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Abstract

When a transition probability matrix is represented as the product of two stochastic matrices,
one can swap the factors of the multiplication to obtain another transition matrix that retains some
fundamental characteristics of the original. Since the derived matrix can be much smaller than
its precursor, this property can be exploited to create a compact version of a Markov decision
process (MDP), and hence to reduce the computational cost of dynamic programming. Building
on this idea, this paper presents an approximate policy iteration algorithm called policy iteration
based on stochastic factorization, or PISF for short. In terms of computational complexity, PISF
replaces standard policy iteration’s cubic dependence on the size of the MDP with a function that
grows only linearly with the number of states in the model. The proposed algorithm also enjoys
nice theoretical properties: it always terminates after a finite number of iterations and returns a
decision policy whose performance only depends on the quality of the stochastic factorization. In
particular, if the approximation error in the factorization is sufficiently small, PISF computes the
optimal value function of the MDP. The paper also discusses practical ways of factoring an MDP
and illustrates the usefulness of the proposed algorithm with an application involving a large-scale
decision problem of real economical interest.

1. Introduction

Decisions rarely come up alone in real situations: usually, the outcome of a decision has an effect
over the next one, which in turn impacts on the next, and so on. Thus, a choice that seems beneficial
from a short-sighted perspective may reveal itself to be disastrous in the long run. When dealing
with a succession of interrelated choices, one must weigh the immediate effects of a decision against
its long-term consequences in order to achieve good overall performance. Formally, tasks involving
this trade-off between short- and long-term benefits are called sequential decision-making problems.

This work focuses on a particular decision-making model known as a Markov decision process
(MDP, Puterman, 1994). An MDP is a simple yet important mathematical model that describes a
sequential decision task in terms of transition probabilities and rewards. The transition probabilities
represent the dynamics of the process, while the rewards provide evaluative feedback for the deci-
sions made. Given an MDP, one is usually interested in finding an optimal decision policy, which
maximizes the expected total reward the decision maker will receive in the long run. The natural
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way to perform such a search is to resort to dynamic programming, a class of methods for solving
sequential decision problems developed concomitantly with the MDP model (Bellman, 1957).

Since the publication of Bellman’s (1957) seminal book, dynamic programming has been stud-
ied for more than 50 years, and is now supported by a strong and well understood theoretical basis.
Besides, it has long ago transcended the limits of academia to be tested in real situations (White,
1985, 1988, 1993). Despite the success of dynamic programming in several applications, there is a
serious obstacle that hinders its widespread use: the computational cost of dynamic programming
algorithms grows fast with the number of states of a problem, which precludes their use in many
domains. This limitation was noted by Bellman (1961), who also pointed out that the number of
states of a decision process grows exponentially with the number of dimensions of its state space—a
problem that came to be known as dynamic programming’s curse of dimensionality.

Nowadays there is a consensus that, in order to solve large-scale sequential decision problems,
one must exploit special structure in the corresponding model or resort to some form of approxima-
tion (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998; Powell, 2007). One way of incorporating
approximation into the dynamic programming framework is to create a compact version of an MDP
that retains as much as possible of the information contained in the original model. The approach
presented in this paper is based on this idea. Specifically, it builds on the following insight: when
a transition probability matrix is approximated by the product of two stochastic matrices, one can
swap the factors of the multiplication to obtain another transition matrix, possibly much smaller than
the original, which is related to its precursor. This property, called here the “stochastic-factorization
trick,” can be exploited to create a compact version of an MDP, and hence to reduce the computa-
tional demands of dynamic programming. The main contribution of the paper is an approximate
policy iteration algorithm named policy iteration based on stochastic factorization (PISF). As will
be shown, the performance of the decision policy computed by PISF only depends on the quality of
the stochastic factorization; in particular, an exact factorization leads to an optimal policy. More-
over, the computational complexity of each iteration of the proposed algorithm is only linear in the
number of states of the MDP.

The stochastic factorization will be presented in detail in Section 2.4. Although simple, the
presentation depends on a few basic concepts, which will be introduced in Sections 2.2 and 2.3.
Section 3 discusses the use of stochastic factorization to approximate an MDP. This section also in-
troduces and analyzes the PISF algorithm, the main contribution of the paper. Section 4 investigates
the computational issues surrounding the use of PISF in practice and presents possible solutions to
efficiently compute the factorization of an MDP. In Section 5 some of the proposed solutions are put
to the test in a large-scale decision problem involving the maintenance of an asset with components
that deteriorate over time. Section 6 outlines the relationship between the stochastic factorization
and other approaches described in the literature. The paper ends in Section 7, where a brief summary
is presented along with suggestions for future research.

2. Background

This section introduces the notation adopted and briefly reviews some concepts that will be used
throughout the paper.
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2.1 Notation

Boldface letters will be used to denote matrices and vectors. Given a matrix A, the symbol a; is used
to represent its i row; a; ; denotes the j™ element of vector a,. Inequalities should be interpreted
element-wise; thus A > B means that a;; > b;; for all i and all j. The operators ‘max’ and ‘argmax’
are applied row-by-row, that is, given A € R”*Y, max A is a vector b € R” such that b; = max  a;;
for all i. Finally, the symbols by,x and by, are used as a shorthand for max; b; and min; b;.

2.2 Markov Decision Processes

In the sequential decision-making model considered here decisions are made at discrete time steps.
At each instant ¢ the decision maker occupies a state s; € S and must choose an action a from a set
A. The sets S and A are called the state and action spaces, respectively. In this paper it is assumed
that both S and A are finite (though possibly large). The execution of action a in state s; moves the
decision maker to a new state s;, where a new action must be selected, and so on. Each transition
Si = s ; has a certain probability of occurrence and is associated with a reward r € R. The goal
of the decision maker is to find a policy 7 : § — A, that is, a mapping from states to actions, that
maximizes the expected return associated with every state in S.! The return is defined as follows:

_ T _
Ry(si) = res1 Y2+ Vst oY iy = Zk:l Y s (1)

where 7;,; € R is the reward received on the k™ transition starting from state s; at time step . The
parameter y € [0, 1) is the discount factor, which determines the relative importance of individual
rewards depending on how far in the future they are received. The sequential decision process may
last forever (T = o) or until the decision maker reaches a terminal state (7" < o).

The decision-making process described above can be formalized as a Markov decision process,
or MDP for short. An MDP is a tuple M = (S,A,P,R,y) (Puterman, 1994). The element P is a
family of transition probability functions, one for each action a € A. The function P*: S x S+ [0, 1]
gives the transition probabilities associated with action a; P(s;s;) is the probability of a transition

to state s; when action a is executed in state s;. Note that leillP“(s jlsi) =1, for all @ € A and
all s; € S (in this paper |- | is used to denote both the cardinality of a set and the absolute value
of a scalar; the distinction should be clear by the context). The remaining component of an MDP,
R, is defined analogously to P: the reward received at transition s; = s ; is given by R“(s;,s;),
with ‘R“(si,s ])‘ < Rpax < oo. Usually one is interested in the expected reward resulting from the
execution of action a in state s;, that is, r*(s;) = ZLszl
MDP induces a Markov process M*. The dynamics of M™ are given by P*()(.|s;), where 7(s;) is
the action selected by 7 in state s;. Likewise, the expected reward to be collected by 7 in state s; is
given by 0 (s;).

