such that V1 is
split into two parts: one that is disjoint from V2 and one that is shared with V2. All the
parfactors in the model can be made proper w.r.t. each other by repeatedly applying this
rewrite until convergence. This is called shattering the model.

It is simpler to rewrite a PRV into the proper form than a PCRV. We describe the oper-
ator that handles PRVs, namely split, in this section and discuss the operator that handles
PCRVs, namely expand, in the following section. Before defining the split operator, we
provide the following auxiliary definitions, which will also be used later on.

Definition 5 (Splitting on overlap) Splitting a constraint C1 on its Y-overlap with C2,
denoted C1/YC2, partitions C1 into two subsets, containing all tuples for which the Y part
occurs or does not occur, respectively, in C2. C1/YC2 = {{t ∈ C1|πY(t) ∈ πY(C2)}, {t ∈
C1|πY(t) /∈ πY(C2)}}.

Definition 6 (Parfactor partitioning) Given a parfactor g = φ(A)|C and a partition
C = {Ci}

n
i=1 of C, partition(g,C) = {φ(A)|Ci}

n
i=1.

Operator 4 defines splitting of parfactors. Note that, in the operator definition, for
simplicity, we assume that A = A′ = P (Y), which means that the logvars used in A and

418

Decoupling Lifted Variable Elimination from the Constraint Language

Operator split

Inputs:
(1) g = φ(A)|C: a parfactor in G
(2) A = P (Y): an atom in A
(3) A′ = P (Y)|C ′ or #Y [P (Y)]|C ′

Output: partition(g,C), with C = C/YC ′ \ {∅}
Postcondition G ∼ G \ {g} ∪ split(g,A,A′)

Operator 4: The split operator.

A′ must be the same, in the same order. We can always rewrite the model such that any
two PRVs with the same predicate are in this form. For this, we rewrite the parfactors as
follows: (i) if the parfactors share logvars, we first standardize apart the logvars between two
parfactors, (ii) linearize each atom in which some logvar occurs more than once, i.e., rewrite
it such that it has a distinct logvar in each argument, and (iii) apply a renaming substitution
on the logvars such that the concerned atoms have the same logvars. For instance, consider
the two parfactors g1 = φ1(P (X,X))|X ∈ C1 and g2 = φ2(P (Y,Z))|(Y,Z) ∈ C2. The
logvars of the two parfactors are already different, so there is no need for standardizing
them apart. However, the atom P (X,X) in g1 is not linearized yet. To linearize it, we
rewrite g1 into the form φ1(P (X,X ′))|(X,X ′) ∈ C ′

1, where C ′
1 = {(x, x)|x ∈ C1}. Finally,

we rename the logvarsX andX ′ to Y and Z, respectively, to derive φ1(P (Y,Z))|(Y,Z) ∈ C ′
1.

This brings the atom P (X,X) into the desired form P (Y,Z).
For ease of exposition, we will not explicitly mention this linearization and renaming;

whenever two PRVs from different parfactors are compared, any notation suggesting that
they have the same logvars is to be interpreted as “have the same logvars after linearization
and renaming”.

When GC-FOVE wants to multiply two parfactors, it first checks for all pairs A1|C1,
A2|C2 (one from each parfactor) whether they are proper. If a pair is found that is not
proper, this means A1 and A2 are both of the form P (Y), with different (but overlapping)
instantiations for Y in C1 and C2. The pair is then split on Y.

Example 9. Consider g1 = φ1(N(X,Y), R(X,Y,Z))|C1 with C1 = (X,Y,Z) ∈ {xi}
50
i=1 ×

{yi}
50
i=1 × {zi}

5
i=1, and g2 = φ2(N(X,Y))|C2 with C2 = (X,Y) ∈ {x2i}

25
i=1 × {yi}

50
i=1. First,

we compare the PRVs N(X,Y)|C1 and N(X,Y)|C2. These PRVs partially overlap, so
splitting is necessary. To split the parfactors, we split C1 and C2 on their (X,Y)-overlap.
This partitions C1 into two sets: Ccom

1 = {x2i}
25
i=1 × {yi}

50
i=1 × {zi}

5
i=1, and Cexcl

1 = C1 \
Ccom
1 = {x2i−1}

25
i=1 × {yi}

50
i=1 × {zi}

5
i=1. C2 does not need to be split, as it has no tuples

for which the (X,Y)-values do not occur in C1. After splitting the constraints, we split the
parfactors accordingly: g1 is split into two parfactors gcom1 = φ(N(X,Y), R(X,Y,Z))|Ccom

1

and gexcl1 = φ(N(X,Y), R(X,Y,Z))|Cexcl
1 , and parfactor g2 remains unmodified.

Our splitting procedure splits any two PRVs into at most two partitions each. Sim-
ilarly, the involved parfactors are split into at most two partitions each. This strongly
contrasts with C-FOVE’s approach to splitting. C-FOVE operates per logvar, and splits
off each value in a separate partition (splitting based on substitution) (Poole, 2003; Milch
et al., 2008). Thus, it may require many splits where GC-FOVE requires just one. In

419

Taghipour, Fierens, Davis, & Blockeel

the above example, instead of gexcl1 = φ(N(X,Y), R(X,Y,Z))|Cexcl
1 , C-FOVE ends up

with 1250 parfactors φ(N(x1, y1), R(x1, y1, Z))|{zi}
5
i=1, φ(N(x1, y2), R(x1, y2, Z))|{zi}

5
i=1,

. . . , φ(N(x3, y1), R(x3, y1, Z))|{zi}
5
i=1, . . . , φ(N(x49, y50), R(x49, y50, Z))|{zi}

5
i=1.

The reason why GC-FOVE can always split into at most two parfactors, yielding much
coarser partitions than C-FOVE, is that it assumes an extensionally complete constraint
language, whereas C-FOVE allows only pairwise (in)equalities, forcing it to split off each
element separately.

5.5 Expansion of Counting Formulas

When handling parfactors with counting formulas, to rewrite a P(C)RV into the proper
from, we employ the operation of expansion (Milch et al., 2008). When we split one group
of randvars RV (V) into a partition {RV (Vi)}

m
i=1, any counting randvar γ that counts the

values of RV (V) needs to be expanded, i.e., replaced by a group of counting randvars {γi}
m
i=1,

where each γi counts the values of randvars in RV (Vi). In parallel with this, the potential
that originally had V as an argument must be replaced by a potential that has all the Vi as
arguments; we call this potential expansion.

Example 10. Suppose we need to split g1 = φ1(#X [S(X)])|C1 and g2 = φ2(S(X))|C2, with
C1 = {x1, . . . , x100} and C2 = {x1, . . . , x40}. C1 is split into Ccom

1 = C1 ∩C2 = {x1, . . . x40}
and Cexcl

1 = C1 \ C2 = {x41, . . . x100}. Consequently, the original group of randvars in
parfactor g1, namely {S(x1), . . . S(x100)}, is partitioned into Vcom1 = {S(x1), . . . S(x40)} and
Vexcl1 = {S(x41), . . . S(x100)}. To preserve the semantics of the original counting formula,
we now need two separate counting formulas, one for Vcom1 and one for Vexcl1 , and we need
to replace the original potential φ1(#X [S(X)]) by φ′

1(#Xcom [S(Xcom)],#Xexcl
[S(Xexcl)]),

where φ′
1() depends only on the sum of the two new counting randvars #Xcom[S(Xcom)] and

#Xexcl
[S(Xexcl)]. The end effect is that the parfactor g1 is replaced by the new parfactor

φ′
1(#Xcom[S(Xcom)],#Xexcl

[S(Xexcl)])|C
′
1, where C ′

1 = Ccom
1 × Cexcl

1 .

