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Abstract

As large-scale theft of data from corporate servers is becoming increasingly common, it
becomes interesting to examine alternatives to the paradigm of centralizing sensitive data
into large databases. Instead, one could use cryptography and distributed computation so
that sensitive data can be supplied and processed in encrypted form, and only the final
result is made known. In this paper, we examine how such a paradigm can be used to
implement constraint satisfaction, a technique that can solve a broad class of AI problems
such as resource allocation, planning, scheduling, and diagnosis. Most previous work on
privacy in constraint satisfaction only attempted to protect specific types of information,
in particular the feasibility of particular combinations of decisions. We formalize and
extend these restricted notions of privacy by introducing four types of private information,
including the feasibility of decisions and the final decisions made, but also the identities of
the participants and the topology of the problem. We present distributed algorithms that
allow computing solutions to constraint satisfaction problems while maintaining these four
types of privacy. We formally prove the privacy properties of these algorithms, and show
experiments that compare their respective performance on benchmark problems.

1. Introduction

Protecting the privacy of information is becoming a crucial concern to many users of the
increasingly ubiquitous Information and Communication Technologies. Companies invest a
lot of effort into keeping secret their internal costs and their future development strategies
from other actors on the market, most importantly from their competitors. Individuals also
have a need for privacy of their personal information: for instance, carelessly disclosing one’s
activity schedule or location might reveal to burglars opportunities to break into one’s home.
On the other hand, accessing and using such private information is often necessary to solve
problems that depend on these data. In the context of supply chain management, companies
need to exchange information with their contractors and subcontractors about the quantities
of goods that must be produced, and at what price. When scheduling meetings or various
events with friends or co-workers, individuals are confronted with the challenge of taking
coordinated scheduling decisions, while protecting their respective availability schedules.

Artificial Intelligence can be a crucial tool to help people make better decisions under
privacy concerns, by delegating part or all of the decision problem to personal intelligent
agents executing carefully chosen algorithms that are far too complex to be performed

©2013 AI Access Foundation. All rights reserved.
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by the human alone. In particular, the framework of Constraint Satisfaction Problems
(CSPs) is a core AI technology that has been successfully applied to many decision-making
problems, from configuration to scheduling, to solving strategic games. Here we show how
distributed AI algorithms can be used to solve such CSPs, while providing strong guarantees
on the privacy of the problem knowledge, through the use of techniques borrowed from
cryptography. This makes it possible to solve coordination problems that depend on secret
data, without having to reveal these data to other parties. On the other hand, distributed,
encrypted computation involving message exchange has a cost in terms of performance,
such that a suitable tradeoff between privacy and scalability must be found.

1.1 Motivating Examples

In this paper, we present a set of novel, privacy-protecting algorithms for Distributed Con-
straint Satisfaction Problems (DisCSPs), a wide class of multi-agent decision-making prob-
lems with applications to many problems such as configuration, scheduling, planning, design
and diagnosis. We consider three examples to illustrate the privacy requirements that might
arise: meeting scheduling, airport slot allocation, and computing game equilibria.

In a meeting scheduling problem (Maheswaran, Tambe, Bowring, Pearce, & Varakan-
tham, 2004), a number of meetings need to be scheduled, involving possibly overlapping sets
of participants. Taking into account their respective availability constraints, all participants
to any given meeting must agree on a time for the meeting. One given participant can be
involved in multiple meetings, which creates constraints between meetings. In this prob-
lem class, participants usually want to protect the privacy of their respective availability
schedules, as well as the lists of meetings they are involved in.

Another problem class is airport slot allocation (Rassenti, Smith, & Bulfin, 1982), where
airlines express interests in combinations of takeoff and landing time slots at airports, cor-
responding to possible travel routes for their aircraft. While the end goal for the airports is
to efficiently allocate their slots to airlines, from the point of view of the airlines it is crucial
that the combinations of slots they are interested in remain private, because they indicate
the routes they intend to fly, which is sensitive strategic information that they want to hide
from their competitors.

Finally, consider the general class of one-shot strategic games, such as the party game
(Singh, Soni, & Wellman, 2004): the players are invited to a party, and must decide whether
to attend, based on their respective intrinsic costs of attendance, and on whether the people
they like or dislike also choose to attend. Players would best play strategies that form a
Nash equilibrium, where no single player can be better off by deviating from its chosen
strategy. The problem of computing such an equilibrium is a typical example of a multi-
agent decision-making problem, in which privacy is an issue: players do not necessarily want
to reveal their attendance costs, nor whether they like or dislike another invitee.

1.2 Four Types of Private Information

As can be seen in the previous examples, the information that participants would like to
keep private can differ in nature; we propose to classify it into four privacy types. We only
briefly introduce and illustrate them here; more formal definitions are given in Section 2.2.1.
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1. Agent privacy relates to the identities of the participants. Consider for instance a
CEO who wants to schedule two meetings respectively with a journalist and with
another company’s CEO. Revealing to the journalist the other CEO’s involvement in
the decision-making problem could leak out the companies’ plans to merge. In this
case agent privacy can be considered critical.

2. Topology privacy covers information about the presence of constraints. This is the
type of critical information that airline companies want to keep secret in the airport
slot allocation problem: the presence of a constraint between an airline and a specific
airport reveals the airline’s strategic plans to offer flights to and from this airport.

3. Constraint privacy is about the nature of the constraints. This covers for instance
the participants’ availability schedules in the meeting scheduling problem, and, in the
party game, whether a player likes or dislikes other invitees.

4. Decision privacy has to do with the solution that is eventually chosen to the problem.
Depending on the problem class, this type of privacy may or may not be relevant. In
the meeting scheduling problem, the time chosen for each meeting necessarily has to
be revealed to all participants of the meeting; however it can be desirable to hide this
information from non-attendees.

Like in previous work on privacy in DisCSP, we assume that the participants are honest,
but curious (Goldreich, 2009), in that they honestly follow the algorithm, but are interested
in learning as much as possible from other agents’ private information based on the mes-
sages exchanged. Note that this honesty assumption does not mean that all agents are
assumed to faithfully report their true constraints to the algorithm; they may be tempted
to strategize by reporting slightly different constraints, hoping that this would lead the al-
gorithm to select a solution to the problem that they deem preferable to them. This issue of
incentive-compatibility has been addressed in related work such as by Petcu, Faltings, and
Parkes (2008), and is orthogonal to the issue of privacy addressed in this paper. Further-
more, an agent would take a risk in reporting constraints different from its true constraints:
reporting relaxed constraints could yield a solution that violates its true constraints and
would therefore not be viable, while reporting tighter constraints could make the overall
problem infeasible and the algorithm fail to find any solution at all.

On the other hand, our algorithms depart from previous work in two respects. First,
previous work almost exclusively focused on constraint privacy, most often ignoring agent,
topology and decision privacy. We show how to address all four types, and the algorithms
we propose correspond to various points in the tradeoff between different levels of privacy
and efficiency. Second, while most of the literature focuses on quantitatively measuring
and reducing the amount of privacy loss in various DisCSP algorithms, we have developed
algorithms that give strong guarantees that certain pieces of private information will not be
leaked. In contrast, in previous privacy-protecting algorithms, it is typically the case that
any piece of private information may be leaked with some (small) probability.

The rest of this paper is organized as follows. Section 2 first formally defines the DisCSP
framework and the four aforementioned types of privacy. Section 3 then presents a first
algorithm, called P-DPOP+. Section 4 then describes the P3/2-DPOP+ algorithm, which is
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a variant that achieves a higher level of decision privacy, at the expense of an additional
computational overhead. Another variant, called P2-DPOP+, is introduced in Section 5 in
order to further improve constraint privacy. Finally, Section 6 compares the performance
of these algorithms with the previous state of the art, on several classes of benchmarks.

2. Preliminaries

This section first formally defines the DisCSP framework (Section 2.1), and then introduces
four types of privacy (Section 2.2).

2.1 Distributed Constraint Satisfaction

After providing a formal definition of Distributed Constraint Satisfaction (Section 2.1.1),
we recall some existing algorithms for DisCSP and its optimization variant (Section 2.1.2).

2.1.1 Definition

A Distributed Constraint Satisfaction Problem can be formally defined as follows.

Definition 1 (DisCSP). A discrete DisCSP is a tuple < A,X , a,D, C >:

• A = {a1, ..., ak} is a set of agents;

• X = {x1, ..., xn} is a set of variables;

• a : X → A is a mapping that assigns the control of each variable xi to an agent a(xi);

• D = {D1, ...,Dn} is a set of finite variable domains; variable xi takes values in Di;

• C = {c1, ..., cm} is a set of constraints, where each ci is a s(ci)-ary function of scope
(xi1 , · · · , xis(ci)), ci : Di1 × ..×Dis(ci)

→ {false, true}, assigning false to infeasible
tuples, and true to feasible ones.

A solution is a complete assignment such that the conjunction
∧

ci∈C
ci = true, which is

the case exactly when the assignment is consistent with all constraints.

Some of the important assumptions of the DisCSP framework are the following. First,
we assume that all the details of a given constraint ci are known to all agents involved; if an
agent wants to keep some constraints private, it should formulate them in such a way that
they only involve variables it controls. Furthermore, we assume that two neighboring agents
(i.e. agents that share at least one constraint) are able to communicate with each other
securely, and that messages are delivered in FIFO order and in finite time. On the other
hand, we assume that two non-neighboring agents initially ignore everything about each
other, even including their involvement in the problem. In particular, a DisCSP algorithm
that protects agent privacy should not require them to communicate directly, nor should it
even allow them to discover each other’s presence. Finally, we assume each agent honestly
follows the protocol, and we focus on preventing private information leaks to other agents.

Figure 1 introduces a simple graph coloring problem instance that will be used to illus-
trate the algorithms throughout the rest of this paper. We assume that the five nodes in
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Figure 1: The DisCSP constraint graph for a simple graph coloring problem instance.

the graph correspond to five different agents, which must each choose a color among red,
blue and green. These decisions are modeled by the five variables x1, . . . , x5 with domains
{R,B,G}. Each agent may express a secret, unary constraint on its variable; for instance,
x1 does not want to be assigned the color red. Binary, inequality constraints are imposed
between each pair of neighboring nodes, and are only known to the two agents involved.

Distributed Constraint Optimization (DCOP) is an extension of the DisCSP formalism,
in which constraints specify not only which variable assignments are feasible or infeasible,
but also assign costs (or utilities) to these assignments. An (optimal) solution to such a
DCOP is then one that minimizes the sum of all costs (or maximizes the sum of all utilities).
The algorithms in this paper can easily be generalized to solve DCOPs, with a complexity
increase that is at most linear in an upper bound on the (assumed integer) cost of the
optimal solution. Such a generalization is left outside the scope of this paper for the sake
of conciseness, and has been addressed by Léauté and Faltings (2011) and Léauté (2011).

2.1.2 Complete Algorithms for DisCSPs

A range of distributed algorithms exist in the literature to solve DisCSPs and DCOPs.
They can be seen as belonging to two classes, depending on how they order variables. The
largest class consists of algorithms that order the variables along a linear order, such as
ABT (Yokoo, Durfee, Ishida, & Kuwabara, 1992), AWC (Yokoo, 1995), SynchBB (Hi-
rayama & Yokoo, 1997), AAS (Silaghi, Sam-Haroud, & Faltings, 2000), AFC (Meisels &
Zivan, 2003), DisFC (Brito & Meseguer, 2003), (Comp)APO (Mailler & Lesser, 2003; Grin-
shpoun & Meisels, 2008), ConcDB (Zivan & Meisels, 2004), AFB (Gershman, Meisels, &
Zivan, 2006) and ConcFB (Netzer, Meisels, & Grubshtein, 2010). The linear order may be
chosen and fixed initially before the algorithm is run, or dynamically revised online.

In the second class, variables are ordered along a tree-based partial order. This includes
ADOPT (Modi, Shen, Tambe, & Yokoo, 2005) and its variants such as BnB-ADOPT (Yeoh,
Felner, & Koenig, 2010) and BnB-ADOPT+ (Gutierrez & Meseguer, 2010), DPOP (Petcu
& Faltings, 2005) and its countless variants, and NCBB (Chechetka & Sycara, 2006), which
all order the variables following a pseudo-tree (Definition 2). Among the aforementioned
pseudo-tree-based algorithms, DPOP is the only one using Dynamic Programming (DP),
while all others are based on search. Other algorithms have been proposed that perform DP
on different partial variable orders: Action-GDL uses junction trees (Vinyals, Rodŕıguez-
Aguilar, & Cerquides, 2010), and DCTE cluster trees (Brito & Meseguer, 2010).
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2.1.3 The DPOP Algorithm

The DPOP algorithm was originally designed to solve optimization problems (DCOPs) and
described in terms of utility maximization. One way to apply it to pure satisfaction problems
(DisCSPs) is to first reformulate the DisCSP into a Max-DisCSP, in which the constraints
are no longer boolean but rather take values in {0, 1}, where 0 stands for feasibility and
1 for infeasibility. The cost-minimizing variant of DPOP (described below) can then be
applied to find a solution with minimal cost, where the cost (hereafter called feasibility
value) corresponds to the number of constraint violations (which we want to be equal to 0).

Overview of the Algorithm DPOP is an instance of the general bucket elimination
scheme by Dechter (2003), performed distributedly (Algorithm 1). It requires first arranging
the constraint graph into a pseudo-tree, formally defined as follows.

Definition 2 (Pseudo-tree). A pseudo-tree is a generalization of a tree, in which a node is
allowed to have links (back-edges) with remote ancestors (pseudo-parents) and with remote
descendants (pseudo-children), but never with nodes in other branches of the tree.

