
Journal of Artificial Intelligence Research 50 (2014) 265-319 Submitted 10/13; published 06/14

Property Directed Reachability for Automated Planning

Martin Suda suda@mpi-inf.mpg.de

Max-Planck-Institut für Informatik,

Saarbrücken, Germany

Charles University, Prague, Czech Republic

Abstract

Property Directed Reachability (PDR) is a very promising recent method for deciding
reachability in symbolically represented transition systems. While originally conceived as
a model checking algorithm for hardware circuits, it has already been successfully applied
in several other areas. This paper is the first investigation of PDR from the perspective of
automated planning.

Similarly to the planning as satisfiability paradigm, PDR draws its strength from in-
ternally employing an efficient SAT-solver. We show that most standard encoding schemes
of planning into SAT can be directly used to turn PDR into a planning algorithm. As a
non-obvious alternative, we propose to replace the SAT-solver inside PDR by a planning-
specific procedure implementing the same interface. This SAT-solver free variant is not only
more efficient, but offers additional insights and opportunities for further improvements.
An experimental comparison to the state of the art planners finds it highly competitive,
solving most problems on several domains.

1. Introduction

Property Directed Reachability (PDR), also known as IC3, is a recently proposed algorithm
for deciding reachability in symbolically represented transition systems (Bradley, 2011; Eén,
Mishchenko, & Brayton, 2011).1 Since its discovery in 2010, it has already established
itself as one of the strongest model checking algorithms used in hardware verification. The
original and inspiring way in which PDR harnesses the power of a modern SAT-solver
gives the algorithm a unique ability to discover long counterexample paths combined with
a remarkable performance in proving unreachability. Other interesting traits include a
typically small memory footprint and a good potential for parallelization.

With awareness of the well-known equivalence between model checking and automated
planning, the aim of this work is to investigate PDR from the planning perspective. Our
main goal is to establish whether the practical success of the algorithm can be repeated
on planning benchmarks. Moreover, we are also interested in the relation of PDR to the
currently used planning techniques. It is illustrative for highlighting some of the interesting
features of the algorithm to start with a preliminary comparison right away.

The fact that PDR builds upon the SAT-solving technology makes it obviously related
to the planning as satisfiability approach (Kautz & Selman, 1996). While in planning as
satisfiability the underlying SAT-solver receives formulas of increasing size as the method
progresses to check for existence of increasingly longer plans, in PDR each SAT-solver call

1. IC3 is the name Aaron Bradley, the originator of the algorithm, gave to the first implementation (Bradley,
2011). The more descriptive name Property Directed Reachability was coined by Eén et al. (2011).

c©2014 AI Access Foundation. All rights reserved.



Suda

corresponds only to a single step in the transition system. That is why the algorithm is
sometimes said to operate “without unrolling”. Dealing with formulas over a fixed signature
lifts some of the computational burden from the SAT-solver, making it respond in a more
reliable way.

Similarly to planning as satisfiability, PDR proceeds iteratively, gradually disproving
existence of plans of length 0, 1, 2,. . . . Due to a so-called obligation rescheduling technique,
however, PDR can discover a plan of length l already during iteration k < l, that is, while
the existence of shorter plans has not necessarily been ruled out yet. This typically leads
to improved performance, as it allows the algorithm to avoid completing the potentially
expensive non-existence proofs. A similar effect can be achieved in the planning as satisfia-
bility approach by running several SAT-solvers in parallel or interleaved (Rintanen, 2004).
Such a modification, however, requires a non-trivial engineering effort and the resulting
system contains parameters that need to be tuned for the problem at hand. In contrast,
rescheduling in PDR amounts literally to a one-line change in the algorithm. When this
line is disabled, PDR resorts to the more expensive search for an optimal length plan.

Surprisingly, PDR can also be naturally compared to the explicit heuristic search plan-
ning (Bonet & Geffner, 2001). Indeed, PDR is probably best understood as a hybrid
between explicit and symbolic approaches. Because the satisfying assignment in PDR is
built systematically, one transition at a time, the finished part of it corresponds to an ex-
plicit path through the transition system and its last piece to a state to be expanded next.
At the same time, PDR maintains symbolic reachability information in a form of a sequence
of sets of clauses. The k-th set in the sequence over-approximates the k-fold preimage of
the set of goal states. These clause sets play a role similar to an admissible heuristic. They
represent a lower bound estimate for the distance of a state to the goal and thus provide a
means to guide the search towards it. However, while a heuristic value of a particular state
is normally computed only once and it remains constant during the search for a plan, the
clause sets in PDR are refined continually. The refinement happens on demand, driven by
the states encountered during the search.

1.1 Paper Overview

In order to apply PDR to a planning problem, the problem has to be processed into a
suitable form. In Section 2 we introduce a symbolic transition system, a description of a
reachability task based on the clausal language of propositional logic, which serves as a
generic input for PDR. We observe that most of the standard encoding schemes of planning
into SAT provide us with such a description. This means that a general implementation of
the algorithm, which we describe in detail in Section 3, combined with any such encoding
already yields a stand-alone planner. This is, however, not the most efficient path to take.

The main contribution of this paper is presented in Section 4. We show that instead of
relying on an encoding and a general purpose SAT-solver, we can, at least in the case of the
sequential plan semantics, delegate the single step reachability queries to a planning-specific
procedure. Not only do we gain a polynomial time guarantee for answering the individual
queries, but by decoupling PDR from the underlying SAT-solver we also gain additional
insights and ideas for further improvements.

266



Property Directed Reachability for Automated Planning

We implemented the proposed idea in a new planner PDRplan. In Section 5 we experi-
mentally confirm that it is more efficient than the standard PDR combined with encodings.
We also evaluate the practical impact of various improvements, and compare the most suc-
cessful configuration of PDRplan to the state of the art planners with encouraging results.

Section 6 returns to related work and uncovers a perhaps surprising connection between
PDR and the Graphplan algorithm of Blum and Furst (1997). Finally, Section 7 uses
examples of the behavior of PDR on two classical planning domains to discuss possibilities
for future extensions of the algorithm and Section 8 concludes.

2. Preliminaries

In this section we build the necessary background for explaining PDR. After recalling the
basic notions of propositional logic and fixing the notation, we introduce symbolic transition
systems, which serve as a canonical input for the algorithm. We observe that the encoding
part of the well-known planning as satisfiability paradigm can be seen to translate a given
planning problem into a symbolic transition system. This means that by combining an
encoding with PDR one already obtains a standalone planner.

2.1 Propositional Logic

A signature Σ is a finite set of propositional variables. Formulas are built from variables
using the propositional connectives negation ¬, conjunction ∧, disjunction ∨, and impli-
cation ⇒. Given a formula F over Σ we denote by Vars(F ) the set of variables actually
occurring in F (i.e. Vars(F ) ⊆ Σ). A literal l is either a variable p ∈ Σ or its negation ¬p.
In the first case, the literal is called positive. We define the complement ¬l of a literal l to
be ¬p if l = p, and to be p if l = ¬p. Also in other contexts, double negations are silently
reduced away.

A consistent conjunction of literals is referred to as a cube and a disjunction as a clause.
A cube r is full if Vars(r) = Σ. When describing algorithms, it is advantageous to treat
both cubes and clauses simply as sets of literals and leave the interpretation to follow from
the context. Then, by complementing a cube r we obtain a clause ¬r = {¬l | l ∈ r} and
also vice versa. We call a clause positive if all its literals are positive. A clause c is said to
subsume another clause d if c ⊆ d. As usual, sets of clauses stand for their conjunction.

The semantics of propositional logic is built around the notion of an assignment, which
is a mapping s : Σ → {0,1} from the signature Σ to the truth values {0,1}. We write
s |= F if an assignment s satisfies a formula F . A formula F is called satisfiable if there is
an assignment that satisfies it, and it is called valid if ¬F is not satisfiable. Assignments
naturally correspond to full cubes: Given an assignment s we define a full cube

Lits(s) = {p | p ∈ Σ and s(p) = 1} ∪ {¬p | p ∈ Σ and s(p) = 0}.

There is exactly one assignment, namely s, which satisfies Lits(s).

2.2 Encoding Discrete Time

When reasoning about systems which evolve in time, we use the basic signature Σ =
{p, q, . . .} to describe the current state of the system and introduce a disjoint copy of Σ

267



Suda

denoted Σ′ = {p′, q′, . . .} to represent the state of the system after one step. Similarly,
further copies Σ′′,Σ′′′, . . . (also written as Σ(2),Σ(3), . . .) stand for the states further in the
future. The priming notation is extended to formulas and assignments in the following way.
By F ′ we denote the formula obtained from a formula F by priming every variable occurring
in F . For an assignment s : Σ → {0,1}, we denote by s′ : Σ′ → {0,1} the assignment
that behaves on primed symbols as s does on unprimed ones, i.e., s′(p′) = s(p) for every
p ∈ Σ. If s and t are two assignments from Σ, we let (s, t′) denote the joint assignment
(s ∪ t′) : Σ ∪ Σ′ → {0,1}. This means that

(s, t′)(x) =

{
s(p) if x = p ∈ Σ,

t(p) if x = p′ ∈ Σ′.

Such an assignment gives a truth value to formulas over the joint signature Σ ∪ Σ′.

2.3 Symbolic Transition Systems

A symbolic transition system (STS) is a tuple S = (Σ, I, G, T ), where Σ is a signature, I,
called the initial formula, and G, the goal formula, are sets of clauses over Σ, and T , the
transition formula, is a set of clauses over Σ ∪ Σ′. An STS S symbolically represents an
explicit transition system TS = (S, SI , SG, RT ), which we describe next. Notice that the
symbolic representation can be exponentially more succinct than the explicit system. The
explicit transition system TS consists of

• the set of states S, identified with the set of all assignments from Σ:

S = {s | s : Σ→ {0,1}},

• a subset SI ⊆ S of the initial states, which are states that satisfy the initial formula:

SI = {s ∈ S | s |= I},

• a subset SG ⊆ S of the goal states, which are states that satisfy the goal formula:

SG = {s ∈ S | s |= G},

• and the transition relation RT ⊆ S×S of pairs of states (also called transitions) which
jointly satisfy the transition formula:

RT = {(s, t) | s, t ∈ S and (s, t′) |= T}.

A path in TS is a finite sequence s0, . . . , sk of states such that (sj , sj+1) ∈ RT for every
j = 0, . . . k − 1. We will be interested in the existence of paths connecting an initial state
with a goal state. We say that an STS S is satisfiable if there is a path s0, . . . , sk in TS such
that s0 ∈ SI and sk ∈ SG. For simplicity, we call such a path a witnessing path for S.

268



Property Directed Reachability for Automated Planning

b b

b b

SGSI

s10 = {p 7→ 1, q 7→ 0}
s00 = {p 7→ 0, q 7→ 0}

s01 = {p 7→ 0, q 7→ 1} s11 = {p 7→ 1, q 7→ 1}

Figure 1: The explicit transition system TS represented by the STS S from Example 1. Its
four states correspond to the four assignments over the signature Σ = {p, q}.

Example 1. Consider an STS S = (Σ, I, G, T ), where Σ = {p, q}, I = {¬p}, G = {p, q}, and

T = {p ∨ ¬p′ ∨ ¬q′, p ∨ q ∨ ¬p′, p ∨ q ∨ q′, p ∨ ¬q ∨ p′, ¬q ∨ ¬p′ ∨ ¬q′}.
Notice that we prefer the formula notation (as opposed to the set notation) for concrete
clauses. This means that I consist of one and G of two unit clauses, i.e. clauses with just
a single literal. The corresponding explicit transition system TS is shown in Figure 1. The
path s00, s01, s10, s11 is an example of a witnessing path for S. The STS S is satisfiable.

It is useful to notice that the definition of an STS is symmetrical in the following sense.
Given an STS S = (Σ, I, G, T ) an inverted STS is defined as S−1 = (Σ, G, I, T−1), where
T−1 is obtained from T by simultaneously removing primes from all the occurrences of
primed variables and adding primes to all the occurrences of originally unprimed variables.
This corresponds, on the explicit side, to exchanging the initial and goal states and inverting
the direction of all the transitions. Therefore, an STS S is satisfiable if and only S−1 is.
Moreover, a witnessing path for S can be recovered from a witnessing path for S−1 (also
vice versa) by reading the respective sequence backwards.

2.4 Propositional STRIPS Planning

In this paper we work with planning problems described in the STRIPS planning formal-
ism. Similarly to states in transition systems, states of the world in STRIPS planning are
identified with propositional assignments. The propositional variables encoding the state
are in this context called state variables and we denote their set by X.

An action a is determined by a tuple a = (prea, eff a), where prea, called the precondition
list, and eff a, the effect list, are cubes over X, i.e. consistent conjunctive sets of literals. An
action a is applicable in a state s if s |= prea. If this is the case then applying the action
a in s results in a successor state t = apply(s, a), which is the unique state that satisfies
eff a and for every p ∈ X not occurring in eff a it has t(p) = s(p). A degenerate action with
empty precondition and effect lists is called the noop action. It is applicable in any state s
and the corresponding successor is identical to the original state: apply(s,noop) = s.

A STRIPS planning problem is a tuple P = (X, sI , g,A), where X is the set of state
variables, sI the initial state, g the goal condition in the form of a cube over X, and A a
set of actions. A plan for P is a finite sequence a1, . . . , ak of actions from A such that there
are states s0, . . . , sk satisfying the following conditions:

269



Suda

• s0 = sI ,

• aj is applicable in sj−1 for j = 1, . . . , k,

• sj = apply(sj−1, aj) for j = 1, . . . , k,

• and sk |= g.

Notice that the empty sequence λ is a plan for P if and only if sI |= g.

2.5 Planning as Satisfiability

The basic idea behind the planning as satisfiability paradigm (Kautz & Selman, 1992, 1996)
is as follows. Given a planning problem P we define a sequence of propositional formulas
F0, F1, . . . such that there is a plan for P if and only if a formula Fi is satisfiable for some
i. The individual formulas Fi are then iteratively checked using a SAT-solver and when a
satisfiable Fi is found, a plan is recovered from the corresponding satisfying assignment.

The concrete form of the formulas in the sequence is dictated by an encoding scheme
(see, e.g., Kautz, McAllester, & Selman, 1996; Rintanen, Heljanko, & Niemelä, 2006; Huang,
Chen, & Zhang, 2012). Most encoding schemes have a simple structure that can be captured
by an STS S = (Σ, I, G, T ), from which the individual formulas Fi are then obtained as

Fi = I ∧ T (0) ∧ T (1) ∧ . . . ∧ T (i−1) ∧G(i). (1)

Note that we use the priming notation as described in Section 2.2 and thus T (0) stands for
the same formula as T , T (1) for the same formula as T ′, etc. The resulting formula (1) for
Fi, which is over signature

⋃
j=0,...,i Σ(i), expresses the existence of a witnessing path for

S of length i. If the encoding scheme uses a so called sequential plan semantics, such a
witnessing path also directly corresponds to a plan of length i. This is equivalent to saying
that the transition relation encoded by T allows for application of a single action in one
step. Parallel plan semantics allow multiple actions to be applied in one time step. This
leads to a more compact representation and potentially faster discovery of plans. Additional
conditions on the parallel actions need to be imposed, however, to guarantee that a true
sequential plan can be recovered in the end (see Rintanen et al., 2006, for more details).

2.6 Two Simple Encodings

We close this section by introducing two example encodings of a STRIPS planning problem
P = (X, sI , g,A) into an STS. They are perhaps the simplest representatives of encoding
schemes with the sequential and parallel plan semantics, respectively. We will later refer to
them in our theoretical considerations.

The transition systems Sseq
P and Spar

P corresponding to the two encodings share several
building blocks. Let the signature Σ consist of the state variables X in union with a set
of fresh auxiliary variables A = {pa | a ∈ A} used for encoding applied actions. Further,
let us identify the initial formula I with the cube Lits(sI) and define the goal formula G
by reinterpreting the goal condition g, which is formally a cube, as a set of unit clauses
G = {{l} | l ∈ g}. The action mechanics is in both encodings captured by the following
action precondition axioms AP and action effect axioms AE :

AP = {¬pa ∨ l | a ∈ A, l ∈ prea}, AE = {¬pa ∨ l′ | a ∈ A, l ∈ eff a}.

270



Property Directed Reachability for Automated Planning

The encodings differ in how they formalize the “preserving” part of actions’ semantics.

The sequential encoding Sseq
P relies on the so called classical frame axioms CF (McCarthy

& Hayes, 1969) complemented by the single at-least-one axiom alo =
∨

a∈A pa:

CF = {¬pa ∨ l ∨ ¬l′ | a ∈ A, l literal over X such that l 6∈ eff a and ¬l 6∈ eff a}.

Putting these together, we obtain Sseq
P = (Σ, I, G, T seq), where T seq = AP ∧AE ∧CF ∧alo.

Note that the at-least-one axiom is needed, because without it a transition into an arbitrary
state would be possible from a state where no action is applied, i.e. a state in which pa is
false for every a ∈ A. On the other hand, the classical frame axioms ensure that if two
actions are applied together in a state their effects must be identical. Thus when extracting
a (sequential) plan from a witnessing path for Sseq

P we can arbitrarily choose in each step
any action a ∈ A such that pa is true in the corresponding state.

The parallel encoding Spar
P uses the following explanatory frame axioms EF (Haas, 1987)

EF = {l ∨ ¬l′ ∨∨a∈A l∈eff a
pa | l literal over X},

in combination with the so called conflict exclusion axioms CE

CE = {¬pa ∨ ¬pb | a, b ∈ A, a 6= b, and the actions a and b are conflicting},

where two actions are considered conflicting if one’s precondition is inconsistent with the
other’s effect, i.e. if there is a literal l over X such that

either l ∈ prea and ¬l ∈ eff b, or l ∈ preb and ¬l ∈ eff a.

