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Abstract

Ranking measures play an important role in model evaluation and selection. Using
both synthetic and real-world data sets, we investigate how different types and levels of
noise affect the area under the ROC curve (AUC), the area under the ROC convex hull, the
scored AUC, the Kolmogorov-Smirnov statistic, and the H-measure. In our experiments,
the AUC was, overall, the most robust among these measures, thereby reinvigorating it
as a reliable metric despite its well-known deficiencies. This paper also introduces a novel
ranking measure, which is remarkably robust to noise yet conceptually simple.

1. Introduction

Various metrics exist to evaluate the performance of a predictive model, but it is often not
so clear which one we should actually choose for a concrete problem at hand (Hand, 2006;
Prati, Batista, & Monard, 2011; Hernández-Orallo, Flach, & Ferri, 2012; Bradley, 2013;
Parker, 2013). It is also known that different metrics quantify different aspects of a model
(Caruana & Niculescu-Mizil, 2004; Ferri, Hernández-Orallo, & Modroiu, 2009). In practice,
the fair and objective comparison of predictive models is therefore not trivial, particularly
when the data are affected by noise. Here, we consider the problem of binary classification
and ranking problems, which are pervasive in numerous applications (Prati et al., 2011),
ranging from web-based recommender systems and search engines to biomedical classifiers.

The goal of this study is to investigate how robust various ranking measures are to
different types and different levels of noise. Particularly, we are interested in the robustness
of the widely used AUC and whether recently proposed alternatives, such as the H-measure
(Hand, 2009), are indeed preferable. In addition, we present a novel performance measure,
called the truncated average Kolmogorov-Smirnov statistic (taKS). This measure is derived
from the distance between the true positive rate (TPR) and false positive rate (FPR) curves,
similarly to the “classic” Kolmogorov-Smirnov statistic (KS).

Surprisingly few experimental studies focused on the comparison of performance mea-
sures for predictive models. Of course, different measures may quantify different aspects of
a model, and it may make little sense to compare them across different classes. But it does
make sense to compare metrics within the same class, for example, ranking measures and
their robustness to noise. To our knowledge, the most comprehensive study to date was
carried out by Ferri et al. (2009) who investigated the relations between various performance
measures and observed that these measures essentially measure quite different aspects; an
observation also made by Caruana and Niculescu-Mizil (2004). A recent comparative study
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by Parker (2013) focused on ranking measures; this study recommends the H-measure and
advises against the AUC. A more theoretical approach to the comparison of performance
measures can be found in the work of Flach (2003). Hernández-Orallo et al. (2012) provide
a comprehensive view of how the different measures are related to each other.

In summary, our main insights are the following. First, among the conventional mea-
sures, the AUC was arguably the most robust across a wide range of noise levels and types.
This result confirms that in fact, the AUC can be a reliable measure, although it has been
criticized as incoherent and potentially misleading (Hilden, 1991; Lobo, Jiménez-Valverde,
& Real, 2008; Hand, 2009; Hand & Anagnostopoulos, 2013; Parker, 2013). Therefore, our
experiments lend further empirical support to the AUC as a robust measure for model
evaluation and selection. Second, overall, the magnitude of the differences in robustness
between the commonly used measures were not that dramatic for relatively low noise levels.
Third, the proposed new measure, taKS, was also remarkably robust to noise, and it is
conceptually simple with a neat geometrical interpretation.

This paper is organized is follows. First, we briefly review the ranking measures that
we included in our comparative study. Then, we give the rationale for the new measure,
beginning with an introductory example and then describing the formal details. In Section 4,
we report the results of the comparative study involving both synthetic and real-world data
sets. Section 5 concludes the paper with a discussion.

2. A Brief Review of the Investigated Ranking Measures

Let a data set contain k instances (or cases) xi, i = 1..k. With each case, exactly one class
y is associated, i.e., (y,xi), y ∈ {0, 1}, where 1 denotes the positive class and 0 denotes
the negative class. Commonly, predictive models generate a numeric score s for each xi,
which quantifies the degree of class membership of that case to a class, for example, a
class posterior probability. If the data set contains only positive and negative examples,
then a predictive model can either be used as a ranker or as a classifier. If the scores are
expressed on an ordinal scale, the model can use the scores to rank the cases from the most
to the least likely positive. By setting a threshold t on the ranking score, s(x), such that
C{s(x) ≥ t} = 1, we can turn the ranker into a (crisp) classifier.

2.1 Area Under the ROC Curve (AUC)

Arguably the most commonly used ranking measure is the AUC. It has been used for model
selection in various applications, ranging from data mining competitions to biomedical tests
(Berrar & Flach, 2012). The AUC is the area under the ROC curve, which depicts the trade-
offs between the false positive rate (or 1 minus specificity, depicted on the x-axis) and the
true positive rate (or sensitivity, depicted on the y-axis). These trade-offs correspond to
all possible binary classifications that any dichotomization of the continuous outputs of
a model would allow. The AUC is equivalent to a Wilcoxon rank-sum statistic (Bamber,
1975; Hanley & McNeil, 1983) and can be interpreted as a conditional probability: given any
randomly selected positive and negative case, the AUC is the probability that the classifier
assigns a higher score to the positive case (i.e., ranks it before the negative case).

Let P denote the probability that a randomly selected actual positive case, x+, has a
higher ranking score, s+, than a randomly selected negative case, x−, i.e., s+ > s−. Here,
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a higher ranking score means that x+ is ranked before x−, and f(s+) and g(s−) are the
distribution functions of these scores (Hilden, 1991). Following Hilden’s notation, the AUC
can then be written as

AUC = Pr{s+ > s−|x+ and x−} =

∫∫
s+>s−

f(s+)ds+ g(s−)ds− =

∫
F (s−) dG(s−). (1)

The AUC can be calculated in different ways from an empirical ROC curve; for a prac-
tical guide, see the tutorial by Fawcett (2004). ROC analysis is now an integral part of the
evaluation of machine learning algorithms (Bradley, 1997). Whereas ROC curves are widely
(and rightly so) considered useful, both theoretical and practical shortcomings of the AUC
have been pointed out (Hilden, 1991; Adams & Hand, 1999; Bengio, Mariéthoz, & Keller,
2005; Webb & Ting, 2005; Lobo et al., 2008; Hand, 2009; Hanczar, Hua, Sima, Weinstein,
Bittner, & Dougherty, 2010; Hand & Anagnostopoulos, 2013; Parker, 2013). A particular
problem of the AUC is that it can be incoherent, in the sense that it assumes different
cost distributions for different classifiers (Hand, 2009). One of the first criticisms, with an
insightful example showing that area comparisons can be misleading, can be found in the
work of Hilden (1991). Hand (2009), too, considers the AUC fundamentally incoherent. Re-
cently, however, Hand and Anagnostopoulos (2013) showed that the AUC can be a coherent
measure, but only under certain assumptions that may not hold for real applications.

