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Abstract

Credal networks are graph-based statistical models whose parameters take values in a
set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian
networks). The computational complexity of inferences on such models depends on the
irrelevance/independence concept adopted. In this paper, we study inferential complexity
under the concepts of epistemic irrelevance and strong independence. We show that infer-
ences under strong independence are NP-hard even in trees with binary variables except
for a single ternary one. We prove that under epistemic irrelevance the polynomial-time
complexity of inferences in credal trees is not likely to extend to more general models
(e.g., singly connected topologies). These results clearly distinguish networks that admit
efficient inferences and those where inferences are most likely hard, and settle several open
questions regarding their computational complexity. We show that these results remain
valid even if we disallow the use of zero probabilities. We also show that the computation
of bounds on the probability of the future state in a hidden Markov model is the same
whether we assume epistemic irrelevance or strong independence, and we prove a similar
result for inference in naive Bayes structures. These inferential equivalences are important
for practitioners, as hidden Markov models and naive Bayes structures are used in real
applications of imprecise probability.

1. Introduction

Bayesian networks are multivariate probabilistic models where stochastic independence as-
sessments are compactly represented by an acyclic directed graph whose nodes are identified
with variables (Pearl, 1988). In addition to its acyclic directed graph, the specification of
a Bayesian network requires the specification of a conditional probability distribution for
every variable and every assignment of its parents. When information is costly to acquire,
specifying these conditional probabilities can be a daunting task, whether they are esti-
mated from data or elicited from experts. This causes the inferences drawn with the model
to contain imprecisions and arbitrarinesses (Kwisthout & van der Gaag, 2008).

An arguably more principled approach to coping with the imprecision in the numerical
parameters is by incorporating it into the formalism. One way of doing so is by means of
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closed and convex sets of probability distributions, which are called credal sets (Levi, 1980).1

Bayesian networks whose numerical parameters are specified by conditional credal sets are
known as credal networks (Cano, Cano, & Moral, 1994; Cozman, 2000, 2005). Credal
networks have been successfully applied to robust pattern recognition,2 and to knowledge-
based systems, where it has been argued that allowing parameters to be imprecisely specified
facilitates elicitation from experts.3

A Bayesian network provides a concise representation of the (single) joint probability
distribution that is consistent with the network parameters and satisfies (at least) the set
of stochastic independences encoded in its underlying graph. Analogously, a credal network
provides a concise representation of the credal set of joint distributions that are consistent
with the local credal sets and satisfy (at least) the irrelevances encoded in its underlying
graph. The precise characterization of that joint credal set depends however on the concept
of irrelevance adopted.

The two most commonly used irrelevance concepts in the literature are strong inde-
pendence and epistemic irrelevance. Two variables X and Y are strongly independent if
their joint credal set can be regarded as originating from a number of precise probability
distributions under each of which the two variables are stochastically independent. Strong
independence follows a sensitivity analysis interpretation, which regards imprecision in the
model as arising out of partial ignorance about an ideal precise model. Epistemic irrele-
vance, on the other hand, is defined irrespective of the existence of any ideal precise model.
A variable X is epistemically irrelevant to a variable Y if the marginal credal set of Y
coincides with the conditional credal set of Y given X. Unlike strong independence, epis-
temic irrelevance is an asymmetric concept and cannot in general be characterized by the
properties of the elements of the credal set alone (de Cooman et al., 2010).

If on the one hand the flexibility provided by credal sets arguably facilitates model
building, on the other, it imposes a great burden on the computation of inferences. For
example, whereas the posterior probability of a variable is polynomial-time computable
in polytree-shaped Bayesian networks, the analogous task of computing upper and lower
bounds on the posterior probability of a given variable in a polytree-shaped credal networks
is an NP-hard task (de Campos & Cozman, 2005). There are however exceptional cases,
such as the case of inference in polytree-shaped credal networks with binary variables,
which can be solved in polynomial time under strong independence (Fagiuoli & Zaffalon,
1998). Like in Bayesian networks, the theoretical and practical tractability of inferences
in credal networks depends strongly on the network topology and the cardinality of the
variable domains. Credal networks however include another dimension in the parametrized
complexity of inference, given by the type of irrelevance concept adopted, which in the

1. Other approaches include random sets (Kendall, 1974), evidence theory (Shafer, 1976; Shenoy & Shafer,
1988), possibility theory (Zadeh, 1978), conditional plausibility measures (Halpern, 2001), and coherent
lower previsions (Walley, 1991; de Cooman & Miranda, 2012), the last one being largely equivalent to
credal sets (there is an one-to-one correspondence between credal sets and coherent lower previsions).

2. For example, see the works of Zaffalon, Wesnes, and Petrini (2003), Zaffalon (2005), de Campos, Zhang,
Tong, and Ji (2009), Antonucci, Brühlmann, Piatti, and Zaffalon (2009), Corani, Giusti, Migliore, and
Schmidhuber (2010), Antonucci, de Rosa, and Giusti (2011), de Campos and Ji (2011).

3. For example, see the works of Walley (2000), Antonucci, Piatti, and Zaffalon (2007), Salvetti, Antonucci,
and Zaffalon (2008), de Campos and Ji (2008), Antonucci et al. (2009), Piatti, Antonucci, and Zaffalon
(2010), Antonucci, Huber, Zaffalon, Luginbühl, Chapman, and Ladouceur (2013).
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Bayesian case is usually fixed. For instance, computing probability bounds in tree-shaped
credal networks under the concept of epistemic irrelevance can be performed in polynomial
time (de Cooman et al., 2010), whereas we show here that the same task is NP-hard under
strong independence.

In the rest of this paper, we properly define credal networks and the inference problem
we address (sect. 2), and investigate the parametrized theoretical computational complexity
of inferences in credal networks (sect. 3), both under strong independence and epistemic
irrelevance. We show that a particular type of inference in imprecise hidden Markov models
(i.e., hidden Markov models with uncertainty quantified by local credal sets) is invariant
to the choice of either irrelevance concept, being thus polynomial-time computable (as this
is known to be the case under epistemic irrelevance). We obtain as corollaries of that
result that inferences under strong independence and epistemic irrelevance coincide also
in tree-shaped networks if no evidence is given, and in naive Bayes structures. We also
show that even in tree-shaped credal networks inferences are NP-hard if we assume strong
independence, and that this is the same complexity of inference in polytree-shaped credal
networks for both irrelevance concepts, even if we assume that all variables are (at most)
ternary. We prove that the so-called precise-vacuous models, that is, credal networks that
have vacuous root nodes and precise non-root nodes, lead to the same inferences whether
we assume epistemic irrelevance or strong independence, and that the same is true (apart
from an arbitrarily small error) when vacuous nodes are replaced by near-vacuous ones,
avoiding the problematic case of zero probabilities. This last fact proves that our hardness
results hold true even in cases where the lower probability of any possible event is strictly
positive.

2. Updating Credal Networks

In this section, we review the necessary concepts and definitions, and formalize the problem
of inference in credal networks.

2.1 Bayesian Networks

Consider a finite set X = {X1, . . . , Xn} of categorical variables, and let Z ⊆ X be some
set of variables. A probability distribution p of Z is a non-negative real-valued function on
the space of assignments of Z such that

∑
z∼Z p(z) = 1, where the notation z∼Z entails

that z is an arbitrary (joint) assignment or configuration of the variables in Z. Any joint
probability distribution p induces a probability measure Pp on the sigma-field of all subsets
of assignments of Z.

Let G be an acyclic directed graph (DAG) with nodes N = {1, . . . , n}. We denote
the parents of a node i in G by Pa(i). The set of non-descendants of i, written Nd(i),
contains the nodes not reachable from i by a directed path. Note that Pa(i) ⊆ Nd(i).
Fix a probability measure P on the sigma-field of subsets of X and associate every node
i with a variable Xi. The DAG G represents the following set of stochastic independence
assessments known as local Markov conditions:

P(Xi=xi|XNd(i) =xNd(i)) = P(Xi=xi|XPa(i) =xPa(i)) , (1)
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for all i ∈ N , and x∼X. In words, every variable is stochastically independent from its
non-descendant non-parents given its parents under a suitable measure P.

A Bayesian network is a triple (X, G,Q), where Q is the set of conditional probability
assessments

P(Xi = xi|XPa(i) = xPa(i)) = q(xi|xPa(i)) , (2)

for all i ∈ N , xi∼Xi and xPa(i)∼XPa(i), where q(Xi|xPa(i)) is a probability distribution of
Xi. By assumption, a Bayesian network defines a joint probability distribution p of X by

p(x) =
∏
i∈N

q(xi|xPa(i)) , (3)

for all x∼X. It is not difficult to see that (1) and (2) imply (3) by the Chain Rule using a
topological ordering of variables. That (3) and (2) imply (1) is a bit more intricate to see
but also true (Cowell, Dawid, Lauritzen, & Spiegelhalter, 2007). Thus, these two seemingly
different approaches to specifying a probability measure are virtually equivalent. To be
more explicit: given a Bayesian network, the probability measure that satisfies (1) and
(2) is the same probability measure that satisfies (3) and (2), and we can choose any pair
of assumptions to define a (single) measure for a network. As we shall see, an analogous
equivalence is not observed when probabilities are imprecisely specified, which leads to
different definitions of credal networks with different computational complexity.

2.1.1 Probabilistic Inference In Bayesian Networks

An essential task in many applications of probabilistic modeling is to compute a certain
probability value implied by a Bayesian network. We call such a computational task the
BN-INF problem, and define it as follows.

BN-INF
Input : A Bayesian network (X, G,Q), a target node t, a target value xt of Xt,
a (possibly empty) set of evidence nodes O, and an assignment xO to XO.
Output : The conditional probability P(Xt=xt|XO =xO), where P is the prob-
ability measure specified by the network.

In the problem above we assume that when P(XO=xO) = 0 the output is a special symbol
(e.g. ⊥) indicating the problem solution is undefined.

Roth (1996) showed that BN-INF is #P-hard, defining a lower bound to the complexity
of the problem. All known (exact) algorithms take time at least exponential in the treewidth
of the network in the worst case. The treewidth is a measure of the resemblance of a network
to a tree; small treewidth suggests a tree-like structure and the treewidth of a tree is one
and is minimal (Koller & Friedman, 2009). Recently, Kwisthout, Bodlaender, and van der
Gaag (2010) proved that contingent on the hypothesis that satisfiability of Boolean formulas
takes exponential time in the worst-case (known as ETH) this is the best performance an
algorithm for BN-INF can achieve. As we shall see in the next section, Bayesian networks
are particular instances of credal networks. As such, these complexity results set lower
bounds on the complexity of inference in credal networks.

