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Abstract

Many applications, ranging from video games to dynamic robotics, require solving
single-agent, deterministic search problems in partially known environments under very
tight time constraints. Real-Time Heuristic Search (RTHS) algorithms are specifically
designed for those applications. As a subroutine, most of them invoke a standard, but
bounded, search algorithm that searches for the goal. In this paper we present FRIT, a
simple approach for single-agent deterministic search problems under tight constraints and
partially known environments that unlike traditional RTHS does not search for the goal
but rather searches for a path that connects the current state with a so-called ideal tree T .
When the agent observes that an arc in the tree cannot be traversed in the actual envi-
ronment, it removes such an arc from T and then carries out a reconnection search whose
objective is to find a path between the current state and any node in T . The reconnection
search is done using an algorithm that is passed as a parameter to FRIT. If such a parameter
is an RTHS algorithm, then the resulting algorithm can be an RTHS algorithm. We show,
in addition, that FRIT may be fed with a (bounded) complete blind-search algorithm. We
evaluate our approach over grid pathfinding benchmarks including game maps and mazes.
Our results show that FRIT, used with RTAA*, a standard RTHS algorithm, outperforms
RTAA* significantly; by one order of magnitude under tight time constraints. In addition,
FRIT(daRTAA*) substantially outperforms daRTAA*, a state-of-the-art RTHS algorithm,
usually obtaining solutions 50% cheaper on average when performing the same search effort.
Finally, FRIT(BFS), i.e., FRIT using breadth-first-search, obtains best-quality solutions
when time is limited compared to Adaptive A* and Repeated A*. Finally we show that
Bug2, a pathfinding-specific navigation algorithm, outperforms FRIT(BFS) when planning
time is extremely limited, but when given more time, the situation reverses.

1. Introduction

Real-Time Heuristic Search (Korf, 1990) is an approach to solving single-agent search prob-
lems when a limit is imposed on the amount of computation that can be used for delibera-
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tion. It is used for solving problems in which agents have to start moving before a complete
search algorithm can solve the problem and is especially suitable for problems in which the
environment is only partially known in advance.

An application of real-time heuristic search algorithms is goal-directed navigation in
video games (Bulitko, Björnsson, Sturtevant, & Lawrence, 2011) in which computer charac-
ters are expected to find their way in partially known terrain. Game-developing companies
impose a constant time limit on the amount of computation per move close to one mil-
lisecond for all simultaneously moving characters (Bulitko et al., 2011). As such, real-time
search algorithms are applicable since they provide the main loop with quick moves that
allow implementing continuous character moves.

Most standard real-time heuristic search algorithms—e.g., LRTA* (Korf, 1990) or LSS-
LRTA* (Koenig & Sun, 2009)—are not algorithms of choice for videogame developers, since
they will require characters to re-visit many states in order to escape so-called heuristic
depressions, producing back-and-forth movements, also referred to as scrubbing (Bulitko
et al., 2011). The underlying reason for this behavior is that the heuristic used to guide
search must be updated—in a process usually referred to as heuristic learning—whenever
new obstacles are found. To exit so-called heuristic depressions, the agent may need to
revisit a group of states many times (Ishida, 1992).

By exploiting preprocessing (e.g., Bulitko, Björnsson, Lustrek, Schaeffer, & Sigmundar-
son, 2007; Bulitko, Björnsson, & Lawrence, 2010; Hernández & Baier, 2011), one can pro-
duce Real-Time Heuristic Search algorithms that will control the agent in a way that is
sensible to the human observer. Give a map of the terrain, these algorithms compute in-
formation offline that can later be utilized online by a Real-Time Search algorithm to find
paths very quickly.

Unfortunately, preprocessing is not applicable in all settings. For example if one wants
to implement an agent which has no knowledge of the terrain, there is no map that is
available prior to search and hence no preprocessing can be carried out. On the other hand,
when knowledge about the terrain is only partial (i.e., the agent may know the location
of some of the obstacles but not all of them), using a plain Real-Time Heuristic Search
along with partial information about the map obtained from preprocessing (i.e., a perfect
heuristic computed for the partially known map) may still result in the same performance
issues described above.

In this paper we present FRIT, a real-time search algorithm that does not necessarily
rely on heuristic learning to control the agent, and that produces high-quality solutions in
partially known environments. While easily motivated by game applications, our algorithm
is designed for general search problems. An agent controlled by our algorithm always
follows the branch of a tree containing a family of solutions. We call such a tree the ideal
tree because the paths it contains are solutions in the world that is currently known to the
agent, but such solutions may not be legal in the actual world. As the agent moves through
the states in the ideal tree it will usually encounter states that are not accessible and which
block a solution in the ideal tree. When this happens, a secondary algorithm—which is
given as a parameter—is used to perform a search and reconnect the current state with
another state known to be in the ideal tree. After reconnection succeeds the agent is again
on a state of an updated ideal tree, and it can continue following a branch of the tree.
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We discuss two different ways in which the algorithm given as a parameter to FRIT
can be useful for real-time scenarios. The first alternative is to feed FRIT with a real-time
search algorithm. This produces a standard real-time search algorithm, but not a so-called
agent-centered search algorithm (Koenig, 2001) since to verify that a node is connected to
the ideal tree it may need to consider states that are far away from its current position.

The second option to make FRIT amenable for real-time scenarios consists of feeding
FRIT with a bounded complete search algorithm; i.e., a complete search algorithm which in
each iteration expands a bounded number of states. After performing such a limited number
of expansions, the search algorithm may have not found a reconnecting path. In this case
the agent may or may not perform an action depending on domain-specific considerations.
In our implementation we chose to perform no move at all.

We evaluated our algorithm over standard game and maze pathfinding benchmarks using
both a blind, breadth-first search algorithm and two different real-time search algorithms
for reconnection. Even though our algorithm does not guarantee optimality, solutions re-
turned, in terms of quality and total time, are significantly better than those returned by the
state-of-the-art real-time heuristic search algorithms we compared to, when the search effort
is comparable. Upon inspection of the route followed by the agent, we observe that when
using blind-search algorithms for reconnection they do not contain back-and-forth, “irra-
tional” movements, and that indeed they look similar to solutions returned by so-called bug
algorithms (LaValle, 2006; Taylor & LaValle, 2009) developed by the robotics community.
As such, it usually detects states that do not need to be visited again—sometimes referred
to as dead-ends or redundant states (Sturtevant & Bulitko, 2011; Sharon, Sturtevant, &
Felner, 2013)—without implementing a specific mechanism to detect them.

We also compared our algorithm to incremental heuristic search algorithms that can be
modified to behave like a real-time search algorithm. We find that, although FRIT does not
reach the same solution quality, it can obtain solutions that are significantly better when
the time deadline is tight (under 40µ sec).

Our algorithm is extremely easy to implement and, in case there is sufficient time for
pre-processing, can utilize techniques already described in the literature, like so-called com-
pressed path databases (Botea, 2011), to compute an initial ideal tree. Furthermore, we
provide proofs for termination of the algorithm using real-time search and blind-search for
reconnection, and provide a bound on the number of moves required to find a solution in
arbitrary graphs.

Some of the contributions presented in this article have been published in a conference
paper (Rivera, Illanes, Baier, & Hernandez, 2013b). This articles extends the work and
includes new material. In particular:

• We describe a method to use our algorithm with a real-time search algorithm passed
as a parameter, and evaluate the results obtained when using two different real-time
algorithms.

• We provide proofs for the termination of algorithms obtained by using the aforemen-
tioned method, and a general proof for convergence applicable to all the algorithms
we propose.

• We incorporate a small optimization that affects the InTree[c] function described in
Section 3.
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• We extend the previous empirical results by including maze benchmarks, which had
not been previously considered, and by evaluating on more problem instances. In
addition, we compare our algorithm with the Bug2 (Lumelsky & Stepanov, 1987)
pathfinding algorithm.

The rest of the paper is organized as follows. In Section 2 we describe the background
necessary for the rest of the paper. In Section 3 we describe a simple version of our algorithm
that is not real-time. In Section 4 we describe two alternative ways to make the algorithm
satisfy the real-time property. In Section 5 we present a theoretical analysis, followed by
a description of our experimental evaluation in Section 6. We then describe other related
work, and finish with a summary.