2.2 Scored Area Under the ROC Curve (sAUC)

The AUC measures only how well positive and negative cases are ranked relative to each
other, but it does not consider the actual ranking scores. This means that the margin
between scores is irrelevant. Intuitively, however, it seems reasonable to take the scores
somehow into account. Various alternatives of the AUC have been suggested that do just
that; an example is the scored AUC (sAUC) (Wu & Flach, 2005; Wu, Flach, & Ferri, 2007).

Let n+ denote the total number of positive cases and n− denote the total number of
negative cases. Let {s1+, ...sn+} denote the predicted ranking scores for the positive cases
and {s1−, ...sn−} denote the scores for the negative cases, where s1+ ≥ ... ≥ sn+ and
s1− ≤ ... ≤ sn−. Both si+ and sj− are assumed to be normalized between [0, 1], with
i = 1, ...n+ and j = 1, ...n−. Let I(·) be an indicator function with I(true) = 1 and
I(false) = 0. The sAUC is then defined as

sAUC =
1

n+n−

n+∑
i=1

n−∑
j=1

(si+ − sj−)I(si+ > sj−). (2)

The indicator function I(si+ > sj−) assesses the ranking ability, while the factor (si+−
sj−) evaluates the score differences. Without this factor, Equation 2 is equivalent to the
AUC. There exist further variants such as the soft-AUC (Calders & Jaroszewicz, 2007) and
the probabilistic AUC (pAUC) (Ferri, Flach, Hernández-Orallo, & Senad, 2005); however,
according to Vanderlooy and Hüllermeier (2008), none of the proposed alternatives to the
AUC are effective for model evaluation. We therefore do not consider any further variants
in our comparative analysis.
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2.3 Area Under the ROC Convex Hull (AUCH)

The ROC convex hull is defined as the convex hull that encloses the operating points of the
ROC curve (Provost & Fawcett, 2001; Flach, 2010). Note, that a curve is called convex if
any straight line interpolating between two points on the curve is never above the curve.1

The ROC convex hull results from the interpolation between the following k points, which
are ordered based on increasing values of their abscissa: the origin (xi, yi) = (0, 0), the
minimum set of points spanning the concavities, and the point (1,1). The area under
the ROC convex hull, AUCH, is always at least as large as the AUC. The AUCH can be
calculated as shown in Equation 3.

AUCH =
k−1∑
i=1

yi(xi+1 − xi) + 0.5(yi+1 − yi)(xi+1 − xi). (3)

2.4 H-measure

In order to address the incoherence of the AUC, Hand (2009) proposed the H-measure. Let
t denote the classification threshold, and let TPR(t) and FPR(t) denote the corresponding
true positive and false positive rate, respectively. The overall misclassification loss is then
c+π+(1−TPR(t))+c−π−(FPR(t)), where c+ is the cost associated with the misclassification
of a positive case and c− is the cost associated with the misclassification of a negative case,
and π+ and π− are the prior probabilities of positive and negative cases, respectively.

H−measure = 1−
∫
Q(T (c), c)u(c)dc

π+

π−∫
0

cu(c)dc+ π−
1∫

π−

(1− c)u(c)dc

, (4)

with c = c+/(c+ + c−); T (c) = arg mint{cπ+(1−TPR(t)) + (1− c)π−FPR(t)}; Q(t, c) =

{cπ+(1− TPR(t)) + (1− c)π−FPR(t)}(c+ + c−); u(c) = c(1− c)/
1∫
0

c(1− c)dc.

The H-measure is a measure of the overall misclassification loss and a function of both
the class-specific misclassification costs and the prior probabilities of positive and negative
cases (Hand, 2009). By contrast, the AUC measures the ranking performance over the entire
space of classification thresholds and is independent of costs and class priors. Flach et al.
(2011) showed that, with two small variations, the H-measure is a linear transformation of
the area under the cost curve, which was proposed by Drummond and Holte (2006).

2.5 Kolmogorov-Smirnov Statistic (KS)

The Kolmogorov-Smirnov goodness-of-fit test for a single sample is a test of ordinal data
and assesses whether the distribution of n scores follows a specific theoretical or empirical
distribution (Sheskin, 2007). The test statistic, KS, is defined as the maximum value of
the absolute difference between two cumulative distributions. When we assess the ranking

1. In mathematical terms, this curve is considered “concave”, whereas the standard machine learning
terminology uses “convex”.
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Figure 1: (a) Classification result on a toy data set of 4 cases, (a) optimal model with 3
possible thresholds, (b) another model with 3 possible thresholds; and (c) yet another model,
with 5 possible thresholds (Real: real class label, 1 = positive class; Score: predicted score
for the positive class).

ability of a classifier, these distributions are given by the true positive rates and false
positive rates for all classification thresholds. The KS statistics has a simple geometrical
interpretation as the maximum distance between the TPR and FPR curves,

KS = max{|TPRi − FPRi|}, (5)

where TPRi and FPRi denote the true positive rate and false positive rate for the ith

threshold, respectively (see Figure 2 for an example).

3. Truncated Average Kolmogorov-Smirnov Statistic (taKS)

In this section, we propose a new ranking measure, called the truncated average Kolmogorov-
Smirnov statistic (taKS).