In sum, we define Spar
P = (Σ, I, G, T par ) where T par = AP ∧AE ∧EF ∧CE . In this encoding

two actions can be applied in parallel if they have consistent effects (action effect axioms)
and one does not destroy a precondition of the other (conflict exclusion axioms). When
recovering a sequential plan, such parallel actions can be serialized in any order.

Please consult the work of Ghallab, Nau, and Traverso (2004, ch. 7.4) for further details.

3. Property Directed Reachability

In this section we present PDR as an algorithm for deciding satisfiability of symbolic transi-
tion systems. The algorithm is probably best understood as an explicit search through the
given transition system complemented by symbolic reachability analysis. On the explicit
side, it constructs a path starting from an initial state and extending it step by step towards
the goal.2 At the same time, it maintains symbolic stepwise approximating reachability in-
formation, which is locally refined whenever the current path cannot be extended further.
The reachability information guides the path construction and is also bound to eventually
converge to a certificate of non-reachability, if no witnessing path exists.

2. In the standard formulation, PDR actually builds the path the other way round, from a goal state
backwards towards an initial state. This is only a small detail from the theory point of view, since the
definition of an STS is symmetrical. On the other hand, as we later show, the direction we adopt here
gives rise to a much more successful algorithm on typical planning benchmarks.

271



Suda

3.1 Extension Query and Reason Computation

Let us assume an STS S = (Σ, I, G, T ) is given. While the basic building block for the
constructed path is a state, the reachability information is composed of sets of clauses. The
core operation, around which the algorithm is built, is extending the current path by one
step. Given a state s and a set of clauses L, we ask whether there is a state t, a successor
of s with respect to T , satisfying the clauses of L. Such a question can be delegated to a
SAT-solver by posing the following query:

SAT ?[ Lits(s) ∧ T ∧ (L)′ ]. (2)

If the answer is positive, we can extract a successor state t from the satisfying assignment,
which is necessarily of the form (s, t′), and extend the current path. In the unsatisfiable
case, we compute a reason for why s does not have a successor with the property L. A
reason is a cube r ⊆ Lits(s) such that already the formula r∧T ∧ (L)′ is unsatisfiable. PDR
then removes s from the path and learns the clause c = ¬r to prevent the same situation
from happening in the future. The clause c is a property of the preimage of L with respect
to T which the state s fails to satisfy.

It is important for the efficiency of the algorithm to always compute a reason which is as
small as possible. This is because a reason with fewer literals gives rise to a shorter clause,
which better generalizes from the current situation. After such a clause is learned not only
the state s but also many similar states will be known to have no successor satisfying L.

There are several techniques for computing small reasons. Below we describe two of
them: SAT-solving under assumptions and explicit minimization. We postpone discussing
a third one, inductive minimization, till Section 3.5. It is important for the correctness of
PDR that the final reason is not consistent with the goal formula G. We close this section
by explaining how this property can be achieved.

3.1.1 SAT-solving under Assumptions

Many modern SAT-solvers do not simply return UNSAT, but are able to identify which
of the input clauses were actually used in the derivation of unsatisfiability. Solving under
assumptions is a particular, simple and efficient form of such unsatisfiable core extraction
technique, first introduced by Eén and Sörensson (2003) in their SAT-solver Minisat. By
assumptions we in this technique understand designated unit (single literal) clauses passed
along with the rest of the input to the solver. In case the input is unsatisfiable, the solver
is able to report which of these units were actually used in the proof.

Solving under assumptions provides us with essentially free mechanism for computing
small reasons. We simply designate the literals of Lits(s) to be treated as unit assumptions
in the query (2) above. In the unsatisfiable case, we obtain a reason r ⊆ Lits(s) as required.

3.1.2 Explicit Minimization

The subset r of the assumption literals Lits(s) returned by the solver can typically be
further reduced. We can explicitly minimize it by trying to remove literals one by one.
If the respective query remains unsatisfiable we leave the literal out. Otherwise we put it
back. In a number of steps proportional to |r| we obtain a final reason set r∗ ⊆ r minimal

272



Property Directed Reachability for Automated Planning

with respect to subset relation such that the query

SAT ?[ r∗ ∧ T ∧ (L)′ ],

is unsatisfiable. Note that the order in which the literals are tried out influences the final
result and may be subject to heuristical tuning. Although reason minimization is an ex-
pensive operation (we need one extra SAT-solver call per literal), experiments show that it
is an important ingredient for solving hard problems.

3.1.3 Keeping the Reason Disjoint from G

As will become clear later, to ensure correctness of PDR we require that the computed
reason r is not consistent with the goal formula G. In other words, the formula r ∧G must
be unsatisfiable. This can be always achieved, because the algorithm never attempts to
extend a goal state and thus we only start minimizing with unsatisfiable Lits(s) ∧G.

A particularly simple strategy, which works whenever the goal formula G is in the form
of a set of unit clauses (as is the case in planning), minimizes the reason as much as possible,
but afterwards puts a single literal back to r provided the required unsatisfiability condition
would be otherwise compromised. We look for a literal l to be added to r (unless found to
be already present) such that {¬l} ∈ G. This condition is, under our assumptions, both
sufficient and necessary to ensure that r∧G is unsatisfiable and can be established without
additional calls to a SAT-solver.

Another option is to make sure beforehand that the set of goal states is included in its
own preimage with respect to the transition relation T . For instance, making the transition
relation reflexive by adding self-loops to every state achieves this without actually affecting
the existence or the length of the shortest witnessing path. In planning, we can simply
include the noop action into the action set.

3.2 Data Structures and Main Invariants

We continue our exposition of PDR by describing its main data structures. The clause sets
representing the reachability information are organized in a sequence3 L0, L1, . . . and we
refer to them as layers. At any moment during the run of the algorithm the layers satisfy
the following three invariants:

1) L0 is equivalent to G,

2) Lj+1 ⊆ Lj and thus Lj ⇒ Lj+1 for any j ≥ 0,

3) (Lj)
′ ∧ T ⇒ Lj+1 for any j ≥ 0, i.e., Lj+1 over-approximates the preimage of Lj .

When the algorithm starts, the layer L0 is initialized to be equal to the set G and all
the remaining layers are empty. Thus, initially, the invariants 1), 2), and 3) are trivially
satisfied. We will return to the invariants at an appropriate place below to argue that they
are indeed maintained by the algorithm.

The constructed paths – there can actually be more than one – are represented via
so called obligations.4 Formally, an obligation is a pair (s, i) consisting of a state s and

3. At any point in time only finitely many layers are non-empty and need to be represented in memory.
4. The full term is proof obligation. It comes from the verification perspective, where an obligation must be

proven unreachable, otherwise the property of the system does not hold and a counter-example is found.

273



Suda

an index i. The index is a natural number denoting the position of s with respect to the
layers. It may be seen to stand for a lower bound estimate on the distance of s towards the
goal. In a practical implementation an obligation also stores a link to its parent, i.e. to the
obligation from which it was derived, and we use such links to recover the full witnessing
path once the goal has been reached.

3.3 The Algorithm

We are now ready to have a look at the overall structure of PDR (see Pseudocode 1). After
initializing the layers (line 1), the algorithm proceeds in iterations, counted by a variable
k. The main part of each iteration is a path construction phase during which the algorithm
attempts to build a path step by step and terminates if a full witnessing path is actually
discovered. If iteration k finishes without completing the path, PDR has established that
there is no witnessing path for the transition system of length k or less.

As we describe in detail below, path construction can be enhanced by the obligation
rescheduling technique, which allows the algorithm during iteration k to consider paths
potentially longer than k. Path construction is in each iteration complemented by a clause
propagation phase, which attempts to “push clauses” from low index layers to high index
ones and checks for a global convergence within the layers, the occurrence of which implies
that no witnessing path (of any length) is possible. Neither obligation rescheduling nor
clause pushing are needed for ensuring correctness of the algorithm, but typically greatly
improve its performance.

3.3.1 Path Construction

The path construction phase of iteration k starts by using a SAT-solver to pick an initial
state s satisfying Lk (lines 4 and 5). It manipulates a set Q, working as a priority queue,
for storing obligations. The set Q is initialized (line 6) with the obligation (s, k). The
inner loop (starting at line 7) processes individual obligations, selecting first those that are
estimated to be closer to the goal (line 8). Let (s, i) be a selected obligation. When i = 0,
this means that a full witnessing path has been constructed and the algorithm terminates
(line 10). The path extension query described previously is executed next (line 11). We look
for a successor of s which would satisfy the clauses of Li−1. Since s was originally obtained
satisfying Li, this represents an attempt to extend the current path one step closer towards
the goal. If the extension is successful both the new obligation (t, i−1) to be worked on next
and the current (s, i) are stored in Q (lines 12, 13). In the opposite case, a new clause is
derived from the reason of the failure and used to strengthen the layers L0, . . . , Li (lines 15,
16). Notice that after the strengthening the state s no longer satisfies Li. This means the
approximation has become strictly more precise, which ensures progress.

3.3.2 Obligation Rescheduling

The unsatisfiable branch of the extension attempt continues with two more lines (19, 20),
which are not necessary for correctness of PDR. Without this obligation rescheduling tech-
nique, the algorithm would now forget the obligation (s, i) and would return to work on its
parent. This would correspond to a strict backtracking behavior, with the set Q functioning
as a stack. Instead, we try to reuse the obligation and reschedule it one step further from

274



Property Directed Reachability for Automated Planning

Pseudocode 1 Algorithm PDR(Σ, I, G, T ):

Input:
A symbolic transition system S = (Σ, I, G, T )

Output:
A witnessing path for S or a guarantee that no path exists

1: L0 ← G; foreach j > 0 : Lj ← ∅ /* Initialize the layers */
2: for k = 0, 1, . . . do
3: /* Path construction: */
4: while SAT?[ I ∧ Lk ] do
5: extract state s from the model
6: Q ← {(s, k)}
7: while Q not empty do
8: pop some (s, i) from Q with minimal i
9: if i = 0 then

10: return WITNESSING PATH FOUND
11: if SAT?[ Lits(s) ∧ T ∧ (Li−1)′ ] then
12: extract a successor state t from the model
13: Q ← Q ∪ {(s, i), (t, i− 1)}
14: else
15: compute a reason r ⊆ Lits(s) such that r ∧G is unsatisfiable
16: foreach 0 ≤ j ≤ i : Lj ← Lj ∪ {¬r}
17:

18: /* Obligation rescheduling: */
19: if i < k then
20: Q ← Q ∪ {(s, i+ 1)}
21:

22: /* Clause propagation: */
23: for i = 1, . . . , k + 1 do
24: foreach c ∈ Li−1 \ Li do
25: /* Clause push check */
26: if not SAT ?[¬c ∧ T ∧ (Li−1)′ ] then
27: Li ← Li ∪ {c}
28: /* Convergence check */
29: if Li−1 = Li then
30: return NO PATH POSSIBLE

275



Suda

G

L1L2
I

(s, 2)
b

L0

b
b

(t, 1)
?

G

L1L2
I

(s, 2)
b

L0

b
b

(t, 2)
r

Figure 2: Layers, obligations and rescheduling.

the goal. This typically boosts the performance as it allows PDR to discover paths longer
than the current iteration number k, before the existence of paths of length k is ruled out.
Without obligation rescheduling, PDR only looks for optimal length paths.

The obligation rescheduling technique as well as the general interaction between layers,
obligations, and reasons are illustrated in Figure 2. There, PDR is in the middle of the path
construction phase of iteration 2. The algorithm is attempting to extend the obligation (t, 1)
and to reach a goal state in one step (left). When the attempt fails (right), PDR generalizes
from t, obtains a reason r, and learns a new clause c = ¬r to strengthen the layers L1 and
L0. Notice how the obligation is rescheduled to (t, 2) and PDR can now attempt to extend
it and satisfy the new L1 in one step. Without rescheduling, PDR would forget t and would
go back to extending (s, 2) instead.

3.3.3 Clause Propagation

Let us proceed to the clause propagation phase. It checks for every clause c lying in layer
Li−1 but not in Li (line 24) whether it could be pushed forward and added to strengthen
the layer Li. This is done when the query on line 26 returns UNSAT, which means that

(Li−1)′ ∧ T ⇒ c,

and adding the clause to Li will preserve invariant 3). The motivation for clause propagation
is that stronger layers will provide for a better guidance in the following path construction
phase. Indeed, notice that some clauses may even enter the till now empty layer Lk+1. More
importantly, however, clause propagation is an opportunity to check for equality between
two neighboring layers (line 29).5 As we explain later, the equality implies that there is no
witnessing path for the transition system of any length and so PDR terminates (line 30).

3.3.4 Example Execution

Let us recall the STS S = (Σ, I, G, T ) from Example 1, defined over a two variable signature
Σ = {p, q} with the initial, goal, and transition formulas I = {¬p}, G = {p, q}, and

T = {p ∨ ¬p′ ∨ ¬q′, p ∨ q ∨ ¬p′, p ∨ q ∨ q′, p ∨ ¬q ∨ p′, ¬q ∨ ¬p′ ∨ ¬q′},

5. It is not necessary to perform the relatively expensive clause pushing (which requires one SAT-solver call
per clause) before checking for layer equivalence. Experience from model-checking suggests, however,
that pushing substantially helps to speed up the convergence and clause propagation is one of the key
ingredients for efficiently detecting unsatisfiable problems.

276



Property Directed Reachability for Automated Planning

step event / query effect / explanation

1 Initialization L0 = {p, q}; Li = ∅ for i > 0
2 Path construction (iteration 0) k = 0
3 SAT?[ I ∧ L0 ] false ¬p ∧ p unsat.
4 Clause propagation
5 SAT?[¬p ∧ T ∧ (L0)′ ] false ¬p ∧ (p ∨ ¬p′ ∨ ¬q′) ∧ (p ∧ q)′ unsat.
6 push p and add it to L1 L1 = {p}
7 SAT?[¬q ∧ T ∧ (L0)′ ] true ¬q ∧ T ∧ (p ∧ q)′ sat.
8 Path construction (iteration 1) k = 1
9 SAT?[ I ∧ L1 ] false ¬p ∧ p unsat.

10 Clause propagation
11 SAT?[¬q ∧ T ∧ (L0)′ ] true ¬q ∧ T ∧ (p ∧ q)′ sat.
12 SAT?[¬p ∧ T ∧ (L1)′ ] true ¬p ∧ T ∧ p′ sat.
13 Path construction (iteration 2) k = 2
14 SAT?[ I ∧ L2 ] true ¬p sat.
15 extract a state and initialize Q s = {p 7→ 0, q 7→ 0}; Q = {(s, 2)}
16 SAT?[ Lits(s) ∧ T ∧ (L1)′ ] false ¬p ∧ ¬q ∧ (p ∨ q ∨ ¬p′) ∧ (p)′ unsat.
17 compute a reason and learn a clause r = ¬p ∧ ¬q; L2 = {p ∨ q}, L1 = . . .
18 SAT?[ I ∧ L2 ] true ¬p ∧ (p ∨ q) sat.
19 extract a state and initialize Q t = {p 7→ 0, q 7→ 1}; Q = {(t, 2)}
20 SAT?[ Lits(t) ∧ T ∧ (L1)′ ] true ¬p ∧ q ∧ T ∧ (p)′ sat.
21 extract a state and store it in Q u = {p 7→ 1, q 7→ 0}; Q = {(t, 2), (u, 1)}
22 SAT?[ Lits(u) ∧ T ∧ (L0)′ ] true p ∧ ¬q ∧ T ∧ (p ∧ q)′ sat.
23 extract a state . . . v = {p 7→ 1, q 7→ 1};
24 . . . and store it in Q Q = {(t, 2), (u, 1), (v, 0)}
25 witnessing path found return t, u, v

Table 1: Execution trace of PDR on the STS from Example 1.

respectively. Table 1 showcases an execution trace of PDR on this STS. It lists all the
SAT-solver queries in order of execution, provides explanation for the results in the form
of unsatisfiable cores, and tracks changes to the global variables. Notice that in step 6 the
clause p is successfully pushed from layer L0 to L1. In step 17 the new clause p ∨ q is
formally added to L2, L1, and L0. However, it only properly strengthens the layer L2.

3.4 Correctness

To show correctness of PDR we first review invariants 1)–3) and demonstrate that they
are indeed preserved during the run of the algorithm. We than add a fourth observation,
invariant 4), important for showing correctness in the unsatisfiable case. The invariants are
then used to prove an independent lemma and, finally, also the main correctness theorem.

277



Suda

3.4.1 Four Invariants

Invariant 1) states that the layer L0 is equivalent to G. This could be only violated when
a new clause c is added to L0 (line 16). But since c = ¬r for some reason r and we assume
that r∧G is unsatisfiable (recall Section 3.1.3), we have G⇒ c and invariant 1) is preserved.
Invariant 2) asserts that Lj+1 ⊆ Lj for any index j ≥ 0. This is trivially maintained both
when a new clause is added to the layers (line 16) and during clause pushing (line 27).

Invariant 3) is the statement that (Lj)
′∧T ⇒ Lj+1 for any j ≥ 0. When a new clause c is

added to the layers L0, . . . , Li (line 16) there has been an unsuccessful extension of obligation
(s, i), which means that c = ¬r for some reason r ⊆ Lits(s). By the definition of a reason
we have that the formula r∧T ∧(Li−1)′ is unsatisfiable and, therefore, (Li−1)′∧T ⇒ c. This
guarantees that invariant 3) will hold for j = i− 1 after clause c is added to Li. However,
because the layers of index j < i− 1 are even stronger than Li−1 by invariant 2), invariant
3) will also hold for j < i− 1. Finally, the case of j > i− 1 is trivial. As already discussed
(recall Section 3.3.3) invariant 3) is also preserved during clause propagation.

