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Abstract

In many applications of shortest-path algorithms, it is impractical to find a provably
optimal solution; one can only hope to achieve an appropriate balance between search
time and solution cost that respects the user’s preferences. Preferences come in many
forms; we consider utility functions that linearly trade-off search time and solution cost.
Many natural utility functions can be expressed in this form. For example, when solution
cost represents the makespan of a plan, equally weighting search time and plan makespan
minimizes the time from the arrival of a goal until it is achieved. Current state-of-the-
art approaches to optimizing utility functions rely on anytime algorithms, and the use
of extensive training data to compute a termination policy. We propose a more direct
approach, called Bugsy, that incorporates the utility function directly into the search,
obviating the need for a separate termination policy. We describe a new method based on
off-line parameter tuning and a novel benchmark domain for planning under time pressure
based on platform-style video games. We then present what we believe to be the first
empirical study of applying anytime monitoring to heuristic search, and we compare it
with our proposals. Our results suggest that the parameter tuning technique can give the
best performance if a representative set of training instances is available. If not, thenBugsy

is the algorithm of choice, as it performs well and does not require any off-line training.
This work extends the tradition of research on metareasoning for search by illustrating the
benefits of embedding lightweight reasoning about time into the search algorithm itself.

1. Introduction

Many problems in artificial intelligence can be formulated as shortest path problems, which
can be solved using heuristic search algorithms such as A* (Hart, Nilsson, & Raphael,
1968). Unfortunately, because state spaces often grow exponentially with problem size, it is
usually infeasible to find optimal solutions to shortest path problems of practical interest.
Instead, practitioners tend to settle for suboptimal solutions, which can often be found more
efficiently but will be more expensive to execute. One is left with the choice of spending a
long time searching for a cheap solution, or a little time searching for an expensive one. We
argue for a new approach that is not strictly concerned with optimizing solution cost, but
with optimizing a utility function given in terms of both solution cost and search time. With
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such a utility function, a user can specify a preference between search time and solution
cost, and the algorithm handles the rest.

We consider utility functions given as a linear combination of search time and solution
cost. This is an important form of utility function for two reasons. First, it is easily elicited
from a user if not already explicitly in their application domain. For example, if cost is
given in monetary terms, it is usually possible to ask how much time one is willing spend to
decrease the solution cost by a certain amount. Second, if the solution cost is given in terms
of time (i.e., the cost represents the time required for the agent to execute the solution), then
this form of utility function can be used to optimize what we call goal achievement time;
by weighting search time and execution time equally, a utility-aware search will attempt to
minimize the sum of the two, thus attempting to behave such that the agent will achieve
its goal as quickly as possible.

Most existing techniques for this problem are based on anytime algorithms (Dean &
Boddy, 1988), a general class of algorithms that emit a stream of solutions of decreasing
cost until converging on an optimal one. With sufficient knowledge about the performance
profile of an anytime algorithm, which represents the probability that it will decrease its
solution cost by a certain amount given its current solution cost and additional search time,
it is possible to create a stopping policy that is aware of the user’s preference for trading
solving time for solution cost (Hansen & Zilberstein, 2001; Finkelstein & Markovitch, 2001).

There are two disadvantages to using anytime algorithms to trade-off solving time for
solution cost. The first is that the profile of the anytime algorithm must be learned off-line
on a representative set of training instances. In many settings, such as domain-independent
planning, the problem set is unknown, so one cannot easily assemble a representative train-
ing set. Also, it is often not obvious which parameters of a problem affect performance so
it can be difficult to tell if a problem set is representative. Even if an instance generator
is available, the instances that it generates may not represent those seen in the real world.
The second issue is that, while the stopping policy is aware of the user’s preference for time
and cost, the underlying anytime algorithm is oblivious and will emit the same stream of
solutions regardless of the desired trade-off. The policy must simply do the best that it can
with the solutions that are found, and the algorithm may waste a lot of time finding many
solutions that will simply be discarded. Only the search algorithm itself is fully aware of
the possible candidate solutions that are available and their relative estimated merits.

This paper presents four main contributions. First, we combine anytime heuristic search
with the dynamic programming-based monitoring technique of Hansen and Zilberstein
(2001). To the best of our knowledge, we are the first to apply anytime monitoring to
anytime heuristic search. Second, we present a very simple portfolio-based method that
estimates a good parameter to use for a bounded-suboptimal search algorithm to optimize
a given utility function. Third, we present Bugsy, a best-first search algorithm that does
not rely on any off-line training, yet accounts for the user’s preference between search time
and solution cost.1 One important difference between Bugsy and most previous proposals
for trading-off deliberation time and solution cost is that Bugsy considers the trade-off di-
rectly in the search algorithm, whereas previous techniques, such as those based on anytime
algorithms, only consider the trade-off externally to the actual search algorithm. Finally,

1. A previous version of Bugsy was proposed by Ruml and Do (2007), see Appendix A for a discussion of
the improvements incorporated in the version presented here.
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we present the results of a set of experiments comparing the portfolio-based method, any-
time monitoring, and Bugsy, along with utility-oblivious algorithms such as A* and greedy
best-first search, real-time search algorithms, and decision-theoretic A* (DTA*, Russell &
EricWefald, 1991), a previously proposed utility-aware search. While there has been much
work discussing the trade-off between deliberation and solution cost, to the best of our
knowledge we are the first to implement and thoroughly evaluate many of these ideas in the
context of heuristic search.

The results of our experiments reveal two surprises. First, if a representative set of
training instances is available, the most effective approach is the very simple technique of
selecting a bound to use for a bounded-suboptimal search. Surprisingly, this convincingly
dominates anytime algorithms with monitoring in our tests. Second, neither Bugsy or
anytime search with monitoring dominates the other. Bugsy does not require any off-line
training, yet surprisingly, Bugsy can perform as well as the methods that use training data.
If a representative problem set is not available, then Bugsy is the algorithm of choice. This
work extends the tradition of research on metareasoning for planning by illustrating the
benefits of embedding lightweight reasoning about time into the search algorithm itself.

2. Background

In this section we briefly describe heuristic search, present some terminology used in the
remainder of this paper, and discuss the type of utility functions we are addressing.

2.1 Heuristic Search

As considered in this paper, heuristic search is a technique for finding the shortest path
between nodes in a weighted graph; many problems can be specified in this form. Since it
is typical for these graphs to be much too large to represent explicitly, algorithms usually
generate the graph lazily using a function called expand. The expand function returns the
successors of a node in the graph. We call the process of evaluating the expand function on
a node expanding the node, and when expanding a node we say that we are generating its
successors.

A* (Hart et al., 1968) is probably the best-known heuristic search algorithm. It main-
tains two sets of nodes: the open list contains the frontier nodes that have been generated
but not yet expanded, and the closed list contains nodes that have already been expanded
(a common optimization is is for the closed list to also include nodes that are already on the
open list too), and therefore represent duplicate states if encountered again. The open list
is sorted on f(n) = g(n) + h(n), where g(n) is the cost of the path from the initial node to
node n, and h(n) is the heuristic estimate of the cheapest path cost from n to any goal node
reachable from n. The algorithm proceeds by removing a node with the minimum f value
from the open list, expanding it, putting its children on the open list, and putting the node
on the closed list. If A* removes a goal node from its open list, then it stops searching and
returns the path to the goal as the solution. Finally, if the heuristic never over-estimates
the cost to go then it is called admissible. With an admissible heuristic, A* returns optimal
solutions.

Dechter and Pearl (1988) prove that if the heuristic satisfies a property called consistency
(for all nodes n and m, h(n) ≤ h(m) + c(n,m), where c(n,m) is the cost of the cheapest
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path between n and m), then A* expands the fewest possible nodes required to prove the
optimality of its solution with the given heuristic. In practice A* often takes too long
(Helmert & Röger, 2008), thus given its optimal efficiency it is infeasible to look for optimal
solutions to many problems. Instead, one must settle for suboptimal solutions, with the
hope that it is possible to find a sufficiently cheap solution within a reasonable amount of
time and memory.

2.2 Suboptimal Search

Greedy best-first search (Michie & Ross, 1969) is a popular suboptimal search algorithm.
It proceeds like A*, but orders its open list only on the heuristic, h(n), with the idea that
remaining search effort correlates with remaining solution cost. In other words, it assumes
that it will be easier to find a path to the goal from nodes with low h. When strictly
attempting to minimize search time, Thayer and Ruml (2009) show that greedy best-first
search on a different heuristic, d, can be more effective. Instead of estimating cost to go, as
is done by traditional h functions, the d heuristic, called a distance estimate, estimates the
number of remaining search nodes on the path to the cheapest solution beneath a node. In
practice, distance estimates are as readily available as cost-to-go heuristics and can provide
much better performance when used in greedy best-first search on domains where less cost
to go is not directly correlated with less search to go. We call greedy best-first search using
the d heuristic Speedy search, in analogy to greedy search.

While greedy best-first search can find solutions very quickly, there is no bound on the
cost of its solutions. Bounded-suboptimal search algorithms remedy this problem. Weighted
A* (Pohl, 1970) is perhaps the most common of these techniques—it proceeds just like A*,
but it orders the open list on f ′(n) = g(n)+w ·h(n), with w ≥ 1. The weighting parameter,
w, puts more emphasis on the heuristic estimate than the cost of arriving at a node, thus
it is greedier than A* and it often finds suboptimal solutions much faster than A* finds
optimal ones. In addition, the weight provides a bound on the suboptimality of its solutions:
the solutions are no more than w times the cost of the optimal solution (Pohl, 1970). Unlike
greedy best-first search, weighted A* lets the user select a weight, allowing it to provide
either cheaper solutions or faster solutions depending on their needs.

We refer the reader to the work of Thayer (2012) for a more in-depth study of suboptimal
and bounded-suboptimal search algorithms, including many that use d heuristics.

2.3 Utility Functions

So far, we have described A*, which optimizes solution cost, bounded-suboptimal search,
which finds solutions within a constant factor of optimal, and greedy best-first search, which
attempts to minimize solver time. Often, none of these are really desired: optimal solutions
require an impractical amount of resources, one rarely requires solutions strictly within a
given bound of optimal, and unboundedly suboptimal solutions are too costly. Instead, we
propose optimizing a simple utility function given as a linear combination of search time
and solution cost:

U(s, t) = −(wf · g∗(s) + wt · t) (1)

where s is a solution, g∗(s) is the cost of the solution, t is the time at which the solution is
returned, wf and wt are user-specified weights used to express a preference for trading-off
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search time and solution cost. The number of time units that the user is willing to spend to
achieve an improvement of one cost unit is wf/wt. This quantity is usually easily elicited
from users if it is not already explicit in the application domain. The cost of the empty
solution, g∗({}), is a user-specified value that defines the utility achieved in the case that
the search gives up without returning a solution

A linear utility function has two main benefits. First, they are fairly expressive. For
example, one can optimize for cost if the both the solution and search time are given in
monetary terms. This situation can occur in cloud computing environments where compu-
tation time costs money. A linear utility function can also capture optimal or greedy search
by using 0 for the weight on execution time and solution cost respectively. Additionally, a
linear utility function can express goal achievement time by weighting search time equally
with solution makespan. Some practical examples where minimizing goal achievement time
is desired include robotic and video game pathfinding problems. In these settings, a user
often does not care about optimal solutions if they take too long to find, they may only
care about achieving the goal as quickly as possible.