A pseudo-tree arrangement of the constraint graph in Figure 1 is illustrated in Figure 2.
This pseudo-tree naturally decomposes the original problem into two, loosely coupled sub-
problems, corresponding to the two branches, which will perform the rest of the algorithm
in parallel. Figure 2 also shows the FEAS messages (originally called UTIL messages in the
context of utility maximization) that are exchanged during the propagation of feasibility
values, following a multi-party dynamic programming computation (lines 1 to 12). In this

Algorithm 1 Overal DPOP algorithm, for variable x

Require: a pseudo-tree ordering of the variables; px denotes x’s parent
1: // (UTIL propagation) Propagate feasibility values up the pseudo-tree:
2: m(x, px, ·)← Σc∈{c′∈C | x∈scope(c′) ∧ scope(c′)∩(childrenx∪pseudo childrenx)=∅}c(x, ·)

3: // Join with received messages:
4: for each yi ∈ childrenx do
5: Wait for the message (FEAS, mi(x, ·)) from yi
6: sepyi ← scope(mi)
7: m(x, px, ·)← m(x, px, ·) +mi(x, ·)

8: // Project out x:
9: if x is not the root variable then

10: x∗(px, ·)← argminx {m(x, px, ·)}
11: Send the message (FEAS, m(x∗(px, ·), px, ·)) to px
12: else x∗ ← argminx {m(x)} // m(x, px, ·) actually only depends on x

13: // (VALUE propagation) Propagate decisions top-down along the pseudo-tree:
14: if x is not the root then
15: Wait for message (DECISION, p∗x, ·) from parent px
16: x∗ ← x∗(px = p∗x, ·)
17: for each yi ∈ childrenx do send message (DECISION, sep∗yi) to yi
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Figure 2: Multiparty dynamic programming computation of a feasible value for x2, based
on a pseudo-tree arrangement of the constraint graph in Figure 1. The dashed
edge represents a back-edge with a pseudo-parent in the pseudo-tree.

part of the algorithm, all messages travel bottom-up along tree edges. Consider for instance
the message sent by agent a(x5) to its parent agent a(x3). This message is the result of
the projection (lines 10 and 11) of variable x5 out of the conjunction (line 2) of x5’s two
constraints x5 6= x3 and x5 6= B, and summarizes the minimal number of constraint vio-
lations that a(x5) can achieve, as a function of the ancestor variable x3. More generally,
each message sent by a variable x summarizes the minimal number of constraint violations
achievable for the aggregate subproblem owned by the entire subtree rooted at x, as a
function whose scope is called the separator of x (line 6). In DPOP, the separator of x nec-
essarily includes x’s parent px, and potentially other ancestor variables; this is indicated by
the notation m(px, ·). For instance, the message x4 → x3 summarizes the minimal number
of constraint violations achievable for the entire subtree rooted at x4, as a function of x4’s
separator {px4 = x3, x2}. Notice that the separator of a variable x can contain variables
that are not neighbors of x; for example, x2 is in x4’s separator because a descendent of x4
has a constraint with x2. In the privacy-aware algorithms presented later in this paper, this
notion of separator is extended to allow for separators that do not necessarily include the
parent variable, and that may include multiple codenames referring to the same variables,
which might not necessarily be ancestors in the pseudo-tree.

Upon receiving the messages x5 → x3 and x4 → x3 (line 5), agent a(x3) joins them
(line 7) with its constraint x3 6= x2. Variable x3 is then projected out of the resulting joint
table, which produces the message x3 → x2 (lines 10 and 11). At the end of this feasibility
propagation (line 12), the root variable x2 chooses a value x∗2 for itself that minimizes the
number of constraint violations over the entire problem (e.g. x∗2 = R). This decision can
then be propagated downwards along tree-edges via DECISION messages (originally called
VALUE messages) until all variables have been assigned optimal values (lines 13 to 17).
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Complexity Given a pseudo-tree ordering of the n variables, DPOP’s bottom-up and
top-down phases each exchange exactly (n − 1) messages (one through each tree edge).
However, while each DECISION message contains at most (n−1) variable assignments, the
FEAS message sent by a given variable x can contain exponentially many feasibility values,
because it contains a table representation of a function m of |sepx| variables. The size of
the largest FEAS message is therefore O(Dsepmax

max ), where Dmax is the size of the largest
variable domain, and sepmax = maxx |sepx| < n− 1 is the width of the pseudo-tree. In the
best case, the width is equal to the treewidth of the constraint graph; however finding a
pseudo-tree that achieves this minimal width is NP-hard. In practice, the pseudo-tree is
generated by a heuristic, distributed, depth-first traversal of the constraint graph (Online
Appendix 1), producing a so-called DFS tree that is a pseudo-tree in which all parent-
child relationships are between neighbors in the constraint graph. Since DPOP exchanges
(n− 1) FEAS messages, its overall complexity in terms of runtime (measured in number of
constraint checks), memory, and information exchange is O(n ·Dsepmax

max ).

Privacy Properties The privacy-aware algorithms in Section 3 are based on DPOP,
because of two desirable properties that allow for higher levels of privacy. First, DPOP
only requires message exchanges between neighboring agents, provided that the pseudo-
tree used is a DFS tree; this is necessary to protect agent privacy. Greenstadt, Pearce,
and Tambe (2006) made the opposite claim that pseudo-trees are detrimental to privacy
compared to linear orderings; however this claim is only valid if the only type of privacy
considered is constraint privacy, and does not hold if agent privacy and topology privacy
are guaranteed, i.e. if the pseudo-tree is not publicly known to all agents. The second, DP-
inherited property is that DPOP’s performance does not depend on constraint tightness,
i.e. how easy or hard it is to satisfy each constraint. For all other, search-based algorithms,
inferences on the constraint tightness can be made by observing the runtime or the amount of
information exchanged (Silaghi & Mitra, 2004). In the case of meeting scheduling problems,
constraint tightness maps directly to the participants’ levels of availability, which is private
information. In application domains where this leak of constraint tightness is tolerable,
algorithms based on search rather than DP can be used, and many of the privacy-enhancing
techniques presented in this paper for DPOP are also applicable to search-based algorithms.

2.2 Privacy in DisCSPs

Section 2.2.1 formally defines the four types of privacy considered in this paper. Section 2.2.2
then recalls previous work that attempted to address various subsets of these privacy types.

2.2.1 Privacy Definitions

Definition 3 introduces the concept of semi-private information (Faltings, Léauté, & Petcu,
2008), which may inevitably be leaked by any DisCSP algorithm.

Definition 3 (Semi-private information). Semi-private information refers to information
about the problem and/or its solution that an agent might consider private, but that can
inevitably be leaked to other agents by their views of the chosen solution to the DisCSP.

In other words, semi-private information covers everything a given agent can discover
about other agents by making inferences simply based on its initial knowledge of the problem
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and on the values its variables take in the solution. For instance, in a graph coloring problem
involving only two colors, each node can infer the color of each of its neighbors from the
color it was assigned in the chosen solution, provided that the solution is correct. Excluding
semi-private information, we now distinguish four types of private information that agents
may desire to protect (Faltings et al., 2008).

Definition 4 (Agent privacy). No agent should be able to discover the identity, or even the
existence of non-neighboring agents. A particular consequence of this type of privacy is that
two agents should only be allowed to communicate directly if they share a constraint.

In Figure 1, this means for instance that agent a(x1) should not be able to discover the
existence and identities of agents a(x3) and a(x5). Even if no two non-neighboring agents
communicate directly, agent privacy might still be leaked by the contents of messages; in
this paper we propose a method based on codenames to fully protect agent privacy.

Definition 5 (Topology privacy). No agent should be able to discover the existence of
topological constructs in the constraint graph, such as nodes (i.e. variables), edges (i.e.
constraints), or cycles, unless it owns a variable involved in the construct.

In Figure 1, topology privacy means for instance that agent a(x1) should not discover
how many other neighbors x2 has besides itself. However, a(x1) might discover the existence
of a cycle involving x1, x2 and x4. This is tolerated because x1 is involved in this cycle, but
a(x1) should not discover the length of the cycle (i.e. that x2 and x4 share a neighbor).

Definition 6 (Constraint privacy). No agent should be able to discover the nature of a
constraint that does not involve a variable it owns.

In Figure 1, an example of a breach in constraint privacy would be if agent a(x1) were
able to discover that agent a(x4) does not want to be assigned the color blue. This is the
type of privacy that the DisCSP literature mostly focuses on.

Definition 7 (Decision privacy). No agent should be able to discover the value that another
agent’s variable takes in the chosen solution (modulo semi-private information).

In a distributed graph coloring problem, this means that no agent can discover the color
of any neighbor (let alone any non-neighboring agent) in the solution chosen to the problem.

2.2.2 Previous Work on Privacy in DisCSP

Before discussing what information may be leaked by a given algorithm, and how to prevent
it, it is important to clarify what information is assumed to be initially known to each agent.

Initial Knowledge Assumptions In this paper, we use the following three assumptions,
which are currently the most widely used in the DisCSP literature.

1. Each agent a knows all agents that own variables that are neighbors of a’s variables,
but does not know any of the other agents (not even their existence);

2. A variable and its domain are known only to its owner agent and to the agents owning
neighboring variables, but the other agents ignore the existence of the variable;
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3. A constraint is fully known to all agents owning variables in its scope, and no other
agent knows anything about the constraint (not even its existence).

Brito and Meseguer (2003) introduced Partially Known Constraints (PKCs), whose
scopes are known to all agents involved, but the knowledge of whose nature (which assign-
ments are allowed or disallowed) is distributed among these agents. This is a relaxation of
Assumption 3; however it is worth noting that the algorithms presented in this paper can
still support PKCs without introducing privacy leaks by enforcing this assumption, because
any PKC can be decomposed into a number of constraints over copy variables such that
Assumption 3 holds. For instance, if agents a1 . . . an share the knowledge of a unary PKC
over variable x, then this constraint can be decomposed into n unary constraints, such
that each constraint ci is known fully and only to agent ai and is expressed over a copy
variable xi owned by ai. Equality constraints are added to the problem to enforce equality
of all copy variables. However, the introduction of copy variables can be detrimental to
decision privacy. Grubshtein, Grinshpoun, Meisels, and Zivan (2009) later proposed the
similar concept of asymmetric constraints, which can also be reformulated as symmetric
constraints over copy variables for the purpose of applying our algorithms.

Other previous work adopted a dual approach, assuming that variables are public and
known to all agents, but each constraint is known to only one agent (Silaghi et al., 2000;
Yokoo, Suzuki, & Hirayama, 2002; Silaghi, 2005a). Silaghi (2005b) even proposed a frame-
work in which the constraints are secret to everyone. This dual approach has the disadvan-
tage of necessarily violating topology privacy, since all variables are public.

Measuring Constraint Privacy Loss Most of the literature on privacy in DisCSPs
focuses on constraint privacy. Metrics have been proposed to evaluate constraint privacy
loss in algorithms, in particular for distributed meeting scheduling (Franzin, Freuder, Rossi,
& Wallace, 2004; Wallace & Freuder, 2005). Maheswaran, Pearce, Bowring, Varakantham,
and Tambe (2006) designed a framework called Valuation of Possible States (VPS) that
they used to measure constraint privacy loss in the OptAPO and SynchBB algorithms, and
they considered the impact of whether the problem topology is public or only partially
known to the agents. Greenstadt et al. (2006) also applied VPS to evaluate DPOP and
ADOPT on meeting scheduling problems, under the assumption that the problem topology
is public. Doshi, Matsui, Silaghi, Yokoo, and Zanker (2008) proposed to consider the cost of
privacy loss in optimization problems, in order to elegantly balance privacy and optimality.

Preventing Constraint Privacy Loss Some previous work also proposed approaches to
partially reduce constraint privacy loss. For instance, Brito and Meseguer (2007) described
a modification of the Distributed Forward Checking (DisFC) algorithm for DisCSPs in which
agents are allowed to lie for a finite time in order to achieve higher levels of privacy. How-
ever, the performance of most search-based algorithms like DisFC leaks information about
constraint tightness, as explained at the end of Section 2.1.3. To avoid this subtle privacy
leak, one must either perform full exhaustive search, which is the option chosen by Silaghi,
or resort to Dynamic Programming, which is the option we have chosen in this paper.

The cryptographic technique of secret sharing (Shamir, 1979; Ben-Or, Goldwasser, &
Wigderson, 1988) was also applied by Silaghi, Faltings, and Petcu (2006) and Greenstadt,
Grosz, and Smith (2007) to lower constraint privacy in DPOP, assuming that the constraint
graph topology is public knowledge. Cryptography has also been applied to provide strong
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guarantees on constraint privacy preservation in multi-agent decision making. For instance,
Yokoo and Suzuki (2002), Yokoo et al. (2002) and Yokoo, Suzuki, and Hirayama (2005)
showed how a public key encryption scheme can be used to solve DisCSPs using multiple
servers, while protecting both constraint privacy and decision privacy. Bilogrevic, Jadliwala,
Hubaux, Aad, and Niemi (2011) solved single-meeting scheduling problems using similar
techniques, and one semi-trusted server. In this paper however, we only consider algorithms
that do not make use of third parties, as such third parties might not be available. Herlea,
Claessens, Preneel, Neven, Piessens, and Decker (2001) showed how to use Secure Multiparty
Computation (SMC)1 to securely schedule a single meeting, without relying on servers. In
SMC, agents collaboratively compute the value of a given, publicly known function on
private inputs, without revealing the inputs. For Herlea et al. (2001), the inputs are each
participant’s availability at a given time, and the function outputs whether they are all
available.