To explain expansion, we begin with the case of (non-parametrized) CRVs and then
move to the general case of expansion for PCRVs.

5.5.1 Expansion of CRVs

First consider the simplest possible type of CRV: #X [P (X)]|C. It counts for how many
values of X in C, P (X) has a certain value. When C is partitioned, X must be counted
within each subset of the partition.

In the following, we assume C is partitioned into two non-empty subsets C1 and C2. If
one of them is empty, the other equals C, which means the CRV can be kept as is and no
expansion is needed.

In itself, splitting #X [P (X)]|C into #X [P (X)]|C1 and #X [P (X)]|C2 is trivial, but a
problem is that both of the resulting counting formulas will occur in one single parfactor,
and a constraint is always associated with a parfactor, not with a particular argument
of a parfactor. Thus, we need to transform φ(#X [P (X)])|C into a parfactor of the form
φ′(#X1

[P (X1)],#X2
[P (X2)])|C

′, where the single constraint C ′ expresses that X1 can take
only values in C1, and X2 only values in C2. It is easily seen that C ′ = ρX→X1

C1×ρX→X2
C2

420

Decoupling Lifted Variable Elimination from the Constraint Language

satisfies this condition. Further, to preserve the semantics, φ′ should, for any count of X1

and X2, give the same result as φ with the corresponding count of X. The function

φ′(h1, h2) = φ(h1 ⊕ h2),

with ⊕ denoting summation of histograms, has this property. Indeed, the histogram for X1

(resp. X2) in C ′ is equal to that for X in C1 (resp. C2), and since {C1, C2} is a partition
of C, the sum of these histograms equals the histogram for X in C.

More generally, consider a non-parametrized CRV #X [P (X)]|C, with X ∈ X mean-
ing that πX\{X}(C) is singleton. The constraint C ′ = πX\{X}(C) × (πX1

(ρX→X1
C1) ×

πX2
(ρX→X2

C2)) joins this singleton with the Cartesian product of πX(C1) and πX(C2),
and is equivalent to the constraint ρX→X1

(C1) ⊲⊳ ρX→X2
(C2). The result is again such

that counting X1 (X2) in C ′ is equivalent to counting X in C1 (C2), while the constraint
on all other variables remains unchanged. This shows that a parfactor φ(A,#X [P (X)])|C,
for any partition {C1, C2} of C with C1 and C2 non-empty, can be rewritten in the form
φ′(A,#X1

[P (X)],#X2
[P (X)])|C ′, where C ′ = ρX→X1

(C1) ⊲⊳ ρX→X2
(C2).

Note that the ranges of the counting formulas in φ′ (the hi arguments) depend on the
cardinality of C1 and C2, which we will further denote as n1 and n2 respectively.

5.5.2 Expansion of PCRVs

Consider the case where πX\{X}(C) is not a singleton, i.e., we have a parametrized CRV
V that represents a group of CRVs, each counting the values of a subset of RV (V). Given
a partitioning of the constraint C, we need to expand each underlying CRV and the cor-
responding potential. The constraint C ′ = ρX→X1

(C1) ⊲⊳ ρX→X2
(C2) remains correct (for

non-empty C1, C2), even when πX\{X}(C) is no longer singleton: it associates the correct
values of X1 and X2 with each tuple in πX\{X}(C). However, because the result of poten-
tial expansion depends on the size of the partitions, n1 and n2, only those CRVs that have
the same (n1,n2) result in identical potentials after expansion, and can be grouped in one
parfactor. To account for this, PCRV expansion first splits the PCRV into groups of CRVs
that have the same “joint count” (n1, n2), then applies for each group the corresponding
potential expansion.

To formalize this, we first provide the following auxiliary definitions.

Definition 7 (Group-by) Given a constraint C and a function f : C → R, Group-

By(C, f) = C/ ∼f , with x ∼f y ⇔ f(x) = f(y) and / denoting set quotient. That is,
Group-By(C, f) partitions C into subsets of elements that have the same result for f .

Definition 8 (Joint-count) Given a constraint C over variables X, partitioned into {C1,
C2}, and a counted logvar X ∈ X; then for any t ∈ C, with L = X \ {X} and l = πL(t),

joint-countX,{C1,C2}(t) = (|πX(σL=l(C1))|, |πX (σL=l(C2))|).

When a PCRV V = #Xi
[P (X)] |C in a parfactor g partially overlaps with another PRV

A′|C ′ in the model, expansion performs the following on g: (1) partition C on its X-overlap
with C ′, resulting in C/XC ′; (2) partition C into C = group-by(C, joint-countX,C/XC′)
(this corresponds to a partition of V into CRVs that have the same number of rand-
vars in each of the common and exclusive partitions in C/XC ′); (3) split g, based on

421

Taghipour, Fierens, Davis, & Blockeel

Operator expand

Inputs:
(1) g = φ(A)|C: a parfactor in G
(2) A = #X [P (X)]: a counting formula in A
(3) A′ = P (X)|C ′ or #Y [P (X)]|C ′

Output: {gi = φ′
i(A

′
i)|C

′
i}

n
i=1 where

(1) C/XC ′ = {Ccom, Cexcl}
(2) {C1, . . . , Cn} = group-by(C, joint-countX,C/XC′)

(3) for all i where Ci ⊲⊳ Ccom = ∅ or Ci ⊲⊳ Cexcl = ∅: φ′
i = φ, A′

i = A, C
′
i = Ci

(4) for all other i:
(5) C ′

i = πlogvar(A)(Ci) ⊲⊳ (ρX→Xcom(C
com) ⊲⊳ ρX→Xexcl

(Cexcl))

(6) A′
i = A \ {A} ∪ {Aθcom, Aθexcl} with θcom = {X → Xcom}, θexcl = {X → Xexcl}

(7) for each valuation (l, hcom, hexcl) of A
′
i, φ

′
i(l, hcom, hexcl) = φ(l, hcom ⊕ hexcl)

Postcondition G ∼ G \ {g} ∪ expand(g,A,A′)

Operator 5: The expansion operator.

C = {C1, . . . , Cn}, resulting in parfactors g1, . . . , gn that each require a distinct expanded
potential; (4) in each gi, replace potential φ with its expanded version. The formal definition
of expansion is given in Operator 5.

Example 11. Suppose we need to split parfactors g = φ(#Y [F (X,Y)])|C and g′ =
φ′(F (X,Y))|C ′, with C = {ann, bob, carl} × {dave, ed, fred, gina} and C ′ = {ann, bob} ×
{dave, ed}. Assume F stands for friendship; #Y [F (X,Y)]|C counts the number of friends
and non-friends each X has in C. The random variables covered by PCRV #Y [F (X,Y)] |C
partially overlap with those of F (X,Y) |C ′. If we need to split C on overlap with C ′, yield-
ing Ccom and Cexcl, we need to replace the original PCRV with separate PCRVs for Ccom

and Cexcl. But PCRVs require count-normalization, and the fact that Y is count-normalized
w.r.t. X in C does not necessarily imply that the same holds in Ccom and Cexcl. That is
why, in addition to the split on overlap, we need an orthogonal partitioning of C according
to the joint counts. Within a subset Ci of this partitioning, Y will be count-normalized
w.r.t. X in Ccom

i and in Cexcl
i .