As a demonstration of minimizing goal achievement time, we have made a video of
A*, Speedy search, and Bugsy solving a pathfinding video game pathfinding problem.
It is available in the online appendix of this paper or on the web: http://youtu.be/

Yluf88V1PLU. The video includes three panels, each showing an agent using a different
search algorithm. Since they do not focus on finding cost-optimal solutions, both the
Speedy and Bugsy agents begin moving almost immediately. The A* agent stands still for
a long time while it plans an optimal path, and it doesn’t start moving until after Bugsy

has arrived at the goal. While all of this is occurring, the Speedy agent is following an
extremely circuitous path; it doesn’t reach the goal until approximately 30 seconds after
A*. We didn’t show these agonizing seconds in the video, and instead stopped the recording
as soon as A* reached the goal. Clearly, the Bugsy agent, which optimizes goal achievement
time, not solution cost or search time, is preferred in this scenario.

While quite expressive, linear utility functions are also rather simple. One main benefit
of the simplicity is that, with a fixed utility function, the passage of time decays all utility
values at the same rate. This simplification allows us to ignore all time that has passed before
the current decision point. We can then express utility values in terms of the utility of each
outcome starting at the current moment in time. Without this benefit, the mere passage
of time would change the relative ordering between the utilities of different outcomes; we
would need to re-compute all utility values at every point in time in order to select the best
outcome.

We only consider linear utility functions in this work, but it should be noted that one
could consider other more expressive functions. Step functions, for example, can represent
deadlines where after a certain amount of time has elapsed the utility of acting greatly
decreases. Bugsy does not support such functions, but the anytime monitoring technique
discussed in Section 3.1 has no restrictions on the utility functions that it can optimize.
Anytime monitoring can naturally handle more expressive functions, like step functions.

3. Previous Work

Next we describe some previous techniques for trading-off solver time for solution cost.
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3.1 Monitoring Anytime Algorithms

Much previous work in optimizing utility functions of solving time and cost, such as Equa-
tion 1, has focused on finding stopping policies for anytime algorithms. Anytime algorithms
(Dean & Boddy, 1988) are a general class of algorithms that find not one solution, but
a stream of solutions with strictly decreasing cost. They get their name because one can
stop an anytime algorithm at any time to get its current best solution. Anytime algorithms
are an attractive candidate for optimizing a utility function: since there is more than just
a single solution from which to pick, there is more opportunity to choose a solution with
a greater utility than when using an algorithm that just finds a single solution. Different
solutions will be found at different times, and if we knew the time at which the algorithm
would find each of its solutions and the cost of those solutions, then we could compute
their utilities and return the solution that maximizes utility. Unfortunately, it is usually
not possible to know what solutions an anytime algorithm will return without running it.
Instead, while the algorithm is running, one must continually make the decision: stop now,
or keep going?

Deciding when to stop is no easy task, because the utility of a solution depends not only
on its cost but also on the time needed to find it. On one hand, stopping early can reduce
the amount of computation time at the expense of having a more costly solution. On the
other hand, if the algorithm continues, it may not reduce the solution cost by enough to
justify the extra computation time. In this case, the final utility can be worse than it would
have been had the algorithm stopped earlier. With a little extra information, however, it
is possible to create a reasonable policy.

The Near Optimal Response-Time Algorithm (NORA, Shekhar & Dutta, 1989) provides
one very simple stopping policy for optimizing goal achievement time. NORA, simply stops
the anytime algorithm when the current search time is a user-specified factor of the current
incumbent solution’s execution time. Shekhar and Dutta (1989) prove that the, if the search
stops when the time is a factor λ of the incumbent solution cost, then the goal achievement
time will be within a factor of min(1 + λ, 1 + 1

λ
) of the optimal goal achievement time.

Our use of NORA is slightly different than that of Shekhar and Dutta (1989). They
did not apply NORA to anytime heuristic search. Instead, they evaluated it empirically
on database query optimization problems, which are tree search problems, where every leaf
node is a possible solution. They also describe how one could use NORA in an A* search,
but they make the assumption that if A* is stopped early without reaching the goal then
a heuristic planning procedure can be used to achieve the goal after executing the partial
solution found by A*. Such a procedure is often not available. When using NORA with
anytime heuristic search, as we do here, each incumbent solution is guaranteed to reach
the goal. The only disadvantage is that, as with all anytime stopping policies, it cannot do
better than the best solution found by the utility-oblivious anytime algorithm.

NORA finds a solution within a specified bound on the optimal goal achievement time.
Instead, Hansen and Zilberstein (2001) present a dynamic programming-based technique
for building an optimal stopping policy for any utility function. It requires one extra piece
of information: the profile of the anytime algorithm. Hansen and Zilberstein define the
profile as a probability distribution over the cost of the solution returned by the algorithm,
conditioned on its current solution cost and the additional time it is given to improve
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its solution: P (qj |qi,∆t), where qj and qi are two possible solution costs and ∆t is the
additional time. The profile allows for reasoning about how the solution cost may decrease
if the algorithm is given more time to improve it. While this requires extra knowledge, we
performed a small experiment (not shown here) and found that the optimal policy found
using dynamic programming performs better than the simpler NORA technique.

Hansen and Zilberstein’s technique monitors the progress of the anytime algorithm by
evaluating the stopping policy at discrete time intervals. If the algorithm considers stopping
every ∆t time units, then the utility achievable at time t when the algorithm’s current
solution costs qi is:

V (qi, t) = max
d

{

U(qi, t) if d = stop,
∑

j P (qj |qi,∆t)V (qj , t+∆t) if d = continue
(2)

and the stopping policy is:

π(qi, t) = argmax
d

{

U(qi, t) if d = stop,
∑

j P (qj |qi,∆t)V (qj , t+∆t) if d = continue
(3)

where U is the user-specified utility function and P is the profile of the anytime algorithm.
They also show a more sophisticated technique that accounts for the cost of evaluating the
policy, however, for the algorithms presented in this paper, the cost of evaluating the policy
consists of a mere array lookup and is essentially free.

Since the profile of an anytime algorithm is usually not known, it must be estimated. It
is possible to estimate the profile off-line if one has access to a representative set of train-
ing instances. To estimate the profile, the algorithm can be run on each of the training
instances and a 3-dimensional histogram can be created to represent the conditional prob-
ability distribution, P (qj |qi,∆t), needed to compute the stopping policy (cf. Equation 3).
Appendix C gives a more detailed description of our implementation of this procedure.

3.2 Anytime Heuristic Search

Anytime algorithms are a very general class and there are many anytime algorithms for
heuristic search (Likhachev, Gordon, & Thrun, 2003; Hansen & Zhou, 2007; Richter,
Thayer, & Ruml, 2010; van den Berg, Shah, Huang, & Goldberg, 2011; Thayer, Benton, &
Helmert, 2012). In this paper we use Anytime Repairing A* (ARA*, Likhachev et al., 2003)
since it tended to give the best performance over other approaches according to experiments
done by Thayer and Ruml (2010). ARA* executes a series of weighted A* searches, each
with a smaller weight than the previous. Since the weight bounds the solution cost, the
looser bounds on early iterations tend to find costly solutions quickly. As time passes and
the weight decreases, so does solution cost, eventually converging to optimal. ARA* also
has special handling for duplicates that are encountered during search that enables it to be
more efficient while still guaranteeing a bound on each of its solutions.

Like most anytime heuristic search algorithms, ARA* has parameters. Before running
ARA*, the user must select the weight schedule, which is typically comprised of an initial
weight and the amount by which to decrement the weight after each solution is found. The
behavior of ARA* varies with different weight schedules. For our experiments, we used
an initial weight of 3.0 and a decrement of 0.02. This schedule was used by Likhachev
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Figure 1: A small example graph.

et al. (2003), and we found that it gave the best performance when compared to several
alternative schedules on the domains we considered.

Given a fixed weight schedule, an anytime heuristic search algorithm will emit a fixed
stream of solutions for a given problem instance; the algorithm does not take the user’s
utility function into account. The same solutions will be found regardless of whether the
user wants any solution as fast as possible or the optimal solution at all costs. Figure 1
shows a small, concrete example, where the goal is to find a path from node A to node E.
Each node is labelled with it’s heuristic value (”h”) and the number of nodes remaining
to the goal (”d”), and edges are labelled with their costs. If the user wants an optimal
solution, then the algorithm would ideally return the path A, B, C, E. However, if the user
wants any solution as fast as possible, then it may be better to find the solution A, D, E,
as it has fewer nodes, and may be found in fewer expansions. ARA* only considers cost,
not distance, so with an initial weight less than 662

3 , the longer, cheaper, solution will be
found regardless of the user’s preference. It is up to the monitoring technique to select the
best that it can from the solutions that are found.

3.3 Contract Search

Dionne, Thayer, and Ruml (2011) consider the problem of contract search, where a goal
must be returned by a hard deadline. Unlike real-time search (Korf, 1990), where only the
agent’s next action must be ready by the deadline, contract search requires the algorithm to
return a complete path to a goal. Like optimizing a utility function, contract search must be
aware not only of the cost of solutions but also of the amount of time required to find them.
While the conventional approaches to contract search use anytime algorithms, Dionne et al.
(2011) present Deadline-Aware Search (DAS) which considers search time directly.

The basic idea behind DAS is to consider only states that lead to solutions deemed
reachable within the deadline. Two different estimates are used to determine this set of
nodes: an estimate of the maximum-length solution path that the search can explore before
the deadline arrives, called dmax , and an estimate of the distance to the solution beneath
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each search node on the open list, in other words d. States for which d ≤ dmax , are deemed
reachable, all other states are “pruned.” The search expands non-pruned nodes in best-first
order on f = g + h, updating its dmax and d estimates on-line. If the updates cause all
remaining nodes to be pruned while there is remaining time before the deadline, DAS uses a
recovery mechanism to repopulate the open list from the set of pruned nodes and continues
searching until the deadline is reached.