When both the state space S and the action space A are finite, the MDP can be represented
in matrix form. Each function P% becomes a matrix P4 € RS with pi; = Ps i|si). Since
the elements in each row of P¢ are nonnegative and sum to one, this is a stochastic matrix (see
Definition 1). Stochastic matrices will play an important role in the rest of the paper. In matrix

R (si,5;)P(s]s;). A policy 7 defined over an

1. More generally, decision policies are rules associating states to actions, and can range in generality from randomized
history-dependent to stationary deterministic (Puterman, 1994, Section 2.1.5). Since in discounted MDPs with finite
state and action spaces there always exists a stationary deterministic policy that performs optimally, this paper will
focus on this class of decision policies (Puterman, 1994, Thm. 6.2.7).
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form, each function r¢ is a vector r? € Rlsl, where ¢ = r“(s;). Thus, a finite MDP M can be
represented by |A| matrices P and the same number of vectors r*: M = (S,A,P%,r?, 7). A decision
policy defined over a finite MDP is a vector 7 € AlSl whose element 7; is the action selected by 7
in ;. The Markov process induced by 7 can be represented by a matrix P* € RIS and a vector
r” € RS, The ih row of P* corresponds to the row with the same index in the matrix P™, that is,
p7 = p’. The entries of r™ are given by r¥ = r".

In this paper it is assumed that A is a totally ordered set, and the symbol ‘@’ is used to refer to
both the action a itself and its index in A. This slight abuse of notation simplifies the presentation
considerably, and the distinction should be clear from the context.

2.3 Dynamic Programming

All dynamic programming theory is built upon the concept of a value function. The value of a state
s; under a policy 7, denoted by V™ (s;), is the expected return the decision maker will receive from s;
when following 7. Using (1), one can write V*(s;) = E™{R,(s;) }. In the case of a finite state space,
the value function is a vector v € RISl The vector v* makes it possible to impose a partial ordering
over decision policies. In particular, a policy 7’ is considered to be at least as good as another policy
7 if v¥ > v". The goal of the sequential decision problem is to find an optimal policy ©* such
that v* > v” for all 7. It is well known that there always exists at least one such policy for a given
MDP (Bertsekas, 1987; Puterman, 1994). When there is more than one optimal policy, they all
share the same value function v*.

What makes the search for an optimal policy feasible is the Bellman equation, a recursive rela-
tion between state values that lies at the core of all dynamic programming algorithms. The Bellman
equation of a decision policy 7 is given by v* = r* + yP*v". It is possible to use this equation
to compute the value function of policy m. One way to do so is to simply convert it into the so-
called Bellman operator of 7, T"v = r”" 4+ yP™v. It is known that (77)'v — v" as t — oo for any
vector v € RIS (Bertsekas, 1987; Puterman, 1994). A more direct approach to compute v” is to
interpret the Bellman equation as a system of linear equations and compute the value function as
v* = (I— yP*)~'r”, where I is the identity matrix of dimension |S|.

Given v”, it is possible to generate a decision policy whose performance is at least as good as
that of the original policy 7. Let Q : RIS — RISHMI e a mapping associated with a given MDP M
such that if Qv = Q, then the a™ column of Q is

q‘ =1+ yP. (2)

It should be clear that (77v); = (Qv);s, with @ = ;. If instead a = argmax ;(Qv);;, one has the
Bellman operator of the MDP—that is, Tv = max Qv. Alternatively, Tv can be viewed as a single
application of T™, with 7’ = argmax Qv. The driving force of dynamic programming is the fact
that if 77’ is derived from v” it cannot perform worse than . Therefore, all dynamic programming
algorithms are variations of the same basic scheme: starting from an arbitrary v € RIS, compute
policy = argmax Qv and apply the update rule v'<—(77™)"v for some 7 > 0. Then, based on V/,
compute a new decision policy 7', apply T™ fort steps, and so on. It can be shown that, regardless
of the value of ¢, this process will eventually converge to an optimal policy 7* (Bertsekas, 1987;
Puterman, 1994).

When the scheme described above is adopted with ¢ = 1, the process reduces to successive
applications of the Bellman operator T', and the resulting method is the popular value iteration
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algorithm. This paper will focus on the other extreme of the spectrum, when ¢ = oo, In this case one
has the policy iteration method (Howard, 1960). Algorithm 1 shows a step-by-step description of
the computations performed by policy iteration (see also Appendix A.1).

Algorithm 1 Policy iteration

Require: MDP M: P¢ € RIS and r* € Rl for each a € A, y € [0,1)
Ensure: ©*
1: 7'« random vector in A
2: repeat
3: T
for i«<1,2,...,|S| do pF<p;" and r7<+r"

4
50 Vi (I—yP™)~Ir”
6
7

IS

/

7'+ argmax Qv” > Ties are broken randomly
cuntil 7 =7/

2.4 Stochastic-Factorization Trick

This section presents the stochastic-factorization trick, a mathematical concept recently introduced
by Barreto and Fragoso (2011) that will serve as a cornerstone for the subsequent developments.
The trick builds on the following definitions:

Definition 1. A matrix P € R"** is called stochastic if and only if p;j > 0 for all i, j and Zi.: 1pij=1
for alli. A square stochastic matrix is called a transition matrix.

Definition 2. Given a stochastic matrix P € R"*?, the relation P = DK is called a stochastic factor-
ization of P if D € R and K € R"™*% are also stochastic matrices. The integer m > 0 is the order
of the factorization.

The relation P = DK and the fact that D is stochastic imply that every row of P can be obtained
as a convex linear combination of the rows of K. In other words, all n stochastic vectors p, € R!*?
lie within the convex hull defined by the set of m stochastic vectors k; € R!*Z. Obviously, when
m > n it is always possible to find such a hull, that is, it is always possible to compute a stochastic
factorization of P. When m < n, however, an exact factorization might not be possible. This leads
to the following definition:

Definition 3. The stochastic rank of a stochastic matrix P € R"*%, denoted by stk(P), is the smallest
possible order of the stochastic factorization P = DK.

A matrix is called nonnegative if all its elements are greater than or equal to zero. That said,
the definitions of nonnegative factorization and nonnegative rank follow analogously to that of
their stochastic counterparts. Cohen and Rothblum (1991) have shown that it is always possible to
derive a stochastic factorization from a nonnegative factorization of a stochastic matrix (see their
Theorem 3.2). Since any stochastic factorization is also a nonnegative factorization, it follows that
the nonnegative and stochastic ranks of a stochastic matrix coincide. It is easy to show that if P has
only one nonzero element per row, the stochastic rank of this matrix coincides with its conventional
rank, that is, stk(P) = rk(P). In the general case, however, the only thing that can be said is that
tk(P) < stk(P) < min(n,z) (Cohen & Rothblum, 1991).
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Figure 1: Reducing the dimension of a Markov process from n = 3 states to m = 2 artificial states.
The original states are represented as white circles; black circles depict artificial states. These
figures have appeared before in the article by Barreto and Fragoso (2011).

The stochastic factorization has appeared before in the literature, either as defined above (Cohen
& Rothblum, 1991; Ho & van Dooren, 2007) or in slightly modified versions (Cutler & Breiman,
1994; Ding et al., 2010). However, this paper will focus on a useful property of this type of factor-
ization that has only recently been noted (Barreto & Fragoso, 2011).

Let P be a transition matrix of dimension » representing the dynamics of a Markov process. The
stochastic factorization P = DK admits an interesting interpretation in this case. Suppose m < n,
where m is the order of the factorization. The elements in each row of D can be seen as transition
probabilities from the states of the original Markov process to a set of m artificial states. Similarly,
the rows of K may be interpreted as probabilities of transitions in the opposite direction. With this
interpretation in mind, it is interesting to ask why the product DK restitutes the dynamics of the
original process. To answer this question, it suffices to see each element p;; = Y/ | djk;; as the sum
of the probabilities associated with m two-step transitions: from s; to each artificial state and from
these back to s;. In other words, p;; is the accumulated probability of all possible paths from s; to
s; with a stopover in one of the artificial states. Following similar reasoning, it is not difficult to see
that by swapping the factors of the stochastic factorization, that is, by switching from DK to KD,
one obtains the transition probabilities between the artificial states. This makes it possible to define
a new Markov process, composed of m artificial states, whose dynamics are given by P = KD.
Figure 1 illustrates this idea for the case in which a Markov process with three states is reduced to a
compact model containing only two artificial states.

