
Journal of Artificial Intelligence Research 48 (2013) 305-346 Submitted 04/13; published 10/13

A Global Model for Concept-to-Text Generation

Ioannis Konstas IKONSTAS@INF.ED.AC.UK

Mirella Lapata MLAP@INF.ED.AC.UK

Institute for Language, Cognition and Computation,
School of Informatics, University of Edinburgh,
10 Crichton Street, EH8 9AB, Edinburgh UK

Abstract
Concept-to-text generation refers to the task of automatically producing textual output from

non-linguistic input. We present a joint model that captures content selection (“what to say”) and
surface realization (“how to say”) in an unsupervised domain-independent fashion. Rather than
breaking up the generation process into a sequence of local decisions, we define a probabilis-
tic context-free grammar that globally describes the inherent structure of the input (a corpus of
database records and text describing some of them). We recast generation as the task of finding
the best derivation tree for a set of database records and describe an algorithm for decoding in this
framework that allows to intersect the grammar with additional information capturing fluency and
syntactic well-formedness constraints. Experimental evaluation on several domains achieves re-
sults competitive with state-of-the-art systems that use domain specific constraints, explicit feature
engineering or labeled data.

1. Introduction

Concept-to-text generation broadly refers to the task of automatically producing textual output from
non-linguistic input (Reiter & Dale, 2000). Depending on the application and the domain at hand,
the input may assume various representations including databases of records, expert system knowl-
edge bases, simulations of physical systems and so on. Figure 1 shows input examples and their
corresponding text for three domains: air travel, sportscasting and weather forecast generation.

A typical concept-to-text generation system implements a pipeline architecture consisting of
three core stages, namely content planning (selecting the appropriate content from the input and
determining the structure of the target text), sentence planning (determining the structure and lexi-
cal content of individual sentences), and surface realization (rendering the specification chosen by
the sentence planner into a surface string). Traditionally, these components are hand-engineered in
order to generate high quality text, at the expense of portability and scalability. It is thus no sur-
prise that recent years have witnessed a growing interest in automatic methods for creating trainable
generation components. Examples include learning which database records should be present in a
text (Duboue & McKeown, 2002; Barzilay & Lapata, 2005) and how these should be verbalized
(Liang, Jordan, & Klein, 2009). Besides concentrating on isolated components, a few approaches
have emerged that tackle concept-to-text generation end-to-end. Due to the complexity of the task,
most models simplify the generation process, e.g., by creating output that consists of a few sen-
tences, thus obviating the need for content planning, or by treating sentence planning and surface
realization as one component. A common modeling strategy is to break up the generation process
into a sequence of local decisions, each learned separately (Reiter, Sripada, Hunter, & Davy, 2005a;
Belz, 2008; Chen & Mooney, 2008; Angeli, Liang, & Klein, 2010; Kim & Mooney, 2010).

c©2013 AI Access Foundation. All rights reserved.

KONSTAS & LAPATA

Database:

Pass
from to
pink3 pink7

Bad Pass
from to
pink7 purple3

Turn Over

from to
pink7 purple3

Text: pink3 passes the ball to pink7

(a) ROBOCUP

Database:

Temperature

time min mean max
06:00-21:00 9 15 21

Wind Speed

time min mean max
06:00-21:00 15 20 30

Cloud Sky Cover

time percent (%)
06:00-09:00 25-50
09:00-12:00 50-75

Wind Direction
time mode

06:00-21:00 S

Text: Cloudy, with temperatures between 10 and 20 degrees. South wind around 20 mph.

(b) WEATHERGOV

Database:

Flight

from to
denver boston

Day Number

number dep/ar
9 departure

Month
month dep/ar
august departure

Condition

arg1 arg2 type
arrival time 16:00 <

Search

type what
query flight

Text: Give me the flights leaving Denver August ninth coming back to Boston before 4pm.

(c) ATIS

Figure 1: Input-output examples for (a) sportscasting, (b) weather forecast generation, and (c) query
generation in the air travel domain.

In this paper we focus on the problem of generating text from a database and describe an
end-to-end generation model which performs content selection and surface realization jointly. More
specifically, the input to our model is a set of database records and collocated textual descriptions.
Consider the example in Figure 1b. Here, the records provide a structured representation of the
weather for a specific time interval (e.g., the temperature, the wind speed and direction) and the
text renders some of this information in natural language. We formulate the task of creating text
corresponding to a database through the following generative process: the database consists of a

306

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

set of typed tuples (record, field, value), and our aim is to choose a subset of these to talk about.
This naturally decomposes into selecting a sequence of records, and a sequence of fields within
the record. Finally, for each field we generate a sequence of words according to the value of that
field. Central to our approach is to jointly optimize this process, rather than breaking up the various
decisions into local problems and greedily trying to solve each one of them.

To do this, we define a probabilistic context-free grammar (PCFG) that captures the structure
of the database and how it can be verbalized. Generation then boils down to finding the best string
output as captured by the best derivation tree licensed by our grammar. In order to ensure that
our generation output is coherent, we intersect our grammar with additional information capturing
fluency and syntactic well-formedness constraints. Specifically, we experiment with a n-gram lan-
guage model and a dependency model based on the work of Klein and Manning (2004). We follow
Chiang’s (2007) integration framework and show how it can be extended by intersecting a CFG
grammar with an arbitrary number of models (see Huang, 2008 for a similar proposal). Our work
is closest to that of Liang et al. (2009) who learn how to align database records and text segments
using a hierarchical hidden semi-Markov generative model (see Section 3.1 for details). We recast
their model as a PCFG and develop a decoding algorithm that allows us to go beyond alignments,
i.e., to generate multi-sentence text corresponding to database input.

Our model is conceptually simpler than previous approaches (e.g., Angeli et al., 2010; Kim &
Mooney, 2010); it encodes information about the domain and its structure globally, by considering
the input space simultaneously during generation. We thus need to train a single model (on a given
domain) once without having to separately optimize different content selection and surface realiza-
tion components. More importantly, recasting generation into parsing allows us to optimize a joint
objective (hence finding the most likely grammar derivation that also yields a grammatical output
text) in a more principled manner, rather than approximating it with a greedy search over local de-
cisions. Our only assumption is that the input must be a set of records essentially corresponding to
database-like tables whose columns describe fields of a certain type. Experimental evaluation on
three domains obtains results competitive to the state-of-the-art without using any domain specific
constraints, explicit feature engineering or labeled data.1

The remainder of this paper is structured as follows. Section 2 provides an overview of related
work. Section 3 presents our generation model; it defines the PCFG used in our experiments and
presents our decoding algorithm Section 4 discusses our experimental set-up and Section 5 presents
our results. Discussion of future work concludes the paper.

2. Related Work

The literature reveals many examples of generation systems that produce high quality text, almost
indistinguishable from human writing (Dale, Geldof, & Prost, 2003; Reiter, Sripada, Hunter, Yu,
& Davy, 2005b; Green, 2006; Turner, Sripada, & Reiter, 2009). Such systems often implement
a pipeline architecture and involve a great deal of manual effort. For instance, a typical content
selection module involves manually engineered rules based on the analysis of a large number of
texts from a domain-relevant corpus, and consultation with domain experts. Analogously, surface

1. A preliminary version of this work was published in the proceedings of NAACL 2012. The current article presents a
more general model, formulates explicitly our decoding algorithm and shows how to intersect a PCFG with an arbi-
trary number of external knowledge sources. In addition, we present several novel experiments, and a comprehensive
error analysis.

307

KONSTAS & LAPATA

realization is often based on a grammar written by hand so as to cover the syntactic constructs and
vocabulary of the domain.

One of the earliest systems that exemplifies this approach is FOG (Goldberg, Driedger, & Kit-
tredge, 1994), a weather forecast generator used by Environment Canada, the Canadian weather
service. FOG takes as input numerical simulations from meteorological maps and uses an expert
system to decide on the structure of the document with some optional human intervention via a
graphical interface. For sentence planning and surface realization, the generator uses a grammar
specific to the weather domain, as well as canned syntactic structures written by expert linguists
and encoded in Backus Naur Form (BNF). More recently, Reiter et al. (2005a) have developed
SUMTIME-MOUSAM, a text generator that produces marine weather forecasts for offshore oil-
rig applications. The content planner of the system is based on linear segmentation of the input
(i.e., time series data) and is informed by a pragmatic (Gricean) analysis of what should be commu-
nicated in weather forecasts (Sripada, Reiter, Hunter, & Yu, 2003). Sentence planning relies on rules
that select appropriate time phrases, based on an empirical study of human-written forecasts. Sur-
face realization relies on special grammar rules that emulate the weather sub-language of interest,
again based on corpus analysis.

While existing generation systems can be engineered to obtain good performance on particular
domains, it is often difficult to adapt them across different domains. An alternative is to adopt a
data-driven approach and try to automatically learn the individual generation components or even
an end-to-end system. An example of this class of methods is described in the work of Barzilay
and Lapata (2005) who view content selection as an instance of collective classification. Given a
corpus of database records and texts describing some of them, they first use a simple anchor-based
alignment technique to obtain records-to-text alignments. Then, they use the alignments as training
data (records present in the text are positive labels, and all other records negative) and learn a content
selection model that simultaneously optimizes local label assignments and their pairwise relations.
Building on this work, Liang et al. (2009) present a hierarchical hidden semi-Markov generative
model that first determines which facts to discuss and then generates words from the predicates and
arguments of the chosen facts. Their model is decomposed into three tiers of HMMs that correspond
to chains of records, fields and words. They use Expectation Maximization (EM) for training and
dynamic programming for inference (see Section 3.1 for a more thorough description).

A few approaches have emerged more recently that combine content selection and surface real-
ization. Kim and Mooney (2010) present a generator with a two-stage pipeline architecture: using
a generative model similar to the model in the work of Liang et al. (2009), they first decide what
to say and then verbalize the selected input with WASP−1, an existing generation system (Wong &
Mooney, 2007). In contrast, Angeli et al. (2010) propose a unified content selection and surface
realization model which also operates over the alignment output produced by the model of Liang
et al.. Their model decomposes into a sequence of discriminative local decisions. They first deter-
mine which records in the database to talk about, then which fields of those records to mention, and
finally which words to use to describe the chosen fields. Each of these decisions is implemented
as a log-linear model with features learned from training data. Their surface realization component
performs decisions based on automatically extracted templates that are filtered with domain-specific
constraints in order to guarantee fluent output.

Other related work has focused on mapping meaning representations (e.g., some logical form
or numeric weather data) to natural language, using explicitly aligned sentence/meaning pairs as
training data. For example, Wong and Mooney (2007) learn this mapping using a synchronous

308

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

context-free grammar (SCFG). They also integrate a language model with their SCFG and decode
the meaning representation input to text, using a left-to-right Early chart generator. Belz (2008)
creates a CFG by hand (using a set of template-based domain-specific rules) but estimates proba-
bilities for rule application automatically from a development corpus. Ratnaparkhi (2002) uses a
dependency-style grammar of phrase fragments in the context of a dialogue system, incorporating
among others long-range dependencies. More recently, Lu and Ng (2011) propose in their work a
model that performs joint surface realization and lexical acquisition from input that is represented
in typed lambda calculus. They present a novel SCFG forest-to-string generation algorithm, that
captures the correspondence between natural language and logical form represented by λ−hybrid
trees.

Similar to the work of Angeli et al. (2010), we also present an end-to-end system that performs
content selection and surface realization. However, rather than breaking up the generation task into
a sequence of local decisions, we optimize what to say and how to say simultaneously. We do not
learn mappings from a logical form, but rather focus on input which is less structured and possibly
more noisy. Our key insight is to convert the set of database records serving as input to our generator
into a PCFG that is neither hand crafted nor domain specific but simply describes the structure of
the input. During training, we estimate the weights of the grammar rules using the EM algorithm
and a dynamic program similar to the inside-outside algorithm (Li & Eisner, 2009). During testing
we are given only a set of database and search for the best derivation tree licensed by the grammar.
While searching, we intersect our grammar with external linguistically motivated models and create
k-best lists of derivations, thus optimizing “what to say” and “how to say” at the same time.

3. Problem Formulation

We assume our generator takes as input a set of database record tuples (r, f ,v) ∈ d and outputs a
text g that verbalizes some of these records. Each record token ri, with 1 ≤ i ≤ |d|, has a type ri.t,
which can be thought of as the name of the table in a relational database schema. Note that the
total number of records |d| can vary between examples. Figure 1b illustrates instances of record
types such as Temperature, Wind Speed, and Wind Direction. Each record token also has a set of
fields ri.f associated with it. For example, a record of type Wind Direction has two fields, namely
windDir1.time and windDir1.mode. We will henceforth abbreviate fields to their names (e.g., time
and mode) when the record type is apparent from the context. Fields have different values fk.v; in
Figure 1b the value of the field mode is S. Fields also have an associated type fk.t, which defines the
range of possible values they can take; our model supports integer and categorical value types. For
example, the top right table in Figure 1b named Cloud Sky Cover (sc for short), corresponds to four
database record tuples: (sc1, time, 06:00-09:00), (sc1, percent, 25-50), (sc2, time, 09:00-12:00)
and (sc2, percent, 50-75). Both time and percent are of categorical type.

The training corpus consists of several scenarios, i.e., database records d paired with texts w2

like those shown in Figure 1. In the weather forecast domain, a scenario corresponds to weather-
related measurements of temperature, wind, speed, and so on collected for a specific day and time
(e.g., day or night). In sportscasting, scenarios describe individual events in the soccer game
(e.g., passing or kicking the ball). In the air travel domain, scenarios comprise of flight-related
details (e.g., origin, destination, day, time).