As mentioned previously, d estimates are as readily available as normal cost-to-go heuris-
tics, h, for most domains. This leaves the question of how to estimate dmax . Dionne et al.
(2011) show that simply using the remaining number of possible expansions, computed via
the expansion rate and remaining time, is not appropriate due to a phenomenon that they
call search vacillation. When a best-first search expands nodes, it typically does not ex-
pand straight down a single solution path, instead it considers multiple solution paths at the
same time, expanding some nodes from each. When it does this, it is said to be vacillating
between many different paths, and it may not return to work on a particular path until
it has performed many expansions along others. To account for vacillation, Dionne et al.
introduce a metric called expansion delay that estimates the number of additional expan-
sions performed by a search between the expansion of two successive nodes along a single
path. They define dmax =

trem ·texp
delay

, where trem is the time remaining before the deadline,
texp is the average expansion rate, and delay is the average expansion delay. They compute
the average expansion delay by averaging the difference in the algorithm’s total expansion
count between when each node is expanded and when it was generated.

Dionne et al. (2011) showed experimentally that DAS performs favorably to anytime-
based approaches and alternative contract search algorithms, indicating that an approach
that directly considers search time may also be beneficial for utility function optimization.

4. Off-line Bound Selection

We now turn to the first of the two new methods introduced in this paper.

In this section, we will present a very simple technique for trading search time for
solution cost that is based on bounded-suboptimal search. Recall that bounded-suboptimal
search algorithms return solutions that are guaranteed to be within a user-specified factor of
the optimal solution cost. In practice, few applications require an actual bound, instead the
bound is used by practitioners as a parameter that can be tweaked to speed-up the search
if it is not finding solutions quickly enough. The fact that the bound can trade search time
for solution cost makes it a prime candidate for automatic parameter tuning (Rice, 1976).
That is exactly what we propose.

As with the anytime methods discussed in the previous section, off-line bound selec-
tion requires a representative set of training instances. The instances are used to gather
information about how a bounded-suboptimal search trades-off search time for solution
cost. The only other requirement is that the user select a set of diverse bounds to try as
parameters to the search algorithm. The algorithm is then run on each of the N train-
ing instances with each suboptimality bound, creating a list of N pairs for each bound:
solsb = 〈(c1, t1), ..., (cN , tN )〉 where b is the bound passed as a parameter to the algorithm,
ci is the cost of the solution to the ith training instance and ti is the time at which the ith
solution was found. Given a utility function U : cost × time → R, we can select the bound
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that gives the greatest expected utility on the training set:

boundU = argmax
b





1

|solsb|
·

∑

(c,t)∈solsb)

U(c, t)



 (4)

In our experiments, we select a different weight to use for each utility function from the
set 1.1, 1.5, 2, 2.5, 3, 4, 6, and 10. It may be possible to reduce the number of weights
in the training set by using linear interpolation to estimate the performance of parameters
between those used for training. This simple approach can also be extended to select over
a portfolio of different algorithms in addition to different bounds. It may be beneficial, for
example, to include both A* and Speedy search in the portfolio, as these algorithms will
likely be selected if cheap solutions are required or if a solution must be found very quickly.
We will see in Section 6 that this very simple technique outperforms ARA* using an anytime
monitor in our experimental evaluation. In fact, if a representative set of training instances
is available, then this technique tends to perform better than all other algorithms that we
evaluate.

A related technique is the dove-tailing method of Valenzano, Sturtevant, Schaeffer, Buro,
and Kishimoto (2010). Their approach is presented as a way of side-stepping the need for
parameter tuning by running all parameter settings simultaneously. They found that, with
dove-tailing, weighted IDA* (Korf, 1985) was able to return its first solution much faster,
as the dove-tailing greatly reduced the high variance in solving times for any given weight.
They also found that dove-tailing over different operator orderings was effective for IDA*.
The main difference between the work by Valenzano et al. and ours is that we have quite
different goals. Our concern is not to find the first solution more quickly, but rather to select
a setting that better optimizes a user-specified utility function. As such, our approach does
not run multiple settings at the same time and instead selects a single parameter to run in
a single search. In fact, the approaches are complementary. Given any of our utility-aware
algorithms that have parameters, one could use dove-tailing to avoid the need to perform
offline parameter selection.

5. Best-First Utility-Guided Search

Anytime search is not aware of utility. Monitoring and bound selection require training. In
this section, we present Bugsy2, a utility-aware search algorithm that does not require any
off-line training.

5.1 Expansion Order

Like A*, Bugsy is a best-first search, but instead of ordering its open list on f , Bugsy

orders its open list on an estimate of the utility of the outcome resulting from each node
expansion. Since utility is dependent on time, the mere passage of time affects the utility
values. This differs from most traditional search algorithms where the values used to order
expansions remain constant. Recall, however, that when using a linear utility function,
all utility values decay at the exact same rate. Given this, Bugsy ignores all past time

2. Bugsy is an acronym for ”Best-first Utility-Guided Search—Yes!”
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and compares the utility estimates assuming that time begins at the current decision point.
While these utility values will not match the utility of the ultimate outcome, they still
preserve relative order of the different choices that the agent can make.

To understand Bugsy’s ordering function, we will first consider the best utility of the
outcome resulting from each node expansion as computed by an oracle. If we had foreknowl-
edge of a maximum utility outcome, the only purpose of the search algorithm would be to
achieve it by expanding the nodes along the path from the initial node in order to build the
solution path. Since our utility function is given as a linear combination of solution cost
and search time, the utility value of this outcome can be written in terms of the cost and
length of a (possibly empty) maximum utility outcome, s:

U∗ = −(wf · g∗(s) + wt · d∗(s) · texp) (5)

where g∗(s) is the cost of the path s (recall that the cost of the empty path is a user-specified
constant), d∗(s) is the number of nodes on s, and texp is the time required to expand a node.3

Given the maximum utility value U∗, the best utility of the outcome resulting from
expanding a node n is:

u∗(n) =

{

U∗ if n leads to a maximum utility outcome
U∗ − wt · texp otherwise

(6)

In other words, the utility we get from expanding a node that leads to a maximum utility
outcome is the maximum utility; expanding any other node is simply a waste of time, and
has a utility of the maximum utility minus the cost of performing the unnecessary expansion.

In practice, we do not know the maximum utility, so we must rely on estimates. Bugsy

uses two estimates to approximate the maximum utility. First, it estimates the cost of the
solution that it will find beneath each node as, f . Note that f is an estimate, not only
because the heuristic is an estimate of the true cost to go, but also because the cheapest
solution beneath a node may not be the solution of greatest utility. See Appendix A for
possible alternatives. Second it estimates the number of expansions required to find a
solution beneath each node n, exp(n). One crude estimate for remaining expansions is d,
the distance heuristic that estimates the remaining nodes on the solution path. In reality,
Bugsy will experience search vacillation, as discussed earlier, expanding more nodes than
just those along a single solution path. To account for this vacillation, we use the expansion
delay technique of Dionne et al. (2011) and we estimate exp(n) = delay · d(n). That is, we
expect each of the remaining d(n) steps to a goal will require delay expansions.

Bugsy can either choose to expand a node, or it can stop and return the empty solution.
This is one way in which Bugsy differs from A*: Bugsy decides among actions at the search
level (such as terminating the search, or expanding one of the many open nodes), whereas
A* is committed to expanding nodes in a fixed order. In Bugsy each node on the open
list represents a possible outcome, so Bugsy’s maximum utility can be estimated using the
maximum of the utility estimates of all open nodes and Equation 5:

Û = max

{

max
n∈open

−(wf · f(n) + wt · d(n) · delay · texp), U({}, 0)
}

(7)

3. Note that expansion time is not constant in general, because it includes time to add and remove elements
from data structures like the open list.
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Bugsy(initial , u(·))
1. open ← {initial}, closed ← {}
2. do
3. n← remove node from open with highest u(n) value
4. if n is a goal, return it
5. add n to closed
6. for each of n’s children c,
7. if c is not a goal and u(c) < 0 or an old version of c is in open or closed
8. skip c
9. else add c to open
10. if the expansion count is a power of two
11. re-compute u(n) for all nodes on the open list using the most recent estimates
12. re-heapify the open list
13. loop to step 3

Figure 2: Pseudo-code for Bugsy.

Once the estimate Û is found, it would be possible to substitute it for U∗ in Equation 6
to estimate u∗(n), the utility of the outcome from expanding each node on the open list.
However, Bugsy is only going to expand one node, so there is no need to estimate u∗(n)
for each open node; Bugsy simply expands the node with the best estimated outcome.
Additionally, instead of computing the maximization in Equation 7 from scratch each time
it is about to expand a node, Bugsy simply orders its open list on u(n) = −(wf ·f(n)+wt ·
d(n)·delay ·texp), each iteration popping off the node with the maximum u(n) for expansion.
In this way, the algorithm directly attempts to maximize utility.

Recall Figure 1, which shows two paths from an initial node, A, to a goal node, E.
Because Bugsy accounts for distance in its utility function, it will find the shorter path A,
D, E if their utility function sufficiently emphasizes finding solutions quickly over finding
cheaper solutions. On the other hand, if the utility function gives a preference to finding
cheap solutions then Bugsy will spend the extra search time to find the cheaper path, A,
B, C, E.

5.2 Implementation

Figure 2 shows high-level pseudo-code for Bugsy. For clarity, the code elides the details of
computing u(n) values. The algorithm proceeds like A*, selecting the open node with the
highest u(n) for expansion (line 3). If this node is a goal, then it is returned as the solution
(line 4), otherwise the node is put on the closed list (line 5) and its children are generated.
Each new child is put onto the open list (line 9) except duplicate nodes and nodes for which
expansion is estimated to have a negative utility (which occurs when the utility of returning
no solution is greater than that of continuing the search); these are discarded (lines 7–8).
Bugsy estimates the current expansion time and the expansion delay online, and these
estimates can change after each expansion. Instead of re-sorting the open list after each
expansion, Bugsy re-sorts whenever the number of nodes that it has expanded is a power
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of two, the utility of each open node is re-computed using the latest set of estimates for
texp and expansion delay (as described in Section 3.3), and the open list is re-heapified
(lines 10–12). We describe this re-sorting step in greater detail in Section 5.5.

5.3 Stopping

Bugsy orders its open list in decreasing order of u(n), and stops searching when the max-
imum estimated utility is less than that of returning the empty solution. While it may be
possible to continue searching in an anytime fashion after the first goal is found, from a
utility perspective this is not the correct approach. We prove that here:

Theorem 1 Assuming the expansion time texp is constant, h is admissible, and exp never
overestimates the expansions to go, at the time that Bugsy finds its first solution, s, the
solutions Bugsy would find beneath the remaining nodes would result in less utility than
immediately returning s.