We follow the four steps outlined above. Figure 8 illustrates these steps. First, we
find the partition C/X,Y C

′ = {Ccom, Cexcl} with Ccom = {ann, bob} × {dave, ed} and
Cexcl = {ann, bob} × {fred, gina} ∪ {carl} × {dave, ed, fred, gina}. Inspecting the joint
counts, we see that Ccom contains 2 possible friends for Ann or Bob (namely Dave and
Ed), but 0 for Carl, whereas Cexcl contains 2 possible friends for Ann or Bob and 4
for Carl. Formally, joint-countY,C/X,Y C′(t) equals (2,2) for πX(t) = ann or πX(t) =

bob, and equals (0,4) for πX(t) = carl. So, within Ccom and Cexcl, Y is no longer
count-normalized with respect to X. We therefore partition C into subsets {C1, C2} =
group-by(C, joint-countY,C/X,Y C′), which gives C1 = {ann, bob}×{dave, ed, fred, gina}
and C2 = {carl}×{dave, ed, fred, gina}. For each Ci, we can now construct a C ′

i that allows
for counting the friends in Ccom

i and in Cexcl
i separately, using the series of joins discussed

earlier. Where both Ccom
i and Cexcl

i are non-empty, the original PCRV #Y [F (X,Y)] |C is

422

Decoupling Lifted Variable Elimination from the Constraint Language

C

ann dave
ann ed
ann fred
ann gina
bob dave
bob ed
bob fred
bob gina
carl dave
carl ed
carl fred
carl gina

C ′

ann dave
ann ed
bob dave
bob ed

C/X,Y C
′

ann dave
ann ed
bob dave
bob ed

ann fred
ann gina
bob fred
bob gina
carl dave
carl ed
carl fred
carl gina

group-by(C,
joint-countY,C/X,Y C′)

C1

ann dave
ann ed
ann fred
ann gina
bob dave
bob ed
bob fred
bob gina

C2

carl dave
carl ed
carl fred
carl gina

C ′
1

X Ycom Yexcl

ann dave fred
ann dave gina
ann ed fred
ann ed gina
bob dave fred
bob dave gina
bob ed fred
bob ed gina

C ′
2

X Y

carl dave
carl ed
carl fred
carl gina

Figure 8: Illustration of the PCRV expansion operator. (1) Y is count-normalized w.r.t. X
in C (with each X, four Y values are associated). Splitting C on overlap with C ′

results in subsets in which Y is no longer count-normalized w.r.t. X: the joint
counts of Y for both subsets are (2,2) for Ann and Bob, and (0,4) for Carl. To
obtain count-normalized subsets, we need to partition C into a subset C1 for
Ann and Bob, and C2 for Carl; this is what the Group-By construct does. For
each of the subsets, a split on overlap with C ′ will yield subsets in which Y is
count-normalized w.r.t. X. C ′

1 is the result of joining the common and exclusive
parts according to the join construct motivated earlier. C ′

2 equals C2 because C2

has no overlap with C ′ and hence need not be split.

replaced by two PCRVs per Ci, #Ycom[F (X,Ycom)] |Ci and #Yexcl
[F (X,Yexcl)] |Ci, and the

new potential φ′ is defined such that φ′(hcom, hexcl) = φ(hcom ⊕ hexcl).

GC-FOVE’s expansion improves over C-FOVE’s in the following way. C-FOVE uses
expansion based on substitution (Milch et al., 2008). For instance, in Example 10, C-FOVE
splits off all the elements of Cexcl individually from C, adding each of these elements as
a separate argument of the parfactor and the involved potential function. This yields a

423

Taghipour, Fierens, Davis, & Blockeel

potential function φ′
1() with 61 arguments, namely the counting randvar #Xcom[S(Xcom)]

and the 60 randvars S(x41), . . . S(x100). This causes an extreme blow up in the size (number
of entries) of the potential function, which does not happen using our approach. In general,
C-FOVE’s expansion yields a potential function of size O(rk · (n− k)r), with n = |C1|, k =
|Cexcl

1 |, and r the cardinality of the range of the considered randvars (e.g., r = |range(S(.))|
in Example 10). In contrast, GC-FOVE’s expansion yields a potential function of size
O(kr · (n − k)r). In the likely scenario that r ≪ k, this is exponentially smaller than
C-FOVE’s potential function. Given that this potential function will later be used for
multiplication or summing-out, it is clear that GC-FOVE can yield large efficiency gains
over C-FOVE.

5.6 Count Normalization

Lifted multiplication, summing-out and counting conversion all require certain variables
to be count-normalized (recall Definition 2, p. 406). When this property does not hold,
it can be achieved by normalizing the involved parfactor, which amounts to splitting the
parfactor into parfactors for which the property does hold (Milch et al., 2008). Concretely,
when Y is not count-normalized given Z in a constraint C, then C is simply partitioned
into C = Group-By(C,CountY|Z), with CountY|Z as defined in Definition 1; next, the
parfactor is split according to C. The formal definition of count normalization is shown in
Operator 6.

Operator count-normalize

Inputs:
(1) g = φ(A)|C: a parfactor in G
(2) Y|Z: sets of logvars indicating the desired normalization property in C
Preconditions
(1) Y ⊂ logvar(A) and Z ⊆ logvar(A) \Y
Output: partition(g, group-by(C,CountY|Z))

Postconditions G ∼ G \ {g} ∪ count-normalize(g,Y|Z)

Operator 6: The count-normalization operator.

Example 12. Consider the parfactor g with A = (Prof(P), Supervises(P, S)) and con-
straint C = {(p1, s1), (p1, s2), (p2, s2), (p2, s3), (p3, s5), (p4, s3), (p4, s4), (p5, s6)}. Lifted
elimination of Supervises(P, S) requires logvar S (student) to be count-normalized with re-
spect to logvar P (professor). Intuitively, we need to partition the professors into groups such
that all professors in the same group supervise the same number of students. In our example,
C needs to be partitioned into two, namely C1 = σP∈{p3,p5}(C) = {(p3, s5), (p5, s6)} (tuples
involving professors with 1 student) and C2 = σP∈{p1,p2,p4}(C) = {(p1, s1), (p1, s2), (p2, s2),
(p2, s3), (p4, s3), (p4, s4)} (professors with 2 students). Next, the parfactor g is split accord-
ingly into two parfactors g1 and g2 with constraints C1 and C2. These parfactors are now
ready for lifted elimination of Supervises(P, S).

C-FOVE requires a stronger normalization property to hold. For every pair of logvars X and
Y it requires either (1) πX,Y (C) = πX(C)× πY (C) or (2) πX(C) = πY (C) and πX,Y (C) =

424

Decoupling Lifted Variable Elimination from the Constraint Language

(πX(C)×πY (C))\{〈xi, xi〉 : xi ∈ πX(C)}. To enforce this, C-FOVE requires finer partitions
than our approach does. In our example, C-FOVE requires C to be split into 5 subsets
{Ci}

5
i=1 with Ci = σP∈{pi}(C), i.e., one group per professor. The coarser partitioning used

in our approach cannot be represented using C-FOVE’s constraint language.

5.7 Absorption: Handling Evidence

When the value of a randvar is observed, this usually makes probabilistic inference more
efficient: the randvar can be removed from the model, which may introduce extra in-
dependencies in the model. However, in lifted inference, there is also an adverse effect:
observations can break symmetries among randvars. For this reason, it is important to
handle observations in a manner that preserves as much symmetry as possible. In order to
effectively handle observations in a lifted manner, we introduce the novel operator of lifted
absorption.

In the ground setting, absorption works as follows (van der Gaag, 1996). Given a factor
φ(A) and an observation Ai = ai with Ai ∈ A, absorption replaces φ(A) with a factor φ′(A′),
with A′ = A \ {Ai} and φ′(a1, . . . , ai−1, ai+1, . . . , am) = φ(a1, . . . , ai−1, ai, ai+1, . . . , am).
This reduces the size of the factor and may introduce extra independencies in the model,
which is always beneficial.

