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Abstract

This article considers the performance of the MOA* multiobjective search algorithm
with heuristic information. It is shown that in certain cases blind search can be more
efficient than perfectly informed search, in terms of both node and label expansions.

A class of simple graph search problems is defined for which the number of nodes grows
linearly with problem size and the number of nondominated labels grows quadratically. It
is proved that for these problems the number of node expansions performed by blind MOA*
grows linearly with problem size, while the number of such expansions performed with a
perfectly informed heuristic grows quadratically. It is also proved that the number of label
expansions grows quadratically in the blind case and cubically in the informed case.

1. Introduction

Heuristic search algorithms are central to problem solving in Artificial Intelligence and to
many practical applications in Operations Research. In heuristic search some additional
information is provided to the algorithm with the aim of reducing the computational effort
needed to find a solution.

However, sometimes this goal is not achieved. On the contrary, in certain cases it
has been shown that the use of better heuristics implies a worsening of performance. For
example, a well-known fact arising in some bipersonal games is that of lookahead pathology,
that is, that the deeper is the exploration performed (and hence the better is suppossedly
the heuristic minimax value assigned to the position), the worse is the decision taken (Nau,
1982). Recently, the same phenomenon was described in one-agent real-time search (Lustrek
& Bulitko, 2008; Nau, Lustrek, Parker, Bratko, & Gams, 2010).

Even with statically precomputed heuristics some pathologies have been found. For
instance, let us consider the standard A* algorithm (Hart, Nilsson, & Raphael, 1968). It
is known that the algorithm is admissible when provided with optimistic heuristic cost
estimates and that, when these estimates are also consistent, more informed heuristics
always result in equally or more efficient search (see Pearl, 1984, especially pp. 75-85).
However, when the heuristic is optimistic but not consistent, algorithm A* can perform
O(2™) node expansions when the search is performed on a graph with n nodes and arc costs
are not bounded (Martelli, 1977). Notice that if no heuristic is used, then A* performs like
Dijkstra’s algorithm and can never exhibit such exponential performance.
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This paper deals with a pathology arising in certain extension of A* to multiobjective
search problems. In decision making situations where more than one criterion is involved,
the concept of optimal solution is frequently replaced by Pareto optimality, that is, a so-
lution is better than other if it improves with respect to at least one criterion without
worsening the others (Ehrgott, 2005). Since Pareto optimality is a partial order relation,
solving these problems usually results in a set of Pareto-optimal solutions, that represent
the optimal trade-offs between the criteria being optimized. The importance of research in
multiobjective search algorithms is two-fold. In the first place, many graph search prob-
lems can benefit directly from multiobjective analysis (De Luca Cardillo & Fortuna, 2000;
Gabrel & Vanderpooten, 2002; Refanidis & Vlahavas, 2003; Miiller-Hannemann & Weihe,
2006; Dell’Olmo, Gentili, & Scozzari, 2005; Ziebart, Dey, & Bagnell, 2008; Wu, Campbell,
& Merz, 2009; Delling & Wagner, 2009; Fave, Canu, locchi, Nardi, & Ziparo, 2009; Moura-
tidis, Lin, & Yiu, 2010; Caramia, Giordani, & Iovanella, 2010; Boxnick, Klopfer, Romaus, &
Klopper, 2010; Klopper, Ishikawa, & Honiden, 2010; Wu, Campbell, & Merz, 2011; Machuca
& Mandow, 2011). On the other hand, other multicriteria preference models used in graph
search typically look for a subset of Pareto-optimal solutions (Mandow & Pérez de la Cruz,
2003; Perny & Spanjaard, 2005; Galand & Perny, 2006; Galand & Spanjaard, 2007; Galand,
Perny, & Spanjaard, 2010). Therefore, improvements in performance of multiobjective al-
gorithms can guide the development of efficient algorithms for other multicriteria decision
rules.