There is one more observation that we will need in order to show correctness of PDR.
Let us call it invariant 4). Invariant 4) states that when the path construction of iteration
k finishes there is no initial state satisfying Lk. This follows from the fact that the query
on line 4 must be unsatisfiable for the path construction to finish.

3.4.2 Correctness and Termination

Lemma 1. When PDR creates (either on line 6 or on line 13) a new obligation (s, i) then
s |= Li. Moreover, s 6|= Lj for any j < i. This latter property is maintained throughout the
run of the algorithm and, in particular, holds also after rescheduling (line 20).

Proof. First note that it is sufficient to show the second part only for j = i − 1 and then
use invariant 2). Also note that during the run of PDR clauses are only added to and never
removed from the layers. This means it is sufficient to focus on the moments when a new
obligation is created: if s 6|= Lj when the obligation (s, i) is created, this must also hold
later, after the layer Lj has been strengthened by addition of new clauses.

Let us now consider iteration k. When creating a new obligation (s, k) on line 6, we have
s |= Lk by construction and s 6|= Lk−1 by invariant 4). When creating a new obligation
(t, i − 1) on line 13, we assume that its parent (s, i) already satisfies our lemma and, in
particular, that s 6|= Li−1. We now have t |= Li−1, again by construction, and if i > 1 we
infer t 6|= Li−2 from our assumption about s and from invariant 3). Finally, an obligation
(s, i) is only rescheduled to (s, i+ 1) after the addition of a clause c = ¬r into Li for some
r ⊆ Lits(s). This means that s 6|= Li at the time of the rescheduling.

Lemma 1 captures the intuition that a state s of an obligation (s, i) is always at least
i steps from reaching the goal. It follows from this lemma that PDR never attempts to
extend a goal state, which is the assumption we relied on in Section 3.1.3 to show that we
can always keep reasons disjoint from the goal formula G.

Theorem 1 (Bradley, 2011). Given an STS S = (Σ, I, G, T ) the algorithm terminates and
returns a witnessing path for S if and only if S is satisfiable.

278



Property Directed Reachability for Automated Planning

Proof. It is easy to see that if PDR returns a path (line 10)6 it is a witnessing path for S.
Indeed, for every considered obligation (s, i) the state s is reachable from an initial state
and when i = 0 the state s satisfies L0, which is equivalent to G by invariant 1).

If PDR terminates claiming that no witnessing path exists (line 30) the path construction
phase of iteration k has finished and there is an index 0 ≤ j ≤ k such that Lj = Lj+1. By
combining invariants 1)–3) and the detected equality we obtain G⇒ Lj and (Lj)

′∧T ⇒ Lj .
This together with invariant 4) rules out the existence of a witnessing path of any length.7

To address termination we first show that the path construction phase of iteration k
cannot run indefinitely. Recall that PDR always selects for extension an obligation with
minimal index i (line 8). Thus it follows from Lemma 1 that after a successful extension
of obligation (s, i) the new extracted state t is not equal to any other state previously
considered during iteration k (t is currently the only state that satisfies Li−1). On the other
hand, after an unsuccessful extension of obligation (s, i) the addition of the new clause c
to the layer Li ensures that s 6|= Li anymore (recall that c = ¬r for some r ⊆ Lits(s)).
This means there cannot be more than k · 2|Σ| repetitions of the “Q-processing” while-loop
(line 7) and more than 2|Σ| repetitions of the outer while-loop of path construction (line 4).

We are left to bound the maximal number of iterations of PDR. By invariant 2) the sets
of states represented by the individual layers are ordered by inclusion and after the clause
propagation phase of iteration k finishes the first k+ 1 of these sets are necessarily distinct.
Thus there cannot be more than 2|Σ| iterations before PDR terminates.

3.5 Inductive Reason Minimization

Inductive reason minimization is a technique for obtaining small reasons from unsuccessful
extensions. We postponed discussing the technique after the presentation of PDR, because
it relies in an non-obvious way on the overall architecture of the algorithm. Moreover,
although “inductiveness” was one of the main initial ideas behind PDR (Bradley, 2011),
our experiments suggest that the practical value of this relatively advanced technique for
automated planning may be limited.

To demonstrate inductive minimization let us once more recall the situation of an un-
successful extension of obligation (s, i). We want to compute a reason r, which is a subset
of Lits(s), ideally as small as possible, such that the formula

r ∧ T ∧ (Li−1)′ (3)

is unsatisfiable. Now, the crucial observation is that since we are in the next step going to
strengthen the layers L0, . . . , Li (and, in particular, the layer Li−1) with the clause c = ¬r,
we may already assume c on the “primed” side of (3) when minimizing r. This means, we
can use the stronger query

r ∧ T ∧ (Li−1 ∧ ¬r)′.
Having r on both sides of the transition breaks monotonicity: as r gets weaker, ¬r gets
stronger. Satisfiable query may become unsatisfiable again when more literals are removed

6. Line 10 of Pseudocode 1 only reports the existence of a path. A true witnessing path can, however, be
easily recovered by following the parent pointers (see Section 3.2) from the last obligation (s, 0).

7. The layer Lj can be understood as the promised “certificate of non-reachability”. It is a property of the
goal states incompatible with the initial formula that is preserved by traversing the transitions backwards.

279



Suda

from r. This makes the task of finding subset-minimal “inductive reason” computationally
difficult (Bradley & Manna, 2007).

Pseudocode 2 Inductive Reason Minimization:
Input:

A set of clauses L and a cube r such that
the formulas r ∧ T ∧ (L)′ and r ∧G are unsatisfiable

Output:
Minimized inductive reason r∗ ⊆ r, i.e.,
the formulas r∗ ∧ T ∧ (L ∧ ¬r∗)′ and r∗ ∧G are unsatisfiable

1: repeat
2: r0 ← r
3: foreach l ∈ r do /* Check each literal of r0 once */
4: if there is l0 ∈ (r0 \ {l}) such that {¬l0} ∈ G then /* Can try removing l */
5: r0 ← (r0 \ {l})
6: if SAT?[ r0 ∧ T ∧ (Li−1 ∧ ¬r0)′ ] then
7: r0 ← (r0 ∪ {l}) /* Put the literal back */
8: until r = r0 /* No removal in the last iteration */
9:

10: return r

In Pseudocode 2 we present a simple version of inductive reason minimization with no
minimality guarantee, which was, however, successfully applied in hardware model checking
(Eén et al., 2011). The procedure is meant to improve on and replace the explicit reason
minimization described in Section 3.1.2. It assumes that the goal formula G is in the form
of a set of unit clauses to keep the reason disjoint from G (see Section 3.1.3). Notice that in
the non-monotone setting of inductive minimization it makes sense to retry all the literals
once a single literal has been successfully removed. That is why the procedure employes
the outer loop to continue minimizing till a true “fixed point” is reached.

3.6 Notes on Implementation

There are several important points relevant for a practical implementation of PDR which
did not fit the level of detail of the presented pseudocode. We moved them to this section.

3.6.1 Representation of the Layers

Because the individual clause sets Li are ordered by inclusion it is advantageous to store
each clause only once, namely at the position where it appears last. This convention has
been named delta encoding by Eén et al. (2011). It is defined by setting

∆i = Li \ Li+1 and Li =
⋃

j≥i∆j .

With delta encoded layers clause propagation moves clauses around instead of copying
them and the equality check between neighboring layers becomes an emptiness check of the
respective delta.

280



Property Directed Reachability for Automated Planning

3.6.2 Clause Subsumption

It has been observed that PDR often derives a clause c into a layer Li while a weaker clause
is already present. It pays off to remove from ∆i (so effectively from L0, . . . , Li) all those
clauses which are subsumed by this new clause c. Keeping the layers small this way (while
preserving their semantic strength) helps to speed up the algorithm in several places. It
reduces the load on the SAT-solver (provided we can retract the subsumed clause from it)
and it also means fewer clauses need to be checked for pushing.

3.6.3 Obligation Subsumption

Another place where subsumption can (and should) be employed is when dealing with
obligations. It may happen that before an obligation (s, i) is handled, the layer Li, where
the obligation “belongs”, gets in the meantime strengthened in such a way that s no longer
satisfies Li. At this point we already know that the obligation cannot be extended, so we
can save one SAT-solver call and directly reschedule the obligation. Such a situation can
be detected by subsumption: a state s does not satisfy a clause set L if and only if there
is a clause c ∈ L such that c ⊆ ¬Lits(s). We insert the test at the point in the algorithm
where a new clause c is derived into Li. We then check for subsumption all the obligations
of the form (s, i) that are currently in the set Q.

3.6.4 Breaking Ties when Popping from Q

When popping obligations from the set Q (line 8) we make sure we select among those
estimated closest to the goal. This is necessary for ensuring termination of the algorithm.
Otherwise, however, we are free to choose any obligation with the minimal index i. Two
prominent strategies for resolving this “don’t-care” non-determinism are

• to select the most recently added obligation first, which we call the stack strategy,

• to select the least recently added obligation first, the queue strategy.

The stack strategy prefers exploring longer paths before short ones, while the queue strategy
does the opposite. Eén et al. (2011) report a small performance gain with the stack strategy
on hardware model checking benchmarks. We used the stack strategy as the default in our
experiments and observed its superiority over the queue strategy in satisficing planning, but
also its slightly unfavorable effect on plan quality (see Section 5.3.3).

4. PDR without a SAT-solver

Although it is possible to encode a STRIPS planning problem into an STS and use a general
implementation of PDR to solve it, a more efficient approach can be adopted. The approach
relies on an observation that the work normally delegated in PDR to the SAT-solver can
in the case of planning with the sequential plan semantics be instead implemented directly
by a planning-specific procedure. Not only do we gain with this procedure a polynomial
time guarantee for the response of each extension query, but the ensuing perspective also
enables us to devise new improvements of the overall algorithm.

The SAT-solver is employed in several places within PDR. We will start by focusing on
its primary role which lies in extending the current path by one step. In Section 4.1 we

281



Suda

develop procedure extend to replace the SAT-solver in path extension queries. A separate
section is then devoted to discussing inductive reason minimization in the planning context.
In Section 4.3 we deal with replacing the remaining SAT-solver calls. We show how to
efficiently implement clause pushing for positive STRIPS planning problems, a subclass
of STRIPS problems that is typically used in practice. We then discuss the possibility of
reversing the default search direction of PDR in Section 4.4 and, finally, we propose several
improvements of the algorithm in Section 4.5.

4.1 Planning-Specific Path Extensions

Let us recall the interface for path extensions, which is normally implemented in PDR by
a call to a SAT-solver (Section 3.1). Given a state s and a set of clauses L decide whether
there exists a state t, a successor of s with respect to the transition relation T , such that t
satisfies L. In the positive case, which we refer to as a successful extension, return such a t.
In the negative case, when no such a successor exists, compute a reason r for the failure in
the form of a preferably small subset of the literals defining s, such that no state satisfying
r has a successor that would satisfy L.

Let us assume a STRIPS planning problem P = (X, sI , g,A) is given. We now gradually
work towards a planning-specific implementation of the above interface within the procedure
extend(s, L). Our central idea is to emulate the mechanics of the sequential encoding Sseq

P
(see Section 2.6). This makes the implementation particularly straightforward from the
perspective of the positive part of the interface. Given a state s, we can simply iterate over
all the actions a ∈ A, generate a successor ta = apply(s, a) whenever a is applicable in s,
and check for each ta whether it satisfies the clauses of L. If such a successor is found,
it is returned and the procedure terminates. Such an iteration is clearly affordable from
the complexity point of view. In fact, it is very similar in spirit to what all explicit state
planners need to do: they enumerate successor states and evaluate their heuristic value.

The non-trivial part of the extend procedure deals with computing a small reason in the
case of an unsuccessful extension. We conceptually simplify the problem by first separately
collecting a set of reasons Ra for every action a ∈ A and then computing the overall reason
r as a union

r =
⋃
a∈A

ra (4)

of reason contributions ra ∈ Ra selected in a way that minimizes the size of the union. The
idea is that each ra ∈ Ra is a distinct reason for why the action a cannot be applied in s to
produce a successor state t that would satisfy all the clauses from L. The union (4) then
justifies why there is no such a successor state via any action a ∈ A whatsoever.

In the rest of this section, we first explain how the individual reasons ra ∈ Ra for an
action a ∈ A are derived from the action’s failed preconditions and from those clauses of L
which the respective successor state fails to satisfy. We then show how this reason collecting
process can be in practice sped up by employing certain subsumption concepts. Finally, we
present our approach to obtaining a small overall reason r, along with a detailed pseudocode
of the extend procedure and a proof of its correctness. To satisfy the requirement of PDR
that the final reason be disjoint from the set of goal states, we here adopt the solution of
formally adding the noop action to the action set (see Section 3.1.3).

282



Property Directed Reachability for Automated Planning

4.1.1 Reasons for Individual Actions

We construct the set of reasons Ra for a particular action a as follows. First we check
whether the action a is applicable in the given state s. If not then there is a precondition
literal l ∈ prea false in s. The negation of each such literal represents a singleton reason
{¬l} ⊆ Lits(s) which we add to Ra. Clearly, as long as a state satisfies ¬l there is no way
a can be used to produce a successor state, let alone one that would satisfy L.

Next, we compute the successor state ta = apply(s, a). Strictly speaking, ta cannot be
regarded as a true successor if a is not applicable in s. Nevertheless, ta is useful even then
for computing further reasons, namely reasons corresponding to clauses of L that are false
in ta. These are either clauses that were already false in s and a failed to make them true
or clauses that became false due to an effect of a. For each such clause c we add to Ra a
reason rc consisting of negations of literals l ∈ c. As an optimization, we only include those
negated literals which were not made false by an effect of a. Since the other literals will
always be false after a is applied due to its effects, as long as s satisfies rc, the successor ta
cannot satisfy c. Summarizing formally, this is the final set of reasons we obtain:

Ra = {{¬l} | l ∈ prea and s 6|= l} ∪ {rc | c ∈ L and ta 6|= c},

where rc = {¬l | l ∈ c and ¬l 6∈ eff a}. It is easy to check that rc ⊆ Lits(s) as required.
Notice that the set Ra is empty if an only if the action a is applicable in s and the successor
ta satisfies all the clauses from L.

Example 2. Starting from a state s = {o 7→ 0, p 7→ 0, q 7→ 0, r 7→ 0}, let us compute the
reasons for an action a = (prea, eff a) with prea = {¬p, q} and eff a = {o,¬r} with respect
to the clause set L = {o ∨ q, p ∨ r}. Because the precondition q is not satisfied in s, one
reason is {¬q}. Next we compute ta = apply(s, a) = {o 7→ 1, p 7→ 0, q 7→ 0, r 7→ 0}. The
first clause, o ∨ q is satisfied in ta and so does not give rise to a reason. The second clause,
p ∨ r, however, is false in ta. The reason corresponding to the second clause is {¬p}. The
other negated literal, ¬r, is not part of the reason, because it was explicitly set to false by
an effect of a. The final reason set Ra we obtain is thus {{¬p}, {¬q}}. Notice that both
the computed reasons are subsets of Lits(s) = {¬o,¬p,¬q,¬r}.

Correctness of the reason set construction is captured by the following lemma.

Lemma 2. Let ra ∈ Ra be any reason for an action a ∈ A∪{noop} as defined above. Then

ra ∧AP ∧AE ∧ CF ∧ (L)′ |= ¬pa,

where AP, AE and CF are, respectively, the action precondition, the action effect and the
classical frame axioms used in the transition formula T seq of the sequential encoding Sseq

P .

Proof. Let us first assume that ra = {¬l} is a reason derived from a failed precondition
literal l ∈ prea. There is an action precondition axiom ¬pa ∨ l ∈ AP from which the
conclusion ¬pa follows by a single resolution inference with the unit assumption ¬l.

The other possibility is that ra = {¬l | l ∈ c and ¬l 6∈ eff a} for some clause c ∈ L false
in the successor state ta. There must be an action effect axiom ¬pa ∨ ¬l′ ∈ AE for every
literal l ∈ c such that ¬l ∈ eff a and also a classical frame axiom ¬pa∨ l∨¬l′ ∈ CF for every
literal l ∈ c such that ¬l 6∈ eff a (if the literal l was in eff a the clause c would be satisfied in

283



Suda

ta). By resolving these axioms on the respective primed literals ¬l′ with the primed version
(c)′ ∈ (L)′ of the clause c we obtain a clause ¬pa ∨

∨
l∈ra ¬l from which the final unit clause

¬pa can be derived by resolution with the available assumptions from ra.

4.1.2 Reason Subsumption

Before we describe how to compute the overall reason r from the actions’ contributions
Ra, let us note that there are two useful notions of subsumption both between individual
reasons and between reason sets, which can be used to simplify the reason sets before the
computation is started. The subsumption between individual reasons inside one particular
Ra is simply the subset relation. It does not make sense to keep both r1 and r2 inside Ra if
r1 ⊆ r2. Keeping the smaller r1 is sufficient, because whenever we would decide to pick r2

as the reason for a inside the union (4), switching to r1 instead could only make the result
smaller. In practice, we only check for this kind of subsumption between the unit reasons
of failed preconditions and the reasons from the false clauses.8 This can be implemented by
simply ignoring those false clauses that would have been true if the action was applicable.

Dually to the above, we can discard the whole reason set Ra of an action a if there is
another action b with reason set Rb such that

∀rb ∈ Rb ∃ra ∈ Ra ra ⊆ rb.