2. We use w to denote the gold-standard text and g to refer to the string of words our system generates.

309

KONSTAS & LAPATA

d

rir1 . . . r|r|. . .

r1. f1 . . . ri. f1 . . . ri. f|f| r|r|. f|f|. . .

w1 . . . w w . . . w w . . . w w . . . wN

Figure 2: Graphical model representation of the generative alignment model of Liang et al. (2009).
Shaded nodes represent observed variables (i.e., the database d and the collocated text w), unshaded
nodes indicate latent variables. Arrows indicate conditional dependencies between variables. Start-
ing from the database d, the model emits a sequence of records; then for each record it emits a
sequence of fields, specific to the type of the particular record. Finally, for each record it uniformly
selects a number c and emits words w1 . . .wc.

Our goal is to first define a model that naturally captures the (hidden) relations between the
database records d and the observed text w. Once trained, we can use this model to generate text g
corresponding to new records d. Our model is an extension of the hierarchical hidden semi-Markov
model of Liang et al. (2009) which we describe in detail in the next section. Our key idea is to recast
this model as a probabilistic context-free grammar, therefore reducing the tasks of content selection
and surface realization into a common parsing problem.3 Arguably, we could have implemented this
model using a finite-state representation. However, the conceptualization of generation as parsing,
allows us to use the well-known CYK algorithm (Kasami, 1965; Younger, 1967) in order to find
the best g licensed by the grammar. It also affords a wider range of extensions that go beyond the
expressivity of the cascade of HMMs in the model of Liang et al. We furthermore ensure that the
resulting text is fluent by intersecting our grammar with externally trained surface level models,
namely a n-gram language model and a dependency model. Thus, our model will generate the parse
and more importantly text deemed most likely by both the grammar and the surface models. In the
following, we first describe the approach of Liang et al. and then move on to describe our grammar
and decoding algorithm, i.e., our procedure for finding the best g for a given input d.

310

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

3.1 A Model of Inducing Alignments

Liang et al. (2009) present a generative semi-hidden Markov model that learns the correspondence
between a world state and an unsegmented string of text without, however, generating an output
string of words g describing the world state. As in our case, the world state is represented by a set
of database records, with their associated fields and values. Their model is defined by a generative
process that can be summarized in three steps:

1. Record choice. Choose a sequence of records r to describe. Consecutive records are selected
on the basis of their types.

2. Field choice. For each record ri emit a sequence of fields ri.f.

3. Word choice. For each chosen field ri. fk generate a number of words c, where c > 0 is chosen
uniformly.

This process is implemented as a hierarchy of Markov chains which correspond to records, fields,
and values of the input database. As captured by a Markov chain of records conditioned on record
types; given a record type, then a record is chosen uniformly from the set of records with this type.
In this way, their model essentially captures rudimentary notions of local coherence and salience,
respectively. More formally:

p(r |d) =
|r|

∏
i

p(ri.t |ri−1.t)
1

|s(ri.t)|
(1)

where s(t) is defined as a function that returns the set of records with type t: s = {r ∈ d : r.t = t}, and
r0.t is the START record type. Liang et al. (2009) also include a special null record type, which
accounts for words that do not particularly align with any record present in the database. Field
choice is modeled analogously as a Markov chain of fields for a given record choice ri of type t:

p(f |ri.t) =
|ri.f|

∏
k

p(ri. fk |ri. fk−1) (2)

They also implement special start and stop fields to model transitions at the boundaries of the
corresponding phrase. Finally, for a chosen record ri, a field fk and a uniformly chosen number c,
with 0 < c < N, they emit words independently given the field value and type. Note that since
their model always observes the words, this simplistic representation at the surface level is adequate
(however, relaxing the independence assumption, e.g., by additionally conditioning on the previous
word(s), could potentially yield a more powerful model):

p(w |ri,ri. fk,ri. fk.t) =
|w|

∏
j

p(w j |ri.t,ri. fk.v) (3)

Their model supports three different types of fields, namely string, categorical and integer. For each
of those they adopt a specific generation strategy at the word level. For string-typed fields, they

3. An alternative would be to learn a SFCG between the database input and the accompanying text. However, this would
involve considerable overhead in terms of alignment (as the database and the text do not together constitute a clean
parallel corpus, but rather a noisy comparable corpus), as well as grammar training and decoding using state-of-the
art statistical machine translation (SMT) methods, which we manage to avoid with our simpler approach.

311

KONSTAS & LAPATA

Events: skyCover1 k k k
Fields: percent=0-25 N time=6am-9pm min=9 max=21 mode=S N N mean=20

Text: cloudy , withg temperatures between 10gand 20 degrees . southg windg aroundg 20 mph .

temperature1 windDir1 windSpeed1

Figure 3: Example of alignment output for the model of Liang et al. (2009) on the weather domain.
Subscripts refer to record tokens (e.g., skyCover1 is the first record with type Cloud Sky Cover).

emit a single word from the (possibly) multi-word value, chosen uniformly. For categorical fields,
they maintain a separate multinomial distribution of words for each field value. Finally, for integer
fields, they wish to capture the intuition that a numeric quantity in the database can be rendered in
the text as a word which is possibly some other numerical value due to stylistic factors. So they
allow several ways generating a word given a field value. These include generating the exact value,
rounding up or rounding down to a multiple of 5, rounding off to the closest multiple of 5, and
adding or subtracting some unexplained noise ε+ or ε−, respectively. Each noise is modeled as a
geometric distribution, the parameters of which are trained given the value ri. fk.v.

An example of the model’s output for the weather domain is shown in Figure 3. The top
row contains the database records selected by the model (subscripts correspond to record tokens;
e.g., temperature1 refers to the first record of type temperature in Figure 1b). The second row con-
tains the selected fields for each record with their associated values. The special field null aligns
with words that do not directly refer to the values of the database records, such as with, wind and
around. Finally, the last row shows the segmentation and alignment of the original text w produced
by the model.

As it stands, Liang et al.’s (2009) model generates an alignment between sequences of words and
facts in a database, falling short of creating a meaningful sentence or document. Kim and Mooney
(2010) address this problem by interfacing the alignments with WASP−1 (Wong & Mooney, 2007).
The latter is a publicly available generation system which takes an alignment as input and finds the
most likely string using the widely popular noisy-channel model. Angeli et al. (2010) propose a
model different in spirit which nevertheless also operates over the alignments of Liang et al. Using
a template extraction method, they post-process the alignments in order to obtain a sequence of
records, fields, and words which are spanned by the chosen records and fields. The generation
process is then modeled as a series of local decisions, arranged hierarchically and each trained
discriminatively. For each record they choose to talk about, they then choose a subset of fields, and
finally a suitable template to render the chosen content. The same process repeats until it decides to
generate a special STOP record.

We do not treat the model of Liang et al. (2009) as a black box in order to obtain alignments.
Rather, we demonstrate how generation can be seamlessly integrated in their semi-hidden Markov
model by re-interpreting it as CFG rewrite rules and providing an appropriate decoding algorithm.
Our model simultaneously learns which records and fields to talk about, which textual units they
correspond to, and how to creatively rearrange them into a coherent document.

3.2 Grammar Definition

As mentioned earlier, we recast the model of Liang et al. (2009) as a series of CFG rewrite rules,
corresponding to the first two layers of the HMMs in Figure 2. We also include a set of grammar
rules that emit chains of words, rather than words in isolation. This can be viewed as an additional

312

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

GCS 1. S→ R(start) [Pr = 1]

2. R(ri.t)→ FS(r j,start) R(r j.t)
[
P(r j.t |ri.t) · 1

|s(ri.t)|

]
3. R(ri.t)→ FS(r j,start)

[
P(r j.t |ri.t) · 1

|s(ri.t)|

]
4. FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) [P(f j | fi)]

5. FS(r,r. fi)→ F(r,r. f j) [P(f j | fi)]

6. F(r,r. f)→W(r,r. f) F(r,r. f) [P(w |w−1,r,r. f)]

7. F(r,r. f)→W(r,r. f) [P(w |w−1,r,r. f)]

GSURF 8. W(r,r. f)→ α [P(α |r,r. f , f .t, f .v, f .t = {cat,null})]

9. W(r,r. f)→ gen(f .v) [P(gen(f .v).mode |r,r. f , f .t = int)·
P(f .v |gen(f .v).mode)]

Table 1: Grammar rules for GGEN and their weights shown in square brackets.

HMM over words for each field in the original model. The modification is important for genera-
tion; since we only observe the set of database records d, we need a better informed model during
decoding that captures word-to-word dependencies more directly. We should also point out that our
PCFG does not extend the underlying expressivity of the model presented in Liang et al., namely it
also describes a regular language.

Our grammar GGEN is defined in Table 1 (rules (1)–(9)) and contains two types of rules. GCS

rules perform content selection, whereas GSURF rules perform surface realization. Both types of
rules are purely syntactic (describing the intuitive relationship between records, records and fields,
fields and corresponding words), and could apply to any database with similar structure irrespec-
tively of the semantics of the domain. Rule weights are governed by an underlying multinomial
distribution and are shown in square brackets. Non-terminal symbols are in capitals and denote inter-
mediate states; the terminal symbol α corresponds to all words seen in the training set, and gen(f .v)
is a function for generating integer numbers given the value of a field f . All non-terminals, save
the start symbol S, have one or more features (shown in parentheses) which act as constraints, sim-
ilar to number and gender agreement constraints in augmented syntactic rules. Figure 4 shows two
derivation trees licensed by our grammar for the sentence “Cloudy, with temperatures between 10
and 20 degrees.” (see the example in Figure 1b).

The first rule in the grammar denotes the expansion from the start symbol S to record R, which
has the special ‘start’ record type (hence the notation R(start)). Rule (2) defines a chain between
two consecutive records, i.e., going from record ri to r j. Here, FS(r j,start) represents the set
of fields of record r j following record R(ri). For example, in Figure 4a, the top branching rule
R(start)→ FS(sc2,start)R(sc2.t) (sc stands for Cloud Sky Cover) can be interpreted as follows.
Given we are at the beginning of the document, hence the record R(start), we will talk about the

313

KONSTAS & LAPATA

S

R(start)

R(sc2.t)

R(t1.t)

...

FS(t1,start)

FS(t1,min)

FS(t1,max)

F(t1,null)

F(t1,null)

W(t1,null)

.

W(t1,null)

degrees

F(t1,max)

F(t1,max)

W(t1,max)

20

W(t1,max)

and

F(t1,min)

F(t1,min)

F(t1,min)

F(t1,min)

W(t1,min)

10

W(t1,min)

between

W(t1,min)

temperatures

W(t1,min)

with

FS(sc2,start)

FS(sc2,%)

F(sc2,null)

W(sc2,null)

,

F(sc2,%)

W(sc2,%)

Cloudy

(a)

S

R(start)

R(sc2.t)

R(t1.t)

...

FS(t1,start)

FS(t1,null)

FS(t1,min)

F(t1,max)

F(t1,max)

F(t1,max)

F(t1,max)

W(t1,max)

.

W(t1,max)

degrees

W(t1,max)

20

W(t1,max)

and

F(t1,min)

F(t1,min)

W(t1,min)

10

W(t1,min)

between

F(t1,null)

F(t1,null)

W(t1,null)

temperatures

W(t1,null)

with

FS(sc2,start)

FS(sc2,%)

F(sc2,null)

W(sc2,null)

,

F(sc2,%)

W(sc2,%)

Cloudy

(b)

Figure 4: Two derivation trees using the grammar in Table 1 for the sentence “Cloudy, with tem-
peratures between 10 and 20 degrees.”. We use sc as a shorthand for the record type Cloud Sky
Cover, and t for Temperature. Subscripts refer to record tokens (e.g., sc2 is the second Cloud Sky
Cover record, t1 is the first Temperature record, and so on).

314

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

part of the forecast that refers to Cloud Sky Cover, i.e., emit the set of fields spanned by the
non-terminal FS(sc2,start). The field start in FS acts as a special boundary between consecutive
records. Note that in the input database of example 1b, there are two records of type Cloud Sky
Cover (see the second box in the example). Given that the value of the percent (%) field of the
second record is 50-75, it is more likely to lexicalize to the phrase “Cloudy ,”. In a different
scenario, if the equivalent phrase was “Mostly sunny ,” the first record with value 25-50 would
have been more appropriate. Rule R(sc2.t)→ FS(t1,start)R(t1.t) (t stands for Temperature) is
interpreted similarly: once we talk about the sky coverage of the forecast we will move on to
describe the temperature outlook, via the field set spanned by the non-terminal FS(t1,start) (see
the second sub-tree in Figure 4a). The weight of this rule is the bigram probability of two records
conditioned on their record type, multiplied with the normalization factor 1

|s(ri.t)| , where s(t) is a
function that returns the set of records with type t (Liang et al., 2009). We have also defined a null
record type i.e., a record that has no fields and acts as a smoother for words that may not correspond
to a particular record. Rule (3) is simply an escape rule, so that the parsing process (on the record
level) can finish.

Rule (4) is the equivalent of rule (2) at the field level, i.e., it describes the chaining of two
consecutive fields fi and f j. Non-terminal F(r,r. f) refers to field f of record r. For example, in the
tree of Figure 4a, the rule FS(t1,min)→ F(t1,max) FS(t1,max) specifies that we should talk about
the field max of record t1 (i.e., temperature record), after talking about the field min. Analogously
to the record level, we have also included a special null field type for the emission of words that do
not correspond to a specific record field (e.g., see the emission of the two last tokens “degrees .” in
the end of the phrase in the derivation tree. Rule (6) defines the expansion of field F to a sequence
of (binarized) words W, with a weight equal to the bigram probability of the current word given
the previous word, the current record, and field. See the consecutive application of this rule on the
derivation tree in the emission of the phrase “with temperatures between 10”.