Two direct extensions of A* that accept general (multiobjective) heuristic functions have
been proposed in the literature: MOA* (Stewart & White, 1991) and NAMOA* (Mandow
& Pérez de la Cruz, 2005). NAMOA* uses label selection to guide the exploration. From
a formal point of view, a recent analysis (Mandow & Pérez de la Cruz, 2010a) has shown
that the algorithm is admissible with optimistic heuristics, and that its efficiency, measured
by the number of label expansions, improves with more informed consistent heuristics.
Furthermore, the number of such expansions is optimal with respect to a class of admissible
algorithms. In other words, NAMOA* inherits the beneficial properties of A*.

MOA* uses node selection (as opposed to label selection) to guide the exploration, and
is also known to be admissible with optimistic heuristics (Stewart & White, 1991). The
development of MOA* prompted a number of related formal developments and extensions
(Dasgupta, Chakrabarti, & DeSarkar, 1995, 1999; Perny & Spanjaard, 2002; Mandow &
Pérez de la Cruz, 2003; Perny & Spanjaard, 2005), and is still cited as an algorithm of
choice in recent applications (De Luca Cardillo & Fortuna, 2000; Fave et al., 2009; Klépper
et al., 2010). A previous formal analysis showed that there exist problems for which blind
MOA* performs ©(2") node expansions on graphs with n nodes (Mandow & Pérez de la
Cruz, 2010b). However, the formal analysis of MOA* remained incomplete. In particular,
the efficiency of the algorithm was never related to the precision of consistent heuristics. A
recent empirical analysis (Machuca, Mandow, Pérez de la Cruz, & Ruiz-Sepulveda, 2010)
has shown that, in certain cases, MOA™* performs much worse than NAMOA* over biob-
jective random problems with different correlations. Quite surprisingly, this analysis has
also revealed that heuristic MOA™* actually performs consistently worse than uninformed
MOA*.

This paper is part of an investigation into the formal properties of MOA* and NAMOA*.
We formally show that the performance of MOA*, measured in terms of the number of
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label or node expansions, does not improve in general with more informed heuristics. More
precisely, we define a class of simple graph search problems and prove that the use of
perfect heuristic information in MOA* yields more computational effort than the use of no
heuristic information. In other words, blind MOA* is in these cases more efficient than
perfectly informed MOA*, in terms of both node and label expansions.

The article is organized as follows. First, some necessary concepts are presented and
algorithm MOA* is briefly described (Section 2). Then in Section 3 a class of simple
multiobjective search problems is defined. The performance of MOA* over this class of
problems is analyzed for blind and perfectly informed cases in Sections 4 and 5 in terms of
node expansions, and in Section 6 in terms of label expansions. Finally, some conclusions
and future work are described.

2. Background

In multiobjective decision problems each alternative is evaluated according to a set of ¢
different objectives usually grouped in a vector ¥ = (y1,¥2,...94),¥ € R9. Preference
between vectors Z, ¥ is defined by the so-called Pareto order or dominance relation (<) as
follows: & < ¢ if and only if for all objectives i it holds that z; < y; and at least for an
objective j it holds that x; < y;. Given a set of vectors Y, the subset of nondominated
vectors nd(Y) in Y is defined as nd(Y) = {g €Y | T €Y =<y}

The solution to a multiobjective problem consists of the set of Pareto-optimal or non-
dominated solutions, that is, the set of solutions such that their costs are nondominated in
the set of solution costs.

In a multiobjective graph search problem, a single source and a set of destination nodes
are designated in a given graph G = (N, A). Pairs of nodes n,n’ € N may be joined by
directed arcs (n,n’) € A labelled with vector costs é(n,n’) € R7. A path P in the graph is
any sequence of nodes joined by consecutive arcs and the cost ¢(P) of P is the sum of the
costs of its component arcs. The solution to the problem is the set of all paths P joining
source and destination nodes and such that ¢(P) is nondominated in the set of solution
costs.

2.1 MOA* Algorithm

MOA* is a well-known algorithm that performs multiobjective heuristic graph search (Stew-
art & White, 1991). Its pseudocode (slightly adapted from the original: Stewart & White,
1991) is presented in Table 1. MOA* presents many similarities with A*. Two sets of nodes
OPEN and CLOSED are used to control the search. Initially, the source node is the only
open node. Newly generated nodes create a pointer to their parents. However, MOA* does
not construct a search tree like A*, but rather an acyclic directed graph. This is due to the
fact that each node may be reached by several optimal (nondominated) paths. The scalar
cost functions g, h, f are generalized to functions GG, H, F' that return sets of vectors for each
node. Additionally, the LABEL(n’,n) sets keep the subsets of vectors in G(n’) that arise
from paths to n’ coming from n.