A DAG is said to be singly connected if there is at most one undirected path connecting
any two nodes in the graph; it is a tree if additionally each node has at most one parent. If
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a graph is not singly connected, we say it is multiply connected. Singly connected directed
graphs are also called polytrees. Pearl’s belief propagation algorithm (Pearl, 1988) computes
BN-INF in polynomial time in singly connected Bayesian networks. More generally, the
junction tree propagation algorithm (Cowell et al., 2007) solves BN-INF in polynomial time
in any network of bounded treewidth, which includes singly connected networks of bounded
in-degree (i.e., maximum number of parents).

2.2 Credal Networks

In this section we describe credal sets, irrelevance concepts, credal networks and probabilistic
inference in credal networks.

2.2.1 Credal Sets

Let Z ⊆ X. A credal set M is a closed and convex set of joint probability distributions
on the same domain, say z ∼ Z (Levi, 1980). The vacuous credal set of Z is the largest
credal set on that domain, and is denoted by V (Z). An extreme distribution of a credal set
is an element of the set that cannot be written as a convex combination of other elements
in the same set. We denote the set of extreme distributions of a credal set M by extM .
A credal set is finitely generated if it contains a finite number of extreme distributions. A
finite representation of a finitely generated credal set by means of its extreme distributions
is called vertex-based. Any finitely generated credal set of Z defines a (bounded) polytope
in the probability simplex of distributions of Z, and can be specified through a finite set of
linear inequalities of the form

Ep(fl)
def
=
∑
z∼Z

fl(z)p(z) ≤ 0 , (4)

where {fl} is a finite collection of real-valued functions of Z (Cozman, 2000). The converse
is also true: any finite set of linear inequalities of the form above determines a (bounded)
polytope in the probability simplex (Boyd & Vandenberghe, 2004, ch. 2), and hence a
finitely generated credal set. Thus, an alternative finite representation of a credal set is
by means of a finite set of functions defining linear inequalities of the type above. Such a
representation is called constraint-based.

Example 1. Consider X = {X1, X2}, where X1 takes values in {0, 1, 2} and X2 takes
values in {0, 1}. The vacuous set of X1 is the probability simplex on the plane, drawn as a
triangle with vertices (p(0), p(1), p(2)) = (0, 0, 1), (0, 1, 0) and (1, 0, 0) in Figure 1. Let

M(X1|X2 =0) = {p ∈ V (X1) : p(k) ≤ 1/3, k = 1, 2}

and

M(X1|X2 =1) = {p ∈ V (X1) : p(0) ≥ p(1) ≥ p(2)}

be conditional credal sets for X1 given X2, and M(X2) be the singleton containing the
distribution p of X2 such that p(0) = p(1) = 1/2. The first two sets are depicted in Figure 1.
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(0, 1, 0)

(0, 0, 1) (1, 0, 0)
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(a) M(X1|X2 =0)
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(b) M(X1|X2 =1)

Figure 1: Barycentric coordinate-system visualization of the conditional credal sets in Ex-
ample 1 (hatched regions) and their corresponding extreme distributions (black circles).

Let us represent a generic function f on {0, . . . ,m} by the m-tuple (f(0), . . . , f(m)), and
define

p1 = (1, 0, 0) , p2 = (2/3, 1/3, 0) ,

p3 = (1/3, 1/3, 1/3) , p4 = (2/3, 0, 1/3) ,

p5 = (1/2, 1/2, 0) , f1 = (−1, 2,−1) ,

f2 = (−1,−1, 2) , f3 = (1,−1, 0) ,

f4 = (0, 1,−1) , f5 = (1,−1) .

Then the set M(X1|X2 = 0) can be represented in vertex- and constraint-based form, re-
spectively, as M(X1|X2 = 0) = co{p1, p2, p3, p4} (co denotes the convex hull operator) and
M(X1|X2 = 0) = {p ∈ V (X1) : Ep(f1) ≤ 0,Ep(f2) ≤ 0}, while the set M(X1|X2 = 1) is
represented in vertex- and constraint-based forms as M(X1|X2 = 1) = co{p1, p3, p5} and
M(X1|X2 = 1) = {p ∈ V (X1) : Ep(f3) ≤ 0,Ep(f4) ≤ 0}, respectively. Similarly, M(X2)
can be represented as M(X2) = {(1/2, 1/2)} in vertex-based form, and as M(X2) = {p ∈
V (X2) : Ep(f5) ≤ 0,Ep(−f5) ≤ 0} in constraint-based form.

Vertex- and constraint-based representations of the same credal set can have very dif-
ferent sizes. To see this, consider a single variable X taking values in {0, . . . ,m}, and let
M = {p ∈ V (X) : p(k) ≤ 1/(m + 1), k = 1, . . . ,m}. The set M is isomorphic to an m-
dimensional hypercube, and therefore has 2m extreme distributions,4 whereas the same set
can be represented in constraint-based form by m degenerate functions of X translated by
1/(m+ 1). Moving from a vertex-based to a constraint-based representation can also result
in an exponential increase in the size of the input. Consider a variable X taking values in
{0, . . . ,m} and let M = {f(X) ≥ 0 :

∑m
k=1 |f(k) − 1/(2m)| ≤ 1/(2m),

∑m
k=0 f(k) = 1}.

The set M is affinely equivalent to the m-dimensional cross-polytope, and hence requires
2m inequalities to be described in constraint-based form, while it can be represented in

4. For any non-negative integer k not greater than m and any (potentially empty) subset S of {1, . . . ,m} of
cardinality k, any distribution that assigns mass (m+1−k)/(m+1) to p(0), mass 1/(m+1) to p(j) such
that j is in S, and zero mass elsewhere, is in M , since it satisfies all the constraints in M and is a valid
distribution. There are 2m such distributions, and each one cannot be written as a convex combination
of any other distribution in the set.
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vertex-based form by its 2m extreme distribution (Kalai & Ziegler, 2000, p. 11).5 Tessem
(1992) and de Campos, Huete, and Moral (1994) studied the representation of credal sets
defined by linear constraints of the form lx ≤ p(x) ≤ ux, where lx and ux are real numbers,
and showed that these credal sets can have exponentially many extreme distributions in the
number of constraints. Wallner (2007) proved an attainable upper bound of m! extreme
distributions on credal sets more generally defined by a coherent lower probability function
of an m-ary variable. More recently, Miranda and Destercke (2013) investigated the number
of extreme distributions in credal sets defined by linear constraints of the form p(x) ≤ p(x′)
for x 6= x′, and proved an attainable upper bound of 2m−1 extreme distributions for the
case of an m-ary variable. Importantly, both vacuous credal sets (of variables of any car-
dinality) and credal sets of binary variables can be succinctly represented in either vertex-
or constraint-based form. Some of the complexity results we obtain later on use vacuous
credal sets and/or binary variables and are thus representation independent.

2.2.2 Graph-Based Representation

So far we have only considered the explicit representation of a finitely generated credal set
by a finite number of functions representing either the vertices of the set or a set of linear
inequalities. Our final goal is however to be able to specify credal sets on large domains
x ∼ X. For a large set X, such an explicit representation is both too difficult to obtain and
too large to manipulate in a computer. Thus, analogously to the more efficient graph-based
representation of a large probability distribution given by a Bayesian network, a large joint
credal set is usually more efficiently represented implicitly as the credal set that satisfies all
irrelevances encoded in a given graph while agreeing on its projection with all local credal
sets, where the latter are credal sets that can be efficiently represented (either in vertex- or
constraint-based form) explicitly by functions of only small subsets of X.

A (separately specified) credal network N is a triple (X, G,Q), where G is a DAG with
nodes N , and Q is a set of imprecise probability assessments

∀f :
∑
xi∼Xi

f(xi)P(Xi=xi|XPa(i) = xPa(i)) ≥ min
q∈Q(Xi|xPa(i))

∑
xi∼Xi

f(xi)q(xi) , (5)

one for every i ∈ N and xPa(i) ∼ XPa(i), where each Q(Xi|xPa(i)) is a credal set of Xi and
f is an arbitrary real-valued function of Xi. Note that we left unspecified how these credal
sets are represented.

Example 2. Consider the credal network N over variables X1, X2 and X3 that take values
in {0, 1}, and with graph structure as shown in Figure 2. The local credal sets are

Q(X1) = {p ∈ V (X1) : 0.5 ≤ p(1) ≤ 0.6} = co{(0.4, 0.6), (0.5, 0.5)} ,
Q(X2) = {p ∈ V (X2) : 0.5 ≤ p(1) ≤ 0.6} = co{(0.4, 0.6), (0.5, 0.5)} ,

and Q(X3|X1 = i,X2 = j) = {pij} for any i and j, where pij is the probability distribution
on {0, 1} such that pij(1) = 0 if i = j and pij(1) = 1 otherwise.

5. The m-dimensional cross-polytope is the set {f(X) :
∑

x |f(x)| ≤ 1}, whose extreme distributions are
{±e1, . . . ,±em}, where ek (k = 1, . . . ,m) is the degenerate distribution placing all mass at X =k. The
fact that that set cannot be written with less than 2m inequalities follows from it being the dual of the
m-dimensional hypercube.
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1 2

3

Figure 2: DAG of the credal network in Example 2.

A node i in the network and its associated variable Xi are said to be precise (i.e., pre-
cisely specified) if the corresponding conditional credal sets Q(Xi|xPa(i)) are all singletons,
otherwise they are said to be imprecise (i.e., imprecisely specified). In Example 2 variable
X3 and its corresponding associated node are precise, while X1 and X2 are imprecise. If all
of its local credal sets are vacuous, the node and its corresponding variable are said to be
vacuous. A Bayesian network is simply a credal network with all nodes precise.

The DAG G of a credal network specifies a set of conditional irrelevances between sets
of variables which generalize the Markov condition in Bayesian networks. More specifically,
for any node i in G, the set XNd(i)\Pa(i) of non-descendant non-parent variables of Xi is
assumed irrelevant to Xi conditional on its parent variables XPa(i). The precise definition of
this statement requires the definition of an irrelevance concept. For instance, if stochastic
independence is adopted as irrelevance concept, then the DAG G describes a set of Markov
conditions as a Bayesian network (stochastic irrelevance implies stochastic independence).
In the credal network formalism, the two most common irrelevance concepts used are strong
independence and epistemic irrelevance.