Rules (8) and (9) are responsible for surface generation; they define the emission of words and
integers from W , given a field type and its value, and can thus be regarded as the lexical rules
of our grammar (see the pre-terminal expansions at the derivation tree of Figure 4a for examples).
Rule (8) emits a single word from the vocabulary of the training set. Its weight defines a multinomial
distribution over all seen words, for every value of field f , given that the field type is categorical
(denoted as cat in the grammar) or the special null field. Rule (9) is identical but for fields whose
type is integer. Function gen(f .v) generates an integer number given the field value, using either
of the following six ways (Liang et al., 2009): identical to the field value, rounding up or rounding
down to a multiple of 5, rounding off to the closest multiple of 5 and finally adding or subtracting
some unexplained noise ε+ or ε− respectively. Each noise is modeled as a geometric distribution,
the parameters of which are trained given the value f .v. The weight is a multinomial over the six
integer generation function choices, given the record field f , times P(f .v |gen(f .v).mode), which is
set to the geometric distribution of noise ε+ and ε−, or to 1 otherwise.

Naturally, our grammar can yield several derivation trees for a given input string. Notice the
difference between Figure 4a and Figure 4b in emitting the phrases “with temperatures between 10”
and “and 20 degrees .”. In Figure 4a, the field min (whose record is Temperature) spans the entire
phrase, whereas in Figure 4b the phrase is split in two parts. The null field emits “with temperatures”
and the min field emits “between 10”. Analogously, in the derivation tree in Figure 4a, the field max
emits the first three words, “and 20 degrees”, then the null emits the full-stop on its own null field

315

KONSTAS & LAPATA

of the same record (very common situation in case of punctuation marks). In the derivation tree of
Figure 4b, however, the whole phrase is spanned by the field max.

3.3 Generation

So far we have defined a probabilistic grammar which captures the structure of a database d with
records and fields as intermediate non-terminals, and words w (from the associated text) as termi-
nals. The mapping between d and w is unknown and thus the intermediate multinomials (see the rule
weights of GGEN in Table 1) define a distribution over hidden correspondences h between records,
fields and their values. Given an input scenario from a database d we can generate its corresponding
text using the grammar in Table 1.

On a high-level our generation procedure can be described as follows. We first select the length
N of the output text (we defer discussion on how we achieve this to Section 4.3). Then, we apply
our grammar to the “empty” document by building derivation trees in a bottom-up fashion, starting
from the lexical rules r ∈ GSURF . For each word position in the document we emit a k-best list of
candidate words drawn from the corresponding distributions, given the values of the fields of the
records in d; then, we apply the rest of the rules r ∈ GCS, keeping a list of k-best partial derivations
and partially generated text in each node4, until we reach the root symbol S spanning the whole
document. Finally, we reconstruct the top-scoring generated string at the root of the tree, by fol-
lowing the pointers of the best derivation, down to the lexical rules that emit the words of the final
document. In order to guarantee the grammaticality of the final output text, we rescore the k-best
lists at each node by applying external linguistic knowledge, such as n-gram language models and
head dependency-style models, on the partially generated substrings.

In analogy to parsing, this procedure amounts to finding the most likely derivation, i.e., sequence
of rewrite rules for a given input. Note, that there is a subtle difference between syntactic parsing
and generation. In the former case, we observe a string of words and our goal is to find the most
probable syntactic structure, i.e., hidden correspondence ĥ. In generation, however, as described
above, the string is not observed; instead, we must thus find the best text ĝ, by maximizing both
over h and g (the latter is achieved with the use of external linguistic knowledge via rescoring),
where g = g1 . . .gN is a sequence of words licensed by GCS and GSURF . More formally:

ĝ = f
(

argmax
g,h

P
(
(g,h)

))
(4)

where f is a function that takes as input a derivation tree (g,h) and returns ĝ. We use a modified
version of the CYK parser (Kasami, 1965; Younger, 1967) to find ĝ. Optimizing over both h and g
is intractable, so we approximate f by pruning the search space as we explain in Section 3.5.

In the following, we we will use the framework of deductive proof systems (Shieber, Schabes,
& Pereira, 1995) in order to describe our decoder. We first present a basic adaptation of the CYK
algorithm to our task and give a concrete decoding procedure that generates text, using a chart data
structure (Section 3.4). We then extend the basic decoder into a k-best decoder, by integrating ex-
ternal linguistic knowledge in an attempt to improve the quality of the output. The basic decoder
naively only optimizes function f over h, whereas the extended version maximizes both h and g,
approximately. Note that the framework of deductive proof systems is used here for convenience. It

4. We use an efficient method that compresses the stored substrings considerably, following the work of Chiang (2007);
see equation (12) in Section 3.6.

316

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

Items: [A, i, j]
R(A→ B)
R(A→ BC)

Axioms: [W, i, i+1] : s W → gi+1, gi+1 ∈ {α,gen()}

Inference rules:

(1)
R(A→ B) : s [B, i, j] : s1

[A, i, j] : s · s1

(2)
R(A→ B C) : s [B, i,k] : s1 [C,k, j] : s2

[A, i, j] : s · s1 · s2

Goal: [S,0,N]

Figure 5: The basic decoder deductive system. Productions A→ B and A→ B C can be any of the
GCS rules in Figure 1; features on grammar non-terminals are omitted for the sake of clarity.

provides a level of abstract generalization for a number of algorithms. Examples include the recogn-
tion of a sentence according to a grammar, learning inside and outside weights, Viterbi search, and
in our case generating text (see Goodman, 1999 for more details).

3.4 Basic Decoder

Analogously to a parser, our decoder can be generally defined as a set of weighted items (some of
which are designated axioms and others are goals, i.e., items to be proven) and a set of inference
rules of the form:

I1 : s1 . . . Ik : sk

I : s
Φ

which can be interpreted as follows: if all items Ii (i.e., the antecedents) have been first proven with
weight (or score) si, then item I (i.e., the consequent) is provable, with weight s provided the side
condition Φ holds. The decoding process begins with the set of axioms, and progressively applies
the inference rules, in order to prove more items until it reaches one of the designated goals.

Our basic decoder is specified in Figure 5 and consists of four components, a class of items, a
set of axioms, a set of inference rules and a subclass of items, namely the goal items. Following the
work of Goodman (1999), items in our system take two forms: [A, i, j] indicates a generated span
from i to j, rooted at non-terminal A; R(A→ B) or R(A→ B C) corresponds to any of the content
selection production rules of GCS with one or two non-terminals on the right hand side. Axioms
correspond to each individual word generated by the surface realization grammar rules GSURF (see
(8) and (9) in Table 1). Our inference rules follow two forms, one for grammar production rules
with one non-terminal on the right hand side, and another one for rules with two non-terminals. For
example, inference rule (1) in Figure 5 combines two items, namely a rule of the form A→ B with
weight s and a generated span [B, i, j] with weight s1 rooted at B, and results to a new generated
span [A, i, j] with weight s · s1, rooted at A. Finally, our system has one goal, [S,0,N], where S is the
root node of the grammar and N the (predicted) length of the generated text. The time complexity is

317

KONSTAS & LAPATA

O(n3), as in the case of CYK algorithm. We could have converted our grammar rules in Chomsky
normal form (CNF) and implemented the original CYK algorithm. Note that our grammar is not
in CNF, since it contains unary productions of the type A→ B, i.e., with non-terminal symbols on
the right-hand side as well. We chose to directly implement inference rules (1) and (2) instead (see
Figure 5), since we know that the arity of our grammar is at most 2 and were thus able to avoid a
blow-up in the number of derived rules.

Now that we have defined the parsing strategy, we need a way to find the most likely derivation;
the pseudocode of Figure 6 gives the generation algorithm for the basic decoder. It uses an array
chart[A, i, j], the cells of which get filled with sets of weights of items. It also uses an identical array
bp[A, i, j] that stores back-pointers to the antecedents of each item rooted at A, as well as the actual
generated words when processing the lexical rules r ∈ GSURF (abusing somewhat the traditional
interpretation of a back-pointer array, as a storage of pointers to antecedent chart items). The size
of the chart and the back-pointer array are set to the pre-defined number of N words we want to
generate (Section 4.3). The procedure begins by first filling in the ‘diagonal’ cells of the chart
with unary spans rooted at W , with the weights of the lexical rules r ∈ GSURF . Equivalently, the
back-pointers array takes the corresponding generated word. Note that in a conventionial parsing
procedure, we always assume that the ‘diagonal’ cells of the chart are already filled in with the
actual words of the underlying sentence. In our case, we only assume a fixed-size chart with an
empty ‘diagonal’, which gets filled in with the top scoring words emitted by the lexical rules of
our grammar. Next, items are visited and combined in order, i.e., smaller spans come before larger
spans. Given the way our grammar is constructed, items rooted in F (corresponding to fields) will
come before items rooted in R (records) and ultimately before S. At any particular point in the chart,
the algorithm considers all the antecedent items that can be proven given the rules of GCS and stores
the highest scoring combination. Finally, we can construct the resulting string ĝ by recursively
visiting bp[S,0,N]. We trace the back-pointers of each item to its antecedents down to the words gi

emitted by the axioms.

3.5 k-best Decoding

The basic decoder described so far will produce the best derivation tree of the input d given the
grammar GGEN which unfortunately may not correspond to the best generated text. In fact, the
output will often be poor as the model has no notion of what constitutes fluent language. The gram-
mar encodes little knowledge with regard to syntactic well-formedness and grammatical coherence.
Essentially, surface realization boils down to the word bigram rules (6) and (7) and the lexical rules
in GSURF . The word bigram rules inject some knowledge about word combinations into the model,
but this kind of information is usually sparse and cannot capture longer range dependencies.

The generation process in Figure 6 picks the top scoring words emitted by the lexical production
rules (lines 3–5), in order to produce the best derivation at the root node S. Instead, it would be
preferable if we added to the chart a list of the top k words (as well as a list of the top k items [B, i, j],
[C, j,k] for each production rule r ∈ GCS), and thus produced a k-best list of derivations (with their
associated strings) at the root node. This can be done efficiently using the lazy algorithm found
in the work of Huang and Chiang (2005). Then, once the generation process is finished, we can
use a language model such as higher order n-grams, or head dependency-style rules to rescore the
k-best lists of generated strings directly (see also Charniak & Johnson, 2005 and Liang, Bouchard-
Côté, Klein, & Taskar, 2006 for application of a similar idea to parsing and machine translation,

318

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

1: function DECODE(GGEN ,d,N)
2: for i← 0 . . .N do
3: for all r : W → gi+1 ∈ GSURF do
4: chart[W, i, i+1]← [W, i, i+1] : s
5: bp[W, i, i+1]← gi+1 . store actual word gi+1
6: end for
7: end for
8: for l← 2 . . .N do
9: for all i,k, j so that j− i = l and i < k < j do

10: for all items [B, i, j] or [B, i,k], [C,k, j] inferable from chart and rules r ∈ GCS do
11: if r is of the form A→ B then
12: chart[A, i, j]← max([B, i, j] : s1×P(r))
13: bp[A, i, j]← argmax([B, i, j] : s1×P(r))
14: end if
15: if r is of the form A→ B C then
16: chart[A, i, j]← max(chart[B, i,k]× chart[C,k, j]×P(r))
17: bp[A, i, j]← argmax([B, i,k] : s1× [C,k, j] : s2×P(r))
18: end if
19: end for
20: end for
21: end for
22: return chart[S,0,N], bp[S,0,N]
23: end function

Figure 6: Generation procedure for the basic decoder.

respectively). Although this method is fast, i.e., linear in k, we would practically have to set k very
high and search among exponentially many possible generations for a given input.

A better solution, which is common practice in machine translation, is to rescore the derivation
trees online. Chiang (2007) intersects a PCFG grammar with a weighted finite state automaton
(FSA), which represents a n-gram language model; the states of the FSA correspond to n−1 termi-
nal symbols. The resulting grammar is also a PCFG that incorporates the FSA. Similarly, we can
intersect our grammar with an ensemble of external probabilistic models, provided that they express
a regular language. The most probable generation ĝ is then calculated as:

ĝ = f
(

argmax
g,h

p(g) · p(g,h |d)
)

(5)

where p(g,h |d) is the decoding likelihood for a sequence of words g = g1 . . .gN of length N and
the hidden correspondence h that emits it, i.e., the likelihood of our grammar for a given database
input scenario d. p(g) is a measure of the quality of each output and could for instance be provided
by a language model (see Section 4.2 for details on how we estimate p(g,h |d) and p(g)). In theory,
the function f above should optimize h and g jointly, thus admitting no search errors. In practice,
however, the resulting grammar after the intersection is prohibitively large, and calls for pruning of
the search space. In the following we show how to extend the basic generation decoder in Figure 5
by intersecting it (linearly) with an ensemble of external probabilistic models.

319

KONSTAS & LAPATA

S

PP

NP

PP

NP

NNS

degrees

QP

CD

20

CC

and

CD

10

IN

between

NP

NNS

temperatures

IN

with

ADVP

RB

Cloudy

(a)

RB IN NNS IN CD CC CD NNS
Cloudy with temperatures between 10 and 20 degrees

ROOT

(b)

Figure 7: Phrase structure tree and dependency graph for the same sentence.