Function G(n) refers to the set of nondominated cost vectors among all paths already
found to n. The heuristic function H (n) returns also a set of vectors, estimating the costs of
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1. INITIALIZE a set OPEN with the start node s, and empty sets, SOLN, C, CLOSED and LABEL.

2. CALCULATE the set ND of nodes n in OPEN such that at least one estimate f € F(n) is not
dominated by the estimates of other open nodes or by any solution cost of C.

3. If ND is empty, then
—Terminate returning the set of solution paths that reach nodes in SOLN with costs in C.
else

—Choose a node n from ND using a domain-specific heuristic, breaking ties in favour of goal nodes,
and move n from OPEN to CLOSED.

4. Do bookkeeping to maintain accrued costs and node selection function values.
5. IDENTIFY SOLUTIONS. If n is solution node, then

—Include n in SOLN and its current costs into C.

—Remove dominated costs from C.

—Go back to step 2.

6. EXPAND n and examine its successors. For all successors nodes m of n do:

(a) If m is a newly generated node, then
i. Establish a pointer from m to n.
ii. Set G(m) = LABEL(m,n).
iii. Compute F(m).
iv. Add m to OPEN.
(b) Otherwise, m is not new, so do the following,

i. If any potentially nondominated paths to m have been discovered, then, for each one, do
the following.
—Ensure that its cost is in LABEL(m,n), and therefore in G(m).
—If a new cost was added to G(m) then, purge from LABEL(m,n) dominated costs, and
if m was in CLOSED, then move it to OPEN.

7. Go back to step 2.

Table 1: MOA* Algorithm.

all nondominated paths from n to destination nodes. The evaluation function F'(n) returns
a set of cost estimates for n, F(n) =nd{g+h | € G(n) Ah € H(n)}.

Later on it will be useful to define H*(n) as the function that returns the set of costs of
all actual nondominated paths from n to destinations nodes.

At each iteration MOA* computes ND, the subset of open nodes with a nondominated
cost estimate, and selects a node from this subset. The admissibility of the algorithm does
not depend on the particular selection procedure among nodes in ND. In the following, this
additional selection procedure for nondominated nodes will be called nd-selection rule.

When a destination node is selected, it is added to SOLN, and its costs to C. Values of
F(n) dominated by vectors in C are never considered in ND. Search terminates when ND
is empty, that is, all candidate nodes are dominated or have been explored.

The expansion of n generates all successors n’ of n in the graph and adequate G(n’)
values for them. If n’ is new, then it is placed in OPEN, and the sets G(n') and LABEL(n/, n)
store the costs of all paths extended from n to n’. If n’ is not new, then MOA* checks if
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a new nondominated value of G(n’) has been generated at the current step; if this is the
case, G(n') and LABEL(n’,n) are properly updated, and, if n’ was in CLOSED, it must
be moved back again to OPEN.

Each pair (n, §) such that n is a node and § € G(n) is usually called a label. In MOA*
all labels of a node n are expanded simultaneously once n is selected. Therefore, all labels
reaching a single node at a given time are either simultaneously open or closed.

In the original paper (Stewart & White, 1991), some interesting properties of MOA*
were proved. For example, it was proved that MOA* is admissible when H (n) is optimistic.

Regarding comparison of admissible heuristics, a function H(n) is defined to be at least
as informed as another H'(n) whenever for all i/ € H’'(n) there exists some h € H(n) such
that k' < h. In such case, it was proved that the set of nodes expanded by MOA* with H is
a subset of those expanded with H’ (theorem 4, p. 805). However, the authors recognized
that nodes may be reopened even when the heuristic function is consistent, and hence that
the set of expanded nodes is not a significant measure in the analysis of the performance of

MOA*.