3.1 Introductory Example

Let us consider the prediction results on an arbitrary test set comprising k cases, which
belong to either the positive or the negative class. The optimal model will assign a score
of 1 to each positive and a score of 0 to each negative case. Consider now another model
that assigns the scores s1, s2...sk to the k test cases, where s1 ≥ s2 ≥ ... ≥ sk, which also
happen to lead to a perfect ranking. Figure 1 illustrates this idea using a toy data set with
k = 4 cases. All models in this example have indeed the same ranking performance, and
consequently, ranking measures like the AUC do not distinguish between them. There is
nothing wrong with that – all what matters is the relative ordering of the cases, irrespective
of the actual ranking scores. Note, that the optimal model always allows exactly three
possible thresholds: (1) one threshold separating the positive and negative cases (t2 in
Figure 1a); (2) one “top” threshold (i.e., TPR = 0 and FPR = 0; t1 in Figure 1a); and (3)
one “bottom” threshold (i.e., TPR = 1 and FPR = 1; t3 in Figure 1a).

Assume now that these three models enter a data mining competition. Let us further
assume that we, the judges, can only see the final predictions as shown in Figure 1. We
do not have any other information about the models such as the calibration of the scores,
except that higher scores reflect more relative confidence that a case belongs to the positive
class. No other assumptions shall be allowed for now.
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We can probably agree that model (a) is the winner, but which one should be the runner-
up, (b) or (c)? To answer this question, we could consider the ranking scores, for example,
by calculating the sum of squared errors (SSE) or a related measure such as the Brier score.
This approach would tell us that model (c) with SSE = 0.18 is preferable to model (b) with
SSE = 0.50. However, this approach makes the tacit assumption that both models, (b) and
(c), produce comparable scores in the same range, maybe posterior probabilities in [0, 1].
This is of course often a reasonable assumption, but it does not necessarily have to be the
case. In addition, any such assumption was actually not allowed.

What if we allowed assumptions about the calibration? Let us speculate that – by
design – model (b) could not have produced probabilities larger than 0.7 or smaller than
0.4. Based on minimum message length theory, it may indeed make sense to prevent a
model from making overly confident predictions, for example, by limiting the estimates to
a specific range only (Korb, Hope, & Hughes, 2001).2 Under this particular assumption, we
may look at the performance of model (b) in a new light. In fact, the difference between
the scores in (a) and (b) then reduces merely to a different scaling. Could model (b) be
such a “careful” model? Granted, the assumption that all scores are comparable (e.g., from
[0, 1]) is more plausible. But the point is that if we take the actual scores into account,
then we have to make some assumptions about the models’ calibrations. Furthermore, the
scores of model (c) have a higher level of granularity than those of model (b), so we might
say that model (c) is more refined than the “coarser” model (b). But does this refinement
necessarily indicate the “better” model?

Let us now look at another difference between the models: the number of possible
thresholds. This number depends on the refinement of the scores, but not on the actual
values. The idea is to combine this number and the ranking performance.

3.2 Formal Details

Visually, we can represent the class discrimination by plotting both the true positive and
the false positive rates as a function of the threshold in the same diagram. By interpolating
the points, we obtain the corresponding TPR and FPR curves (henceforth referred to as
TPR-FPR plot, also known as Kolmogorov-Smirnov chart).

Figure 2 illustrates the TPR-FPR curves for a toy data set. Each test case above the
threshold is classified as a positive case. For instance, the threshold t6 leads to 4 true
positive and 1 false positive classifications because 4 positive cases and 1 negative case are
located above the threshold; the corresponding rates are TPR = 4

5 and FPR = 1
5 (Figure 2b).

Class discrimination could now be quantified in terms of the area between the curves (ABC).

Definition 1. Area between the curves
The area between the curves (ABC) is the area between the TPR curve and the FPR curve,
which result from interpolating the true positive and false positive rates based on the n

2. The reason is that overly confident predictions that turn out to be incorrect lead to a dramatic
information-theoretic penalty; for example, the penalty for an incorrect prediction with confidence 1 is
−∞. Korb et al. (2001), for example, allowed the range [min,max] = [0.5(n + 1)−1, (n + 0.5)(n + 1)−1],
where n is the number of test cases.
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Figure 2: (a) An example of a binary classification task involving ten test cases. (b) The
ranking scores allow 11 classification thresholds, each corresponding to one TPR and one
FPR point. Interpolation through these points gives the TPR and FPR curves. The distance
between the curves is maximal for t6.

possible thresholds,

ABC = |
n∫

1

TPR(x)dx−
n∫

1

FPR(x)dx|. (6)

Note, that the absolute value is necessary if we accept that a model could also perform
worse than random guessing, which means that the FPR curve could be above the TPR
curve, thereby leading to a negative value of ABC. In the remainder of the paper, we will
work with the signed ABC, though. Applying the trapezoidal rule, we obtain

ABC =
n−1∑
i=1

TPRi(xi+1 − xi) +
1

2
(TPRi+1 − TPRi)(xi+1 − xi)

−
n−1∑
i=1

FPRi(xi+1 − xi) +
1

2
(FPRi+1 − FPRi)(xi+1 − xi)

=

n−1∑
i=1

(xi+1 − xi)
[
TPRi +

1

2
(TPRi+1 − TPRi)− FPRi −

1

2
(FPRi+1 − FPRi)

]

=
1

2

n−1∑
i=1

(xi+1 − xi) [(TPRi − FPRi) + (TPRi+1 − FPRi+1)],
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where TPRi and FPRi denote the true positive rate and false positive rate for the ith

threshold, respectively. We now require that the thresholds on the abscissa be equidistant in
[0, 1], where the first threshold is linearly mapped to 0 and the last threshold, n, is mapped
to 1 (this condition will be relaxed later). Then (xi+1 − xi) = 1

n−1 . Denoting j = i+ 1, we
obtain

ABC =
1

2n− 2

n−1∑
i=1

(TPRi − FPRi) +
1

2n− 2

n−1∑
j=2

(TPRj − FPRj).

Note, that the true positive and false positive rates are always zero for the first threshold,
TPR1 = FPR1 = 0, so we obtain

ABC =
1

n− 1

n−1∑
i=2

(TPRi − FPRi) (7)

Consider the optimal model that assigns the score 1 to all cases of class 1 and the score
0 to all cases of class 0. Here, n = 3, and ABC = 1

2 · (1 − 0) = 1
2 . It is now possible that

another, suboptimal model has a larger ABC. For example, assume that the ranking score
of the i = 2 ranked positive case is identical to the score of the i = 1 ranked positive case.
Figure 3c shows such an example of a suboptimal model with ABC > 0.5. Thus, for model
evaluation and selection, the ABC should not be used directly.