Here we remove the reason set Ra, which is in some sense more lean, because for any
contribution rb ∈ Rb there is a choice for ra ∈ Ra which would be dominated by rb in
the final union r. For efficiency reasons, we only exploit this trick in our implementation
with respect to one particular action in the role of the “subsuming” action b, namely the
noop action. As mentioned before, we include the noop action to the action set to ensure
PDR’s correctness. Its reason set Rnoop consists of reasons corresponding to those clauses
from L which are false in s.9 If an action a does not make any of these clauses true in its
corresponding successor state, its reason set Ra will be subsumed in the described sense by
Rnoop and can be skipped.

4.1.3 Computing the Overall Reason

Computing the overall reason r amounts to selecting for every a a particular reason ra ∈ Ra

such that union (4) is as small as possible. Stated in this general form we are facing an
optimization version of an NP-complete problem. In fact, it is easily seen to be a dual of the
Maximum Subset Intersection problem shown NP-complete by Clifford and Popa (2011).
We therefore do not attempt to find an optimal solution for it and contend ourselves with
a reasonable approximation instead.

We sort the reason sets Ra according to their size |Ra| and traverse them from smaller
to larger ones. The idea is to deal with the more constrained cases first before moving on
to those where we have more freedom. During the traversal, we maintain an unfinished
union r0 which is initialized as the empty set ∅. Then each reason set Ra is considered in
turn and we pick from each a reason ra ∈ Ra that minimizes the size of r0 ∪ ra and update

8. This is sufficient, because PDR keeps layers L subsumption reduced and so the reasons for false clauses
are subsumption reduced for free.

9. PDR only calls extend(s, L) when s 6|= L, so there is always at least one such clause.

284



Property Directed Reachability for Automated Planning

the set r0 accordingly to describe the union of those reasons selected so far. Although this
greedy pass through the action sets does not guarantee that the final value of r0 is minimal,
it already gives satisfactory results.

To improve the quality of the reason set even further, we then minimize r0 with respect
to the subset relation by explicitly trying to remove individual literals and checking whether
the result is still a valid overall reason. This is a direct adaptation of the explicit reason
minimization procedure employed in the original PDR (recall Section 3.1.2). In detail, we
iteratively pick a literal l ∈ r0 and check for every action a whether there is a reason ra ∈ Ra

such that ra ⊆ (r0 \ {l}). If this is indeed the case, r0 can be shrunk to (r0 \ {l}), otherwise
we continue with the old r0 and try another literal instead. When all the literals have been
tried out, we obtain the final result r.

4.1.4 Pseudocode and Correctness

The code of the procedure extend(s, L) is detailed in Pseudocode 3. The corresponding
reason construction proceeds in three stages. In the first stage we collect reasons from the
individual actions, constructing the sets Ra. This is performed during the same iteration
through the action set which establishes whether a successor state t satisfying L exists. It
either terminates by discovering such a t or computes a non-empty set Ra for every action
a. The first stage also includes the subsumption-based filtering of reasons, both within a
particular action’s reason set and between the reason sets of the noop action and one other
action. In the second stage, the above described simple greedy pass through the sets Ra

computes an initial overall reason, which is then explicitly minimized in stage three.

Correctness of the extend procedure in the positive case as well as the fact that for any
returned reason r we have r ⊆ Lits(s) are easy to establish. The remaining argument is
captured by the following lemma.

Lemma 3. Let r be a cube returned by the procedure extend(s, L). Then the formula

r ∧ T seq ∧ (L)′ (5)

is unsatisfiable, where T seq is the transition formula of the sequential encoding Sseq
P .

Proof. We first observe that for every action a ∈ A ∪ {noop} there is a reason ra such
that r =

⋃
a∈A∪{noop} ra. For those actions a for which Ra ∈ R this reason is initially

picked during stage two (line 22) and possibly later changed to the reason ra for which
ra ⊆ (r \ {l}) during stage three (line 26). For those actions whose reason set is subsumed
by Rnoop (line 14) we can formally pick the same reason as for noop.

Since ra ⊆ r for every action a ∈ A∪{noop}, we can use Lemma 2 to infer that formula
(5) entails the unit clause ¬pa for every a ∈ A ∪ {noop}. But because formula (5) also
trivially entails the at-least-one axiom alo =

∨
a∈A∪{noop} pa, it must be unsatisfiable.

It is easy to see that the procedure extend(s, L) runs in time polynomial in |X|, the
number of state variables, |A|, the number of actions of the planning problem, and |L|,
the size of the given clause set. This is mainly enabled by the fact that extend emulates

285



Suda

Pseudocode 3 Procedure extend(s, L):

Input:
State s; a set of clauses L such that s 6|= L

Output:
Either state t, a successor of s such that t |= L
or a reason r ⊆ Lits(s) such that no state satisfying r has a successor satisfying L

1: /* Stage one: look for the successor state and prepare the reason sets */
2: Ls ← {c ∈ L | s 6|= c} /* Clauses false in s */
3: Rnoop ← {¬c | c ∈ Ls} /* The reasons for the noop action */
4: assert Rnoop 6= ∅ /* Follows from the contract with the caller */
5: R ← {Rnoop} /* The set of reason sets collected so far */
6:

7: foreach a ∈ A do
8: pres

a ← {l ∈ prea | s 6|= l} /* Preconditions false in s */
9: t← apply(s, (∅, eff a)) /* Ignore the preconditions and apply the effects of a */

10: Lt ← {c ∈ L | t 6|= c} /* Clauses false in t */
11: if pres

a = ∅ and Lt = ∅ then
12: return t /* The positive part: returning a successor */
13: else if Ls ⊆ Lt then
14: pass /* Do nothing: the reason set would be subsumed by Rnoop */
15: else
16: Lt

0 → {c ∈ Lt | c ∩ pres
a = ∅} /* False clauses with a non-subsumed reason */

17: Ra ← {{¬l} | l ∈ pres
a} ∪ {{¬l | l ∈ c and ¬l 6∈ eff a} | c ∈ Lt

0}
18: R ← R∪ {Ra} /* Record the reason set */

19: /* Stage two: compute an overall reason */
20: r ← ∅
21: foreach Ra ∈ R ordered by |Ra| from small to large do
22: pick ra ∈ Ra such that |r ∪ ra| is minimal
23: r ← r ∪ ra

24: /* Stage three (optional): minimize the reason */
25: foreach l ∈ r do
26: if for every Ra ∈ R there is ra ∈ Ra such that ra ⊆ (r \ {l}) then
27: r ← (r \ {l})
28:

29: return r /* The negative part: returning a (subset minimal) reason cube */

286



Property Directed Reachability for Automated Planning

the sequential encoding Sseq
P and the individual actions can be in the first stage considered

independently.10

A similar complexity guarantee seems to be achievable within a general-purpose SAT-
solver when supplied with the same encoding and configured to prefer branching on the
action variables A and setting them first to true. However, the inherent overhead connected
with explicitly generating all the corresponding axioms and storing them in memory will be
probably noticeable in practice. Moreover, the reason set subsumption optimization does
not have a counterpart in a general-purpose solver.

4.2 Inductive Reason Minimization in Procedure extend

Inductive minimization is based on the idea that when checking whether a particular literal l
can be removed from the final reason r we can assume that the clause c = ¬r0 corresponding
to the reduced reason r0 = (r\{l}) is already present in the set of clauses L (see Section 3.5).
We can perform inductive minimization within the extend procedure by speculating for each
action a whether we would be able to satisfy the additional clause c by applying a. Only if
the answer is positive do we need to look for a “proper” reason ra ∈ Ra.

Pseudocode 4 Stage three of extend(s, L); inductive version:

1: repeat
2: r0 ← r
3: foreach l ∈ r do /* Check each literal of r0 once */
4: if there is l0 ∈ (r0 \ {l}) such that ¬l0 ∈ g then /* Can attempt to remove l */
5: r0 ← (r0 \ {l})
6: foreach a ∈ A do
7: if for every l0 ∈ eff a : ¬l0 6∈ r0 then
8: continue /* a passed by the inductive argument */
9: if Ra ∈ R and there is ra ∈ R such that ra ⊆ r0 then

10: continue /* a passed; it has its own small reason */
11: if Ra 6∈ R and there is ra ∈ Rnoop such that ra ⊆ r0 then
12: continue /* Ra was subsumed by Rnoop which contains a small reason */
13:

14: /* Action a says: “Literal l cannot be removed” */
15: r0 ← (r0 ∪ {l}) /* Put the literal back */
16: break
17: until r = r0 /* No removal in the last iteration */
18:

19: return r

The idea is demonstrated in Pseudocode 4, which should be regarded as a replacement
for stage three of the original extend procedure. Notice that we no longer consider the
noop action to be part of the action set11 and thus we need to explicitly check that there

10. When devising an analogous procedure for a parallel plan semantics, one would in general need to
consider every subset of actions that can be applied together. This seems to make a polynomial time
solution much more difficult, if not hopeless. However, see Section 6 for an interesting connection.

11. The noop action trivially passes the inductiveness check, because it can never make any clause true.

287



Suda

remains at least one literal incompatible with the goal condition g (line 4). There can still
be actions, however, whose reason set has been subsumed by Rnoop and for these we look
for a reason in Rnoop (line 11) whenever they fail to pass the inductiveness check (line 7).
To avoid confusion we remark that the continue and break commands refer to the inner-
most cycle, which iterates over actions (line 6). Finally, we note that the presence of a small
reason in Rnoop depends only on the current value of r0 and so the corresponding check
could be precomputed outside the inner cycle.

Example 3. Recall Example 2, in which the action a = ({¬p, q}, {o,¬r}) failed in the state
s = {o 7→ 0, p 7→ 0, q 7→ 0, r 7→ 0} to provide a successor state that would satisfy the clauses
from L = {o ∨ q, p ∨ r} and so we computed a reason set Ra = {{¬p}, {¬q}}. Assume that
apart from a the action set A contains just one other action, namely b = ({¬r}, {p}),
for which we obtain a reason set Rb = {{¬o,¬q}}. The overall reason after stage two is
thus necessarily r = {¬o,¬q}. Assuming that the goal condition of the given problem is
g = {o, p, q, r}, inductive minimization of the reason r could proceed as follows.

First we try the reason r0 = {¬o}. Since o ∈ eff a we cannot use the inductive argument
for the action a and also no proper reason ra ∈ Ra has the property that ra ⊆ r0. Thus
the literal ¬q cannot be removed from r. Next we try the reason r0 = {¬q}. Since neither
the action a nor b contain the literal q in their effect lists, the smaller reason is justified
inductively for both actions and the overall reason r is reduced to {¬q}. We cannot minimize
r further, because there has to remain at least one literal l0 ∈ r such that ¬l ∈ g.

Looking from the perspective of the final learned clause c = ¬r we observe that inductive
minimization allows us (as in the example above) to remove from c every literal that cannot
be made true by any action of the action set A. Although this may seem like a powerful
(global) criterion, it is effectively made redundant in practice by the so called relaxed reach-
ability analysis (see Hoffmann & Nebel, 2001, Section 4.3), a standard preprocessing step
which, before the actual search is started, removes from the problem all such unattainable
variables as well as all actions that mention them in their precondition lists. Non-trivial
invocations of inductive minimization were actually quite rare in our experiments.

4.3 Replacing the Remaining SAT-solver Calls

Beside the query for extending states, there are two other points in the formulation of PDR
(recall Pseudocode 1 on page 275) where a SAT-solver call is employed. It is used to pick
initial states at the beginning of the path construction phase (line 4) and is also central to
verifying the condition for pushing clauses during the clause propagation phase (line 26). In
planning, we can easily do without a SAT-solver in the first case, because there is only one
initial state to be picked, namely the state sI , and we just need to verify that sI satisfies
the clauses of Lk before the path construction phase of iteration k can be started.

We have basically two options how to deal with the second case. Since clause pushing
is not need for ensuring correctness of PDR, we can simply leave the operation out. As we
later show in our experiments, this does not significantly affect the performance on planning
benchmarks, which are typically satisfiable. As a second option, we propose to restrict the
planning formalism such that the query corresponding to a push check of a clause c, i.e.,

SAT?[¬c ∧ T ∧ (L)′ ], (6)

288



Property Directed Reachability for Automated Planning

can be decided in polynomial time.12 We say that a STRIPS planning problem is positive
if the precondition list of every action and the goal condition of the problem consist of
positive literals only.13 It is easy to see that when running on a positive STRIPS problem,
PDR only deals with positive clauses. The unit clauses of layer L0, which describe the goal,
are positive by assumption and all the learned clauses are transitively built only from the
goal literals and from the action precondition literals. This observation allows us to reduce
query (6) to the evaluation of “the positive part of the interface for path extensions”.

Lemma 4. Let P = (X, sI , g,A) be a positive STRIPS planning problem and T seq the
transition formula of the sequential encoding Sseq

P . Further, let L be a set of positive clauses
over X, c a positive clause over X, and sc : X → {0,1} a state defined for every p ∈ X by

sc(p) =

{
0 if p ∈ c,
1 otherwise.

Then the following formula
Fc = ¬c ∧ T seq ∧ (L)′

is satisfiable if and only if there is an action a ∈ A such that sc |= prea and apply(sc, a) |= L.

Proof. Let us first assume that there is an action a ∈ A applicable in sc such that the
successor state t = apply(sc, a) satisfies the clauses from L. Notice that Vars(Fc) = X ∪
A ∪X ′, where A = {pa | a ∈ A} is the set of variables used for encoding applied actions.
We define the following assignment αa : A→ {0,1}:

αa = {pa 7→ 1} ∪ {pb 7→ 0 | b ∈ A, b 6= a}.

It is easy to verify that the joint assignment (sc ∪ αa ∪ t′) satisfies Fc.
For the opposite direction, let us assume that an assignment V : X ∪ A ∪X ′ → {0,1}

satisfies the formula Fc. We fix an action a ∈ A such that V (pa) = 1. Such an action must
exist, because V satisfies the at-least-one axiom alo =

∨
a∈A pa, which is part of T seq . By

restricting V , first, to the state variables X, and, second, to the primed variables X ′, we
extract, respectively, a state s = V � X and a state t such that t′ = V � X ′. The axioms of
T seq ensure that the action a is applicable in s and that t = apply(s, a).

We now notice that s |= ¬c, which means that s(p) = 0 for every p ∈ c. Thus if there is a
difference between the states s and sc it is only because of variables p 6∈ c for which s(p) = 0
and sc(p) = 1. But this means, for one thing, that since the action a is applicable in s, it
must also be applicable in sc (preconditions are positive) and, for the other, since t |= L,
the successor state tc = apply(sc, a) corresponding to sc must also satisfy the clauses from L
(the implication ∀p ∈ X : s(p) = 1⇒ sc(p) = 1 is preserved by the transition and becomes
∀p ∈ X : t(p) = 1⇒ tc(p) = 1 and the clauses from L are positive by assumption).

12. In our current setting, there does not seem to be a general polynomial solution. In fact, even in the
degenerate case of T encoding a transition by the single noop action and c being the empty clause, the
query (6) boils down to satisfiability of L and its evaluation is thus an NP-complete problem.

13. Most of the standard planning benchmarks are positive STRIPS. Moreover, there is a well-known reduc-
tion (Gazen & Knoblock, 1997) that turns a general STRIPS problem into a positive one. The reduction
introduces a new variable p̄ for every variable p that occurs negatively in a precondition or in the goal
and updates the actions to always force p̄ to have the opposite value to that of p.

289



Suda

Pseudocode 5 Algorithm PDRplan(X, sI , g,A):

Input:
A positive STRIPS planning problem P = (X, sI , g,A)

Output:
A plan for P or a guarantee that no plan exists

1: L0 ← {{p} | p ∈ g} /* The goal cube treated as a set of unit clauses */
2: foreach j > 0 : Lj ← ∅
3: for k = 0, 1, . . . do
4: /* Path construction: */
5: if sI |= Lk then
6: Q ← {(sI , k)}
7: while Q not empty do
8: pop some (s, i) from Q with minimal i
9: if i = 0 then

10: return PLAN FOUND
11: if extend(s, Li−1) returns a successor state t then
12: Q ← Q ∪ {(t, i− 1), (s, i)}
13: else
14: extend returned a reason r ⊆ Lits(s)
15: foreach 0 ≤ j ≤ i : Lj ← Lj ∪ {¬r}
16:

17: /* Obligation rescheduling: */
18: if i < k then
19: Q ← Q ∪ {(s, i+ 1)}
20:

21: /* Clause propagation: */
22: for i = 1, . . . , k + 1 do
23: foreach c ∈ Li−1 \ Li do
24: /* Clause push check */
25: sc ← {p 7→ 0 | p ∈ c} ∪ {p 7→ 1 | p ∈ (X \ c)}
26: if for every a ∈ A : sc 6|= prea or apply(sc, a) 6|= Li−1 then
27: Li ← Li ∪ {c}
28: /* Convergence check */
29: if Li−1 = Li then
30: return NO PLAN POSSIBLE

290



Property Directed Reachability for Automated Planning

A version of PDR specialized to positive STRIPS planning is shown in Pseudocode 5.
The calls to a SAT-solver of the original formulation were replaced, respectively, by a simple
entailment check (line 5), a call to the extend procedure (line 11), and by an enumeration
of the successor states of the state sc as defined in Lemma 4 (line 26).

4.4 Reversing the Search Direction

It has been mentioned that the original formulation of PDR is based on the opposite search
direction than the one described in this paper and extends the paths from a goal state
backwards towards the initial state. We would like to test the algorithm with both directions
to see which one is more favorable in practice.

One possibility to achieve this is to provide PDR with an inverted version of the input,
where the initial and goal states have been swapped and the transition relation “turned
around”. This is straightforward to do when the input is an STS (recall Section 2.3), as is
the case with the general version of PDR. The situation is more complicated with the SAT-
solver free version, which directly takes a STRIPS planning problem as an input. Indeed,
it seems the extend procedure substantially relies on the forward direction.