(2,1) 2.1)
2,1) 2,1

Omo,m)u (2.4) U (2,4)

Figure 1: Graph M (3,10, 10,2)

3. A Class of Multiobjective Search Problems

For every n € N, let us consider problem graphs (Figure 1) with 2n nodes labeled 1,...,2n—
1,2n and with 3n — 2 arcs. For every even node 2i (1 < i < n) there are outgoing arcs
of form (2i,2i + 1) and (2¢,2¢ + 2). For every odd node 2i +1 (1 < i < n — 1) there is
an outgoing arc of the form (2i + 1,2¢ + 2). There is also an arc (1,2). The start node
is 1 and the goal node is 2n. The cost of an arc (4, j) is defined as follows: choose «
to be either 2 or 4; then for every i > 0, ¢(2i,2i + 2) = (a,6 — «); and for every i > 0,
A2i,2i4+ 1) =¢c(2i+1,2i + 2) = (3 — «/2,/2). In this way, we define only two possible
sets of costs for the arcs, with the exception of ¢(1,2) = (k1, k2) that is not subject to any
restriction.

We shall refer to these problem graphs as multiobjective chain graphs. For every n, the
corresponding set of multiobjective chain graphs will be denoted M,,. We will denote as
M (n, k1, k2, «) the graph in M,, such that ¢(1,2) = (k1, k2) and ¢(2,2i + 2) = (a, 6 — ).
For example, Figure 1 shows M (3,10, 10, 2).

In a graph M € M,, there are always 2"~ ! different paths from the start to the goal
node. In fact, to go from 2¢ to 2i + 2 you can choose either the simple path < 2¢,2¢ 4+ 2 >
(with cost (a,6 — «v)) or the two-arc path < 24,2i + 1,2i 4+ 2 > (with cost (6 — o, «v)) and
there are n — 1 independent choices like that. On the other hand, there are just n different
path costs given by ¢* = (k1,K9) + (2(n — 1) + 2k, 4(n — 1) — 2k), for every k such that

721



PEREZ DE LA CRUZ, MANDOW, & MACHUCA

It. # | OPEN G(n) = F(n)
1 1+ (0,0)
2 2« (10, 10)
3 3 (12,11)
4 (12,14)
1 - (12, 14)(14, 12)
5 5« (14,15)(16, 13)
6 (14,18)(16, 16)
6 6« | (14,18)(16,16)(18,14)

Table 2: Trace of uninformed MOA* on M (3,10, 10, 2)

0 <k <n-—1.Inan M(n, k1, kKa,2) graph, the cost Pt corresponds to a path withn—1—%
arcs (2i,2i +2) and k paths < 2i,2i + 1,2 + 2 >. We will denote C,, = {&;,°,...,&" L
Notice that for every solution cost (y1,y2) € Cy, it holds that y1 + y2 = k1 + k2 + 6(n — 1),
so all solution costs for a given M lie in a line with negative slope and hence none of these
costs dominates another, that is, nd(C,,) = C,,.

4. Blind MOA* on M,,

A sample run of MOA* over M (3,10,10,2) (Figure 1) with H(n) = {0} (uninformed case)
is provided in Table 2. Values of G(n) include all nondominated costs from generated paths
to the node. Since we are performing a blind search, values for F'(n) are the same as for
G(n).

We can observe in this trace that a node ¢ is not selected until all nodes j < ¢ have
been selected. That means that every node i, 1 < i < 2n — 1 is expanded once and just
once. In this way, in our example MOA* performs exactly 2n node selections and 2n — 1
node expansions. This result is general and can be proved by induction on the number of
iterations for every graph M (n, k1, k2, a).

Lemma 1 If the input of MOA* is a graph M (n, k1, k2, o) and¥n H(n) = {0}, then MOA*
performs exactly 2n — 1 node expansions.

Proof. Let us consider the OPEN set at a certain iteration s (s = 1,...) of the execution
of MOA*. Let us call the level of s the integer L = |s/2]|. It is easily proved by induction
on s that:

(1) at every odd iteration s of the algorithm (s = 3,...), OPEN = {s, s+1}, the labels of s
are {(a+3—a/2,b+a/2) | (a,b) € C}; thelabels of s+1 are {(a+a, b+6—a)| (a,b) € Cr};
and the selected node is s.