Proof: Let T be the current time at which Bugsy found solution s. The utility of returning
s is U(s, T ) = u∗(s) = −(wf ·f∗(s)+wt ·T ), where u∗(s) is the utility of returning s now, and
f∗(s) is the cost of solution s. Note that because h is admissible and s is a goal, h(s) = 0,
g(s) = g∗(s), f(s) = f∗(s), and therefore u(s) = u∗(s). Also exp never overestimates the
expansions to go so exp(s) = 0. Since s was chosen for expansion u(n) ≤ u∗(s) for every
node n on the open list.

Let t(n) be the minimum amount of additional time Bugsy requires to find the solution
beneath any unexpanded node n. t(n) ≥ texp since Bugsy must at least expand n. So for
each node n on the open list, the best utility that Bugsy could achieve by going straight
to the cheapest goal under n is:

u∗(n) = −(wf · f∗(n) + wt · (t(n) + T ))
≤ −(wf · f(n) + wt · (t(n) + T )), since f(n) ≤ f∗(n) due to the admissibility of h

≤ −(wf · f(n) + wt · (exp(n) · texp + T )), since exp never overestimates

= u(n), by the definition of u(n)

≤ u∗(s), since u∗(s) = u(s) and s was chosen for expansion, not n

�

This justifies Bugsy’s strategy of returning the first goal node that it selects for expansion.
It should be noted that Bugsy’s estimate of exp(n) = delay ·d(n) is not a lower bound, but
as we will see in the later sections, this stopping criterion performs quite well in practice.

5.4 Heuristic Corrections

Many best-first search algorithms use admissible heuristic estimates that never overestimate
the true cost to go. The proof of optimality of A* and the proofs of bounded suboptimality
of bounded suboptimal search algorithms rely crucially on the admissibility property of the
heuristic. Bugsy does not fixate on cost-optimal solutions and does not guarantee bounded
cost. Instead, Bugsy attempts to optimize a utility function for which solution cost is only
one of two terms. Since there are no strict cost guarantees, Bugsy is free to drop the
admissibility requirement if more informed but inadmissible estimates are available.
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Thayer, Dionne, and Ruml (2011) show that inadmissible estimates can provide better
performance for bounded suboptimal search. One such technique attempts to correct the
heuristic estimates on-line using the average single-step error between the heuristic values
of a node and its best child. Thayer et al. show that while this technique provides good
search guidance, it is actually less accurate at estimating the true cost-to-go values than
the standard admissible heuristics. For Bugsy, this is undesirable, as it does not need
good guidance, but proper estimates. Thayer et al. also show that learning the heuristic
off-line with linear regression can provide more accurate estimates. Unfortunately, using
such off-line training would negate one of Bugsy’s main benefits. It is a matter of empirical
evaluation as to whether any of these techniques will provide better performance for Bugsy.
In Section 6.5, we show that using the standard admissible heuristics often gives the best
performance anyway.

5.5 Resorting

Instead of requiring off-line training as in the previous approaches, Bugsy uses on-line
estimates to order nodes on its open list. First, while many analyses regard texp as as a
constant, it can in practice depend on log-time heaps, cache behavior, and multiprogram-
ming overhead, among other factors, so our implementation of Bugsy estimates texp as
a global average computed during search. Second, Bugsy’s expansion delay estimate is
calculated as the global average of the difference in expansion count from when each node
was generated to when it was expanded; this too must be done on-line. Unfortunately, the
on-line estimates may change at each node expansion, and näıvely using the latest estimates
to compute the u value for newly generated nodes can lead to poor performance. This is
due to the comparisons used to order the open list: instead of fair comparisons based on
the estimated utility of each node, the recent and very fresh estimates of new nodes will be
compared with the old and possibly more stale estimates of nodes that have been open for
a long time.

To alleviate this problem, our implementation of Bugsy uses two sets of estimates:
one stable set used to order the open list, and one ever-changing set maintaining the most
recent estimates. At certain points throughout the search, Bugsy copies the most up-
to-date estimates into the stable set, recomputes the utility values of all open nodes, and
re-sorts the open list. Our open list is implemented as a binary heap so it can re-establish
the heap property in linear time in the number of elements on the heap. Unfortunately, it
would still be very expensive to do this at every node expansion, so, instead, Bugsy reorders
the open list exponentially less frequently as the search progresses—it only reorders when
the number of expansions is a power of two. We prove that this logarithmic scheme only
adds a constant amount of overhead per-expansion when amortized over the entire search.

Theorem 2 In a search space that grows geometrically with a finite branching factor, the
overhead of reordering the open list on power-of-two expansions is constant for each expan-
sion when amortized over the search.

Proof: Let b be the maximum branching factor. The maximum number of nodes that can
be on the open list after n expansions is N(n) = bn − n = n(b − 1). The total cost of all
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re-sorting after n expansions is no more than:

⌊lgn⌋
∑

i=0

O(N(2i)) =

⌊lgn⌋
∑

i=0

O(2i · (b− 1)), by definition of N

= c(b− 1)

⌊lg n⌋
∑

i=0

2i, for some c > 0, by definition of O

= c(b− 1)(2⌊lg n⌋+1 − 1), by the identity
∑j

i=0 2
i = 2j+1 − 1

≤ c(b− 1)(2 · 2lgn − 1)

= c(b− 1)(2n− 1)

= O(n)

�

So, the overhead per-expansion is constant when amortized over all expansions. It is a
matter of empirical evaluation to determine if this constant overhead is detrimental—we
address this in Section 6.4.

6. Experimental Evaluation

All the techniques discussed above involve approximations and estimations that may or may
not work well in practice. In this section, we present results of an experimental comparison
of the techniques to better understand their performance. All of these algorithms and
domains were implemented in C++; the source code is available at https://github.com/
eaburns/search.

6.1 Overview

In the following sections, we answer several questions experimentally. First, we would like
to ensure that our monitored ARA* algorithm is performing at its best by comparing the
profile learned off-line with an oracle. As we will see, the off-line profile, while only an
estimate of the true profile of the algorithm, is quite well-informed.

In Section 5.5, we proved that re-sorting only adds a constant overhead per-expansion
when amortized over the entire search. It is a matter of empirical evaluation to determine
whether or not the benefits outweigh this overhead. Our experiments show that re-sorting
with a logarithmic schedule greatly outperforms Bugsy without re-sorting.

In Section 5.4 we pointed out thatBugsy does not require admissible heuristic estimates,
and in fact it may perform better with inadmissible, but more accurate heuristics. We show
how Bugsy performs with admissible heuristics, and with two different types of corrected
heuristics. Overall, we conclude that the best configuration is Bugsy with the standard
admissible heuristics.

We discussed expansion delay in Section 5.1. We show results that demonstrate that
using expansion delay is better than simply using d as the estimate of expansions to the
goal. Then we compare two variants of Bugsy: one that ignores newly generated nodes
that are found to already be on the closed list (we call these duplicate nodes) and one
that reinserts these nodes onto the open list if they have better utility estimates than their
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previously closed version. Ignoring duplicates always performs better in some domains, and
in others it performs better only when the preference is for very short search times.

Then, we compare A*, Speedy search, monitored ARA*, weighted A* with a learned
weight, and Bugsy. We find that the simplest approach of learning a good weight for
weighted A* gives the best performance. We also find that Bugsy, which doesn’t use
any off-line training, performs about as well as monitored ARA*, which does use off-line
training. Therefore, if training instances are available, we recommend the simple weighted
A* approach where the weight is selected based on performance on the training set. If no
training instances are available Bugsy is the algorithm of choice.

Lastly, we compare Bugsy to both real-time search and DTA* on the platform pathfind-
ing domain. In both experiments, Bugsy achieves the best utility.

6.2 Domains

In order to verify that our results hold for a variety of different problems, we performed our
experiments on four different domains. The domains that we used are described briefly in
the following paragraphs, with more detailed descriptions given in Appendix B.

6.2.1 15-Puzzle

The 15-puzzle is a popular heuristic search benchmark that has a small branching factor
and few duplicates. For this domain, we used the reasonably informed Manhattan distance
heuristic, and our implementation followed the heavily optimized solver presented by Burns,
Hatem, Leighton, and Ruml (2012). We ran the 100 instances created by Korf (1985), and
in plots including A* we only use results on the 94 instances solvable by A* in 6GB of
memory.

6.2.2 Pancake Problem

The pancake problem is another standard puzzle with a large constant branching factor.
In our experiments, we used instances with 50 pancakes, and the gap heuristic (Helmert,
2010). Since many of these problems were too difficult for A*, we used IDA* instead of A*
on this domain.

6.2.3 Platform Pathfinding

The platform domain is a pathfinding domain of our own creation with dynamics based on
a 2-dimensional platform-style video game, where the player must jump between platforms
to traverse a maze. Video games often naturally have an element of time pressure. It
has a large state-space and many cycles, but a reasonably informed heuristic based on
visibility navigation. The instances used in our experiments were created randomly, using
the generator described in Appendix B. This domain is also of particular interest because its
action costs are given in units of time (each action is 50ms), so the objective of minimizing
goal achievement time can be expressed as a linear combination of search time and solution
cost.
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6.2.4 Grid Pathfinding

Grid pathfinding is a popular heuristic search benchmark, motivated by robotics and video
games. In our experiments, we used two different cost models, and two different movement
models. The cost models were the standard unit-cost model and the life-cost model which
assigns action costs such that the shortest, most direct path is more expensive than a longer,
more circuitous path. This captures the popular adage that time is money. Instances were
5,000×5,000 grids with uniformly distributed obstacles. Our heuristics were based on the
Manhattan distance heuristic for four-way grids, and the octile distance heuristic for eight-
way grids. The octile distance heuristic is a simple modification to Manhattan distance
that multiplies the shorter of the horizontal and vertical displacement by

√
2 to accounts

for eight-way move costs.

6.3 Anytime Profile Accuracy

We want to ensure that our implementation works well and our training instance sets are
representative enough that monitored ARA* can perform at its best. In this subsection, we
evaluate the accuracy of the stopping policies created using the estimated anytime profiles
by comparing them to an oracle. Since the stopping policy is only guaranteed to be optimal
for the true algorithm profile, it is a matter of empirical study to determine whether or not
the estimated profile will lead to a good policy.