2. Background

The search problems we deal with in this paper can be described by a tuple P = (G, c, sstart, g),
where G = (S,A) is a directed graph that represents the search space. The set S represents
the states and the arcs in A represent all available actions. State sstart ∈ S is the initial
state and state g ∈ S is the goal state. We assume that S is finite, that A does not contain
elements of the form (s, s), that G is such that g is reachable from all states reachable from
sstart. In addition, we have a non-negative cost function c : A→ R which associates a cost
with each of the available actions. Naturally, the cost of a path in the graph is the sum of
the costs of the arcs in the path. Finally g ∈ S is the goal state. Note that even though
our definition considers a single goal state it can still model problems with multiple goal
states since we can always transform a multiple-goal problem into a single-goal problem by
adding a new state g to the graph and connecting the goals in the original problem to g
with a zero-cost action.

We define the distance function dG : S × S → R such that dG(s, t) denotes the cost
of a shortest path from s to t in the graph G. A heuristic for a search graph G is a non-
negative function h : S → R such that h(s) estimates dG(s, g). We say that h is admissible
if h(s) ≤ dG(s, g), for all s ∈ S. In addition, we say a heuristic h is consistent if for every
pair (s, t) ∈ A it holds that h(s) ≤ c(s, t)+h(t), and furthermore that h(g) = 0. It is simple
to prove that consistency implies admissibility.

2.1 Real-Time Search

Given a search problem P = (G, c, sstart, g), the objective of a real-time search algorithm is
to move an agent from sstart to g, through a low-cost path. The algorithm should satisfy
the real-time property, which means that the agent is given a bounded amount of time
for deliberating, independent of the size of the problem. After deliberation, the agent is
expected to move. After such a move, more time is given for deliberation and the loop
repeats.

Most Real-Time Heuristic Search algorithms rely on the execution of a bounded but
standard state-space search algorithm (e.g., A*, Hart, Nilsson, & Raphael, 1968). In order
to apply such an algorithm in partially known environments, they carry out their search
in a graph which may not correspond to the graph describing the actual environment. In
particular, in pathfinding in grid worlds, it is assumed that the dimensions of the grid are
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known, and to enable search a free-space assumption (Zelinsky, 1992) is made, whereby grid
cells are regarded as obstacle-free unless they are known to be blocked.

Below we define a version of the free-space assumption for use with general search
problems. We assume a certain search graph GM is given as input to the agent. Such
a graph reflects what the agent knows about the environment, and is kept in memory
throughout execution. We assume that this graph satisfies the following generalized version
of the free-space assumption: if the actual search graph is G = (S,A), then GM is a spanning
supergraph of G, i.e. GM = (S,A′), with A ⊆ A′. Note that because GM is a supergraph of
G then dGM

(s, t) ≤ dG(s, t) for all s, t ∈ S, and that if h is admissible for GM then so it is
for G.

While moving through the environment, we assume the agent is capable of observing
whether or not some of the arcs in its search graph GM = (S,A′) are present in the actual
graph. Specifically, we assume that if the agent is in state s, it is able to sense whether
(s, t) ∈ A′ is traversable in the actual graph. If an arc (s, t) is not traversable, then t is
inaccessible and hence the agent removes from GM all arcs that lead to t. Note that this
means that if GM satisfies the free-space assumption initially, it will always satisfy it during
execution.

Note the following fact implicit to our definitions: the environment is static. This is
because G, unlike GM , never changes. The free-space assumption also implies that the
agent cannot discover arcs in the environment that are not present in its search graph GM .

Many standard real-time search algorithms have the structure of Algorithm 1, which
solves the search problem by iterating through a loop that runs four procedures: lookahead,
heuristic learning, movement, and observation. The lookahead phase (Line 3) runs a time-
bounded search algorithm that returns a path that later determines how the agent moves.
The heuristic learning procedure (Line 4) changes the h-value of some of the states in the
search space to make them more informed. Finally, in the movement and observation phase
(Line 5), the agent moves along a path in the graph previously computed by the lookahead
search procedure. While moving, the agent observes the environment, and prunes away
from GM any arc that is perceived to be absent in the actual environment.

Algorithm 1: A Generic Real-Time Search Algorithm

Input: A search graph GM , a heuristic function h, a goal state g
Effect: The agent is moved from the initial state to a goal state if a trajectory exists

1 while the agent has not reached the goal state do
2 scurr ← the current state.
3 path← LookAhead(scurr, g).
4 Update the heuristic function h.
5 Move the agent through path. While moving, observe the environment and

update GM , removing any non traversable arcs. Stop if an arc in path is removed
or if path has been traversed completely

RTAA* (Koenig & Likhachev, 2006) is an instance of Algorithm 1. In its lookahead
phase, it runs a bounded A* from scurr towards the goal state, which executes as regular
A* does but execution is stopped as soon the node with lowest f -value in Open is a goal
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state or as soon as k nodes have been expanded. The path returned is the one that connects
scurr and the best state in Open (i.e., the state with lowest f-value in Open). On the other
hand, heuristic learning is carried out using Algorithm 2, which resets the heuristic of all
states expanded by the lookahead according to the f -value of the best state in Open. Koenig
and Likhachev (2006) prove that Algorithm 2 maintains the consistency of h if h is initially
consistent.

Algorithm 2: RTAA*’s heuristic learning.

1 procedure Update ()
2 f∗ ← mins∈Open g(s) + h(s)
3 for each s ∈ Closed do
4 h(s)← f∗ − g(s)

LRTA* (Korf, 1990) is also instance of Algorithm 1; indeed, LRTA* is an instance of
RTAA* when the k parameter is set to 1. In a nutshell, the most simple version of LRTA*
decides where to move to by just looking at the best of scurr’s neighbors, and updates the
heuristic of scurr also based on the heuristic of its neighbors.

It is easy to see that both RTAA* and LRTA* satisfy the real-time property since
all operations carried out prior to movement take constant time. These algorithms are
also complete—in the sense that they always find a solution if one exists—when the input
heuristic is consistent. To prove completeness, heuristic learning is key. First, because
learning guarantees that the state the agent moves to has a lower heuristic value compared
to h(scurr). Second, because the learning procedure guarantees that the heuristic is al-
ways bounded (in the case of RTAA*, and many other algorithms, consistency, and hence
admissibility is preserved during execution).

Finally, bounds for the number of execution steps are known for some of these algorithms.
LRTA*, for example, can solve any search problem in (|S|2 − |S|)/2 iterations, where |S| is
the number nodes in the search graph (Edelkamp & Schrödl, 2011, Ch. 11).

3. Searching via Tree Reconnection

The algorithm we propose below moves an agent towards the goal state in a partially known
environment by following the arcs of a so-called ideal tree T . Whenever an arc in such a
tree cannot be traversed in the actual environment, it carries out a search to reconnect the
current state with a node in T . In this section we describe a simple version of our algorithm
which still does not satisfy the real-time property. Prior to that, we describe how T is built
initially.

3.1 The Ideal Tree

The ideal tree intuitively corresponds to a family of paths that connect some states of the
search space with the goal state. The tree is ideal because some of the arcs in the tree may
not exist in the actual search graph. Formally,
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Definition 1 (Ideal Tree) Given a search problem P = (G, c, sstart, g), and a graph GM

that satisfies the generalized free-space assumption with respect to G, the ideal tree T over
P and GM is a directed acyclic subgraph of GM such that:

1. the goal state g is in T and has no parent (i.e., it is the root), and

2. if t is a child of s in T , then (t, s) is an arc in GM .

Note that arcs in an ideal tree are directed and point from the children to the parent
(Figure 1 depicts an ideal tree over a grid world). Properties 1 and 2 of Definition 1 imply
that given an ideal tree T and a node s in GM it suffices to follow the arcs in T (which are
also in GM ) to reach the goal state g. Property 2 corresponds to the intuition of T being
ideal : the arcs in T may not exist in the actual search graph because they correspond to
arcs in GM but not necessarily in G.