(ii) At every even iteration s of the algorithm (s =4,...), OPEN = {s}, the labels of s
are exactly Cr, and the selected node is s.

From this follows that every node is selected exactly once and therefore the number of
node expansions is exactly 2n — 1.
<
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n || H*(n)

1 |[ (14,18),(16,16),(18,14)
2 || (4,8),(6,6),(8,4)

3| (4,5),(6,3)

1| @ (a2)

5 1 (2,1)

6 | (0,0)

Table 3: Heuristic values for M (3,10, 10, 2)

®<—@ G(2) = {(10,10)}

Figure 2: Search graph at iteration 2

5. Perfectly Informed MOA* on M,

A sample run of MOA* over M (3,10,10,2) (Figure 1) with H(n) = H*(n) (perfect infor-
mation) is provided in Figures 2-9 and Table 4. Figures 2-9 show a trace of the search graph
at each iteration. Closed nodes are shown in gray. Values of G(n) are shown for each node
in the Figures only when they are created, or change from the previous iteration.

In Table 4, for each iteration all nodes in OPEN are displayed and also their G(n)
values (that is, nondominated costs of paths generated from the start to the node). Values
of F(n) are computed adding to G(n) values the estimations in Table 3. Since we are
assuming perfect heuristic information, F'(n) values are always optimal solution costs, that
is, nondominated costs of solution paths from node 1 to node 6. Then, for every iteration
and every node n, F(n) C Cs.

Notice also that labels in C3 (and hence in F(n)) are all nondominated, so in general
there will be several open nondominated nodes. It is then necessary to provide an additional
heuristic rule (step 3-else of the algorithm in Table 1) or nd-selection rule. In the example in
Table 4, the following nd-selection rule is applied: select the node with the best lexicographic
nondominated alternative (remember that the lexicographic order is a total order defined
for the biobjective case as (y1,y2) < (z1,22) if and only if y; < z1, or y; = 21 and ys < 22).
It is also possible that the same nondominated cost appears in several open nodes. Then
another procedure must be provided for breaking ties between open nodes with the same
f—label. It can be done, for instance, at random, or by selecting the newest node, or the
oldest node in OPEN in a breadth-first fashion. The latter procedure has been followed in
Table 4.

We can observe that the order of node selection in the example is
1-2-4-6-3-4—-6-5—-6
The pattern is: MOA* selects even nodes until the goal node is reached; then it selects an
odd node 2¢ + 1 and selects again all even nodes 27, j > i; and it is done again until every

odd node has been selected once. In this way even nodes are in general selected several
times. In our example node 4 is selected twice and node 6 is selected three times.
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It# | OPEN | G(n) F(n)
1 1« (0,0) (14,18)(16, 16)(18, 14)
2 |2+« (10, 10) (14,18)(16, 16)(18, 14)
3 |3 (12,11) (16,16)(18, 14)
4+ (12,14) (14,18)(16, 16)
1 |3 (12,11) (16,16)(18, 14)
5 (14,15) (16,16)
6 (14,18) (14,18)
5 |3« (12,11) (16,16)(18, 14)
5 (14,15) (16,16)
6 | 4« (12,14)(14,12) (14,18)(16, 16)(18, 14)
5 (14,15) (16,16)
7 |5 (14,15)(16, 13) (16,16)(18, 14)
6 (14,18)(16, 16) (14,18)(16, 16)
8 |5+« (14,15)(16, 13) (16,16)(18, 14)
9 |6« (14,18)(16, 16)(18, 14)) | (14,18)(16,16)(18, 14)

Table 4: Trace of perfectly informed MOA* on M (3,10, 10, 2)

G(3) ={(12,11)}

Figure 3: Search graph at iteration 3

{(14,15)}

o &6

Figure 4: Search graph at iteration 4

Figure 5: Search graph at iteration 5
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A o @

G(4) ={(12,14) (14,12)}

Figure 6: Search graph at iteration 6

G(5) = {(14,15) (16,13)}

P Y

2 )< 4 6
G(6) = {(14,18) (16,16)}

Figure 7: Search graph at iteration 7

Figure 8: Search graph at iteration 8

O—@ @/‘%

G(6) = {(14,18) (16,16) (18,14)}

Figure 9: Search graph at iteration 9
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The concrete order of expansion will depend on nd-selection and tie-breaking rules.
However, we can prove some general results valid for any nd-selection rule that uses only
heuristic f values (irrespective of the tie-breaking rule). Notice that nd-selection rules
usually applied (as best lexicographic or best linear) are of this kind.