However, we can use the ABC to derive a performance measure. Consider the factor 1
n−1

in Equation 7. By replacing −1 in the denominator with −2, we obtain the average of the
distances between the points spanning the TPR and FPR curves, excluding the start-point
and end-point. If we consider now this new measure, then the value for the optimal model
is always 1, and no other model can score higher. This is immediately obvious because the
thresholds on the abscissa are scaled from [0, 1], and the FPR and TPR on the ordinate
range from 0 to 1. Any area within these boundaries cannot be larger than 1. Thus, the
distance between any pair (TPRi,FPRi) cannot be larger than 1, and therefore the average
of the distances cannot be larger than 1.

Definition 2. Truncated average Kolmogorov-Smirnov statistic (taKS)
Let a model produce ranking scores sa ∈ R, a = 1..k for k test cases belonging to either the
positive or the negative class, and sa−1 ≥ sa ≥ sa+1 and ∃sa, sb : a 6= b∧ sa 6= sb. Let n > 2
denote the number of possible thresholds ti, ti−1 < ti < ti+1, that these scores allow. Let
TPRi and FPRi denote the true positive and false positive rates, respectively, which result
from a particular threshold ti. The taKS is then defined as the average of the distances
between the true positive rates and the false positive rates, excluding the points (0,0) and
(1,1),

taKS =
1

n− 2

n−1∑
i=2

(TPRi − FPRi). (8)
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Note, that we can now relax the condition that the thresholds on the x-axis should be
equidistant in [0, 1]. All what matters for the taKS are the distances between the points
spanning the TPR and FPR curves; the scaling of the x-axis is irrelevant. A pseudocode
for deriving taKS is given in Appendix A (algorithm 1).

3.3 Illustration of taKS

Figure 3 shows the TPR-FPR plots with the resulting taKS for nine different prediction
results. The scores of the models in Figure 3a-b are different, but the relative order of the
cases is the same, so the models have the same ranking performance. Here, the taKS is 1.0
for the optimal model (Figure 3a), 0.556 for the model allowing 11 thresholds (Figure 3b),
and 0.600 for the model allowing 10 thresholds. These examples also illustrate that using
the ABC can be misleading: we would erronously prefer the model in Figure 3c with ABC
= 0.533 over the optimal model with ABC = 0.500.

The scores in (b) and (c) are different only for case #1. Model (b) predicted 0.95
whereas model (c) predicted 0.80. Provided that both models are equally calibrated, one
could argue that (b) is better (has a smaller SSE), and that taKS is therefore misleading.3

This reasoning is plausible, but the opposite could also have happened. Suppose that the
model in (c) produces 0.95 for cases #1 and #2. The value of taKS remains the same
(i.e., 0.60), but now it points us to the better model. Either scenario is equally likely a
priori, so correct and incorrect decisions should balance, on average, for this example. This
means that about half the time, taKS points us to the better model. Note, that the AUC is
indifferent in these examples, making no difference between (b) and (c) in either scenario.
If we used the AUC, then we could only guess which one is better, (b) or (c); thus, we would
be correct about half the time, too. Consequently, compared with the AUC (or any other
ranking measure, for that matter), taKS does not provide any advantage in this example –
but it does not provide any disadvantage, either.

Figure 3d-f shows three models that make some ranking errors. These models have the
same ranking performance, but they score a different taKS. The model in Figure 3e scores
a larger taKS than the model in Figure 3f. The model in Figure 3e assigned the same score
(0.80) to the cases #1 and #2; the model in Figure 3f assigned the same score (0.60) to the
cases #4 and #5. While both models allow for the same number of thresholds (i.e., 10),
the taKS identifies the model in Figure 3e as the preferable one because of its larger ABC.

Figure 3g-i show three particular models. The model in Figure 3g is the perfect “anti”-
model that predicts like the mirror image of the optimal model. Consequently, the resulting
taKS is −1. Another particular model is shown in Figure 3h. This model assigns the same
score to all cases; thus, it allows only two possible thresholds, so that the TPR and FPR
curves fall onto the same line. As the ABC is then not defined, the taKS is not defined,
either. Figure 3i shows the results of a random prediction, leading to a taKS and ABC of
zero. Note, that the AUC is defined for Figure 3h; the AUC is here 0.5 and the same as the
AUC in Figure 3i.

3. Thanks to an anonymous reviewer for pointing this out!
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Figure 3: TPR (red) and FPR (black) curves and taKS for nine classification results (cf.
inset table). (a) Best possible predictions with 3 possible thresholds; (b) perfect ranking
with 11 possible thresholds; (c) perfect ranking with 10 possible thresholds; (d) prediction
with ranking errors and 11 possible thresholds; (e) prediction with ranking errors and 10
possible thresholds; (f) prediction with ranking errors and 10 possible thresholds; (g) worst
possible prediction with 3 possible thresholds; (h) all cases have the same ranking score,
and neither ABC nor the taKS is defined; (i) random prediction with 5 possible thresholds.
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3.4 Some Further Notes on taKS

As the name implies, the taKS is closely related to the Kolmogorov-Smirnov (KS) statistic,
i.e., the maximum distance between the TPR and FPR curves (cf. Equation 5). By contrast,
the taKS is the average distance between these curves, excluding start- and endpoint at
(0,0) and (1,1), respectively. In the introductory example (Figure 2), we have KS = 3

5 (for
threshold t6) and taKS = 1

3 .

For the optimal model, which scores 1 for all positive cases and 0 for all negative cases,
taKS = 1. Also, each model that assigns the same score s+ to all positive and the same
score s− to all negative cases has taKS = 1. Thus, the taKS does not distinguish between
the optimal model and another model that, say, assigns 0.7 to all positive cases and 0.4
to all negative cases. For the worst-possible model (i.e., one that assigns 1 to all cases of
class 0 and 0 to all cases of class 1), taKS = −1. The expected value of taKS for a random
model is 0. If a model assigns the same score to all cases, then taKS is not defined because
the number of possible thresholds is then n = 2, which would lead to a division by zero in
Equation 8. Graphically, the TPR and FPR curves are then straight lines through (0,0)
and (1,1). Note, that conventional ranking measures such as the AUC are defined in this
case.