We note that in search problems in which the search graph is defined using a successor
generator (as is the case of standard planning problems) it is possible to build an ideal tree
by first setting which states will represent the leaves of the tree, and then computing a path
to the goal from those states. A way of achieving this is to relax the successor generator
(perhaps by removing preconditions), which allows including arcs in T that are not in the
original problem. As such, Property 2 does not require the user to provide an inverse of the
successor generator in planning problems.

The internal representation of an ideal tree T is straightforward. For each node s ∈ S
we store a pointer to the parent of s, which we denote by p(s). Formally p : S ∪ {null} →
S ∪{null}, p(null) = null and p(g) = null. Notice that this representation can actually be
used to describe a forest. Below, we sometimes refer to this forest as F and use the concept
of paths in F , that correspond to paths in some connected component of F that might or
not be T .

At the outset of search, the algorithm we present below starts off with an ideal tree
that is also spanning, i.e., such that it contains all the states in S. In the general case, a
spanning ideal tree can be computed by running Dijkstra’s algorithm from the goal node in
a graph like GM but in which all arcs are inverted. Indeed, if h(s) is defined as the distance
from g to s in such a graph, an ideal tree can be constructed using the following rules: for
every s ∈ S \ {g} we define p(s) = arg minu:(s,u)∈A[GM ] c(s, u) + h(u), where A[GM ] are the
arcs of GM .

In some applications like real-time pathfinding in video games, when the environment is
partially known a priori it is reasonable to assume that there is sufficient time for prepro-
cessing (Bulitko et al., 2010). In preprocessing time, one could run Dijkstra’s algorithm for
every possible goal state. If memory is a problem, one could use so-called compressed path
databases (Botea, 2011), which actually define spanning ideal trees for every possible goal
state of a given grid.

Moreover, in gridworld pathfinding in unknown terrain, an ideal tree over an obstacle-
free GM can be quickly constructed using the information given by a standard heuristic.
This is because both the Manhattan distance and the octile distance correspond to the
value returned by a Dijkstra call from the goal state in 4-connected and 8-connected grids,
respectively. In cases in which the grid is completely or partially known initially but there
is no time for preprocessing, one can still feed the algorithm with an obstacle-free initial
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graph in which obstacles are regarded as accessible from neighbor states. Thus, a call to an
algorithm like Dijkstra does not need to be made if there is insufficient time.

In the implementation of our algorithm for gridworlds we further exploit the fact that
the tree can be built on the fly. Indeed, we do not need to set p(s) for every s before starting
the search; instead, we set p(s) when it is needed for the first time. As such, no time is
spent initializing an ideal tree before search. More generally, depending on the problem
structure, specific implementations can exploit the fact that T need not be an explicit tree.

3.2 Following and Reconnecting

Our search algorithm, Follow and Reconnect with the Ideal Tree (FRIT, Algorithm 3)
receives as input a search graph GM , an initial state sstart, a goal state g, and a graph
search algorithm A. GM is the search graph known to the agent initially, which we assume
satisfies the generalized free-space assumption with respect to the actual search graph. A is
the algorithm used for reconnecting with the ideal tree. We requireA to receive the following
parameters: an initial state, a search graph, and a goal-checking boolean function, which
receives a state as parameter.

Algorithm 3: FRIT: Follow and Reconnect with The Ideal Tree

Input: A search graph GM , an initial state sstart, a goal state g, and a search
algorithm A

1 Initialization: Let T be an ideal tree for GM .
2 Set s to sstart.
3 Set c to 0 and the color of each state in GM to 0.
4 Set hobstacle to ∞.
5 while s 6= g do
6 Observe the environment around s.
7 for each newly discovered inaccesible state o do
8 if h(o) < hobstacle then
9 hobstacle ← h(o).

10 Prune from T and GM any arcs that lead to o.

11 if p(s) = null then
12 c← c+ 1
13 Reconnect (A, s,GM , InTree[c](·)).
14 Movement: Move the agent from s to p(s) and set s to the new position of the

agent.

Algorithm 4: Reconnect component of FRIT

Input: A search algorithm A, an initial state s, a search graph GM and a goal
function fGOAL(·)

1 Let σ be the path returned by a call to A(s,GM , fGOAL(·)).
2 Assuming σ = s0s1, . . . sn make p(si) = si+1 for every i ∈ {0, . . . , n− 1}.
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In its initialization (Lines 1–4), it sets up an ideal tree T over graph GM . As discussed
above, the tree can be retrieved from a database, if pre-processing was carried out. If there
is no time for pre-processing but a suitable heuristic is available for GM , then it computes T
on the fly. In addition it sets the value of the variable c and the color of every state to 0, and
sets the variable hobstacle to ∞. Note that if T is computed on the fly, then state colors can
also be initialized on the fly. hobstacle is used to maintain a record of the smallest heuristic
value observed in an inaccessible state. The role of state colors and hobstacle will become
clear below, when we describe reconnection and the InTree[c] function. After initialization,
in the main loop (Lines 6–14), the agent observes the environment and prunes from GM and
from T those arcs that do not exist in the actual graph. Additionally, it updates hobstacle if
needed. If the current state is s and the agent observes that its parent in T is not reachable
in the actual search graph, it sets the parent pointer of s, p(s), to null. Now the agent will
move immediately to state p(s) unless p(s) = null. In the latter case, s is disconnected
from the ideal tree T , and a reconnection search is carried out as shown in Algorithm 4.
This procedure calls algorithm A. The objective of this search is to reconnect to some state
in T : the goal function InTree[c](·) returns true when invoked over a state in T and false
otherwise. Once a path is returned, we reconnect the current state with T through the path
found and then move to the parent of s. The main loop of Algorithm 3 finishes when the
agent reaches the goal.

3.2.1 The InTree[c] Function

A key component of reconnection search is the InTree[c] function that determines whether
or not a state is in T . Our implementation—shown in Algorithm 5—follows the parent
pointers of the state being queried and returns true when it reaches the goal state or a state
whose h-value is smaller than hobstacle. This last condition exploits the fact that the way T
is built (i.e.: the free-space assumption) ensures that all states that are closer to the goal
than any observed obstacle must still be in T . This is merely an optimization technique,
and removing it will incur in a small performance reduction, but no change in the actions
of the agent. In addition, it paints each visited state with a color c, given as a parameter.
The algorithm returns false if a state visited does not have a parent or has been painted
with c (i.e., it has been visited before by some previous call to InTree[c] while in the same
reconnection search).

Algorithm 5: InTree[c] function

Input: a vertex s
1 while s 6= g do
2 if h(s) < hobstacle then
3 return true

4 Paint s with color c.
5 if p(s) = null or p(s) has color c then
6 return false

7 s← p(s)

8 return true
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Figure 1 shows an example execution of the algorithm in an a priori unknown grid
pathfinding task. As can be observed, the agent moves until a wall is encountered, and
then continues bordering the wall until it solves the problem. It is simple to see that, had
the vertical been longer, the agent would have traveled beside the wall following a similar
down-up pattern.

This example reflects a general behavior of this algorithm in grid worlds: the agent
usually moves around obstacles, in a way that resembles bug algorithms (LaValle, 2006;
Taylor & LaValle, 2009). This occurs because the agent believes there is a path behind
the wall currently known and always tries to move to such a state unless there is another
state that allows reconnection and that is found first. A closer look shows that some times
the agent does not walk exactly besides the wall but moves very close to it, performing a
sort of zig-zag movement. This can occur if the search used does not consider the cost of
diagonals. Breadth-First Search (BFS) or Depth-First Search (DFS) may sometimes prefer
using two diagonals instead of two edges with cost 1.

To avoid this problem we can use a variant of BFS, that, for a few iterations, generates
first the non-diagonal successors and later the diagonal ones. For nodes deeper in the search
it uses the standard ordering (e.g., clockwise). Such a version of BFS achieves in practice
a behavior very similar to a bug algorithm.1 This approach was explored in previous
work (Rivera et al., 2013b), and the overall improvements were shown to be small. For
this paper, we use standard BFS. See Section 6.4 for a more detailed comparison to bug
algorithms.

Note that our algorithm does not perform any kind of update to the heuristic h. This
contrasts with traditional real-time heuristic search algorithms, which rely on increasing
the heuristic value of h to exit the heuristic depressions generated by obstacles. In such a
process they may need to revisit the same cell several times.