In addition to n-gram language models which are routinely used as a means of ensuring lex-
ical fluency and some rudimentary grammaticality, we also inject syntactic knowledge into our
generator. We represent syntactic information in the form of directed dependencies which could
potentially capture long range relationships beyond the horizon of a language model. Figure 7
shows a dependency-style representation for the sentence “Cloudy with temperatures between 10
and 20 degrees” and its corresponding phrase structure. The dependency graph in Figure 7b captures
grammatical relations between words via directed edges from syntactic heads to their dependents
(e.g., from a verb to its subject or from a noun to a modifying adjective). Edges can be labeled to
indicate the type of head-dependent relationship (e.g., subject or object) or unlabeled as shown in
the figure. Formally, a dependency structure D is a set of dependency pairs 〈wh,wa〉 of a head wh
and an argument word wa, respectively. In general, the argument is the modifier, object or comple-
ment; the head most of the times determines the behavior of the pair. In Figure 7b, cloudy is the
head of with, with is the head of temperature, and so on. D(wh) returns a set of dependency pairs
whose head is wh, e.g., D(10) = {and, 20}.

Previous work (Ratnaparkhi, 2002) has incorporated dependency information into surface real-
ization more directly by generating a syntactic dependency tree rather than a word sequence. The
underlying probabilistic model predicts each word by conditioning on syntactically related words

320

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

(i.e., parent, grandparent, and siblings). Importantly, this approach requires a corpus that has been
annotated with dependency tree structures. We obviate the need for manual annotation by consid-
ering dependency structures that have been induced automatically in an unsupervised fashion. For
this, we use the Dependency Model with Valence (DMV; Klein & Manning, 2004), however, there
is nothing inherent in our formulation that restricts us to this model. Any other unsupervised model
that learns dependency structures in a broadly similar fashion (e.g., captures the attachment likeli-
hood of an argument to its head) could have been used instead with the proviso that it operates on
structures that are isomorphic to the derivation trees generated by our grammar. This is necessary
if the intersecting dependency model expresses (up to) a context-free language, since we formulate
our model also as a CFG5.

Finally, note that although we work with two external information sources (i.e., language models
and dependencies), the framework we propose applies to an arbitrary number of models expressing
a regular language. For instance, we could incorporate models that capture dependencies relating to
content selection such as field n-grams, however we leave this to future work.

3.6 Extended Decoder

We begin by introducing some notation. We define two functions p and q which operate over M
surface-level models and strings a = a1 . . .al , of length l, with ai ∈ V ∪{?}. V is the vocabulary
of the observed text w (obtained from the training corpus), and the ? symbol represents the elided
part of a string. Recall that our k-best decoder needs to keep a list of generated sub-strings a at
each node, for rescoring purposes. Note that these sub-strings are (potentially) different from the
observed text w; the top-scoring string on the root node essentially collapses to the final generated
text g. Storing lists of whole sub-strings generated so far at each node, would require considerable
amounts of memory. To avoid this we define a function q(a) that stores the essential minimum
string information needed for each of the surface-level models (the ? symbol stands for the omitted
parts of a string) at each step, in order to correctly compute the rescoring weight. Function p(a)
essentially calculates the rescoring weight for a given string, by linearly interpolating the scores of
each individual model mi with a weight βi. Therefore applying p(a) in a bottom-up fashion (see the
extended decoder of Figure 8) on the output of q(a) allows us to correctly compute the rescoring
weight of each model for the whole document incrementally. More formally:

p(a) =
M

∑
i

βi pmi(a) s.t.
M

∑
i

βi = 1 (6)

In our setting, we make use of a language model (pm1) and a dependency model (pm2):

pm1(a1 . . .al) = ∏
n≤i≤l

?/∈{ai−n+1,...,ai}

PLM(ai|ai−n+1 . . .ai−1) (7)

pm2(a1 . . .al) = PDEP
(
D(ah)

)
, where ah ∈ {a1, . . . ,al} (8)

The function pm1 computes the LM probabilities for all complete n-grams in a string; PLM returns
the probability of observing a word given the previous n−1 words. pm2 returns the probability of the

5. Intersecting two CFGs is undecidable, or PSPACE-complete if one CFG is finite (Nederhof & Satta, 2004).

321

KONSTAS & LAPATA

a1 . . .al pm1(a1 . . .al) qm1(a1 . . .al)

mostly cloudy , PLM(,|mostly cloudy) mostly cloudy ? cloudy ,
with a 1 with a
mostly cloudy ? cloudy , with a PLM(with|cloudy ,) × PLM(a|, with) mostly cloudy ? with a

Table 2: Example values for functions pm1 and qm1 for the phrase “mostly cloudy, with a”. We
assume a 3-gram language model.

dependency model on the dependency structure D headed by word ah. For a dependency structure D,
each word ah has dependants depsD(ah, le f t) that attach on its left and dependents depsD(ah,right)
that attach on its right. Equation (9) recursively defines the probability of the dependency D(ah)
rooted at ah (Klein & Manning, 2004):

PDEP
(
D(ah)

)
= ∏

dir∈[le f t,right]

[
∏

depsD(ah,dir)
PSTOP(¬STOP|ah,dir,ad j)

PCHOOSE(aa|ah,dir)PDEP
(
D(aa)

)]
PSTOP(STOP|ah,dir,ad j)

(9)

PSTOP is a binary multinomial indicating whether to stop attaching arguments to a head word ah
given their direction, i.e., left or right, and their adjacency, i.e., whether they are directly adjacent
to ah or not. PCHOOSE is a multinomial over all possible argument words given ah and the direction
of attachment. We next define function q(a) which returns a set of M strings, one for each model mi

(we will use it shortly to expand the lexical items [A, i, j] of the basic decoder in Figure 5).

q(a) = 〈qm1(a), . . . ,qmM(a)〉 (10)

(11)

qm1(a1 . . .al) =

{
a1 . . .an−1 ?al−n+2 . . .al if l ≥ n
a1 . . .al otherwise

(12)

(13)

qm2
1≤k≤l

(a1 . . .akak+1 . . .al) =

al if l = 1
qm2(a1 . . .ak) if pm2(a1 . . .ak)≥

pm2(ak+1 . . .al)

qm2(ak+1 . . .al) otherwise

(14)

Function qm1(a) compresses the string a, by eliding words when all their n-grams have been
recognized. We thus avoid storing the whole sub-generation string, produced by the decoder so far,
as mentioned earlier. Table 2 gives example values for pm1(a) and qm1(a) for the phrase “mostly
cloudy, with a. Function qm2(a) returns the head of the string a. As we progressively combine sub-
strings (a1 . . .ak) and (ak+1 . . .al) together, for any 1≤ k≤ l, and their head words ah1 ∈ {a1, . . . ,ak}
and ah2 ∈ {ak+1, . . . ,al}, function qm2(a) returns either ah1 or ah2 . The probability PDEP decides
whether ah1 attaches to ah2 or vice versa, thus augmenting D(ah1) with the pair 〈ah1 ,ah2〉 or D(ah2)
with 〈ah2 ,ah1〉, respectively.

322

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

Items: [A, i, j;q(g j
i)]

R(A→ B)
R(A→ BC)

Axioms: [W, i, i+1;q(gi+1
i)] : s · p(gi+1

i) W → gi+1, gi+1 ∈ {α,gen()}

Inference rules:

(1)
R(A→ B) : s [B, i, j;q(g j

i)] : s1

[A, i, j;q(g j
i)] : s · s1 · p(g j

i)

(2)
R(A→ B C) : s [B, i,k;q(gk

i)] : s1 [C,k, j;q(g j
k)] : s2

[A, i, j;q(g j
i)] : s · s1 · s2 · p(g j

i)

Goal: [S,0,N;q(〈s〉n−1gN
0 〈/s〉)]

Figure 8: Extended decoder using the rescoring function p(g). Productions A→ B and A→ B C
can be any of the GCS rules in Figure 1; features on grammar non-terminals are omitted for the sake
of clarity.

Note that equation (14) evaluates whether every word should attach to the left or right of every
other head word, and therefore essentially collapses to:

Pmdep = PDEP
(
D(ah)

)
= PSTOP(¬STOP|ah,dir,ad j)PCHOOSE(aa|ah,dir)

PSTOP(STOP|ah,dir,ad j)
(15)

For example, in the case of pm2(a1 . . .ak), ah becomes one of a1 . . .ak, aa is one of ak+1 . . .al ,
dir = right and ad j is true if ah = ak and aa = ak+1.

We are now ready to extend the basic decoder in Figure 5, so that it includes the rescoring func-
tion p(g j

i) over a generated sub-string gi . . .g j. The new deduction system is specified in Figure 8.
Items [A, i, j] become now [A, i, j;q(g j

i)]; they represent derivations from gi to g j rooted at the non-
terminal A and augmented with model-specific strings as defined above; in other words, they include
the compressed sub-generations with elided parts and their head word. Analogously, our goal item
now includes q

(
〈s〉n−1gN

0 〈/s〉
)
. Note that gN

0 is augmented with (n−1) start symbols 〈s〉 and an end
symbol 〈/s〉. This is necessary for correctly computing n-gram probabilities at the beginning and
end of the sentence. Figure 9 shows example instantiations of the inference rules of our extended
decoder.

The generation procedure is identical to the procedure described for the basic decoder in Fig-
ure 6, save the exponential more items that need to be deducted. Recall that the chart in Figure 6
stores at each cell chart[A, i, j] the set of combined weights of cells that correspond to the proved an-
tecedents of item [A, i, j]. The new chart ′ for the extended decoder equivalently stores a set of lists
of weights at each cell position chart ′[A, i, j]. The list contains the items [A, i, j;q(g j

i)] that have the
same root non-terminal A and span between i and j, but a different set q(g j

i), sorted best-first. The
running time of integrating the LM and DMV models is O(N3|V |4(n−1)|P|), where V is the output
vocabulary and P the vocabulary used in the DMV. When using a lexicalized dependency model,

323

KONSTAS & LAPATA

R(R(skyCover1.t)→ FS(temp1,start) R(temp1.t)) : s
[FS(temp1,start),1,2;〈with, IN〉] : s1 [R(temp1.t),2,8;〈a low?15 degrees, JJ〉] : s2

[R(skyCover1.t),1,8;〈with a?15 degrees, JJ〉] : s · s1 · s2 · p(〈with a?15 degrees, JJ〉)

R(FS(windSpeed1,min)→ F(windSpeed1,max) FS(windSpeed1,max)) : s
[F(windSpeed1,max),3,4;〈high, JJ〉] : s1 [FS(windSpeed1,max),4,5;〈15, CD〉] : s2

[FS(windSpeed1,min),3,5;〈high 15, JJ〉] : s · s1 · s2

R(F(windDir1,mode)→W(windDir1,mode)) : s [W(windDir1,mode),3,4;〈southeast, JJ〉] : s1

[F(windDir1,mode),3,4;〈southeast, JJ〉] : s · s1

Figure 9: Inference rules in the extended decoder for productions (2), (4), and (7) from Table 1
(WEATHERGOV domain). The strings in 〈. . .〉, correspond to the output of the functions qmlm

and qmdep . We adopt an unlexicalized dependency model, trained on POS tags derived from the
Penn Treebank project (Marcus et al., 1993). In the first example IN corresponds to the word with
and JJ to the word low, in the second example JJ corresponds to the word high and CD to the
number 15, whereas in the third example JJ corresponds to the word southeast.

P collapses to V , otherwise it contains the part-of-speech (POS) tags for every gi ∈V . Notice that
rule (2) in Figure 8 combines two items that contain at most 2(n− 1) words, hence the exponent
4(n− 2). This running time is too slow to use in practice, so as we explain below we must adopt
some form of pruning in order to be able to explore the search space efficiently.

3.7 Approximate Search

Consider the task of deriving a k-best list of items L([A, i, j;q(g j
i)]) for the deducted item [A, i, j;q(g j

i)]

of rule (2) in the extended decoder of Figure 8. An item Lm([A, i, j;q(g j
i)]) at position m of the list,

with 1≤m≤ k, takes the form [A, i, j;q(gm| ji)]. An example of this procedure is shown in Figure 10.
The grid depicts all possible combinations of items [B, i,k;q(gk

i)] and [C,k, j;q(g j
k)] as inferred by

a rule of the form R(A→ B C) with their corresponding weights. Any of the k2 combinations can
be used to create the resulting k-best list shown at the bottom of the figure, and store it on the cell
of chart ′[A, i, j]. However, we only want to keep k items, so most of them are going to be pruned
away. In fact, the grid of the example can be in the worst case a cube, i.e., can hold up to two three
dimensions, one for all the rules A→ B C with the same left hand-side non-terminal A, and two for
the corresponding items rooted on B and C6; this calls for the calculation of k3 combinations. A
better approach is to apply cube pruning (Chiang, 2007; Huang & Chiang, 2005), i.e., to compute
only a small corner of the grid and prune items out on the fly, thus obviating the costly computation
of all k3 combinations.

6. The deducted item [R(skyCover1.t);q(g8
1)] of Figure 10 can also be inferred by the rule R(R(skyCover1.t) →

R(windSpeed1.t) FS(windSpeed1,start)) (and its corresponding antecedent items) or the rule R(R(skyCover1.t)→
R(rainChance1.t) FS(rainChance1,start)), and so on. We illustrate only a slice of the cube, depicting the enumera-
tion of k-best lists for a fixed grammar rule, for the sake of clarity.