By simply swapping the factors of a stochastic factorization, it is possible to derive a new ma-
trix P that retains information about the dynamics of the original Markov process in a compact
way. The stochasticity of P follows immediately from the same property of D and K. What is
perhaps more surprising is the fact that this matrix shares some fundamental characteristics with the
original matrix P. Specifically, it is possible to show that: (i) for each recurrent class in P there
is a corresponding class in P with the same period and, given some simple assumptions about the
factorization, (ii) P is irreducible if and only if P is irreducible and (iii) P is regular if and only if P
is regular (see Barreto & Fragoso, 2011, for details and formal definitions). This property is called
here the “stochastic-factorization trick’:

Given a stochastic factorization of a square matrix, P = DK, swapping the factors of the factor-
ization yields another transition matrix P = KD, potentially much smaller than the original, which
retains the basic topology and properties of P.
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3. Policy Iteration Based on Stochastic Factorization

This section introduces the main contribution of the paper, an approximate policy-iteration algo-
rithm built upon the stochastic-factorization trick. The section starts with a description of how the
stochastic-factorization trick can be used to reduce the computational cost of evaluating a Markov
process, and then generalizes the idea to an MDP.

3.1 Approximating a Markov Process

Suppose that during the search for an optimal policy of a given MDP one has to determine the value
function of the decision policy 7. Instead of computing it directly, one can generate a compact
version of the Markov process induced by 7 and use its value function to recover the value function
of the original process. The following proposition provides the mathematical foundation for the
implementation of the strategy above.

Proposition 1. Ler M = (S,A,P% x*,y) be an MDP, with 0 < y < 1. Given a policy & € ASl, let
P™ € RS gnd v™ € R be the transition probability matrix and the expected reward vector of
the Markov process M induced by this policy in M. Let D € R™™ be a nonnegative matrix, let
K € R™Bl pe a stochastic matrix, and let T be a vector in R™ such that

DK = P* and DF = r". 3)
Then,
(i) P* =KD and T define a Markov process M™ with m states.
Let V* € R™ be the value function of M™ computed with discount factor y. Then,
(ii) v® = DV" is the value function of M™.

Proof. Since K is a stochastic matrix and D is nonnegative, the equality DK = P* implies that
D is also stochastic: 1 :_ijij = Zj Yodukij =Y, dy Zj kij =Y., d;. The fact that D and K are
nonnegative implies that P” is nonnegative; since Y ; ﬁfj =Y iYokudij =Y kaXjdij = Y ki =1,
P7 is a transition matrix (see Definition 1). This proves (i). In order to prove (ii), recall that ¥*, the
value function of M”, can be written as

V' =1+ yP"V" 4)

(the existence and uniqueness of a solution for (4) are guaranteed by the stochastic property of P”
and the fact that 0 < y < 1—see, for example, Lemma 2.3.3 of Golub & Loan, 1996 or Proposi-
tion 2.6 of Bertsekas & Tsitsiklis, 1996). Multiplying both sides of (4) by D, one has

DV* = Df + yDP"V" = r* + yDKDV" = r” + yP"DV". 5)

Expression (5) is the Bellman equation associated with the value function of M”; since this equation
has a single fixed point, (ii) must be true (Bertsekas, 1987; Puterman, 1994). O

The computation of a decision policy’s value function involves O(|S|*) arithmetic operations
(Littman et al., 1995). In theory, Proposition 1 makes it possible to reduce the computational com-
plexity of such a procedure to O(m?) (also see Appendices A.1 and A.2). Practically speaking,
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however, the application of Proposition 1 raises some difficulties. First, one must determine a rea-
sonable value for m, the number of artificial states in the compact model. Obviously, one wants
this value to be as small as possible, but it is not trivial to find the smallest m that allows for the
application of the proposition. Even if the stochastic rank of P* is known, it might not be possible
to simultaneously satisfy both equalities in (3) with m = srk(P™). Moreover, the computation of
D, K and r requires a number of arithmetic operations that can easily exceed the number of opera-
tions involved in the original calculation of v*.? For all these reasons, one may have to resort to an
approximate factorization of the Markov process.

In the approximate version of the stochastic factorization problem, one is interested in finding
stochastic matrices D and K that represent P* as well as possible, i.e., that minimize a measure of
the dissimilarity between DK and P”. In order to apply Proposition 1, one must also search for a
vector T € R™ that makes DT as similar as possible to r*. Once D, K, and T have been determined,
one can swap the factors of the stochastic factorization to define a Markov process with m artificial
states. As described in Proposition 1, the value function of the resulting Markov process, ¥”, can be
used to restore the value function of the original model. Obviously, when DK = P” and Dr ~ r”,
DV” will be, too, only an approximation of v*. An important issue in this case is to quantify the
impact that errors in the approximation of P* and r” might have on the computation of the value
function. This section provides such an analysis for a specific dissimilarity measure. In particular,
it presents an upper bound for || v —D¥V”" ||, based on || P* —DK || and || r* — DF ||.. Here,
|| - || denotes the maximum norm, which induces the following norm over the space of matrices:
I A oo = max; [| a; |1 = max; ¥ [ai;].

Proposition 2. Let P € RIS and v € R be the transition probability matrix and the expected-
reward vector describing the Markov process M™ induced by decision policy m. Let D € R and
K c R™ Bl pe stochastic matrices, and let T be a vector in R™. Finally, let M™ be the Markov
process described by P* = KD and . Then,

- 1 _ Y
71:_D7r c><><a7't7E_ 71:_D - __r
R e

where v* and V" are the value functions of M™ and M”, both computed with the same y € [0,1),
0 =1- y(l — %H P* — DK Hw), and A* = max (1]}, Fmax) — min(r7 . Fin).

| P*— DK HooA”> , ©)

Proof. Let M™ be the Markov process with transition matrix DK and reward vector DF. From
Proposition 1 it follows that the value function of M” is given by ¥* = D¥”. Recall that a Markov
process can be seen as an MDP in which |A| = 1. Then, applying Whitt’s (1978) Theorem 6.2 (b)
to M™ and M™, with all mappings between the two models taken to be identities, one concludes that
?7 < vT 4 " for all i. Since the mappings between M™ and M” are the identity function, one can
apply Theorem 6.2 (b) again, exchanging the roles of the two models, to obtain v* < v* 4 o™ for all
i. The upper bound in (6) results from the combination of the two inequalities above. O

According to Whitt (1978), it is possible to construct examples showing that (6) is a tight bound.
Proposition 2 makes it clear that the approximation of v* depends on both the characteristics of M”

2. Vavasis (2009) has shown that the determination of the nonnegative rank of a stochastic matrix is an NP-hard problem.
This implies that no polynomial-time algorithm for computing D and K is currently known; if this were the case, one
could compute one factorization for each value of m = |S|,|S| — 1,..., 1, stopping when an exact factorization is no

longer possible, thus determining the matrix’s rank in polynomial time.

770



PoLICY ITERATION BASED ON STOCHASTIC FACTORIZATION

and the quality of the stochastic factorization. First, the right-hand side of (6) increases as ¥ — 1
and A" — . This is expected, since both the magnitude of the individual rewards and the rate at
which they accumulate over time tend to increase the states’ values. More important, the difference
between v"* and DV” directly depends on the stochastic factorization, and as DK — P” and Dr — r”
the approximation DV” gets closer to the real value function v”. In the limit, when || r* — DF || =0
and || P — DK ||.. = 0, one recovers Proposition 1.