4. Satisfying the Real-Time Property

FRIT, as presented, does not satisfy the real-time property. There are two reasons for this:

R1. the number of states expanded by a call to the algorithm passed as a parameter, A,
depends on the search graph GM rather than on a constant; and,

R2. during the execution of A, each time A checks whether or not a state is connected to
the ideal tree T , function InTree[c] may visit a number of states dependent on the
size of the search graph GM .

Below we present two natural approaches to making FRIT satisfy the real-time property.
The first approach is to use a slightly modified, generic real-time heuristic search algorithm
as a parameter to the algorithm. The resulting algorithm is a real-time search algorithm
both because it satisfies the real-time property and because the time between movements
is bounded by a constant. The second approach limits the amount of reconnection search
but does not guarantee that the time between movements is limited by a constant.

1. Videos can be viewed at http://web.ing.puc.cl/~jabaier/index.php?page=research.
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Figure 1: An illustration of some of the steps of an execution over a 4-connected grid
pathfinding task, where the initial state is cell D3, and the goal is E6. The search algorithm
A is breadth-first search, which, when expanding a cell, generates the successors in clockwise
order starting with the node to the right. The position of the agent is shown with a black
dot. (a) shows the true environment, which is not known a priori by the agent. (b) shows the
p pointers which define the ideal tree built initially from the Manhattan heuristic. Following
the p pointers, the algorithm leads the agent to D4, where a new obstacle is observed. D5 is
disconnected from T and GM , and a reconnection search is initiated. (c) shows the status
of T after reconnection search expands state D4, finding E4 is in T . The agent is then
moved to E4, from where a new reconnection search expands the gray cells shown in (d).
The problem is now solved by simply following the p pointers.

4.1 FRIT with Real-Time Heuristic Search Algorithms

A natural way of addressing R1 is by using a real-time search algorithm as parameter to
FRIT. It turns out that it is not possible to plug into FRIT a real-time search algorithm
directly without modifications. However, the modifications we need to make to Algorithm 1
are simple. We describe them below.

The following two observations justify the changes that need to be made to the pseu-
docode of the generic real-time search algorithm. First we observe that the objective of the
lookahead search procedure of real-time heuristic algorithms like Algorithm 1 is to search
towards the goal and thus the heuristic h estimates the distance to the goal. However,
FRIT carries out search with the sole objective of reconnecting with the ideal tree, which
means that both the goal condition and the heuristic have to be changed. Second, one of
the main ideas underlying FRIT is to use and maintain the ideal tree T ; that is, when the
agent has found a reconnecting path, the p function needs to be updated accordingly.

Algorithm 6 shows the pseudocode for the modified generic real-time heuristic search
algorithm, which has two main differences with respect to Algorithm 1. First, the goal
condition is now given by function gT , which returns true if evaluated with a state that is
in T . Second, Line 5 of Algorithm 6 connects the states in the path found by the lookahead
search to T . This implies also that the Reconnect procedure described in Algorithm 4
needs to be changed by that described in Algorithm 7.

Now we turn our attention to how we can guide the search towards reconnection using
reconnecting heuristics. Before giving a formal definition for these heuristics, we introduce
a little notation. Given the graph GM = (S,A) and the ideal tree T for GM over a problem
P with goal state g, we denote by ST the set of states in T . Now we are ready to define
reconnecting heuristics formally.
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Algorithm 6: A Generic Real-Time Search Algorithm for FRIT

Input: A search graph GM , a heuristic function h, a goal function gT (·) that
receives a state as parameter.

Effect: The agent is moved from the initial state to a goal state if a trajectory
exists. The ideal tree T is updated.

1 while the agent has not reached a goal state do
2 scurr ← the current state
3 path← LookAhead(scurr, gT (·))
4 Update the heuristic function h.
5 Given path = s0s1 . . . sn, update T so that p(si) = si+1 for every

i ∈ {0, . . . , n− 1}.
6 Move the agent through the path. While moving, observe the environment and

update GM and T , removing any non traversable arcs and updating hobstacle if
needed. Stop if the current state has no parent in T .

Algorithm 7: Reconnect component for FRIT with a real-time algorithm

Input: A real-time search algorithm A, an initial state s, a search graph GM and a
goal function fGOAL(·)

1 Call A(s,GM , fGOAL).

Definition 2 (Admissible Reconnecting Heuristic) Given an ideal tree T over graph
GM and a subset B of ST , we say function h : S → R+

0 is an admissible reconnecting
heuristic with respect to B iff for every s ∈ S it holds that h(s) ≤ dGM

(s, s′), for any
s′ ∈ B.

Intuitively, a reconnecting heuristic with respect to B is an admissible heuristic over
the graph GM where the set of goal states is defined as B. As such, when Algorithm 6
is initialized with a reconnecting heuristic, search will be guided towards those connected
states.

Depending on how we choose B, we may obtain a different heuristic. At first glance, it
may seem sensible to choose B as ST . However, it is not immediately obvious how one would
maintain (i.e., learn) such a heuristic efficiently. This is because both T and ST change
when new obstacles are discovered. Initially ST contains all states but during execution,
some states in S cease to belong to ST as an arc is removed and other become members
after reconnection is completed.

In this paper we propose to use an easy-to-maintain reconnecting heuristic, which, for
all s is initialized to zero and then is updated in the standard way. Below, we prove that
if the update procedure has standard properties, such an h corresponds to a reconnecting
heuristic for the subset B = V (E) of ST , where V (E) is defined as follows:

B = V (E) = {s ∈ ST : s has not been visited by the agent and s 6∈ E}.

In addition, E must be set to the set of states whose heuristic value has been potentially
updated by the real-time search algorithm. The reason for this is that, by definition, all
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states in B should have their h-value set to zero and thus we do not want to include in B
states that have been potentially modified.

Now we prove that a simple heuristic initialized as 0 for all states and updated in a
standard way is indeed a reconnecting heuristic.

Proposition 1 Let FRIT be modified to initialize h as the null heuristic. Let E be defined
as the set of states that the update procedure has potentially updated.2 Furthermore, assume
that A is an instance of Algorithm 6 satisfying:

P1. gT (s) returns true iff s ∈ ST .

P2. Heuristic learning maintains consistency; i.e., if h is consistent prior to learning, then
it remains as such after learning.

Then, along the execution of FRIT(A), h is a reconnecting heuristic with respect to
B = V (E).

Proof: First we observe that initially h is a reconnecting heuristic because it is set to
zero for every state. Let s be any state in S and s′ be any state in B. We prove that
h(s) ≤ d(s, s′). Indeed, let σ = s0s1 . . . sn, with s0 = s and sn = s, be a shortest path
between s and s′. Since h is consistent, it holds that

h(si) ≤ c(si, si+1) + h(si+1), (1)

for any i ∈ {0, . . . , n− 1}. From where we can write

h(s)− h(s′) =

n−1∑
i=0

h(si)− h(si+1) ≤
n−1∑
i=0

c(si, si+1) = d(s, s′) (2)

Now observe that because s′ ∈ B, then the h-value of s′ could have not been updated by
the algorithm and therefore h(s′) = 0, which substituted in Inequality 2, proves the desired
result. �

4.1.1 Tie-Breaking

In pathfinding, the standard approach to tie-breaking among states with equal f-values is
to select the state with highest g-value. For the reconnection search, we propose a different
strategy based on selecting a state based on a user-given heuristic that should guide search
towards the final goal state. For example, in our experiments on grids we break ties by
selecting the state with smallest octile distance to the goal. Intuitively, among two otherwise
equal states, we prefer the one that seems to be closer to the final goal. This seems like a
reasonable way to use information that is commonly used by other search algorithms, but
unavailable to the reconnection search due to the initial use of the null heuristic.

2. Note that in practice, E is a very natural set of states. For example if RTAA* is used, the set of states
that have potentially been updated are those that were expanded by some A* lookahead search.
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4.1.2 Making InTree[c] Real-Time

At the beginning of Section 4 we identified R1 and R2 as the two reasons why FRIT does not
satisfy the real-time property, and then discussed how to address R1 by using a real-time
search algorithm. Now we discuss how to address R2.