The MPC-DisCSP4 Algorithm Silaghi (2005a) also applied SMC to solve general
DisCSPs, where the private inputs are the agents’ constraint valuations, and the function
returns a randomly chosen solution. The algorithm proceeds as follows (Léauté, 2011). Each
agent ai first creates a vector Fi with one entry per candidate solution to the DisCSP, equal
to 1 if the candidate solution satisfies ai’s private constraints, and to 0 otherwise. To reduce
the size of Fi, the candidate solutions may be filtered through publicly known constraints,
if there exists any. Using Shamir’s polynomial secret sharing technique (Shamir, 1979; Ben-
Or et al., 1988), agent ai then sends one secret share Fi→j of its vector Fi to each other
agent aj, and receives corresponding secret shares Fj→i of their respective vectors. Agent ai
then multiplies together all the secret shares it received. The multiplication of Shamir secret
shares is a non-trivial operation, because each secret share is the value of a polynomial, and
multiplying two polynomials increases the degree of the output, which must always remain
lower than the number |A| of agents to be resolvable. Therefore, after each multiplication
of two secret shares, agent ai must perform a complex sequence of operations involving the
exchange of messages in order to reduce the degree of the output.

After performing (|A| − 1) such pairwise multiplications of secret shares, agent ai’s vec-
tor Fi contains secret shares of 1 at the entries corresponding to globally feasible solutions.
Agent ai then performs a transformation on Fi so that only one such secret share of 1
remains, identifying one particular feasible solution (if there exists one). Just selecting the
first such entry would a posteriori reveal that all previous entries correspond to infeasible
solutions to the DisCSP; to prevent this privacy leak, the vector Fi is first collaboratively,
randomly permuted using a mix-net. Agent ai then performs a sequence of iterative op-
erations on Fi (including communication-intensive multiplications) to set all its entries to
secret shares of 0, except for one secret share of 1 corresponding to the chosen solution
to the DisCSP (if any). The vector Fi is then un-shuffled by re-traversing the mix-net in
reverse. Finally, agent ai can compute secret shares of the domain index of each variable’s
chosen assignment, and reveal these secret shares only to the owners of the variables.

This algorithm has numerous drawbacks. First, each agent must know all variables and
their domains to construct its initial vector Fi, which immediately violates agent privacy
and topology privacy (Table 3.3, page 664). Second, Shamir’s secret sharing scheme is a

1. Silaghi uses the different acronym MPC for the same concept.
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majority threshold scheme, which means that if at least half of the agents collude, they
can discover everyone’s private information. Even though, in this paper, we are assuming
that agents are honest and do not collude, a consequence of this threshold is that this
scheme does not provide any privacy guarantee when the problem involves only two agents.
Third, this algorithm is often only practical for very small problems, because it performs
full exhaustive search; this is demonstrated by our experimental results in Section 6.

3. P-DPOP+: Full Agent Privacy and Partial Topology, Constraint and

Decision Privacy

This section describes a variant of the DPOP algorithm that guarantees full agent privacy.
It also partially protects topology, constraint, and decision privacy. Algorithm 2 is an
improvement over the P-DPOP algorithm we originally proposed (Faltings et al., 2008).
Like DPOP, the algorithm performs dynamic programming on a DFS-tree ordering of the
variables (Figure 2). Algorithms to first elect one variable, and then generate a DFS tree
rooted at this variable are given in Online Appendices 1 and 2. These algorithms do not
reveal the pseudo-tree in its entirety to any agent; instead, each agent only discovers the
(pseudo-)parents and (pseudo-)children of its own variables. For the sake of simplicity, we
will hereafter assume without loss of generality that the constraint graph consists of a single
component. If the problem actually consisted of two or more fully decoupled subproblems,
then each subproblem would be solved in parallel, independently from the others.

Algorithm 2 Overal P-DPOP+ algorithm, for variable x

Require: a DFS-tree ordering of the variables
1: // Choose and exchange codenames for x and its domain Dx:
2: Wait for a message (CODES, ỹxi , D̃

x
yi , σ

x
yi) from each yi ∈ {parentx} ∪ pseudo parentsx

3: for each yi ∈ childrenx ∪ pseudo childrenx do
4: x̃yi ← large random number
5: D̃

yi
x ← list of |Dx| random, unique identifiers

6: σ
yi
x ← random permutation of [1, . . . , |Dx|]

7: Send message (CODES, x̃yi , D̃yi
x , σ

yi
x ) to yi

8: // Choose and exchange obfuscation key for x:
9: Wait for and record a message (KEY, keyxyi) from each yi ∈ pseudo parentsx (if any)

10: for each yi ∈ pseudo childrenx do
11: key

yi
x ← vector of large random numbers of B bits, indexed by Dx

12: Send message (KEY, keyyix ) to yi

13: Propagate feasibility values up the pseudo-tree (Algorithm 3, Section 3.1)

14: // Propagate decisions top-down along the pseudo-tree (Section 3.2):
15: if x is not the root then
16: Wait for message (DECISION, p̃∗x, ·) from parent px
17: x∗ ← x∗(p̃x = p̃∗x, ·) // where x∗(·) was computed in Algorithm 3, line 21
18: for each yi ∈ childrenx do
19: Send message (DECISION, ˜sep∗yi) to yi, with sepyi from Algorithm 3, line 12
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3.1 Finding a Feasible Value for the Root Variable

As already illustrated for DPOP in Section 2.1.3, the agents perform a bottom-up propa-
gation of feasibility values along the pseudo-tree. This is done in Algorithm 3, which is an
extension of DPOP’s UTIL propagation phase (the extensions are indicated by comments
in bold), and improves over the algorithm we originally proposed (Faltings et al., 2008)
by patching an important constraint privacy leak in the single-variable FEAS messages
sent by variables with singleton separators. The following sections describe the obfuscation
techniques used to protect the private information that could be leaked by the feasibility
messages, using codenames (Section 3.1.1) and addition of random numbers (Section 3.1.2).

Algorithm 3 Algorithm to find a feasible value for the root of a DFS tree, for variable x

Require: a DFS-tree ordering of the variables; px denotes x’s parent
1: // Join local constraints:
2: m(x, px, ·)← Σc∈{c′∈C | x∈scope(c′) ∧ scope(c′)∩(childrenx∪pseudo childrenx)=∅}c(x, ·)

3: // Apply codenames:
4: for each yi ∈ {px} ∪ pseudo parentsx do
5: m(x, p̃x, ·)← replace (yi,Dyi) in m(x, px, ·) with (ỹxi , D̃

x
yi) from Algorithm 2, line 2,

and apply the permutation σx
yi to D̃x

yi

6: // Obfuscate infeasible entries:
7: r← large, positive, random number of B bits

8: m(x, p̃x, ·)←

{
m(x, p̃x, ·) if m(x, p̃x, ·) = 0
m(x, p̃x, ·) + r if m(x, p̃x, ·) > 0

9: // Join with received messages:
10: for each yi ∈ childrenx do
11: Wait for the message (FEAS, mi(x̃, ·)) from yi
12: sepyi ← scope(mi)
13: for each z ∈ childrenx ∪ pseudo childrenx do // resolve codenames
14: mi(x, ·)← identify (x̃z, D̃z

x) as (x,Dx) in mi(x̃, ·) (if x̃z is present)
15: m(x, p̃x, ·)← m(x, p̃x, ·) +mi(x, ·)

16: // De-obfuscate feasibility values with respect to x:
17: for each yi ∈ pseudo childrenx do
18: m(x, p̃x, ·)← m(x, p̃x, ·)− key

yi
x (x) // with key

yi
x from Algorithm 2, line 11

19: // Project out x:
20: if x is not the root variable then
21: x∗(p̃x, ·)← argminx {m(x, p̃x, ·)}
22: m(p̃x, ·)← minx {m(x, p̃x, ·)}

23: // Obfuscate feasibility values:
24: for each yi ∈ pseudo parentsx do
25: m(p̃x, ·)← m(p̃x, ·) + keyxyi(ỹ

x
i ) // with keyxyi from Algorithm 2, line 9

26: Send the message (FEAS, m(p̃x, ·)) to px
27: else x∗ ← argminx {m(x)} // m(x, p̃x, ·) actually only depends on x
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3.1.1 Hiding Variable Names and Values Using Codenames

Consider the feasibility message x1 → x4 sent by agent a(x1) to its parent variable x4 in
Figure 2. This message is recalled in Figure 3(a), reformulated in terms of minimizing the
number of constraint violations. If this message were actually received in cleartext, it would
breach agent privacy and topology privacy: agent a(x4) would be able to infer from the
dependency of the message on variable x2 both the existence of agent a(x2) (which violates
agent privacy) and the fact that x2 is a neighbor of one or more unknown nodes below x1.

x1 → x4
x2

x4 R B G

R 0 0 0

B 0 0 1

G 0 1 0
(a) in cleartext

x1 → x4
928372

x4 α β γ

R 0 0 0

B 0 0 1

G 0 1 0
(b) partly obfuscated

x1 → x4
928372

x4 α β γ

R 620961 983655 534687

B 620961 983655 534688

G 620961 983656 534687
(c) fully obfuscated

Figure 3: The message sent by agent a(x1) to its parent variable x4 in Figure 2.

In order to patch these privacy leaks, variable x2 and its domain D2 = {R,B,G} are re-

placed with random codenames x̃x1
2 = 928372 and D̃x1

2 = {α, β, γ} (Figure 3b) preliminarily
generated by a(x2) and communicated directly to the leaf of the back-edge (Algorithm 2,
lines 2 to 7). The leaf applies these codenames to its output message (Algorithm 3, line 5),
and they are only resolved once the propagation reaches the root of the back-edge (Algo-
rithm 3, line 14). Not knowing these codenames, the agents in between, such as a(x4), can
only infer the existence of a cycle in the constraint graph involving some unknown ances-
tor and descendent. This is tolerated by the definition of topology privacy (Definition 5)
since they are also involved in this cycle. A secret, random permutation σx1

2 is also applied

to D̃x1
2 ; this is useful for problem classes in which variable domains are public. Notice that

if x4 also had a constraint with x2, the above reasoning would still hold, because x2 would
then have sent a different codename x̃x4

2 to x4, which would then not be able to resolve the

unknown codename x̃x1
2 to x2. In this case, x4’s separator would be {x3, x̃

x1
2 , x̃x4

2 }, and its
message sent to x3 would be three-dimensional instead of two-dimensional.

3.1.2 Obfuscating Feasibility Values

Hiding variable names and values using codenames addresses the leaks of agent and topology
privacy. However, this does not address the fact that the feasibility values in the message
x1 → x4 in Figure 3(b) violate constraint privacy, because they reveal to x4 that its subtree
can always find a feasible solution to its subproblem when x4 = R, regardless of the value of
the obfuscated variable 928372. To patch this privacy leak, feasibility values are obfuscated
by adding large, random numbers that are generated by the root of the back-edge (x2)
and sent over a secure channel to the leaf of the back-edge (Algorithm 2, lines 9 to 12).
The number of bits B of the random numbers is a problem-independent parameter of the
algorithm. The obfuscation is performed in such a way that a different random number is
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added to all feasibility values associated with each value of x2, as in Figure 3(c), using the
obfuscation key [620961, 983655, 534687]. These random numbers are added by the leaf of
the back-edge to its outgoing message (Algorithm 3, line 25), and they are only eventually
subtracted when the propagation reaches the root of the back-edge (Algorithm 3, line 18).

Notice that this obfuscation scheme achieves two objectives: 1) it hides from x4 the
absolute feasibility values of its subtree, and 2) it hides the relative dependencies of these
values on the obfuscated variable 928372, because different random numbers were used for
each value in its obfuscated domain {α, β, γ}. Agent a(x4) is still able to infer the relative
dependencies on its own variable x4, which is necessary to perform the projection of this
variable, but it is unable to tell, for each value of the other (obfuscated) variable, whether
the subtree’s problem is feasible, and if not, how many constraints are violated. Notice in
particular that, for a given value of the obfuscated variable (i.e. for any column), agent a(x4)
does not know whether any of the assignments to x4 is feasible, and therefore it would be
incorrect to simply assume that the lowest of the obfuscated feasibility entries decrypts to 0.
Similarly, equal entries in the same column correspond with a high probability to entries
that have the same number of constraint violations, but this number is not necessarily 0,
so it would be incorrect to infer they correspond to feasible entries.

Notice also that this obfuscation scheme is only applicable in the presence of a back-
edge, i.e. when the message contains more than just the parent variable. Consider for
instance the single-variable message x5 → x3, recalled in Figure 4(a). If agent a(x3) knew
that x5 is a leaf of the pseudo-tree, the cleartext message would reveal agent a(x5)’s private
local constraint x5 6∈ {B,R} to agent a(x3), and the previous obfuscation scheme does not
apply because of the absence of back-edges. Notice that this threat to constraint privacy
is tempered by the fact that P-DPOP+’s guarantees in terms of topology privacy prevent
agent a(x3) from discovering that x5 is indeed a leaf. From a(x3)’s point of view, a larger
subproblem might be hanging below variable x5 in Figure 2, and the message could actually
be an aggregation of multiple agents’ subproblems.

x5 → x3
x3 # conflicts

R 0

B 0

G 1
(a) in cleartext

x5 → x3
x3 # conflicts

R 0

B 0

G 730957
(b) obfuscated

Figure 4: The message received by agent a(x3) in Figure 2.

To reduce this privacy leak present in the original algorithm (Faltings et al., 2008), we
propose a new additional obfuscation scheme that consists in adding large (B-bit), positive,
random numbers to positive entries in single-variable messages, in order to obfuscate the
true numbers of constraint violations (Algorithm 3, line 8 and Figure 4(b)). Because these
random numbers are never subtracted back, they must not be added to zero entries, other-
wise the algorithm would fail to find a solution with no violation. Feasible entries are still
revealed, but the numbers of constraint violations for infeasible entries remain obfuscated.
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3.2 Propagating Final Decisions

Once the feasibility values have propagated up all the way to the root of the pseudo-
tree, and a feasible assignment to this root variable has been found (if there exists one),
this assignment is propagated down the pseudo-tree (Algorithm 2, lines 14 to 19). Each
variable uses the assignments contained in the message from its parent, in order to look up
a corresponding assignment for itself (line 17). It then sends to each child the assignments
for the variables in its separator (line 19), using the same codenames as before so as to
protect agent and topology privacy. Decision privacy is only partially guaranteed, because
each variable learns the values chosen for its parent and pseudo-parents — but not for other,
non-neighboring variables in its separator because they are hidden by unknown codenames.