It is interesting to point out an intriguing property of Proposition 2. Observe that an increase
in the approximation error || P* — DK || has two opposite effects on the variables involved in the
derived bound: if on the one hand it increases the coefficient multiplying A”, as expected, on the
other hand it also decreases the factor 1/8™ scaling the entire right-hand of (6). This is precisely
what makes the bound tight, since the latter effect tends to alleviate the first. Needless to say, the
bound is still a monotonically increasing function of || P* — DK ||, as one can easily verify by
computing the appropriate partial derivative.

3.2 Approximating a Markov Decision Process

The most straightforward way to use the stochastic-factorization trick in the search for a decision
policy is to factor one by one the Markov processes that come up in the search. To be more specific,
let © be an arbitrary decision policy defined over a finite MDP M and let P” and r* describe the
Markov process induced by this policy. Given approximations DK = P* and Dt =~ r”, one can
define a new Markov process with transition matrix P* = KD and reward vector . This auxiliary
model potentially has many fewer states than the original Markov process. After determining the
value function of the compact model, ¥”, one can compute an approximation of the original value
function by making ¥* = DV”. Finally, a new policy 7’ = argmax Q¥” can be derived, restarting
the usual dynamic programming loop. Notice that if DK = P”* and Df = r” for every policy 7 that
comes up during the search, this process will eventually converge to an optimal decision policy.
This is a direct consequence of Proposition 1.

Although feasible, the above strategy presents an obvious drawback: a new factorization must
be computed for each Markov process encountered in the search for a decision policy. Another pos-
sibility is to factor the entire MDP at once. In this case, a possible approach is to find approximate
factorizations for each Markov process M¢, DK? ~ P* and D“r* ~ r“, with a € A, and solve the
reduced MDP M whose transition matrices are K“D“ and whose expected reward vectors are £“.
However, when the MDP M is directly solved, the quality of the solution found does not depend on
the stochastic factorization only, and even an exact factorization of the MDP can lead to suboptimal
decision policies (for example, as shown in Barreto, Precup, & Pineau, 2011, Prop. 1, in the partic-
ular case in which a single matrix D is used to factor all the Markov processes, the approximation
error also depends on the “level of stochasticity” of D, measured by max; (1 —max;d;;)). The re-
maining of this section discusses an alternative way of factoring an MDP in which the performance
of the final decision policy depends exclusively on the quality of the stochastic factorization.

Let M = (S,A,P% r,y) be a finite MDP. Let D* € RIS>*™ and K € R"*I8! be stochastic matrices
such that DK ~ P* for all a € A, and let ¥ € R be a vector such that DF ~r%, again with a € A. Let
n € Al be a policy defined on M and let M™ be the corresponding Markov process. As discussed
in Section 2.3, the i" row of P™ € RIS*ISI_ the transition matrix of M7, is the i" row of P%, where
m; is the action selected by 7 in s; (see line 4 of Algorithm 1). From the approximations DK ~ P,
one can see that the i row of P can be approximated as dK (recall that d)" is the i row of D™).
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Thus, in order to build an approximation of P, it suffices to construct matrix D" € RIS whose
rows are given by dF = d™. Once D” has been determined, the transition matrix associated with
7 can be approximated as P* ~ D"K. Analogously, the vector r* € R can be approximated as
r* ~ D”F.

Using the strategy above, it is straightforward to extend the ideas of Proposition 1 to a factoriza-
tion of the entire MDP. Given a decision policy 7, one must first compute the matrix D” as described
and then define a reduced Markov process M”™ with transition matrix P* = KD” and reward vector
. The corresponding value function ¥" can then be used to compute an approximation of the value
function of 7, which will serve as a reference for the derivation of a new decision policy 7/, and
so on. Algorithm 2 shows how these ideas can be embedded into policy iteration, giving rise to the
policy iteration based on stochastic factorization algorithm, or simply PISF.

Algorithm 2 Policy iteration based on stochastic factorization (PISF)

Require: D e R foralla € A, K e RISl e R” and y € [0,1)
Ensure: mw~ 1*
1. 7'+ random vector in A'S!

2: repeat

3 nn

4 fori+1,2,...,|S] do d7«d”

51 PT—KD”"

6: V' (I—yP") "'

7. Let Q% € RIS

8: for a<1,2,...,|A| do @"“«D*¥" > G is the a™ column of Q7
9: 7'+ argmax Q” > Ties are broken randomly

10: until 7 = 7’

In the standard policy iteration algorithm, the computation of a decision policy’s value function
takes O(|S|?) arithmetic operations, while the derivation of a new policy is O(|S|*|A|) (Littman
et al., 1995). In contrast, PISF only needs O(|S|m|A|) operations to derive a new policy—as shown
in lines 8 and 9 of Algorithm 2—and breaks the value function computation into several steps
whose overall complexity is O(|S|m?). The process of computing ¥” is as follows. First, one has
to determine matrix D”, which involves O(|S|) operations (line 4 of Algorithm 2). Then, it is
necessary to perform O(m?|S|) operations to compute the transition matrix P* (line 5). Finally,
one must calculate ¥*, which is O(m?) (line 6). As one can see, the computational complexity of
one iteration of PISF is only linear in the number of states |S|. Thus, when m < |S|, the number of
arithmetic operations performed per iteration by PISF is much smaller than the number of operations
that would be executed by the conventional policy iteration algorithm.

Regarding the space complexity of PISF, storing D%, K and Tt requires O(|S||A|m) bits. Note
though that in an actual implementation the matrices D¢ do not need to be stored in the main mem-
ory. Thus, if one is willing to trade space for time—since in this case D* would have to be computed
or loaded on demand—, the actual memory usage of the algorithm drops to O(|S|m) only.
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3.3 Convergence and Error Bound

The PISF algorithm rests on the approximations DK ~ P¢ and D°rF ~ r?. If these approximations
happen to be exact, Proposition 1 is directly applicable to every decision policy generated by this al-
gorithm, which implies that it will converge to an optimal policy 7*. Nevertheless, in order for PISF
to be considered a stable method, it is necessary to show that errors in the above approximations
will not cause the algorithm to behave in a completely unpredictable way. The following proposition
shows that PISF is a well-behaved algorithm, in the sense that it always terminates in a finite number
of iterations and the quality of the decision policy returned improves when ||[D“K—P“ || — 0 and
|DF—r? ||.o — O for all a € A.

Proposition 3. Let M = (S,A, P, 1%, ) be an MDP with y € [0,1). Let D* € R and K € R™ I8!
be stochastic matrices, witha € A, and let T € RIS, Then, if PISF is executed with D?, K, ¥, and 7,

(i) It will terminate after a finite number of iterations.
Let ¥ be the value function of the policy returned by PISF and let ¥* = DF for all a € A. Then,
(it)

2 Y
TV o < =T ot P —DK |[.A ], 7
v 9 o g (ot 5T | la). )
where v* is the optimal value function of M and A = max, 7y} ,, — min, 7. .

Proof. Let M = (S,A, DK, DF, y), that is, M is the MDP whose transition matrices are DK and
whose expected reward vectors are DF, for all a € A. The strategy of the proof will be to show that
executing PISF with D¢, K, F, and ¥ is equivalent to running standard policy iteration in M.