324

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈w

ith
,I

N
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

,D
T
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

ro
un

d,
R

B
〉]

.95 .93 .91

[R(temp1.t),2,8;〈a low?15 degrees, JJ〉] .56 .40 .25 .20

[R(temp1.t),2,8;〈low around?15 degrees, JJ〉] .54 .35 .30 .17

[R(temp1.t),2,8;〈a low? around 17, RB〉] .44 .15 .08 .10

⇒

[R(skyCover1.t),1,8;〈with a?15 degrees, JJ〉 : .40
[R(skyCover1.t),1,8;〈with low?15 degrees, JJ〉] : .35
[R(skyCover1.t),1,8;〈a a?15 degrees, JJ〉] : .25
[R(skyCover1.t),1,8;〈around low?15 degrees, RB〉] : .17
[R(skyCover1.t),1,8;〈with a? around 17, RB〉] : .15

· · ·

Figure 10: Computing an exhaustive list for the deducted item [R(skyCover1.t);q(g8

1)] via ap-
plication of inference rule (2) of the extended decoder in Figure 9. The antecedent items are
the rule R(R(skyCover1.t)→ R(temp1.t) FS(temp1,start)) and the items [R(temp1.t),2,8;q(g8

2)],
FS(temp1,start),1,2;q(g2

1)]. The figure shows a slice of the cube, for the particular rule; on each
side of the grid are the lists of the top three candidate items for each antecedent item, sorted best-
first. Numbers in the grid represent the total score for each combination.

Consider Figure 11 as an example. Each side of the grid shows the lists of the top three items
for each antecedent item. Numbers on the grid represent the total score for each combination.
Figures 11b–11d illustrate the enumeration of the top three combinations in best-first order. Cells
in gray represent the frontiers at each iteration; cells in black are the resulting top three items. The
basic intuition behind cube pruning is that for a pair of antecedent items u1 = [B, i,k;q(gk

i)], u2 =

[C,k, j;q(g j
k)] and their sorted k-best lists L(u1), L(u2), the best combinations should lie close to the

upper-left corner of the grid. In the example, the 3-best list of the nodes u1 = [R(temp1.t),2,8;q(g8
2)]

325

KONSTAS & LAPATA

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈w

ith
,I

N
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

,D
T
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

ro
un

d,
R

B
〉]

.95 .93 .91

[R(temp1.t),2,8;〈a low?15 degrees, JJ〉] .56 .40 .25 .20

[R(temp1.t),2,8;〈low around?15 degrees, JJ〉] .54 .35 .30 .17

[R(temp1.t),2,8;〈a low? around 17, RB〉] .44 .15 .08 .10

(a)

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈w

ith
,I

N
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

,D
T
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

ro
un

d,
R

B
〉]

.95 .93 .91

.40 .25 .20

.35 .30 .17

.15 .08 .10

(b)

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈w

ith
,I

N
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

,D
T
〉]

[F
S(

te
m

p 1
,s

ta
rt
),

1,
2;
〈a

ro
un

d,
R

B
〉]

.95 .93 .91

.40 .25 .20

.35 .30 .17

.15 .08 .10

(c)

Figure 11: Computing item combinations for u1 = [R(temp1.t),2,8;q(g8
2)] and

u2 = [FS(temp1,start),1,2;q(g2
1)] using cube pruning. In (a)–(c) we enumerate the combi-

nations of items in order to construct a resulting k-best list as described in the text.

and u2 = [FS(temp1,start),1,2;q(g2
1)] are:

L(u1) =
[
〈a low?15 degrees, JJ〉,〈low around?15 degrees, JJ〉,〈a low? around 17, RB〉

]
L(u2) =

[
〈with, IN〉,〈a, DT〉,〈around, RB〉

]
and intuitively the best combination should be the derivation on the top left corner7:(

L1(u1),L1(u2)
)
=
(
〈a low?15 degrees, JJ〉,〈with, IN〉

)
= 〈with a?15 degrees, IN〉

In cases where the combination cost, i.e., the score of the grammar rule multiplied with the
rescoring weight p(g), is negligible, we could start enumerating item combinations in the or-
der shown in Figures 11b–11c, starting from (L1(u1),L1(u2)) and stopping at k. Since the two
lists are sorted it is guaranteed that L2(u1), i.e., the second item in the k-best list of u1 is either
(L1(u1),L2(u2)) or (L2(u1),L1(u2)) (in the example of Figure 11b it is the latter). We thus select
it and move on to compute its neighboring combinations, and so on.8 For the computation of the
k-best lists of the axioms [W, i, i+1;q(gi+1

i)], we enumerate the top-k terminal symbols gi+1.
If we take into account the combination cost, the grid is non-monotonic, and therefore the best-

first guarantee no longer holds as we enumerate neighbors in the fashion just described. Huang
and Chiang (2007) argue that the loss incurred by the search error is insignificant compared to the
speedup gained. In any case, to overcome this, we compute the resulting k-best list, by first adding

7. Note that the head of the sub-generation fragment has shifted to the head of L2.
8. Contrary to Huang and Chiang (2007) we use probabilities instead of log scores in the computation of the item

combinations, hence we select the biggest scoring combinations.

326

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

the computed item combinations in a temporary buffer, and then resort it after we have enumerated
a total of k combinations.

3.8 Learning

We represent our grammar and each input scenario as a weighted hypergraph (Gallo, Longo, Pal-
lottino, & Nguyen, 1993). We follow the procedure proposed by Klein and Manning (2001) which
allows to transform any CFG to a hypergraph. In order to learn the weights of the grammar rules
we directly estimate them on the hypergraph representation using the EM algorithm. Formally, the
objective we are trying to optimize factorizes into:

P(r,ri.f,w|d) = ∏
i

P(ri|d)∏
j

P(ri. f j|ri)∏
k

P(w j|ri. f j,ri) (16)

where r is the set of all record tokens ri. Given a training set of scenarios with database records d
and observed text w we maximize the marginal likelihood of the data, while summing out record
tokens ri and their fields ri.f, which can be regarded as latent variables:

argmax
θ

∏
(w,d)

∑
r,ri.f

p(r,ri.f,w|d;θ), (17)

where θ are the multinomial distributions or weights of GGEN . The EM algorithm alternates between
the E-step and the M-step. In the E-step we compute the expected counts for the rules using a
dynamic program similar to the inside-outside algorithm (Li & Eisner, 2009). Then in the M-step,
we optimise θ by normalising the counts computed in the E-step. We initialise EM with a uniform
distribution for each multinomial distribution and applied add-0.001 smoothing to each multinomial
in the M-step. On average, EM converged for all datasets after 15 iterations. Note that the n-gram
language model and the dependency model are trained externally, hence their parameters are not
optimized alongside our model. The generation procedure for the extended decoder in Figure 8 is
implemented using dynamic programming. The choice of the hypergraph representation is merely
one of several alternatives. For example, we could have adopted a representation based on weighted
finite state transducers (de Gispert, Iglesias, Blackwood, Banga, & Byrne, 2010) since our model
describes a regular language both in terms of the PCFG and the surface level models we intersect
it with. It is also possible to represent our grammar as a pushdown automaton (Iglesias, Allauzen,
Byrne, de Gispert, & Riley, 2011) and intersect it with finite automata representing a language model
and dependency-related information, respectively. The choice of the hypergraph representation was
motivated by its compactness9 and the fact that it allows for future extensions of our PCFG with
rules which capture more global aspects of the generation problem (e.g., document planning) and
which unavoidably result in context-free languages.

4. Experimental Design

In this section we present our experimental setup for assessing the performance of our model. We
give details on the datasets we used, explain how our own model was trained, describe the models
used for comparison with our approach, and discuss how system output was evaluated.

9. Hypergraphs are commonly used in the machine translation literature to allow for compact encoding of SCFGs
even though in some cases they also describe regular languages. For example, this is true for the SCFGs employed
in hierarchical phrase-based SMT (Chiang, 2007) which assume a finite input language and do not permit infinite
recursions.

327

KONSTAS & LAPATA

4.1 Data

We used our system to generate soccer commentaries, weather forecasts, and spontaneous utter-
ances relevant to the air travel domain (examples are given in Figure 1). For the first domain we
used the dataset described in the work of Chen and Mooney (2008), which consists of 1,539 sce-
narios from the 2001–2004 Robocup game finals (henceforth ROBOCUP). Each scenario contains
on average |d| = 2.4 records, each paired with a short sentence (5.7 words). This domain has a
small vocabulary (214 words) and simple syntax (e.g., a transitive verb with its subject and object).
Records in this dataset were aligned manually to their corresponding sentences (Chen & Mooney,
2008). Given the relatively small size of this dataset, we performed cross-validation following pre-
vious work (Chen & Mooney, 2008; Angeli et al., 2010). We trained our system on three ROBOCUP

games and tested on the fourth, averaging over the four train/test splits.
For weather forecast generation, we used the dataset presented in the work of Liang et al. (2009),

which consists of 29,528 weather scenarios for 3,753 major US cities (collected over four days). The
vocabulary in this domain (henceforth WEATHERGOV) is comparable to ROBOCUP (345 words),
however, the texts are longer (N = 29.3) and more varied. On average, each forecast has 4 sentences
and the content selection problem is more challenging; only 5.8 out of the 36 records per scenario
are mentioned in the text which roughly corresponds to 1.4 records per sentence. We used 25,000
scenarios from WEATHERGOV for training, 1,000 scenarios for development and 3,528 scenarios
for testing. This is the same partition used in the work of Angeli et al. (2010).

For the air travel domain we used the ATIS dataset (Dahl, Bates, Brown, Fisher, Hunicke-Smith,
Pallett, Pao, Rudnicky, & Shriberg, 1994), consisting of 5,426 scenarios. These are transcriptions
of spontaneous utterances of users interacting with a hypothetical online flight booking system.
We used the dataset introduced in the work of Zettlemoyer and Collins (2007)10 and automati-
cally converted their lambda-calculus expressions to attribute-value pairs following the conven-
tions adopted in the study of Liang et al. (2009).11 Figure 1c shows the output of our conver-
sion process from the original lambda expression λx. f light(x)∧ f rom(x,denver)∧ to(x,boston)∧
day number departure(x,9) ∧month departure(x,august)∧ < (arrival time(x), 16:00). Given
such an expression, we first create a record for each variable (e.g., x). We then assign record types
according to the corresponding class types (e.g., variable x has class type flight). Next, fields and
values are added from predicates with two arguments with the class type of the first argument match-
ing that of the record type. The name of the predicate denotes the field, and the second argument
denotes the value (e.g., f rom(x,denver) is used to fill the record of type Flight, since the type of
the first argument is also f light). The name of the function becomes the field name, (i.e., from) and
the second argument is set as its value, (i.e., denver). Note that some functions have names such as
month departure, month arrival, day number arrival, day number departure and so on. In order
to reduce the resulting number of record types, we created aggregate record types which embed
the common information (i.e., departure, or arrival) to a special field. In the example, the function
day number departure is split into the value departure of the field dep/ar for the record Day, and
into the field number with value 9. We also defined special record types, such as Condition and
Search. The latter is introduced for every lambda operator and assigned the categorical field what
with value flight which refers to the record type of variable x.

10. The original corpus contains user utterances of single dialogue turns which would result in trivial scenarios. Zettle-
moyer and Collins (2007) concatenate all user utterances referring to the same dialogue act, (e.g., book a flight), thus
yielding more complex scenarios with longer sentences.

11. See Konstas (2013) for the resulting dataset.

328

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

In contrast to the two previous datasets, ATIS has a much richer vocabulary (927 words); each
scenario corresponds to a single sentence (average length is 11.2 words) with 2.65 out of 19 record
types mentioned on average. Note that the original lambda expressions were created based on
the utterance, and thus contain all the necessary information conveyed in the meaning of the text.
As a result, all of the converted records in each scenario are mentioned in the corresponding text.
Following the work of Zettlemoyer and Collins (2007), we trained on 4,962 scenarios and tested on
ATIS NOV93 which contains 448 examples.

4.2 Model Training

Generation in our model amounts to finding the best derivation (ĝ,h) that maximizes the product
of two likelihoods, namely p(g,h |d) and p(g) (see equation (5)). p(g,h |d) corresponds to the
rules of GGEN that generate the word sequence g, whereas p(g) is the likelihood of g independently
of d. We estimate p(g,h |d) as described in Section 3.8. Examples of the top scoring items of the
multinomial distributions for some of the grammar rules of GGEN are given in Table 3. We obtain
an estimate for p(g) by linearly interpolating the score of a language model and DMV (Klein &
Manning, 2004).

Specifically, our language models were trained with the SRI toolkit (Stolcke, 2002) using add-1
smoothing.12 For the ROBOCUP domain, we used a bigram language model given that the average
text length is relatively small. For WEATHERGOV and ATIS, we used a trigram language model.
We obtained an unlexicalized version of the DMV13 for each of our domains. All datasets were
tagged automatically using the Stanford POS tagger (Toutanova, Klein, Manning, & Singer, 2003)
and words were augmented with their part of speech, e.g., low becomes low/JJ, around becomes
around/RB and so on; words with several parts of speech were duplicated as many times as the
number of different POS tags assigned to them by the tagger. For example, the gust may act both
as a noun and a verb, given their context, hence we keep both augmented forms, i.e., gust/NNS and
gust/VBS. We initialized EM to uniform distributions where a small amount of noise14 was added
over all multinomials (i.e., PSTOP and PCHOOSE) to break initial symmetry. Klein and Manning (2004)
use a harmonic distribution instead, where the probability of one word heading another is higher
if they appear closer to one another. Preliminary results on the development set showed that the
former initialization scheme was more robust across datasets.

