
Optimal Implementation of Watched Literals

This section is an additional appendix to “Optimal Implementation of Watched Literals
and More General Techniques” by Ian P. Gent, Journal of Artificial Intelligence Research,
2013

Appendix E. Additional Proofs

Proposition 3. The procedure FNE-NoState maintains Invariant 2. It makes O(N2)
calls to acceptable per branch of a search tree, but requires Θ(N2) in the worst case.

Proof. Correctness should need no proof. The bound O(N2) in a branch holds because
each of the N values in the list can become unacceptable at most once, and each such event
needs at most N calls to acceptable. For the worst case, consider a tree in which list[0]
is acceptable at all internal nodes, while at each leaf node, each element in list becomes
unacceptable in numerical order. At each leaf node there are N−1 calls to FNE-NoState,
which require in turn 2, 3, 4, . . . , N calls to acceptable, for a total of Θ(N2).

Theorem 7. (Correctness) If the search algorithm defines a downwards-explored search tree,
and if procedure findNewElement is locally correct, Invariant 2 is true at all times.

Proof. Consider any time which is not in the interval between unacceptability occuring and
either backtracking or a call to findNewElement exiting, so we have to establish one of
the first two conditions of Invariant 2. There are two cases.

The first case is that the last call to findNewElement exited with success at some
node. At that node the value list[last ] was acceptable (by local correctness). There are two
subcases. First, if list[last ] has not become unacceptable since then, it is still acceptable.
Second, if list[last ] has become unacceptable since then, consider the most recent occur-
rence of this. Backtracking must have occurred before a new call to findNewElement. At
the parent node to which search returned, the value list[last ] was acceptable, and therefore
it has been from that point until now.

The second case is that the last call to findNewElement failed, so at the node n1

where the call happened, no acceptable value existed in the list. There are two subcases.
First, if the current time is during the remainder of the visit to n1, or at any descendant
node of n1, then by monotonicity of acceptability, there must still be no acceptable element
in the list. The second subcase is that the current time is after backtracking from n1.
But, when findNewElement fails, by local correctness the value of last is unchanged
from entry. Therefore at the start of the visit to node n1, the value list[last] must have
been acceptable: the call to findNewElement at n1 happened because list[last] became
unacceptable. Let n0 be the parent node of n1 (which must exist because if n1 were the
root we would be in the first subcase.) The value list[last] was acceptable at n0. Since the
most recent call to findNewElement was at n1, and we have exited from n1 and all its
descendants, unacceptability cannot have been detected since backtracking returned to n0,
so list[last ] is acceptable at the current time.

Lemma 9. Every node in the tree is contained in exactly one left branch segment. In
a downwards-explored search tree, nodes in a left branch segment are visited consecutively
without search visiting any other nodes.

1



Gent

Proof. The first statement is immediate from the definition of LBS. For the second, downwards-
explored search always visits the left child of a node before other nodes. Since this property
is recursive, from any node the next sequence of nodes visited in order is the left child, the
left grandchild, etc. From the origin of a left branch segment, the nodes in the segment are
therefore visited consecutively without any other nodes intervening.

Theorem 13. (Optimality) In any downwards-explored search tree, the circular approach
requires space for one last pointer and has a worst case of O(N) calls to acceptable per
branch of the tree, and no algorithm can require o(N) calls per branch.

Proof. The first part follows from Theorem 12 and the fact that we just need one last
pointer. For the second part, any algorithm must potentially check all elements in the
list for acceptability (except the current value of last) on every branch, or else it cannot
determine if a list has no acceptable elements. Since it is possible for all these N − 1 checks
to be at leaf nodes, we can need Ω(N) calls per branch of the tree.

Proposition 14. For circular, there can be as many as 2k(N − 2) calls to acceptable in
a downwards-explored search tree. For state restoration, the number of calls to acceptable
is bounded above by kN and there can be k(N − 1) calls to acceptable in a tree.