Interestingly, there exists a transformation for inverting STRIPS planning problems. It
was first described by Massey (1999) in his dissertation. We present here a more stream-
lined version due to Pettersson (2005) which relies on the problem being positive. Let us
start by introducing an alternative representation of positive STRIPS planning problems,
which makes the description of the transformation particularly straightforward. A positive
STRIPS planning problem in the subset representation is given by a tuple P = (X, i, g,A),
where i, g ⊆ X are the initial and goal conditions, respectively, and every action a ∈ A is
encoded by a triple a = (prea, adda, dela), consisting of a precondition list, an add list and
a delete list, which are subsets of X such that prea ∩ adda = ∅ and adda ∩ dela = ∅. The
subset representation differs from the one presented in Section 2 by encoding the initial
state by the set of those variables that are true in it:

sI(p) = 1 if and only if p ∈ i,

and by splitting action’s effects into positive and negative ones:

eff a = adda ∪ {¬p | p ∈ dela}.

The goal condition g and precondition lists prea remain intact, but now may be under-
stood as subsets of X since the problem is positive. It should be clear that the subset
representation and the one of Section 2 are equivalent.

Now, for an action a = (prea, adda, dela) an inverted action a−1 is formed by exchanging
the precondition and delete list: a−1 = (dela, adda, prea). For a set of actions A the set of
inverted actions is A−1 = {a−1 | a ∈ A}. Given a planning problem P = (X, i, g,A) in the
subset representation, the inverted problem P−1 is obtained by exchanging the initial and
goal conditions while taking their complements with respect to X and using the inverted
action set:

P−1 = (X, (X \ g), (X \ i),A−1).

The original problem and its inverted version are related in the following sense:

291



Suda

Theorem 2. The sequence of actions a0, a1, . . . , ak is a plan for the planning problem P if
and only if the sequence a−1

k , a−1
k−1, . . . , a

−1
0 is a plan for P−1.

This means that performing forward search (also called progression) in P is equivalent to
performing backward search (regression) in P−1 and vice versa. Notice that, a priori, there
is no computational overhead incurred by the transformation: the inverted problem has the
same number of actions as well as the same set of state variables X and so the representation
of states is of the same size. A proof of Theorem 2 along with further intuition behind the
transformation and its theoretical and practical implications are described by Suda (2013b).

4.5 Further Improvements

We describe three additional modifications of PDR that aim to make the algorithm more effi-
cient in practice. While the first is a planning-specific improvement of the extend procedure,
the other two focus on how obligations are handled by the overall algorithm. In Section 5
we experimentally evaluate the effect of these modifications on solving planning problems.
The interested reader can find the pseudocode of the modifications in Appendix A.

4.5.1 Lazy False Clause Computation

One way to speed up the extend procedure in practice is a technique we named lazy false
clause computation. It is based on the following two observations:

• Ls, the set of clauses false in the state s, is typically only a small subset of L, the set
of all the clauses the successor state should satisfy,

• only a small fraction of the available actions makes any of the clauses of Ls true in
their respective successor.

The idea is to avoid the relatively expensive computation of the set of clauses false in
the successor t, i.e. the computation of the set Lt on line 10 (Pseudocode 3), and instead
first only look at the truth value of the clauses from Ls. (Notice that Ls is precomputed
before we start iterating over the actions.) Only if we find an action a such that all its
preconditions are satisfied in s and it makes all the clauses from Ls true in the respective
successor t, we classify the action as promising and go back to computing the full Lt. Thus,
with non-promising actions we save computational time. We may pay for it a little on the
side of the quality of the reason set, because for them we only use Ls,t = {c ∈ Ls | t 6|= c}
instead of the full Lt for computing the reasons. On the other hand, with promising actions
a complete test is necessary to distinguish a true successor t satisfying all of L from an
action that “repairs” everything which was false in s, but “breaks” something else instead.

4.5.2 Sidestepping

Sidestepping is a technique we propose to make PDR more active in early exploration of
promising paths. It partially circumvents the limitation stemming from the fact the extend

procedure emulates the sequential encoding Sseq
P .

Imagine we want to extend an obligation (s, i), i.e. to find a successor of s that would
satisfy Li−1, and there are two clauses c1, c2 ∈ Li−1 false in s. Let us think of the two clauses

292



Property Directed Reachability for Automated Planning

as of two independent subgoals to be achieved. There are two actions a1 and a2 applicable
in s. Action a1 makes c1 true in the successor state and a2 makes c2 true, but no action can
make both the clauses true in one step. This means the extension cannot be successful and
PDR will learn a new clause c = c1 ∨ c2 (or a superset thereof). The clause c expresses the
fact that in order to reach a state satisfying Li−1 in one step, at least one of the two clauses
c1, c2 must be satisfied beforehand. This could be an important ingredient to showing that
no path of length k can reach the goal, helping the algorithm eventually advance to the next
iteration. However, because in planning we are usually more interested in actually finding
plans than showing their non-existence, deriving the clause c could represent unnecessary
extra work. The idea behind sidestepping is to make the extend procedure succeed more
often, even if that does not mean directly advancing into the next layer. In our example,
we return the successor state t = apply(s, a1) with an additional flag informing the caller
that the new obligation should have index i and not the usual i − 1. We are effectively
sidestepping from (s, i) to (t, i). In the next round the obligation (t, i) will be picked and
successfully (provided the actions a1 and a2 do not interfere) extended into (u, i − 1) via
the action a2. This way we end up with a state satisfying Li−1 almost as if we executed the
two actions a1 and a2 in parallel.

Let us now present the sidestepping technique in more detail. In order for an action a
and its respective successor ta = apply(s, a) to qualify for a sidestep during extension of an
obligation (s, i) the following conditions must to be met:

1) a is applicable in s,

2) ta improves over s with respect to the set of satisfied Li−1 clauses:

Lta
i−1 = {c ∈ Li−1 | ta 6|= c} ⊂ Ls

i−1 = {c ∈ Li−1 | s 6|= c},

3) ta satisfies all the Li clauses.

Notice that we require the improvement to be strict (condition 2). This ensures that
sidestepping does not compromise termination. We also make sure that the new state
stays within Li (condition 3) – an improvement in one respect should not be payed for by
an overall deterioration.

If there is no action that qualifies for a sidestep, we compute and return a reason set
as usual. Otherwise, we choose among them an action a for which the size of Lta

i−1 is the

smallest. The case when |Lta
i−1| = 0 corresponds to a regular successful extension and a new

obligation (ta, i− 1) will be stored in the set Q. If |Lta
i−1| > 0, we store (ta, i) instead, which

means that we perform a sidestep.
After sidestepping both the old obligation (s, i) and the new (ta, i) occupy the same

index in Q. It is important that we prioritize the latter over the former for picking (e.g.,
even if we otherwise want to use queue tie-breaking strategy; see Section 3.6.4), by which
we prevent the algorithm from sidestepping in the same way more than once.14

Notice that sidestepping is an extension of PDR that relies on a modification of the
planning-specific extend procedure. As such it does not have an immediate counterpart in
the original algorithm, where path extensions are delegated to a SAT-solver.

14. By the time (s, i) is reconsidered we must have had an unsuccessful extension of (ta, i), which means Li

got in the meantime strengthened and ta no longer satisfies it.

293



Suda

4.5.3 Keeping Obligations between Iterations

Let us return to obligation rescheduling (lines 18 and 19 of Pseudocode 5) to discuss one
additional aspect of this feature. Notice that we reschedule an obligation (s, i) only if i < k
so that the new obligation (s, i+ 1) is never positioned further from the goal than k steps
during iteration k. Obligations of the form (s, k) are simply forgotten which ensures that
the path construction phase eventually terminates. A viable alternative to this strategy is to
reschedule these obligations on the queue Q with index k+1, but set them into a “dormant
state” and return to them only during the next iteration. This can be understood as
effectively enlarging the set of initial states for the next iteration so that it includes all the
states reached so far.

Although this modification is quite simple to implement and seems to go well with the
spirit of obligation rescheduling itself, it has not been publicly described yet. A potential
disadvantage could be the increased memory consumption, since all the states ever encoun-
tered during the run must be stored by the algorithm. The utility of this modification may,
therefore, depend on the application domain.

5. Experiments

In this section we report on a series of experiments aimed to establish the practical relevance
of PDR for automated planning. We first compare the standard version of the algorithm
combined with encodings to the SAT-solver free variant of PDR proposed in this paper.
The latter is implemented in our new planner PDRplan. Next, we measure the influence of
the several design choices mentioned in Section 3 as well as of the various improvements
proposed in Section 4.5 on the performance of PDRplan. The most successful configuration
of PDRplan is then compared to other planners, including state of the art representatives of
the heuristic search planning and planning as satisfiability paradigms. Finally, we also assess
PDRplan from the perspective of plan quality, finding optimal length plans and detecting
unsatisfiable problems.

5.1 The Setup

We performed the experiments on machines with 3.16 GHz Intel Xeon CPU, 16 GB RAM,
running Debian 6.0. Although multiple cores are available on each machine, all the planners
used only one core and we made sure that there was no other busy process running concur-
rently that would compete with a planner for memory, etc. The main measured resource
was computation time. We used a time limit of 180 seconds per problem instance for most
of the runs, but increased it to 1800 seconds for the main comparison.

To increase the level of confidence towards the correctness of our implementation all
the generated plans were subsequently checked by the latest version of plan validator VAL

(Howey, Long, & Fox, 2004). No discrepancies were found during the experiments reported
in this paper.

We tested the planners on the STRIPS15 benchmarks of the International Planning
Competition (IPC, 2014). So far, there were altogether seven repetitions of the competition
happening biennially from 1998 to 2008 and once in 2011. Each time the planners competed

15. The richer ADL formalism is currently not supported by PDRplan.

294



Property Directed Reachability for Automated Planning

over several benchmark domains of various planning scenarios. We used all the available
STRIPS domains except the following:

• 1998-MOVIE, where it turned out to be technically difficult to validate the plans.16

Note that the domain is, in fact, trivial to solve.

• 2000-SCHEDULE, which is originally an ADL domain. The competition archive con-
tains also a STRIPS version, but accompanied by a note saying that this version later
proved to be problematic and was dropped from the competition.

• 2002-ROVERS, the problems of which are included in the set 2006-ROVERS.

• 2002-SATELLITE and 2011-TIDYBOT, which make use of actions with negative pre-
conditions, a feature not supported by our parser.

Altogether, we collected 1561 problems in 49 domains (see Table 3 on page 304 for a detailed
list). The 2008 and 2011 competition benchmarks specify action costs. We modified the
respective files to remove this feature, which is not supported by PDRplan.

We implemented PDR with the extend procedure as described in Section 4 in the
PDRplan system. The code of PDRplan (approximately 2K lines of C++) is built on top of
a PDDL parser and a grounder adopted from SatPlan 2006 (Kautz, Selman, & Hoffmann,
2006). We modified the parser to successfully process the large problems of the more recent
IPC domains. The source code of PDRplan is publicly available on our web page (Suda,
2014), which also contains all the other material relevant for reproducing the experiments.

5.2 PDRplan v.s. Standard PDR plus Encodings

The main purpose of the first experiment was to compare PDRplan and its planning-specific
implementation of the extend procedure to a composition of the general PDR, which uses a
SAT-solver to answer the one-step reachability queries, with various encodings of planning
into an STS. We also wanted to establish which of the two possible search directions in
PDR is more favorable for discovering plans.

We took our implementation of PDR called minireachIC3, originally developed as a
model checking tool for hardware circuits. It internally relies on the SAT-solver Minisat
(Eén & Sörensson, 2003) version 2.2. We extended minireachIC3 to be able to read a
description of an STS. We designed a new input format for that purpose, which we call
DIMSPEC (Suda, 2013a). It is a simple modification of the well-known DIMACS CNF
format used by most SAT-solvers extended to define the individual clause sets of an STS.

We coupled minireachIC3 with four encoders of planning into an STS. The first two
encoders, seq and par, are our implementations of the two simple encoding Sseq

P and Spar
P ,

respectively (recall Section 2.6). The third encoder is a version of the planner Mp (Rintanen,
2012) modified to output the encoded instance in the form of an STS and quit before starting
the actual solving process. Mp uses the ∃-step parallel encoding scheme of Rintanen et al.
(2006). Finally, the fourth encoder implements the SASE encoding scheme introduced by

16. The parser we adopted for PDRplan removes vacuous arguments of operators from the resulting actions’
names. The validator VAL then complains about the resulting plans.

295



Suda

Huang et al. (2012). The particular implementation we used derives from the FreeLunch

planning library (Balyo et al., 2012).

In order to obtain a fair comparison we used a basic version of PDRplan configured in
a way that most resembles the workings of minireachIC3. The configuration follows the
planning-specific version of the overall algorithm (Pseudocode 5) and relies on the extend

procedure (Pseudocode 3) with the minimization phase of the reason computation (stage
three) enhanced by induction (Pseudocode 4). The additional improvements of Section 4.5
were disabled for this experiment.

We compared the systems in both search directions. By the forward direction, we mean
the one preferred in this paper, where PDR constructs the path from the initial state towards
the goal. The opposite, backward direction is preferred by the original exposition of PDR
used in model-checking. To start minireachIC3 in the backward direction we inverted the
encoded STS, to reverse the search direction of PDRplan we inverted the planning problem
(as explained in Section 4.4).17

5.2.1 Adding Invariants

An invariant of a transition system is a property of the initial state preserved by all transi-
tions. In planning, one typically considers invariants in the form of binary clauses (Rintanen,
1998), which can be computed by a simple fixpoint algorithm (Rintanen, 2008b). Adding
the invariant clauses into an encoding is known to speed up plan search in the planning as
satisfiability paradigm.

We noticed that the performance of PDRplan in the backward direction can also be
enhanced with the help of invariants. When PDR is run in the backward direction, it is
sound to strengthen every layer by the binary clauses of a precomputed invariant. These
clauses then help to guide the path construction towards the initial state. Adding invariants
in the forward direction does not make sense for PDRplan, because all the generated states
are reachable from the initial state and, therefore, satisfy the invariant automatically.18

We used the same invariant generation algorithm as in PDRplan to also enhance the en-
codings seq and par for the run of minireachIC3. It turned out that in case minireachIC3
invariants slightly help even in the forward direction.19 We note that binary clause invari-
ants are also explicitly included in the Mp encoding and implicitly present in the SASE
encoding, which relies on the SAS+ planning formalism (Bäckström & Nebel, 1995) to
which a STRIPS problem is converted with the help of invariants (Helmert, 2009).

5.2.2 Detecting Auxiliary Transition Variables

It is essential for a good performance of minireachIC3 combined with encodings that the
algorithm does not make decisions prematurely.

17. One could also experiment with encodings of the inverted problems. We leave this for future work.
18. In theory, there is a corresponding notion of a backward invariant, a property of the goal states preserved

by traversing the transitions backwards. Symmetrically, backward invariants could be used to enhance
the performance of forward PDR. In practice, however, while standard invariants are typically very
useful, there is rarely a non-trivial binary clause backward invariant in the planning benchmarks.

19. This can be explained by observing that the SAT-solver does not necessarily construct the successor state
by first choosing an action (or a set of actions, in the case of par), which would then fully determine the
successor. When it starts by deciding on the state variables of the successor, invariants become useful.

296



Property Directed Reachability for Automated Planning

Example 4. Consider a run of the algorithm in the forward direction with the encoding Sseq
P .

Because in this encoding the action variables A occur in the unprimed part of the transition
clauses T seq , any given state s, being an assignment over Σ = X ∪ A, already stores the
information about the action that will be applied next and, therefore, fully determines the
value of the state variables X ′ of its successor. As a result, contrary to the intuition, the
evaluation of the extension query

SAT ?[ Lits(s) ∧ T seq ∧ (L)′ ]

does not boil down to choosing an action applicable in the state (s � X) of the original
planning task, such that the successor state would satisfy the clauses of L, but instead
involves choosing an action to be applied in the already determined successor such that the
successor (as a valuation over X ′) and the chosen action (as a valuation over A′) together
satisfy the clauses from (L)′, which, in general, span the whole signature Σ′. We can see
that, in some sense, all the decisions are made one step too early.

We observed a marked improvement in the performance of minireachIC3 combined
with encodings when we extended the tool with a preprocessing step that detects auxiliary
transition variables in the unprimed part of the transition clauses and re-encodes them into
the primed part in order to avoid committing to decisions prematurely as demonstrated in
the example above. Formally, given an STS S = (Σ, I, G, T ), auxiliary transition variables
Aux are those variables of Σ that do not appear in I or G and, when primed, are not shared
by T and T ′. This means that

Aux ′ = Σ′ \ (Vars(I ′) ∪Vars(G′) ∪ (Vars(T ) ∩Vars(T ′))).

The action variables A of the Sseq
P encoding are an example of auxiliary transition variables.

For every transition clause c ∈ T , the preprocessing step identifies literals l ∈ c such that
Vars(l) ∈ Aux and turns each such l into l′. The soundness of the transformation is easy
to establish.

5.2.3 Results of the Experiment

The results of the first experiment can be found in Figure 3. There are several observa-
tions to be made. As foretold, the forward direction is generally more successful than the
backward. Within the time limit of 180 seconds, each of the five systems solves more prob-
lems in the forward direction than in the backward direction. We see that in the backward
direction, invariants help to improve the performance of PDRplan. Nevertheless, within
that direction minireachIC3 combined with the Mp encoding is more successful. The most
successful system is PDRplan in the forward direction. It solves 8.6 percent more problems
than the second best system, minireachIC3 combined with the Mp encoding in the forward
direction. Although we do not consider these results as a definitive answer to the “PDRplan
vs. encodings” question,20 we decided to only focus on PDRplan in the forward direction for
(most of) the subsequent experiments.