To estimate the profile used by the monitored version of ARA*, we ran ARA* with a
6GB memory limit or until convergence on 1,000 separate test instances for each domain.
Next, we created a histogram by discretizing the costs and times of each of the solutions into
10,000 bins (100 × 100). We experimented with different utility functions by varying the
ratio wf/wt in Equation 1. Small values of wf/wt give a preference to finding solutions more
quickly, whereas large values prefer finding cheaper solutions. In the case of the platform
game, for example, this can be viewed as a way to change the speed at which the agent
moves: a slow agent might benefit from more search in order to find a shorter path, but a
fast agent can execute a path quickly, and may prefer to find any feasible solution as fast
as possible.

Figure 3 shows the results of this experiment. The box plots represent the distribution
of utility values found by ARA* using the estimated stopping policy, given as the factor of
the oracle’s utility. The oracle finds all solutions of the anytime algorithm until it converges
on the optimal solution, then it picks the solution which would have maximized the utility
function. Since the utility values are negative, larger factors represent smaller (more nega-
tive) utilities and thus a worse outcome. The boxes surround the second and third quartiles,
the whiskers extend to the extremes, and circles show values that are more than 1.5× the
inter-quartile range outside of the box. The center line of each box shows the median, and
the gray rectangles show the 95% confidence interval on the means. Each box represents a
different wf/wt as shown on the x axis. There is a reference line drawn across at y = 1 (the
point where the oracle and estimated policy performed equally as well), and in many cases
the boxes are so narrow that they are indistinguishable from this line.

Some points in these figures lie very slightly below the y = 1 line, indicating instances
where the oracle performed worse than the estimated policy. This is possible due to the
variance in solving times. In our experiment, the ARA* runs used to compute the oracle’s
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Figure 3: Comparison of the optimal stopping policy and the learned stopping policy.
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Figure 4: Bugsy: Resorting the open list (circles) vs not (boxes).

utilities occasionally found solutions more slowly than the ARA* runs using the estimated
stopping policy. In other words, it is caused by the non-determinism inherent in a utility
function that depends on solving time. As is obvious in the figure, these instances are quite
rare and usually happened for small values of wf/wt, where miniscule time differences have
a large effect on utility.

From these results, we conclude that our monitored ARA* implementation performs
quite well, as the stopping policy often stopped on the best solution available from those
emitted by the underlying anytime algorithm.

6.4 To Resort or Not to Resort?

In Section 5.5 we proved that re-sorting Bugsy’s open list on power-of-two expansions only
added a constant overhead per-expansion when amortized over the search. It is a matter of
empirical evaluation to determine whether or not this overhead is worth the effort. While
other re-sorting schedules are possible, we only tried re-sorting on power-of-two expansions.

Figure 4 shows the utility achieved by Bugsy both with and without re-sorting. The
x axes show the wf/wt ratio determining the preference for solution cost and search time
on a log10 scale. As with the previous plots, smaller values indicate a preference for faster
search times and larger values indicate a preference for cheaper solutions. The y axes show
the factor of the utility achieved by the best technique on each instance, again on a log10
scale. A y value of log101 = 0 indicates the best utility achieved by any technique on a given
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instance; values greater than zero indicate less utility. Points show the mean value over all
test instances with error bars giving the 95% confidence intervals. From these plots, we
can see that re-sorting the open list led to significant improvements in all domains. On the
pancake puzzle, Bugsy without re-sorting was unable to solve any of the instances within
a 6GB memory limit. In our remaining experiments, we always enable re-sorting on an
exponential schedule.

6.5 Heuristic Corrections

In Section 5.4, we mentioned that Bugsy does not require admissible heuristic estimates,
as it provides no guarantees on solution cost. In this section we compare Bugsy using the
standard admissible heuristics to Bugsy using both on-line and off-line corrected heuristics.
Following Thayer et al. (2011), our on-line heuristic correction used a global average of the
single-step heuristic error between each node and its best offspring, and our off-line heuristic
was a linear combination of h, g, depth, and d, for each node. The coefficients for each term
in the off-line heuristic were learned by solving a set of training problems and using linear
least squares regression.

The comparison is shown in Figure 5. The plots are in the same style as Figure 4. Typ-
ically the on-line correction technique performed worst—some times significantly worse—
than the other two. We attribute this to its poor accuracy as observed by Thayer et al.
(2011). On some problems, such as the 15-puzzle and the 8-way unit-cost grid pathfind-
ing, the off-line correction technique performed best, but in general the simple admissible
heuristics were the best or were competitive with the best. For the remainder of our exper-
iments, we chose to use the simplest variant without any corrections as it did not require
any off-line training (which is one of Bugsy’s main benefits), and it was never the worst
and was often the best or near the best.

6.6 Expansion Delay

In Section 5.1 we described why simply using d as an approximation for exp(n), the number
of nodes expanded to arrive at the goal beneath node n, is inaccurate. The search algorithm
does not expand just the nodes along the path to a goal, but instead it vacillates between
different solutions. To account for the search vacillation, we choose to estimate exp(n) =
delay · d(n), where delay is the average expansion delay—the average number of nodes
expanded before the search makes progress along a single path to a goal. In this subsection,
we show experimentally that using expansion delay provides much better performance than
using d alone.

Figure 6 shows two versions of Bugsy: one that uses expansion delay, labelled “With
Exp. Delay,” and one that does not, labelled “Without Exp. Delay.” It is clear from this
figure that using expansion delay is beneficial. Also, we can see that on the right side of the
plots, where cheaper solutions are preferred to short search times, using expansion delay is
about the same as just using d by itself. This is because wf is relatively large compared to
wt for these utility functions, so the exp(n) term has little influence on the utility estimates.
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Figure 5: Bugsy: Heuristic corrections.

6.7 Duplicate Dropping

Suboptimal search algorithms do not expand nodes in strict order of increasing f . Conse-
quently, they can expand a node, and later re-generate the same node via a cheaper path.
We call such re-generations duplicates, and when they are generated via cheaper paths we
say that they are inconsistent, because their current path cost (and subsequently the cost
of the paths to all of their descendants) is more expensive than necessary (Likhachev et al.,
2003). In the face of inconsistent nodes, a search algorithm can put the already expanded
node back on the open list with a cost that accounts for the new, cheaper path. When
the node comes to the front of the open list, it will be re-expanded and the inconsistency
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Figure 6: Bugsy: Expansion delay.

will propagate through to all of its descendants. Unfortunately, if there are a lot of such
inconsistencies, then the search algorithm can spend a lot of time re-expanding the same
nodes over and over again. An alternative technique is to simply ignore the inconsistency
and drop all duplicate nodes when they are generated. Dropping duplicates can reduce the
search effort needed to find a goal at the cost of finding more expensive solutions. Whether
or not dropping duplicates is beneficial typically depends on the domain (Thayer & Ruml,
2008).

Figure 7 shows a comparison of Bugsy both with and without duplicate dropping. On
the platform, tiles, and pancake domains using duplicate dropping is nearly always better
than re-expanding duplicates. On the grid pathfinding problems,—with the notable excep-
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Figure 7: Bugsy: Duplicate dropping.

tion of 4-way life-cost grids—re-expanding duplicate nodes seems to give better performance
except where solutions are needed as quickly as possible (on the left-hand side of the plots).
This is reasonable, because duplicate dropping tends to sacrifice solution cost in order to
reduce search time. Note also, that the values on the y axes of these plots are very small, so
while the results are statistically significant, the difference between the two techniques on
the grid problems where duplicate re-expansion performs better is quite small. In the next
section we will see that A* actually achieves the most utility in many of the cases where
duplicate re-expansion outperforms duplicate dropping.
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Figure 8: Comparison of techniques.

6.8 Comparing Techniques

Now that we understand the most promising configurations of the techniques we are study-
ing, we can finally turn our attention to comparing them.

Figures 8 and 9 show a comparison of the three different techniques for utility-aware
search. These plots are larger than the previous plots to improve clarity, because they
have more lines. The plots include A*, Speedy Search, Bugsy, ARA* with monitoring
(ARA*), and weighted A* with the weight chosen automatically for each different utility
function from the set 1.1, 1.5, 2, 2.5, 3, 4, 6, and 10 (wA*). As we would expect, when the
preference was for shorter search times (on the left-end of the x axis), A* performed poorly,
as it stubbornly stuck to optimal solutions. Speedy search, however, performed quite well.
As the preference shifted toward desiring cheaper solutions, A* began to do better whereas
Speedy did worse. The utility-aware techniques were much more robust than both A* and
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Figure 9: Comparison of techniques (continued).

Speedy, neither of which take the user’s preference for search time and solution cost into
account at all.

Of the utility-aware techniques, both Bugsy and weighted A* with an automatically
selected weight performed the best. Bugsy was better on both the 15-puzzle and the
platform domain. On the grid problems, Bugsy and weighted A* had roughly the same
performance on the right side of the x axes. On the left side, Bugsy tended to get worse
relative to the other utility-aware techniques, and ARA* with an anytime monitor was often
the best performer. However, ARA* performed significantly worse in the middle and on
the right-hand portion of the plot in some domains, leading us to recommend the weighted
A* technique as a simpler and more robust approach.

The utility-aware techniques often performed as well as A* when low-cost solutions were
preferred. When fast solutions were preferred, these techniques sometimes outperformed
Speedy search. This likely indicates that solution cost still played a roll in the final utility
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Figure 10: Grid pathfinding on a video game map.

on the left-most points in some of the plots. ARA* tended to achieve greater utility than
Bugsy when solutions were needed quickly, but when cheaper solutions were preferred,
Bugsy tended to be better than ARA*. On most domains, ARA* had a spike of low utility
for ratios between 0.001, and 1, with the peak appearing between 10−6 and 10−3 for life-cost
grids. This peak approximately coincides with the utility functions for which the estimated
profile performed worse than the oracle as shown in Figure 3, possibly indicating that more
than 1,000 training instances were required for these utility functions.

Overall, the utility-aware techniques were able to achieve much greater utility than the
utility-oblivious A* and Speedy algorithms. This is not terribly surprising. Surprisingly, the
results also suggest that our very simple parameter tuning technique can often give the best
performance if a representative set of training instances is available. If not, then Bugsy

is the algorithm of choice as it performs well and does not require any off-line training.
Indeed, by putting reasoning about search time into the search algorithm itself, Bugsy can
be competitive with techniques requiring previous experience.

6.9 Limitations

In the previous set of experiments, we saw that the utility-aware algorithms outperformed
both Speedy search and A* for a wide range of utility functions. In this section, we look at
one domain for which this tends not to be the case: video game grid maps.

Video games are one of the main motivations for research in grid pathfinding problems.
Sturtevant (2012) observed that grid maps created by game designers often exhibit very
different properties from maps generated algorithmically. Figure 10 shows a comparison of
Bugsy, monitored ARA*, weighted A* with an automatically selected weight, Speedy, and
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Figure 11: Grid pathfinding on a video game map.
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Figure 12: Nodes expanded, search time, and execution time.