3.3 Algorithm Properties

This section first formally proves that the algorithm is complete, and analyses its complexity.
We then present an algorithm variant with lower complexity. Finally, the privacy guarantees
provided by both algorithms (summarized in Table 3.3) are formally described.

privacy type: agent topology constraint decision

P-DPOP(+) full partial partial partial

P
3/2-DPOP(+) full partial partial full

P2-DPOP(+) full partial full full

MPC-DisCSP4 - partial partial partial

Table 1: Privacy guarantees of various algorithms.

3.3.1 Completeness and Complexity

Theorem 1. Provided that there are no codename clashes, P-DPOP+ (Algorithm 2) ter-
minates and returns a feasible solution to the DisCSP, if there exists one.

Proof. After exchanging codenames and obfuscation keys, which is guaranteed to require
a number of messages at most quadratic in the number n of variables, the bottom-up
propagation of feasibility values (Algorithm 3) terminates after sending exactly (n − 1)
messages (one up each tree-edge). One can prove by induction (left to the reader) that
this multi-party dynamic programming computation almost surely correctly reveals to each
variable x the (obfuscated) feasibility of its subtree’s subproblem, as a function of x and
possibly of ancestor variables in the pseudo-tree. This process may only fail in case of
collisions of codenames, when the roots of two overlapping back-edges choose the same
codenames. Such codename clashes are inherent to most privacy-protecting algorithms,
and can be made as improbable as desired by augmenting the size of the codename space.

Finally, the top-down decision propagation phase (Algorithm 2, lines 14 to 19) is guar-
anteed to yield a feasible assignment to each variable (if there exists one), after the exchange
of exactly (n− 1) messages (one down each tree-edge).
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When it comes to the complexity of the algorithm in terms of number of messages
exchanged, the bottleneck is in the election of the root variable (Online Appendix 1), which
requires O(φ ·d ·n2) messages, where φ is the diameter of the constraint graph, d its degree,
and n is the number of variables. However, the (n − 1) messages containing feasibility
values can be exponentially large: the message sent by variable x is expressed over |sepx|

variable codenames (Algorithm 3, line 12), and therefore contains O(D
|sepx|
max ) feasibility

values, where Dmax is the size of the largest variable domain. The overall complexity in
terms of information exchange, memory and runtime (measured in number of constraint
checks) is therefore O(n ·Dsepmax

max ), where sepmax = maxx |sepx|. This is the same as DPOP,
except that in P-DPOP+ each variable may appear multiple times under different codenames
in the same separator, hereby increasing the value of sepmax. However, this increase is only
by a multiplicative factor that is upper bounded by the degree of the constraint graph, since
the number of codenames for a given variable is at most equal to its number of neighbors.
Empirically, our experimental results in Section 6 suggest that, on almost all the problem
classes we considered, the median value of sepmax tends to grow rather linearly in n.

3.3.2 P-DPOP: Trading off Topology Privacy for Performance

It is possible to reduce the sizes |sepxi
| of the separators, by enforcing that each agent a(x)

send the same codename x̃ for x to all of x’s (pseudo-)children, unlike in Algorithm 2 (lines
2 to 7). This variant will be identified by the absence of the plus sign in exponent; P-DPOP
is the version of the algorithm that was initially proposed by Faltings et al. (2008).

As a result of this change, variables that previously may have occurred multiple times
in the same feasibility message under different codenames can now only appear at most
once, such that we now have sepmax < n. The worst-case complexity of P-DPOP then
becomes the same as DPOP (Petcu & Faltings, 2005), in which sepmax is equal to the
width of the pseudo-tree, which is bounded below by the treewidth of the constraint graph.
However, privacy considerations prevents the use in P-DPOP of DPOP’s more efficient, but
less privacy-aware pseudo-tree generation heuristics, resulting in higher-width pseudo-trees.

While the complexity of P-DPOP is hereby decreased compared to P-DPOP+, sending
the same codename x̃ for variable x to all its (pseudo-)children has drawbacks in terms of
topology privacy, as analyzed below.

3.3.3 Full Agent Privacy

There are only two ways the identity of an agent A could be leaked to a non-neighbor B:
1) the algorithm can require A and B to exchange messages with each other, or 2) Agent A
can receive a message whose content refers identifiably to B. Case 1 can never happen in
any of our algorithms, because they only ever involve exchanging messages with neighboring
agents. Case 2 is addressed mainly through the use of codenames.

Theorem 2. The P-DPOP(+) algorithms guarantee full agent privacy.

Proof. The P-DPOP(+) algorithms proceed in the following sequential phases (the prelimi-
nary phases of root election and pseudo-tree generation are addressed in online appendices):

Bottom-up feasibility propagation (Algorithm 3) Each feasibility message contains
only a function (line 11) over a set of variables, whose names, if transmitted in clear
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text, could identify their owner agent. To prevent this agent privacy leak, P-DPOP(+)

replaces all variable names with secret, random codenames, as follows.

Consider a variable x in the pseudo-tree. Note that no feasibility message sent by x or
by any ancestor of x can be a function of x. The message sent by x is not a function
of x, because x is projected out before the message is sent (line 22). Variable x cannot
re-appear in any feasibility message higher in the pseudo-tree, because no agent’s local
problem can involve any variable lower in the pseudo-tree (line 2).

Similarly, consider now the feasibility message sent by a descendant y of x in the
pseudo-tree, and assume first that y is a leaf of the pseudo-tree. Since y has no
children, the feasibility message it sends can only be a function of the variables in its
local problem. If this local problem involves x, y will replace x by its codename x̃y

(line 5) before it sends its feasibility message. One can then prove by inference that
no feasibility message sent by any variable between y and x will contain x either; it
can only (and not necessarily) contain one or several of its codenames x̃yi .

Since the codenames x̃yi are random numbers chosen by x (Algorithm 2, line 4),
and only communicated (through channels that are assumed secure) to the respective
neighbors yi of x (Algorithm 2, line 7), no non-neighbor of x receiving a message
involving any x̃yi can discover the identity of its owner agent.

The domain Dx of variable x could also contain values that might identify its owner
agent. To fix this privacy risk, x’s domain is also replaced by obfuscated domains D̃yi

x

of random numbers, similarly to the way variable names are obfuscated. In this
paper, we make the simplifying assumption that all variables have the same domain
size (which naturally holds in many problem classes), so that one variable’s domain
size does not give any information about its owner agent. Otherwise, variable domains
can be padded with fake values in order to make them all have the same size.

Top-down decision propagation (Section 3.2) The messages contain assignments to
variables (Algorithm 2, line 19), which are also obfuscated using codenames.

This concludes the proof that, in the P-DPOP(+) algorithms, no agent can receive any
message from which it can infer the identity of any non-neighboring agent.

3.3.4 Partial Topology Privacy

Theorem 3. P-DPOP guarantees partial topology privacy. The minor leaks of topology
privacy lie in the fact that a variable might be able to discover a lower bound on a neighbor
variable’s degree in the constraint graph, and a lower bound on the total number of variables.

Proof. Root election and pseudo-tree generation are left to the online appendices.

Bottom-up feasibility propagation (Algorithm 3) Each variable x receives a FEAS
message from each child, containing a function whose scope might reveal topological
information. Each variable y in this scope is represented by a secret codename ỹ,
however x may be able to decrypt the codename ỹ, if and only if y is a neighbor of x
(or is x itself), because y has sent the same codename ỹ to all its neighbors. This
results in a leak of topology privacy: x discovers, for each neighboring ancestor y,
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whether y has at least one other neighbor below a given child of x. But it cannot
discover exactly how many of these other neighbors there are.

Furthermore, in the case where x and y are not neighbors, x cannot decrypt ỹ, but
it can still infer there exists another, non-neighboring ancestor corresponding to this
codename. This is another breach of topology privacy. Because y sent the same
codename ỹ to all its neighbors, x can also discover whether that other ancestor has
at least one neighbor below each of x’s children. Moreover, since codenames are
large random numbers that are almost surely unique, x may discover the existence of
several, distinct such non-neighboring ancestors.

Top-down decision propagation (Section 3.2) Each variable receives a message from
its parent, which can only contain codenames for variables and variable values that
were already present in the FEAS message received during the previous phase.

This concludes the proof that P-DPOP only partially protects topology privacy. The limited
topology information leaked to a variable only concerns its branch in the pseudo-tree; no
information can be leaked about any other branch, not even their existence.

Theorem 4. The use of different codenames for each (pseudo-)child improves the topology
privacy in P-DPOP+ compared to P-DPOP, but the same bounds can still be leaked.

Proof. Consider a variable x that receives a FEAS message including a secret codename ỹ

corresponding to variable y (6= x). Because y now sent a different codename to each of its
neighbors, x is no longer able to decrypt ỹ, even if y is a neighbor of x. As a consequence,
x is no longer able to infer whether ỹ refers to a known neighbor of x, or to an unknown,
non-neighboring variable. However, since each codename now corresponds to a unique back-
edge in the pseudo-tree, for each pair (α, β) of unknown codenames in x’s received FEAS
message (if such a pair exists), at least one of the following statements must hold:

• α and β refer to two different ancestors of x, and therefore x discovers at it has at least
two ancestors (which it might not have known, if it has no pseudo-parent); and/or

• α and β were sent to two different descendants of x below (and possibly including) the
sender child y, and therefore x discovers that it has at least two descendants below
(and including) y (which it might not have known, if it has no pseudo-child below y).

Therefore x might be able to refine its lower bound on the total number of variables.

3.3.5 Partial Constraint Privacy

Theorem 5. The P-DPOP(+) algorithms guarantee partial constraint privacy. The local
feasibility of a subproblem for a partial variable assignment X∗ may be leaked, even if X∗

cannot be extended to an overall feasible solution (i.e. this is not semi-private information).

Proof. Information about constraints is only transmitted during feasibility propagation (Al-
gorithm 3). Based on the knowledge of the optimal variable assignments transmitted during
the last phase (Section 3.2), some of the feasibility information may be decrypted.
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Single-variable feasibility messages When a variable px receives a feasibility message
involving only px, the message has been obfuscated only by adding secret random
numbers to its infeasible entries (line 8). Feasible entries remain equal to 0, and px
can identify which entries refer respectively to feasible or infeasible assignments to px.

However, the addition of a secret, positive, random number to each infeasible entry
ensures only an upper bound on the number of constraint violations is leaked, which
can be made as loose as desired by choosing random numbers as large as necessary.

Multi-variable feasibility messages If the FEAS message involves at least one other
variable ỹi, then all message entries have been obfuscated by adding large random
numbers keyxyi(ỹ

x
i ) of B bits (line 25). Furthermore, keyxyi(ỹ

x
i ) is only known to the

sender x of the message and to its pseudo-parent yi, but not to the recipient px, which
therefore cannot subtract it to de-obfuscate the entries.

Assume, for simplicity, that the message m(p̃x, ỹxi ) involves only the two variables
p̃x and ỹxi ; the argument extends easily to more variables. The recipient px might
be able to make inferences: 1) by fixing ỹxi and comparing the obfuscated entries
corresponding to different values for p̃x; or 2) by fixing p̃x and varying ỹxi instead.

1. For a given value of ỹxi , all entries have been obfuscated by adding the same
random number keyxyi(ỹ

x
i ) (line 25), so px can compute the relative differences of

feasibility values for various assignments to p̃x. However, it cannot decrypt the
absolute values without knowing keyxyi(ỹ

x
i ). In particular, the lowest obfuscated

value is not necessarily equal to keyxyi(ỹ
x
i ), because it does not necessarily decrypt

to 0: all values of p̃x may be infeasible for this particular value of ỹxi .

There is one exception: if a feasible solution is found to the problem in which
ỹxi = ỹxi

∗
and p̃x = p̃x

∗, then m(p̃x
∗, ỹxi

∗
) necessarily decrypts to 0, and therefore

px will be able to infer keyxyi(ỹ
x
i
∗
). After fixing ỹxi = ỹxi

∗
in the message and

subtracting keyxyi(ỹ
x
i
∗
), the same reasoning can be made as for the single-variable

case, in which feasible and infeasible entries are identifiable, but the numbers of
constraint violations for infeasible entries remain obfuscated.

2. For a given value of p̃x, each feasibility value m(p̃x, ỹxi ) has been obfuscated
by adding a different, secret random number keyxyi(ỹ

x
i ). Choosing the number

of bits B sufficiently large makes sure that no useful information (relative, or
absolute) can be obtained by comparing the obfuscated feasibility values.

This concludes the proof that P-DPOP(+) guarantees partial constraint privacy.

3.3.6 Partial Decision Privacy

Theorem 6. The P-DPOP(+) algorithms guarantee partial decision privacy. The leak lies
in the fact that a variable might discover the values chosen for some or all of its neighbors.

Proof. First notice that the algorithm cannot leak any information about the chosen values
for variables that are lower in the pseudo-tree, since these variables have been projected out
of the feasibility messages received. However, during the decision propagation phase, each
variable receives a message from its parent that contains the chosen values for its parent and
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pseudo-parents. The message may also contain codenames for the assignments to other, non-
neighboring variables, which the recipient will not be able to decode. Furthermore, domains
are shuffled using secret permutations, making it impossible to decode the codename for
the value of a non-neighboring variable from its index in the variable’s domain.

4. P
3/2-DPOP+: Adding Full Decision Privacy

This section presents another variant of the P-DPOP+ algorithm that achieves full decision
privacy. This results in a novel algorithm, which can be seen as a hybrid between the
P-DPOP+ and P2-DPOP (Léauté & Faltings, 2009) algorithms, and is called P3/2-DPOP+.