If n randvars (built from the same predicate) have the same observed value, we can
perform absorption on the lifted level by treating these n randvars as one single group.
Consider a parfactor g = φ(S(X), F (X,Y))|(X,Y) ∈ {(x1, y1), . . . , (x1, y50)}. Assume that
evidence atoms F (x1, y1) to F (x1, y10) all have the value true. This can be represented by
adding an evidence parfactor gE to the model: gE = φE(F (X,Y))|(X,Y) ∈ {x1} × {yj}

10
1 ,

with φE(true) = 1 (the observed value) and φE(false) = 0. To absorb the evidence, g needs
to be split into two, namely g1 with C1 = {(x1, y1), . . . , (x1, y10)} (the parfactor about which
we have evidence) and g2 with C2 = {(x1, y11), . . . , (x1, y50)} (no evidence). Then, we can
absorb the evidence about F into g1. Performing absorption on the ground level would
result in ten identical factors φ′(S(x1)) (the logvar Y disappears in the absorption). Lifted
absorption computes the same φ′ once, and raises it to the tenth power. Generally, with
Xexcl the logvars that occur exclusively in the atom being absorbed, the exponent is the
number of values Xexcl can take, so Xexcl must be count-normalized with respect to the
other logvars. Further, all logvars in Xexcl can be removed from the constraint C as they
disappear in the absorption.

For parfactors with counting formulas, essentially the same reasoning is used, but now
the exponent is determined by the non-counted logvars occurring exclusively in the atom
(Xnce). These logvars, together with the counted logvar, can be removed from C. The value
for the absorbed counting formula, to be filled in in φ, is a histogram indicating how many
times each possible value has been observed in the absorbed PRV. Since there is only one
observed value in the evidence parfactor, this histogram maps that value to the number of
randvars being absorbed, and other values to zero. Lifted absorption is formally defined in
Operator 7. We provide a correctness proof for this operator in Appendix A, and analyze
its complexity in Appendix B.

GC-FOVE handles evidence by absorption as follows. It first creates one evidence par-
factor per observed value for each predicate. Next, it compares each evidence parfactor with

425

Taghipour, Fierens, Davis, & Blockeel

Operator absorb

Inputs:
(1) g = φ(A)|C: a parfactor in G
(2) Ai ∈ A with Ai = P (X) or Ai = #Xi

[P (X)]
(3) gE = φE(P (X))|CE : an evidence parfactor
Let Xexcl = X \ logvar(A \ Ai);

Xnce = Xexcl \ {Xi} if Ai = #Xi
[P (X)], Xexcl otherwise;

L′ = logvar(A) \Xexcl;
o = the observed value for P (X) in gE ;

Preconditions
(1) RV (Ai|C) ⊆ RV (Ai|CE)
(2) Xnce is count-normalized w.r.t. L′ in C.
Output: g′ = φ′(A′)|C ′, with
(1) A′ = A \ {Ai}
(2) C ′ = πlogvar(C)\Xexcl (C)

(3) φ′(. . . , ai−1, ai+1, . . .) = φ(. . . , ai−1, e, ai+1, . . .)
r, with r = CountXnce|L′(C), and

with e = o if Ai = P (X)
and e a histogram with e(o) = CountXi|logvar(A)(C), e(.) = 0 elsewhere, otherwise

(namely if Ai = #Xi
[P (X)])

Postcondition
G ∪ {gE} = G \ {g} ∪ {gE ,absorb(g,Ai, gE)}

Operator 7: Lifted absorption.

each PRV in the model, applying absorption when possible. Where necessary, parfactors
in the model are split to allow for absorption. (It is never necessary to split evidence par-
factors, see precondition 1.) When no more absorptions are possible with a given evidence
parfactor, it is removed from the model: the evidence has been incorporated completely.

Like the sum-out operator, the absorb operator has the effect of eliminating PRVs
from the model. As the operator’s definitions show, however, absorb requires weaker
preconditions than sum-out, which means that it can be applied in more situations. Also,
the absorb operator easily lends itself to a splitting as needed constraint processing strategy
(Kisynski & Poole, 2009a), which keeps the model at a much higher granularity, by requiring
fewer splits on the parfactors compared to a preemptive shattering strategy. In the presence
of observations, which is often the case in real-world problems, these effects can result in
large computational savings.

Our approach to dealing with evidence differs from C-FOVE’s in two important ways.
First, C-FOVE introduces a separate evidence factor for each ground observation A = a.
This causes extensive splitting: if there are n randvars with the same observed value, there
will be n separate factors, and C-FOVE will perform (at least) n eliminations on these
randvars. In addition, the splitting may cause further splitting as C-FOVE continues,
destroying even more opportunities for lifting. We show in Section 7 that this can make
inference impossible with C-FOVE in the presence of evidence.

Second, C-FOVE does not use absorption; during inference, the evidence factors are
used for multiplication and summing-out like any other factors. Absorption is advantageous

426

Decoupling Lifted Variable Elimination from the Constraint Language

Operator ground-logvar

Inputs:
(1) g = φ(A)|C: a parfactor in G
(2) X: a logvar in logvar(A)
Output: partition(g,group-by(C, πX))
Postcondition
G ∼ G \ {g} ∪ ground-logvar(g,X)

Operator 8: Grounding.

because it eliminates randvars from the model, so they no longer need to be summed out. As
a result, in our approach, evidence reduces the number of summing-out and multiplication
operations, while in C-FOVE it increases that number.

5.8 Grounding a Logvar

There is no guarantee that the enabling operators eventually result in PRVs and parfactors
that allow for any of the lifted operators. To illustrate this, consider a model consisting of
a single parfactor φ(R(X,Y), R(Y,Z), R(X,Z))|C, which expresses a probabilistic variant
of transitivity. Since there is only one factor, no multiplications are needed before starting
to eliminate variables. Yet, because of the structure of the parfactor, no single PRV can
be eliminated (the preconditions for lifted summing out and counting conversion are not
fulfilled, and none of the other operators can change that).

In cases like this, when no other operators can be applied, lifted VE can always resort to a
last operator: grounding a logvarX in a parfactor g (de Salvo Braz, 2007; Milch et al., 2008).
Given a parfactor g = φ(A)|C and a logvar X ∈ logvar(A) with πX(C) = {x1, . . . , xn},
grounding X replaces g with the set of parfactors {g1, . . . , gn} with gi = φ(A)|σX=xi

(C).
This is equivalent to splitting g based on the partition group-by(C, πX), which yields the
definition shown in Operator 8. Note that in each resulting parfactor gi, logvar X can only
take on a single value xi, so in practice X can be replaced by the constant xi and removed
from the set of logvars.

Grounding can significantly increase the granularity of the model and decrease the oppor-
tunities for performing lifted inference: in the extreme case where all logvars are grounded,
inference is performed at the propositional level. It is therefore best used only as a last
resort. In practice, (G)C-FOVE’s heuristic for selecting operators, which relies on the size
of the resulting factors, automatically has this effect.

Calling the ground-logvar operator should not be confused with the event of obtain-
ing a ground model. ground-logvar grounds only one logvar, and does not necessarily
result in a ground model. Conversely, one may arrive at a ground model without ever calling
ground-logvar, simply because the splitting continues up to the singleton level.

6. Representing and Manipulating the Constraints

We have shown that using an extensionally complete constraint language instead of allowing
only pairwise (in)equalities can potentially yield large efficiency gains by allowing more
opportunities for lifting. The question remains how we can represent these constraints.