The overall trends captured by Figure 3 are most of the time respected when the com-
parison is performed on level of individual problem domains (comparing the number of

20. For instance, replacing Minisat in minireachIC3 by a more recent and more efficient SAT-solver could
change the picture to a certain degree.

297



Suda

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1  10  100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

minireachIC3(seq)
minireachIC3(par)
minireachIC3(Mp)
minireachIC3(SASE)
PDRplan+i
PDRplan

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1  10  100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

minireachIC3(seq)
minireachIC3(par)
minireachIC3(SASE)
minireachIC3(Mp)
PDRplan

Figure 3: Comparing PDRplan to minireachIC3 combined with encodings. Number of
problems solved within the given time limit is shown, separately for the backward
direction (left) and the forward direction (right).

problems solved in 180 seconds), nevertheless there are some notable exceptions worth
mentioning.

• On the LOGISTICS domain PDRplan behaves better in the backward direction and
without invariants. The best system on this domain, however, is minireachIC3 with
Mp encoding in the forward direction.

• The relatively difficult 2011-BARMAN domain is almost fully solved (19 out of 20
problems) by PDRplan in the backward direction with invariants. The second best
system on this domain is minireachIC3 with par encoding in the backward direction
with only 7 problems solved.

• The following are among the domains where PDRplan is not the best system: 1998-
MYSTERY (minireachIC3 with SASE and Mp encodings in the forward direction
both solve 5 problems more), 2004-PHILOSOPHERS (18 more problems solved by
minireachIC3 both with par and Mp encodings in the forward direction), and 2011-
VISITALL (minireachIC3 with Mp encoding solves 4 more problems).

• There are several domains where minireachIC3 with Mp encoding is better in the
backward direction than in the forward direction. The difference is most pronounced
on 2006-OPENSTACKS, and 2011-FLOORTILE.

The observation of the last point is in accord with how the Mp encoding is used with
the Mp planner itself. What Rintanen (2012) describes is effectively a depth-first backward
chaining planning algorithm inside the SAT-solving framework. This can be seen to be very

298



Property Directed Reachability for Automated Planning

 600

 700

 800

 900

 1000

 1100

 1200

 1  10  100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

ind_off
min_off
default

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1  10  100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

cp_off
queue
default

Figure 4: Tuning PDRplan. The effect of explicit (inductive) reason minimization (left),
and clause propagation and the queue tie-breaking strategy (right).

close to backward PDR when coupled with the same encoding. We hypothesize that the
suitability of the Mp encoding for the backward direction of search emerges also with PDR.

5.3 Tuning PDRplan

In the second experiment (see Figure 4) we focused on several features of the standard
PDR and tried to established their importance for solving planning problems. We used
PDRplan in the forward direction and 180 seconds time limit. We measured the effect of
each feature separately with the reference configuration denoted as default. This is the same
configuration as the one used in the previous experiment.

5.3.1 Explicit (Inductive) Reason Minimization

By explicit minimization we mean the optional stage three of the reason computation in
the extend procedure, which can be enhanced by induction as described in Section 4.2. In
Figure 4 (left) we compare the performance of the default configuration, which relies on the
inductive version of reason minimization (Pseudocode 4), to configuration ind off, which
does not use induction and implements minimization as described in Pseudocode 3, and to
configuration min off, which skips the optional stage three altogether.

We can see that while the positive effect of explicit minimization is slight but consistent
along the time axis, induction only starts to pay off on the global scale when the time limit
exceeds 100 seconds. At the 180 seconds mark the ind off configuration solved 1.0 percent
fewer and the min off configuration 2.4 percent fewer problems than default.

Per domain view reveals that induction is especially important for the success on 2000-
BLOCKS, 2004-PHILOSOPHERS, and 2008-CYBER-SECURITY. On domains such as
2002-ZENOTRAVEL or 2008-TRANSPORT it is better to turn minimization off completely,
and there are also domains, such as 1998-MYSTERY or 2006-TRUCKS, where it pays off to
minimize, but not inductively. In the last two categories, however, the difference is never by

299



Suda

more than a problem or two per domain and thus it could be potentially equalized within
a higher time limit.

Interestingly, out of the total of 1561 problems, the execution of default and ind off
diverged only on 145 problems.21 This means that on most of the problems induction does
not help to minimize reasons beyond what can be achieved with non-inductive minimization.
To give another statistics, we note that over the whole problem set during a call to the
extend procedure inductive minimization removes 1.49 literals and computes a reason with
50.60 literals on average. The non-inductive minimization in min off removes 1.44 literals
and generates a reason with 51.22 literals on average.

5.3.2 Clause Propagation

In Figure 4 (right) we can compare the default configuration to a configuration in which
clause propagation has been turned off (cp off). We see that clause propagation slows PDR-
plan slightly down without any clear benefit before the 180 seconds mark. Although a later
independent experiment with a 1800 second time limit showed that clause propagation can
be useful on planning problems, it is questionable whether the effect justifies the relatively
high effort connected with implementing the technique.22

A closer look reveals that only on 28 percent of the tested problems a clause was suc-
cessfully pushed forward during the 180 seconds bounded runs. This may seem to be in
contrast with the experience from hardware model checking where clause propagation plays
a key role. Its main effect there, however, lies in speeding up convergence of PDR on the
unsatisfiable problems. Since more than 99 percent of our planning benchmarks are satisfi-
able, this role of clause propagation cannot be demonstrated. In fact, we also independently
confirmed in an experiment with minireachIC3 on satisfiable hardware benchmarks23 that
clause propagation is not beneficial in the forward direction.

5.3.3 Stack vs. Queue Tie-breaking

Here we evaluate the effect of the strategy for breaking ties during popping obligations
from the set Q (see Section 3.6.4). The stack strategy used in the default configuration
is compared to the curve of the queue strategy in Figure 4 (right). The queue strategy
solves about 5.9 percent fewer problems in total. However, there are 18 problems solved
by the queue strategy only (and 85 problems solved only by the stack strategy). The most
interesting observations on the per domain scope are probably

• 59 problems (out of 60) from the 2000-BLOCKS domain solved by the stack strategy
compared to only 36 solved by the queue strategy, and

• 2 problems (out of 20) from the 2011-BARMAN domain solved by the queue strategy
compared to 0 problems solved by the stack strategy.

21. By either generating a different number of obligations before a successful termination or differing in
whether they successfully terminated at all before the 180 seconds mark.

22. In the final comparison to other planners (see Section 5.5) clause propagation is responsible for 6 addi-
tional problems scored by PDRplan.

23. On benchmarks from the Hardware Model Checking Competitions 2007–2012 (Biere, Heljanko, Seidl, &
Wieringa, 2012) with a time limit of 100 seconds.

300



Property Directed Reachability for Automated Planning

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1  10  100

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

1 = default
2 = 1 + lfcc
3 = 2 + side
4 = 3 + keep

Figure 5: Improving PDRplan. The default configuration is progressively extended by turn-
ing on three different techniques.

Preferring to explore longer paths before short ones has the unpleasant side effect that
also the plans discovered by the stack strategy tend to be longer. Measured over the 1055
problems solved by both strategies, the plans generated by the stack strategy are on average
24 percent longer.

A more detailed discussion on the topic of plan quality is postponed till Section 5.6.

5.4 Improving PDRplan

The purpose of the third experiment was to evaluate the three improvements proposed
in Section 4.5. These were successively: 1) lazy false clause computation (lfcc), 2) the
sidestepping technique (side), and 3) keeping obligations between iterations (keep). Figure 5
displays the effect of progressively enabling the three techniques in the presented order. We
see that to varying degrees each technique represents an improvement and each successive
configuration solves more problems.

A different perspective is provided by Table 2 which also reveals how many problems
were uniquely solved by only one of the two successive configurations. It shows that none
of the improvements are unambiguous across the whole problem set and that there are
exceptions to the prevailing trends.

These can be best highlighted on the level of individual domains. For instance, the
number of solved problems drops on 2000-BLOCKS and 2008-CYBER-SECURITY with
lazy false clause computation (configuration 2), but it is improved again by the subsequently
enabled techniques. Sidestepping (configuration 3) makes the performance worse on 2002-
DRIVERLOG, 2004-SATELLITE, or 2008-CYBER-SECURITY. On the other hand, the
technique represents a huge improvement on the 2004-OPTICAL-TELEGRAPH domain

301



Suda

configuration total delta gained lost

1 = default 1145 – – –
2 = 1 + lfcc 1180 35 55 20
3 = 2 + side 1195 15 67 52
4 = 3 + keep 1212 17 42 25

Table 2: Number of problems solved within 180 seconds (total). The difference (delta) be-
tween two successive configurations decomposed into additionally solved problems
(gained) and problems only solved without the improvement (lost).

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1  10  100  1000

p
ro

b
le

m
s
 s

o
lv

e
d

time (seconds)

FF
LAMA-2011

Mp
PDRplan1.1

Figure 6: Comparing the final version of PDRplan to other planners. Showing the number
of problems solved within the given time limit.

(from 2 to all 14 problems solved) and on 2004-PHILOSOPHERS (from 11 to all 29 problems
solved). Finally, keeping the obligations (configuration 4) is detrimental to the performance
on the 2011-FLOORTILE domain (the number of solved problems drops from 19 to 13),
but the technique, for example, helps to “recover” the 2008-CYBER-SECURITY problems
that were “lost” due to sidestepping.

5.5 Comparing to other Planners

We compared the improved PDRplan – the configuration 4 from the previous experiment
denoted here PDRplan1.1 – to the following planners:

• The planner FF (Hoffmann & Nebel, 2001) as a baseline representative of heuristic
search (Bonet & Geffner, 2001) planners. We used version 2.3, but enhanced its input

302



Property Directed Reachability for Automated Planning

module to make it cope with the large problems of the more recent IPC domains. The
default parameters for FF have been used.

• The planner Fast Downward (Helmert, 2006), the current state of the art heuristic
search planner. We used the configuration LAMA-2011 (Richter & Westphal, 2010),
the winner of the satisficing track of IPC 2011.

• The Mp planner (Rintanen, 2012), probably the current best representative of the
planning as satisfiability approach (Kautz & Selman, 1996). We used version 0.99999
with default parameters.

For this experiment the time limit was increased to 1800 seconds.

The overall performance of the planners can be seen in Figure 6. The planner FF has
a very fast startup and solves the most problems (952) within one second. However, FF is
the worst of the planners to make use of the additional time and solves the fewest problems
(1247) in total. On the opposite side stands LAMA-2011 with the slowest startup (566
problems within one second), but with the best total (1437). PDRplan1.1 and Mp are close
to each other in performance both at the beginning – PDRplan1.1 solves 741 and Mp 790
problems within one second – and at the end – in total PDRplan1.1 solves 1333 problems
gaining a slight edge over Mp with 1310 problems solved.

Table 3 shows a domain-by-domain decomposition of the results. We can see that
there are several domains where PDRplan1.1 solved the most problems of the four plan-
ners, namely the 2000-BLOCKS, 2002-FREECELL, 2004-PIPESWORLD-NOTANKAGE,
and 2006-TRUCKS domains. The domains 2004-PHILOSOPHERS, 2006-PATHWAYS, and
2006-STORAGE were completely solved by only PDRplan1.1 and Mp. On the hand, a com-
paratively poor performance of PDRplan1.1 can be observed on the 1998-LOGISTICS and
1998-MPRIME domains, and also on the 2011-PARKING (shared with FF) and 2008+2011-
SOKOBAN (shared with Mp) domains.

5.6 Plan Quality

IPC 2008 (Helmert, Do, & Refanidis, 2008) introduced a criterion for measuring planner
performance which takes into account the quality of the obtained plans. For every problem
solved, a planner aggregates a score computed as the ratio c∗/c, where c is the cost24 of the
returned plan and c∗ the cost of the best known plan (either a plan computed beforehand
by the competition organizers or the best plan found by any of the participating systems).
When viewing the results of the previous experiment through the lenses of this criterion,
one discovers that PDRplan1.1 drops from the second place to the last.

We reviewed all the previously discussed features and improvements and discovered
that the configuration of PDRplan1.1 is not the best possible with respect to plan quality.
In particular, by switching to the queue tie-breaking strategy (we denote the respective
configuration PDRplan1.1+queue) the aggregated score of the planner improves. A slight

24. As mentioned before, we do not consider action costs in this paper, so, in our setting, a cost of a plan is
simply equal to its length.

303



Suda

size PDRplan1.1 FF LAMA-2011 Mp
1998-GRID 5 5 5 5 5
1998-GRIPPER 20 20 20 20 20
1998-LOGISTICS 35 18 35 35 32
1998-MPRIME 35 25 34 35 34
1998-MYSTERY 30 19 18 23 19
2000-BLOCKS 60 60 48 55 46
2000-ELEVATOR 150 150 150 150 150
2000-LOGISTICS 36 36 36 36 36
2000-FREECELL 60 57 60 60 44
2002-DEPOTS 22 21 21 22 22
2002-DRIVERLOG 20 18 18 20 20
2002-ZENOTRAVEL 19 19 19 19 19
2002-FREECELL 20 20 19 19 15
2004-AIRPORT 50 40 38 33 49
2004-PIPESWORLD-NOTANKAGE 50 45 32 44 42
2004-PIPESWORLD-TANKAGE 50 37 17 42 38
2004-OPTICAL-TELEGRAPH 14 14 14 14 14
2004-PHILOSOPHERS 29 29 14 13 29
2004-PSR 50 50 42 50 50
2004-SATELLITE 36 28 34 36 35
2006-OPENSTACKS 30 30 30 30 19
2006-PATHWAYS 30 30 20 29 30
2006-PIPESWORLD 50 32 21 40 25
2006-ROVERS 40 39 40 40 40
2006-STORAGE 30 30 18 19 30
2006-TPP 30 30 28 30 30
2006-TRUCKS 30 27 12 15 19
2008-CYBER-SECURITY 30 30 4 30 30
2011-BARMAN 20 6 0 20 8
2008+2011-ELEVATORS 50 40 50 50 50
2011-FLOORTILE 20 14 10 6 20
2011-NOMYSTERY 20 14 7 10 19
2008+2011-OPENSTACKS 50 49 50 50 18
2008+2011-PARCPRINTER 50 50 50 50 50
2011-PARKING 20 8 7 20 20
2008+2011-PEGSOL 50 50 50 50 50
2008+2011-SCANALYZER 50 46 44 50 48
2008+2011-SOKOBAN 50 11 40 48 9
2008+2011-TRANSPORT 50 27 38 49 26
2011-VISITALL 20 9 4 20 0
2008+2011-WOODWORKING 50 50 50 50 50
TOTAL 1561 1333 1247 1437 1310

Table 3: Number of problems solved within 1800 seconds, grouped by domain. We high-
lighted those entries where PDRplan1.1 solves the most problems or shares the
first place with one other planner. To save space the entries of IPC 2008 domains
recurring later in IPC 2011 were merged with the respective entries of IPC 2011.

304



Property Directed Reachability for Automated Planning

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1  10  100  1000

a
g
g
re

g
a
te

d
 s

c
o
re

time (seconds)

FF
LAMA-2011

Mp
PDRplan1.1

PDRplan1.1+queue

Figure 7: Comparing the planners with respect to plan quality. Showing the score aggre-
gated by each planner within the given time limit.

improvement can also be observed when the lazy false clause computation is turned off in
PDRplan1.1. Interestingly, doing both changes at once does not bring a combined benefit.25

Figure 7 shows the aggregated scores for the runs of the previous experiment together
with a run of PDRplan1.1+queue.26 Although PDRplan1.1+queue solves only 1263 problems
in 1800 seconds (compared to 1333 solved by PDRplan1.1), it aggregates a score of 1141.1
points while PDRplan1.1 only reaches 1041.4. This means the former configuration catches
up with Mp, which aggregates 1102.7 points.

We note that these statistics should be taken with a grain of salt, because they only
provide a “plan quality view” on the satisficing runs of the planners. None of the systems
was explicitly attempting to find short plans or making use of the fact that the time limit is
1800 seconds. Moreover, even in such a setting the plan quality can typically be improved
afterwards by a post-processing of the discovered plans (Balyo & Chrpa, 2014). We later
incorporated the polynomial Action Elimination algorithm (Nakhost & Müller, 2010) as a
plan post-processor into PDRplan1.1 and we were able to improve its aggregated score by
7.0 percent. A more thorough investigation of the quality of plans produced by PDRplan,
as well as by PDR in general, is left for future work.

25. It seems that the already “carefully advancing” PDRplan1.1+queue benefits from the speed provided
by lazy false clause computation, whereas with the stack strategy it helps to wait for the more precise
reasons (having lfcc turned off) that will not allow the planner to search too deep too often.

26. The reference values for the best known cost c∗ were collected just from the runs in the figure.

305



Suda

5.7 Anytime PDR and Optimal Planning

Recall that PDR can be adjusted to perform optimal planning by turning off the obligation
rescheduling technique (and sidestepping).27 Alternatively, we can modify PDR to continue
the computation after a first plan is found, but afterwards only reschedule obligations that
can be part of an improving plan.28 This “anytime version” of PDR progressively reports on
better and better solutions until finally terminating with a guarantee that the last reported
plan is an optimal one. This happens when it reaches an iteration i equaling the length of
the best discovered plan.