4.1 Overview of the Algorithm

Algorithm 4 patches the decision privacy leak in P-DPOP+ by removing its decision propa-
gation phase. Only the root variable is assigned a value, and in order for all variables to be
assigned values, each variable is made root in turn (unless the first feasibility propagation
has revealed that the problem is infeasible, in which case the algorithm can terminate early).
The intuition behind this P

3/2-DPOP+ algorithm is therefore that P-DPOP+’s bottom-up
feasibility propagation phase is repeated multiple times, each time with a different variable x
as the root of the pseudo-tree (lines 10 to 15). At the end of each iteration, a constraint
x = x∗ is added to the problem to enforce consistency across iterations (line 16).

Algorithm 4 Overall P3/2-DPOP+ algorithm with full decision privacy, for variable x

Require: a first temporary DFS tree, a unique ID idx, a tight strict lower bound on the
next unique ID id+x , and an upper bound n+ on the total number of variables

1: vectorx ← [

idx
︷ ︸︸ ︷

1, . . . , 1, 0,

id+x −idx
︷ ︸︸ ︷

−1, . . . ,−1, 1, . . . , 1
︸ ︷︷ ︸

n+

]

2: // Exchange public key shares:
3: privatex ← generate a private ElGamal key for x
4: publicx ← generate a set of (id+x − idx +1) public key shares corresponding to privatex
5: for each share ∈ publicx do ToPrevious((SHARE, share)) as in Algorithm 9
6: for i = 1 . . . n+ do
7: Wait for and record one message (SHARE, share)
8: if share 6∈ publicx then ToPrevious((SHARE, share)) as in Algorithm 9
9: Generate the compound ElGamal public key based on all the public key shares

10: while vectorx 6= ∅ do
11: Choose a new root (Algorithm 5, Section 4.2)
12: Construct a new pseudo-tree rooted at the new root (Online Appendix 2)
13: Exchange codenames for x and its domain Dx (Algorithm 2, lines 2 to 7)
14: Choose and exchange obfuscation key for x (Algorithm 2, lines 9 to 12)
15: Propagate feasibility values up the pseudo-tree (Algorithm 3, except line 21)
16: if x is root then Add local constraint x = x∗, with x∗ from Algorithm 3, line 27
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4.2 Choosing a New Root Variable

To iteratively reroot the pseudo-tree, we propose to use an improved version of the rerooting
procedure we initially introduced for the P2-DPOP algorithm (Léauté & Faltings, 2009).
This procedure requires that each of the n variables be assigned a unique ID; an algorithm
to achieve this is presented in Online Appendix 3. This algorithm reveals to each variable x
its unique ID idx, as well as a tight strict lower bound on the next unique ID id+x (i.e. the
next unique ID equals id+x + 1), and an upper bound n+ on the total number of variables.
Each variable x then creates a Boolean vector vectorx with a single zero entry at the index
corresponding to its unique ID idx (Algorithm 4, line 1); this vector is then shuffled using
a random permutation used to hide the sequence in which variables become roots.

To keep the permutation secret, the vector is first encrypted using ElGamal encryption
(Appendix A), based on a compound public key jointly produced by the agents (Algorithm 4,
lines 2 to 9). This asymmetric encryption scheme enables each agent to (re-)encrypt the
entries in the vectors using a common public key, such that the decryption can only be
performed collaboratively by all the agents, using their respective private keys.

Algorithm 5 Algorithm to choose a new root, for variable x

Procedure: ShuffleVectors() for variable x

1: myID← large random number
2: px ← random permutation of [1 . . . n+]

3: // Propagate x’s encrypted vector backwards along the circular ordering
4: vectorx ← E(vectorx) // encrypts the vector using the compound public key
5: ToPrevious((VECT, myID, vectorx, 1)) as in Algorithm 9 in Appendix B

6: // Process all received vectors
7: while true do
8: Wait for a message (VECT, id, vector, round) from the next variable

9: if round = 1 then
10: if id 6= myID then for j = (idx + 1) . . . id+x do vector[j]← −1
11: else round← round+ 1 // x’s vector; move to next round
12: if round > 1 and x is the current root then
13: round← round+ 1 // the root starts each round except the first
14: if round = 3 then vector ← px(vector) // shuffle the vector
15: if round = 4 and id = myID then // done processing vectorx
16: vectorx ← vector

17: continue

18: // Pass on the vector backwards along the circular ordering
19: vector ← E(vector) // re-encrypts the vector using the compound public key
20: ToPrevious((VECT, id, vector, round)) as in Algorithm 9 in Appendix B

Procedure: Reroot() for variable x

21: repeat entry ← Decrypt(pop(vectorx)) while entry 6= −1 // as in Algorithm 6
22: if entry = 0 then x is the new root
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The agents then proceed as in Algorithm 5. Each variable x first starts the procedure
ShuffleVectors(), which is run only once — this is a performance improvement over our
previous work (Léauté & Faltings, 2009), where it was performed at each iteration. All the
vectors are passed from variable to variable in a round-robin fashion, using a circular message
routing algorithm presented in Appendix B. Each agent applies a secret permutation to
each vector to shuffle it. ShuffleVectors() proceeds in four rounds. During round 1
(started on line 5, Algorithm 5), each vector makes a full round along the circular ordering,
during which each variable x overwrites some of the entries with −1 (line 10), at the same
positions it did for its own vectorx (Algorithm 4, line 1). These −1 entries account for the
IDs in [idx+1, id+x ] that have not been assigned to any variable (Online Appendix 3). Once
x has received back its own vectorx, it enters the incomplete round 2 (line 11) during which
vectorx is passed on until it reaches the current root (line 12). The root then starts round 3
(line 13), during which each variable x shuffles each vector using its secret permutation px
(line 14). The incomplete round 4 returns the fully shuffled vector to its owner (line 16).

To reroot the variable ordering at the beginning of each iteration of P3/2-DPOP+, each
variable x calls the procedure Reroot(), which removes and decrypts the first element of
vectorx. Entries that decrypt to −1 correspond to unassigned IDs and are skipped. The
single entry that decrypts to 0 identifies the new root. The decryption process (Algorithm 6)
is a collaborative effort that involves each variable using its private ElGamal key to partially
decrypt the cyphertext, which travels around the circular variable ordering in the same way
as the vectors, until it gets back to its sender variable, which can finally fully decrypt it.

Algorithm 6 Collaborative decryption of a multiply-encrypted cyphertext e

Procedure: Decrypt(e) for variable x

1: codename← large random number used as a secret codename for x
2: codenamesx ← codenamesx ∪ {codename}
3: ToPrevious((DECR, codename, e)) as in Algorithm 9
4: Wait for message (DECR, codename, e′) from next variable in the ordering
5: return decryption of e using x’s private key

Procedure: CollaborativeDecryption() for variable x

6: loop
7: Wait for a message (DECR, c, e) from next variable in the ordering
8: if c 6∈ codenamesx then
9: e′ ← partial decryption of e using x’s private key

10: ToPrevious((DECR, c, e′)) as in Algorithm 9

4.3 Algorithm Properties

We first analyze the completeness and complexity properties of the P
3/2-DPOP(+) algo-

rithms, and then we move on to their privacy properties.

4.3.1 Completeness and Complexity

Theorem 7. Provided that there are no codename clashes, the P3/2-DPOP+ algorithm
terminates and returns a feasible solution to the DisCSP, if there exists one.
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Proof. On the basis of Theorem 1, it remains to prove that the rerooting Algorithm 5
terminates and is correct, and that the overall algorithm remains correct. The latter is easy
to prove: at each iteration, a feasible value is found for the root variable (if there exists
one), and that value is necessarily consistent with the chosen assignments to previous roots
since these assignments are enforced by new, additional constraints (Algorithm 4, line 16).

When it comes to the rerooting procedure, the unique ID assignment algorithm (Online
Appendix 3) ensures that each of the n variables gets a unique ID in 0 . . . (n+−1). Therefore,
each variable has a 0 entry at a unique position in its vector (Algorithm 4, line 1). Round 1
of Algorithm 5 also makes sure that all vectors have −1 entries at the same positions. This
ensures that exactly one variable will become the new root at each iteration, since all vectors
are applied the same sequence of permutations, and no variable will be root twice.

In terms of complexity, P
3/2-DPOP+ proceeds in a similar way to P-DPOP+ (Sec-

tion 3.3), except that the bottom-up feasibility propagation phase is repeated n times (each
time with a different root variable). The overall complexity in information exchange there-

fore becomes O(n2 ·D
sep′max
max ), where sep′max is the maximum separator size over all variables,

and over all iterations, which therefore is likely to be higher than the exponent for P-
DPOP+. The information exchanged by the rerooting protocol is negligible in comparison.

The runtime complexity (measured in number of constraint checks) is also O(n2 ·D
sep′max
max ),

but the memory complexity is only O(n · D
sep′max
max ), because removing the decision propa-

gation phase makes it become unnecessary to compute and record x∗(p̃x, ·) (Algorithm 3,
line 21). Our experimental results on graph coloring benchmarks (Section 6.1) suggest that
the median value of sep′max may only be greater than the median value of sepmax in P-
DPOP+ by a small multiplicative factor. In terms of number of ElGamal cryptographic
operations, the rerooting procedure requires a total of n(3n − 1)n+ ∈ O(n3) encryptions:
each of the n variables (re-)encrypts (3n − 1) vectors of size n+ (each variable’s vector
performs 3 full rounds, except for the root’s vector, which performs only 2 full rounds),
with n+ ≤ n + n · 2incrmin, where incrmin is a constant input parameter of the algorithm.
The procedure also requires a total of n2n+ ∈ O(n3) collaborative decryptions: each of the
n variables (partially) decrypts n vectors or size n+.

4.3.2 Full Agent Privacy

Theorem 8. The P3/2-DPOP(+) algorithms guarantee full agent privacy.

Proof. The unique ID assignment and circular routing algorithms guarantee full agent pri-
vacy, as demonstrated respectively in Online Appendix 3 and Appendix B.

Pseudo-tree rerooting (Algorithm 5) The messages sent by ShuffleVectors() con-
tain a variable ID, a vector of ElGamal cyphertexts, and a round number. The ID
is used by the recipient to detect whether the vector is its own vector; it is a large
random number chosen by the owner agent (Algorithm 5, line 1), and therefore it
cannot be linked to the identity of this owner agent by any other agent. The ElGamal
vector and the round number also do not contain any information that could be used
to identify the agent. Also note that the procedure used to exchange ElGamal public
key shares (Algorithm 4, lines 2 to 9) does not leak any information about agents’
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identities. The Reroot() procedure then makes use of the collaborative decryption
algorithm, whose properties in terms of agent privacy are discussed below.

Collaborative decryption (Algorithm 6) The procedure exchanges messages that con-
tain an ElGamal cyphertext, and a codename used like the variable ID in Algorithm 5.
This codename is similarly set to a large random number chosen by the current agent,
and cannot be linked to the identity of this agent by any other agent.

This concludes the proof that the P
3/2-DPOP(+) algorithms guarantee agent privacy.

4.3.3 Partial Topology Privacy

The topology privacy in P
3/2-DPOP(+) is only slightly worse than in P-DPOP(+).

Theorem 9. The P3/2-DPOP(+) algorithms guarantee partial topology privacy. Each vari-
able unavoidably discovers the total number of variables in the problem, and might also
discover a lower bound on a neighbor variable’s degree in the constraint graph. The advan-
tages of P

3/2-DPOP+ over P
3/2-DPOP are the same as P-DPOP+ over P-DPOP.

Proof. Since there is one feasibility propagation phase per variable in the problem, the total
number of variables inevitably becomes public. The following analyzes the topology privacy
properties of each phase of P3/2-DPOP(+) that is not already present in P-DPOP(+), except
for unique ID assignment (Online Appendix 3) and secure message routing (Appendix B).

Exchange of ElGamal key shares (Algorithm 4, lines 2–9) The messages contain-
ing ElGamal key shares do not contain any information that could be used to make
inferences about the topology of the constraint graph.

Pseudo-tree rerooting (Algorithm 5) Each message travels along a circular variable
ordering using the message routing algorithm in Appendix B, and contains:

• a vector that is encrypted (and re-encrypted after each operation) and that there-
fore cannot provide any topological information;

• an id that identifies the owner of the vector; being a secret, large random number,
only the owner of the vector can identify itself;

• a round number can take the following values:

– round = 1 only indicates that the vector is being modified, each variable
setting in turn some of the values to −1;

– round = 2 only indicates that the vector is being sent to the root of the
pseudo-tree. This does not happen for the vector of the (unknown) root;

– round = 3 only indicates that the vector is being shuffled by each variable;

– round = 4 only indicates that the vector is on its way back to its owner.
This does not happen for the vector belonging to the (unknown) root.

Reroot() then uses the decryption algorithm whose properties are described below.
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Collaborative decryption (Algorithm 6) DECR messages are passed along the circu-
lar variable ordering, containing a secret codename for the original sender variable,
which is the only variable capable of deciphering this codename. The last part of the
message payload is an ElGamal cyphertext, which remains encrypted until it reaches
back the original sender, and therefore does not leak any topological information.

This concludes the proof that P
3/2-DPOP(+) guarantees partial topology privacy.

4.3.4 Partial Constraint Privacy

The constraint privacy properties of the P
3/2-DPOP(+) algorithms differ from those of P-

DPOP(+), because the former protect decision privacy (which benefits constraint privacy),
but also reveal the total number of variables in the problem (which hurts constraint privacy).

Theorem 10. The P3/2-DPOP(+) algorithms guarantee partial constraint privacy. The
leaks are the same as in P-DPOP(+) (Section 3.3.5), but they happen less frequently.