427

Taghipour, Fierens, Davis, & Blockeel

⊤ ⊤ ⊤ ⊤ ⊤

{x1, x2, x3} {x5, . . . , x20}{x4, x5}

{y1, . . . , y10} {y11, y12} {y1, . . . , y20} {y1, y2} {y3, . . . , y10}

X

Y Y Y

Z Z Z Z Z

{z1, . . . , z5} {z1, . . . , z10} {z4, z5} {z1, . . . , z8} {z10, z15}

Figure 9: A constraint tree representing a constraint on logvars X,Y,Z.

In principle, we could represent them extensionally, as lists of tuples. This allows any
constraint to be represented, but is inefficient when we have many logvars. Instead, we
employ a constraint tree, as also used in First Order Bayes-Ball (Meert, Taghipour, &
Blockeel, 2010). Hence, the lower-level operations on constraints (projection, splitting,
counting) must be implemented in terms of constraint trees. Below, we briefly explain how
this is done.

A constraint tree on logvars X is a tree in which each internal (non-leaf) node is labeled
with a logvar X ∈ X, each leaf is labeled with a terminal label ⊤, and each edge e = (Xi,Xj)
is labeled with a (sub-)domain D(e) ⊆ D(Xi). See Figure 9 for an example. We use ordered
trees, where all nodes in the same level of the tree are labeled with the same logvar, and each
logvar occurs on only one level. Each path from the root to a leaf through edges e1, . . . , e|X|

represents the tuples in the Cartesian product ×iD(ei). For example, in Figure 9, the left
most path represents the tuples {x1, x2, x3} × {y1, . . . , y10} × {z1, . . . , z5}. The constraint
represented by the tree is the union of tuples represented by each root-to-leaf path.

Given a constraint (in terms of the set of tuples that satisfy it), we construct the
corresponding tree in a bottom-up manner by merging compatible edges. Different logvar
orders can result in trees of different sizes. A tree can be re-ordered by interchanging nodes
in two adjacent levels of the tree and applying the possible merges at those levels. We
employ re-ordering to simplify the various constraint handling operations. For projection
of a constraint, we move the projected logvars to the top of the tree and discard the parts
below these logvars. For splitting, we perform a pairwise comparison of the two involved
constraint trees. First, we re-order each tree such that the logvars involved in the split
are at the top of the trees. Then we process the trees top-down by comparing the edges
leaving the root in the two trees and partition their domains based on their overlap. We
recursively repeat this for their children until we reach the last logvar involved in the split.
For count normalization, we also first apply this re-ordering. Then we partition the tree
based on the number of tuples of counted logvars in each branch. For counting this number,

428

Decoupling Lifted Variable Elimination from the Constraint Language

we only need to consider the size of the domains associated with the edges. Finally, the
join of two constraints is computed by reordering the trees so that the join variables occur
at the top, merging the levels of the join variables in the same way as is done for splitting,
and extending each leaf in the resulting tree with the cross-product of the corresponding
subtrees of the original trees.

Constraint trees (and the way they are constructed) are close to the hypercube repre-
sentation used in lifted belief propagation (Singla, Nath, & Domingos, 2010). However, for
a given constraint, the constraint tree is typically more compact. The constraint tree of
Figure 9 corresponds to a set of five hypercubes, one for each leaf. The hypercube repre-
sentation does not exploit the fact that the first and second hypercube, for instance, share
the part {x1, x2, x3}. In the constraint tree, this is explicit, which makes it more compact.

We stress that GC-FOVE can use any extensionally complete constraint representation
language. Constraint trees are just one such representation. Other representations can be
more compact in some cases, but in the choice of a representation we need to consider also
the tradeoff between compactness and ease of constraint processing. Consider a constraint
graph, which is similar to our trees, but in which parent nodes can share child nodes. This
representation is more compact than a constraint tree, but also requires more complicated
constraint handling operations. For instance, consider splitting, in which we might need
to split a child node for one parent but not for the others. Such operations become more
complicated on graphs, while they are trivial on trees.

7. Experiments

Using an extensionally complete constraint language, we can capture more symmetries
in the model, which potentially offers the ability to perform more operations at a lifted
level. However, this comes at a cost, as manipulating more expressive constraints is more
computationally demanding. We hypothesize that the ability to perform fewer computations
by capturing more symmetries will far outweigh this cost in typical inference tasks. In this
section, we compare the performances of C-FOVE and GC-FOVETREES (GC-FOVE using
the tree representation from Section 6) to empirically validate this hypothesis. In particular,
we study how the performances vary as a function of two parameters: (i) the domain size,
and (ii) the amount of evidence. We also empirically study whether GC-FOVETREES can
solve inference tasks that are beyond the reach of C-FOVE.

Throughout this section, GC-FOVE stands for GC-FOVETREES.

7.1 Methodology and Datasets

We compare C-FOVE and GC-FOVE on several inference tasks with synthetic and real-
world data. We use the version of C-FOVE extended with general parfactor multiplication
(de Salvo Braz, 2007).3 For implementing GC-FOVE, we started from the publicly avail-
able C-FOVE code (Milch, 2008), so the implementations are maximally comparable.4 In
all experiments, the undirected model has parfactors whose constraints are all representable

3. This allows C-FOVE to handle some tasks in an entirely lifted way, where otherwise it would have to
resort to grounding, e.g., on the social network domain (Jha et al., 2010).

4. GC-FOVE is available from http://dtai.cs.kuleuven.be/ml/systems/gc-fove.

429

Taghipour, Fierens, Davis, & Blockeel

by C-FOVE. Thus, GC-FOVE has no initial advantage, which makes the comparison con-
servative.

In each experiment we compute the marginal probability of a query randvar given some
evidence. The query randvar is selected at random from the non-observed atoms. The
evidence is generated by randomly selecting randvars of a particular predicate and giving
them a value chosen randomly and uniformly from their domain. All the reported results
are averaged over multiple runs for different query and evidence sets.

7.1.1 Experiments with Synthetic Data

In terms of synthetic data, we evaluate our algorithm on three standard benchmark prob-
lems. The first domain is called workshop attributes (Milch et al., 2008). Here, m different
attributes (e.g., topic, date, etc.) describe the workshop, and a corresponding factor for each
attribute shows the dependency between the attendance of each person and the attribute.
The theory contains the following parfactors.

φ1(Attends(X), Attr1)

...

φm(Attends(X), Attrm)

φm+1(Attends(X), Series)

The second domain is called competing workshops (Milch et al., 2008). It models the fact
that people are more likely to attend a workshop if it is on a “hot topic” and that the number
of attendees influences whether the workshop becomes a series. The theory contains the
following parfactors.

φ1(Attends(X),Hot(Y))

φ2(Attends(X), Series)

In our experiments on both of the above domains, the query variable is Series, and all
evidence randvars are of the form Attends(x).

The third domain is called social network (Jha et al., 2010) and it models people’s
smoking habits, their chance of having asthma, and the dependence of a persons habits and
diseases on their friendships. The theory contains the following parfactors.

φ1(Smokes(X))

φ2(Asthma(X))

φ3(Friends(X,Y))

φ4(Asthma(X), Smokes(X))

φ5(Asthma(X), F riends(X,Y), Smokes(Y))

In this domain, the evidence randvars will be a mix of randvars of the form Smokes(x) or
Asthma(x), and the query randvar can be any randvar that is unobserved.

430

Decoupling Lifted Variable Elimination from the Constraint Language

7.1.2 Experiments with Real-World Data

We also used two other datasets from the field of statistical relational learning. The first,
WebKB (Craven & Slattery, 1997), contains data about more than 1200 webpages, including
their class (e.g., “course page”), textual content (set of words), and the hyperlinks between
the pages. The model consists of multiple parfactors, stating for instance how the classes of
two linked pages depend on each other. Our inference task concerns link prediction. Here,
the class information is observed for a subset of all pages and the task is to compute the
probability of having a hyperlink between a pair of pages. We use one Pageclass predicate
in the model for each run, and average the runtime over multiple runs for each class. We
used the following set of parfactors.