Let 7, ¥* and Q7 be the policy, value function, and matrix computed by PISF at the i iteration
(lines 3, 6, and 8 of Algorithm 2, respectively). From the definition of Q”, one can write

4™ = DV" = D*(F + yP*V") = D*(F + YKD"V") = Dk + yDKD"¥", ®)

where D7 is also a matrix constructed by PISF at the i" iteration (line 4 of Algorithm 2). Compar-
ing (2) and (8), it is clear that Q = QD”*¥". From Proposition 1, it follows that D*¥” is the value
function of the Markov process described by D”K and D*r. But this is exactly the Markov process
induced by 7 in M (see line 4 of Algorithm 1). Therefore, the policy computed in one iteration of
PISF starting with 7, 7/ = argmax Q* = argmax QD*¥", is the same policy that would be computed
in one iteration of standard policy iteration applied to M and also starting with 7. This implies that
PISF will converge to the optimal policy of M in a finite number of iterations, and hence (i) holds
(see, for example, Puterman, 1994, Thm. 6.4.2).

In order to show (ii), it suffices to resort to Whitt’s (1978) results comparing “dynamic pro-
grams,” a generalization of MDPs proposed by Denardo (1967). Specifically, if one applies the
corollary of Whitt’s Lemma 3.1 to M and M, with all mappings between the two MDPs taken to be
identities, it follows that

- 2
HV*_vaSmmax,-j\hij], (9)

where h;; are the elements of matrix H= Qv* — Q¥ and ¥* is the optimal value function of M (since
the policy computed by PISF is optimal in M, the last term appearing in Whitt’s bound vanishes).
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Based on Corollary (b) of Whitt’s Theorem 6.1, one can write:

max;; |h;;| < maxg || r* —F || + max, || P — DK ||-A. (10)

Y
2(1—7)

Substituting the right-hand side of (10) in (9) one gets the desired bound.? O

Proposition 3 states that PISF will converge to a decision policy after a finite number of iter-
ations. In fact, as the proof of the proposition shows, the solution returned by PISF is one of the
optimal policies of the MDP M = (S,A, DK, D“F, y). Thus, one can look at PISF as a fast special-
ized method to solve MDPs that have a specific type of structure—namely, MDPs that allow for an
exact factorization with a single K and a single r. Of course, PISF will converge to a decision pol-
icy even if the factorization is not exact; in this case the algorithm becomes an approximate policy
iteration method.

The error bound provided in Proposition 3 is not tight in general. This can be seen by noting
that when |A| = 1 the bound in (7) may be looser than its counterpart in (6). Also, the bound is
too pessimistic to be of practical value in many situations. Even so, Proposition 3 is of conceptual
importance because it establishes the soundness of PISF. In particular, it states that the performance
of the policy returned by this algorithm gets closer to optimal as the error in the MDP approximation
decreases. In fact, it is not difficult to show that, if the errors in the approximations DK ~ P* and
D“r ~ r® are below a certain threshold, the policy returned by PISF performs optimally in M. In
order to do that, first note that ¥ = D“r implies that 7, < 7 < Fipax for all @, and thus one can
restrict the elements of F to the interval [min, 74, ;max, 4, | and still get an exact factorization.
Assuming this is the case, the term A appearing in the right-hand side of (7) can be replaced by
max, iy, — min, 7%, . This means that max, || P* — DK ||, and max, || r* — D |, are the only
terms in (7) that vary with D, K and ¥, and hence one can make the bound arbitrarily small by
driving the approximation errors to zero. Let IT C A8l be the set of non-optimal policies of M and
let € = mingep || v — V7 ||. Since ¥ is the value function of a specific policy, it follows that, if the
right-hand side of (7) is smaller than €, then ¥ = v*. Therefore, there exists a scalar £’ such that if

max, || P —DK || < & and max, || r* — DF || < €’ the policy returned by PISF is optimal.

4. Computing the Stochastic Factorization

As shown in the previous section, PISF’s performance depends crucially on the approximations
DK =~ P? and D“r ~ r?, with a € A. This section discusses how to compute D%, K, and r. It starts
with a generic presentation of the problem and then gradually focuses on more specific formulations
that can be solved much more efficiently.

4.1 The Optimization Problem

In order to facilitate the exposition, it will be assumed that the vectors r* and matrices P¢ have been
concatenated and stacked to obtain a single matrix M € RISIAIXISI+1 representing an entire MDP, as

3. Ravindran and Barto (2004) follow similar strategy to bound the approximation loss resulting from an approximate
homomorphism.
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follows: -~ ~
1 1 1 1

T Pu Pz ot Py
i 1 1 1

fisi Pisii Pisz 7 Plsyis)

M= : : S : ) (11)

JAL Al Al Al

1 Pu P Pys)

HAL AL A A

L s Pisie Pisiz Pisiis| |

With the representation above, the objective of the factorization problem reduces to finding matrices
D and W such that DW ~ M. More formally, the approximate factorization of an MDP M can be
formulated as a constrained nonlinear optimization problem in the following way:

Problem 1. Given a matrix M € RISIAXISHY vopreosenting an MDP, find D € RISIAX™ gng W e

R™ 1 iy order to minimize a dissimilarity measure ®(M,DW), subjected to the following con-
straints:
dij >0fori=1,2,..|S||A| and j=1,2,...,m, (12)
wij >0fori=1,2,..mand j=2,3,...,|S|+ 1, (13)
" dij=1fori=1,2,..|S|A], (14)
S|+1 )
L:HQ_ Wij = 1fori=1,2,...m. (15)

Note that the above problem formulation assumes that the first column of M is reserved for the
rewards, as in (11). This is why the elements in the first column of W are not subjected to the
stochasticity constraints (13) and (15). When |A| = 1 the model M is a Markov process. Also, the
problem statement can be easily modified to reflect the case in which M represents a Markov chain
(that is, when there are no rewards in the Markov process—see Barreto & Fragoso, 2011). This
modification does not have any major impact on the discussion to follow.

It is not hard to see that the feasible region defined by the constraints of the above optimization
problem is a convex set. Thus, if ® is continuously differentiable, one can resort to one of the several
methods presented by Bertsekas (1999) to solve a constrained nonlinear optimization problem with
a convex feasible region. Among them, the most obvious choice is probably a gradient projection
method, in which a candidate solution is iteratively refined by an update rule that keeps it within
the problem’s feasible region. Another approach that seems promising in this context is the “block
coordinate descent” method (Bertsekas, 1999). In this case, only a subset of the variables is updated
at a time while the remaining are kept fixed. For the optimization problem at hand, there are two
blocks of variables corresponding to the elements of matrices D and W. Thus, at each iteration of
the algorithm one applies the following update rules:

D'«argmin ®(M,DW) and W’«argmin ®(M,D'W), (16)
DeD Wwew

where D ¢ RIS and W < R+ are the feasible regions of D and W, respectively. Depending
on the characteristics of the dissimilarity measure adopted, the repeated application of the above
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update rules will eventually converge to a stationary point of ® (Grippo & Sciandrone, 2000). This
is true, for example, when ®(M,DW) =|| M —DW ||, where || - || is the Frobenius norm (Cutler &
Breiman, 1994; Lin, 2007b). When || - || is used, one can compute D’ and W’ through a constrained
least-squares algorithm (Cutler, 1993).

The solution of the two subproblems in (16) may require a large number of arithmetic oper-
ations. Therefore, instead of searching for exact minima, one can take a small step per iteration
towards the solution of each subproblem, much like in conventional iterative descent methods (Lee
& Seung, 2000). In this case, it is relatively simple to enforce the stochasticity constraints by pro-
jecting the partial solutions onto the feasible region or by incorporating a penalty term into the
dissimilarity measure ¢ (Lee & Seung, 1997). It should be noted, however, that when an iterative
update rule is used in place of (16), the guarantee of convergence to a solution may be lost (Lin,
2007a).