Proof. Single-variable feasibility messages leak the same amount of constraint privacy as in
P-DPOP(+); notice however that, since the P3/2-DPOP(+) algorithms now reveal the total
number of variables, in some circumstances it may be possible for a variable to discover that
a child is a leaf, and that the feasibility message it sends therefore contains information about
its local subproblem only. However, multi-variable feasibility messages leak potentially much
less information than in P-DPOP(+): consider again the simpler and non-restrictive case
of a two-variable message m(p̃x, ỹ

x
i ) received by p̃x. Because P

3/2-DPOP(+) now protects

decision privacy, p̃x no longer discovers the value ỹxi
∗
chosen for ỹxi , and is therefore no

longer able to infer which of the entries corresponding to p̃x = p̃x
∗ decrypts to 0.

One exception is when the following three conditions simultaneously hold: 1) P3/2-DPOP
is used, 2) the codename ỹxi refers to a variable yxi that is a neighbor of p̃x, and 3) ỹxi

∗
is

semi-private information to p̃x; then p̃x will still discover ỹxi
∗
, and will be able to make the

same inferences as in P-DPOP(+). If the first condition is not satisfied, i.e. P
3/2-DPOP+ is

used instead of P
3/2-DPOP, then p̃x will not be able to link the codename ỹxi to any known

variable. This is also the case if P
3/2-DPOP is used, but the second condition does not

hold. Finally, if the first two conditions hold, p̃x will only be able to discover ỹxi
∗
if it is

semi-private information, i.e. if it can infer it only from its knowledge of the problem, and
of its own chosen value p̃x

∗.

4.3.5 Full Decision Privacy

Theorem 11. The P3/2-DPOP(+) algorithms guarantee full decision privacy.

Proof. The leak of decision privacy in P-DPOP(+) is fixed by removing the decision prop-
agation phase. Instead, the variable ordering is rerooted, and the feasibility propagation
phase is restarted. It is not possible to compare the feasibility messages received from one
iteration to the next to infer the decision that has been made at the previous iteration: the
messages are not comparable, since different codenames and obfuscation keys are used.
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5. P2-DPOP+: Adding Full Constraint Privacy

We now describe how the previous, non-fully secure obfuscation scheme can be replaced
with ElGamal homomorphic encryption (Appendix A) to achieve full constraint privacy,
which corresponds to the original P2-DPOP algorithm (Léauté & Faltings, 2009), improved
by the use of multiple codenames. An important limitation of the ElGamal scheme is that
it is not fully homomorphic: it is possible to compute the OR of two encrypted Booleans,
but it is only possible to compute the AND of an encrypted Boolean with a cleartext
Boolean. As a consequence, the bottom-up feasibility propagation has to be performed on
a variable ordering such that each variable can have only one child, i.e. a linear variable
ordering (Figure 5), using the message routing algorithm in Appendix B. Otherwise, in a
pseudo-tree variable ordering, a variable with two children would not be able to join the
two encrypted feasibility messages sent by the children. This could be addressed using the
fully homomorphic encryption scheme by Gentry (2009), however it is unclear whether this
scheme would be practically applicable and would have sufficient performance.

x1

x2

x3

x5 x4

Figure 5: The (counter-clock-wise) circular variable ordering corresponding to Figure 2.

5.1 Propagating Encrypted Feasibility Values along a Linear Variable Order

In contrast to Figure 2, which illustrates multi-party dynamic programming on a pseudo-
tree variable ordering (counting constraint violations), Figure 6 shows (in cleartext) how
it can be carried out on a linear ordering (in the Boolean domain). This assumes that a
circular communication structure has preliminarily been set up as described in Appendix B.

Algorithm 7 gives the detailed pseudocode for this procedure, and is intended as a
replacement for line 15 in Algorithm 4. The differences with the pseudo-tree-based Algo-
rithm 3 are the following. First, while Algorithm 3 initially reformulated the DisCSP into
a Max-DisCSP so as to minimize the number of constraint violations, Algorithm 7 works
directly on the original DisCSP problem. This means that the conjunction operator ∧
replaces the sum operator (lines 2 and 10), and the disjunction operator ∨ replaces the
operator min (line 13). Notice also that, in the case of the linear ordering, a variable’s local
subproblem no longer necessarily involves its parent variable in the ordering (line 2), just
like x4 shares no constraint with x5 in Figures 5 and 6.

The next difference is that variable x no longer partially de-obfuscates its feasibility
matrix before projecting itself (Algorithm 3, line 18). The reason is that the ElGamal
scheme is homomorphic, and therefore it is no longer necessary to first (partially) decrypt

675
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x3 → x2
x2 R B G

true false true

x4 → x5
x2

x3 R B G

R true false true

B true true true

G true true true

x1x4x5x3x2

x5 → x3
x2

x3 R B G

R true false true

B true true true

G false false false

x1 → x4
x2

x4 R B G

R true true true

B true true false

G true false true

Figure 6: Multiparty dynamic programming computation (in cleartext) of a feasible value
for variable x2, using a linear variable ordering based on Figure 5.

Algorithm 7 Propagating feasibility values along a linear ordering, for variable x

1: // Join local constraints:
2: m(x, ·)←

∧

c∈{c′∈C | x∈scope(c′) ∧ scope(c′)∩(childrenx∪pseudo childrenx)=∅} c(x, ·)

3: // Apply codenames:
4: for each yi ∈ {parentx} ∪ pseudo parentsx do
5: m(x, ·) ← replace (yi,Dyi) in m(x, ·) with (ỹxi , D̃

x
yi) from Algorithm 2, line 2, and

apply the permutation σx
yi to D̃x

yi

6: // Join with received message:
7: Wait for the message (FEAS, m′(·)) from the next variable in the ordering
8: for each z ∈ childrenx ∪ pseudo childrenx do
9: m′(·)← identify (x̃z, D̃z

x) as (x,Dx) in m′(·) (if x̃z is present)
10: m(x, ·)← m(x, ·) ∧m′(·)

11: // Project out x:
12: if x is not the root variable then
13: m(·)← E (

∨

xm(x, ·)) // re-encrypts using the compound public key
14: ToPrevious((FEAS, m(·))) as in Algorithm 9
15: else x∗ ← FeasibleValue(m(x, ·)) as in Algorithm 8
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the feasibility values to project x using the operator ∨x. Only the root variable requires
decryption (Algorithm 7, line 15) to find a value x∗ for its variable x whose encrypted
feasibility value decrypts to true (if any). This is described in the following section.

5.2 Decrypting a Feasible Value for the Root Variable

The decryption of feasibility values at the root is a collaborative process in which each vari-
able partially decrypts the cyphertext using its private key (Algorithm 6). The dichotomy
procedure in Algorithm 8 uses at least ⌈log2 |Dx|⌉ and at most ⌈log2 |Dx|+ 1⌉ decryptions
to find a feasible assignment to the root variable, or to detect infeasibility.

Algorithm 8 Finding a feasible value in the encrypted feasibility matrix m(x)

Procedure: FeasibleValue(m (x = xil . . . xir))
1: if il < ir then // cut in half the remaining subdomain:

2: I ←
[

il,
⌊
il+ir
2

⌋]

3: feasible← Decrypt
(∨

i∈I m (x = xi)
)
as in Algorithm 6

4: if feasible = true then return FeasibleValue(m (x = xi∈I))
5: else return FeasibleValue

(
m

(
x = xi∈[il,ir ]−I

))

6: else // only one value remains for x
7: feasible← Decrypt(m (x = xil)) as in Algorithm 6
8: if feasible = true then return xil else return null

5.3 Algorithm Properties

We first analyze the completeness and complexity properties of the P2-DPOP(+) algorithms,
and then we move on to their privacy properties.

5.3.1 Completeness and Complexity

Theorem 12. Provided that there are no codename clashes, the P2-DPOP+ algorithm
terminates and returns a feasible solution to the DisCSP, if there exists one.

Proof. Termination follows from Theorem 7, and from the fact that the message routing
procedure in Appendix B guarantees all feasibility messages eventually reach their destina-
tions. When it comes to completeness, the homomorphic property of the ElGamal scheme
ensures the projection of a variable x out of an encrypted feasibility matrix is correct, and
that the feasibility message received by each variable in the linear ordering summarizes the
(encrypted) feasibility of the lower agents’ aggregated subproblems, as a function of higher
variables. In particular, the feasibility message received by the root allows it to find a value
for its variable that satisfies the overall problem, if there exists one.

The analysis of the complexity of the algorithm remains similar to the analysis in Sec-

tion 4.3: it is O(n2 ·D
sep′′max
max ) in information exchange and in number of constraint checks,

and O(n · D
sep′′max
max ) in memory, but sep′′max is now the maximum separator size along the

successive linear variable orderings, instead of along the pseudo-trees. The requirement that
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each variable may have at most one child tends to make this exponent increase significantly,
as illustrated empirically in Section 6. In terms of number of ElGamal cryptographic oper-
ations, in addition to the cost of rerooting the variable ordering (Section 4.3), the algorithm

also requires O(n2 ·D
sep′′max
max ) encryptions, and only O(n logDmax) collaborative decryptions.

5.3.2 Full Agent Privacy

Theorem 13. The P2-DPOP(+) algorithms guarantee full agent privacy.

Proof. The only changes introduced in P2-DPOP(+) with respect to P
3/2-DPOP(+) are in

feasibility propagation, and in finding a feasible value for the root variable.

ElGamal feasibility propagation (Algorithm 7) From the point of view of agent pri-
vacy, this is the same procedure as Algorithm 3, but using Algorithm 9 for message
routing, both of which algorithms guarantee agent privacy.

Root variable assignment (Algorithm 8) This consists in iteratively calling the pro-
cedure in Algorithm 6, which has already been shown to guarantee agent privacy.

This concludes the proof that the P2-DPOP(+) algorithms guarantee agent privacy.

5.3.3 Partial Topology Privacy

Theorem 14. The P2-DPOP(+) algorithms guarantee partial topology privacy. In addition
to the limited leaks of topology privacy in P3/2-DPOP(+), an agent might also be able to
discover that there exists another branch in the constraint graph that it is not involved in.

Proof. There are only two relevant differences with P
3/2-DPOP(+): the linear variable or-

dering, and the choice of a value for the root variable that requires collaborative decryption.

ElGamal feasibility propagation (Algorithm 7) To exchange FEAS messages along
a linear variable ordering, the algorithm makes use of the circular message routing
procedure, which is shown in Appendix B to guarantee full topology privacy. However,
the last variable in the linear ordering needs to know it is the last in order to initiate
the feasibility propagation; therefore, by contraposition, non-last variables know they
are not the last, and, in particular, non-last leaves of the pseudo-tree discover the
existence of another branch. This minor leak of topology privacy is already present
in the unique variable ID assignment algorithm (Online Appendix 3). Besides this,
the topology privacy properties of the feasibility propagation phases in P2-DPOP and
P2-DPOP+ are the same as in P-DPOP and P-DPOP+, respectively.

Root variable assignment (Algorithm 8) This algorithm involves recursively calling
the collaborative decryption procedure, shown to guarantee full topology privacy.

This concludes the proof that P2-DPOP(+) guarantees partial topology privacy.
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5.3.4 Full Constraint Privacy

Theorem 15. The P2-DPOP(+) algorithms guarantee full constraint privacy.

Proof. The P2-DPOP(+) algorithms fix all the leaks of constraint privacy in P<2-DPOP(+),
by replacing the cryptographically insecure obfuscation through addition of random num-
bers, by the cryptographically secure ElGamal encryption (Appendix A). This makes it no
longer possible to compare two encrypted feasibility values without decrypting them, which
would require the collaboration of all agents (or an amount of computation to break the
encryption that can be made arbitrarily high in the worst case by increasing the ElGamal
key size). In particular, while it is possible to compute the logical OR of two cyphertexts
without decrypting them, the result remains encrypted, and cannot be compared to the two
inputs to decide which one is true, if any.

5.3.5 Full Decision Privacy

Theorem 16. The P2-DPOP(+) algorithms guarantee full decision privacy.

Proof. The same proof applies as to Theorem 11.

6. Experimental Results

We report the empirical performance of our algorithms against the state-of-the-art MPC-
DisCSP4 algorithm, on four classes of benchmarks: graph coloring, meeting scheduling,
resource allocation, and game equilibrium. We only compare to MPC-DisCSP4, because to
our knowledge it is the only other general DisCSP algorithm that provides strong privacy
guarantees. For each problem class, the choice of the DisCSP formulation is crucial, because
it dictates how the four types of privacy defined based on the DisCSP constraint graph will
relate to the actual privacy of the original problem. In particular, the P∗-DPOP(+) algo-
rithms use the standard DisCSP assumption that each constraint is known to all agents
owning a variable in its scope (Section 2.2.2). Therefore, when an agent wants to hide a
constraint from neighboring agents, it must express its constraint over copies of its neigh-
bors’ variables. Additional equality constraints must be introduced to make copy variables
equal to their respective original variables. In contrast, MPC-DisCSP4 does not make use of
this DisCSP assumption, and therefore it does not need the introduction of copy variables.