φ1(Pageclass(P))

φ2(Pageclass(P),HasWord(P,W))

φ3(Pageclass(P1), Link(P1, P2), Pageclass(P2))

The second dataset, Yeast (Davis, Burnside, de Castro Dutra, Page, & Costa, 2005), con-
tains data about more than 7800 yeast genes, their functions and locations, and the inter-
actions between these genes. The model and task are similar to those in WebKB (gene
functions correspond to page classes, gene-to-gene interactions to hyperlinks). In this task,
we observe the function information for a subset of all genes and query the existence of an
interaction between two genes. Similar to WebKB, we also use one function in the model
in each run and average the results over multiple runs. Here, we used the following set of
parfactors.

φ1(Function(G))

φ2(Location(G,L))

φ3(Function(G), Location(G,L))

φ4(Function(G1), Interaction(G1, G2), Function(G2))

Motivation for evidence randvars. In all experiments, evidence randvars correspond to
atoms of a unary predicate; we call them “unary randvars”. This is done on purpose because
introducing evidence randomly for binary randvars, e.g., randvars of the type P (X,Y), can
quickly break so many symmetries that lifted inference is not possible anymore. In fact,
there are recent theoretical results that show that lifted inference in the presence of arbitrary
evidence on binary randvars is simply not possible. This limitation is not unique to our
approach, but is true of any possible exact lifted inference approach (Van den Broeck &
Davis, 2012). Because of this, random insertion of evidence on binary randvars can quickly
cause any lifted inference algorithm to resort to ground inference, which would blur the
distinction between C-FOVE, GC-FOVE, and ground inference. We avoid this by placing
evidence only on unary randvars.

431

Taghipour, Fierens, Davis, & Blockeel

200 400 600 800 1000

Domain Size

1

10

T
im

e
(s

)

GC-FOVE
C-FOVE

(a) Workshop Attributes

200 400 600 800 1000

Domain Size

0.1

1

10

T
im
e
(s
)

GC-FOVE

C-FOVE

(b) Competing Workshops

!�� 400 600 800 1000

'����� ����

1

10

100

1000

T
im

e
 (

s
)

GC-FOVE
C-FOVE

(c) Social Network

Figure 10: Performance on synthetic data for varying domain sizes and proportion of ob-
served randvars fixed at 20%. Y-axis (runtime) is drawn in log scale.

7.2 Influence of the Domain Size

In the first set of experiments, we use the synthetic datasets to measure the effect of domain
size (number of objects) on runtime. We vary the domain size from 50 to 1000 objects while
holding the proportion of observed randvars (relative to the number of observable randvars)
constant at 20%. Figures 10(a) through 10(c) show the performance on all three synthetic
datasets. On all three models, GC-FOVE outperforms C-FOVE on all domain sizes. As
the number of objects in the domain increases, the runtimes increase for both algorithms.
GC-FOVE’s runtime increases at a much lower rate than C-FOVE’s on all three models.
On the first two tasks, GC-FOVE is between one and two orders of magnitude faster than
C-GOVE, for the largest domain sizes. On the social network domain, the difference in
performance becomes more striking: C-FOVE cannot handle domain sizes of 100 objects or
more, while GC-FOVE handles the largest domain (1000 objects) in about 200 seconds. The
improvement in performance arises as GC-FOVE better preserves the symmetries present
in the model by treating all indistinguishable elements, observed or not, as a single unit.

The gain is more pronounced for larger domains. C-FOVE makes a separate partition
(and a separate evidence factor) for each observed randvar, thus, with a fixed evidence
ratio, the number of partitions induced by C-FOVE grows linearly with the domain size.
Moreover, it has a costly elimination operation for each partition. In contrast, GC-FOVE,
which employs lifted absorption, keeps the model at a higher granularity by grouping the
observations and handles whole groups of observations with a single lifted operation.

7.3 Influence of the Amount of Evidence

In the second set of experiments, we measure the effect of the proportion of observed
randvars on runtime, using the synthetic datasets. We fix the domain size, and vary the
percentage of observed randvars from 0% to 100%. Note that this is a percentage of all
“observable” randvars (e.g., all randvars of the form Smokes(x)), not of all randvars of
any type (so 100% does not mean there are no unobserved variables left). Figures 11(a)
through 11(c) show the performance on all three synthetic domains with domain size of
1000 objects. To better demonstrate C-FOVE’s behavior on the social networks domain,
Figure 11(d) shows the performances on a domain with only 25 objects. Both algorithms
display similar trends across the three domains. Without evidence, GC-FOVE is comparable

432

Decoupling Lifted Variable Elimination from the Constraint Language

0 20 40 60 80 100

Percentage of Evidence

0.1

1

10

100

1000

T
im

e
(s

)

GC-FOVE
C-FOVE

(a) Workshop Attributes (domain size: 1000)

0 20 40 60 80 100

Percentage of Evidence

0.01

0.1

1

10

100

1000

10000

T
im

e
 (

s
)

GC-FOVE
C-FOVE

(b) Competing Workshops (domain size: 1000)

0 20 40 60 80 100

Percentage of Evidence

0.1

1

10

100

1000

T
im

e
(s

)

GC-FOVE
C-FOVE

(c) Social Network (domain size: 1000)

0 20 40 60 80 100

Percentage of Evidence

0.1

1

10

100

1000

T
im

e
(s

)

GC-FOVE
C-FOVE

(d) Social Network (domain size: 25)

Figure 11: Performance on synthetic data with varying amounts of evidence and a fixed
domain size. The Y-axis (runtime) is drawn in log scale.

to C-FOVE. This is the best scenario for C-FOVE as (i) the initial model only contains
(in)equality constraints, and (ii) there is no evidence, so no symmetries are broken when the
inference operators are applied. In this case, the only difference in runtime between the two
algorithms is the overhead associated with constraint processing, which is almost negligible.
As the proportion of observations increases, and the symmetries between the objects are
broken, GC-FOVE maintains a much coarser grouping, and so performs inference much more
efficiently, than C-FOVE. In all domains, C-FOVE’s runtime increases dramatically with
an increase in the percentage of observations. As more evidence is added, C-FOVE induces
more partitions, which results in finer groupings of objects and leaves fewer opportunities
for lifting. GC-FOVE performs significantly better in comparison, due to coarser grouping
of observations and employing absorption for their elimination from the model. GC-FOVE’s
runtime experiences a bump as the initial set of evidence is added, but then levels out or
gradually decreases (the more evidence, the more randvars are efficiently eliminated by
absorption). GC-FOVE consistently finishes in under 200 seconds, regardless of the setting.
In contrast, on the social network domain (Figure 11(c)) C-FOVE cannot handle portions
of evidence greater than 1% (it runs out of memory on machine configured with 30GB of
memory).

These results confirm that both the coarser groupings and the use of lifted absorption
contribute to the much better performance of GC-FOVE.

433

Taghipour, Fierens, Davis, & Blockeel

0 20 40 60 80 100

Percentage of Evidence

1

2

3

4

5

6
T
im
e
(s
)

GC-FOVE

C-FOVE

(a) Yeast

0 "	 40 60 %	 100

��
������ �� ������
�

0

0.1

0.2

0.3

0.4

0.5

T
im
e
(s
)

GC-FOVE

C-FOVE

(b) WebKB

Figure 12: Performance on real-world data with varying amounts of evidence. The Y-
axis (runtime) is drawn in log scale. C-FOVE only ran to completion for the
zero-evidence experiments.