Fix a joint credal set M of probability distributions of X, and consider subsets Y,
Z and W of X. We say that a set of variables Y is strongly independent of a set of
variables Z given variables W if Y and Z are stochastically independent conditional on
W under every extreme distribution p ∈ extM(X), which implies for every y, z and w
that Pp(Y = y|Z = z,W = w) = Pp(Y = y|W = w). We say that a set of variables Z
is epistemically irrelevant to a set of variables Y conditional on variables W if for every
function f on y ∼ Y and assignments z and w it follows that

min
p∈M

∑
y∼Y

f(y)Pp(Y=y|Z=z,W=w) = min
p∈M

∑
y∼Y

f(y)Pp(Y=y|W=w) , (6)

which is equivalent to say that the projection of M on Y conditioned on W=w and Z=z
equals the projection of M on Y conditioned only on W=w. It is an immediate conclusion
that strong independence implies epistemic irrelevance (and the converse is not necessarily
true) (Cozman, 2000; de Cooman & Troffaes, 2004). Variables Y and Z are epistemically
independent conditional on W if, given any assignment w, Y and Z are epistemically
irrelevant to each other (Walley, 1991, ch. 9).

The strong extension of a credal network N = (X, G,Q) is the largest credal set KS of
distributions of X whose extreme distributions satisfy the strong independence assessments
in G (viz. that every variable is strongly independent of its non-descendant non-parents
given its parents), and whose projections on local domains lie inside the local credal sets
specified in Q, that is, KS is the convex hull of the set of distributions of X whose induced
measure satisfies (1) and (5). One can show that the strong extension can be equivalently
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defined as (Antonucci & Zaffalon, 2008; Antonucci, de Campos, & Zaffalon, 2014)

KS
def
= co

{
p ∈ V (X) : p(x) =

∏
i∈N

q
xPa(i)

i (xi), q
xPa(i)

i ∈ extQ(Xi|xPa(i))

}
. (7)

The epistemic extension of a credal network is the largest joint credal set KE of X that
satisfies the epistemic irrelevance assessments in G (viz. the non-descendant non-parents
are irrelevant to a variable given its parents), and the assessments in Q. Equivalently, the
epistemic extension is the credal set KE defined by the set of probability distributions p of
X such that ∑

xi

f(xi)Pp(xi|xNd(i)) ≥ min
q∈Q(Xi|xPa(i))

∑
xi

f(xi)q(xi) , (8)

for all functions f of Xi, and assignment xNd(i). Note that these inequalities can be turned
into linear inequalities of the form (4) by multiplying both sides by Pp(xNd(i)) and rear-
ranging terms.

The following example is largely based on Example 9.3.4 of the work of Walley (1991).

Example 3. Consider the network in Example 2, and represent a function f of a binary
variable as the pair (f(0), f(1)). The strong extension KS is the credal set whose extreme
distributions are the four joint probability distributions p ∈ V (X1, X2, X3) such that

p(x1, x2, x3) = p1(x1)p2(x2)px1x23 (x3) for x1, x2, x3 ∈ {0, 1} ,

where

p1 ∈ {(0.4, 0.6), (0.5, 0.5)} , p2 ∈ {(0.4, 0.6), (0.5, 0.5)} ,
p00

3 = p11
3 = (1, 0) , p01

3 = p10
3 = (0, 1) .

Note that the strong extension contains four extreme distributions. The epistemic extension
KE is the set of joint probability distributions p ∈ V (X1, X2, X3) that satisfies the system
of linear inequalities

0.5 = min
q∈Q(X1)

q(1) ≤ Pp(X1 =1|x2) ≤ max
q∈Q(X1)

q(1) = 0.6 [x2 = 0, 1] ,

0.5 = min
q∈Q(X2)

q(1) ≤ Pp(X2 =1|x1) ≤ max
q∈Q(X2)

q(1) = 0.6 [x1 = 0, 1] ,

Pp(X3 =1|X1 =x,X2 =x) = 0 [x = 0, 1] ,

Pp(X3 =1|X1 =0, X2 =1) = Pp(X3 =1|X1 =1, X2 =0) = 1 .

One can verify that the set KE has the following six extreme distributions:

p1 = (0.25, 0, 0, 0.25, 0, 0.25, 0.25, 0) , p2 = (0.16, 0, 0, 0.36, 0, 0.24, 0.24, 0) ,

p3 = (0.2, 0, 0, 0.3, 0, 0.2, 0.3, 0) , p4 = (0.2, 0, 0, 0.3, 0, 0.3, 0.2, 0) ,

p5 = (2/9, 0, 0, 3/9, 0, 2/9, 2/9, 0) , p6 = (2/11, 0, 0, 3/11, 0, 3/11, 3/11, 0) ,

where the tuples on the right-hand side represent distributions p(x1, x2, x3) by

(p(0, 0, 0), p(1, 0, 0), p(0, 1, 0), p(1, 1, 0), p(0, 0, 1), p(1, 0, 1), p(0, 1, 1), p(1, 1, 1)) .

We observe that distributions p1 to p4 are extreme distributions of the strong extension,
whereas p5 and p6 are not in the strong extension.
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The example above shows an interesting and well-known relation between epistemic
and strong extensions, namely, that the latter is always contained in the former, and thus
produces more precise results (Walley, 1991, ch. 9.2).

We have already discussed how the choice of a representation of credal sets can affect
the complexity. The following result connects vertex- and constraint-based credal networks
under strong independence.

Proposition 1. Any vertex-based (separately specified) credal network can be efficiently
reduced to a constraint-based credal network over a larger set of variables that induces the
same strong extension when projected on the original set of variables.

Proof. Let Xi be a variable whose local credal set Q(Xi|xPa(i)) is specified by the ex-
treme distributions p1, . . . , pm, for a given assignment of the parents. Insert a new vacuous
variable Xα taking values in {1, . . . ,m}, and with Xi as its child and XPa(i) as its par-
ents, and redefine Q(Xi|xPa(i)) as the singleton that contains the conditional distribution
q(xi|xPa(i), xα =k) = pk(xi). One can verify that the strong extension of the new network
after marginalizing Xα coincides with the original strong extension.

The result above cannot be applied to derive the complexity of singly connected networks
since the reduction used in the proof inserts (undirected) cycles in the network. Thus,
it is not true that hardness results obtained for vertex-based singly connected networks
immediately extend to constraint-based singly connected networks, even though this is
always the case in the results we present here (for instance, we only use credal sets that are
easily translated from one representation to the other in our hardness results). Conversely,
tractability of constraint-based singly connected networks does not immediately extend to
vertex-based singly connected networks. It is unclear whether constraint-based networks
can be efficiently reduced to vertex-based form by inserting new variables, but we conjecture
that this is true.

2.2.3 Probabilistic Inference

Similarly to Bayesian networks, a primary use of credal networks is in deriving bounds for
probabilities implied by the model. The precise characterization depends on the choice of an
irrelevance concept. We define the inference problem under strong independence as follows.

STRONG-INF
Input: A credal network (X, G,Q), a target node t, an assignment xt of Xt, a
(possibly empty) set of evidence nodes O, and an assignment xO of XO.
Output : The numbers

min
p∈KS

Pp(Xt=xt|XO = xO) and max
p∈KS

Pp(Xt=xt|XO = xO) ,

where KS is the strong extension of the network.

An analogous inference problem can be defined for epistemic irrelevance, simply by
replacing the strong extension in the output of the problem above by the epistemic extension:
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EPISTEMIC-INF
Input: A credal network (X, G,Q), a target node t, an assignment xt of Xt, a
(possibly empty) set of evidence nodes O, and an assignment xO of XO.
Output : The numbers

min
p∈KE

Pp(Xt=xt|XO = xO) and max
p∈KE

Pp(Xt=xt|XO = xO) ,

where KE is the epistemic extension of the network.

We assume in both problems that when the lower probability of the evidence is zero (i.e.,
minp Pp(XO=xO) = 0), then any value is a solution (that is, the minimization may achieve
zero and the maximization one).6 For a recent treatment of the zero probability case, see
the work of de Bock and de Cooman (2013). We emphasize that our complexity results hold
true regardless of how zero probabilities are treated, because we take the appropriate care
to avoid any conditioning event with zero probability in our reductions (as it will become
clear later on).

Example 4. Consider again the network in Example 2, and assume that the target node
is t = 3, xt = 0 and XO is the empty set. The strong extension KS has been defined in
Example 3. The outcome of STRONG-INF is

min
p∈KS

P(X3 =0) = min
∑
x1,x2

p1(x1)p2(x2)px1x23 (0)

= 1 + min{2p1(0)p2(0)− p1(0)− p2(0)}
= 1− (2 · 1/2 · 1/2− 1/2− 1/2) = 1/2 ,

where the minimizations on the right are performed over p1 and p2, and

max
p∈KS

P(X3 =0) = max
∑
x1,x2

p1(x1)p2(x2)px1x23 (0)

= 1 + max{2p1(0)p2(0)− p1(0)− p2(0)}
= 1− (2 · 0.4 · 0.4− 0.4− 0.4) = 0.52 .

The outcome of EPISTEMIC-INF are the values of the solutions of the linear programs

min{p(0, 0, 0) + p(1, 1, 0) : p ∈ KE} = 5/11 < 1/2

and
max{p(0, 0, 0) + p(1, 1, 0) : p ∈ KE} = 5/9 > 0.52 ,

where KE is the epistemic extension defined in Example 3.

The fact that the lower bound (resp., upper bound) of EPISTEMIC-INF in the example
above is smaller (resp., greater) than the lower bound (upper bound) of STRONG-INF is
a direct consequence of the fact that the strong extension is contained in the epistemic
extension.

6. If the upper probability of the evidence is positive, the regular extension can be used to compute non-
vacuous inferences (see Walley, 1991, Appendix J).
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Let also δz denote the Kronecker’s delta function at z, which returns one at z and zero
elsewhere. Since there is an one-to-one mapping between expectation and probability, we
can state the inference problems in a slightly different but equivalent way.

STRONG-INF2
Input: A credal network (X, G,Q), a target node t, an assignment xt of Xt, a
(possibly empty) set of evidence nodes O, and an assignment xO of XO.
Output : The solution µ of optp∈KS

Ep([µ− δxt ]δxO) = 0, where KS is the strong
extension of the network, with opt ∈ {min,max}.

EPISTEMIC-INF2
Input: A credal network (X, G,Q), a target node t, an assignment xt of Xt, a
(possibly empty) set of evidence nodes O, and an assignment xO of XO.
Output : The solution µ of optp∈KE

Ep([µ − δxt ]δxO) = 0, where KE is the
epistemic extension of the network, and opt ∈ {min,max}.

The main advantage of these reformulations is that a linear-fractional programming
problem is transformed into a linear programming problem, which facilitates obtaining
some results. We will refer to both reformulations interchangeably, having in mind their
equivalence.