In this experiment we focused on optimal planning with respect to the sequential plan
semantics.29 We compared the performance of the anytime version of PDRplan1.1 (counting
only solutions provably shown to be optimal) to BJOLP (Domshlak et al., 2011), an opti-
mizing version of Fast Downward, and to an optimizing configuration of Mp.30 Ordering
the planners by the number of problems optimally solved within 1800 seconds we obtain:

1. BJOLP with 668 problems solved,

2. PDRplan1.1-anytime with 360 problems solved, and

3. optimizing Mp with 325 problems solved.

This order is preserved on the level of individual domains, except for several domains where
Mp does not end up last. Mp solves optimally the most problems from 1998-MYSTERY,
2000-BLOCKS, 2008-CYBER-SECURITY, and also from the 1998-MPRIME domain. The
margin is exceptionally pronounced on the last domain, where Mp solves 32 out of 35
problems, while BJOLP solves 21 and PDRplan1.1-anytime only 20 problems.

5.8 Detecting Unsatisfiable Problems

Although the main focus of the planning community, as reflected by the International
Planning Competition, has traditionally been on satisfiable problems only, more recently,
the importance of detecting unsatisfiable instances is getting recognized and addressed
(Bäckström, Jonsson, & St̊ahlberg, 2013; Hoffmann, Kissmann, & Álvaro Torralba, 2014).
According to the experience from hardware model checking, PDR should be particularly
strong at detecting unsatisfiable instances. In our last experiment, we tried to established
whether this also holds in planning.

As the test problems, we used a collection by Hoffmann et al. (2014) consisting of 8
domains and a total of 183 unsatisfiable benchmarks. Table 4 shows domain-by-domain
coverage results (for a time limit of 1800 seconds) of the following configurations of PDR:

27. PDR then looks for minimal length witnessing paths with respect to the encoded transition relation T .
Using an encoding with sequential plan semantics (as implicitly done by PDRplan) ensures optimizing
the number of actions of the resulting plan.

28. Formally, we keep an obligation (s, i) if the length of the path from the initial state sI to s plus the value
of the index i does not exceed the length of the best plan found so far.

29. This choice ruled out systems like SatPlan (Kautz et al., 2006) or SASE (Huang et al., 2012) from the
comparison, because they only optimize with respect to the parallel plan semantics.

30. It uses a sequential encoding (option -P 0), does not skip any horizon length (option -S 1), and evaluates
a single horizon length at a time (option -A 1).

306



Property Directed Reachability for Automated Planning

size
PDRplan minireachIC3 with par M&S
fwd bwd fwd bwd noind nocp blind cf1 cf2

3UNSAT 25 10 10 11 15 11 5 15 15 15
Bottleneck 30 19 24 25 23 20 22 10 10 21
Mystery 9 4 9 9 9 9 9 2 9 6
UnsNoMystery 25 12 11 3 13 13 6 0 25 25
UnsPegsol 24 14 8 14 8 8 4 24 24 24
UnsRovers 25 11 11 11 20 15 12 0 17 9
UnsTiles 20 0 0 0 0 0 0 10 10 10
UnsTPP 25 5 6 4 6 3 3 5 9 9

Total 183 75 79 66 94 79 61 66 119 119

Table 4: Unsatisfiable benchmarks. Number of problems solved within 1800 seconds,
grouped by domain. Best scores per domain are typeset in bold.

• PDRplan, in the same configuration as in the first experiment (Section 5.2), both in
the forward (fwd) and backward (bwd) direction.

• minireachIC3 combined with the par encoding (with invariants), also in both direc-
tions (fwd, bwd), and, in the backward direction, also with the inductive minimization
replaced by the non-inductive version (noind), and, independently, with the clause
propagation turned off (nocp).

In addition, Table 4 also contains entries adopted from the work of Hoffmann et al. (2014).
These belong to the Fast Downward planner equipped with three different heuristics:

• Configuration blind uses a heuristic which returns 0 on goal states and 1 elsewhere
– it essentially proves unsatisfiability by enumerating all the reachable states.

• Configuration cf1 and cf2 each use a version of a merge-and-shrink (M&S) heuristic
(Helmert, Haslum, & Hoffmann, 2007), specifically adapted for detecting unsatisfiable
problems (Hoffmann et al., 2014). These were the two best performing configurations
in the experiment of Hoffmann et al. (2014).

We note that Hoffmann et al. (2014) also used a time limit of 1800 seconds, but ran their
experiment on 2.20 GHz Intel E5-2660 machines with a 4 GB memory limit. This means
that the last three configurations could be potentially solve more problems in our setup.

5.8.1 Results of the Experiment

When comparing the various configurations of PDR, we can see that the backward direc-
tion is generally more successful than the forward, although not consistently across all the
domains. Interestingly, minireachIC3 with the par encoding in the backward direction
solves more problems than PDRplan. In fact, a preliminary test with a lower time limit
showed that on these benchmarks this configuration is the strongest of all those considered
in our first experiment (Section 5.2). Finally, we can also see that both induction and clause
propagation are consistently helpful for solving unsatisfiable problems.

307



Suda

PDR does not come out as a winner from the comparison to the heuristic approach of
Hoffmann et al. (2014), although it is able to solve the most problems on four domains. On
two other domains, however, PDR is even dominated by blind search, i.e. by a simple state
space enumeration. It seems that more benchmarks will be needed to establish which of the
two approaches is generally more successful at detecting unsatisfiable planning problems.

5.8.2 Performance on UnsTiles

PDR is particularly bad at “enumerating states” when there is little possibility to generalize
from the encountered ones. This is manifested most clearly on the UnsTiles domain, from
which PDR could not solve a single problem within the given time limit. The domain
represents the well known sliding puzzle and contains 10 problems with 8 tiles in a 3 × 3
grid and 10 problems with 11 tiles in a 3 × 4 rectangular grid.31 We ran PDRplan in the
forward direction to the end on the one of the smaller, 3× 3 instances. It took about a day
to complete, processed 701704 obligations and terminated when all the clauses from layer
11, in total 181440 clauses, where pushed to layer 12 during the clause propagation phase
of iteration 11.

Notice that 181440 = 9!/2 is half the size of the state space. By the classical result of
Johnson and Story (1879), the state space of the sliding puzzle decomposes into exactly
two connected components depending on the value of a certain parity function defined on
the states. Unsatisfiable instances are those where the parity of the initial state and the
goal state are different. Because the state space consists of just of two components, on a
unsatisfiable instance PDR must converge (with the repeating layer) to a CNF description
of the component containing the goal state. As we can see, this description is as large (in
the number of clauses) as the component itself (in the number of states), and thus on the
sliding puzzle PDR does not benefit at all from the symbolic representation via CNF.

5.9 Summary

Let us summarize the empirical findings obtained in this section. We state them as general
claims while keeping in mind that they are, in fact, derived from the performance on two
particular benchmark sets: the main set of 1561 mostly satisfiable IPC problems and the
set of 183 unsatisfiable problems used in the last experiment.

• When planning with PDR it pays off to look for a plan from the initial state towards
the goal and not vice versa. In other words, progression is preferable to regression
in PDR. This holds even when invariants are employed, which help to improve the
performance of regression considerably.

Unsatisfiable instances, however, are typically better detected via regression.

• On satisfiable problems the SAT-solver free variant of PDR with planning-specific
extend procedure (as described in Section 4) is generally more successful than the
standard version of the algorithm combined with various encodings.

31. Most famous is the 15 tiles puzzle on a 4× 4 grid (Wikipedia, 2014).

308



Property Directed Reachability for Automated Planning

• Neither clause propagation nor inductive minimization, two techniques which are nor-
mally deemed essential for the performance of PDR, are very helpful on satisfiable
planning problems. The techniques are, however, useful for detecting unsatisfiability.

• There are various ways of tuning PDR and improving its performance for planning.
We tried to identify a configuration of the algorithm that would be most successful in
our setup and later used it in PDRplan for a comparison with other planners. For all
the techniques that turned out to be an improvement on average, however, there were
exceptions in the form of individual problems or domains were performance degraded.
These represent an interesting opportunity for future investigations (see Section 7).32

• When compared to other planners PDRplan shows respectable performance. In fact,
its performance is comparable to or even slightly better than that of the planner Mp, a
state of the art representative of the planning as satisfiability approach. It also solves
the most problems of all the tested planners on several domains. Although PDRplan
does not reach the score of LAMA-2011, the presented results are quite encouraging,
especially given that PDR is a relatively young algorithm with a potential for further
improvements.

• When plan quality is more important than just the number of problems solved, it
pays off to switch from the stack to the queue tie-breaking strategy in PDR. Such a
configuration is then able to keep up with and improve upon the performance of Mp
with respect to the plan quality metric based on aggregated score.

Another option for improving plan quality is to employ a post-processing step which
attempts to remove redundant actions from the generated plan (Balyo & Chrpa, 2014).

• PDR can be easily modified to look for increasingly better solutions when given suffi-
cient time and to eventually terminate with an optimality guarantee (with respect to
plan length). Although LAMA-2011 is much more successful in finding optimal plans,
the fact the PDRplan’s “natural” encoding follows the sequential plan semantics could
be the reason why PDRplan scores higher than Mp in this respect.

6. Related Work: Graphplan

We have shown in this paper that PDR is an algorithm closely related to the planning as
satisfiability approach, although with the planning-specific implementation of the extend

procedure no explicit encoding is present. We also highlighted the connection to heuristic
search planning, with the direct correspondence on the side of explicitly explored reachable
states and a little more subtle one on the side of the guiding layers, which can be seen as
a continually refined admissible heuristic estimator. What we would like to discuss here is
a perhaps surprising relation of PDR to the well-known Graphplan planning algorithm by
Blum and Furst (1997).

32. On the one hand, by looking at the problems where a particular technique leads to a poor performance,
we can identify its weak points and attempt to improve the technique. On the other hand, instead of
relying on an overall best configuration we can also try to decide prior to running the algorithm itself
on a promising set of enabled features for a given problem based on the problem’s characteristics.

309



Suda

The main data structure of Graphplan is a planning graph, a layered structure for com-
pressed representation of reachability information about the given problem. The individual
layers of the graph over-approximate the set of states reachable by a given number of sets
of parallel actions and are computed incrementally by propagation of so called exclusion
relations between actions and state variables. The planning graph is searched for a plan by
a backward-chaining strategy, starting from the goal set and regressing it, in the sense of
the parallel plan semantics, to subgoals that do not violate the exclusions of the respective
layer. Candidate (sub)goal sets shown not to lead to a plan within a specific number of
steps are memoized to avoid repeating the same work in the future.

As already shown by Rintanen (2008a) the exclusion relations of the planning graph are
equivalent to binary clause representation of k-step reachability information. This means
they could be represented inside PDR as binary clauses in the respective layers. We claim
additionally that also the memoized goal sets could be stored as layer clauses at the re-
spective position: the clause being simply the negation of the conjunctive description of the
goal set. With these two observations in mind, we can state that

Graphplan is essentially a version of PDR with a specific implementation of the
extend procedure based on the parallel plan semantics.

This correspondence allows us to highlight some other differences between the two algo-
rithms beyond the preferred semantics of the emulated encoding.

• While the planning graph is built systematically by Graphplan and search for a plan
is only started (resumed) when a full new layer has been computed, in PDR the layer
construction is lazy, being triggered by unsuccessful path extensions.

Goal set memoization in Graphplan, however, follows the same lazy pattern.

• Graphplan does not attempt to reduce the size of a memoized goal set, so, apart from
the binary clauses, it only deals with long clauses representing the negation of the
goal set. Notice that this would in PDR correspond to returning the full reason set
Lits(s) after an unsuccessful extension of the state s.

A subset memoization has later been proposed by Long and Fox (1999), which corre-
sponds to finding smaller reason sets.

• Graphplan searches for a plan in the backward direction. In PDR, the direction can
be changed, but forward is more successful.33

• There is no equivalent to obligation rescheduling in Graphplan and so the algorithm
always searches for optimal plans (with respect to the parallel plan semantics).

The wavefront heuristic described by Long and Fox (1999) in their enhancement of
Graphplan, however, seems to overcome this limitation, similarly to rescheduling.

The realization that PDR is related to Graphplan made us curious about the differences
of the two algorithms in practice. We set up a small experiment where we compared PDR

33. Changing the search direction in Graphplan by running in on an inverted problem (see Section 4.4)
is possible, but would likely lead to fewer problems solved. This is related to the already mentioned
observation that there are very few problems with non-trivial backward invariants in the benchmark set.

310



Property Directed Reachability for Automated Planning

to a mature implementation of Graphplan within the planner IPP (Koehler, 1999). In
order to bring PDR as close as possible to what Graphplan does, we represented it by
minireachIC3 combined with the simple parallel encoding Spar

P (see Section 2.6) enhanced
by the binary clause invariant (as explained in Section 5.2). We ran minireachIC3 in the
backward direction and with obligation rescheduling turned off, so, similarly to IPP, it
was looking for optimal plans. When measuring the number of problems solved (out of the
main problem set described in Section 5) within 180 seconds, we obtained 466 solved by IPP
and 484 by our configuration of minireachIC3. It should be noted that IPP erroneously
reports UNSAT for most of the problems from the PARCPRINTER and WOODWORKING
domains and we counted this as failures. Because minireachIC3, on the other hand, solves
most of the problems from these domains, its score should be lowered by 94 problems to
obtain a “fair” comparison on the problem set which excludes these two domains.

Notice that the performance of IPP with 466 solved problems is quite low compared
to the best configuration of PDRplan1.1, which solves 1212 problems within 180 seconds.
This raises the question whether Graphplan could be improved by enhancing it with the
obligation rescheduling trick. We were able to confirm this experimentally. A relatively
straightforward modification of IPP which retries a candidate goal set at time t + 1 after
it has failed at time t was able to solve 676 problems.34 Thus obligation rescheduling can
be seen as an answer to the long standing question posed in the last remark of the original
Graphplan paper by Blum and Furst (1997), i.e., as a way to trade plan quality for speed.

7. Discussion: a Closer Look at Two Domains

The fact that PDR maintains its reachability information organized in layers and uses the
simple language of propositional clauses (CNF) to express the corresponding constraints
often allows us to obtain additional insights on how the algorithm traverses the search
space by inspecting the layers generated for concrete problems. This is especially rewarding
in cases where PDR seems to be struggling with a relatively simple problem, as it often
leads to a discovery of ideas for future improvements. In this section we have a closer look
at the behavior of PDR on two simple domains. We conjecture that the algorithm could be
improved by employing a more expressive constraint formalism than CNF.

7.1 1998-LOGISTICS

The task in the LOGISTICS domain is to transport packages between locations. Locations
belong to cities and within a city trucks may be used to move packages with the help of the
load-truck, drive-truck, and unload-truck actions. Additionally, some of the locations are
designated as airports and airplanes may be used to transport packages between airports
possibly across cities via the load-airplane, fly-airplane, and unload-airplane actions.

Although the LOGISTICS domain is generally considered to be a simple one, Table 3
(page 304) reveals relatively poor performance of PDRplan on LOGISTICS problems. Here
are two of our initial findings from the inspection of the layer clauses generated by PDR,
which shed some light on what is going on “under the hood”.

34. Also the performance of the corresponding configuration of minireachIC3 goes up from the mentioned
484 to 733 solved problems within 180 seconds when obligation rescheduling is turned on.

311



Suda

• PDR often generates very long clauses.

Because there are typically many distinct (although similar) ways to achieve a subgoal
and all of them need to be taken into account, large reason sets are computed and
subsequently long clauses derived. For example, if a package needs to be transported
from one city to another, any of the available airplanes can potentially be used for
that purpose. We often encounter derived clauses like

subg ∨ at(apn1, apt) ∨ at(apn2, apt) ∨ . . . ∨ at(apnn, apt) (7)

expressing that if the subgoal subg has not been derived yet, at least one of the
available airplanes apni need to be present at the airport apt .

• PDR generates many similar clauses.

Even if an action has more than one precondition false in the current state, at most one
of these preconditions is reflected in the computed reason of an unsuccessful extension.
Thus with many actions available for achieving a subgoal, sometimes many clauses are
needed as PDR tries to find the right achieving action and satisfy all its preconditions.

In addition to the above clause (7) we could see PDR subsequently derive the following
clauses in the same layer:

subg ∨ in(obj , apn1) ∨ at(apn2, apt) ∨ . . . ∨ at(apnn, apt),

subg ∨ at(apn1, apt) ∨ in(obj , apn2) ∨ . . . ∨ at(apnn, apt),

. . .

subg ∨ at(apn1, apt) ∨ at(apn2, apt) ∨ . . . ∨ in(obj , apnn).

(8)

Note that although the pattern indicates n different clauses, there are in the worst
case 2n clauses potentially derivable with the “arbitrary” choice between at(apni, apt)
and in(obj , apni) for every i.

Although we have so far described PDR as an algorithm based on propositional logic,
we believe it could be generalized to take advantage of first order constraints. Consider the
clause (7) above. An equivalent first order version (aware of the type airplane) would read

subg ∨ ∃Apn ∈ airplane . at(Apn, apt),

which is much more succinct.35 Moreover, it could potentially be derived by just analyzing
the action schemes unload -airplane(Obj ,Apn,Loc), . . . , etc., instead of iterating through
the much larger set of instantiated actions. Working out the missing details is an interesting
direction for future research. An inspiration could be found in the work of Ranise (2013),
whose setting of security policy analysis is very close to automated planning.

Another independent direction for enhancing the expressive power of the used constraints
could be the introduction of “conjunctive literals”. Notice that the set of clauses (8) is, in
fact, subsumed by a single generalized clause

subg ∨
n∨

i=1

in(obj , apni) ∧ at(apni, apt),

35. Symbols starting with an uppercase letter, like Apn, stand for first order variables.

312



Property Directed Reachability for Automated Planning

where we allow conjunctions in place of single literals. In this envisioned generalization of
PDR, such conjunctions would naturally come from the precondition lists of actions, and
their use could help with solving, e.g., the LOGISTICS problems more efficiently. Of course,
there are again details that would need to be worked out.