The ideas above have been extensively exploited in the study of a related optimization problem
known as nonnegative matrix factorization. As the name suggests, in this version of the problem
only constraints (12) and (13) are normally imposed (Paatero & Tapper, 1994; Lee & Seung, 1999).
There are many works available discussing theoretical and practical aspects of nonnegative matrix
factorization (for a survey, see Berry et al., 2007). Most of the ideas discussed in these works also
apply to the problem considered here. In particular, since one can derive a stochastic factorization
from a nonnegative factorization of a stochastic matrix, any algorithm designed for the latter can
also be used to compute the former (Cohen & Rothblum, 1991).

Instead of addressing Problem 1 as a generic nonnegative factorization, one can exploit the
particular structure of matrices D and W. As discussed in Section 2.4, the fact that D is stochastic
implies that an exact factorization DW = M is only possible when the rows of M are inside the
convex hull defined by the rows of W. So, one can try to solve the problem by (approximately)
computing a convex hull that contains the rows of M and then determining the coefficients that
recover m; as a convex combination of the vertices of the hull—which will naturally give rise to a
stochastic D. This approach is closely related to Cutler and Breiman’s (1994) “archetypal analysis”
and Ding et al.’s (2010) “convex nonnegative factorization.” There is also an interesting connection
with the problem known as “spectral unmixing” in the field of imaging spectroscopy, in which the
determination of matrix W is usually referred to as the task of “extracting end-members” (Keshava
& Mustard, 2002; Keshava, 2003).

Yet another way of approaching Problem 1 is to impose additional constraints and resort to
specialized methods. Consider for example the case in which D has only one nonzero element
per row. In this case, the factorization can be seen as a specific instance of the well-known data-
clustering problem: the vectors m; must be grouped into m clusters C; whose “centers” are the
vectors w,—the most common choice to define the centers is to have w; = 1/|C}| Y{ijm.ec,} m; =
1/ICj Xija,; =1y m; (Hartigan, 1975). The goal of the clustering problem is to determine an as-
signment of vectors m; to clusters C; in order to minimize ®(M,DW). Since W is automatically
defined by a given assignment, the problem reduces to computing matrix D. An advantage of inter-
preting the factorization as a clustering problem is the availability of a large number of algorithms
specifically designed to solve this type of optimization (Kaufman & Rousseeuw, 1990; Gan et al.,
2007). Conveniently, depending on how @ is defined, the cluster centers w; will naturally satisfy
the stochasticity constraints (12), (13), (14), and (15). This is the case when the Frobenius norm is
adopted as the objective function.
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4.2 Reducing the Computational Cost of the Factorization

This work presents the stochastic factorization as a general approach to reduce the number of states
in an MDP. Of course, the main reason one would be interested in such a reduction is to save
computational resources. One potential gain is in the amount of memory required to represent the
model. Nevertheless, this paper is mainly concerned with the use of stochastic factorization as a
strategy to reduce the time complexity of dynamic programming algorithms, that is, the number of
arithmetic operations performed in the search for a decision policy. In this case, the computational
cost of the factorization process itself is a concern. In particular, it only makes sense to resort to
stochastic factorization if the number of operations involved in the factorization process is much
smaller than the number of operations saved by replacing the original model with a compact one.

As discussed, the stochastic factorization problem is equivalent to nonnegative matrix factor-
ization. Nonnegative matrix factorization has been a popular research topic in the last few years,
and as a result the efficiency of the algorithms has been increasing steadily—in fact, nowadays it is
possible to compute nonnegative factorizations of very large matrices in a matter of minutes (Esser
et al., 2012; Bittorf et al., 2012). Recently, Thurau et al. (2011, 2012) have proposed efficient al-
gorithms to approximately compute a convex hull that contains the rows of M. They show that, by
exploiting the extra structure in Problem 1, one can compute the approximation DW ~ M much
faster than algorithms that treat the problem as a conventional nonnegative factorization. There are
also methods for the spectral unmixing problem that were specifically designed to be computation-
ally efficient (Nascimento & Dias, 2004; Chang et al., 2006). Finally, if one interprets Problem 1
as a clustering task, it is possible to approximate very large matrices M by using some recently
proposed methods (Boutsidis et al., 2010; Shindler et al., 2011).

In principle, any of the methods above can be used to compute the approximation DW ~ M
required by PISF. Some of them are able to solve the problem in time linear in the number of rows
of M (Shindler et al., 2011; Thurau et al., 2012). Unfortunately, when it comes to Problem 1, this
does not mean that the factorization will depend linearly on |S|. The problem is that the vectors m,
live in R*!. This implies that the number of states in the MDP M defines not only the number of
vectors m; (the number of rows of M), but also their dimension (the number of columns of M). As
a consequence, even the “linear”” methods will run in O(|S|?) time.

Depending on the size of the MDP and on the computational resources available, a quadratic de-
pendency on |S| may be acceptable. There are many algorithms available in this case. For example,
Shindler et al.’s (2011) clustering method can deliver an approximation DW =~ M in O(|S|?|A|m)
time, which corresponds to m iterations of the value iteration algorithm (Littman et al., 1995). There
are also situations in which the transition matrices P are sparse, meaning that the execution of ac-
tion a in state s; can lead to a number of states z < |S|. In this case the factorization problem can be
solved in time linear in |S|. The remaining of this section focuses on the worst case scenario, that
is, the case in which M is not sparse and a quadratic dependency on |S| is nor acceptable.

4.2.1 BREAKING THE DOUBLE DEPENDENCY ON THE SIZE OF THE MDP

In order to make the stochastic factorization problem tractable for large MDPs, one needs to cir-
cumvent the fact that |S| defines both the number of rows and the number of columns of M. The
strategy proposed in this section is to rewrite the problem in terms of a dissimilarity measure whose
computation does not depend on the number of states in the MDP.
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Let ¢ be a dissimilarity measure defined in RIS x RISH! (such as a distance function, for
example). This section will assume that the measure @ previously introduced is induced by ¢. For
a few examples, let A and B be two arbitrary matrices of the same dimension. Then one can have,
for instance,

¢(a;,b;) =| a,—b; ||r and Z ¢(a;b;) =|| A—B ||,
¢(a;,b;)=| a,—b,||; and CID(A B) —maxiq)(a b~) =||A—B|w, (17)
¢(a;,b;) =||a;,—b;[;and P(A,B)= max ) 4/[(a max || (A—B)x|}, (18)
X,[[x[2=1 X,[[x[2=1
where || - ||2 is the Euclidean norm. Based on the expressions above, it is clear that in order to mini-

mize ®(DW, M) one can focus instead on minimizing ¢ (Y ;d;jw;, m;) for all i. One way of looking
at };d;;w; =~ m; is to think of the rows w; as a set of “prototypical” vectors that are representative
of the dynamics of the MDP M. Recalling that each row of D forms a convex combination, the ele-
ment d;; can be seen as the weight of representative vector w; in the approximation of m; (Cutler &
Breiman, 1994; Keshava & Mustard, 2002). The core assumption of this section is that, in general,
d;j should decrease with ¢(m;, w;). Although this is not necessarily true in an exact factorization,
many approximation schemes rely implicitly or explicitly on such a premise (Hastie et al., 2002).
One example is local kernel smoothing techniques such as the Nadaraya-Watson kernel-weighted
estimator (Hastie et al., 2002, Chap. 6). In this case, the elements of D would be computed as:

 exp(—9(m;w)/7)
7 Frexp(—0(m,w)/7)’

where 7 controls the relative magnitude of the elements in one row of this matrix. More generally,
d;; should be computed based on a function ® that is non-increasing with respect to ¢ (m;, w;).