To address R2, we simply make InTree[c] a bounded algorithm. All real-time search
algorithms receive a parameter that allows them to bound the computation carried out per
search. Assume that Algorithm 6 receives k as parameter. Furthermore, assume without
loss of generality that lookahead search is implemented with an algorithm that constantly
expands states (such as bounded A*). Then we can always choose implementation-specific
constants NE and NT , associated respectively to the expansions performed during lookahead
and the operation that follows the p pointer in the InTree[c] function. Given that e is the
number of expansions performed by lookahead search and f is the number of times the p
pointer has been followed in a run of the real-time search algorithm, we modify the stop
condition of InTree[c] to return false if NE · e + NT · f > k. Also, we modify lookahead
search to stop if the same condition holds true.

Henceforth we call FRITRT the algorithm that addresses R1 and R2 using a real-time
search algorithm and a bounded version of InTree[c]. Note that because the computa-
tion per iteration of FRITRT is bounded, the time between agent moves is bounded, and
thus FRITRT can be considered a standard real-time algorithm, as originally defined by
Korf (1990). Note however that the time to reach a state connected to the ideal tree is not
bounded, as several calls to the real-time algorithm may be required before reaching such
a state.

4.2 FRIT with Bounded Complete Search Algorithms

In the previous section we proposed to use a standard real-time heuristic search algorithm
to reconnect with the ideal tree. A potential downside of such an approach is that those
algorithms usually find suboptimal solutions which sometimes require re-visiting the same
state many times—a behavior usually referred to as “scrubbing” (Bulitko et al., 2011). In
applications in which the quality of the solution is important, but in which there are still
real-time constraints it is possible to make FRIT satisfy the real-time property in a different
way.

Imagine for example, that we are in a situation in which FRIT is given a sequence of
time frames, each of which is very short. After each time frame FRIT is allowed to return a
movement which is performed by the agent. Such a model for real-time behavior has been
termed as the game time model (Hernández, Baier, Uras, & Koenig, 2012b) since it has a
clear application to video games in which the game’s main cycle will reserve a fixed and
usually short amount of time to plan the next move for each of the automated characters.

To accommodate this behavior in FRIT we can apply the same simple idea already de-
scribed in Section 4.1.2, but using a complete search algorithm for reconnection rather than a
real-time search algorithm. As described above this simply involves choosing implementation-
specific constants NE and NT , associated respectively to the expansions performed by the
(now complete) search algorithm for reconnection and the operation that follows the p
pointer in the InTree[c] function. As before, given that e is the number of expansions
performed by reconnection search and f is the number of times the p pointer we modify
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the Reconnect algorithm to return an empty path as soon as NEe + NT f > k and save
all local variables used by A and InTree[c]. Once Reconnect is called again, search is
resumed at the same point it was in the previous iteration and e and f are set to 0.

Note that instead of returning an empty path other implementations may choose to
move the agent in a fashion that is meaningful for the specific application. We leave a
thorough discussion on how to implement such a movement strategy out of the scope of this
paper since we believe that such a strategy is usually application-specific. If a movement
ought to be carried out after each time frame, the agent could choose to move back-and-
forth, or choose any other moving strategy that allows it to follow the reconnection path
once it is found. Later, in our experimental evaluation, we choose not to move the agent
if computation exceeds the parameter and discuss why this seems a good strategy in the
application we chose.

Note that if a non-empty path is returned after each given time frame, then FRIT,
modified in the way described above, is also a real-time search algorithm, as originally
defined by Korf (1990). Finally, we note that implementing the stop-and-resume mechanism
described above is easy for most search algorithms.

5. Theoretical Analysis

The results described in this section prove the termination of the algorithms and present
explicit bounds on the number of agent moves performed by FRIT and FRITRT before
reaching the goal. Additionally, we show that both algorithms converge in the second run
so that subsequent executions of the algorithm result in identical paths. Our first theorem
is correctness of the InTree[c] function.

5.1 Proofs for InTree[c]

To determine whether or not a state s belongs to the ideal tree, our InTree[c] function
(Algorithm 5) follows the p pointers until the goal is reached or until some state whose
h-value is smaller than hobstacle is reached. Here we prove that InTree[c] is correct in the
sense that it returns true iff a state s belongs to the ideal tree. We start by proving the
following intermediate result.

Lemma 1 Let H = {s : h(s) < hobstacle}. Reconnection search never modifies the parent
pointer of a state s ∈ H.

Proof: Take any state s ∈ H. It is clear that any call to InTree[c](s) will immediately
return true (Algorithm 5, Lines 2 and 3). This effectively ends the search, and a path that
ends in s is selected. This path does not change the parent of s. �

Note that the property described in the Lemma holds both for FRIT and FRITRT. The
bounded version of InTree[c] used for FRITRT will always answer true when called for
a state in H. Indeed, all states in H are part of the reconnection target set B, and are
correctly identified as such during execution.

Theorem 1 When T is initialized as described in Section 3 and the color c is set to in-
crement for each reconnection search, InTree[c], as described in Algorithm 5, returns true
for a state s iff s ∈ T .
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Proof: Note that besides the exit condition established in Lines 2 and 3, the algorithm is
trivially correct. It follows the parent pointers, returns true only if it reaches the goal, and
returns false if it reaches a dead end or a state that has already been checked.

Let H be as defined in Lemma 1. We need to prove that all states s ∈ H are in T . We
know that all such states have their original parent pointers set through the construction
of T described in Section 3. Note that all the paths in the initial Ideal Tree are monotonic;
for every state s different from the goal it holds that h(s) ≥ h(p(s)). From this, we know
that for any state s ∈ H, p(s) ∈ H is true. This proves that all ancestors of s are in H, and
therefore they represent a path that existed in the initial T and has not been modified. �

5.2 Termination and Bound for FRITRT

Our first result proves termination of the algorithm when it uses a real-time search algorithm
as parameter. We provide an explicit bound on the number of agent moves until reaching
the goal.

Theorem 2 Consider the same conditions of Proposition 1 and let A be a modified real-time
search algorithm as described in Algorithm 6, that requires at most fA(x) agent moves to
solve any problem with x states, and such that it never updates the h-value of the goal state.
Then an agent controlled by FRITRT (A) reaches a goal state performing O(|S|fA(|S|))
moves.

Proof: Let M denote the elements in the state space S that are inaccessible from any
state in the connected component that contains sstart. Furthermore, let T be the ideal tree
computed at initialization. Note that, by Proposition 1, we know that we use a reconnecting
heuristic. By definition, this means the heuristic is always admissible for some subset of
states in T that will always contain at least g. Therefore, we know that all reconnections are
eventually successful and that each reconnection takes at most fA(|S|) steps. Notice that
the agent moves at most |S| steps in the Ideal Tree before it reaches an inaccessible state.
Because reconnection search is only invoked after a new inaccessible state is detected, it can
be invoked at most |M| times. By the definition of T , we know that after |M| reconnections,
the agent must be able to reach the goal by following T . Therefore, the total number of
steps is at most |S|+ |M|(fA(|S|) + |S|) ∈ O(|S|fA(|S|)). �

The average length of the paths found by FRITRT can be expected to be much lower. In-
deed, the number of reconnections is bounded by the number of obstacles that are reachable
by some state in GM , which in many cases is much lower than the total number inaccessible
states.

5.3 Termination and Bound for FRIT

The following result provides a bound on the length of the solutions found by FRIT.

Theorem 3 Given an initial tree GM that satisfies the generalized free-space assumption,

then FRIT solves P in at most (|S|+1)2

4 agent moves.

250



Reconnection with the Ideal Tree: A New Approach to Real-Time Search

Proof: Let M and T be as described in the proof of Theorem 2. Note that the goal
state g is always part of T , thus T can never become empty and reconnection will always
succeed. As for FRITRT, reconnection search can be invoked at most |M| times. Between
two consecutive calls to reconnection search, the agent moves in a tree and thus cannot visit
any state twice. Hence, the number of states visited between two consecutive reconnection
searches is at most |S| − |M|. We conclude that the number of moves until the algorithm
terminates is

(|M|+ 1)(|S| − |M|), (3)

which is largest when |M| = |S|−1
2 . Substituting this value in (3) gives the desired result.