7.4 Performance on Real-World Data

In the final set of experiments, we compared the algorithms on the two real-world datasets,
WebKB and Yeast. On both datasets, we varied the percentage of observed page classes
or functions from 0% to 100% in steps of 10%. Figures 12(a) and 12(b) illustrate the
results. C-FOVE could solve only the zero-evidence problems in these experiments; for the
other cases, it typically ran out of memory after up to an hour of computation time on a
machine configured with 30 GB of memory. Its failure is primarily due to the large number
of observations, which often forces it to resort to inference at the ground level for a large
number of objects. GC-FOVE, on the other hand, runs successfully for all experimental
conditions. Furthermore, GC-FOVE can consistently solve the problems in a few seconds.
As on the synthetic data, GC-FOVE’s performance improves with increasing number of
observations. In these cases more randvars can be eliminated through absorption, instead
of the more expensive operations of multiplication and summation.

8. Conclusions

Constraints play a crucial role in lifted probabilistic inference as they determine the degree
of lifting that takes places. Surprisingly, most lifted inference algorithms use the same class
of constraints based on pairwise (in)equalities (Poole, 2003; de Salvo Braz et al., 2005;
Milch et al., 2008; Jha et al., 2010; Kisynski & Poole, 2009b; Van den Broeck et al., 2011);
the main exception is the work on approximate inference using lifted belief propagation
(Singla & Domingos, 2008). In this paper we have shown that this class of constraints is
overly restrictive. We proposed using extensionally complete constraint languages, which
can capture more symmetries among the objects and allow for more operations to occur on
a lifted level. We defined the relevant constraint handling operations (e.g., splitting and
normalization) to work with extensionally complete constraint languages and implemented
them for performing lifted variable elimination. We made use of constraint trees to effi-
ciently represent and manipulate the constraints. We empirically evaluated our system on
several domains. Our approach resulted in up to three orders of magnitude improvement
in runtime, as compared to C-FOVE. Furthermore, GC-FOVE can solve several tasks that
are intractable for C-FOVE.

434

Decoupling Lifted Variable Elimination from the Constraint Language

Future work includes generalizing other lifted inference algorithms that currently use
only inequality constraints, e.g., the works of Jha et al. (2010) and Van den Broeck et al.
(2011), and further optimizing constraint handling. With respect to the latter, an inter-
esting direction is the recent work of de Salvo Braz, Saadati, Bui, and OReilly (2012)
that employs a logical representation for constraints, which is extensionally complete, and
presents specialized constraint processing methods for this representation. Finally, it is
possible to extend lifted absorption such that it works not only with evidence parfactors,
but more generally with deterministic parfactors. This is another promising direction for
future work.

Acknowledgments

Daan Fierens is supported by the Research Foundation of Flanders (FWO-Vlaanderen).
Jesse Davis is partially supported by the Research Fund KULeuven (CREA/11/015 and
OT/11/051), and EU FP7 Marie Curie Career Integration Grant (#294068). This work was
funded by GOA/08/008 “Probabilistic Logic Learning” of the Research Fund KULeuven.
The authors thank Maurice Bruynooghe and Guy Van den Broeck for interesting discussions
and comments on this work and text. They also thank the reviewers for their constructive
comments and very concrete suggestions to improve the article.

Appendix A. Correctness Proof for Lifted Absorption

In this appendix, we prove the correctness of the novel lifted absorption operator. We begin
by providing some lemmas.

Recall that a set of parfactors G is a compact way of defining a set of factors gr(G) =
{f |f ∈ gr(g) ∧ g ∈ G} and the corresponding probability distribution

PG(A) =
1

Z

∏

f∈gr(G)

φf (Af).

Further, G ∼ G′ means G and G′ define the same probability distribution. Thus, formally:

G ∼ G′ ⇔ PG(A) = PG′(A)⇔
1

Z

∏

f∈gr(G)

φf (Af) =
1

Z ′

∏

f∈gr(G′)

φf (Af).

The following lemmas are easily proven by applying the above definition and keeping in
mind that gr(G ∪G′) = gr(G) ∪ gr(G′).

Lemma 1 For all models G,G′, G′′: G′ ∼ G′′ ⇒ G ∪G′ ∼ G ∪G′′.

Lemma 2 Given a factor f = φ(A1, A2, . . . , An) and an evidence factor fE = φE(A1) with
φE(a1) = 1 if a1 = o (the observed value) and φE(a1) = 0 otherwise, {f, fE} ∼ {f

′, fE}
with f ′ = φ′(A2, . . . , An) and φ′(a2, . . . , an) = φ(o, a2, . . . , an).

Lemma 3 A model that consists of m identical factors, G = {φ(A1, . . . , An)}
m
i=1, is

equivalent to a model with a single factor G′ = {φ′(A1, . . . , An)} where φ′(a1, . . . , an) =
φ(a1, . . . , an)

m.

435

Taghipour, Fierens, Davis, & Blockeel

We now prove that the Absorb operator is correct, i.e., its postconditions hold, given
the preconditions.

Theorem 1 Given a model G, a parfactor g ∈ G and an evidence parfactor gE, if the
preconditions of the absorb operator are fulfilled, then

G ∪ {gE} ∼ G \ {g} ∪ {absorb(g,Ai, gE), gE}.

Proof: With G′ = G \ {g}, we can rewrite the above equivalence as

G′ ∪ {g, gE} ∼ G′ ∪ {absorb(g,Ai, gE), gE}.

Because of Lemma 1, it suffices to prove

{g, gE} ∼ {absorb(g,Ai, gE), gE}.

Let g = φ(A)|C with A = {A1(X1), . . . , Ak(Xk)}, let gE = φE(P (X))|CE , and let
L = logvar(A) (non-counted logvars in A), Xexcl = X\ logvar(A\{Ai}) (logvars occurring
exclusively in Ai) and L′ = logvar(A) \Xexcl (non-counted logvars occurring (also) outside
Ai). The operator returns a parfactor of the form φ′(A′)|C ′ where A′ = {A2, . . . , Ak} and
C ′ = πlogvar(C)\Xexcl(C) (see the operator definition). We need to prove that φ′ is such that
the above equivalence holds. For ease of exposition, from now we assume that the atom or
counting formula that is to be absorbed (Ai in the operator’s input) is A1. We first consider
the case where A1 is an atom P (X1), and then the case where A1 is a counting formula
#X [P (X1)].

Absorption for atoms. In this case, we have φ′(a2, . . . , ak) = φ(o, a2, . . . , ak)
r with

r = CountXexcl|L′(C) (see the operator definition, observing that Xnce = Xexcl).

By definition, gr(g) = {φ(P (x1), A2(x2), . . . , Ak(xk))}l∈πL(C), with xi = πXi
(l). Pre-

condition 1 guarantees that for each φ(P (x1), A2(x2), . . . , Ak(xk)), there exists an evidence
factor φE(P (x1)) in gr(gE). By Lemma 2, we can therefore rewrite each factor in gr(g) into
the form φ∗(A2(x2), . . .), with φ∗(a2, . . . ak) = φ(o, a2, . . . , ak), with o the observed value
for P (x1).

The potential function φ∗ is the same for all factors, since there is only one observed value
o for the whole evidence parfactor. Therefore, any two factors φ(P (x1), A2(x2), . . . , Ak(xk))
and φ(P (x′

1), A2(x2), . . . , Ak(xk)) that differ only in their first argument are rewritten to
the same factor. Because of Precondition 2, the number of factors rewritten to the same
factor is constant and equals CountXexcl|L′(C) = r. By Lemma 3, each set of identical
factors can therefore be replaced by a single factor with potential function

φ′(a2, . . . , ak) = φ∗(a2, . . . , ak)
r = φ(o, a2, . . . , ak)

r,

which is exactly how φ′ is defined by the operator.