3. Complexity Results

In this section we study the complexity of inference in credal networks with respect to the
irrelevance concept adopted, the network topology and the variable domain cardinality.

3.1 Previously Known Results

Computing STRONG-INF is notoriously a hard task, whose complexity strongly depends
on the topology of the DAG and the cardinality of the variable domains. Cozman et al.
(2004) proved this problem to be NPPP-hard. De Campos and Cozman (2005) studied
the parametrized complexity and concluded that the problem is NP-hard even on singly
connected networks of bounded treewidth. A long-known positive result is the 2U algo-
rithm of Fagiuoli and Zaffalon (1998), which solves the problem in polynomial time if the
underlying graph is a polytree and all variables are binary. For networks assuming a naive
Bayes topology (i.e., containing a single root variable which is the single parent of all re-
maining variables), Zaffalon (2002) showed that STRONG-INF can be computed efficiently
when the query is the root variable. Zaffalon and Fagiuoli (2003) showed that the problem
is polynomial-time solvable in tree-shaped networks if there is no evidence. De Campos
and Cozman (2005) showed that obtaining approximate solutions with a provably maxi-
mum error bound is impossible unless P equals NP, even in polytrees. On the other hand,
Mauá, de Campos, and Zaffalon (2013) showed that when both variable cardinalities and
treewidth are assumed bounded, there is a fully polynomial-time approximation scheme
that finds solutions withing a given error ε in time polynomial in the input and in 1/ε. This
is the only known positive result regarding the complexity of approximate inference with
credal networks when the exact solution is NP-hard.
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Much fewer is known about the complexity of EPISTEMIC-INF. A positive result was
given by de Cooman et al. (2010), who developed a polynomial-time algorithm for compu-
tations in credal trees.

3.2 Outline of the Contributions

Our first contribution (sect. 3.3) is the development of credal networks with polynomial-time
computable numbers. We show that such networks allow us to approximate arbitrarily well
any network while still inducing positive lower probabilities on any event. This is useful to
extend our subsequent complexity results (some of them involving events of lower probability
zero) to the case where the lower probability of any event is strictly positive.

We then proceed to derive complexity results about STRONG-INF and EPISTEMIC-
INF. The first new complexity result concerns precise-vacuous networks, which are credal
networks comprised of vacuous root nodes and precise non-root nodes (sect. 3.4). Any credal
network can be transformed into a precise-vacuous network on which STRONG-INF provides
the same results as the original network; moreover, STRONG-INF is known to be NPPP-
hard in such models. We show that the solutions of STRONG-INF and EPISTEMIC-INF
coincide in precise-vacuous networks, which implies the NPPP-hardness of EPISTEMIC-INF.
The hardness result holds even in the case of binary variables (and multiply connected
networks).

We next show that both problems remain NP-hard in singly connected credal networks
even if we constraint variables to take on at most three values and bound the treewidth on
two (sect. 3.5). We show in the sequence that STRONG-INF is NP-hard already in credal
trees (sect. 3.6); as discussed, EPISTEMIC-INF is polynomial-time computable in this case.

Imprecise hidden Markov models are tree-shaped credal networks that extend standard
(precise) Hidden Markov Models (HMMs) to allow for imprecisely specified parameters
in the form of credal sets. HMMs are commonly used to represent time-dependent pro-
cess and have wide applicability. Since imprecise HMMs are particular instances of credal
trees, EPISTEMIC-INF can be performed in polynomial time in such models. We show
in Section 3.7 that when the target node is the last node in the longest directed path of
the network inferences under strong independence and epistemic irrelevance coincide (in the
context of time-series prediction, such an inference is known as filtering). As a consequence,
STRONG-INF is also polynomial-time computable for such queries. This is despite the fact
that the strong and the epistemic extensions might disagree on such models, as we show by
a counter-example with a different type of query. We leave open the complexity of more
general inferences in imprecise HMMs under strong independence.

As corollaries of the equivalence of a certain type of inference in HMMs, we obtain that
STRONG-INF and EPISTEMIC-INF also coincide in marginal inference (i.e., with no evi-
dence) in tree-shaped networks, in last-node inference in imprecise Markov chains (sect. 3.8)
and in naive Bayes structures (sect. 3.9). These results have been previously obtained inde-
pendently for each irrelevance concept and their tractability was thought to be coincidental.

We organize the presentation of the above mentioned results according to the complexity
of the underlying DAG, listing results from the most complex structures to the simplest
ones. The reason to proceed in this fashion is to allow obtaining some results for simpler
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models such as imprecise Markov chains and naive Bayes structures as corollaries of results
for more complex models such as imprecise hidden Markov models.

3.3 Networks Specified with Computable Numbers

Before presenting the complexity results, we need to introduce the concept of polynomial-
time computable numbers, and to discuss some properties of networks specified with such
numbers. This will be used within later proofs in an essential way, including (but not only)
showing that the hardness results hold true even if we assume that any possible event has
positive probability.

A number r is polynomial-time computable if there exists a transducer Turing machine
Mr that, for an integer input b (represented through a binary string), runs in time at most
poly(b) (the notation poly(b) denotes an arbitrary polynomial function of b, and might
indicate a different polynomial at each time it is used) and outputs a rational number
r′ (represented through its numerator and denominator in binary strings) such that |r −
r′| < 2−b. Of special relevance to us are numbers of the form (2−v1 − 2−v2)/(1 + 2−v3),
with v1, v2 and v3 being non-negative rationals no greater than two. For any rational v
between zero and two we can build a machine that outputs a rational r′ that approximates
2−v with precision b in time poly(b) by computing the Taylor expansions of 2−v around
zero with sufficiently many terms (depending on the value of b) similar to the proof of
Lemma 4 of the work of Mauá et al. (2013). The desired numbers can then be obtained
by the corresponding fractional expression. The following lemmas ensure that the outcome
of STRONG-INF on networks specified with polynomial-time computable numbers can be
approximated arbitrarily well using a network specified only with positive rational numbers.
It allows us to specify the desired precision and for which nodes of the network the numerical
parameters will be “approximated” by positive rational numbers.

Lemma 1. Consider a vertex-based credal network N whose numerical parameters are
specified with polynomial-time computable numbers encoded by their respective machines (or
directly given as rational numbers), and let b be the size of the encoding of N . Given a
subset of the nodes N ′ ⊆ N of N and a rational number 1 ≥ ε ≥ 2−poly(b), we can construct
in time poly(b) a vertex-based credal network N ′ over the same variables whose numerical
parameters that specify the credal sets of nodes N ′ are all rational numbers greater than
2−poly(b) (numerical parameters related to nodes not in N ′ are kept unchanged), and such
that there is a polynomial-time computable surjection (p, p′) that associates any extreme p
of the strong extension of N with an extreme p′ of the strong extension of N ′ satisfying

max
xA

|Pp′(XA=xA)− Pp(XA=xA)| ≤ ε ,

for any subset XA ⊆ X of the variables.

Proof. Take N ′ to be equal to N except that each computable number r used in the speci-
fication of N for nodes N ′ is replaced by a rational r′ such that |r′ − r| < 2−(n+1)(v+1)−1ε,
where n is the number of variables, and v is the maximum cardinality of the domain of any
variable in N . Because ε ≥ 2−poly(b), we can run the Turing machine Mr used to represent r
on input poly(b)+(n+1)(v+1)+1 to obtain r′ in timeO(poly(poly(b) + (n+ 1)(v + 1) + 1)),
which is O(poly(b)). After obtaining r′, add to it 2−(n+1)(v+1)−1ε to ensure that r < r′ <
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r + 2−(n+1)(v+1)ε, that is, the approximation is from above. However, exactly one of the
probability values in each distribution used to represent an extreme of a local credal set in
N ′ is not approximated in that way but is computed as one minus the sum of the other
numbers to ensure that its distribution adds up exactly to one; we can choose the greatest
value for that (by trying each of the (at most) v states, which probability value is at least
1/v), and its error with respect to the corresponding original computable number will be
at most (v − 1) · 2−(n+1)(v+1)ε < 2−n(v+1)ε. This construction ensures that every created
rational number is greater than 2−(n+1)(v+1)−1ε > 2−poly(b) and have an “error” of at most
2−n(v+1)ε to the original corresponding number.

Let qi(xi|xPa(i)) and q′i(xi|xPa(i)) denote, respectively, the parameters of N and N ′ (i.e.
they are corresponding extreme distributions of the local credal sets Q(Xi|xPa(i)) in the two
networks) such that q′i(xi|xPa(i)) is the approximated version computed from qi(xi|xPa(i))
as explained. Consider an assignment x to all variables in N (or in N ′). Let also p be
an extreme of the strong extension of N . Then p factorizes as p(x) =

∏
i∈N qi(xi|xPa(i)),

for some combination of extreme distributions qi(·|xPa(i)) from Q(Xi|xPa(i)), i ∈ N . Fi-
nally, let p′ be an extreme distribution in the strong extension of N ′ that satisfies p′(x) =∏
i∈N q

′
i(xi|xPa(i)). By construction, |q′i(xi|xPa(i)) − qi(xi|xPa(i))| ≤ 2−n(v+1)ε. It follows

from the binomial expansion of the factorization of p′(x) on any x that

p′(x) =
∏
i∈N

q′i(xi|xPa(i)) ≤
∏
i∈N

(
2−n(v+1)ε+ qi(xi|xPa(i))

)
=
∑
A⊆N

(2−n−vnε)n−|A|
∏
i∈A

qi(xi|xPa(i))

≤ 2n2−n−vnε+
∏
i∈N

qi(xi|xPa(i))

= p(x) + 2−nvε .

The second inequality follows from the fact that there is one term for p(x) in the expansion
and 2n − 1 terms that can be written as a product of 2−n(v+1)ε by non-negative numbers
less than or equal to one. With a similar reasoning, we can show that

p′(x) ≥
∏
i∈N

(
qi(xi|xPa(i))− 2−n(v+1)ε

)
≥ p(x)− 2−nvε .

Thus, maxx |p′(x) − p(x)| ≤ 2−nvε. Now consider a subset of the variables XA and an
assignment xA ∼ XA. Since

Pp′(XA=xA) =
∑

x′:x′A=xA

p′(x′) ,

each term p′(x′) in that sum satisfies p′(x′) ≤ p(x′)+2−nvε, and because there are less than
vn ≤ 2vn terms being summed, it follows that

Pp′(XA=xA) ≤
∑

x′:x′A=xA

(
p(x) + 2−vnε

)
≤ Pp(XA=xA) + ε .