A* on the Dragon Age Origins map orz100d from the benchmark set of Sturtevant. This
map is shown in Figure 11. It has a fairly wide-open area at the top, with a more closed-off
bottom half containing rooms and hallways. The format of the plot in this figure is the
same as those in the previous subsection. As we can see, A* gave the best performance for
a large range of utility functions, and Bugsy actually never outperformed Speedy or A*
in the entire experiment (neither did ARA*, and wA* only gave the best performance at
a single data point). We hypothesized that Bugsy’s poor performance was because these
problems are very easy to solve, and Bugsy’s extra computation overhead, while very small,
was more prominent.

To explore this hypothesis, we plotted the performance of Bugsy given as the difference
from that of Speedy using a single utility function given by wf = 10−6, wt = 1. This is the
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left-most utility function in Figure 10, a function for which here Speedy search performed
the best and Bugsy performed poorly. Figure 12 shows the number of nodes expanded,
the time spent executing, and the time spent searching for Bugsyas percentages of the
equivalent values for Speedy search. The data points were gathered on a random sample
of 25 instances from Sturtevant’s (2012) scenario set for the orz100d map. Values below
the line at 100% represent instances where Bugsy expanded fewer nodes or spent less
time searching or executing, and values above the line represent instances where Bugsy

expanded more nodes or spent more time than Speedy. The x axes shows the rank of the
instances in the sample in increasing order of their optimal solution lengths.

As we can see in Figure 12, Bugsy expanded about the same number of nodes and
had very similar execution times to Speedy. For problems with larger optimal solution
costs Bugsy had slightly less execution time. The major difference in performance between
these two algorithms, however, is shown in the right-most plot where we can see that Bugsy

required more search time than Speedy search on almost every instance. Since Bugsy and
Speedy expanded about the same number of nodes, this additional time must be due to
Bugsy’s small amount of extra overhead incurred from re-sorting and computing utility.
We conclude that, barring this extra overhead, Bugsy would have performed as well as the
best performer for this utility function. In domains where node expansion and heuristic
computation isn’t so simplistic, this overhead would be insignificant.

6.10 Training Set Homogeneity

In Section 6.8 we showed that our weighted A* approach outperformed other techniques
in all domains, with the notable exception of the platform domain and 15-puzzle, where
Bugsy was the best. Additionally, compared to other domains, the weighted A* technique
performed relatively poorly on video game pathfinding (cf. Figure 10 where wA* is out-
performed by the utility oblivious approaches at all points except for one). We believe
that the poor performance of wA* on these domains is due to heterogeneous training sets.
To verify this, we looked at the mean and standard deviation in the optimal path lengths
for problems in all of our domains. The optimal path length can be viewed as a proxy
for problem difficulty, and a high standard deviation in this statistic points to a diverse
set of instances—some very easy to solve, and some quite difficult. For both the platform
and video game path finding domains, the standard deviation in optimal path length was
greater than 50% of the mean; more than twice that of the other domains. Note that, in
domains such as the video game map, the variety in the layout of different areas of the map
means that instances will inherently differ in their characteristics—merely gathering more
instances will not produce a more homogeneous set. This evidence supports our hypothesis
that weighted A*’s performance can be greatly hindered in situations where a representative
training set is not available.

6.11 Real-time Search

The main focus for our study is algorithms for off-line search—they find entire paths to the
goal before any execution begins. In real-time search (Korf, 1990), search and execution
can happen in parallel, but an agent is only allowed a fixed amount of time to plan before
it must perform each action. Real-time search has the possibility of being more efficient
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than off-line search in terms of goal achievement time, because if all search happens in
parallel with execution, then goal achievement time is simply the execution time plus the
small amount of time required to find the very first action. This in contrast to the off-line
approach where goal achievement time is the sum of the entire search time and the execution
time. In some situations, however, starting execution before having a complete plan to a
goal is not acceptable, as it may lead an agent into a dead-end from which it can no longer
reach any goal, so real-time search may not be applicable. Examples of domains with dead-
ends include robotics, manufacturing (Ruml, Do, Zhou, & Fromherz, 2011), and spacecraft
control: exactly those applications involving high value or danger, where automation is
most worthwhile. In these cases, it is desirable to find an entire plan guaranteed to reach
the goal, before any execution begins.

Hernández, Baier, Uras, and Koenig (2012) introduce a model for comparing real-time
algorithms to off-line techniques such as A*, called the game time model. The game time
model partitions time into uniform intervals, and the agent can execute a single action
during each interval. Path planning can happen in parallel with execution (the agent can
plan step t during the execution of step t-1), and the goal is to move the agent from its start
location to its goal location in as few time intervals as possible, minimizing goal achievement
time, the same objective that we discuss in Section 1. The game time model is a special
case of the utility functions considered in this paper where solution cost is given in discrete,
fixed-duration units of time.

Real-time search provides two benefits: first, it may be possible to reduce the goal
achievement time by allowing search and execution to happen at the same time, and second,
the agent can start moving toward its goal right away—a necessary property for video games.
This leaves us with the question of whether or not real-time search algorithms can achieve
better goal achievement time than the off-line utility-aware methods. On one hand, real-
time search algorithms spend very little time searching without making progress toward
the goal. On the other hand, real-time search algorithms tend to make decisions based on
very local information and can find more costly solutions. In their results, Hernández et al.
report that their best approach solves problems on initially-known grid maps in about the
same number of time intervals as A*. In the previous section, we showed that the utility-
aware techniques outperformed A* for most utility functions. In this section, we compare
a state-of-the-art real-time search algorithm called LSS-LRTA* (Koenig & Sun, 2009) to
Bugsy on the platform pathfinding domain.4

As with our previous experiments, we tested all algorithms with a variety of values for
the ratio wf/wt. Since we are interested in goal achievement time, we set wt = 1 and
we calculate search time in units of seconds. This means that wf represents the number
of seconds in one unit of execution cost—the speed of the agent. We set the real-time
constraint for LSS-LRTA* such that it was allowed to plan for the duration of one unit
of execution, and so it always had its next action ready for execution when its currently
executing action completed.

4. We do not compare to Time-bounded A* (TBA, Björnsson, Bulitko, & Sturtevant, 2009), the method
that performed the best for Hernández et al. (2012), because the platform domain forms a directed search
graph, and TBA* only works on undirected search graphs. We also did not compare with the newer
f -LRTA* (Sturtevant, 2011), because it did not perform as well as LSS-LRTA* on the platform domain,
which has directed edges.
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Figure 13: Comparison of Bugsy and real-time search.

Figure 13 shows the results of the comparison. As we can see, LSS-LRTA* gives rather
poor performance; its goal achievement times nearly match that of A*, but Bugsy was able
to achieve the goal much faster. This shows that simply allowing search and execution to
take place in parallel is not sufficient to reduce goal achievement time; it can be better to
spend time searching the solution all of the way to the goal if the alternative is to spend a
long time executing a poor plan.

6.12 Decision-theoretic A*

Decision-theoretic A* (DTA*, Russell & EricWefald, 1991) is a utility-aware algorithm that
allows for concurrent search and execution. It is based on ideas from real-time heuristic
search, but unlike traditional real-time search, where each action is emitted after a fixed
amount of search, DTA* decides when to stop searching and emit an action using a decision-
theoretic analysis. At any time there is a single best top-level action with the lowest cost
estimate. The search emits this action if it is decided that the utility of emitting the
action outweighs the utility of further search. DTA* uses an approximation (found by
off-line training) of how the solution cost estimate for each top-level action improves with
additional search. Using a consistent heuristic, this estimate can only increase (Nilsson,
1980), so DTA* stops searching when it decides that the time required to raise the best
action’s estimated cost to the point that it is no longer the best action will be more costly
than the expected gain from determining that there is a different best action.

Compared to Bugsy, DTA* is relatively myopic because it only considers the cost of
search involved in selecting individual actions. DTA* does not consider the additional search
required by the solution path to which it commits by choosing an action. Where Bugsy

uses both d and expansion delay to reason about the required search effort for the entire
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Figure 14: Comparison of Bugsy and DTA*.

path beneath a node, DTA* only reasons about the search required to determine the best
action to emit right now.

We implemented DTA* to assess how a utility-aware real-time search might compare
to a utility-aware off-line search for planning under time pressure. Figure 14 shows the
results of a comparison between DTA* and Bugsy on the platform pathfinding domain.
Unfortunately, DTA* had fairly poor performance, so our experiment used smaller instances
consisting of 25x25 blocks, instead of the 50x50 block instances used in previous experiments.
Following Russell and EricWefald (1991), we gathered off-line training data for DTA* using
states sampled uniformly with a probability of 0.1 from among those visited by a real-time
search algorithm. Russell and EricWefald (1991), used an algorithm called SLRTA*, but
we used LSS-LRTA*, because it is the current state of the art. Our training set consisted
of 100 25x25 platform instances. We also verified our implementation by ensuring that
it compared favorably to A* and Speedy search on the 15-puzzle—the same domain used
by Russell and EricWefald—using a variety of different utility functions. From Figure 14,
we can see DTA* often had significantly worse utility than Bugsy, often performing only
slightly better than Speedy search, and sometimes performing worse than A*, for example,
when cheap solutions were desired.

7. Related Work

Because Bugsy uses estimates of its own search time to select whether to terminate or con-
tinue, and to select which node to expand, it may be said to be engaging in metareasoning,
that is, reasoning about which reasoning action to take. There has been much work on this
topic in AI since the late 1980s (Dean & Boddy, 1988) and continuing today (Cox & Raja,
2011).
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Dean and Boddy (1988) consider the problem faced by an agent that is trying to respond
to predicted events while under time constraints. Unlike our setting, their concern is with
choosing how much time to allocate for prediction and how much to allocate for delibera-
tion. To solve this type of time-dependent planning problem, they suggest the use of (and
also coined the term) anytime algorithms. Unlike the anytime-based techniques discussed
previously, which attempt to find a stopping policy to optimize a utility function, Dean
and Boddy used anytime algorithms as a means for allowing different allocations of time
between predicting and deliberation. Later, Boddy and Dean (1989) show how anytime
algorithms and their time-dependent planning framework can be used by a delivery agent
that must traverse a set of waypoints on a grid, by allocating time between the ordering of
waypoints and the planning used to travel between them. Dean, Kaelbling, Kirman, and
Nicholson (1993) also adapt the technique for scheduling deliberation and execution when
planning in the face of uncertainty.