Like the AUC, taKS is an aggregate measure of performance for a final classification
result. An advantage of ROC plots is that they can visualize the performance of more than
just one classifier in the same diagram, in contrast to the TPR-FPR plots as used in this
paper. A further limitation of taKS is the following. If two models are equally calibrated,
then in some scenarios taKS can be larger for a model with a larger SSE, thereby leading
us to the potentially inferior model (for an examle, cf. Figure 3b-c). On average, however,
such scenarios should balance against scenarios where the opposite is the case.

4. Robustness Analysis

We considered both synthetic and real-world data sets to study the robustness of the ranking
measures to various types and levels of noise. We adopted an approach similiar to the one
described by Ferri et al. (2009). The main idea is the same: we consider two models, C1

and C2, where C1 is the truly better model. Then, we progressively added noise. The
question is whether the performance measures can still identify C1 as the better model. A
measure Xi can be considered more robust than another measure Xj if Xi is less affected
by the increasing levels of noise. Below, we describe the different types of noise that we
investigated in our experiments. All experiments are described in pseudocode in Appendix
A and were carried out in R2.10.1 (R Development Core Team, 2009).

4.1 Synthetic Data Sets

We considered the predictions of two classifiers, C1 and C2, on a hypothetical test set
comprising 100 cases, as described by Ferri et al. (2009). The number of test cases has
arguably little influence on the experiments, provided that it is not too small. We then
generated a vector of 100 real numbers by randomly sampling from a uniform distribution
[0, 1], which represent the ranking scores for the positive class. These membership scores
can be interpreted as class posterior probabilities. The positive class label was then assigned
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to all numbers ≥ 0.5, and the negative class label was assigned to the remaining numbers.
Next, we randomly selected 10 scores and replaced them by a real number, which was again
randomly sampled from [0, 1]. The resulting numbers represented the predictions of C1.
For a threshold of 0.5, the expected accuracy of C1 is 95% because we expect that half of
the new scores (i.e., 5 of 10) are wrong.

The predictions of C2 were the same as those of C1, except that we selected 10 further
predictions at random and replaced them by a real number, again randomly sampled from
[0, 1]. Thus, without noise, C2 was expected to perform worse than C1, with expected
accuracy of only 90%. The difference between the two classifiers, however, was expected to
become blurred for increasing levels of noise.

We considered three types of noise: misclassification noise, probability noise, and class
proportion noise (described below). For each level of noise, we generated each model, C1 and
C2, n = 10000 times, each time evaluating its performance based on the different ranking
measures. For each measure, we then counted how many times it erroneously indicated
that C2 was better than C1. Let X(·) denote the value of a performance measure X for a
classifier. The error rate of a measure X is then given by

ε(X) =
1

n

n∑
i=1

δ(X),with δ(X) =


1 if X(C2) > X(C1)

0.5 if X(C2) = X(C1)

0 if X(C2) < X(C1)

(9)

By plotting ε(X) for the measures as a function of the noise level, we can compare their
resilience to noise. For example, if a measure Xi is more robust than a measure Xj , then
the error rate of Xi should be consistently lower; hence, the curve for Xi should be below
the curve for Xj .

4.1.1 Misclassification Noise

First, we considered noise that affects the class labels. This experiment evaluates how
sensitive the measures are with respect to mislabelings. We investigated noise levels ranging
from 0% (i.e., no class label was altered) to 100% (i.e., each class label was altered and
determined by the flip of a coin). For a noise level of 0%, we expect that all error scores
are 0 because C1 is clearly better than C2. By contrast, if all class labels are random, then
we expect no difference between the models, so the error score should be around 0.5.

For a class label noise between 0% and about 70% (Figure 4), the error rates of the
H-measure and the Kolmogorov-Smirnov statistic are slightly below those of the other
measures. The AUCH is slightly more robust than the AUC and the taKS but less robust
than the H-measure and the Kolmogorov-Smirnov statistic. sAUC is the least robust in this
experiment. Overall, however, we do not see dramatic differences between the measures.
As expected, all measures are around 0.5 for a noise level of 100%. The error rates of the
AUC and the taKS are virtually identical in this experiment.
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Figure 4: Synthetic data, experiment #1. Robustness to misclassification noise.

4.1.2 Probability Noise

This noise affects the class membership scores. This experiment evaluates how sensitive
the measures are when the posterior class probabilities are not well estimated. The noise
was randomly sampled from a uniform distribution [−x, x], where x ranged from 0 (i.e., no
noise) to 0.5 (i.e., 100% noise) in a stepsize of 0.005. The noise was added to all ranking
scores.

When the noise affects the class posterior probabilities (Figure 5), the sAUC performs
the worst. The Kolmogorov-Smirnov statistic is the next least robust, followed by the H-
measure. The AUC and the taKS are the most robust in this experiment; their error rates
are again almost identical. The AUCH is slightly less robust than these two measures.

4.1.3 Class Proportion Noise

This noise affects the class proportions. The experiment evaluates how sensitive the mea-
sures are to changes in the class distribution drifts. We changed the class frequencies by
progressively deleting x% of the cases of the positive class. The noise x% ranged from 5%
to 95%.

When the noise affects the class frequencies (Figure 6), all measures except sAUC per-
form very similarly. For AUC, AUCH, H-measure, KS, and taKS, the error rates are re-
markably low for noise levels up to around 80%. Thus, in contrast to sAUC, these measures
can cope quite well even when the classes are heavily imbalanced.
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Figure 5: Synthetic data, experiment #2. Robustness to probability noise.

4.2 Real-World Data Sets

In the experiments with the synthetic data sets, we investigated a wide range of noise levels,
including some that are arguably unrealistically high for real-world data sets. Therefore,
we limited the next experiments to a noise level that was neither too small to cause any
noticeable effect nor too large to be unrealistic. We assumed that a noise level of 10% would
meet this requirement.

In the experiments with the synthetic data sets, we observed that the class proportion
noise has very little effect on the performance measures, except for unrealistically high noise
levels. Therefore, we excluded this type of noise in the following experiments. Instead, we
considered a new type of noise that we could not study before: attribute noise, which affects
the attributes either in the training set or the entire data set.