Proof. For the first part, we suppose that at each internal node of the tree, all list elements
are acceptable, so calls to acceptable are all at leaf nodes. To achieve 2N − 2 calls to
acceptable at each leaf node, first the current value of last must become unacceptable,
and in one or more calls to FNE-Circular we must eventually find last−1 to be acceptable
(or N − 1 if last = 0). This requires N − 1 calls to acceptable. Finally this list element
must become unacceptable, meaning a final call to FNE-Circular which will fail with a
further N − 1 calls to acceptable. Since the list scanning framework is general, one could
construct an acceptable function and search procedure to satisfy these requirements. The
total number of calls to acceptable is then 2k(N − 2).

For the second part, no more than N calls to acceptable can be made on any branch,
hence the bound of kN . In the situation above, we have N − 1 calls at each leaf node.

Proposition 15. (Non Dominance) Both techniques can check less than the other across
a downwards-explored search tree. The circular method can take Ω(k) times fewer calls to
acceptable across the tree than state restoration, while state restoration can need Ω(N)
times fewer calls than circular.

Proof. For circular being better, suppose that at all internal nodes only the list elements 0
and N − 1 are acceptable, while at each leaf node 0 becomes unacceptable. Initialisation
will set last to 0. At the first leaf node circular will set last to N − 1 using N − 2 further
calls, and last will not change during the rest of search. By contrast state restoration must
make these N − 2 calls at every leaf node. So circular makes N − 1 calls across the tree
while state restoration uses k(N − 2) + 1.

For state restoration being better, suppose that at each internal node the list elements
0 and 1 are acceptable, while leaf nodes alternate between only 1 being acceptable and
only 0 being acceptable. Initialisation will again set last to 0. At half of leaf nodes, state
restoration does no work, and at the other half it requires just one call to acceptable, for

2



Optimal Implementation of Watched Literals

a total of ⌈k/2⌉ calls. The circular method again needs one call at half of leaf nodes, when
moving from 0 to 1, but at the other half moves from 1 to 0 at a cost of N − 1 calls each
time. This totals ⌈k/2⌉+ (N − 1)⌊k/2⌋+ 1 = Ω(kN).

Lemma 19. In a downwards-explored search tree, each call to FNE-Circular-W either
returns false or reduces by one the number of unacceptable elements in the set watched ∪
{unwatched[last]}.

Proof. The first case is that elt = watched[i] at Line 3 and therefore unwatched[last] is
unacceptable. This reduces to a pass-through call to FNE-Circular and the result follows
from Theorem 7: after a successful call unwatched[last] must now be acceptable. The
other case is that elt 6= watched[i]. We now swap watched[i] and unwatched[last],
which does not change the set watched ∪ {unwatched[last]}. As in the first case, un-
watched[last] will change from being unacceptable to acceptable after a successful call.

Theorem 20. (Correctness) In a downwards-explored search tree, FNE-Circular-W
maintains Invariant 18.

Proof. Each time the number of unacceptable elements in watched∪ {unwatched[last]}
increases by one, it causes one pending call to findNewElement. If any such call returns
false the second clause of the invariant applies, and when some remain pending the last one
does. Therefore we need consider only the case that all pending calls have been made and
were successful. In this case, Lemma 19 shows that the number of unacceptable elements
in the set decreases by one per call, meaning that there is no net change overall.

Corollary 21. For a constraint of arity r where each variable is domain size d, in a
downwards-explored search tree the circular approach to maintaining the last pointer in
MGAC2001/3.1 can be achieved using space to store O(dr) last pointers (beyond the storage
space for the constraint itself), and requires time to check O(rdr) tuples per branch.

Proof. We need to maintain support for O(dr) variable-value pairs in the constraint. Each
one requires a separate last pointer so we need space for O(dr) pointers. Acceptability is
that every value in a supporting tuple is still in its variable’s domain, i.e. a tuple is valid.
The time complexity part of the result follows from Theorem 12. In a tree with k branches,
there are at most k(2N − 2) calls to acceptable, i.e. 2N − 2 per branch. The maximum
number of supporting tuples for a variable-value pair is O(dr−1), if every combination of
every other variable is a support, so N = O(dr−1). acceptable is a call to check the
validity of a tuple, so we have O(dr−1) such calls per branch per variable-value pair. With
O(dr) pairs we need time to check O(rdr) tuples per branch.