An analogous argument can be used to show that Pp′(XA=xA) ≥ Pp(XA=xA)− ε. Note
that the obtained mapping (p, p′) is a surjection by construction.
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The above lemma has the following direct consequence on the computation of the
STRONG-INF with polynomial-time computable numbers. The only restriction for its ap-
plication is that the computable numbers must be either zero or greater than some ρ that
is not “exponentially close to zero”.

Corollary 1. Consider a vertex-based credal network N whose numerical parameters are
specified with polynomial-time computable numbers encoded by their respective machines (or
directly given as rational numbers), such that no such number lies properly in ]0, ρ[, for
some 0 ≤ ρ ≤ 1. Let b be the size of the encoding of the network. Given a subset of the
nodes N ′ ⊆ N of N and a rational number ε with 2−poly(b) ≤ ε < ρ, we can construct
in time poly(b) a vertex-based credal network N ′ over the same variables whose numerical
parameters defining credal sets related to nodes N ′ are all strictly positive rational numbers
greater than 2−poly(b) (numbers defining credal sets of nodes not in N ′ are kept unchanged),
and such that 7

|STRONG-INF(N ′, t, xt, O,xO)− STRONG-INF(N , t, xt, O,xO)| ≤ ε ,

for any query t, xt, O,xO such that either O = ∅ or minp Pp(xO) > 0 in N .

Proof. According to Lemma 1, there is a polynomial-time computable network N ′ whose
numerical parameters that specify the credal sets related to nodes N ′ are positive ra-
tional numbers and a polynomial-time computable surjection (p, p′) such that p and p′

are, respectively, extreme distributions of the strong extension of N and N ′, and satisfy
|Pp′(xA)− Pp(xA)| ≤ εn+1/3 for all XA ⊆ X and xA ∼ XA. It follows that

Pp′(xt|xO) =
Pp′(xt,xO)

Pp′(xO)
≥ Pp(xt,xO)− εn+1/3

Pp(xO) + εn+1/3
,

where p′ is the image of p according to the surjection. If Pp(xt,xO) = 0, this equation
is useless and vanishes. Otherwise, by Lemma 7 of the work of de Campos and Cozman
(2013), we have that

Pp(xt,xO)− εn+1/3

Pp(xO) + εn+1/3
≥ Pp(xt|xO)− 2εn+1/3

ρn
≥ Pp(xt|xO)− ε .

The other side of the inequality is obtained analogously (using once more Lemma 7 of the
work of de Campos & Cozman, 2013, except for the case of Pp(xt,xO) = 0, when the
following reasoning is valid without the need of that lemma):

Pp′(xt|xO) ≤ Pp(xt,xO) + εn+1/3

Pp(xO)− εn+1/3
≤ Pp(xt|xO) +

2εn+1/3

ρn − εn+1/3

≤ Pp(xt|xO) +
2ε

3− ε
≤ Pp(xt|xO) + ε.

Hence, |Pp′(xt|xO)−Pp(xt|xO)| ≤ ε. Let p be an extreme distribution in the strong extension
of N such that Pp(xt|xO) = minq∈KS

Pq(xt|xO), where KS denotes the strong extension of

7. We abuse notation of STRONG-INF, as it is defined for opt ∈ {min,max}. We intend to mean that the
equation is valid for both options of opt.
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N . We have that

min
q∈KS

Pq(xt|xO) = Pp(xt|xO) ≥ Pp′(xt|xO)− ε ≥ min
q′∈K′S

Pq′(xt|xO)− ε ,

where p′ in the first inequality is the image of p according to the surjection, and K ′S in the
last inequality is the strong extension of N ′. It follows from the above that

min
q′∈K′S

Pq′(xt|xO)− min
q∈KS

Pq(xt|xO) ≤ ε .

The other side comes by contradiction. Suppose that

min
q∈KS

Pq(xt|xO)− min
q′∈K′S

Pq′(xt|xO) > ε ⇐⇒ min
q∈KS

Pq(xt|xO)− ε > min
q′∈K′S

Pq′(xt|xO) .

Hence there would exist an extreme q′ ∈ K ′S such that |Pq′(xt|xO)−Pq(xt|xO)| > ε for any
q ∈ KS , which is impossible because the mapping (q, q′) is a surjection. An analogous proof
works for showing that the upper bounds according to the two networks do not differ by
more than ε.

3.4 Precise-Vacuous Networks

To show that EPISTEMIC-INF is NPPP-hard in arbitrary networks, we need the following
result, which shows that inferences under strong independence and epistemic irrelevance
coincide on precise-vacuous networks.

Proposition 2. Consider a credal network whose root nodes are vacuous and non-root
nodes are precise. Let t be a non-root node, x̃t an arbitrary value of Xt and O = ∅. Then
STRONG-INF equals EPISTEMIC-INF.

Proof. Let XR be the vacuous variables associated with the root nodes (hence to vacuous
local credal sets), and XI denote the remaining variables (which are precise). For every
precise node i in I, let q

xPa(i)

i (xi) be the single distribution in the associated credal set
Q(Xi|xPa(i)). Consider an arbitrary distribution p in the epistemic extension KE , and let
< be a topological ordering of the nodes. For an assignment x to X, we write x<i to denote
the coordinates j < i of x according to the topological ordering. For every node i the set
{j ∈ N : j < i} is a subset of Nd(i), and it follows from the definition of epistemic extension
that Pp(xi|x<i) = q

xPa(i)

i (xi) for every precise node i and assignments xi and x<i. By the
Chain Rule we have that

∀x ∼ X : Pp(x) = Pp(xR)
∏
i∈I

Pp(xi|x<i) = q(xR)
∏
i∈I

q
xPa(i)

i (xi) ,

where q is any distribution of XR (since these nodes are vacuous, any distribution satisfies
the constraints in KE for them). As stated, let x̃t be the value of interest of Xt. The result
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of EPISTEMIC-INF is thus given by

min
p∈KE

Pp(Xt= x̃t) = min
q∈V (XR)

∑
x

δx̃t(xt) · q(xR) ·
∏
i∈I

q
xPa(i)

i (xi)

= min
q∈V (XR)

∑
xR

q(xR)
∑
xI

∏
i∈I

q
xPa(i)

i (xi)δx̃t(xt)

= min
q∈V (XR)

∑
xR

q(xR) · g(xR) ,

where g(xR)
def
=
∑

xI

∏
i∈I δx̃t(xt)q

xPa(i)

i (xi). According to the last equality, the lower
marginal probability of Xt= x̃t is a convex combination of g(xR). Hence,

min
p∈KE

Pp(Xt= x̃t) ≥ min
xR

∑
xI\{q}

∏
i∈I

q
xPa(i)

i (xi) .

The rightmost minimization is exactly the value of the lower marginal probability returned
by STRONG-INF, and since the strong extension is contained in the epistemic extension,
the inequality above is tight. An analogous result can be obtained for the upper probability
by substituting minimizations with maximization and inverting the inequality above.

The class of networks considered in the result above might seem restrictive at first
sight. However, Antonucci and Zaffalon (2008) showed that STRONG-INF in any credal
network whose local credal sets are represented in vertex-based form can be reduced in
linear time to the same problem in a credal network containing only vacuous and precise
nodes. Such a network can then be transformed in linear time into a precise-vacuous network
(i.e., one in which root nodes are vacuous and non-root nodes are precise) by applying
Transformation 6 in the work of Mauá, de Campos, and Zaffalon (2012a),8 which increases
the treewidth of the network by at most three. Hence, any vertex-based credal network
can be reduced in polynomial time into a precise-vacuous network for which STRONG-
INF provides the same result as for the original network (and whose treewidth remains
bounded, if it originally were). The hardness of EPISTEMIC-INF in precise-vacuous credal
networks follows immediately from the hardness of inference under strong independence
and Proposition 2, as the following corollary shows.

Corollary 2. STRONG-INF and EPISTEMIC-INF are NPPP-hard even if all variables are
binary and all numerical parameters are strictly positive.

Proof. Cozman et al. (2004) used a reduction from E-MAJSAT to STRONG-INF without
evidence in a binary credal network whose root nodes are vacuous and non-root nodes are
precise to show that such inference is NPPP-hard. Since according to Proposition 2 the result
of EPISTEMIC-INF is the same, EPISTEMIC-INF is also NPPP-hard. In order to show that
the result is valid also if all numerical parameters are strictly positive, we will only sketch
the proof so as to avoid repeating all the formulation for the E-MAJSAT problem. Using
Lemma 1 with epsilon ε = 2−poly(b) smaller than the precision of any number involved in

8. Strictly speaking, the work of Mauá et al. (2012a) deals with influence diagrams; the link between those
and credal networks was established by Antonucci and Zaffalon (2008) and de Campos and Ji (2008).
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any calculation, we build a new network where all numerical parameters are strictly positive
and the variation in the result of STRONG-INF is negligible such that it can still decide
E-MAJSAT (further details on how small ε has to be are omitted for simplicity, but the
gap between instances is large enough that 2−O((n+m)2) will suffice, where n,m are the
number of variables and clauses in the specification of E-MAJSAT, see Park & Darwiche,
2004, Thm. 2). Because EPISTEMIC-INF contains STRONG-INF, its result after applying
Lemma 1 will be between the results of STRONG-INF in the new network and in the old
network (the latter equals that of EPISTEMIC-INF). Hence, EPISTEMIC-INF in the new
network with strictly positive numerical parameters also decides E-MAJSAT.

Note that the result holds irrespective of how the local credal sets are represented, since
vacuous and precise nodes can be mapped from constraint-based to vertex-based form and
vice-versa in polynomial time.

3.5 Singly Connected Networks

We now turn our attention to singly connected networks. A first result is a direct conse-
quence of Proposition 2 is the NP-hardness of EPISTEMIC-INF in singly connected credal
networks, since STRONG-INF is NP-hard in singly connected networks, even if we admit
imprecision only on root nodes:

Corollary 3. EPISTEMIC-INF is NP-hard in singly connected credal networks.

Proof. In the work of de Campos and Cozman (2005) it has been shown that STRONG-INF
is NP-hard in precise-vacuous singly connected networks. Since Proposition 2 shows that
EPISTEMIC-INF can be reduced to STRONG-INF on the same input, the result follows.

The proof of NP-hardness of STRONG-INF provided by de Campos and Cozman (2005)
requires the variable domain cardinalities to be unbounded. We present here the stronger
result of NP-hardness of credal inference in networks where imprecise variables are binary
and precise ones are at most ternary. We can now show NP-hardness of credal inference in
singly connected networks with bounded variable cardinality.