We used naive Bayes learning to construct our base classifier. The concrete learning
algorithm was assumed to have little influence on the experimental results. We denoted the
predicted scores of this classifier as C1. We then randomly selected 10% of these scores and
replaced each score by a random number, which was uniformly sampled from [0, 1]. The
result was C2. Without noise, C1 is clearly better than its corrupted competitor, C2. We
used ten benchmark data sets from the UCI repository (Bache & Lichman, 2013).

Experiment #1: Misclassification Noise Affecting the Entire Data Set
In the first experiment, we investigated the resilience to noise affecting the class labels of
the entire data set. For each data set, we selected 10% of the class labels and randomly
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Figure 6: Synthetic data, experiment #3. Robustness to class proportion noise.

assigned either a positive or a negative label. Then, we compared the performance of C1

and C2 in 10-fold cross-validation. We repeated this experiment 1000 times and recorded
how many times C2 was declared the better model by the respective ranking measure (see
Appendix A, algorithm 2).

Experiment #2: Misclassification Noise Affecting the Training Set
In the second experiment, we investigated the resilience to noise affecting the class labels of
only the training set. For each training set, we selected 10% of the class labels and randomly
assigned either a positive or a negative label. Then, we compared the performance of C1

and C2 in 10-fold cross-validation. We repeated this experiment 1000 times and recorded
how many times C2 was declared the better model by the respective ranking measure (see
Appendix A, algorithm 3).

Experiment #3: Attribute Noise Affecting the Entire Data Set
In the third experiment, we investigated the resilience to noise affecting the attribute val-
ues in the entire data set. For each data set and each attribute, we selected 10% of the
values and randomly permuted them. Then, we compared the performance of C1 and C2 in
10-fold cross-validation. We repeated this experiment 1000 times and recorded how many
times C2 was declared the better model by the respective ranking measure (see Appendix
A, algorithm 4).
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Experiment #4: Attribute Noise Affecting the Training Set
In the fourth experiment, we investigated the resilience to noise affecting the attribute val-
ues in the training set only. For each training set and each attribute, we selected 10% of the
values and randomly permuted them. Then, we compared the performance of C1 and C2 in
10-fold cross-validation. We repeated this experiment 1000 times and recorded how many
times C2 was declared the better model by the respective ranking measure (see Appendix
A, algorithm 5).

Table 1 shows the error rates of the ranking measures for the real-world data sets. We
can make several interesting observations. First, for most data sets, the error rates of the
performance measures are relatively small and not drastically different from each other.
The only exception is sAUC, whose error rates are indeed remarkably high (between 64.8%
and 78.3%) for the data sets Liver and Transfusion in all four experiments. The Liver and
Transfusion data sets have only 6 and 4 attributes, respectively, and they are comparatively
more difficult to classify than the other data sets.4 For the data sets Liver and Transfusion,
the error rates are the highest in all four experiments, whereas the error rates are virtually
neglibile for the data set Credit. We speculate that if some data sets are intrinsically very
easy to classify, then the injected noise has a negligible effect on the ranking measures. If
a data set is easy to classify, then we can expect that our classifier produces scores close
to 0 and 1, with fewer scores around 0.5. Now, we created C2 by randomly selecting some
scores from C1 and re-assigning a random number from [0, 1] to those scores. This means
that we can expect that a larger number of more extreme scores (which are likely to be
correct, as the classification tasks are relatively easy) are mapped to less extreme scores.
Consequently, it is quite easy to identify C1 as the better model, regardless of whichever
measure is being used. By contrast, if a data set is intrinscically difficult to classify, then
even tiny amounts of added noise may wreak havoc. This seems to be the case for sAUC
in particular. Note, that the sAUC implicitly rewards a classifier’s “boldness”: the sAUC
of a classifier with scores close to 0 and 1 can be larger than the sAUC of a classifier with
less extreme scores, although the latter may make fewer ranking errors; Vanderlooy and
Hüllermeier (2008, p.252) give an illustrative example.

Second, the error rates are, overall, higher when the noise affects the entire data sets
than the error rates for the noise that affects only the training sets. This is not unexpected
because in the latter case, a portion of the original data remains intact.

Third, overall, we observe a positive correlation between the measures, but the differ-
ences in error rates are remarkable for some data sets. For example, in experiment #2, the
error rate of the H-measure (10.9%) is more than three times the error rate of the AUC
(3.3%) for the data set Spect; on the other hand, the error rate of the AUC (1.4%) is seven
times that of the H-measure (0.2%) for the data set House. Interestingly, the H-measure
has, on average, slightly higher error rates than the AUC or taKS when the noise affects
the class labels. This is somewhat unexpected because the H-measure performed relatively
well in the corresponding experiments with the synthetic data sets (Figure 4). However, the
differences of the average error rates are relatively small and might perhaps be explained by

4. We checked this by analyzing all (uncorrupted) data sets in 100 times repeated 10-fold cross-validation.
The naive Bayes classifier achieved the lowest AUC for Liver and Transfusion.
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H-measure AUC AUCH sAUC KS taKS
Experiment #1 Sonar 10.30 8.80 11.70 10.70 12.05 7.00

Spect 13.90 8.90 9.60 2.80 11.20 8.80
Heart 1.50 1.80 1.70 0.10 1.60 1.80
Liver 18.10 16.70 17.50 70.20 19.30 16.80

Ionosphere 0.40 0.70 0.80 0.00 0.50 0.50
House 0.20 1.50 1.20 0.00 0.10 1.00

Cylinder 0.40 1.00 1.20 7.90 0.80 0.80
Credit 0.00 0.00 0.00 0.10 0.00 0.00

Transfusion 5.50 3.40 4.60 78.30 7.30 3.20
Pima 0.40 0.00 0.10 0.10 1.00 0.00

Experiment #2 Sonar 5.30 4.80 6.70 6.30 7.15 3.40
Spect 10.90 3.30 4.50 0.70 6.95 2.80
Heart 0.30 0.20 0.30 0.00 0.70 0.20
Liver 16.50 13.20 14.00 66.50 17.10 13.20