�

Again, the average complexity can be expected to be much lower than this bound.

5.4 Convergence

The following results prove that after termination of either FRIT or FRITRT, the agent
knows a solution to the problem that is possibly shorter than the one just found.

Lemma 2 Let F be the forest defined by the p pointers. Throughout the execution of either
FRIT or FRITRT, there is a path σ in F that goes from sstart to the current position of the
agent.

Proof: The proof is done by induction over the number of steps taken by the agent. Let s
represent the current position of the agent. Initially, the proposition is trivial, as sstart = s.
Let s′ be the position of the agent after moving. By the induction hypothesis, we know
there is a path σ from sstart to s. If s′ is not in σ, we know that the parent pointers of the
states in σ different from s have not been modified, and therefore the path that extends σ
by appending s′ is valid and satisfies the property. If s′ is in σ, we know that the parent
pointers of states in σ that appear before s′ have not been modified, and therefore there is
a valid subpath of σ that goes from sstart to s′ which satisfies the property. �

Theorem 4 Running the algorithm for a second time over the same problem, without reini-
tializing the ideal tree, results in an execution that never runs reconnection search and finds
a potentially better solution than the one found in the first run.

Proof: The proof is straightforward from Lemma 2. At the end of the execution, there is
a path in F , and specifically in T , from sstart to g. Note that all states on the path have
necessarily been visited during the first execution, which ensures that this new path is at
most as long as the one resulting from the first execution. �

Note that Theorem 4 implies that our algorithm can return a different path in a second
trial, which can be viewed as an “optimized solution” that does not contain the loops that
the first solution had. The second execution of the algorithm is naturally very fast, because
reconnection search is not required.

It is interesting to note that this approach could be used with any other real-time search
algorithm. By storing for each visited state the direction in which the agent moved away
from it, a path with no loops that goes from sstart to g can be immediately extracted as
soon as the execution finishes.
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6. Empirical Evaluation

The objective of our experimental evaluation was to compare the performance of our al-
gorithm with various state-of-the-art algorithms on the task of pathfinding with real-time
constraints. We chose this application since it seems to be the most straightforward appli-
cation of real-time search algorithms.

We compared three classes of search algorithms. For the first class, we considered state-
of-the-art real-time heuristic search algorithms and the corresponding versions of FRITRT

that result when it is fed with these. Specifically, we compare to RTAA* (Koenig &
Likhachev, 2006) and daRTAA* (Hernández & Baier, 2012), a variant of RTAA* that
may outperform it significantly. In both versions of the algorithm, the tree ideal tree is not
built at the outset of search but rather built on-the-fly, using the heuristic function.

For the second class, we compared FRIT fed with a breadth-first-search algorithm to the
incremental heuristic search algorithms Repeated A* (RA*) and Adaptive A* (AA*). We
chose them on the one hand because it is fairly obvious how to modify them to satisfy the
real-time property following the same approach we follow with FRIT, and on the other hand
because they have reasonable performance. Indeed, we do not include D* Lite (Koenig &
Likhachev, 2002) since it has been shown that Repeated A* is faster than D* Lite in most
instances of the problems we evaluate here (Hernández, Baier, Uras, & Koenig, 2012a).
Other incremental search algorithms are not included since it is not the focus of this paper
to propose strategies to make various algorithms satisfy the real-time property.

Finally we compare our algorithm to Bug2 (Lumelsky & Stepanov, 1987) a so-called bug
algorithm, which is an algorithm specifically designed for path-planning. Bug algorithm
need very limited computational requirements to make decisions.

Repeated A* and Adaptive A* both run a complete A* search over the currently known
search graph until the goal is reached. Then the path found is followed. While following
the path, the search graph is updated with newly found obstacles. The agent stops when
it reaches the goal is reached or when the path is blocked by an obstacle. When this
happens, they iterate by running another A* to the goal. To make both algorithms satisfy
the real-time property, we follow an approach similar to that employed in the design of the
algorithm Time-Bounded A* (Björnsson, Bulitko, & Sturtevant, 2009). In each iteration,
we only allow the algorithm to expand at most k states. If no path to the goal is found the
agent does not move. Otherwise (the agent has found a path to the goal), the agent makes
a single move on the path.

For the case of FRIT(BFS), we satisfy the real-time property as discussed above by
setting both constants, NE and NT , to 1. This means that in each iteration, if the current
state has no parent then only k states can be expanded/visited during the reconnection
search and if no reconnection path is found the agent is not moved. Otherwise, if the
current state has a non-null parent pointer, the agent follows the pointer.

Therefore in each iteration of FRIT(BFS), Repeated A* or Adaptive A* two things can
happen: either the agent is not moved or the agent is moved one step. This moving strategy
is sensible for applications like video games where, although characters are expected to move
fluently, we do not want to force the algorithm to return an arbitrary move if a path has
not been found, since that would introduce moves that may be perceived as pointless by
the users. In contrast, real-time search algorithms return a move at each iteration.
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(a) Real-time algorithms in games.
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(b) Real-time algorithms in mazes.

Figure 2: Real-time algorithms: Total Iterations versus Time per Episode

We use eight-neighbor grids in the experiments since they are often preferred in practice,
for example in video games (Bulitko et al., 2011). The algorithms are evaluated in the
context of goal-directed navigation in a priori unknown grids. The agent is capable of
detecting whether or not any of its eight neighboring cells is blocked and can then move to
any one of the unblocked neighboring cells. The user-given h-values are the octile distances
(Bulitko & Lee, 2006).

To carry out the experiments, we used twelve maps from deployed video games and four
different mazes. Six of the maps are taken from the game Dragon Age, and the remaining
six are taken from the game StarCraft. Both the maps and the mazes were retrieved from
Nathan Sturtevant’s pathfinding repository (Sturtevant, 2012).3

We averaged our experimental results over 500 test cases with a reachable goal cell for
each map. For each test case the start and goal cells were chosen randomly. All real-
time algorithms were run with 10 different parameter values. The incremental algorithms
were run to completion once per test case, after which the results were processed to show
the behavior corresponding to using 150,000 different values for the k parameter. All the
experiments were run on a 2.00GHz QuadCore Intel Xeon machine running Linux.

6.1 Analysis of the Results for Real-Time Search Algorithms

Figure 2 shows two plots of the average solution cost versus average time per planning
episode for the four real-time search algorithms in games and mazes benchmarks.

We observe that for the games benchmarks FRITRT outperforms RTAA* and daRTAA*
substantially. FRITRT(daRTAA*) finds solutions of about half the cost of those found by
daRTAA* for any given time deadline. Moreover, the average planning time per episode
needed by FRITRT(daRTAA*) to obtain a particular solution quality is about one half of
that needed by daRTAA*. The improvements are more pronounced with FRITRT(RTAA*),

3. Maps used from Dragon Age: brc202d, orz702d, orz900d, ost000a, ost000t and ost100d whose sizes are
481 × 530, 939 × 718, 656 × 1491, 969 × 487, 971 × 487, and 1025 × 1024 cells respectively. Maps from
StarCraft: ArcticStation, Enigma, Inferno, JungleSiege, Ramparts and WheelofWar of sizes 768 × 768,
768 × 768, 768 × 768, 768 × 768, 512 × 512 and 768 × 768 cells respectively.
The four mazes all have the same size, 512 × 512, and different corridor widths: 4, 8, 16 and 32.
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(b) Incremental algorithms in mazes.

Figure 3: Incremental algorithms: Total Iterations versus Time per Episode

where solutions for a given time deadline are at least three times cheaper than pure RTAA*
and up to one order of magnitude cheaper for very small time frames. It is interesting to
note that even though daRTAA* improves significantly over RTAA*, FRITRT(daRTAA*)
is only marginally better than FRITRT(RTAA*).

For mazes, the FRITRT variants seem to be slightly better than daRTAA*, with big-
ger improvements in performance noticeable as the time deadlines are increased. The
best solutions found by daRTAA* and FRITRT(daRTAA*) are of comparable lengths, but
FRITRT(daRTAA*) finds these solutions requiring slightly more than half of the time per
planning episode than daRTAA*.