Theorem 1. STRONG-INF and EPISTEMIC-INF are NP-hard even if the network is singly
connected and has treewidth at most two, all imprecise variables are binary, and all precise
variables are (at most) ternary. Moreover, all numerical parameters in the network are
strictly positive.

Proof. We defer the treatment of zero numerical parameters to the final part. We build
a singly connected credal network with underlying graph as in Figure 3. The variables
(associated with nodes) on the upper row are binary and vacuous, namely X1, . . . , Xk,
while the remaining variables Xk+1, · · · , X2k+1 are ternary and precise. The local credal
sets associated with precise nodes are singletons such that Q(Xk+1) contains a uniform
distribution q(xk+1) = 1/3, and, for i = k + 2, . . . , 2k + 1, Q(Xi|xi−1, xi−k−1) contains the
conditional distribution q(Xi|xi−1, xi−k−1) specified in Table 1. The rational numbers vi in
the table shall be defined later on. Consider an extreme distribution p(x) of the strong
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k+1

1 2 3 k

k+2 k+3 k+4 · · · 2k+1

Figure 3: Credal network structure used to prove Theorem 1. The shaded node is the
target.

q(xi|xi−1, xi−k−1) xi=1 xi=2 xi=3

xi−1 =1, xi−k−1 =1 2−vi 0 1− 2−vi

xi−1 =2, xi−k−1 =1 0 1 0
xi−1 =3, xi−k−1 =1 0 0 1
xi−1 =1, xi−k−1 =0 1 0 0
xi−1 =2, xi−k−1 =0 0 2−vi 1− 2−vi

xi−1 =3, xi−k−1 =0 0 0 1

Table 1: Local probability distributions used to prove Theorem 1

extension of the network. It follows for all x that

p(x) = q(xk+1)

2k+1∏
i=k+2

q(xi|xi−1, xi−k−1)
∏
i∈A

δ1(xi)
∏
i/∈A

δ0(xi) ,

for some A ⊆ {1, . . . , k}. This is because the extreme distributions of local vacuous sets
over binary variables are δ0 and δ1, and each choice of a local extreme for a root node can
be associated with a choice of either including or excluding its corresponding node in/from

A. Let ¬A def
= {1, . . . , k} \ A denote the complement of a set A with respect to {1, . . . , k}.

We have that

p(x) =

{
1
3

∏2k+1
i=k+2 q(xi|xi−1, xi−k−1), if xA = 1 and x¬A = 0 ;

0, otherwise.

It follows that

Pp(X2k+1 =1) =
∑
x

p(x)δ1(x2k+1) =
2−

∑
i∈A vi

3
and Pp(X2k+1 =2) =

2
∑

i∈A vi−2

3
.

We show the NP-hardness of credal inference by reducing the NP-complete PARTITION
problem (Garey & Johnson, 1979) to the computation of maxp∈KS

Pp(X2n+1 = 3). We
define PARTITION as follows.

PARTITION
Input : List of positive integers z1, . . . , zk.
Output : Is there a subset A ⊆ {1, . . . , k} such that∑

i∈A
zi =

∑
i∈¬A

zi ?
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Figure 4: Function used in the reduction in the proof of Theorem 1.

Notice that the above equality is equivalent to

∑
i∈A

zi/z = 1 , where z =
1

2

k∑
i=1

zi .

Define the exponents in Table 1 as vi
def
= zi/z, and let vA

def
=
∑

i∈A vi. It follows for any A
that vA = 2−

∑
i∈¬A vi. If an instance of the PARTITION is a yes-instance (i.e., if the output

of PARTITION is yes), then there is A for which vA = 1, whereas if it is a no-instance (i.e.,
if the output is no), then for any A, it follows that |vA − 1| ≥ 1/(2z) because the numbers
in the input are integers and hence the sums of two different sets are either equal or differ
by at least one. Consider the function

h(vA) =
2−(vA−1) + 2vA−1

2
.

The graph of the function is depicted in Figure 4. Seen as a function of a continuous variable
vA ∈ [0, 2], the function above is strictly convex, symmetric around one, and achieves the
minimum value of one at vA = 1. Thus, if PARTITION returns yes then minA h(vA) = 1,
while if it returns no we have that

min
A
h(vA) ≥ 2−1/(2z)−1 + 21/(2z)−1 ≥ 2(2z)−4

> 1 + (2z)−4/2 = 1 + 1/(32z4) ,

where the second inequality is due to Lemma 24 in the work of Mauá et al. (2012a), and

the strict inequality follows from the first-order Taylor expansion of 2(2z)−4
. Let α

def
=

(1+z−4/64)/3. By computing STRONG-INF with query X2n+1 =3 and no evidence, we can
decide PARTITION, as

1−max Pp(X2k+1 =3) = min
p

(Pp(X2k+1 =1) + Pp(X2k+1 =2)) = min
A

h(vA)

3
≤ α

if and only if the result of PARTITION is yes. It remains to show that we can polynomially
encode the numbers 2−zi/z. This is done by applying Lemma 1 with a small enough ε
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0

1 2 3 · · · k

k+1 k+2 k+3 · · · 2k

Figure 5: DAG of the credal tree used to prove Theorem 2.

computable in time polynomial in the size of the partition problem: ε = 1/(3 · 64z4)
suffices. Note that if we only apply Lemma 1 to the non-root nodes and leave the root
nodes untouched as vacuous, then according to Proposition 2, the outcome of EPISTEMIC-
INF is the same, proving also its NP-hardness. Now, by further applying Lemma 1 to root
vacuous nodes, we ensure all numerical parameters are strictly positive and still yield a
result that can be used to decide PARTITION. Because EPISTEMIC-INF contains STRONG-
INF, its result after applying Lemma 1 will be between the results of STRONG-INF in the
new network and in that network with vacuous root nodes. Hence, EPISTEMIC-INF in the
new network with strictly positive numerical parameters also decides PARTITION.

3.6 Credal Trees

The previous complexity results showed that, from a theoretical standpoint, computing the
EPISTEMIC-INF is just as difficult as solving STRONG-INF. When the underlying graph is
a tree, de Cooman et al. (2010) showed that EPISTEMIC-INF can be computed efficiently,
and it was previously unknown whether a similar result could be obtained for STRONG-INF.
The next result shows that in this case the equivalence on the tractability under the two
different irrelevance concepts does not hold unless P equals NP.

Theorem 2. STRONG-INF in tree-shaped credal networks is NP-hard, even if only one vari-
able is ternary and precise and all the rest are binary, and even if all numerical parameters
are strictly positive.

Proof. We show hardness by a reduction from PARTITION as defined previously. As before,

we define vi
def
= zi/z, and vA

def
=
∑

i∈A vi, and note that vA = 2−
∑

i∈¬A vi. We also let h(vA)
to be as before (thus h is strictly convex on [0, 2], symmetric around one, and achieves the
minimum value of one at vA = 1). Given an instance of PARTITION (i.e., a list of integers),
we build a credal tree N over variables X0, . . . , X2k with DAG as in Figure 5. The root
variable X0 takes values in {1, 2, 3}, and is precise and uniformly distributed (i.e., its local
credal set contains only the distribution q0(x0) = 1/3). The remaining variables are all
binary and take values in {0, 1}. For i = 1, . . . , k, we specify the local conditional credal
sets Q(Xi|x0) as singletons {qx0i } such that

qx0i (1) =


2−vi/(1 + 2−vi), if x0 = 1,

1/(1 + 2−vi), if x0 = 2,

1/2, if x0 = 3.
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For i = 1 + k, . . . , 2k we specify the local credal sets Q(Xi|xi−k) = {p ∈ V (Xi) : ε ≤ p(1) ≤
1}, where ε = 2−k−3/(64z4). Each of these local credal sets can be represented either in
vertex-based form by two extreme distributions or by a couple of constraints.

Let

µ
def
= max

p∈KS

Pp(X0 =3|XO=xO) = max
p∈KS

Pp(X0 =3,XO=xO)

Pp(XO=xO)
.

Hence, µ is the solution of

max
p∈KS

[∑
x0

(δ3(x0)− µ)Pp(X0 =x0,XO=xO)

]
= 0 .

By definition, any extreme distribution p in the strong extension KS satisfies for x ∼ X
such that xk+1 = xk+2 = · · · = x2k = 1 the equality

p(x) = q0(x0)
k∏
i=1

qx0i (xi)α
xi
i ,

where each αxii is a number in [ε, 1]. Let O = {k+1, . . . , 2k} and xO = (1, . . . , 1). It follows
that µ is the solution of

max
∑

x0,...,xk

(δ3(x0)− µ)q0(x0)
k∏
i=1

qx0i (xi)α
xi
i = 0 ,

where the maximization is performed on α0
i , α

1
i , for i = 1, . . . , k. Consider j ∈ {1, . . . , k}

and let

β
xj
j

def
=

∑
x0,...,xj−1

∑
xj+1,...,xk

(δ3(x0)− µ) q0(x0)qx0j (xj)
k∏

i=1,i 6=j
[qx0i (xi)α

xi
i ] .

Then,

max
∑

x0,...,xk

(δ3(x0)− µ) q0(x0)

k∏
i=1

[qx0i (xi)α
xi
i ] = max

(
α0
jβ

0
j + α1

jβ
1
j

)
.

Since α0
j and α1

j are both positive, the maximization in the right-hand side above equals

zero only if both β0
j and β1

j are zero or they have different signs. In the former case, any

value of α0
j and α1

j maximizes the expression, and we can assume that (α0
j , α

1
j ) equals (ε, 1)

or (1, ε). In the latter case, β0
j < β1

j implies that (α0
j , α

1
j ) equals (ε, 1) in order to maximize

the expression, and (α0
j , α

1
j ) = (1, ε) would do it otherwise. Since we selected j arbitrarily,

the result holds for all j. Thus, the maximization is equivalent to selecting, for i = 1, . . . , k,
a value yi in {0, 1} such that α0

i = ε1−yi and α1
i = εyi . It follows that

max
∑

x0,...,xk

(δ3(x0)− µ) q0(x0)
k∏
i=1

[qx0i (xi)α
xi
i ] =

max
y∈{0,1}k

∑
x0,...,xk

(δ3(x0)− µ) q0(x0)
k∏
i=1

[qx0i (xi)ε
(1−xi)(1−yi)εxiyi ] .