The assumption that d;; decreases with ¢(m;,w;) makes it possible to compute D based ex-
clusively on ¢, as in the example given in (19). It is also possible to compute W using only this
dissimilarity measure. For example, Thurau et al. (2012) argue that, if one restricts the rows of W
to be a subset of the rows of M, the minimization of ® as defined in (18) can be accomplished
through the maximization of the volume of the simplex defined by the rows of W. Based on con-
cepts from distance geometry, the authors show that it is possible to efficiently compute the volume
of the simplex defined by a candidate W using ¢ only. There are also several clustering algorithms
that only require a distance matrix to work, never accessing the vectors m; directly (Kaufman &
Rousseeuw, 1990). Finally, one can derive simple heuristics that use ¢ to compute a matrix W that
“covers” as well as possible the convex set defined by M, ensuring that every row m; is close to
at least one representative vector w;. For example, one can adopt a constructive method that goes
through all vectors m; and successively adds new rows to the matrix W in order to guarantee that
min; ¢ (m;,w;) < o for all i, where & is a predefined threshold. Notice that in this case the number
of representative rows w; will be automatically determined by the value of ¢. This idea will be
further explored in Section 4.2.2.

The obvious advantage of computing DW ~ M based solely on ¢ is that the problem of reducing
the computational cost of the factorization comes down to finding efficient ways of computing
¢. Specifically, one can replace ¢ with an approximation ¢ whose computation requires fewer
arithmetic operations. One way to define ¢ is to restrict the computation of ¢ (m;,m;) to a properly
defined subset of the elements of m; and m;,—which corresponds to enforcing some degree of

(19)
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sparsity in M (see Mahoney, 2011). This section goes in another direction, though: it exploits the
fact that each vector m; is associated with a specific state-action pair which can often be represented
by a feature vector whose dimension is much smaller than |S].

From dynamic programming’s perspective, a state sy is nothing but an index k € {1,2,...,|S|}.
However, in an MDP describing a real decision problem, each state has a clear semantic interpreta-
tion. In general, a given state of the MDP can be represented by a set of features that are descriptive
of the real state of the problem. Based on the state features, it is usually easy to define feature
vectors that represent state-action pairs. Therefore, S X A can be thought of as a finite subset of a
vector space; with a slight abuse of notation (s;,a) will be used to refer to the vectors representing
state-action pairs and dim(S x A) will denote the number of components of (s;,a).

In many cases, it is reasonable to assume that state-action features provide some information
regarding the dynamics of the MDP. To be more precise, let ¢ be a dissimilarity measure defined in
S x A. The assumption is that, if state-action pair (sx,a) is similar to state-action pair (s;,b), then the
associated transition probabilities and rewards should also be similar—that is, the distance between
the corresponding vectors m; and m; should be small. Thus, one can use ¢ as a surrogate for ¢.
Note that this direct relationship between ¢ and ¢ will naturally happen when the MDP M is the
result of the discretization of a model with continuous state space, as long as the functions defining
the MDP’s dynamics are reasonably smooth and the resolution of the discretization is sufficiently
fine. Moreover, often only the relative magnitude of the distance matters for the proper functioning
of the algorithms (Kaufman & Rousseeuw, 1990; Thurau et al., 2012). Therefore, an approximation

¢ ((sx,a),(s1,b)) = Cd(m;,m;), with C > 0, should suffice in many cases.

The strategy of replacing ¢ with a dissimilarity measure ¢ defined in the state-action space can
result in significant computational savings when dim(S x A) < |S| + 1. This is akin to the well-
known “kernel trick,” in which an algorithm is rewritten in terms of inner products which are then
replaced by an appropriately defined kernel (Scholkopf & Smola, 2002). The kernel trick allows
one to work in very high-dimensional feature spaces without ever explicitly computing the features.
Similarly, by adopting an algorithm based exclusively on ¢, and then replacing the latter by ¢, one
can compute the approximation DW ~ M without ever manipulating the vectors m; directly. This
strategy can be used with any algorithm that computes D and W based on ¢. As an illustration, the
next section describes a concrete algorithm that does just that.

4.2.2 AN ALGORITHM TO COMPUTE THE FACTORIZATION OF AN MDP IN LINEAR TIME

The previous sections discussed several ways to address the stochastic factorization problem (Prob-
lem 1). Each approach has its advantages and drawbacks, and the decision about which method to
adopt should take into account factors like the size of the problem, the level of accuracy required
for the solution, and the computational resources available. This section describes in more detail a
specific algorithm to compute the approximation DW ~ M. The objective is to provide an illustra-
tion of how some of the ideas described above can be implemented, and also make the discussion
regarding computational and theoretical aspects of the factorization problem more concrete.

The proposed method, described in Algorithm 3, builds on the ideas discussed in Section 4.2.1.
The strategy is to select a subset of the rows of M to form matrix W, such that each row m; has
a representative vector w; within a predefined neighborhood. Such a neighborhood is induced by
a dissimilarity measure ¢ defined in S x A. The mechanics of the method are very simple. It goes
over each state-action pair of the MDP and computes their distance to the 1-closest neighbors in
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the set E of state-action pairs already selected to be part of the model (line 7 of Algorithm 3). If the
distance to the closest neighbor is above a predefined threshold o, the corresponding row of M is
added to W (lines 9 to 11). If not, the number of representative state-action pairs remains the same.
Regardless of whether the model has grown or not, the 1-closest neighbors are used to compute
the elements in the z" row of D, where z is the index of the current state-action pair in M (lines 13
and 14). The elements d;; can be computed by any function @ that does not increase with o (see
discussion in Section 4.2.1 and equation (19) for an example).

Algorithm 3 Stochastic-factorization computation

MDP M M € RSIMIXISH1 and the corresponding features (s;,a)
¢:(SxA)x (SxA)— R similarity function
Require: ®:R— R non-decreasing function
occR" neighborhood radius
n eN* number of neighbors in the approximation
Ensure: Factorization DW ~ M
1: E«~{(s1,0)} > E are the representative state-action pairs (|E| = m)

2: D0 € REANT Wem e RIXSIH
3: fori<«1,2,....|S| do

4 fora «1,2,....|A| do

5: z—(a—1)*|S|+i > z is the row index of (s;,a) in M (see (11))
6: h«min(n,|E|)

7 find the & nearest elements to (s;,a) in E according to @; call the j closest pair (s,b);

8 if ¢((s,b)1,(si,a)) > o then > A new representative state-action pair must be added
9: E<E+{(si,a)}

10: W [,‘:] > Add one row to W
11: D+« [Dpo] > Add one column to D
12: for j«<1,2,....,hdo

13: k< index of (s,b); in W

14; dg—($((5,b), (si,a)))

15: for j«1,2,....|E| do dzj<—dzj/2|lill dy > Make sure that D is stochastic

The parameter o has a strong effect on the output of Algorithm 3: decreasing its value usually
leads to a more accurate approximation DW ~ M, but it also increases the number m of represen-
tative state-action pairs (or, equivalently, representative vectors w;). The algorithm can go through
the state-action pairs of the MDP in any order, and in the end every pair will have at least one rep-
resentative counterpart within a distance of ¢ in the space (S x A, ¢). However, since Algorithm 3
is a greedy method, the set of state-action pairs selected to be part of the model may change de-
pending on the order in which the pairs are visited. The parameter 17 determines the number of
representative vectors w; used to approximate each m;, and can be seen as a device to control how
local the approximation should be (this is akin to setting the parameter ‘k’ of a k-nearest neighbor
approximation; see Hastie et al., 2002, Chap. 2, for an intuitive discussion). The parameter 1 also
has a direct effect on the computational cost of the algorithm, as discussed next.