Lemma 2 (i) Let M(n,rk1,k2,2) € M,. Let their nondominated solution costs be C' =
{0 ..., Y. If the nd-selection rule is such that ¢’° is selected with preference to
{et,...,&™ Y, then MOA* performs at least n + @ node expansions.

(ii) Analogously, let M(n, k1, k2,4) € M,,. If the nd-selection rule is such that ¢™ 1 is
selected with preference to {¢’°,...,&" 2}, then MOA* performs at least n + % node

eTPansions.

Proof. We will prove part (i) (proof of part (ii) is entirely analogous). Let M (n, k1, ko,2) €
M,,. First remember that for each node j and each iteration s of the algorithm, the set
F(5) of estimated costs at j is a subset of C,, = {¢°,...,&%,....,&™ "} = {(k1 + (2(n —
1)+ 2k, ke +4(n—1) —2k)) | 0 < k <n—1}. Let us trace the first n + 1 iterations of the
algorithm. It can be shown that for every i > 0, ¢° will appear in F'(2i), but ¢ will never
appear in F'(2i 4+ 1). Therefore, in the first iteration node 1 will be selected and expanded.
Then all even nodes will be selected and expanded sequentially until node 27 is selected.
That amounts to the first n expansions.

Elementary computations show that at this step, for every 0 < i < n, F(2i) = {c"o, e
" forevery 0 < i <n—1, F(2i+1) ={¢',...,¢"}; and OPEN = {3,5,...,2n—1}.
Two observations can be made at this step: i) Let us consider odd nodes. Since for every odd
node 2i+1 (0 < 7 < n) there is an optimal path going through it, all these open nodes must
be selected and expanded before termination. That amounts to at least n — 1 expansions,
even if no reexpansion is assumed for such nodes; ii) Let us consider now nongoal even
nodes {2,4,...,2n —2}. At this iteration the number of labels associated to 2i is n+ 1 — .
Since through every even node there exist n optimal costs, at the termination the number of
labels for every even node must be exactly n, that is, there are 0+1+...+(n—1) = %
labels for even nodes missing at this moment. If we prove that those labels are generated
one at a time, that is, one in every expansion, we will have proved that at least another
@ expansions are needed.

Let us call an episode the subsequence of node expansions comprised between two consec-
utive odd node expansions (or between the last odd node expansion and the last expansion).
In the example of Table 4, the episodes are < 1,2,4,6 >, < 3,4,6 > and < 5,6 >. When
an episode starts, there is no even node in OPEN (since an even node always has the nd-
selected label ¢’%, an odd node never has the nd-selected label ¢’°, and an odd node has been
selected). At the end of the episode, and by the same reason, there is again no even node in
OPEN. Let us consider an episode e =< 25 — 1,27,27',...,25™ >. It is easily seen that the
expansion of an even node 2j originates the opening of just an even node, namely 2(j + 1),
so the episode is always of the form F =< 2j —1,25,2(5 + 1),2(j + 2),...,2(j + m) >.
We will prove by induction on episodes that when every episode starts, for every even
node 2i (1 < i < n) there exist integers p,q such that: i) F(2i) = {¢°,..., &}; ii)
F(2i —2)={¢°,...,¢% = F(2i — 1) U {¢"}; and iii) either ¢ = p or ¢ = p + 1. This is
obviously true when the first episode finishes and the second episode starts. Assume it is
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true when episode e starts. We will show it remains true when it finishes, that is, when
episode e + 1 starts.