Ionosphere 0.00 0.00 0.00 0.00 0.10 0.00
House 0.20 1.40 1.30 0.00 0.20 1.10

Cylinder 0.00 0.10 0.10 2.90 0.10 0.00
Credit 0.00 0.00 0.00 0.00 0.00 0.00

Transfusion 3.40 0.90 1.30 69.80 2.90 0.70
Pima 0.10 0.00 0.00 0.10 0.30 0.00

Experiment #3 Sonar 8.00 6.30 8.10 6.00 9.40 4.30
Spect 8.80 3.50 3.40 1.40 6.90 2.90
Heart 0.50 0.90 0.70 0.10 1.00 0.90
Liver 18.40 15.60 16.80 64.80 21.00 15.60

Ionosphere 0.10 0.30 0.30 0.00 0.10 0.30
House 0.00 0.00 0.00 0.00 0.00 0.00

Cylinder 0.30 0.20 0.30 2.50 0.70 0.00
Credit 0.00 0.00 0.00 0.10 0.00 0.00

Transfusion 3.90 2.10 3.00 74.60 3.80 1.70
Pima 0.10 0.00 0.00 0.00 0.20 0.00

Experiment #4 Sonar 5.50 4.50 5.80 5.40 5.85 3.20
Spect 12.10 4.00 5.20 1.20 7.10 3.40
Heart 0.50 0.90 0.70 0.00 0.80 0.90
Liver 14.90 13.40 13.70 65.90 17.20 13.50

Ionosphere 0.10 0.00 0.00 0.00 0.20 0.00
House 0.00 0.00 0.00 0.00 0.00 0.00

Cylinder 0.00 0.00 0.10 5.10 0.30 0.00
Credit 0.00 0.00 0.00 0.00 0.00 0.00

Transfusion 2.50 1.50 2.00 70.80 2.80 1.50
Pima 0.10 0.10 0.10 0.20 0.10 0.10

Table 1: Error rates [%] of the ranking measures. Experiment #1: 10% of the class labels
in each data set were randomly assigned; Experiment #2: 10% of the class labels in each
training set were randomly assigned; Experiment #3: 10% of the values of each attribute
were randomly permuted in each data set ; and Experiment #4: 10% of the values of each
attribute were randomly permuted in each training set. Each data set was analyzed 1000
times in 10-fold cross-validation. Lowest error rates are shown in boldface.
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statistical fluctuations. An alternative explanation is that in the experiments with synthetic
data, all ranking scores from [0, 1] were equally likely. In the experiments with real-world
data sets, however, that was not the case. These data sets are relatively easy to classify.
Therefore, we can expect to see more scores concentrated towards 1 and 0 and fewer scores
around 0.5, which might have a negative effect on the H-measure; however, this is only
speculation.

5. Discussion and Conclusions

Ranking measures play an important role in model evaluation and selection. Using both
synthetic and real-world data sets, we compared the robustness of various ranking measures
to different types and levels of noise. The AUC has recently been criticized as an incoherent
measure (Hand, 2009; Hand & Anagnostopoulos, 2013; Parker, 2013); nonetheless, it was
arguably the most robust among the conventional measures in our experiments. This is an
important finding, as it lends further empirical credibility to the AUC and complements its
recently published vindications (Flach, Hernández-Orallo, & Ferri, 2011; Hernández-Orallo
et al., 2012; Bradley, 2013). The AUC was also more robust than the sAUC, which confirms
the observations by Vanderlooy and Hüllermeier (2008) that the sAUC is not an efficient
alternative to the AUC.

In our experiments with the synthetic data sets, KS and the H-measure performed best
under misclassification noise. Under probability noise, however, they performed worse than
the AUC and AUCH. All metrics except the sAUC performed more or less similarly under
class proportion noise. Overall, the differences between the metrics with respect to their
resilience to noise were rather small for relatively low noise levels in the synthetic data. Also,
in most of the investigated real-world data sets, the magnitude of the difference was arguably
not that dramatic. The sAUC should be used with caution, though, because it performed
poorly in the experiments with synthetic data (notably class proportion noise, Figure 6)
and in the experiments with the more difficult real-world data sets (Liver, Transfusion).
These observations confirm earlier results, which showed that the sAUC is not robust to
noise (Ferri et al., 2009).

Our experiments do not allow the conclusion that the H-measure is preferable to the
AUC with respect to robustness. Also, we believe that the H-measure is arguably more
intricate than the other measures, and its geometrical interpretation is not as straightfor-
ward as that of the AUC. This does of course not mean that the H-measure is not useful or
that the AUC can always be trusted. Hilden (1991) describes an interesting example where
the AUC is in fact misleading. Also, note that Parker (2013) comes to a conclusion that
is different from ours: he recommends the H-measure, both on empirical and theoretical
grounds. However, Parker evaluated a measure based on its (dis-)agreement with other
measures, not based on its robustness to noise.

We also proposed a novel ranking measure, called taKS. A key characteristic of this
measure is its simplicity. The taKS is easily derived, and it has a simple geometrical inter-
pretation as the average distance between two curves: the true positive and the false positive
rate curve, each plotted as a function of the classification threshold. In our study, taKS
was remarkably robust to noise. However, we caution that the arguments against the AUC
(Hilden, 1991; Hand, 2009; Hand & Anagnostopoulos, 2013) should not be dismissed light-
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heartedly. Particularly, Parker (2013) has recently extended Hand’s analysis, showing that
related metrics (the area under Cohen’s κ curve and average precision) are similarly inco-
herent. According to Parker’s theorem 1, the problem is that these measures result from the
integration over all possible classification thresholds. As taKS is measured via a normalized
summation, it could be similarly incoherent. Our experimental results are promising, but
more research is needed to elucidate the usefulness of taKS. Many open questions remain,
for example, what is the precise relation between taKS and other measures, for example,
the partial AUC (McClish, 1989)? When is taKS (in-)coherent? And particularly, what is
the role of data set idiosyncrasies for the selection of a ranking measure? We also remem-
ber that the results of empirical studies should not be viewed in isolation but against the
backdrop of previous research. The AUC was remarkably robust in our experiments, and it
has been successfully used in numerous studies; in addition, it has recently been vindicated
theoretically (Hernández-Orallo et al., 2012). Taken together, we therefore conclude that
the AUC might still be a good choice for practical applications.