Absorption for counting formulas. In this case, we have

φ′(a2, . . . , ak) = φ(e, a2, . . . , ak)
r

and r = CountXnce|L′(C) with Xnce = Xexcl \ {X} (see the operator definition).

436

Decoupling Lifted Variable Elimination from the Constraint Language

We define X′
1 = X1 \ {X}, and use (x′

1,X) to denote X1 with all logvars instantiated
except the counted logvar X. Now, by definition,

gr(g) = {φ(#X∈Cl
[P (x′

1,X)], A2(x2), . . . , Ak(xk))}l∈πL(C),

with xi = πXi
(l), x′

1 = πX′

1
(l) and Cl = πX(σL=l(C)). Each Cl is of the form {x1, . . . , xn},

where n = CountX|L(C) (n exists because PCRV’s are by definition count-normalized).

We show correctness of the operator in this case by showing that for each factor f in
gr(g), the evidence parfactor gE can be rewritten to contain an evidence factor that has
the same CRV as f , such that the same reasoning as above can be applied on f .

Precondition 1 guarantees that for each factor

f = φ(#X∈{x1,...,xn}[P (x′
1,X)], A2(x2), . . . , Ak(xk)),

gr(gE) contains the group of evidence factors

Ef = {φE(P (x′
1, x1)), . . . , φE(P (x′

1, xn))}.

We can multiply all factors in Ef into

φ′
E(P (x1, x

′
1), . . . , P (x1, x

′
n)),

with φ′
E(o, o, . . . , o) = 1 and φ′

E(.) = 0 elsewhere, and then rewrite this as

fE = φ∗
E(#X∈{x1,...,xn}[P (x′

1,X)]),

where φ∗
E is such that (i) φ∗

E(e) = 1, for e the histogram with e(o) = n and e(.) = 0
elsewhere, and (ii) φ∗

E(e
′) = 0 for e′ 6= e.

Having formed fE, we can rewrite f into the form φ′(A2(x2), . . .), with φ′(a2, . . . ak) =
φ(e, a2, . . . , ak)

r and r = CountXnce|L′(C), with the same argumentation as for regular
atoms. After this, we can replace fE with the equivalent Ef , thus restoring gE . Repeating
this for each f preserves equivalence and eventually yields the model that the operator
returns.

�

Appendix B. Computational Complexity of Lifted Absorption

Applying lifted absorption on a parfactor g = φ(A)|C, has complexity O(|C|)+O(Size(φ) ·
log |C|), where |C| is the cardinality (number of tuples) of the constraint C, and Size(φ)
equals the product of range sizes of the arguments A, i.e., Size(φ) =

∏

Ai∈A
|range(Ai)|.

The first term in the complexity, O(|C|), arises because absorption involves a projection of
the constraint C, which in the worst case (with an extensional representation) has complex-
ity O(|C|). The second term, O(Size(φ) · log |C|), is the complexity of computing the new
potential function, which involves manipulating φ, which has Size(φ) entries (in a tabular
representation), and exponentiating it, which has complexity O(log |C|).

437

Taghipour, Fierens, Davis, & Blockeel

References

Apsel, U., & Brafman, R. I. (2011). Extended lifted inference with joint formulas. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 11–18.

Choi, J., Hill, D., & Amir, E. (2010). Lifted inference for relational continuous models. In
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 126–134.

Craven, M., & Slattery, S. (1997). Relational learning with statistical predicate invention:
Better models for hypertext. Machine Learning, 43(1/2), 97–119.

Davis, J., Burnside, E. S., de Castro Dutra, I., Page, D., & Costa, V. S. (2005). An
integrated approach to learning Bayesian networks of rules. In Proceedings of 16th
European Conference on Machine Learning (ECML), pp. 84–95.

De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.). (2008). Probabilistic induc-
tive logic programming: Theory and applications. Springer-Verlag, Berlin, Heidelberg.

de Salvo Braz, R. (2007). Lifted first-order probabilistic inference. Ph.D. thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign.

de Salvo Braz, R., Amir, E., & Roth, D. (2005). Lifted first-order probabilistic inference.
In Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1319–1325.

de Salvo Braz, R., Saadati, S., Bui, H., & OReilly, C. (2012). Lifted arbitrary constraint solv-
ing for lifted probabilistic inference. In Proceedings of the 2nd International Workshop
on Statistical Relational AI (StaRAI), pp. 1–8.

Dechter, R. (2003). Constraint processing. Morgan Kaufmann.

Getoor, L., & Taskar, B. (Eds.). (2007). An Introduction to Statistical Relational Learning.
MIT Press.

Gogate, V., & Domingos, P. (2011). Probabilistic theorem proving. In Proceedings of the
27th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 256–265.

Jha, A., Gogate, V., Meliou, A., & Suciu, D. (2010). Lifted inference seen from the other
side : The tractable features. In Proceedings of the 23rd Annual Conference on Neural
Information Processing Systems (NIPS), pp. 973–981.

Kersting, K., Ahmadi, B., & Natarajan, S. (2009). Counting belief propagation. In Pro-
ceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI), pp.
277–284.

Kisynski, J., & Poole, D. (2009a). Constraint processing in lifted probabilistic inference.
In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 293–302.

Kisynski, J., & Poole, D. (2009b). Lifted aggregation in directed first-order probabilis-
tic models. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1922–1929.

438

Decoupling Lifted Variable Elimination from the Constraint Language

Kschischang, F. R., Frey, B. J., & Loeliger, H.-A. (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47 (2), 498–519.

Meert, W., Taghipour, N., & Blockeel, H. (2010). First-order bayes-ball. In Proceedings of
the European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML PKDD), pp. 369–384.

Milch, B. (2008). BLOG.. http://people.csail.mit.edu/milch/blog/.

Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., & Kaelbling, L. P. (2008). Lifted
probabilistic inference with counting formulas. In Proceedings of the 23rd AAAI Con-
ference on Artificial Intelligence (AAAI), pp. 1062–1608.

Poole, D. (2003). First-order probabilistic inference.. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 985–991.

Ramakrishnan, R., & Gehrke, J. (2003). Database management systems (3. ed.). McGraw-
Hill.

Sen, P., Deshpande, A., & Getoor, L. (2009a). Bisimulation-based approximate lifted infer-
ence. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
(UAI09), pp. 496–505.

Sen, P., Deshpande, A., & Getoor, L. (2009b). Prdb: managing and exploiting rich correla-
tions in probabilistic databases. VLDB Journal, 18 (5), 1065–1090.

Singla, P., & Domingos, P. (2008). Lifted first-order belief propagation. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence (AAAI), pp. 1094–1099.

Singla, P., Nath, A., & Domingos, P. (2010). Approximate Lifted Belief Propagation. In
Proceedings of the 1st International Workshop on Statistical Relation AI (StaRAI),
pp. 92–97.

Taghipour, N., Fierens, D., Davis, J., & Blockeel, H. (2012). Lifted variable elimination
with arbitrary constraints. In Proceedings of the 15th International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 1194–1202.

Van den Broeck, G., & Davis, J. (2012). Conditioning in first-order knowledge compilation
and lifted probabilistic inference. In Proceedings of the 26th AAAI Conference on
Artificial Intelligence (AAAI), pp. 1–7.

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted
Probabilistic Inference by First-Order Knowledge Compilation. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 2178–2185.

van der Gaag, L. C. (1996). On evidence absorption for belief networks. Int. J. Approx.
Reasoning, 15 (3), 265–286.

439