Our first performance metric is simulated time (Sultanik, Lass, & Regli, 2007), which
is used, when all agents are simulated on a single machine, to estimate the time it would
have taken to solve the problem if they had run in parallel on dedicated machines (ignoring
communication delays). The two other metrics are the number of messages and the amount
of information exchanged. For each metric, we report the median over at least 100 problem
instances, with 95% confidence intervals. For the obfuscation in P<2-DPOP(+), we used
random numbers of B = 128 bits, while P2-DPOP(+) used 512-bit ElGamal encryption.
MPC-DisCSP4 also used 512 bits for its Paillier encryption. For the unique variable ID
generation procedure in P>1-DPOP(+), the parameter incrmin was set to 10. All algorithms
were implemented inside the Java-based FRODO platform for DisCSP (Léauté, Ottens, &
Szymanek, 2009), coupled with the CSP solver JaCoP (Kuchcinski & Szymanek, 2011).
The experiments were run on a 2.2-GHz, dual-core computer, with Java 1.6 and a Java
heap space of 2 GB. The timeout was set to 10 min (wall-clock time).
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6.1 Graph Coloring

We first report the performance of the algorithms on distributed, 3-color graph coloring
problems. The graphs were randomly generated with varying numbers of nodes, and an
edge density fixed to 0.4. Notice that, with a fixed number of colors and a fixed edge
density, increasing the number of nodes increases the degree of the graph, and therefore
reduces the number of feasible solutions; this explains the trends in some of the following
graphs. The DisCSP formulation involves one decision variable per node, and assumes that
each variable is controlled by a single-variable agent. Notice that inter-agent constraints are
binary inequality constraints, and therefore decision privacy is relevant to this problem class:
knowing one’s chosen color is insufficient to infer the respective colors of one’s neighbors.

To study the tradeoff between privacy and performance in MPC-DisCSP4, we considered
a variant denoted MPC-DisCSP4−, which assumes all inter-agent inequality constraints (i.e.
node neighborhoods) are public, and only the final choice of colors is protected. Each agent

3 4 5 6 7 8 9 10

Number of nodes

10
1

10
2

10
3

10
4

10
5

10
6

Simulated time (in ms)

MPC

MPC−

P2-DPOP+

P2-DPOP

P
3
2 -DPOP+

P
3
2 -DPOP

P-DPOP+

P-DPOP

DPOP

3 4 5 6 7 8 9 10

Number of nodes

0

2

4

6

8

10
Induced width

3 4 5 6 7 8 9 10

Number of nodes

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of messages

3 4 5 6 7 8 9 10

Number of nodes

10
3

10
4

10
5

10
6

10
7

10
8
Information exchanged (in bytes)

MPC

MPC−

P>1-DPOP+

P>1-DPOP

P-DPOP+

P-DPOP

DPOP

Figure 7: Performance on graph coloring problems.
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first enumerates all feasible solutions to the overall problem (Section 2.2.2), and then uses
cryptographic techniques to securely and randomly choose one of the feasible solutions. If
there exists none, the algorithm therefore terminates without any cryptographic operations
nor exchanging messages. This explains the phase transition for MPC-DisCSP4− in the
following graphs, since the probability of infeasibility increases with the problem size.

Figure 7 shows that MPC-DisCSP4 (denoted asMPC in these and all subsequent figures)
scales very poorly, timing out on problems with more than 6 nodes. MPC-DisCSP4−

performs better; however, as mentioned before, it only protects the final choices of colors.
For small numbers of nodes, the total state space is small, and MPC-DisCSP4− performs
relatively well; for numbers of nodes above 9, the problem instances are mostly infeasible,
and MPC-DisCSP4− quickly detects infeasibility without having to exchange any message.

The most efficient algorithms by far are P-DPOP(+), whose performance curves are at
least one order of magnitude below all other algorithms. In particular, P-DPOP’s runtime
is sensibly the same as DPOP (the communication overhead is almost solely due to the root
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Figure 8: Performance on larger graph coloring problems.
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Léauté & Faltings

election algorithm). The cost of improved topology privacy in P-DPOP+ vs. P-DPOP only
starts to show for problem sizes above 7, when the induced widths of P-DPOP+’s pseudo-
trees start to deviate from P-DPOP and DPOP. Full decision privacy comes at much higher
costs: P3/2-DPOP(+)’s curve is between 1 and 3 orders of magnitude above P-DPOP(+)’s,
even though their induced widths remain sensibly the same. This suggests that rerooting
the pseudo-tree (which involves expensive cryptographic operations) is by far the complexity
bottleneck, even when full constraint privacy is additionally guaranteed as in P2-DPOP(+),
whose linear variable orderings nevertheless have significantly higher induced widths than
P<2-DPOP(+)’s pseudo-tree orderings. Notice that the slope of the runtime curve decreases
as the problem size increases; this is due to the fact that more and more problems become
infeasible, and the P>1-DPOP(+) algorithms are able to terminate after the first iteration
on infeasible problems. Similarly to P-DPOP+ vs. P-DPOP, the cost of improved topology
privacy is only visible above 7 nodes; P2-DPOP+ even timed out on problems of size 10.
Finally, Figure 7 illustrates the fact that MPC-DisCSP4 tends to send large numbers of
small messages, while the P>1-DPOP(+) algorithms send lower numbers of larger messages.

Figure 8 compares the performance of P-DPOP(+) against DPOP on larger graph col-
oring problem instances. On such larger problems, the improved topology privacy in P-
DPOP+ comes at a complexity price that is too high to scale above 12 nodes. On the other
hand, P-DPOP’s curves are only between one and two orders of magnitude above DPOP,
and P-DPOP’s median runtime on problem instances of size 22 is below 30 s.

6.2 Meeting Scheduling

We now report experimental results on random meeting scheduling benchmarks. We varied
the number of meetings, while keeping the number of participants per meeting to 2. For each
meeting, participants were randomly drawn from a common pool of 3 agents. The goal is to
assign a time to each meeting among 8 available time slots, such that no agent is required to
attend simultaneous meetings. The pool of agents was deliberately chosen small to increase
the complexity of the problems, by increasing the probability that each agent take part
in multiple meetings. Note that fixing the pool size and the number of participants per
meeting still generates an unbounded number of different problem instances as we increase
the number of meetings, since the state space (the Cartesian product of the domains of the
decision variables) keeps increasing with the number of meetings/decisions to be made.

The DisCSP formulation for this problem class was the following. Each agent owns
one variable of domain size 8 for each meeting it participates in. There is an allDifferent
constraint over all its variables to enforce that all its meetings are scheduled at different
times. For each meeting, a binary equality constraint expressed over the corresponding
variables owned by the two participants enforces that the participants agree on the time
for the meeting. Notice that all inter-agent constraints are binary equality constraints,
and therefore P

3/2-DPOP(+) do not bring any additional privacy compared to P-DPOP(+),
since the values of neighboring variables are semi-private information; therefore, we do not
report the performance of P3/2-DPOP(+). For MPC-DisCSP4, we simplified the formulation
by only introducing one variable per meeting, owned by its initiator. This way, for each
meeting, only its initiator is made public, but its exact list of participants remains secret
(it is only revealed a posteriori to the participants of the meeting when they attend it).
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Figure 9: Performance on meeting scheduling problems.

As can be seen in Figure 9, P2-DPOP’s performance is comparable to that of MPC-
DisCSP4 (but with much stronger privacy guarantees), although the former sends signifi-
cantly more information on the smallest problems, but significantly fewer messages on the
largest problems they could solve within the timeout limit. On the other hand, because
it is a majority threshold scheme, MPC-DisCSP4 actually could not provide any privacy
guarantees on problems of size 1, since they only involved 2 agents. Both algorithms could
only scale up to problems of size 4, and timed out on larger problems. P2-DPOP+’s in-
creased topology privacy comes at a price that made it time out earlier than P2-DPOP;
this complexity increase is due to P2-DPOP+’s steeper induced width curve.

The P-DPOP(+) algorithms remain the most efficient by far: they perform between 1
and 2 orders of magnitude better than all others, both in terms of runtime and information
exchanged. And like for graph coloring, the improved topology privacy in P-DPOP+ comes
at a price that is negligible for small problems, but can grow to one order of magnitude on
problems of size 6, even if its induced width remains close to that of P-DPOP. In terms of
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runtime and information exchange, P-DPOP is only worse than DPOP by a small factor
(since it has the same median induced width); however it sends approximately one order of
magnitude more messages (which is mostly due to the pseudo-tree root election mechanism).

6.3 Resource Allocation

Next, we performed experiments on distributed resource allocation benchmarks. Problem
instances were produced using the combinatorial auction problem generator CATS (Leyton-
Brown, Pearson, & Shoham, 2000), ignoring bid prices. We used the temporal matching
distribution modeling the allocation of airport takeoff/landing slots, fixing the total number
of slots (i.e. resources) to 8, and varying the numbers of bids. Each bid is a request for a
bundle of 2 resources (a takeoff slot and a corresponding landing slot). Multiple requests
may be placed by the same airline company; each airline should have exactly one fulfilled.
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Figure 10: Performance on resource allocation problems.
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This problem was modeled as a DisCSP as follows (Léauté & Faltings, 2009). One
agent is introduced for each bidder/airline and for each resource/slot, assuming that each
resource is controller by a different resource provider/airport2. For each resource X, and
for each bidder B that requests the resource, there is one binary variable xb controlled by
the resource provider, which models whether B is allocated the resource (xb = 1) or not
(xb = 0). The resource provider also expresses one constraint

∑
≤ 1 over all her variables

to enforce that her resource can only be allocated to at most one of the interested bidders.
For each variable xb, we also introduce one copy variable bx owned by the bidder B, with
the constraint xb = bx. Each bidder B then expresses a constraint over all her variables,
enforcing that she should only be allocated two resources that correspond exactly to one of
her requests. The introduction of copy variables is motivated by the DisCSP assumption
that each agent knows all constraints involving its variables, and serves two privacy-related
purposes: 1) the full list of agents placing requests on a given resource is only known to the
resource provider, and 2) the full list of resources requested by a given agent (and in which
bundles) is only known to the agent itself. Like for the meeting scheduling problem class, all
inter-agent constraints are equality constraints, therefore we do not report the performance
of P3/2-DPOP(+), whose privacy guarantees are the same as P-DPOP(+).

For MPC-DisCSP4, the DisCSP formulation was simplified by not introducing copy
variables hold by bidders, since they are not necessary to protect constraint privacy: bidders
can request resources by expressing constraints directly over the variables owned by the
resource providers. However, since MPC-DisCSP4 assumes that all variables are public, in
order to increase topology privacy we introduced, for each resource, as many variables as
bidders, regardless of whether they are actually interested in the resource. To reduce the
size of the search space, we assumed that the Σ ≤ 1 constraints were public.

Figure 10 shows that the performance of MPC-DisCSP4 decreases very fast with the
number of requests, such that the algorithm was not able to scale beyond problems of
size 4. The P2-DPOP(+) algorithms seem to scale better, and were able to solve problems
involving 5 requests. On all three metrics, both algorithms were largely outperformed by
P-DPOP(+), whose runtime curve is remarkably flat, and almost overlaps with the runtime
curve of DPOP, which is consistent with their undistinguishable induced width curves.
The overhead of P-DPOP(+) compared to DPOP is slightly larger in terms of information
exchanged, and goes up to one order of magnitude in terms of number of messages. P-
DPOP+ and P2-DPOP+ performed the same as their respective “non-plus” variants.

6.4 Strategic Game Equilibria

Finally, we report experimental results on one last class of problem benchmarks, which
corresponds to the distributed computation of pure Nash equilibria in strategic games. We
used the particular example of the party game introduced by Singh et al. (2004), which is
a one-shot, simultaneous-move, graphical game (Kearns, Littman, & Singh, 2001) in which
all players are invited to a common party, and each player’s possible strategies are whether
to attend the party or not. Players are arranged in an undirected social graph, which
defines which other invitees each player knows. Each player’s reward for attending the

2. CATS assumes there is a single auctioneer, and does not specify which slot is at which airport; this is
why we have assumed that each resource was provided by a separate resource provider.
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party depends on whether her acquaintances also decide to attend, and on whether she
likes them or not. The reward is 1 per attendee she likes, minus 1 per attendee she dislikes,
and minus a constant cost of attendance in [0, 1]. The reward for not attending is 0.

The problem of computing a Nash equilibrium to such a game can be formulated into
a DisCSP as follows. Each player is an agent, which owns one binary variable for its
strategy, and one copy variable for the strategy of each of its acquaintances. Each variable
is constrained to be equal to each of its copy variables, using binary equality constraints like
for resource allocation problems (Section 6.3). Each agent also expresses one constraint over
all its variables, which only allows a particular strategy for the agent if it is a best response to
its neighbors’ joint strategies. Notice that the resulting constraint graph is not the same as
the game graph, due to the presence of copy variables. A solution to the DisCSP therefore
yields a joint strategy profile for all players that is a pure Nash equilibrium, since each
player plays best-response to her neighbors. Notice also that, since each player holds a copy
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Figure 11: Performance on party games.

686



Protecting Privacy thru Distributed Computation in Multi-agent Decision Making

variable for each of her neighbors’ strategy, these strategies are semi-private information
that cannot be protected, which is why we do not report the performance of P3/2-DPOP(+).

For MPC-DisCSP4, the DisCSP formulation can be simplified by not introducing copy
variables (Vickrey & Koller, 2002). An interesting consequence of this difference is that,
contrary to P≥1-DPOP(+), MPC-DisCSP4 is then able to hide each player’s chosen strategy
from her neighbors. In the context of the party game, this is not very useful to players who
decide to attend the party, since they will necessarily eventually discover whether their
acquaintances also decided to attend or not. On the other hand, a player who declines the
invitation does not directly discover anything about the list of attendees. She might still
be able to make indirect inferences about the decisions of her acquaintances, based on the
fact that her decision to decline is a best response to their respective chosen strategies.

Figure 11 reports on the performance of the algorithms on random acyclic game graphs
of degree 2 (i.e. trees in which each node has at most 2 children), with varying numbers
of players. The P2-DPOP(+) algorithms were only able to scale up to problems of size 5
due to the rapidly increasing induced width, and were outperformed by MPC-DisCSP4 by
at least one order of magnitude across all three metrics. Both algorithms still performed
largely worse than the P-DPOP(+) algorithms, which are capable of scaling to much larger
problems. This is because, in this setting, the induced width remains bounded: since the
game graphs are acyclic, DPOP’s induced width is constantly equal to 2, because each
FEAS message sent by agent ax to its parent agent ay is expressed only over ay’s strategy
variable and the copy of ax’s strategy variable held by ay. P-DPOP(+)’s induced width
is increased by 2 because agent ay has at most 2 children in the pseudo-tree, each using
a different codename for ay’s strategy variable. As a result, the performance overhead in
P-DPOP(+) compared to DPOP is minimal in terms of runtime; it is slightly larger in
information exchanged, and reaches one order of magnitude in number of messages.