625
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By rearranging terms, we obtain

max
y∈{0,1}k

∑
x0

(δ3(x0)− µ) q0(x0)
k∏
i=1

[
qx0i (0)ε1−yi + qx0i (1)εyi

]
,

which by construction equals

max
y∈{0,1}k

−

(
µ

3
γ

k∏
i=1

[ε1−yi + 2−viεyi ] +
µ

3
γ

k∏
i=1

[2−viε1−yi + εyi ] +
µ− 1

3

k∏
i=1

1 + ε

2

)
,

where γ =
∏k
i=1 q

2
i (1) (recall that q2

i (1) is the conditional probability value of Xi = 1
given X0 = 2). The binary vector y can be seen as the characteristic vector of a subset
A ⊂ {1, . . . , k}. Define

bA
def
=
∏
i∈A

(2−vi + ε)
∏
i∈¬A

(1 + 2−viε)

for every subset A. The optimization on y can be rewritten as the following optimization
over subsets A: find µ such that(

−µ− 1

3

(
1 + ε

2

)k
+ max

A
−µ

3
γ (bA + b¬A)

)
= 0 .

Solving the expression above for µ, we get to

µ =

(
1 +

(
2

1 + ε

)k
γmin

A
(bA + b¬A)

)−1

.

Define the function g(a) as

g(a)
def
= 1 +

(
2

1 + ε

)k
γ(1 + a)

for any real number a, and let aA
def
= bA + b¬A − 1 for any A ⊂ {1, . . . , k}. Now µ =

−(minA g(aA))−1. Note that g(aA) > 1 + (1 + aA)2−k, because γ > 2−k (this will be used
later). It follows from the Binomial Theorem that the value of bA is very close to the value
of 2−vA from above.

2−vA ≤ bA ≤ (2−vA + 2kε)(1 + ε)k

≤ (2−vA + 2kε)(1 + 2kε)

≤ 2−vA + 2k+2ε ,

where we have used the inequality (1+r/c)c ≤ 1+2r valid for r ∈ [0, 1] and positive integer
c (Mauá, de Campos, & Zaffalon, 2011, Lemma 37). Thus we conclude that the value aA
is very close (again from above) to h(vA)− 1.

h(vA)− 1 ≤ aA ≤ h(vA)− 1 + 2k+3ε = h(vA)− 1 + 1/(64z4) .
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Now, if the partition problem is a yes-instance, then h(vA) = 1 (recall the behavior of h
from the proof of Theorem 3) and thus aA ≤ 1/(64z4), while if it is a no-instance, then
h(vA) > 1 + 1/(32z4) and thus aA > 1/(32z4). Hence, there is a gap of at least 1/(64z4) in
the value of aA between yes- and no-instances, and we can decide the partition problem by
verifying whether µ ≤ −g(3/(128z4))−1. This proof shall be completed with the guarantee
that we can approximate in polynomial time the irrational numbers used to specify the
credal tree and g(a) well enough so that −g(3/(128z4))−1 falls exactly in the middle of the
gap between the values of µ for yes- and no-instances (because g is linear in a). First, note
that

g

(
1

32z4

)
− g

(
1

64z4

)
=

1

64z4

(
2

1 + ε

)k
γ ,

which is greater than 2−k/(64z4) (since γ > 2−k). The gap in the value of µ is at least

1

g(1/(64z4))
− 1

g(1/(32z4))
=
g(1/(32z4))− g(1/(64z4))

g(1/(64z4))g(1/(32z4))

>
g(1/(32z4))− g(1/(64z4))

g(1/(32z4))2

>
2−k/(64z4)

(1 + (1 + 1
32z4

)2−k)2
>

2−k

4 · 64z4
.

So we apply Corollary 1 with ε = 1
2

2−k

4·64z4
to obtain from N a network N ′ made only of

positive rational numbers. Such ε guarantees that the separation between yes-instances and
no-instances of PARTITION will continue to exist.

The credal network used in the reduction that proves the previous result is in a sense
the simplest tree-shaped network on which solving STRONG-INF is hard, since the problem
would be polynomial-time solvable if the root node were replaced with a binary variable. It is
also interesting as it describes a naive Bayes structure with a single layer of latent variables,
a useful topology for robust classification problems on non-linearly separable feature spaces.

3.7 Imprecise Hidden Markov Models

An imprecise hidden Markov model (HMM) is a credal tree whose nodes can be partitioned
into hidden and manifest nodes such that the hidden nodes form a chain (i.e., a sequence
of nodes with one node linking to the next and to no other in the sequence), and manifest
nodes are leaves of the graph. HMMs are widely used to represent discrete dynamic systems
whose output at any given time step can be stochastically determined by the current state
of the system, which is assumed to be only partially observable.

Since an HMM is simply a credal tree, the algorithm of de Cooman et al. (2010) can
be used to efficiently compute EPISTEMIC-INF in HMMs, while 2U can be used to solve
STRONG-INF if all variables are binary. For networks with variables taking on more than
two values, no polynomial-time is known for STRONG-INF. In this section, we show that
when there is no evidence on variables farther (in the sense of number of nodes in the
path) from the root node than the target variable, the outcomes of the STRONG-INF and
EPISTEMIC-INF coincide. On these cases, we can run de Cooman et al.’s (2010) algorithm

627
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1 2

4 3

Figure 6: Credal HMM in Example 5.

to compute STRONG-INF in polynomial time. This is however not always true, that is,
there are types of queries in which the results of STRONG-INF and EPISTEMIC-INF differ,
as the following example shows.

Example 5. Consider an HMM of length two whose topology is depicted in Figure 6. All
variables are binary and take values in {0, 1}. Variables X1 and X2 are hidden, while
variables X3 and X4 are manifest. The local credal sets are given by Q(X1) = Q(X2|0) =
Q(X4|0) = {p ∈ V (X4) : p(1) = 1/4}, Q(X2|1) = Q(X4|1) = {p ∈ V (X4) : p(1) = 3/4},
and Q(X3|0) = {p ∈ V (X3) : 1/2 ≤ p(1) ≤ 3/4} and Q(X3|1) = {p ∈ V (X3) : 1/4 ≤ p(1) ≤
1/2}. Thus, variable X3 is imprecise, and the remaining variables are precise. Consider
a query with target X4 = 0 and evidence X3 = 0. The lower bound of STRONG-INF is the
value of µ that solves the equation

min
∑
x2

qx23 (0)gµ(x2) =
∑
x2

min qx23 (0)gµ(x2) = 0 ,

where the minimizations are performed over qx23 ∈ Q(X3|x2), x2 = 0, 1, and

gµ(x2)
def
=
∑
x1,x4

(δ0(x4)− µ) q1(x1)qx12 (x2)qx14 (x4) ,

with q1 = q0
2 = q0

4 = (3/4, 1/4) and q1
2 = q1

4 = (1/4, 3/4). The values of qx23 (0) depend only
on the signs of gµ(0) and gµ(1), which ought to be different for the expression to vanish.
Solving for µ for each of the four possibilities, and taking the minimum value of µ, we find
that µ = 4/7 > 1/2.

The lower bound of EPISTEMIC-INF is the value of µ that solves

min
∑

x1,x2,x4

q1(x1)qx12 (x2)qx14 (x4)qx1,x2,x4(0)hµ(x4) =

(1− µ)
∑
x1,x2

q1(x1)qx12 (x2)qx14 (0) min qx1,x2,0(0)

− µ
∑
x1,x2

q1(x1)qx12 (x2)qx14 (1) max qx1,x2,1(0) = 0 ,

where hµ(x4) = δ0(x4) − µ, q1, qx12 and qx14 are defined as before, and qx1,x2,x4 ∈ Q(X3|x2)
for every x1, x2, x4. Solving the equation above for µ we obtain µ = 13/28 < 1/2.

The above example shows that STRONG-INF and EPISTEMIC-INF might differ, even in
the simple case of HMMs with binary variables. It is currently unknown whether this type of
inference is hard for STRONG-INF. The following result shows that at least for a particular
case, the computations of the STRONG-INF and EPISTEMIC-INF in HMMs coincide.
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Figure 7: DAG of the HMM considered in Theorem 3.

Theorem 3. Consider a separately specified HMM over variables X0, . . . , Xn. The variables
associated with odd numbers are manifest, and the remaining variables are hidden (see
Figure 7). Consider also the target hidden node Xn = x̃n, and evidence XO = x̃O on a
subset O of the manifest nodes. Then the outcomes of STRONG-INF and EPISTEMIC-INF
are the same.

Proof. Define fµ(xn)
def
= δx̃n(xn)− µ for any given µ, and consider the distribution p in the

epistemic extension KE that minimizes∑
x∼X:xO=x̃O

fµ(xn)p(x) .

Let < be any topological ordering of the nodes. By the Chain Rule, we have for all x that p
factorizes as p(x) = Pp(x0)

∏n
i=1 Pp(xi|x<i), where x<i denotes the coordinates xj of x with

j < i according to the topological ordering (we also write x≥i and x>i to denote analogous
projections). Assume that for some non-negative integer i less than or equal to n it holds
that ∑

x:xO=x̃O

fµ(xn)p(x) ≥
∑

x:xO=x̃O

fµ(xn)
∏
j<i

Pp(xj |x<j)
∏
j≥i

p
xPa(j)

j (xj) ,

where each p
xPa(j)

j is recursively defined as the extreme distribution of the local credal set
Q(Xj |xPa(j)) that minimizes either∑

xj

p
xPa(j)

j (xj)
∑
x>j

fµ(xn)
∏
k>j

p
xPa(k)

k (xk) ,

if j is not in O, or

p
xPa(j)

j (x̃j)
∑
x>j

fµ(xn)
∏
k>j

p
xPa(k)

k (xk) ,

if j is in O, where x̃j is the value of Xj compatible with x̃O. We will show by induction in
i = n, . . . , 0 that the assumption is true. If i− 1 is not in O then∑

x:xO=x̃O

fµ(xn)
∏
j<i

Pp(xj |x<j)
∏
j≥i

p
xPa(j)

j (xj) =

∑
x<i−1:xO=x̃O

∏
j<i−1

Pp(xj |x<j)
∑
xi−1

Pp(xi−1|x<i−1)
∑
x≥i

fµ(xn)
∏
k≥i

p
xPa(k)

k (xk) ≥∑
x<i−1:xO=x̃O

∏
j<i−1

Pp(xj |x<j) min
q∈Q(Xi−1|xPa(i−1))

∑
xi−1

q(xi−1)
∑
x≥i

fµ(xn)
∏
k>i

p
xPa(k)

k (xk) =

∑
x:xO=x̃O

fµ(xn)
∏
j<i−1

Pp(xj |x<j)
∏
j≥i−1

p
xPa(j)

j (xj) ,
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where the inequality follows from the definition of epistemic extension, which implies that∑
xi
h(xi)Pp(xi|xNd(i)) ≥ minq∈Q(Xi|xPa(i))

∑
xi
h(xi)q(xi) for any function h on xi (note

that Nd(i) ⊇ {j < i}, and that the minimization on the right is constant w.r.t. values
xj<i:j /∈Pa(i)). The case of a node i in O is analogous with the sum substituted by a single
term. For i = n, it follows that∑

x:xO=x̃O

fµ(xn)p(x) =
∑

xj<n:xO=x̃O

∏
j≤n

Pp(xj |x<j)
∑
xt

fµ(xn)Pp(xt|x<n)

≥
∑

x:xO=x̃O

fµ(xn)pxn−2
n (xn)

∏
j<n

Pp(xj |x<j) ,

so that the basis of the induction holds. For i = 0, we have that∑
x:xO=x̃O

fµ(xn)p(x) ≥
∑

x:xO=x̃O

fµ(xn)p0(x0)
∏
i∈N

p
xPa(j)

j (xj) ,

which is the lower bound of STRONG-INF. Thus, since the epistemic extension contains the
strong extension, the inequality above is tight. In particular, the equality holds if µ is the
lower bound of EPISTEMIC-INF, and it follows that

min
p∈KS

∑
x:xO=x̃O

fµ(x)p(x) = min
p∈KE

∑
x:xO=x̃O

fµ(x)p(x) = 0 ,

where KS denotes the strong extension. An analogous proof shows that also the upper
bounds coincide.