Our model has two hyperparameters: the number of k-best derivations considered by the de-
coder and the vector β of weights for model integration. Given that we only interpolate two mod-
els whose weights should sum to one, we only need to modulate a single interpolation parame-
ter 0≤ βLM ≤ 1. When βLM is 0, the decoder is only influenced by the DMV and conversely when
βLM is 1 the decoder is only influenced by the language model. In the general case, we could learn
the interpolation parameters using minimum error rate training (Och, 2003), however this was not
necessary in our experiments. We performed a grid search over k and βLM on held-out data taken

12. Adopting a more complex smoothing technique such as Good-Turing (Good, 1953) is usually not applicable in so
small vocabularies. The statistics for computing the so called count-of-counts, i.e., the number words occurring once,
twice and so on, are not sufficient and lead to poor smoothing estimates.

13. When trained on the WSJ-10 corpus, our implementation of the DMV obtained the same accuracy as reported in
the work of Klein and Manning (2004). WSJ-10 consists of 7,422 sentences with at most 10 words after removing
punctuation.

14. Repeated runs with different random noise on the WSJ-10 corpus yielded the same results; accuracy stabilized around
the 60th iteration (out of 100).

329

KONSTAS & LAPATA

Weight Distribution Top-5 scoring items
P(α |pass, from, purple2) purple2, a, makes, pink10, short
P(α |steal, null, NULL) ball, the, steals, from, purple8
P(α | turnover, null, NULL) to, the, ball, kicks, loses

(a) ROBOCUP

Weight Distribution Top-5 scoring items

P(ri.t | temperature) windDir, sleetChance, windSpeed,
freezingRainChance, windChill

P(ri.t |windSpeed) gust, null, precipPotential,
windSpeed, snowChance

P(ri.t |skyCover) temperature, skyCover, thunderChance,
null, rainChance

P(fi | temperature.time) min, max, mean, null, time
P(fi |windSpeed.min) max, time, percent, mean, null
P(fi |gust.max) min, mean, null, time, max
P(α |skyCover, percent, 0-25) “,”, clear, mostly, sunny, mid
P(α |skyCover, percent, 25-50) “,”, cloudy, partly, clouds, increasing
P(α | rainChance, mode, Definitely) rain, of, and, the, storms

(b) WEATHERGOV

Weight Distribution Top-5 scoring items
P(ri.t |search) flight, search, when, day, condition
P(ri.t |flight) search, day, flight, month, condition
P(ri.t |day) when, search, flight, month, condition
P(α |flight, to, mke) mitchell, general, international, takeoffs, depart
P(α |search, what, flight) I, a, like, to, flight
P(α |search, type, query) list, the, me, please, show

(c) ATIS

Table 3: Top-5 scoring items of the multinomial distributions for record rules, field rules and the
categorical word rewrite rule of GGEN (see rules (2), (4), and (8) in Table 1, respectively). The first
column of each table shows the underlying multinomial distribution for the corresponding rule. For
example P(α |pass, from, purple2), corresponds to the distribution of emitting word α given the
value purple2 of the field from of the record with type pass.

from WEATHERGOV, ROBOCUP, and ATIS, respectively. The optimal values for k and βLM for the
three domains (when evaluating system performance with BLEU-4) are shown in Table 4.

We conducted two different tuning runs, one for a version of our model that only takes the LM
into account (k-BEST-LM; βLM = 1) and another one where the LM and the DMV are integrated
(k-BEST-LM-DMV). As can be seen, optimal values for k are generally larger for k-BEST-LM-DMV.
This is probably due to noise introduced by the DMV; as a result, the decoder has to explore the
search space more thoroughly. In an effort to investigate the impact of the DMV further, we fixed

330

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

k-BEST-LM k
ROBOCUP 25
WEATHERGOV 15
ATIS 40
(a) Interpolation with LM

k-BEST-LM-DMV k βLM

ROBOCUP 85 0.9
WEATHERGOV 65 0.3
ATIS 40 0.6
(b) Interpolation with LM and DMV

Table 4: Optimal values for parameters k and βLM calculated by performing grid search against
BLEU-4 on the development set. βLM in Table (a) is set to 1.

βLM = 0 on the development set and performed a grid search with the DMV on its own. Model
performance dropped significantly (by 5–8% BLEU points) which is not entirely surprising given
that the DMV alone cannot guarantee fluent output. Its contribution rather rests on capturing more
global dependencies outwith the local horizon of the language model.

4.3 Determining the Output Length

Unlike other generation systems that operate on the surface realization level with word templates,
we emit each word individually in a bottom-up fashion. Therefore, we need to decide on the number
of words N we wish to generate before beginning the decoding process. A common approach is to
fix N to the average text length of the training set (Banko, Mittal, & Witbrock, 2000). However, this
would not be a good choice in our case, since text length does not follow a normal distribution. As
shown in Figure 12 the distribution of N across domains is mostly skewed.

To avoid making unwarranted assumptions about our output, we trained a linear regression
model that determines the text length individually for each scenario. As input to the model, we
used a flattened version of the database, with features being record-field pairs. The underlying idea
is that if a scenario contains many records and fields, then we should use more words to express
them. In contrast, if the number of records and fields is small, then it is likely that the output is more
laconic. In an attempt to capture the number of words needed to communicate specific record-field
pairs, we experimented with different types of feature values, e.g., by setting a feature to its actual
value (categorical or numerical) or its frequency in the training data. The former scheme worked
better in denser datasets, such as WEATHERGOV and ROBOCUP whereas the latter was adopted
in ATIS which has a sparser database, as a means to smooth out infrequent values. When trained
on the training set and tested on the development set our regression model obtained a correlation
coefficient of 0.64 for ROBOCUP, 0.84 for WEATHERGOV, and 0.73 for ATIS (using Pearson’s r).

4.4 System Comparison

We evaluated three configurations of our system. A baseline that uses the top scoring derivation in
each subgeneration (1-BEST) and two versions of our model that make better use of our decoding
algorithm. One version integrates the k-best derivations with a LM (k-BEST-LM), the other ver-
sion additionally takes the DMV into account (k-BEST-LM-DMV). Preliminary experiments with a
model that integrates the k-best derivations with the DMV did not exhibit satisfactory results (see
Section 4.2) and we omit them here for the sake of brevity. We compared the output of our models to

331

KONSTAS & LAPATA

3 5 7 9 11 13 15 17

100
200
300
400
500
600
700

(a) Text length N in ROBOCUP

Fr
eq

ue
nc

y

9 21 33 45 57 69 81

1000

200

3000

4000

5000

6000

7000

(b) Text length N in WEATHERGOV

Fr
eq

ue
nc

y

2 6 10 14 18 22 26 30 34 38 44 48

400

800

1200

1600

2000

2400

(c) Text length N in ATIS

Fr
eq

ue
nc

y

Figure 12: Text length distribution in ROBOCUP, WEATHERGOV, and ATIS (training set).

Angeli et al. (2010) whose approach is closest to ours and state-of-the-art on the WEATHERGOV.15

For ROBOCUP, we also compared against the best-published results (Kim & Mooney, 2010).

4.5 Evaluation

We evaluated system output automatically, using the BLEU-4 modified precision score (Papineni,
Roukos, Ward, & Zhu, 2002) with the human-written text as reference. In addition, we evaluated
the generated text via a judgment elicitation study. Participants were presented with a scenario and
its corresponding verbalization and were asked to rate the latter along two dimensions: fluency
(is the text grammatical and overall understandable?) and semantic correctness (does the meaning
conveyed by the text correspond to the database input?). The subjects used a five point rating scale
where a high number indicates better performance. We randomly selected 12 documents from the
test set (for each domain) and generated output with our models (1-BEST and k-BEST-LM-DMV) and
Angeli et al.’s (2010) model. We also included the original text (HUMAN) as gold standard. We thus

15. We are grateful to Gabor Angeli for providing us with the code of his system.

332

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

System BLEU
JO

IN
T 1-BEST 8.01.�

k-BEST-LM 24.88∗

k-BEST-LM-DMV 23.14∗

F
IX

E
D

1-BEST 10.79.�◦†

k-BEST-LM 30.90∗†

k-BEST-LM-DMV 29.73∗†

ANGELI 28.70∗†

KIM-MOONEY 47.27∗.�◦

(a) ROBOCUP

System BLEU
1-BEST 8.64.�◦

k-BEST-LM 33.70∗�◦

k-BEST-LM-DMV 34.18∗.◦

ANGELI 38.40∗.�

(b) WEATHERGOV

System BLEU
1-BEST 11.85.�◦

k-BEST-LM 29.30∗�

k-BEST-LM-DMV 30.37∗◦

ANGELI 28.70∗�

(c) ATIS

Table 5: BLEU-4 scores on ROBOCUP, WEATHERGOV, and ATIS (∗: significantly different from
1-BEST; ◦: significantly different from ANGELI; . significantly different from k-BEST-LM; �: sig-
nificantly different from k-BEST-LM-DMV; †: significantly different from KIM-MOONEY.

obtained ratings for 48 (12 × 4) scenario-text pairs for each domain. The study was conducted over
the Internet using Amazon Mechanical Turkand involved 305 volunteers (104 for ROBOCUP, 101
for WEATHERGOV, and 100 for ATIS), all self reported native English speakers. Our experimental
instructions are given in Appendix A.

5. Results

We conducted two experiments on the ROBOCUP domain. We first assessed the performance of
our generator on joint content selection and surface realization and obtained the results shown in
the upper half of Table 5a (see JOINT). In a second experiment we forced the generator to use the
gold-standard records from the database. This was necessary in order to compare with previous
work (Angeli et al., 2010; Kim & Mooney, 2010).16 Our results are summarized in lower half of
Table 5a (see FIXED).

Overall, our generator performs better than the 1-BEST baseline and comparably to Angeli et al.
(2010). k-BEST-LM-DMV is slightly worse than k-BEST-LM. This is due to the fact that sentences
in ROBOCUP are very short (their average length is 5.7 words) and as a result our model cannot
recover any meaningful dependencies. Using the Wilcoxon signed-rank test we find that differences
in BLEU scores among k-BEST-LM-DMV, k-BEST-LM and ANGELI are not statistically signifi-
cant. Kim and Mooney (2010) significantly outperform these three models and the 1-BEST baseline
(p < 0.01). This is not entirely surprising, however, as their model requires considerable more
supervision (e.g., during parameter initialization) and includes a post-hoc re-ordering component.
Finally, we also observe a substantial increase in performance compared to the joint content selec-
tion and surface realization setting. This is expected as the generator is faced with an easier task
and there is less scope for error.

With regard to WEATHERGOV, our model (k-BEST-LM and k-BEST-LM-DMV) significantly im-
proves over the 1-BEST baseline (p < 0.01) but lags behind Angeli et al. (2010) and the difference is

16. Angeli et al. (2010) and Kim and Mooney (2010) fix content selection both at the record and field level. We let our
generator select the appropriate fields, since these are at most two per record type and this level of complexity can be
easily tackled during decoding.

333

KONSTAS & LAPATA

5000 10000 15000 20000 25000

10
20
30
40
50
60
70
80
90

100

Number of training scenarios

F 1
(%

)

(a) Alignment

5000 10000 15000 20000 25000

5
10
15
20
25
30
35
40
45
50

Number of training scenarios

B
L

E
U

-4
(%

)

(b) Generation output

Figure 13: Learning curves displaying how the quality of the alignments and generated output vary
as a function of the size of the training data.

statistically significant (p < 0.01). Since our system emits words based on a language model rather
than a template, it displays more freedom in word order and lexical choice, and thus is likelier to
produce more creative output, sometimes even overly distinct compared to the reference. Dependen-
cies seem to play a more important role here, yielding overall better performance.17 Interestingly,
k-BEST-LM-DMV is significantly better than k-BEST-LM in this domain (p < 0.01). Sentences in
WEATHERGOV are longer than in ROBOCUP and this allows the k-BEST-LM-DMV to learn depen-
dencies that capture information complementary to the language model.

On ATIS, the k-BEST-LM-DMV model significantly outperforms the 1-BEST (p < 0.01) and
ANGELI (p < 0.05), whereas k-BEST-LM performs comparably. Furthermore, k-BEST-LM-DMV is
significantly better than k-BEST-LM (p < 0.01). The ATIS domain is the most challenging with
respect to surface realization. The vocabulary is larger than ROBOCUP by a factor of 4.3 and
WEATHERGOV by a factor of 2.7. Because of the increased vocabulary the model learns richer
dependencies which improve its fluency and overall performance.

We also examined the amount of training data required by our model. We performed learning
experiments on WEATHERGOV since it contains more training scenarios than ROBOCUP and ATIS

and is more challenging with regard to content selection. Figures 13(a) and (b) show how the num-
ber of training instances influnces the quality of the alignment and generation output, respectively.
We measure alignment F-score following the methodology outlined in the work of Liang et al.
(2009) using their gold alignments. The graphs show that 5,000 scenarios are enough for obtaining
reasonable alignments and generation output. A very small upward trend can be detected with in-
creasing training instances, however it seems that considerably larger amounts would be required to
obtain noticeable improvements.

17. DMV is commonly trained on a sentence-by-sentence basis. In the ROBOCUP and ATIS datasets, each scenario-text
pair corresponds to a single sentence. In WEATHERGOV, however, the text may include multiple sentences. In
the latter case we trained the DMV on the multi-sentence text without presegmenting it into individual sentences.
This non-standard training regime did not seem to pose any difficulty in this domain, as we can safely assume that
all examples have the same elided root head, namely “weather” (e.g., The weather is mostly cloudy, with a low
around 30).