Finally, we note that all investigated metrics share an important caveat: as scalars, they
cannot paint the full picture of a classifier’s performance. By condensing the performance
into a single number, we are bound to lose important information about the behavior of
a model over a range of operating conditions, which is generally better described by two-
dimensional plots such as ROC curves. One should always be wary of reading too much
into a single number. A single number can be misleading. On the other hand, scalars have
the obvious advantage that they allow us to tabulate the results of various classifiers easily.
This is desirable when we compare a very large number of models, as it is generally the case
in data mining competitions, for example.
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Appendix A. Pseudocodes

Algorithm 1 Pseudocode for taKS.

Require: A matrix X with k rows (one for each test case) and 2 columns (first column: real class
label; second column: predicted score for positive class, s+). X is ordered based on decreasing
values of s+; at least two scores must be different. # if all scores are identical then taKS is not
defined.

1: TPR, FPR ← < 0 > # lists, each containing one element: 0
2: tp, fp ← 0
3: np ← number of positive cases in X; nn ← number of negative cases in X
4: i ← 1
5: while (i ≤ number of rows of X) do
6: threshold ← i
7: ii ← i
8: scorei ← s+ of the ith case
9: while (scoreii+1 == scorei) and (ii +1 ≤ number of cases in X) do

10: threshold ← threshold + 1
11: ii ← ii + 1
12: end while
13: tp ← number of positive cases at or above threshold
14: fp ← number of negative cases at or above threshold
15: push tp/np onto TPR; push fp/nn onto FPR
16: i ← threshold + 1
17: end while
18: taKS ← mean(TPR\{first, last} − FPR\{first, last})
19: return taKS
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Algorithm 2 Real-world data set, experiment #1. Corrupt 10% of the class labels in the
data set
Require: data set D

1: for i = 1 to 1000 do
2: Randomly select 10% of the cases from D and randomly assign class label.
3: for k = 1 to 10 do
4: Sample k-th training and k-th test set from corrupted D.
5: Build naive Bayes classifier from k-th training set.
6: Apply classifier to k-th test set and obtain output C1k.
7: Derive Xk(C1k).
8: Randomly select 10% of the prediction scores of C1k.
9: Replace each selected score by a random number from [0, 1] to obtain C2k.

10: Derive Xk(C2k).
11: end for
12: X(C1)⇐ average of Xk(C1k).
13: X(C2)⇐ average of Xk(C2k).
14: if X(C2) > X(C1) then
15: ε(X)⇐ ε(X) + 1
16: else
17: if X(C2) == X(C1) then
18: ε(X)⇐ ε(X) + 0.5
19: else
20: ε(X)⇐ ε(X) + 0
21: end if
22: end if
23: end for
24: return ε(X)
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Algorithm 3 Real-world data set, experiment #2. Corrupt 10% of the class labels per
training set

Require: data set D
1: for i = 1 to 1000 do
2: for k = 1 to 10 do
3: Sample k-th training and k-th test set from D.
4: Randomly select 10% of the training cases.
5: Randomly assign a class label to the selected cases.
6: Build naive Bayes classifier from k-th corrupted training set.
7: Apply classifier to k-th test set and obtain output C1k.
8: Derive Xk(C1k).
9: Randomly select 10% of the prediction scores of C1k.

10: Replace each selected score by a random number from [0, 1] to obtain C2k.
11: Derive Xk(C2k).
12: end for
13: X(C1)⇐ average of Xk(C1k).
14: X(C2)⇐ average of Xk(C2k).
15: if X(C2) > X(C1) then
16: ε(X)⇐ ε(X) + 1
17: else
18: if X(C2) == X(C1) then
19: ε(X)⇐ ε(X) + 0.5
20: else
21: ε(X)⇐ ε(X) + 0
22: end if
23: end if
24: end for
25: return ε(X)
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Algorithm 4 Real-world data set, experiment #3. Corrupt 10% of the attribute values in
the data set
Require: data set D

1: for i = 1 to 1000 do
2: Randomly select 10% of the values of each attribute of D.
3: Randomly permute the selected values per attribute.
4: for k = 1 to 10 do
5: Sample k-th training and k-th test set from corrupted D.
6: Build naive Bayes classifier from k-th corrupted training set.
7: Apply classifier to k-th test set and obtain output C1k.
8: Derive Xk(C1k).
9: Randomly select 10% of the prediction scores of C1k.

10: Replace each selected score by a random number from [0, 1] to obtain C2k.
11: Derive Xk(C2k).
12: end for
13: X(C1)⇐ average of Xk(C1k).
14: X(C2)⇐ average of Xk(C2k).
15: if X(C2) > X(C1) then
16: ε(X)⇐ ε(X) + 1
17: else
18: if X(C2) == X(C1) then
19: ε(X)⇐ ε(X) + 0.5
20: else
21: ε(X)⇐ ε(X) + 0
22: end if
23: end if
24: end for
25: return ε(X)
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Algorithm 5 Real-world data set, experiment #4. Corrupt 10% of the attribute values
per training set

Require: data set D
1: for i = 1 to 1000 do
2: for k = 1 to 10 do
3: Sample k-th training and k-th test set from D.
4: For the training set only: select 10% of the values of each attribute.
5: Randomly permute the selected values per attribute.
6: Build naive Bayes classifier from k-th corrupted training set.
7: Apply classifier to k-th test set and obtain output C1k.
8: Derive Xk(C1k).
9: Randomly select 10% of the prediction scores of C1k.

10: Replace each selected score by a random number from [0, 1] to obtain C2k.
11: Derive Xk(C2k).
12: end for
13: X(C1)⇐ average of Xk(C1k).
14: X(C2)⇐ average of Xk(C2k).
15: if X(C2) > X(C1) then
16: ε(X)⇐ ε(X) + 1
17: else
18: if X(C2) == X(C1) then
19: ε(X)⇐ ε(X) + 0.5
20: else
21: ε(X)⇐ ε(X) + 0
22: end if
23: end if
24: end for
25: return ε(X)
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Kok, J., Koronacki, J., de Mántaras, R., Matwin, S., Mladenic̆, D., & Skowron, A.
(Eds.), Proceedings of the 18th European Conference on Machine Learning (ECML
2007), pp. 478–489. Springer.

267