7.2 1998-GRIPPER

GRIPPER is a very simple domain which models a robot with two grippers trying to move
balls from one room to another. This domain is fully solved by PDRplan in the default
configuration. In fact, although the individual problems differ in size, PDRplan is able
(thanks to obligation rescheduling) to solve all of them during iteration 3 of the main loop.36

The reason for this seems to be the virtual independence of the individual goals, which can
be considered one be one by PDR. We conjecture that the algorithm solves problems from
the GRIPPER domain in polynomial time.

Despite the simplicity, GRIPPER is known to be difficult to solve optimally by heuristic
search planners (see Helmert & Röger, 2008). This also holds for PDR, which exhibits
exponential behavior when attempting to find a minimal length plan, i.e., when run with
obligation rescheduling (and sidestepping) turned off. To demonstrate the reason, let us
abstract and simplify GRIPPER a bit more and consider a domain in which the task is to
achieve n independent goals from the set {g1, . . . , gn}, such that achieving a particular goal
is trivial, but the individual goals can only be achieved one by one.

On such a domain, PDR will eventually need to express via layer Li that at least (n− i)
goals should already be achieved. Such a “counting” constraint has inherently large clausal
description. Namely, the set Li takes the form∧

gj0 ∨ . . . ∨ gji ,

where the conjunction ranges over all (i+ 1)-element subsets {j0, . . . , ji} of {1, . . . , n}. The
size of the layer Li is, therefore, proportional to the binomial coefficient

(
n

i+1

)
, which, in

particular, means that the size of the layer Lbn/2c grows exponentially with n.
As already suggested by Helmert and Röger (2008) this phenomenon could be overcome

by exploiting symmetries (Fox & Long, 1999) inherently present in the problem. This could
be particularly rewarding in PDR, where the layer clauses (although derived as a response
to unsuccessful extensions of arbitrary reachable states) logically depend only on the goal
condition G, where the symmetries typically reside. Thus unlike Fox and Long (1999),
who define symmetric objects to be those which are indistinguishable from one another in
terms of their initial and goal configuration, one could with PDR use a stronger notion of
symmetry derived from the goal condition only.

8. Conclusion

In this paper we have examined PDR, a novel algorithm for analyzing reachability in sym-
bolic transition systems, from the perspective of automated planning. Our main contri-
bution lies in recognizing that a part of the algorithm’s work normally delegated to a

36. Other domains fully solved by PDRplan during a particular fixed iteration are 2002-ZENOTRAVEL
(iteration 3), 2004-PHILOSOPHERS (iteration 6), and 2006,2008,2011-OPENSTACKS (iteration 4).

313



Suda

SAT-solver can, in the context of planning, be implemented directly by a polynomial time
procedure. We have experimentally confirmed that this modification, as well as several
other proposed improvements, boost the performance of PDR on planning benchmarks.
Our implementation of the algorithm called PDRplan was able to compete respectably with
state of the art planners, solving most problems on several domains.

Despite the already promising results, there is still room for further development. One
direction is work on extending PDRplan towards richer planning formalisms. For example,
we believe the extend procedure can be enhanced to cope with conditional effects of actions
in a straightforward way. Efficiently dealing with action costs or domain axioms could turn
out to be more difficult. Another promising direction is the idea to generalize PDR to a
more expressive constraint language than CNF. While it is clear that stronger constraints
imply better guidance towards the goal, devising an efficient method for combining new
constraints from old ones is obviously a challenging task. It seems, however, that this
“departure beyond the clausal level” could have a simpler solution inside the planning-
specific framework of the extend procedure than it, perhaps, has within general purpose
constraint solvers.

Acknowledgments

We thank Jussi Rintanen for useful comments and remarks, as well as for the help with
the Mp encoder. We also thank Tomáš Balyo for providing us with the SASE encoding
tool. Finally, we want to thank the anonymous reviewers for their insightful suggestions
and Malte Helmert for the help with the preparation of the final version of this text.

This research was partially supported by the Czech Science Foundation under the project
P103-10-1287.

Appendix A. Pseudocode of the Improvements of Section 4.5

Pseudocode 6 displays stage one of procedure extend+, an enhancement of the extend

procedure by the lazy false clause computation technique (Section 4.5.1) and with a support
for sidestepping (Section 4.5.2). Stage two of extend+ is meant to be supplemented from
the same stage of the original extend procedure (Pseudocode 3) and stage three employes
inductive minimization as described in Section 4.2 (Pseudocode 4).

Pseudocode 7 details the workings of PDRplan1.1. With the help of the extend+ pro-
cedure it realizes sidestepping (Section 4.5.2). Moreover, it incorporates the technique for
keeping obligations between iterations (Section 4.5.3). The clause propagation phase is
identical to the one already presented in Pseudocode 5.

314



Property Directed Reachability for Automated Planning

Pseudocode 6 Stage one of extend+(s, i):

Input:
Obligation (s, i), i.e. a state s and an index i, such that s 6|= Li−1

Output:
Either an obligation (t, i− 1) where t is a successor of s and t |= Li−1, or
an obligation (t, i) where t is a successor of s, t |= Li and
t satisfies strictly more clauses from Li−1 than s, or
an inductive reason r ⊆ Lits(s)

1: Ls ← {c ∈ Li−1 | s 6|= c} /* Clauses false in s */
2: Rnoop ← {¬c | c ∈ Ls} /* The reasons for the noop action */
3: assert Rnoop 6= ∅ /* Follows from the contract with the caller */
4: R ← {Rnoop} /* The set of reason sets collected so far */
5: aside ← noop /* Current best candidate for sidestepping (noop as a dummy value) */
6: xside ← |Ls| /* Score of the current best candidate */
7:

8: foreach a ∈ A do
9: pres

a ← {l ∈ prea | s 6|= l} /* Preconditions false in s */
10: t← apply(s, (∅, eff a)) /* Ignore the preconditions and apply the effects of a */
11: Ls,t ← {c ∈ Ls | t 6|= c} /* The lazy approach: clauses false both in s and t */
12: if Ls,t = Ls then /* No improvement over s */
13: continue /* Do nothing: the reason set would be subsumed by Rnoop */
14:

15: if pres
a = ∅ and |Ls,t| < xside then /* The action is promising . . . */

16: Lt ← {c ∈ Li−1 | t 6|= c} /* . . . we must compute the full Lt */
17: if Lt = ∅ then
18: return (t, i− 1) /* The positive part: returning a true successor */
19: if Lt = Ls,t and t |= Li then /* No false clauses besides those from Ls,t */
20: aside ← a
21: xside ← |Ls,t|
22: else
23: Lt ← Ls,t /* Save time by using Ls,t instead of the full Lt below */
24:

25: Lt
0 → {c ∈ Lt | c ∩ pres

a = ∅} /* False clauses with a non-subsumed reason */
26: Ra ← {{¬l} | l ∈ pres

a} ∪ {{¬l | l ∈ c and ¬l 6∈ eff a} | c ∈ Lt
0}

27: R ← R∪ {Ra} /* Record the reason set */
28:

29: if xside < |Ls| then
30: assert aside 6= noop
31: return (apply(s, aside), i) /* Successfully sidestepping with the best candidate */

32: /* Continue with stage two as in Pseudocode 3 and stage three as in Pseudocode 4 */

315



Suda

Pseudocode 7 Algorithm PDRplan1.1(X, sI , G,A):

Input:
A positive STRIPS planning problem P = (X, sI , g,A)

Output:
A plan for P or a guarantee that no plan exists

1: L0 ← {{p} | p ∈ g} /* The goal cube treated as a set of unit clauses */
2: foreach j > 0 : Lj ← ∅
3: Q← {(sI , 0)}
4: for k = 0, 1, . . . do
5: /* Path construction: */
6: while there is (s, i) in Q with i ≤ k do
7: pop some (s, i) from Q with minimal i
8: if s 6|= Li then
9: Q← Q ∪ (s, i+ 1)

10: else if i = 0 then
11: return PLAN FOUND
12: else if extend+(s, i) returns an obligation (t, j) then
13: assert j = i− 1 or j = i /* Either a regular extension or a sidestep */
14: Q ← Q ∪ {(s, i), (t, j)}
15: else
16: extend+ returned a reason r ⊆ Lits(s)
17: foreach 0 ≤ j ≤ i : Lj ← Lj ∪ {¬r}
18:

19: /* Obligation rescheduling: */
20: Q ← Q∪{(s, i+ 1)} /* Keep obligations with i+ 1 > k till the next iteration */
21:

22: /* Clause propagation: */
23: for i = 1, . . . , k + 1 do
24: foreach c ∈ Li−1 \ Li do
25: /* Clause push check */
26: sc ← {p 7→ 0 | p ∈ c} ∪ {p 7→ 1 | p ∈ (X \ c)}
27: if for every a ∈ A : sc 6|= prea or apply(sc, a) 6|= Li−1 then
28: Li ← Li ∪ {c}
29: /* Convergence check */
30: if Li−1 = Li then
31: return NO PLAN POSSIBLE

316



Property Directed Reachability for Automated Planning

References

Bäckström, C., Jonsson, P., & St̊ahlberg, S. (2013). Fast detection of unsolvable planning
instances using local consistency. In Helmert, M., & Röger, G. (Eds.), SOCS. AAAI
Press.

Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning. Computational
Intelligence, 11, 625–656.

Balyo, T., Bardiovský, V., Dvořák, F., & Toropila, D. (2012). Freelunch planning library.
Available at http://ktiml.mff.cuni.cz/freelunch/.

Balyo, T., & Chrpa, L. (2014). Eliminating all redundant actions from plans using SAT
and MaxSAT. In ICAPS 2014 Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS). To appear.

Biere, A., Heljanko, K., Seidl, M., & Wieringa, S. (2012). Hardware model checking com-
petition 2012. Web site, http://fmv.jku.at/hwmcc12/.

Blum, A., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artif.
Intell., 90 (1–2), 281–300.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artif. Intell., 129 (1–2), 5–33.

Bradley, A. R. (2011). SAT-based model checking without unrolling. In Jhala, R., &
Schmidt, D. A. (Eds.), VMCAI, Vol. 6538 of Lecture Notes in Computer Science, pp.
70–87. Springer.

Bradley, A. R., & Manna, Z. (2007). Checking safety by inductive generalization of coun-
terexamples to induction. In FMCAD, pp. 173–180. IEEE Computer Society.

Clifford, R., & Popa, A. (2011). Maximum subset intersection. Inf. Process. Lett., 111 (7),
323–325.

Domshlak, C., Helmert, M., Karpas, E., Keyder, E., Richter, S., Röger, G., Seipp, J., &
Westphal, M. (2011). BJOLP: The big joint optimal landmarks planner. In Seventh
International Planning Competition (IPC 2011), Deterministic Part, pp. 91–95.

Eén, N., Mishchenko, A., & Brayton, R. K. (2011). Efficient implementation of property
directed reachability. In Bjesse, P., & Slobodová, A. (Eds.), FMCAD, pp. 125–134.
FMCAD Inc.

Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In Giunchiglia, E., & Tac-
chella, A. (Eds.), SAT, Vol. 2919 of Lecture Notes in Computer Science, pp. 502–518.
Springer.

Fox, M., & Long, D. (1999). The detection and exploitation of symmetry in planning
problems. In Dean, T. (Ed.), IJCAI, pp. 956–961. Morgan Kaufmann.

Gazen, B. C., & Knoblock, C. A. (1997). Combining the expressivity of UCPOP with the
efficiency of Graphplan. In Steel, S., & Alami, R. (Eds.), ECP, Vol. 1348 of Lecture
Notes in Computer Science, pp. 221–233. Springer.

Ghallab, M., Nau, D. S., & Traverso, P. (2004). Automated planning – theory and practice.
Elsevier.

317



Suda

Haas, A. R. (1987). The case for domain-specific frame axioms. In The Frame Problem in
Artificial Intelligence, Proceedings of the 1987 Workshop on Reasoning about Action.
Morgan Kaufmann.

Helmert, M. (2006). The Fast Downward planning system. J. Artif. Intell. Res. (JAIR),
26, 191–246.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks. Artif.
Intell., 173 (5–6), 503–535.

Helmert, M., Do, M., & Refanidis, I. (2008). IPC 2008, deterministic part. Web site,
http://ipc.informatik.uni-freiburg.de.

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal
sequential planning. In Boddy, M. S., Fox, M., & Thiébaux, S. (Eds.), ICAPS, pp.
176–183. AAAI.

Helmert, M., & Röger, G. (2008). How good is almost perfect?. In Fox, D., & Gomes, C. P.
(Eds.), AAAI, pp. 944–949. AAAI Press.

Hoffmann, J., Kissmann, P., & Álvaro Torralba (2014). “Distance”? Who cares? Tailoring
Merge-and-Shrink heuristics to detect unsolvability. In ICAPS 2014 Workshop on
Heuristics and Search for Domain-independent Planning (HSDIP). To appear.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. J. Artif. Intell. Res. (JAIR), 14, 253–302.

Howey, R., Long, D., & Fox, M. (2004). VAL: Automatic plan validation, continu-
ous effects and mixed initiative planning using PDDL. In ICTAI, pp. 294–301.
IEEE Computer Society. Software available at http://www.plg.inf.uc3m.es/

ipc2011-deterministic/Resources.

Huang, R., Chen, Y., & Zhang, W. (2012). SAS+ planning as satisfiability. J. Artif. Intell.
Res. (JAIR), 43, 293–328.

IPC (2014). International planning competition. Web site, http://ipc.

icaps-conference.org/, accessed 19/05/2014.

Johnson, W. W., & Story, W. E. (1879). Notes on the “15” puzzle. American Journal of
Mathematics, 2 (4), 397–404.

Kautz, H., Selman, B., & Hoffmann, J. (2006). SatPlan: Planning as satisfiability. In
Working Notes of the 5th International Planning Competition, Cumbria, UK. Software
available at http://www.cs.rochester.edu/~kautz/satplan/.

Kautz, H. A., McAllester, D. A., & Selman, B. (1996). Encoding plans in propositional
logic. In Aiello, L. C., Doyle, J., & Shapiro, S. C. (Eds.), KR, pp. 374–384. Morgan
Kaufmann.

Kautz, H. A., & Selman, B. (1992). Planning as satisfiability. In ECAI, pp. 359–363.

Kautz, H. A., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic
and stochastic search. In Clancey, W. J., & Weld, D. S. (Eds.), AAAI/IAAI, Vol. 2,
pp. 1194–1201. AAAI Press / The MIT Press.

318



Property Directed Reachability for Automated Planning

Koehler, J. (1999). IPP – A Planning System for ADL and Resource-Constrained Planning
Problems. Habiliation thesis, University of Freiburg.

Long, D., & Fox, M. (1999). Efficient implementation of the plan graph in STAN. J. Artif.
Intell. Res. (JAIR), 10, 87–115.

Massey, B. (1999). Directions In Planning: Understanding The Flow Of Time In Planning.
Ph.D. thesis, University of Oregon.

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of
artificial intelligence. In Meltzer, B., & Michie, D. (Eds.), Machine Intelligence 4, pp.
463–502. Edinburgh University Press.

Nakhost, H., & Müller, M. (2010). Action elimination and plan neighborhood graph search:
Two algorithms for plan improvement. In Brafman, R. I., Geffner, H., Hoffmann, J.,
& Kautz, H. A. (Eds.), ICAPS, pp. 121–128. AAAI.

Pettersson, M. P. (2005). Reversed planning graphs for relevance heuristics in AI planning.
In Planning, Scheduling and Constraint Satisfaction: From Theory to Practice, Vol.
117 of Frontiers in Artificial Intelligence and Applications, pp. 29–38. IOS Press.

Ranise, S. (2013). Symbolic backward reachability with effectively propositional logic –
applications to security policy analysis. Formal Methods in System Design, 42 (1),
24–45.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. J. Artif. Intell. Res. (JAIR), 39, 127–177.

Rintanen, J. (1998). A planning algorithm not based on directional search. In Cohn, A. G.,
Schubert, L. K., & Shapiro, S. C. (Eds.), KR, pp. 617–625. Morgan Kaufmann.

Rintanen, J. (2004). Evaluation strategies for planning as satisfiability. In de Mántaras,
R. L., & Saitta, L. (Eds.), ECAI, pp. 682–687. IOS Press.

Rintanen, J. (2008a). Planning graphs and propositional clause-learning. In Brewka, G., &
Lang, J. (Eds.), KR, pp. 535–543. AAAI Press.

Rintanen, J. (2008b). Regression for classical and nondeterministic planning. In Ghallab,
M., Spyropoulos, C. D., Fakotakis, N., & Avouris, N. M. (Eds.), ECAI, Vol. 178 of
Frontiers in Artificial Intelligence and Applications, pp. 568–572. IOS Press.

Rintanen, J. (2012). Planning as satisfiability: Heuristics. Artif. Intell., 193, 45–86.

Rintanen, J., Heljanko, K., & Niemelä, I. (2006). Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell., 170 (12–13), 1031–1080.

Suda, M. (2013a). DIMSPEC, a format for specifying symbolic transition systems. Web
site, http://www.mpi-inf.mpg.de/~suda/DIMSPEC.html.

Suda, M. (2013b). Duality in STRIPS planning. CoRR, abs/1304.0897.

Suda, M. (2014). Property directed reachability for automated planning. Web site, http:
//www.mpi-inf.mpg.de/~suda/PDRplan.html.

Wikipedia (2014). 15 puzzle — wikipedia, the free encyclopedia. Web site, http://en.
wikipedia.org/wiki/15_puzzle, accessed 19/05/2014.

319