Garvey and Lesser (1993) present design-to-time methods that advocate using all avail-
able time to find the best possible solution. Unlike anytime approaches that can be in-
terrupted at any time, the design-to-time method requires the time deadline to be given
upfront. This way, the algorithm can spend all of its time focusing on finding a single
good solution, instead of possibly wasting time finding intermediate results. Design-to-time
also differs from contract techniques like DAS (Dionne et al., 2011), because in the design-
to-time framework there must be a predefined set of solvers with known (or predictable)
solution times and costs. The design-to-time method will select an appropriate solver for
the problem and deadline, possibly interleaving different solvers if deemed appropriate. The
information about cost and solutions times, which design-to-time methods require, is usu-
ally unavailable and must be learned off-line. Techniques like DAS and Bugsy, on the other
hand, only use information that can be computed on-line.

Hansen, Zilberstein, and Danilchenko (1997) show how heuristic search with inadmissible
heuristics can be used to make anytime heuristic search algorithms. Like the techniques
presented in this paper, they consider the problem of trading-off search effort for solution
quality. To this end, they propose one possible optimization function for anytime heuristic
search search that attempts to maximize the rate at which the algorithm decreases solution
cost. Like the anytime monitoring technique shown in Section 3.1, their evaluation function
relies on learning the profile of the anytime algorithm offline. In their analysis of the 8-
puzzle, they conclude that, while their method had good anytime behavior, there was little
benefit of using it instead of trial-and-error-based hand tuning. This is not surprising given
the strong performance demonstrated by offline-tuned weighted A* in our experiments.

More recently, Thayer et al. (2012) proposed an approach for minimizing the time be-
tween solutions in anytime algorithms. They demonstrate that their new state-of-the-art
algorithm performs well on a wide variety of domains, and it can be more robust than
previous approaches. Like Bugsy, their technique relies on using d heuristics to estimate
the search effort required to find solutions. However, they only focus on solutions that will
require the least amount of effort, and do not optimize for a trade-off of search time for
solution cost.

In addition to controlling expansion decisions, metareasoning can also be used during
heuristic evaluation. Often search algorithms will use the maximum value computed over
multiple heuristics as a more accurate estimate of cost to goal. For some problems, like
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domain-independent planning, heuristics are quite expensive, so the increased accuracy
gained via maximizing over many heuristics may not be worth the increased computation
time. Domshlak, Karpas, and Markovitch (2010) introduce an on-line learning technique
to decide on a single heuristic to compute for each state, instead of computing many and
taking the max.

Other related work using metareasoning to control combinatorial search has been done in
the area of constraint satisfaction problems (CSPs), and boolean satisfiability (SAT). Tolpin
and Shimony (2011) use rational metareasoning to decide when to compute value ordering
heuristics in a CSP solver. The focus of the work was on value ordering heuristics that
gave solution count estimates; the solver only bothered to compute the heuristic at decision
points where it was deemed worthwhile. Their experiments demonstrate that the new
metareasoning variant outperformed both the variant that always computed the heuristic
and one that computed the heuristic randomly. Horvitz, Ruan, Gomes, Kautz, Selman,
and Chickering (2001) apply Bayesian structure learning to CSPS and SAT problems. They
consider the problem of quasi-group completion, and unlike Tolpin and Shimony (2011) who
use on-line metareasoning to control search, they use off-line Bayesian learning over a set
of hand-selected variables to predict whether instances will be long or short running.

There has been a lot of work on attempting to estimate the size of search trees off-
line (Burns & Ruml, 2013; Knuth, 1975; Chen, 1992; Kilby, Slaney, Thiébaux, & Walsh,
2006; Korf, Reid, & Edelkamp, 2001; Zohavi, Felner, Burch, & Holte, 2010). This is a
related topic, as it is concerned with estimating search effort before an entire search has
been performed. One may imagine leveraging such a technique to predict search time in
an algorithm like Bugsy. Unfortunately, these estimation methods can be rather costly in
terms of computation time, so they are not suitable as an estimator that is needed at every
single node generation. Another possibility is to use off-line estimations to find parameters
that affect the performance of search on a given domain. This knowledge could be helpful for
creating the representative training sets used by algorithms like weighted A* and anytime
monitoring, which require off-line training.

8. Conclusions

We have investigated utility-aware search algorithms that take into account a user-specified
preference trading-off search time and solution cost. We presented three different techniques
for addressing this problem. The first method was based on previous work in the area of
learning stopping policies for anytime algorithms. To the best of our knowledge, we are the
first to demonstrate these techniques in the area of heuristic search. The second method was
a novel use of algorithm selection for bounded-suboptimal search that chooses the correct
weight to use for weighted A* for a given utility function. The last technique that we
presented was the Bugsy algorithm. Bugsy is the only technique of the three that does
not require off-line training.

We performed an empirical study of these techniques in the context of heuristic search,
investigated the effect of the parameters of each algorithm on performance, and compared
the different techniques to each other. Surprisingly, the simplest technique of learning a
weight for weighted A* was able to achieve the greatest utility on many problems, out-
performing the conventional anytime monitoring approach. Also surprisingly, Bugsy, an
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algorithm that does not use any off-line training, performed just as well as the off-line
techniques that had the advantage of learning from thousands of off-line training instances.
If a representative set of training instances is not available then Bugsy is the algorithm
of choice. Overall, the utility-aware methods outperformed both A* and Speedy search
for a wide range of utility functions. This demonstrates that heuristic search is no longer
restricted to solely optimizing solution cost, freeing a user from the choice of either slow
search times or expensive solutions.

Unlike previous methods for trading deliberation time for solution quality, Bugsy con-
siders the trade-off directly in the search algorithm—deciding, for each node, whether the
result of expansion is worth the time. This new approach provides an alternative to any-
time algorithms. Instead of returning a stream of solutions and relying on an external
process to decide when additional search effort is no longer justified, the search process
itself makes such judgments based on the node evaluations available to it. Our empirical
results demonstrate that Bugsy provides a simple and effective way to solve shortest-path
problems when computation time matters. We would suggest that search procedures are
usefully thought of not as black boxes to be controlled by an external termination policy
but as complete intelligent agents, informed of the user’s goals and acting rationally on the
basis of the information they collect so as to directly maximize the user’s utility.
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Appendix A. Previous Bugsy

A previous version of Bugsy was proposed by Ruml and Do (2007), however, this early
realization differs substantially from the one presented here. It used aggressive duplicate
re-expansion, heuristic corrections, and it only used d to estimate the remaining expansions
until a goal is reached. In Section 6.7 we showed that duplicate dropping outperforms du-
plicate re-expansion in many domains. We found that inadmissible heuristics performed
poorly (cf Section 6.5) in practice, even when compared to the standard admissible esti-
mates. Also, to temper the inadmissible of its corrected estimates, the previous Bugsy

multiplied its heuristic estimates by an arbitrary weight (min(200, (wt/wf ))/1000); our ver-
sion does not require this ad hoc fix. We discussed why d is a poor estimate for the number
of remaining expansions in Section 5.1, and in Section 6.6 we showed, experimentally, that
using expansion delay performs much better than just using d alone.

Recall that Bugsy uses f and d to approximate the cost and path length of the best
utility outcome that is enabled by the expansion of the node. Note, however, that the f and
d function used throughout this paper refer to the cheapest solution beneath a node n, and
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this may not be the goal that results in the maximum utility. To better assess the available
outcomes, the previous version of Bugsy computed two utility estimates for each node: one
for the cheapest solution beneath the node and the other for the nearest solution in terms of
node expansions. In non-unit-cost domains, these two estimates may differ. For example, on
the life-cost grid pathfinding domains, the cheapest solution usually involves moving toward
the top of the grid where actions are cheap, but the nearest solution will follow a straight-line
path to the goal. In general, there can be a large number of different solutions through each
search node, and the solutions may cover a whole spectrum of different cost/time trade-offs.
By considering more than just the cheapest solution, as was done in our implementation,
it may be possible to find solutions with better utility. On the other hand, it may be too
costly to compute multiple heuristics for each node, so whether or not this modification is
beneficial depends on the domain.

Appendix B. Domains

We performed our experiments on a variety of different domains, which we describe in
further detail here.

B.1 15-Puzzle

The 15-puzzle is one of the most popular benchmark domains for heuristic search algorithms.
It consists of a 4-by-4 frame into which 15 tiles have been placed. One slot of the board
does not contain a tile, it is called the blank. Tiles that are above, below, left of or right
of the blank may be slid into the blank slot. The objective of the 15-puzzle is to slide tiles
around in order to transform an initially scrambled puzzle into the goal state with the blank
in the upper-left corner and the tiles ordered 1–15 going from left to right, top to bottom.
This domain is interesting because plans are hard to find, the branching factor is small and
varies little from its mean of about 2.13 (Korf et al., 2001), there are few duplicates, and
the heuristic is reasonably informed.

In our experiments we use the popular 100 15-puzzle instances created by Korf (1985).
In plots that include A*, however, we only used the 94 instances solvable by A* in 6GB of
memory. The average optimal solution length for these instances was 52.4. For our training
set, we generated 1,000 instances using a 1 million step random walk back from the goal
position. We used the Manhattan distance heuristic, which sums the vertical and horizontal
distance that each tile must move to arrive at its goal position. Our implementation follows
the heavily optimized solver presented by Burns et al. (2012).

B.2 Pancake Puzzle

The pancake puzzle (Dweighter, 1975; Gates & Papadimitriou, 1979) is another permutation
puzzle. It consists of a stack of differently sized pancakes numbered 1–N . The pancakes
must be presented at a fancy breakfast, so a chef needs to sort the originally unordered
stack of pancakes by continually sticking a spatula into the stack and reversing the order of
the pancakes above. Said another way, the pancake problem involves sorting a sequence of
numbers by using only prefix reversal operations. This simple problem is interesting because
it creates a search graph with a large branching factor (the number of pancakes minus one).
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Figure 15: A screenshot of the platform pathfinding domain (left), and a zoomed-out image
of a single instance (right). The knight must find a path from its starting
location, through a maze, to the door (on the right-side in the left image, and
just above the center in the right image).

For our experiments, we used 25 randomly generated 50-pancake puzzle instances, and our
training set consisted of 1,000 randomly generated instances. We used the powerful GAP
heuristic of Helmert (2010), which sums the number of pairs of adjacent pancakes that are
not in sequence.

B.3 Platform Pathfinding

The platform domain is a pathfinding domain of our own creation with dynamics based
on a 2-dimensional platform-style video game, written partially by the first author, called
mid5. The left image of Figure 15 shows a screenshot from mid. The goal is for the knight
to traverse a maze from its initial location, jumping from platform to platform, until it
reaches the door. Mid is an open source game available from http://code.google.com/p/

mid-game. For our experiments the game physics of the game were ported from C to C++
and were embedded in our C++ search codebase. We generated 1,000 training instances
and 100 test instances using the level generator from mid. An example instance is shown
on the right panel in Figure 15. The domain is unit-cost and has a large state space with
a well-informed heuristic.