334

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

ROBOCUP WEATHERGOV ATIS

System F SC F SC F SC
1-BEST 2.14�†◦ 2.09�†◦ 2.25�†◦ 2.53�†◦ 2.40�†◦ 2.49�†◦

k-BEST-LM-DMV 4.05∗ 3.55∗† 3.89∗ 3.54∗ 3.96∗ 3.82∗◦

ANGELI 4.01∗ 3.47∗† 3.82∗ 3.72∗ 3.86∗ 3.31∗†�

HUMAN 4.17∗ 3.97∗�◦ 4.01∗ 3.58∗ 4.16∗ 3.96∗◦

Table 6: Mean ratings for fluency (F) and semantic correctness (SC) on system output elicited by
humans on ROBOCUP, WEATHERGOV, and ATIS (∗: significantly different from 1-BEST; ◦: sig-
nificantly different from ANGELI; �: significantly different from k-BEST-LM-DMV; †: significantly
different from HUMAN).

The results of our human evaluation study are shown in Table 6. We report mean ratings for each
system and the gold-standard human authored text. Our experimental participants rated the output
on two dimensions, namely fluency (F) and semantic correctness (SC). We elicited judgments only
for k-BEST-LM-DMV as it generally performed better than k-BEST-LM in our automatic evaluation
(see Table 5). We carried out an Analysis of Variance (ANOVA) to examine the effect of system
type (1-BEST, k-BEST-LM-DMV, ANGELI, and HUMAN) on the fluency and semantic correctness
ratings. We used Tukey’s Honestly Significant differences (HSD) test, as explained by Yandell
(1997) to assess whether means differences are statistically significant.

On all three domains our system (k-BEST-LM-DMV) is significantly better than the 1-BEST base-
line (a < 0.01) in terms of fluency. Our output is indistinguishable from the gold-standard (HUMAN)
and ANGELI (pair-wise differences among k-BEST-LM-DMV, ANGELI and HUMAN are not statis-
tically significant). With respect to semantic correctness, on ROBOCUP, k-BEST-LM-DMV is sig-
nificantly better than 1-BEST (a < 0.01) but significantly worse than HUMAN (a < 0.01). Although
the ratings for k-BEST-LM-DMV are numerically higher than ANGELI, the difference is not statisti-
cally significant. ANGELI is also significantly worse than HUMAN (a < 0.01). On WEATHERGOV,
the semantic correctness of k-BEST-LM-DMV and ANGELI is not significantly different. These two
systems are also indistinguishable from HUMAN. On ATIS, k-BEST-LM-DMV is the best perform-
ing model with respect to semantic correctness. It is significantly better than 1-BEST and ANGELI

(a < 0.01) but not significantly different from HUMAN.
In sum, we observe that performance improves when k-best derivations are taken into account

(the 1-BEST system is consistently worse). Our results also show that taking dependency-based
information into account boosts model performance over and above what can be achieved with a
language model. Our model is on par with ANGELI on ROBOCUP and WEATHERGOV but performs
better on ATIS when evaluated both automatically and by humans. Error analysis suggests that a
reason for ANGELI’s poorer performance on ATIS might be its inability to create good quality
surface templates. This is due to the lack of sufficient data and the fact that templates cannot
fully express the same database configurations in many different ways. This is especially true for
ATIS which consists of transcriptions of spontaneous spoken utterances and the same meaning can
be rendered in many different ways. For example, the phrases “show me the flights”, “what are
the flights”, “which flights”, and “please can you give me the flights”, all convey the exact same
meaning stemming from a Search record.

Our model learns domain specific conventions about “how to say” and “what to say” from data,
without any hand-engineering or manual annotation. Porting the system to a different domain is

335

KONSTAS & LAPATA

Input:
Bad Pass

from to
pink11 purple5

1-BEST: pink11 pass purple5 purple5 pink11 pass purple5 purple5 purple5

k-BEST-LM-DMV: pink11 made a pass that was intercepted by purple5

ANGELI:
pink11 made a bad pass that missed its target and was picked up by
purple5

HUMAN: pink11 tries to pass but was intercepted by purple5

(a) ROBOCUP

Input:

Temperature

time min mean max
06:00-21:00 32 39 46

Wind Speed

time min mean max
06:00-21:00 6 7 10

Cloud Sky Cover

time percent (%)
06:00-21:00 75-100

Wind Direction
time mode

06:00-21:00 SE

1-BEST: Near 46. Near 46. Near 46. Near 46. Near 46. With near 46. Southeast wind.

k-BEST-LM-DMV: Mostly cloudy, with a high near 46. South southeast wind between 6 and 10 mph.

ANGELI : A chance of rain or drizzle, with a high near 46. Southeast wind between 6
and 10 mph. mph. Chance of precipitation is 60%.

HUMAN: Mostly cloudy, with a high near 46. South southeast wind between 6 and 10 mph.

(b) WEATHERGOV

Input:

Flight

from to
milwaukee phoenix

Day

day dep/ar/ret
saturday departure

Search

type what
query flight

1-BEST: Milwaukee Phoenix on Saturday on Saturday on Saturday on Saturday

k-BEST-LM-DMV: Show me the flights from Milwuakee to Phoenix on Saturday

ANGELI : Show me the flights between Milwuakee and Phoenix on Saturday

HUMAN: Milwuakee to Phoenix on Saturday

(c) ATIS

Figure 14: Example output on (a) sportscasting, (b) weather forecasting, and (c) air travel domains
with correct content selection.

straightforward, assuming a database and corresponding (unaligned) text. As long as the database
obeys the structure of the grammar GGEN , we need only retrain the model to obtain the weights of
the grammar rules; in addition, the system requires a domain specific language model and optionally

336

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

Gold:

Temperature

time min mean max
06:00-21:00 30 38 44

Wind Speed

time min mean max
06:00-21:00 6 6 7

Cloud Sky Cover

time percent (%)
06:00-21:00 75-100

Wind Direction
time mode

06:00-21:00 ENE

Precipitation Potential (%)

time min mean max
06:00-21:00 9 20 35

Chance of Rain

Time Mode
06:00-21:00 Slight Chance

Output: A 40 percent chance of showers before 10am. Mostly cloudy, with a high
near 44. East northeast wind around 7 mph.

(a) Gold standard content selection and its verbalization

Content
Selection:

Temperature

time min mean max
06:00-21:00 30 38 44

Wind Speed

time min mean max
06:00-21:00 6 6 7

Cloud Sky Cover

time percent (%)
06:00-21:00 75-100

Wind Direction
time mode

06:00-21:00 ENE

Chance of Thunderstorm

time mode
06:00-13:00 --
13:00-21:00 --

Chance of Rain

time mode
06:00-09:00 Chance

Output: A chance of showers. Patchy fog before noon. Mostly cloudy, with a
high near 44. East wind between 6 and 7 mph.

(b) k-BEST-LM-DMV content selection

Content
Selection:

Temperature

time min mean max
06:00-21:00 30 38 44

Wind Speed

time min mean max
06:00-21:00 6 6 7

Wind Direction
time mode

06:00-21:00 ENE

Precipitation Potential (%)

time min mean max
06:00-21:00 9 20 35

Chance of Thunderstorm

time mode
06:00-21:00 --

Chance of Rain

time mode
06:00-09:00 Chance

Output: A chance of showers. Patchy fog before noon. Mostly cloudy, with a high
near 44. East wind between 6 and 7 mph. Chance of precipitation is 35%

(c) ANGELI content selection

Figure 15: Example output on WEATHERGOV domain with incorrect content selection (in gray).

337

KONSTAS & LAPATA

ROOT

on

on

on

on

Saturdayon

from

Phoenix

Phoenix

PhoenixtoMilwaukeefromflights

show

me

themeshow

Figure 16: Dependency structure for the sentence Show me the flights from Milwaukee to Phoenix
on Sunday as generated by k-BEST-LM-DMV (see Figure 14c). Intermediate nodes in the tree denote
the head words of each subtree.

information about heads and their dependents which the DMV learns in an unsupervised fashion.
In the latter case, we also need to tune the hyperparameter βLM, and in both cases k. Note, that
fine-tuning k becomes less important when integrating with a language model only. As we explain
in Section 4.2, the DMV possibly introduces noise, therefore we have to modulate k more carefully
so as to allow the decoder to search in a bigger space.

Examples of system output with correct content selection at the record level are given in Fig-
ure 14. Note that in the case of ROBOCUP, content selection is fixed to the gold standard. As can
be seen, the generated text is close to the human authored text. Also note that the output of our
system improves considerably when taking k-best derivations into account (compare 1-BEST and
k-BEST-LM-DMV in the figure). Figure 15a shows examples with incorrect content selection at the
record level for the WEATHERGOV domain. Figure 15a shows the gold standard content selection
and its corresponding verbalization. Figures 15b and 15c show the output of the k-BEST-LM-DMV

system and ANGELI. Tables in black denote record selection identical to the gold standard, whereas
tables in grey denote false positive recall. k-BEST-LM-DMV identifies an incorrect value for the
Mode field in the Chance of Rain record; in addition, it fails to select the Precipitation Poten-
tial (%) record altogether. The former mistake does not affect the correctness of the generator’s
output, whereas the latter does (i.e., it fails to mention the exact likelihood of rain, 40% in the gold
standard and 35% in ANGELI’s output). Finally, Figure 16 shows the dependency structure our
model produced for the sentence Show me the flights from Milwaukee to Phoenix on Saturday from
Figure 14c; notice the long range dependency between flights and on, which would otherwise be
inaccessible to a language model.

338

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

6. Conclusions

We have presented an end-to-end generation system that performs content selection and surface
realization simultaneously. Central to our approach is the encoding of generation as a parsing prob-
lem. We reformulate the input (a set of database records and text describing some of them) as a
PCFG and show how to approximately find the best generated string licensed by the grammar. We
evaluated our model on three domains (ROBOCUP, WEATHERGOV, ATIS) and showed that it is
able to obtain performance comparable or superior to the state-of-the-art. Our experiments were
also designed to assess several aspects of the proposed framework such as the use of k-best decod-
ing and the intersection of our grammar with multiple information sources. We observed that k-best
decoding is essential to producing good quality output. Across domains, performance increases by
a factor of at least two when multiple derivations are taken into account. In addition, intersecting
the grammar with dependency-based information seems to capture syntactic information comple-
mentary to the language model. We argue that our approach is computationally efficient and viable
in practical applications. Outwith generation, we hope that some of the work described here might
be of relevance to other fields such as summarization or machine translation.

Future extensions are many and varied. An obvious extension concerns porting the framework
to more challenging domains with richer vocabulary and longer texts (e.g., product descriptions,
user manuals, sports summaries). A related question is how to extend the PCFG-based approach
advocated here so as to capture discourse-level document structure. Other future directions involve
exploiting the information available in the database more directly. Our model takes into account
the k-best derivations at decoding time, however inspection of these indicates that it often fails to
select the best one. Initial work (Konstas & Lapata, 2012) shows that the model presented here
can be adapted to use forest reranking, a technique that approximately reranks a packed forest of
exponentially many derivations (Huang, 2008). The reranker is essentially a structured perceptron
(Collins, 2002) enriched with local and non-local features. It therefore allows to explicitly model
dependencies across fields, records, and their interactions.

Finally, although not the focus of this paper, it is worth pointing out that the model described
here can also perform semantic parsing, i.e., convert text into a formal meaning representation. This
can be done trivially by modifying the grammar in Table 1. Instead of observing words as terminals
(rules (8) and (9)), we observe values of fields, given a particular word w, field, and record:

W(r,r. f) → f .v [P(f .v |r,r. f , f .t,w)]

W(r,r. f) → gen(w) [P(gen(w).mode |r,r. f , f .t=int)]

During decoding, the prior p(g) in equation (4) becomes p(f .v) and can be naively obtained by
creating an n-gram language model over the alignments between the meaning representations and
the text. Such alignments are in principle hidden but could be estimated using the model of Liang
et al. (2009).

Acknowledgments

We are grateful to the anonymous referees whose feedback helped to substantially improve the
present paper. Thanks to Luke Zettlemoyer and Tom Kwiatkowski for their help with the ATIS

dataset as well as Giorgio Satta and Frank Keller for helpful comments and suggestions. We also

339

KONSTAS & LAPATA

thank the members of the Probabilistic Models reading group at the University of Edinburgh for their
feedback. A preliminary version of this work was published in the proceedings of NAACL 2012.

Appendix A. Experimental Instructions

A.1 Instructions

In this experiment you will be given tables that contain some facts about the weather (e.g., Tem-
perature, Chance of Rain, Wind Direction, Cloud Coverage and so on) and their translation in
natural language. Example 1 below tabulates such weather related information and its translation as
Rainy with a high near 47. Windy, with an east wind between 5 and 15 mph.

Example 1
Category Fields

Temperature time: 17.00–06.00(+1 day) min: 30 mean: 40 max: 47

Wind Direction time: 17.00–06.00(+1 day) mode: SE

Cloud Sky Cover time: 17.00–06.00(+1 day) percent: 25–50

Chance of Rain time: 17.00–21.00 mode: Likely

Rainy with a high near 47. Windy , with an east wind between 5 and 15 mph.

Each row in the table contains a different weather-related event. The first row talks about tem-
perature, the second one about wind direction, etc. Different event types instantiate different fields.
For example, Temperature has four fields, time, min, mean, and max. Fields in turn have values,
which can be either numbers (e.g., 47 degrees Fahrenheit for the event Temperature), or words (e.g.,
Likely or Slight Chance for the event Chance of Rain).