The previous result shows that at least for the particular case where one seeks the prob-
ability of the “last” variable, STRONG-INF can be computed in polynomial time. Although
restrictive, this type of inference is highly relevant, as it corresponds to predicting the future
state of a partially observable dynamic system whose future state depends in some level
only on its current (unknown) state. There is also another type of inference in trees which
is insensitive to the irrelevance concept adopted, which is the case of marginal inferences:

Corollary 4. Consider a tree-shaped network N and a target Xt = xt. Then

STRONG-INF(N , t, xt, ∅, ·) = EPISTEMIC-INF(N , t, xt, ∅, ·) .

Proof. We say that a node is barren if it is not an ancestor of any target or evidence node.
It is well-known that removing barren nodes from a Bayesian network does not affect the
outcome of BN-INF (Koller & Friedman, 2009). Since inference under strong independence
can be seen as (exponentially many) inferences in Bayesian networks, the result of STRONG-
INF is also unaltered if remove barren nodes. Moreover, since N is a tree, removing barren
nodes leaves with a chain of ancestors of t. According to Theorem 15 of the work of
Cozman (2000), the epistemic extension of N projected on the ancestors of t, that is, the
set of marginal distributions on xA ∼ XA induced from joint distributions in the epistemic
extension, where A denotes the ancestors of t, is the epistemic extension of the network we
get by removing nodes not in A. This implies that barren nodes can be discarded also in
inferences under epistemic irrelevance, and the result follows.
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Figure 8: DAG of a naive Bayes with 3 feature variables.

Zaffalon and Fagiuoli (2003) developed a linear-time algorithm to compute marginal
inferences under strong independence in trees as a by-product of their work on imprecise
tree-augmented naive Bayes classifiers. The result above shows that the same algorithm
can be used to compute marginal inferences in trees under epistemic irrelevance; conversely,
de Cooman et al.’s (2010) algorithm for epistemic trees can be used to compute marginal
inferences in strong trees.

3.8 Imprecise Markov Chains

The simplest DAG structure forming a connected graph is that of a chain, that is, of a
network in which each variable has at most one parent and one child. Credal chains are
more usually known as (imprecise) Markov chains. As a chain is also a tree, computing
EPISTEMIC-INF can be done in polynomial time; this is also the case for STRONG-INF on
chains of binary variables, as this is a subcase of binary polytrees. A chain can be seen
as an HMM where the values of the manifest variables are deterministically determined by
the values of the hidden variables. As such, the equivalence of both types of inference in
certain types of HMMs extends to chains:

Corollary 5. Consider a credal chain X0 → · · · → Xn, a target Xn = xn on the single leaf
variable of a separately specified (imprecise) Markov chain, and some evidence XO = x̃O
on arbitrary non-leaf variables. Then the outcomes of STRONG-INF and EPISTEMIC-INF
coincide.

Proof. The same proof of Theorem 3 applies here, if we omit manifest nodes.

3.9 Imprecise Naive Bayes

A widely used DAG structure is the naive Bayes, where a node (usually called class) has all
other nodes (called features) as its children, and no other arc is present. Figure 8 depicts
a naive Bayes structure with class variable X0 and features X1, X2 and X3. Such a DAG
constitutes the structure behind the Naive Bayes and the Naive Credal Classifiers (Zaffalon,
2002). As it is a tree, computing EPISTEMIC-INF can be done in polynomial time; this is
also the case for STRONG-INF when the target node is the class variable (Zaffalon, 2002).
We show next that this similar tractability is not coincidental: both inferences yield the
same result, even if the target is not the class node. We achieve such a result by building
an HMM where the first hidden variable is the class and all other hidden variables have the
same state space as the class and are deterministically determined by its value, while the
manifest variables are the features in the naive Bayes structure. As such, the equivalence of
inferences under both types of irrelevance extends to queries in any node of a naive Bayes
structure:
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MODEL STRONG-INF EPISTEMIC-INF

*Naive Bayes P P
*Imprecise HMM (query on last node) P P
Imprecise HMMs Unknown P
*Credal trees (no evidence) P P
Credal trees NP-hard P
Credal polytrees with binary variables P Unknown
Credal polytrees with ternary variables NP-hard NP-hard
Bounded treewidth networks NP-hard NP-hard
Credal networks NPPP-hard NPPP-hard
*Precise-vacuous NPPP-hard NPPP-hard

Table 2: Parametrized complexity of the inference in credal networks.

Corollary 6. Consider a credal network N with the naive Bayes structure X0 → X1, X0 →
X2, · · · , X0 → Xn, a target Xt = xt on a node t, and some evidence XO = x̃O on arbitrary
features (leaf variables). Then the outcomes of STRONG-INF and EPISTEMIC-INF coincide.

Proof. Let X ′0 = X0 and X ′1, · · · , X ′n be precise variables with the same state space as the
class X ′0 and probability distributions q(x′i|x′i−1) = 1 if x′i = x′i−1 and zero otherwise, for all
i = 1, . . . , n. Define Q(Xi|X ′i = x′i) by using the credal set Q(Xi|X0 = x0) of the original
network N , whenever x′i = x0, for i = 1, . . . , n. Without loss of generality, assume that
t = n (if the query was in X0, then use X ′n as query instead of Xn). This procedure creates
an imprecise HMM with hidden nodes X ′0, . . . , X

′
n, manifest nodes X1, . . . , Xn−1, and a final

query t = n with Xt = xt. This HMM clearly yields the same inferential result as does the
naive Bayes network N for STRONG-INF. By Theorem 3, the results of STRONG-INF and
EPISTEMIC-INF coincide in this HMM, hence the result of EPISTEMIC-INF in this HMM is
equal to the result of STRONG-INF in N . By construction, EPISTEMIC-INF in this HMM
contains the result of EPISTEMIC-INF in N (that is, the latter is equal or lies inside the
former). Because EPISTEMIC-INF always contains STRONG-INF, and in particular in the
naive Bayes structure, they must all coincide.

3.10 Summary of the Complexity Results

The complexity results obtained in this section suggest that inference in credal networks is
computationally difficult for a wide variety of model structures and dimensionalities. This
is the case, for instance, in precise-vacuous networks and singly connected networks with
ternary variables, according to the negative results we have shown. A few importation
exceptions have been obtained including last-node inference (filtering) in imprecise HMMs
and Markov chains and inference in naive Bayes structures. These few positive results are
important as such structures have applications in pattern recognition tasks such as activity
recognition (Antonucci et al., 2011) and robust classification (Zaffalon et al., 2003). The
previously known and new inferential complexity results are summarized in Table 2. The
star indicates models in which inferences under both irrelevance concepts coincide.
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Yet another irrelevance concept adopted in imprecisely specified models is Kuznetsov
independence. We can define the Kuznetsov extension analogously to the definitions of
strong and epistemic extensions, and define the problem of inference under Kuznetsov inde-
pendence accordingly. It is known that the Kuznetsov extension lies between the epistemic
and the strong extensions (Cozman & de Campos, 2014). This implies that the outcomes
of inferences under Kuznetsov independence coincide with those under strong indepen-
dence and epistemic irrelevance whenever the last two coincide. We hence get as corollaries
of the results shown here that inference under Kuznetsov independence is NPPP-hard in
precise-vacuous networks, NP-hard in singly connected networks with ternary variables,
polynomial-time computable in HMMs and Markov chains if the target variable is the last-
node, and polynomial-time computable in naive Bayes structures if the target variable is
the root node.

4. Conclusion

Credal networks generalize Bayesian networks to allow for the representation of uncertain
knowledge in the form of credal sets, closed and convex sets of probability distributions.
The use of credal sets arguably facilitates the constructions of complex models, but presents
a challenge to the computation of inferences with the model.

In this paper we studied the theoretical complexity of inferences in credal networks,
in what concerns the topology of the network, the semantics of the arcs (i.e., whether
epistemic irrelevance or strong independence is assumed), and the cardinality of variable
domains. In a nutshell, computing with credal networks is NP-hard except in the cases of
tree-shaped models under epistemic irrelevance, and binary polytree-shaped models under
strong independence. A notable exception is the computation of probability bounds on
the value of the last variable in a imprecise hidden Markov models, in which case we have
shown that inferences under epistemic irrelevance and strong independence coincide, which
implies that the latter is polynomial-time computable. We leave as an open question the
complexity of generic inferences in imprecise HMMs under strong independence.

Another possible avenue for future research is investigating the complexity of approx-
imate inference. De Campos and Cozman (2005) showed that approximating inference
under strong independence is NP-hard, even if we consider only singly connected networks
of bounded treewidth. This is however not the case if variables are binary, as in this case
we can run the 2U algorithm to obtain the exact value. Mauá, de Campos, and Zaffalon
(2012b) showed that for any network of bounded treewidth whose variables have bounded
cardinality there exists a fully polynomial time approximation scheme for performing in-
ference under strong independence, that is, an algorithm that given a rational ε > 0 finds
solutions which are within a factor 1 + ε of the true value in time polynomial in the in-
put size and in 1/ε. Apart from its tractability on credal trees, nothing is known about
the complexity of approximate inference under epistemic irrelevance, unless for the case
of precise-vacuous networks, which we showed here to provide the same inferences under
strong independence or epistemic irrelevance, so the results for approximate inference under
the former extend to the latter.
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