Consider the odd node 25 — 1 which starts the episode and assume g = p, that is,
that F(2j — 1) = F(2j) — {¢°}. Then no new label is added to F(2j), no reexpansion
is needed and no modification is done, hence the stated relation among labels continues
true. On the contrary, assume that ¢ = p + 1, that is, that F(2j — 1) = {¢',..., &P},
F(2j—2)={c°...,¢P™} and F(2j) = {¢°,...,&P}. Therefore one label &P is added
to 2j. The stated relation between labels remain true for 25 — 2, 25 — 1 and 2j (only that
we have now the other alternative p = ¢). However, F'(2j) has been modified and we must
check the relation for F'(2j), F(2j + 1) and F(2j + 2). By hypothesis it was F(2j + 1) =
{¢1,..., &P}, and the expansion of 2j adds ¢P1 to it, so also it becomes F/(2j) = F(2j+1).
Concerning the relation between F(25) and F(2j + 2), if it was F(2j +2) = {¢°,..., &P},
no further label is added to F'(2j + 2), the relation holds (since F'(2j + 2) has exactly one
label less than F'(2j) now) and the episode finishes since no even node remains open. If it
was F(2] +2) = {¢°,...,&P71}, one label €7 is added to F(2j + 2) and the relation also
becomes true, but F(2j + 2) has been modified. By induction on the length of the episode
it could be proved that finally the relation holds for all modified nodes.

In any case, we see that each new added label immediately triggers the expansion of the
node and labels are added to even nodes one at a time. Therefore, at least @ expansions
are needed to complete the labels of even nodes. The first expansion of the episode was one
of an odd node, so it must not be computed; but the last expansion of the episode does not
add any label, so we can compute @ additional node expansions.

)

Now, adding togheter all performed expansions, we have at least n+ n("T_l
q. e. d.
N

expansions,

o
FI

L3

g

Figure 10: Construction of a M (4, k1, ke,2) graph for Lemma 3
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Now we can prove the main lemma:

Lemma 3 If the nd-selection rule depends only on f values, then for every n € N there
exists a graph M (n, k1, k2, @) such that when it is input to MOA* and H(n) = H*(n), then
MOA* performs at least n + % node erpansions.

Proof. The idea of the proof is as follows: Lemma 2 asserts that if we order lexicographi-
cally the optimal costs of a graph M (n, k1, k2,2) € M,, and the selected one turns out to be
the first one, then MOA* performs at least n+ @ node expansions (and analogously for
every graph M (n, k1, k2,4) € M,, when the selected one is the last one). Then we will have
Lemma 3 proved if for every n and every selection rule depending only on f values we show
a graph M (n, k1, ko,2) € M,, satisfying that condition (or a graph M (n,k1,k2,4) € M,
satisfying the analogous condition).

Let n € N. Let us consider the line y; +y2 = 8(n — 1) +2 and a sequence of m = 2n — 1
nondominated points on it, (F°, ..., F™™1) given by F* = (2(n—1)+2i+1,6(n—1)—2i+1)
(Figure 10 shows the line and the seven points F°,... F® for n = 4). Any nd-selection
rule will select one of them, say F7, with preference over the others; in any case, for any
FJ we can extract from (FO, ..., F™~1) a subsequence of n points (F/, F/+t . Fitn=l)
or (Fi—ntl . Fi=1 FJ). Assume the first case (that is depicted in Figure 10 for j = 3;
the subsequence is 3, F* F5 %), Then we will consider the graph M (n, k1, k2,2) with
k1 = 2j+ 1 and ko = 2(n — 1 — j) + 1 (in Figure 10 the point K is (k1,k2) = (7,1)).
This is always possible, that is, for every n,j we have ki,x2 > 0. But then we have for
every k, 0 < k < n—1, that FItF = (ky, ko) 4 (2(n — 1) + 2k,4(n — 1) — 2k) = ¥, that
is, the extracted subsequence (FV, F7+1 .. Fitn=1) is exactly the set of solution costs for
M(n, k1, 62,2), (€% &, ..,&™ ). Since F7 is nd-selected over (FJt1 ... Fitn=1) by
Lemma 2 MOA* performs at least n + @ node expansions on M (n, k1, k2, 2).

Analogously we can prove the other case considering a graph of the form M (n, k3, k4,4).
<

From Lemmas 1 and 3 we obtain immediately the following result.