7. Conclusion

In this paper, we have addressed the issue of providing strong privacy guarantees in Dis-
tributed Constraint Satisfaction Problems (DisCSPs). We have defined four types of infor-
mation about the problem that agents might want to hide from each other: agent privacy
(hiding an agent’s identity from non-neighbors), topology privacy (keeping the topology
of the constraint graph private), constraint privacy (protecting the knowledge of the con-
straints), and decision privacy (the final value of each variable should only be known to
its owner agent). Departing from previous work in the literature, which only addressed
subsets of these privacy types, and often focused on quantifying the privacy loss in vari-
ous algorithms, we have proposed a set of algorithms with strong guarantees about what
information provably will not be leaked.

We have carried out performance experiments on four different classes of benchmarks:
graph coloring, meeting scheduling, resource allocation, and game equilibrium computation.
The results show that our algorithms not only provide stronger privacy guarantees, but also
scale better than the previous state of the art. We have explored the tradeoff between
privacy and performance: the P-DPOP+ variant was shown to scale much better than the
others, but can only guarantee partial constraint and decision privacy, which may still be
considered sufficient in many problem classes. Full decision privacy (P3/2-DPOP+) and full
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constraint privacy (P2-DPOP+) come at significantly higher prices in computation time and
information exchange, which, with today’s hardware, limits their applicability to smaller
problem instances. We have compared the performance of our algorithms against the MPC-
DisCSP4 algorithm, which can be considered the previous state of the art in DisCSP with
strong privacy guarantees. On the first three classes of benchmarks, all our algorithms
almost systematically outperformed MPC-DisCSP4 in terms of runtime and number of
messages exchanged; however, MPC-DisCSP4 proved to exchange less information than
P>1-DPOP+. On game equilibrium computation, MPC-DisCSP4 scaled much better than
P2-DPOP+ along all three metrics, but was still largely outperformed by P-DPOP+. In
terms of practical applicability, we have shown that some of our algorithms scale to medium-
size problems that are beyond reach of the previous state of the art in general DisCSP with
strong privacy guarantees. We have also investigated the application of these algorithms to
real-life meeting scheduling, in collaboration with the Nokia Research Center in Lausanne.

Future work could extend the techniques in this paper along several directions. First,
while we have restricted ourselves to pure satisfaction problems for the sake of simplicity,
our algorithms can be easily extended to solve Distributed Constraint Optimization Prob-
lems (DCOPs). In fact, our P<2-DPOP+ algorithms already are optimization algorithms;
only P2-DPOP+ requires some changes to be applied to DCOPs. These changes involve
replacing ElGamal-encrypted Boolean feasibility values with ElGamal-encrypted, bit-wise
vector representations of integer cost values, as described by Yokoo and Suzuki (2002). This
would incur an increase in complexity that is only linear in an upper bound on the cost of
the optimal solution. An optimization variant of MPC-DisCSP4, called MPC-DisWCSP4,
was also already proposed by Silaghi and Mitra (2004); we report performance comparisons
with our algorithms in other publications (Léauté & Faltings, 2011; Léauté, 2011).

Further avenues of future research could result from relaxing our assumption that agents
are honest, but curious. A number of challenging issues arise when attempting to apply
the techniques in this paper to self-interested agents that can manipulate the protocol in
order to achieve solutions that better suit their selfish preferences. One such issue is that of
verifiability, which involves making it possible to check whether the protocols were executed
as designed, without the need to decrypt the messages exchanged. Another interesting issue
is whether it is possible to modify the algorithms to make them incentive-compatible, such
that it is in each agent’s best interest to honestly follow the protocol.

Appendix A. Cooperative ElGamal Homomorphic Encryption

Homomorphic encryption is a crucial building block of the privacy-preserving algorithms
introduced in this paper. Encryption is the process by which a message — in this appendix,
a Boolean — can be turned into a cyphertext, in such a way that decrypting the cyphertext
to retrieve the initial cleartext message is impossible (or, in this case, computationally very
hard in the worst case) without the knowledge of the secret encryption key that was used to
produce the cyphertext. An encryption scheme is said to be homomorphic if it is possible
to perform operations on cyphertexts that translate to operations on the initial cleartext
messages, without the need to know the encryption key. ElGamal encryption (Elgamal,
1985) is one such encryption scheme that possesses this homomorphic property.
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A.1 Basic ElGamal Encryption of Booleans

ElGamal encryption can be used to encrypt Booleans such that performing the following
operations on encrypted Booleans is possible without the knowledge of the decryption key:

• the AND of an encrypted and a cleartext Boolean;

• the OR of two encrypted Booleans.

ElGamal encryption is a homomorphic, public key cryptography system based on the
intractability of the Diffie-Hellman problem (Tsiounis & Yung, 1998), which proceeds as
follows. Let p be a safe prime of the form 2rt+ 1, where r is a large random number, and
t is a large prime. All numbers and all computations will be modulo p. Let g be a generator
of Z∗

p, i.e. g is such that its powers cover [1, p−1]. With p and g assumed public knowledge,
the ElGamal private key is a chosen random number x ∈ [1, p−2], and the associated public
key is y = gx. A cleartext number m is then encrypted as follows:

E(m) = (α, β) = (myr, gr) (1)

where r is a random number chosen by the encryptor. Decryption proceeds as follows:

α

βx
=

myr

(gr)x
= m .

A useful feature of ElGamal encryption is that it allows to randomize an encrypted value
to generate a new encryption bearing no similarity with the original value. Randomizing
E(m) in Eq. (1) yields:

E2(m) = (αyr
′

, βgr
′

) = (myr+r′ , gr+r′)

which still decodes to m. To encrypt Booleans, we represent false by 1, and true by a
value z 6= 1, which allows us to compute the AND and OR operations:

E(m) ∧ false = E(1) E(m) ∧ true = E2(m) ;

E(m1) ∨ E(m2) = (α1 · α2, β1 · β2) = E(m1 ·m2) .

A.2 Cooperative ElGamal Encryption

In the previous ElGamal encryption scheme, decryption can be performed in a single step,
using the private key, which is a secret of the agent that originally encrypted the message.
However, it is also possible to perform ElGamal encryption in such a way that all agents
need to cooperate in order to perform decryption. This is possible through the use of a
compound ElGamal key (x, y) that is generated cooperatively by all agents (Pedersen, 1991):

Distributed Key Generation The ElGamal key pairs (xi, yi) of n agents can be com-
bined in the following fashion to obtain the compound key pair (x, y):

x = Σn
i=1xi y = Πn

i=1yi .

Distributed Decryption If each agent publishes its decryption share βxi , the message
can be decrypted as follows:

α

Πn
i=1β

xi

=
α

βx
= m .
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Appendix B. Routing of Messages along a Circular Variable Ordering

In order to implement the round-robin exchange of vectors briefly presented in Section 4.1,
the variables are ordered along a circular ordering that is mapped to the chosen pseudo-tree,
as illustrated in Figure 5 (page 675) . Each variable needs to be able to send a message to
the previous variable (i.e. clock-wise) in the ordering, which is a challenge in itself because
only neighboring variables should communicate directly. Furthermore, to protect agent and
topology privacy, no agent should know the overall circular ordering. To solve this issue,
Algorithm 9 is the algorithm used in P2-DPOP (Léauté & Faltings, 2009) to route messages.

Algorithm 9 Sending a message M clock-wise in the circular variable ordering.

Procedure: ToPrevious(M) for variable x

1: if x is the root of the pseudo-tree then Send the message (LAST, M) to x’s last child
2: else Send the message (PREV, M) to x’s parent

Procedure: RouteMessages() for variable x

3: loop
4: Wait for an incoming message (type,M) from a neighbor yi
5: if type = LAST then
6: if x is a leaf then Deliver message M to x

7: else Send the message (LAST, M) to x’s last child
8: else if type = PREV then
9: if yi is x’s first child then Deliver the message M to x

10: else Send the message (LAST, M) to the child before yi in x’s list of children

Consider for instance a message M that agent a(x1) wants to send to the previous
variable — which is x4, but a(x1) does not know it. Agent a(x1) wraps M into a PREV
message that it sends to its parent variable x4 (line 2). Because the sender variable x1 is
x4’s first (and only) child, a(x4) infers that it should deliver M to itself (line 9). Consider
that a(x4) now wants to forward M to its previous variable — x5, which a(x4) does not
know. Like before, a(x4) sends a message (PREV, M) to its parent variable x3, which then
reacts by sending a message (LAST, M) to its last child preceding x4 in its list of children,
which is x5 (line 10). LAST messages indicate that the payload M should be delivered to
the last leaf of the current subtree (line 7); therefore, a(x5) delivers M to itself (line 6) since
it has no children. If the root wants to send a message to its previous variable, it also uses
a LAST message to forward it to the last leaf of the overall pseudo-tree (line 1).

Theorem 17. Algorithm 9 guarantees full agent privacy.

Proof. The goal of this algorithm is precisely to address agent privacy issues in the pseudo-
tree rerooting procedure, which involves each variable sending a message to the previous
variable in a circular ordering of the variables. There is no guarantee that there exist a
circular ordering such that any two consecutive variables are owned by neighboring agents,
which is necessary to protect agent privacy. Therefore, Algorithm 9 is responsible for routing
these messages through paths that only involve communication between neighboring agents.

The routing procedure itself only involves encapsulating the routed messages inside
PREV or LAST messages, which do not contain any other payload. Therefore, as long
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as the routed messages do not contain information that can be used to identify a non-
neighboring agent, the routing procedure guarantees agent privacy.

Theorem 18. Algorithm 9 guarantees full topology privacy.

Proof. The purpose of this algorithm is to enable variables to propagate messages along
a circular variable ordering, without the need to know any topological information about
the constraint graph, other than the knowledge of their respective (pseudo-)parents and
(pseudo-)children in the pseudo-tree. ToPrevious() makes it possible to send a message
to the previous variable in the circular ordering, without knowing which variable this is.

• The reception of a (PREV, M) message only indicates that the sender child wants
the included message M to be delivered to its previous variable, which is either the
recipient of the PREV message, or an unknown descendant thereof.

• The reception of a (LAST, M) message from one’s parent indicates that an unknown
variable (either the unknown root of the pseudo-tree, or the unknown child of an
unknown ancestor, in another branch) wantsM to be delivered to its previous variable,
which is one’s descendant in the pseudo-tree.
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Léauté, T., & Faltings, B. (2011). Coordinating logistics operations with privacy guaran-
tees. In Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence (IJCAI’11), pp. 2482–2487.
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Léauté & Faltings

Pedersen, T. P. (1991). A threshold cryptosystem without a trusted party (extended ab-
stract). In Advances in Cryptology – EUROCRYPT’91, Workshop on the Theory and
Application of Cryptographic Techniques, Proceedings, Vol. 547 of Lecture Notes in
Computer Science, pp. 522–526.

Petcu, A., & Faltings, B. (2005). DPOP: A Scalable Method for Multiagent Constraint
Optimization. In Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI’05), pp. 266–271.

Petcu, A., Faltings, B., & Parkes, D. C. (2008). M-DPOP: Faithful distributed implemen-
tation of efficient social choice problems. Journal of Artificial Intelligence Research
(JAIR), 32, 705–755.

Rassenti, S. J., Smith, V. L., & Bulfin, R. L. (1982). A combinatorial auction mechanism
for airport time slot allocation. The Bell Journal of Economics, 13 (2), 402–417.

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22 (11), 612–613.

Silaghi, M.-C. (2005a). Hiding absence of solution for a distributed constraint satisfaction
problem (poster). In Proceedings of the Eighteenth International Florida Artificial
Intelligence Research Society Conference (FLAIRS’05), pp. 854–855.

Silaghi, M.-C. (2005b). Using secure DisCSP solvers for generalized Vickrey auctions —
complete and stochastic techniques. In Proceedings of the IJCAI’05 Distributed Con-
straint Reasoning Workshop.

Silaghi, M.-C., Faltings, B., & Petcu, A. (2006). Secure combinatorial optimization simu-
lating DFS tree-based variable elimination. In Proceedings of the Ninth International
Symposium on Artificial Intelligence and Mathematics.

Silaghi, M.-C., & Mitra, D. (2004). Distributed constraint satisfaction and optimization
with privacy enforcement. In Proceedings of the 2004 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT’04), pp. 531–535.

Silaghi, M.-C., Sam-Haroud, D., & Faltings, B. (2000). Asynchronous search with aggre-
gations. In Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence and Twelfth Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI’00), pp. 917–922.

Singh, S., Soni, V., &Wellman, M. P. (2004). Computing approximate Bayes-Nash equilibria
in tree-games of incomplete information. In Proceedings of the Fifth ACM Conference
on Electronic Commerce (EC’04), pp. 81–90.

Sultanik, E. A., Lass, R. N., & Regli, W. C. (2007). DCOPolis: A framework for simulating
and deploying distributed constraint optimization algorithms. In Proceedings of the
Ninth International Workshop on Distributed Constraint Reasoning (CP-DCR’07).

Tsiounis, Y., & Yung, M. (1998). On the security of Elgamal-based encryption. In Pro-
ceedings of the First International Workshop on Practice and Theory in Public Key
Cryptography (PKC’98), Vol. 1431 of Lecture Notes in Computer Science, pp. 117–134.

Vickrey, D., & Koller, D. (2002). Multi-agent algorithms for solving graphical games. In Pro-
ceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI’02),
pp. 345–351.

694



Protecting Privacy thru Distributed Computation in Multi-agent Decision Making
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