More specifically, you should read the above table as follows. For Temperature, the field time
and its value 17.00-06.00(+1 day) refers to temperatures measured between 5pm and 6am of the
following day. The minimum temperature recorded for that time period is 30 degrees Fahrenheit
(field min), the maximum is 47 degrees (field max) and on average the temperature is 40 degrees
(field mean). For the same time period, the wind will blow from a south east direction (the mode of
Wind Direction is SE). 25–50% of the sky will be covered with clouds (see field percent with value
25-50 in Cloud Sky Cover), which may be interpreted as a slightly cloudy outlook. Finally, from
5pm to 9pm it is likely to rain, as indicated by the mode field and its value Likely for the Chance
of Rain event.

Note that all temperature values are in the Fahrenheit scale. The Fahrenheit scale is an alternative
temperature scale to Celsius, proposed in 1724 by the physicist Daniel Gabriel Fahrenheit. The
formula that converts Fahrenheit degrees to Celsius is [F] = [C] ×9

5 +32. So, for instance, −1 C =
30 F. Also note, the measure of speed used throughout the experiment is miles per hour, mph for
short.

All natural language translations have been generated by a computer program. Your task is to
rate the translations on two dimensions, namely Fluency and Semantic Correctness on a scale from

340

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

1 to 5. As far as Fluency is concerned, you should judge whether the translation is grammatical and
in well-formed English or just gibberish. If the translation is grammatical, then you should rate it
high in terms of fluency. If there is a lot of repetition in the translation or if it seems like word salad,
then you should give it a low number.

Semantic Correctness refers to the meaning conveyed by the translation and whether it corre-
sponds to what is reported in the tabular data. In other words, does the translation convey the same
content as the table or not? If the translation has nothing to do with the categories, fields or values
described in the table, you should probably give it a low number for Semantic Correctness. If the
translation captures most of the information listed in the table, then you should give it a high num-
ber. Bear in mind that slight numerical deviations are normal and should not be penalized (e.g., it is
common for weather forecasters to round wind speed values to the closest 5, i.e., ‘50 mph’ instead
of ‘47 mph’).

A.2 Rating Examples

In Example 1, you would probably give the translation a high score for Fluency (e.g., 4 or 5), since
it is coherent and does not contain any grammatical errors. However, you should give it a low
score for Semantic Correctness (e.g., 1–3), because it conveys information that is not in the table.
For example, ‘windy’ and ‘wind between 5 and 15 mph ’ both relate to wind speed but are not
mentioned in the table. Let us now consider the following example:

Example 2
Category Fields

Temperature time: 17.00–06.00(+1 day) min: 40 mean: 45 max: 50

Wind Direction time: 17.00–06.00(+1 day) mode: S

Wind Speed time: 17.00– 06.00(+1 day) min: 5 mean: 7 max: 15

Cloud Sky Cover time: 17.00–06.00(+1 day) percent: 0–25

Sunny, with a low around 40. South wind between 5 and 15 mph.

Here, you should give the translation high scores on both dimensions, namely Fluency and Se-
mantic Correctness. The text is grammatical and succinctly describes the content of the table. For
example, 4 or 5 would be appropriate numbers.

Example 3
Category Fields

Temperature time: 17.00–06.00(+1 day) min: 30 mean: 40 max:47

Wind Direction time: 17.00–06.00(+1 day) mode: ESE

Around 40. Around 40. Around 40. East wind.

341

KONSTAS & LAPATA

In example 3, the translation scores poorly on Fluency and Semantic Correctness. The text has
many repetitions and there is no clear correspondence between the translation and the table. ‘around
40 ’ probably refers to the temperature, but it is not at all clear from the context of the text. ‘east
wind ’ again refers to wind direction, but it is missing a verb or a preposition that would relate it to
the weather outlook. Appropriate scores for both dimensions would be 1 or 2.

Finally, while judging the translation pay attention to the values of the fields in the table in
addition to the event categories. For example, you may have an event Chance of Rain with a value
None in the mode field. This means that it is not likely to rain, and you should penalize any mention
of rain in the text, unless there is another event Chance of Rain for a different time period with a
different value in the mode field.

A.3 Rating Procedure

Before you start the experiment below you will be asked to enter your personal details. Next, you
will be presented with 15 table-translation pairs to evaluate in the manner described above. You will
be shown one pair at a time. Once you finish with your rating, click the button at the bottom right
to advance to the next response.

Things to remember:

• If you are unsure how to rate a translation, click on the top right of your window the Help
link. You may also leave it open during the course of the experiment as a reference.

• Higher numbers represent a positive opinion of the translation and lower numbers a negative
one.

• Do not spend too long analyzing the translations; you should be able to rate them once you
have read them for the first time.

• There is no right or wrong answer, so use your own judgment when rating each translation.

A.4 Personal Details

As part of the experiment we will ask you for a couple of personal details. This information will
be treated confidentially and will not be made available to a third party. In addition, none of your
responses will be associated with your name in any way. We will ask you to supply the following
information.

• Your name and email address.

• Your age and sex.

• To specify, under ’Language Region’, the place (city, region/state/province, country) where
you have learnt your first language.

• To enter the code provided at the end of the experiment into the Mechanical Turk HIT.

342

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

References

Amazon Mechanical Turk (2012). Retrieved from https://www.mturk.com..

Angeli, G., Liang, P., & Klein, D. (2010). A simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pp. 502–512, Cambridge, MA.

Banko, M., Mittal, V. O., & Witbrock, M. J. (2000). Headline generation based on statistical transla-
tion. In Proceedings of Association for Computational Linguistics, pp. 318–325, Hong Kong.

Barzilay, R., & Lapata, M. (2005). Collective content selection for concept-to-text generation. In
Proceedings of Human Language Technology and Empirical Methods in Natural Language
Processing, pp. 331–338, Vancouver, British Columbia.

Belz, A. (2008). Automatic generation of weather forecast texts using comprehensive probabilistic
generation-space models. Natural Language Engineering, 14(4), 431–455.

Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, pp. 173–180, Ann Arbor, Michigan.

Chen, D. L., & Mooney, R. J. (2008). Learning to sportscast: A test of grounded language ac-
quisition. In Proceedings of International Conference on Machine Learning, pp. 128–135,
Helsinki, Finland.

Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics, 33(2), 201–
228.

Collins, M. (2002). Discriminative training methods for hidden Markov models: Theory and ex-
periments with perceptron algorithms. In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, pp. 1–8, Philadelphia, Pennsylvania.

Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D., Pao, C., Rudnicky,
A., & Shriberg, E. (1994). Expanding the scope of the ATIS task: the ATIS-3 corpus. In
Proceedings of the Workshop on Human Language Technology, pp. 43–48, Plainsboro, New
Jersey.

Dale, R., Geldof, S., & Prost, J.-P. (2003). Coral: Using natural language generation for navigational
assistance. In Proceedings of the 26th Australasian Computer Science Conference, pp. 35–44,
Adelaide, Australia.

de Gispert, A., Iglesias, G., Blackwood, G., Banga, E. R., & Byrne, W. (2010). Hierarchical phrase-
based translation with weighted finite-state transducers and shallow-n grammars. Computa-
tional Linguistics, 36(3), 505–533.

Duboue, P. A., & McKeown, K. R. (2002). Content planner construction via evolutionary algorithms
and a corpus-based fitness function. In Proceedings of International Natural Language Gen-
eration, pp. 89–96, Ramapo Mountains, NY.

Gallo, G., Longo, G., Pallottino, S., & Nguyen, S. (1993). Directed hypergraphs and applications.
Discrete Applied Mathematics, 42, 177–201.

Goldberg, E., Driedger, N., & Kittredge, R. (1994). Using natural-language processing to produce
weather forecasts. IEEE Expert, 9(2), 45–53.

343

KONSTAS & LAPATA

Good, I. J. (1953). The population frequencies of species and the estimation of population parame-
ters. Biometrika, 40(3/4), pp. 237–264.

Goodman, J. (1999). Semiring parsing. Computational Linguistics, 25(4), 573–605.

Green, N. (2006). Generation of biomedical arguments for lay readers. In Proceedings of the 5th
International Natural Language Generation Conference, pp. 114–121, Sydney, Australia.

Huang, L. (2008). Forest reranking: Discriminative parsing with non-local features. In Proceedings
of ACL-08: HLT, pp. 586–594, Columbus, Ohio.

Huang, L., & Chiang, D. (2005). Better k-best parsing. In Proceedings of the 9th International
Workshop on Parsing Technology, pp. 53–64, Vancouver, British Columbia.

Huang, L., & Chiang, D. (2007). Forest rescoring: Faster decoding with integrated language models.
In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,
pp. 144–151, Prague, Czech Republic.

Iglesias, G., Allauzen, C., Byrne, W., de Gispert, A., & Riley, M. (2011). Hierarchical phrase-based
translation representations. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pp. 1373–1383, Edinburgh, Scotland, UK. Association for
Computational Linguistics.

Kasami, T. (1965). An efficient recognition and syntax analysis algorithm for context-free lan-
guages. Tech. rep. AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, Mas-
sachusetts.

Kim, J., & Mooney, R. (2010). Generative alignment and semantic parsing for learning from am-
biguous supervision. In Proceedings of the 23rd Conference on Computational Linguistics,
pp. 543–551, Beijing, China.

Klein, D., & Manning, C. (2004). Corpus-based induction of syntactic structure: Models of depen-
dency and constituency. In Proceedings of the 42nd Meeting of the Association for Computa-
tional Linguistics, pp. 478–485, Barcelona, Spain.

Klein, D., & Manning, C. D. (2001). Parsing and hypergraphs. In Proceedings of the 7th Interna-
tional Workshop on Parsing Technologies, pp. 123–134, Beijing, China.

Konstas, I. (2013). ATIS dataset retrieved from http://homepages.inf.ed.ac.uk/ikonstas/
index.php?page=resources..

Konstas, I., & Lapata, M. (2012). Concept-to-text generation via discriminative reranking. In
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pp. 369–378, Jeju, South Korea.

Li, Z., & Eisner, J. (2009). First- and second-order expectation semirings with applications to
minimum-risk training on translation forests. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, pp. 40–51, Suntec, Singapore.

Liang, P., Bouchard-Côté, A., Klein, D., & Taskar, B. (2006). An end-to-end discriminative ap-
proach to machine translation. In Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th Annual Meeting of the Association for Computational
Linguistics, pp. 761–768, Sydney, Australia.

344

A GLOBAL MODEL FOR CONCEPT-TO-TEXT GENERATION

Liang, P., Jordan, M., & Klein, D. (2009). Learning semantic correspondences with less supervision.
In roceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP, pp. 91–99,
Suntec, Singapore.

Lu, W., & Ng, H. T. (2011). A probabilistic forest-to-string model for language generation from
typed lambda calculus expressions. In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pp. 1611–1622, Edinburgh, Scotland, UK.

Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of
English: the Penn treebank. Comput. Linguist., 19(2), 313–330.

Nederhof, M.-J., & Satta, G. (2004). The language intersection problem for non-recursive context-
free grammars. Information and Computation, 192(2), 172 – 184.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the Annual Meeting on Association for Computational Linguistics, pp. 160–167, Sapporo,
Japan.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of 40th Annual Meeting of the Association for
Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania.

Ratnaparkhi, A. (2002). Trainable approaches to surface natural language generation and their
application to conversational dialog systems. Computer Speech & Language, 16(3-4), 435–
455.

Reiter, E., & Dale, R. (2000). Building natural language generation systems. Cambridge University
Press, New York, NY.

Reiter, E., Sripada, S., Hunter, J., & Davy, I. (2005a). Choosing words in computer-generated
weather forecasts. Artificial Intelligence, 167, 137–169.

Reiter, E., Sripada, S., Hunter, J., Yu, J., & Davy, I. (2005b). Choosing words in computer-generated
weather forecasts. Artificial Intelligence, 167, 137–169.

Shieber, S. M., Schabes, Y., & Pereira, F. C. N. (1995). Principles and implementation of deductive
parsing. Logic Programming, 24, 3–36.

Sripada, S. G., Reiter, E., Hunter, J., & Yu, J. (2003). Generating English summaries of time series
data using the gricean maxims. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 187–196. ACM Press.

Stolcke, A. (2002). SRILM – an extensible language modeling toolkit. In Hansen, J. H. L., &
Pellom, B. L. (Eds.), Proceedings of the 7th International Conference on Spoken Language
Processing, pp. 901–904, Denver, Colorado. ISCA.

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech tagging
with a cyclic dependency network. In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Human Language
Technology - Volume 1, pp. 173–180, Edmonton, Canada.

Turner, R., Sripada, Y., & Reiter, E. (2009). Generating approximate geographic descriptions. In
Proceedings of the 12th European Workshop on Natural Language Generation, pp. 42–49,
Athens, Greece.

345

KONSTAS & LAPATA

Wong, Y. W., & Mooney, R. (2007). Generation by inverting a semantic parser that uses statistical
machine translation. In Proceedings of the Human Language Technology and the Conference
of the North American Chapter of the Association for Computational Linguistics, pp. 172–
179, Rochester, NY.

Yandell, B. S. (1997). Practical Data Analysis for Designed Experiments. Chapman & Hall/CRC.

Younger, D. H. (1967). Recognition and parsing for context-free languages in time n3. Information
and Control, 10(2), 189–208.

Zettlemoyer, L., & Collins, M. (2007). Online learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pp. 678–687, Prague,
Czech Republic.

346