6.2 Analysis of the Results for Incremental Algorithms Modified to Satisfy
the Real-Time Property

Figure 3 shows two plots of the average number of agent steps versus average time per
planning episode for the incremental search algorithms used as real-time algorithms as
described aboved in games and mazes benchmarks. Figure 4 shows the regions of the same
plots as Figure 3 in which FRIT(BFS) appears.

We observe that FRIT(BFS) returns significantly better solutions when time constraints
are very tight. Indeed, for games benchmarks our algorithm does not need more than 41µ sec
per planning episode to return its best solution. Given such a time as a limit per episode,
AA* requires over four times as many iterations on average. Furthermore, to obtain a
solution of the quality returned by FRIT(BFS) at 41µ sec, AA* needs around 220µ sec;
i.e., more than 5 times as long as FRIT(BFS). This behavior is more extreme in the case
of mazes, where the best solutions for FRIT(BFS) are obtained with less than 19µ sec per
planning episode. With this time limit, the number of steps required on average by AA* is
a whole order of magnitude larger than the number required by FRIT(BFS).

Generally, FRIT(BFS) behaves much better than both RA* and AA*, requiring fewer
iterations and less time. Nevertheless, when provided more time, FRIT(BFS) does not take
advantage of it and the resulting solutions cease to improve. This can be seen both in
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Figure 4: Incremental algorithms: Total Iterations versus Time per Episode (zoomed)

FRIT(BFS) RA* AA*

k Avg. Its Time/ep No moves Avg. Its Time/ep No moves Avg. Its Time/ep No moves
(µ s) (%) (µ s) (%) (µ s) (%)

1 1508631 0.0430 99.80 3505076 0.3754 99.95 1144680 0.4152 99.84
5 303483 0.2148 99.01 702029 1.8761 99.76 229967 2.0727 99.25

10 152858 0.4283 98.03 351648 3.7499 99.51 115628 4.1376 98.51
50 32401 2.0940 90.71 71343 18.655 97.60 24156 20.378 92.86

100 17370 4.0678 82.67 36305 37.077 95.29 12723 40.004 86.44
500 5449 16.115 44.74 8304 175.89 79.42 3607 172.41 52.15

1000 4035 24.840 25.38 4901 322.74 65.13 2583 274.35 33.20
5000 3073 39.316 2.046 2261 915.66 24.44 1854 474.29 6.904

10000 3026 40.487 0.501 1947 1171.9 12.26 1775 514.88 2.764
50000 3011 40.851 0.030 1726 1458.9 1.041 1728 524.55 0.117

100000 3011 40.869 0.007 1711 1484.7 0.133 1726 543.66 0.014

Table 1: Relationship between search expansions and number of iterations in which the
agent does not move in games maps. The table shows a parameter k for each algorithm. In
the case of AA* and Repeated A* the parameter corresponds to the number of expanded
states. In case of FRIT, the parameter corresponds to the number of visited states during
an iteration. In addition, it shows average time per search episode (Time/ep), and the
percentage of iterations in which the agent did not move with respect to the total number
of iterations (No moves).

Figure 3, across both sets of benchmarks, and Table 1. As an example of this, we can see
that for k = 5000 to k = 100000 the number of iterations required to solve the problem only
decreases by 62 steps, and the time used per search episode only increases by 1.55µ sec.
Effectively, this means that the algorithm does not use the extra time in an advantageous
way. This is in contrast to what is usually expected for real-time search algorithms.
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An interesting variable to study is the number of algorithm iterations in which the
agent did not return a move because the algorithm exceeded the amount of computation
established by the parameter without finishing search. As we can see in Table 1, FRIT,
using BFS as its parameter algorithm, has the best relationship between time spent per
episode and the percentage of no-moves over the total number of moves. To be comparable
to other real-time heuristic search algorithms, it would be preferrable to reduce the number
of incomplete searches as much as possible. With this in mind, we can focus on the time
after which the amount of incomplete searches is reduced to less than 1%. Notice that for
FRIT(BFS) this is somewhere around 40 µs, whereas for AA* and RA* this requires times
of over 514 µs and 1458 µs respectively.

6.3 Comparison of the Two Approaches

Figure 5 shows a plot of the average time per planning episode versus average number
of agent steps for both FRITRT(daRTAA*) and FRIT(BFS) in games benchmarks. We
observe that FRIT(BFS) obtains better resuts for most time limits. Indeed, for any given
time deadline of more than 10µ sec, FRIT(BFS) finds a solution that is about half as long
as that found by FRITRT(daRTAA*). For smaller time deadlines the results are similar for
both algorithms. Furthermore, the best solution obtained by FRIT(BFS) is, on average,
less than 60% as long as the best solution obtained by FRITRT(daRTAA*). As mentioned
above, this particular solution requires a time deadline of less than 41µ sec per planning
episode. The number of no-moves incurred with this time limit in our experiments was of
only 465 iterations throughout all the experiments in games benchmarks, which corresponds
to approximately one no-move every 40, 000 moves.
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Figure 5: Comparison of FRIT using a real-time algorithm versus FRIT as an incremental
algorithm in games benchmarks.
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Figure 6: Bug2 (a) and FRIT (b) in a pathfinding scenario in which the goal cell is E10
and the initial cell is E2. The segmented line shows the path followed by the agent and the
filled arrow is the m-line.

6.4 Comparison to the Bug2 Algorithm

Bug algorithms (LaValle, 2006; Taylor & LaValle, 2009) are a family of pathfinding algo-
rithms for continuous 2D terrain. They make their decisions based on sensory input, require
very limited time and memory resources, and are inspired by the behavior of insects while
finding their way through obstacles. Bug algorithms are not heuristic as they do not utilize
a heuristic function to make decisions (Rao, Kareti, Shi, & Iyengar, 1993).

Bug2 (Lumelsky & Stepanov, 1987) is a bug algorithm that is simple to implement and
is guaranteed to reach the goal. An agent controlled by Bug2 will follow a straight line
connecting the initial position with the final position—the so-called m-line—, until encoun-
tering an obstacle or reaching the goal. If an obstacle is encountered, it saves the position
at which the obstacle was hit in a variable called hit point and then starts following the
boundary of the obstacle (either clockwise or counterclockwise) until the m-line is encoun-
tered again. Then, if the current position is closer to the goal than the hit point, the agent
starts following the m-line again and the process repeats.

Figure 6 compares the behaviors of FRIT and Bug2. In this particular situation, Bug2
does not make a good decision and FRIT solves the problem fairly quickly. Of course it is
possible to contrive families of problems in which Bug2 will always outperform FRIT.

We implemented Bug2 for 8-connected grid worlds. We forbid diagonal movements
between two obstacles, as this essentially has the effect of changing the direction in which an
obstacle’s boundary is being followed. To make the comparison fair, we also ran FRIT(BFS)
with this additional restriction. We used the same game maps, and generated 500 solvable
random problems for each of them.

Results for FRIT(BFS) are shown in Table 2. The average cost of solutions obtained
by Bug2 was 6546, requiring 5766 iterations. In addition, the average runtime was 2317
µs, which yields, on average, 0.4 µs spent per iteration. FRIT(BFS) spends around 0.4
per search episode when k = 12, and requires about 20 times more iterations to solve the
problem yielding about 97% of no-moves. To obtain a solution comparable to that of Bug2,
FRIT(BFS) requires k to be set to around 462, which yields an average time per search
episode close to 12 µs, returning a no-move on 47% of the iterations. Finally, if more time
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k Avg. Its Time/ep (µ s) No moves (%)

1 1544087 0.0346 99.81
5 310579 0.1725 99.03

10 156411 0.3442 98.07
50 33314 1.6830 90.91

100 14715 3.2712 83.01
500 5521 13.009 45.45

1000 4070 20.132 26.02
5000 3079 32.162 2.207

10000 3027 33.193 0.542
50000 3012 33.520 0.026

100000 3011 33.532 0.006

Table 2: Performance Indicators for FRIT(BFS) when no diagonal movements are allowed
between obstacles.

is available, FRIT(BFS) returns solutions on average more than 50% cheaper than those
obtained by Bug2.