Theorem 22. In a downwards-explored search tree, the total number of calls to accept-
able made by successful calls to FNE-MiddleOut in an LBS is no more than 2N .

Proof. As in Theorem 10, all calls to FNE are consecutive in time and each call is either at
the same node as the previous one or a descendent node. Without loss of generality, assume
that delta = +1 on the first call to findNewElement in an LBS.

The value of last is monotonically increasing in an LBS until FNE-MiddleOut-Helper
fails. Before the first failure there can be at most N calls to acceptable. At the first

3



Gent

failed call to FNE-MiddleOut-Helper, we will have last = k for some 0 ≤ k < N , and
all indices k ≤ i < N in list must be unacceptable. After the failure the value of delta
is swapped to −1 and the next sequence of calls to FNE-MiddleOut-Helper have last
monotonically decreasing until a second failed call to FNE-MiddleOut-Helper and 0 is
reached. There can be at most k more calls to acceptable before this happens, and if it
happens then all values 0 ≤ i < k must be unacceptable. But then all values 0 ≤ i < N are
unacceptable so any future call to FNE-MiddleOut must fail. Therefore the maximum
number of calls to acceptable in successful calls is N before the first failed call to FNE-
MiddleOut-Helper, then N − k, and finally k, for a maximum of 2N as required.

Proposition 24. In a downwards-explored search tree, the total number of calls to ac-
ceptable made by FNE-MiddleOut-Fixed can be Ω(N2) per branch of the search tree.

Proof. First consider a single branch. Suppose that last = N − 1, and that at the leaf
node all elements of list are initially acceptable but become unacceptable in decreasing
order. The first call to FNE-MiddleOut-Fixed calls FNE-MiddleOut-Helper, which
fails after 0 calls to acceptable, then delta is reversed and the next call succeeds, setting
last = N − 2 after 1 call to acceptable. Successive calls to FNE-MiddleOut-Fixed
require 1 call to acceptable forwards plus 1 backwards, then 2 forwards and 1 backwards,
. . . , then N − 1 forwards and 0 backwards. This is Ω(N2) calls and finally last = 0.

Now suppose at the next leaf node, all values are unacceptable except last = N − 1.
With a further N − 1 calls to acceptable we will have last = N − 1. Therefore these
two branches have taken an average of (Ω(N2) + Ω(N))/2 = Ω(N2) per branch. Further,
the preconditions for the first branch have been re-established, so this behaviour can repeat
across the whole tree for Ω(N2) calls to acceptable per branch of the tree.

Theorem 25. Suppose that W pointers last1, last2, . . . lastW to the same list are maintained
simultaneously, with the same definition of acceptability, and that calls to FNE for a pointer
lasti are made only when it points to an unacceptable element or to the same value as another
pointer currently has. Then: if more than cN calls to acceptable are made in any LBS
in a downwards-explored search tree, either at least one of the calls to FNE-Circular fails
or at least two of the pointers take the same value.

Proof. If at least WN + 1 calls to acceptable are made in an LBS then at least one
element is checked W + 1 times. Say this is list[i]. By the pigeonhole principle, at least
one lasta calls acceptable(list, i) twice in the LBS. As in Theorem 10, the value of lasta
was incremented at least N times. Now consider each element list[j]. At some point in the
LBS, we had lasta = j but it was incremented. This happened only because either list[j]
was unacceptable, or at that time some other pointer lastb = j. In the latter case, either
list[j] is now unacceptable or there is at least one pointer d 6= a now with lastd = j. The
reason is that when only one pointer remains with last = j then by hypothesis it can be
moved only because it becomes unacceptable. Since this applies to any list element list[j],
every list element is either unacceptable or equal to lastd for some d 6= a. Therefore there
are at most c − 1 acceptable elements in the list. So if every call to FNE-Circular is
successful, at least two of the pointers must take the same value.

4