Theorem 1 For every nd-selection rule depending only on fvalues, there exists a sequence
of graphs My, ..., My, ... such that:

(i) Every M, has 2n nodes and 3n — 2 arcs.

(ii)) MOA* performs ©(n) node expansions when applied to My, and no heuristic infor-
mation s given.

(iii) MOA* performs Q(n?) node expansions when applied to M, and perfect heuristic
information is given.

6. Label Counts

The basic operation of MOA™* is node expansion and every node expansion implies —in
the general case— the joint expansion of several labels. However, other algorithms (e.g.
NAMOA*, Mandow & Pérez de la Cruz, 2010a) use label expansion as the basic operation.
For this reason it could be interesting to analyse MOA* also in terms of label expansions.

Lemma 4 If the input of MOA* is a graph M(n, k1, k2,a) and H(n) = {6}, then MOA*
performs ezactly n®> —n + 1 label expansions.
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Proof. Consider again the reasoning for the proof of Lemma 1. It was then proved that,
when selected for expansion, every even node 2¢ has i labels and every odd node 2¢ + 1
(with 4 > 1) has ¢ labels. Adding all together we have 1 +2> ... ;i=1+n(n—-1) =
n? —n + 1 label expansions.

<

Lemma 5 For everyn € N there exists a graph M (n, k1, k2, @) such that when it is input to
MOA* and H(n) = H*(n), then MOA* performs at least n? + W label expansions.

Proof. Every odd node 1,...,2n — 1 must have at termination n labels, and must be
expanded at least once. That amounts to at least n? label expansions. On the other hand,
consider even nodes 2,4, ...,2n —2. They must also have n labels at termination. Consider

again the reasoning for the proof of Lemma 2. It was then proved that: (i) the first time
an even node 2¢ is expanded, it has (n — i + 1) labels; (ii) each time an even node 2i is
expanded, it has exactly one more label. Therefore the number of label expansions for node
2iis (n—i+1)+(n—i+2)+...+(n—i+i)=1qn—i+j)="E Adding

togheter for all even nodes 2¢ with 1 < i < n — 1 we have Zlgz‘gn—1 ("zl)i = ”(”Hi(”*l)

label expansions. Adding now the expansions of odd and even nodes we have at least
n2 + W q. e d.

N

From Lemmas 4 and 5 we obtain immediately the following result.

Theorem 2 For every nd-selection rule depending only on fvalues, there exists a sequence
of graphs My, ..., M,, ... such that:

(i) Every M,, has 2n nodes and 3n — 2 arcs.

(ii) MOA* performs ©(n?) label expansions when applied to M,, and no heuristic infor-
mation s given.

(iii) MOA* performs 2(n3) label expansions when applied to M, and perfect heuristic
information is given.

7. Conclusions and Future Work

This paper considers the performance of the MOA* multiobjective heuristic search algo-
rithm. Results show that performance can degrade with better heuristic information. A
class of problems is presented (multiobjective chain graphs) where the use of perfect heuris-
tic information (a trivially consistent informed heuristic) does not result in a reduction in
the number of node or label expansions performed by the algorithm. On the contrary, the
performance of a perfectly informed version of the algorithm is worse than the performance
of the blind version.

Multiobjective chain graphs formalize a not so infrequent situation in practical multiob-
jective search, when a sequence of nodes is traversed by at least two conflicting paths. Our
analysis has revealed that when MOA* is combined with H*, the best possible heuristic,
the number of node expansions grows quadratically, while this number grows linearly when
no heuristic information is used; and the number of label expansions grows cubically, while
it grows quadratically when no heuristic information is provided.
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This pathology, together with other results both theoretical (Mandow & Pérez de la
Cruz, 2010b) and empirical (Machuca, Mandow, Pérez de la Cruz, & Ruiz-Sepulveda, 2012),
casts some doubts on the suitability of MOA* for performing heuristic multiobjective search.
In general, other alternatives (such as NAMOA*) for which it has been proved (Mandow
& Pérez de la Cruz, 2010a) that those pathological behaviours cannot arise, should be
preferred.
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