As a conclusion we observe that in pathfinding applications Bug2 runs faster than any
other search algorithm we tried. As a disadvantage, Bug2 is specific to pathfinding and
cannot exploit additional time per episode to obtain a better solution, yielding solutions
that are longer than those obtained by FRIT(BFS) when more time is available. Therefore
bug algorithms seem to be recommended for real-time pathfinding applications in which
there is very little time available per iteration. When more time is available FRIT(BFS)
is the recommended algorithm, leaving AA* as a choice for applications in which there is
significantly more time available.

6.5 On the Usefulness of Reconnecting Heuristics

Definition 2 introduced the idea of admissible reconnecting heuristics, which we argued are
important to guide search towards reconnection. A natural question to ask is whether or
not these heuristics are key to the performance of FRITRT. Indeed, an admissible heuristic
for the problem is formally an admissible reconnecting heuristic since we simply need to
define B = {g} in Definition 2. Nevertheless, intuitively the problem’s heuristic does not
guide towards reconnection with the ideal tree.

To evaluate the usefulness of reconnecting heuristics, we implemented a version of
FRITRT (RTAA*) that:

1. uses the problem’s heuristic to guide the A* search,

2. breaks ties in favor of states with greater g-value, and that

3. learns h using RTAA*’s learning rule.

We compared it to our standard FRITRT (RTAA*), which uses the admissible reconnection
h = 0 to guide the A* search, uses the problem heuristic as a first tie breaker, uses the
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g-value as a second tie breaker, and learns h using RTAA*’s learning rule. We ran the
algorithms over the same 12 game maps, using the same configuration described above.

Figure 7 shows the relative performance of the algorithms, confirming that indeed in
these pathfinding applications, using reconnection heuristics is key to performance. Using a
goal heuristic to guide for reconnection performs more similar to the baseline (RTAA*). This
is because FRITRT, used with the problem’s heuristic, can be seen as a version of RTAA*
that stops the A* search early if it expands a state the agent believes to be connected to
the goal (i.e., in the ideal tree). Although stopping search early saves time with respect
to RTAA*, the more expensive goal condition—which verifies that a state is in the ideal
tree—seems to counter time savings unless the lookahead parameter is high.
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Figure 7: Comparison of FRITRT using a reconnecting heuristic (h=0) to guide search
versus FRITRT using the problem’s heuristic.

7. Related Work

Incremental Heuristic Search and Real-time Heuristic Search are two heuristic search ap-
proaches to solving search problems in partially known environments using the free-space
assumption that are related to the approach we propose here. Incremental search algo-
rithms based on A*, such as D* Lite (Koenig & Likhachev, 2002), Adaptive A* (Koenig
& Likhachev, 2005) and Tree Adaptive A* (Hernández, Sun, Koenig, & Meseguer, 2011),
reuse information from previous searches to speed up the current search. The algorithms
can solve sequences of similar search problems faster than Repeated A*, which performs
repeated A* searches from scratch.

During runtime, most incremental search algorithms, like our algorithm, store a graph
in memory reflecting the current knowledge of the agent. In the first search, they perform
a complete A* (backward or forward), and in the subsequent searches they perform less
intensive searches. In contrast to our algorithm, such searches return optimal paths con-
necting the current state with the goal. FRIT is similar to incremental search algorithms
in the sense that it uses the ideal tree, which is information that, in some cases, may have
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been computed using search, but differs from them in that the objective of the search is not
to compute optimal paths to the goal. Our algorithm leverages the speed of simple blind
search and does not need to deal with a priority queue, which is computationally expensive
to handle.

Many state-of-the-art real-time heuristic search algorithms (e.g., Koenig & Sun, 2009;
Koenig & Likhachev, 2006; Sturtevant & Bulitko, 2011; Hernández & Baier, 2012; Rivera,
Baier, & Hernández, 2013a), which satisfy the real-time property, rely on updating the
heuristic to guarantee important properties like termination. Our algorithm, on the other
hand, does not need to update the heuristic to guarantee termination. Like incremental
search algorithms, real-time heuristic search algorithms usually carry out search for a path
between the current node and the goal state. Real-time heuristic search algorithms cannot
return a likely better solution after the problem is solved without performing any search
at all (cf. Theorem 4). Instead, when running multiple trials they eventually converge to
an optimal solution or offer guarantees on solution quality. Our algorithm does not offer
guarantees on solution quality, even though experimental results are positive.

HCDPS (Lawrence & Bulitko, 2010) is a real-time heuristic algorithm that does not
employ learning. This algorithm is tailored to problems in which the agent knows the map
initially, and in which there is time for preprocessing.

The idea of reconnecting with a tree rooted at the goal state is not new and can be traced
back to bi-directional search (Pohl, 1971). A recent Incremental Search algorithm, Tree
Adaptive A* (Hernández et al., 2011), exploits this idea to make subsequent searches faster.
Real-Time D* (RTD*) (Bond, Widger, Ruml, & Sun, 2010) uses bi-directional search to
perform searches in dynamic environments. RTD* combines Incremental Backward Search
(D*Lite) with Real-Time Forward Search (LSS-LRTA*).

Finally, our notion of generalized free-space assumption is related to that proposed by
Bonet and Geffner (2011), for the case of planning in partially observable environments.
Under certain circumstances, they propose to set unobserved variables in action precondi-
tions in the most convenient way during planning time, which indeed corresponds to adding
more arcs to the original search graph.

8. Summary and Future Work

We presented FRIT, a search algorithm that follows a path in a tree—the ideal tree—
that represents a family of solutions in the graph currently known by the agent. The
algorithm is simple to describe and implement, and does not need to update the heuristic
to guarantee termination. FRIT uses a secondary search algorithm to search for a state
in the ideal tree when the agent becomes disconnected from it. We show that, with slight
modifications, we can a real-time search algorithm to search for reconnection, and we obtain
a real-time version of FRIT, FRITRT. In addition, we propose a different way of using FRIT
in some applications that use real-time search by feeding it with bounded, complete search
algorithms.

We provide theoretical results proving that both FRIT and FRITRT always find solutions
if they exist. Furthermore, we give explicit bounds on the length of the obtained solutions.
Finally, we prove that both algorithms converge after two trial runs.
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Our experiments show that the proposed algorithms return solutions faster than other
state-of-the-art real-time search algorithms. In particular FRIT(daRTAA*) substantially
improves performance over daRTAA*, a state-of-the-art Real-Time Search algorithm. Larger
performance improvements are observed when time constraints are tighter. Additionally,
we compare both our approaches and show that FRIT(BFS)—that is, FRIT fed with the
breadth first search algorithm—produces similar or better results for tight time constraints.
In a comparison with the pathfinding-specific Bug2 algorithm, we concluded than when
very little time per search episode is given Bug2 delivers best-quality solutions, followed by
FRIT(BFS), and eventually, when significantly more time is available, followed by state-of-
the-art incremental search algorithms.

As a disadvantage of our approach, we note that FRIT cannot exploit more computa-
tional time as other algorithms do. Indeed, other incremental heuristic search algorithms
will return better quality solutions if allowed large time constraints, while FRIT will gen-
erally not converge asymptotically to the optimal path if given arbitrary time.

We have left out of the scope of the paper how FRIT could be used in more general
search spaces like the ones that can be described using a planning language like STRIPS
(Fikes & Nilsson, 1971) or PDDL (McDermott, 1998). In planning domains, search graphs
are implicitly defined by actions defined in terms of preconditions an effects. Computing
ideal trees using Dijkstra’s algorithm, as we suggested above, is not simple since it requires
the generation of a number of states exponential in the size of the problem description.
Moreover, it is not immediately obvious either how to build an ideal tree from a standard
domain-independent heuristic, as we have done in pathfinding. Indeed, while there exist
domain-independent planning heuristics that are admissible (e.g., Haslum & Geffner, 2000),
it is easy to show that they do not correspond to a perfect heuristic over a spanning super-
graph of the original search space, which implies that it is not possible to use them directly
to construct an ideal tree, as loops may be easily formed. Therefore, further investigation is
needed in order to adapt the techniques we have presented here for planning applications.
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