The available actions are different combinations of controller keys that may be pressed
during a single iteration of the game’s main loop: left, right, and jump. Left and right move
to the knight in the respective directions (holding both at the same time is never considered
by the search domain, as the movements would cancel each other out, leaving the knight in

5. The other author was Steve McCoy, who also drew the tile graphics shown in Figure 15.
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place), and the jump button makes the knight jump, if applicable. The knight can jump
to different heights by holding the jump button across multiple actions in a row up to a
maximum of 8. The actions are unit cost, so the cost of an entire solution is the number of
game loop iterations, called frames, required to execute the path. Each frame corresponds
to 50ms of game play.

Each state in the state space contains the x, y position of the knight using double-
precision floating point values, the velocity in the y direction (x velocity is not stored as
it’s determined solely by the left and right actions), the number of remaining actions for
which pressing the jump button will add additional height to a jump, and a boolean stating
whether or not the knight is currently falling. The knight moves at a speed of 3.25 units per
frame in the horizontal direction, it jumps at a speed of 7 units per frame, and to simulate
gravity while falling, 0.5 units per frame are added to the knight’s downward velocity up to
a maximum of 12 units per frame.

For further details on the platform domain, please refer to the source code repository
given at the start of Section 6.

B.3.1 Level Generator

The instances used in our experiments were created using the level generator from mid, a
special maze generator that builds 2-dimensional platform mazes on a 50×50 grid of blocks.
Each block is either open or occluded, and to ensure solvability given the constraints imposed
by limited jump height, the generator builds the maze by stitching together pieces from a
hand-created portfolio. Each piece consists of a number of blocks that are either free or
occluded, and a start and end location for which traversability is ensured within the piece.
A piece can be added to the grid at any location for which it fits. A piece fits if it does not
occlude a block that belongs to a previously placed piece. The maze is built using a depth-
first procedure: a piece is selected at random and if it fits in the grid with its start location
lined up with the end location of its predecessor then it is placed and the procedure recurs.
The number of successors of each node is chosen uniformly from the range 3–9 inclusive, and
the procedure backtracks when there are no pieces that fit on the previous block. Once the
maze is constructed, blocks that do not belong to any piece are marked as occluded. The
right image in Figure 15 shows a sample of a level generated by this procedure. The source
code for the level generator is available in the mid source repository mentioned above.

B.3.2 Heuristic

We developed a heuristic for the platform domain that is based on visibility navigation
(Nilsson, 1969). Each maze is pre-processed to convert its grid representation into a set of
polygons representing each connected component of occluded cells in the level. The space
is then scaled to account for the movement speed of the knight; the knight can fall faster
than it can move in the horizontal direction, so the polygons end up squished vertically
and stretched horizontally. The visibility navigation problem is then solved in reverse from
the four corners of the goal cell to the center of every non-occluded cell of the maze. To
maintain admissibility, the cost of each edge in the visibility problem is not the length of
the visibility line, but instead is the maximum of the length of the line divided by

√
2 and

the X and Y displacements between the end points of the line. This accounts for the fact
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Figure 16: The visibility navigation instance for the platform domain’s heuristic. The visi-
bility path between the initial state and the goal state is drawn in red.

that the knight can be moving both horizontally and vertically at the same time, and that
moving a distance of

√
2 in the scaled space still takes only a single frame.

During search, the heuristic value of a state is computed in one of two different ways.
If the straight-line path from the center of the knight to the goal is not occluded then the
maximum of the X and Y distances to the goal scaled down by travel speed is used as the
heuristic estimate. Otherwise, the heuristic is the cost of the path in the visibility graph
from the center of the cell that contains the knight’s center point minus the maximum of
the X and Y distance (in number of frames) of the knight’s center point to the center of
its cell. Figure 16 shows the same map from the right image of Figure 15, scaled, broken
into polygon components, and with the visibility path between the initial state and the goal
state drawn in red.

B.4 Grid Pathfinding

Our final domain was grid pathfinding. This is a very popular domain in both video games
and robotics, as such it has garnered much attention in the heuristic search community. In
our experiments, we used 5,000x5,000 grids with both four-way and eight-way connectivity
and uniform obstacle distributions. For four-way connected grids, each cell was blocked
with a probability of 0.35, and for eight-way connected grids cells were blocked with a
probability 0.45. We also consider two different cost models, the standard unit cost model
in which horizontal and vertical moves cost 1 and diagonal moves cost

√
2. The other is

called the life cost model, where each move has a cost equal to the row number from which
the move took place, causing cells toward the top of the grid to be preferred. With the
life cost model, short direct solutions can be found quickly, however they will be relatively
expensive, while a least-cost solution involves many annoying economizing steps (Ruml &
Do, 2007). This model can be viewed as an instantiation of the popular belief that ‘time is
money,’ as one can choose to incur additional cost for a shorter and simpler path. For each
combination of movement model and cost model, we generated 25 test instances and 1,000
training instances. Finally, we used the Manhattan distance heuristic for four-connected
grids and the octile distance heuristic for eight-connected grids. For the life cost model our
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heuristics also took into account the fact that moving toward the top of the grid then back
down may be cheaper than a direct path.

Appendix C. Anytime Policy Estimation

It can be challenging to write algorithms that rely on off-line training data. If the algorithm
behaves unexpectedly, then it is unclear if there is a bug in the implementation, a bug in the
off-line learning procedure, or if the training set is merely insufficiently representative. In
this appendix, we describe how we implemented and verified our procedure for estimating
an anytime profile.

Figure 17 shows the pseudocode for building a profile based on the description given
by Hansen and Zilberstein (2001). The algorithm accepts a set of solution streams as
input, one stream for each solved instance, then proceeds in two steps. The first step is
the Count-Solutions function that counts the number of times each solution cost was
improved upon. The function iterates through each solution (line 5), computes the bin of a
histogram into which its cost value falls (line 7), then for each subsequent solution a count
is added to qqtcounts for each time step for which the first solution improved to the second
solution. In addition, the number of total improvements for each solution and time bin are
counted in the qtcounts array. The costbin and timebin functions bin cost and time values
respectively by returning an integer for the corresponding index in the histogram:

costbin(q) =

⌊

q − qmin

(qmax − qmin)/ncost

⌋

timebin(∆t) =

⌊

∆t−∆tmin

(∆tmax −∆tmin)/ntime

⌋

.
The second step is the Probabilities function that converts the counts computed in

the first step into normalized probability values. This is achieved by dividing the number
of ∆t steps for which a solution of cost qi improved to a solution of cost qj (qqtcounts)
by the total number of steps for which a solution of cost qi was improved (qtcounts, and
lines 28). The probability values are “smoothed” by adding half of the smallest probability
to each bin representing a solution cost improvement. This step removes zero-probabilities,
allowing improvement to be considered. Finally, the probabilities are normalized so that
the probability of all non-decreasing-cost solutions for each current cost and time step sum
to one (lines 31–37). Once the profile is computed, it is saved to disk for later use when
computing the stopping policy.

We found that it was extremely useful to have a simple way to validate our policies
while debugging our implementation. One option is to create a stopping policy, run ARA*
with monitoring on a handful of instances and with a handful of utility functions to verify
that it gives the expected behavior. Unfortunately, this approach was rather cumbersome
and prone to error, as it only evaluated the policy on the small number of instances that we
were willing to run by hand. Instead, we chose to validate our implementation by plotting
the polices generated from the training data on different utility functions. By plotting
the extreme policies that only care about solution cost and search time, along with some
intermediate policies that trade-off the two, it was much simpler to debug our code.
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Profile(streams)
1. qtcounts , qqtcounts ← Count-Solutions(streams)
2. return Probabilities(qtcounts , qqtcounts)

Count-Solutions(streams)
3. qtcounts ← new int[ncost ][ntime] // Initialized to zero.
4. qqtcounts ← new int[ncost ][ncost ][ntime] // Initialized to zero.
5. for s in streams
6. for i from 1 to |s|
7. qi ← costbin(s[i].cost)
8. qcur ← qi,∆tcur ← 0
9. // Count cost at each time increment after solution i.

10. for j from i+ 1 to |s|
11. qnext ← costbin(s[j].cost)
12. ∆tnext ← timebin(s[j].time− s[i].time)
13. // Current solution cost up to the time of solution j.
14. for ∆t = ∆tcur to ∆tnext − 1
15. increment qtcounts [qi][∆t]
16. increment qqtcounts [qcur ][qi][∆t]
17. qcur ← qnext ,∆tcur ← ∆tnext
18. // Last solution cost up to the final time.
19. for ∆t = ∆tcur to ntime
20. increment qtcounts [qi][∆t]
21. increment qqtcounts [qcur ][qi][∆t]
22. return qtcounts , qqtcounts

Probabilities(qtcounts, qqtcounts)
23. probs ← new float[ncost ][ncost ][ntime]
24. for qi from 1 to ncost
25. for ∆t from 1 to ntime
26. if qtcounts [qi][∆t] = 0 then continue
27. for qj from 1 to ncost
28. probs [qj ][qi][∆t]← qqtcounts [qj ][qi][∆t]/qtcounts [qi][∆t]
29. Smoothing: add half of smallest probability to all elements of probs with improving solution cost.
30. // Normalize.
31. for qi from 1 to ncost
32. for ∆t from 1 to ntime
33. sum ← 0
34. for qj from 1 to ncost
35. sum ← sum + probs[qj ][qi][∆t]
36. for qj from 1 to ncost
37. probs [qj ][qi][∆t]← probs[qj ][qi][∆t]/sum
38. return probs

Figure 17: Pseudocode for profile estimation.

Figure 18 shows some of the plots created for the platform domain. Each plot has cost
on the y axis and time on the x axis. Green circles represent inputs for which the policy
says to keep searching, and red crosses represent inputs for which the policy says to stop
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Figure 18: Three different policies: (a) prefers cheaper solutions at any expense (wf =
1, wt = 0), (b) attempts to trade some search time for some solution cost (wf =
0.6, wt = 1), and (c) prefers to have any solution as fast as possible (wf = 0, wt =
1).

searching and return the solution. As expected, the policy always continues when the goal
is to minimize solution cost and always stops when the goal is to minimize search time (cf.
the left-most and right-most plots in Figure 18 respectively). The center plot shows that
we also successfully found policies that trade search time for solution cost by only stopping
once the cost is sufficiently low. Finally, in the left-most plot, the bottom-most and right-
most sides of the policy always stop as our implementation chose to stop when there was
no training data available to estimate the profile for the given input values.
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