The most demanding operation in each iteration of Algorithm 3 is the computation of the 1-
nearest neighbors of the current state-action pair. There are several efficient algorithms available
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to perform this search, either exactly or approximately (Liu et al., 2005). The most popular exact
method is to use a KD-tree, which takes O(dim(S x A)mlogm) operations to be constructed and
allows the search to be performed in O(nlogm) time, on average (Friedman et al., 1977). Since
Algorithm 3 performs |S||A| iterations, its overall complexity is linear in |S|. Therefore, using
this algorithm to build the approximation DW ~ M, and assuming that the number of iterations
performed by PISF is much smaller than |S|, the cost of the entire process of computing a decision
policy depends only linearly on the number of states in the MDP. This is the best one can do without
assuming any extra structure in the model.

As for the space complexity of Algorithm 3, note that in an actual implementation the matrix M
is not really necessary, and neither W nor D must be explicitly stored: W can be represented by an
m-dimensional vector containing the indices of the representative state-action pairs and D can be a
data structure with the |S||A| x i nonzero elements d;;.

As mentioned, when Algorithm 3 terminates all state-action pairs of the MDP have at least one
representative state-action pair within a neighborhood of radius ¢ defined in the space (S x A, @).
In order to extrapolate this guarantee to the performance of PISF, it is necessary to relate ¢ to ¢. Let
(sx,a) and (s;,b) be two state-action pairs associated with vectors m; and m;, respectively. Then, if

(ﬁ((Sk,d),(Sl,b)) <0 = (P(mivmj) <E, (20)

it should be relatively straightforward to provide guarantees regarding PISF’s solution. For example,
if (17) is adopted and 11 = 1, one can resort to Proposition 3 to obtain such guarantees. There are
specific scenarios where it should be easy to ensure that assumptions like (20) hold, such as for
example when the MDP M results from the discretization of a continuous model. It may also be
possible to derive guarantees similar to (20) based on knowledge about the problem, for example by
looking at the transition equations describing the dynamics of the MDP. In general, though, it may
be difficult to relate ¢ to ¢. Note that it is trivial to modify Algorithm 3 to reflect the case in which
¢ is computed based on a subset of the elements of m; and m;. In this case deriving guarantees
analogous to (20) is considerably easier (see for example Mahoney, 2011).

Algorithm 3 relies on two premises: (i) given M and W, making the elements d;; inversely
proportional to ¢(m;, w;) results in a good approximation DW ~ M; (ii) it is possible to define
a dissimilarity measure ¢ : (S x A) x (S x A) — R such that ¢((s¢,a), (s;,b)) ~ C¢(m;,m;), with
C > 0, where m; and m; are the rows of M associated with (s¢,a) and (s;,b), respectively. It is
important to point out that building an algorithm based on such assumptions is only one possible
artifice to circumvent the computational cost of factoring an MDP. Other strategies may be possible,
such as resorting to domain knowledge or developing methods that exploit some structural regularity
of the MDP (see Section 5.3.3). In fact, there are scenarios where an exact factorization is readily
available without the need for any computation (see Barreto, 2014, for an example). In any case, the
next section shows empirically how Algorithm 3 can generate very good decision policies in some
problems.

5. Computational Experiment

This section illustrates how PISF can be useful in practice with a real-world application of significant
economical interest.
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5.1 The Multicomponent-Replacement Decision Task

One of the big challenges faced by industry is the maintenance of assets over a long period of time.
For example, a commercial airline or a cargo company must have an operational fleet, while a power
company needs to maintain its electric power grid functioning at all times (Powell, 2007). In many
cases, the maintenance of expensive equipments involves sums of money counted in the millions
of dollars. In such situations, the decisions made during the maintenance activities may have an
enormous economical impact.

Usually, an equipment such as a jet engine or an electric generator is composed of several com-
ponents that degrade over time. If a critical component breaks, it has to be replaced immediately. It
is often the case that such a maintenance operation has an associated setup cost which is indepen-
dent of the number of components being replaced. This may be financial losses caused by the down
time or costs associated with activities such as the disassembling of the equipment, delivery of new
components, and displacement of specialists. Thus, in some circumstances, it may be advantageous
to perform opportunistic replacements of functioning components to avoid future setup costs. As
discussed, this trade-off between immediate and future costs is typical of decision making tasks.

The importance of the decision problem described above is attested by a huge body of literature
originated in the 1960’s and spanning the subsequent four decades (Barlow & Proschan, 1965;
McCall, 1965; Pierskalla & Voelker, 1976; Sherif & Smith, 1981; Cho & Parlar, 1991; Dekker
et al.,, 1997; Wang, 2002). The problem can be formalized as follows. Suppose that the asset of
interest has n. components and let /; € N™ denote the expected lifetime of component ¢; measured
in some discrete time unit. Then, each state s; is a vector s; € N"© whose j™ entry s; ; represents the
remaining lifetime of component c;. At each time step the remaining lifetime of c¢; is decreased by
one, and s;; = 0 indicates that this component is no longer operational. Even if ¢; has not reached
the end of its useful life, it may fail with a given probability, which is a function of s;; and possibly
of the other components’ remaining lifetimes s;,. An inactive component c¢; causes the entire asset
to stop working, and if c; is not replaced immediately a penalty of —oo takes place in the next
transition. To avoid that, one must replace c;, which incurs a cost of r; dollars. On top of that,
every replacement activity—joint or not—has an associated setup cost. The setup cost is composed
of two terms, a fixed amount of R dollars plus an extra fee of Ry dollars which is only charged
if a component has failed before reaching its expected lifetime. The extra fee covers the expenses
of last-minute measures required by unexpected failures. Let action a be represented by a binary
vector a, € {0,1}" where a;,; = 1 indicates that component c¢; should be replaced. The goal of
the decision maker is to select an action a, at each time step in order to minimize the expected
discounted future cost.

As one can see, this problem suffers from a particularly severe version of the curse of dimension-
ality: not only does its state space grow fast with n., with |S| = [];(/; + 1), but also the cardinality
of the action space is an exponential function of this variable, since |A| = 2"<. Thus, even instances
of the problem with only a small number of components already represent a difficult challenge for
dynamic programming.

Given this scalability issue, researchers usually focus on particular cases of the multicomponent-
replacement task whose structure can be exploited somehow. For example, it has been noted in the
literature that when the failure cost R is not considered the state space of the multicomponent-
replacement problem can be reduced in more than 50% by simply eliminating the states of S in
which all components are functional (i.e., s;; > 0 for all j). Since one knows that the optimal action
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in the excluded states is to replace zero components, this modification does not change the optimal
policy of the problem (see Sun et al., 2007; Arruda & Fragoso, 2011). Note though that when
Ry > 0 it may be advantageous to carry out replacements even if no components have expired; as
will be seen, in this case the reduction strategies cited above may fail.

Researchers and practitioners have also explored other constrained versions of the multicompo-
nent-replacement task. For example, if the replacement costs r; and the lifetimes /; are the same for
all components c;, all permutations of a given vector s; can be considered as being the same state,
which reduces the state space considerably (Haurie & L’Ecuyer, 1982). Another simplification
of the problem is to assume that the probability of component c¢; failing is independent of the
other components’ remaining lifetimes s;,. In this case, the components are related only through
the “economical dependence” represented by the setup cost (Cho & Parlar, 1991). The resulting
model, a factored MDP, can be solved orders of magnitude faster than a conventional MDP (see
Section 5.3.3). It is also possible to reduce the action space of the multicomponent maintenance
task by making some assumptions regarding the problem’s dynamics (Xia et al., 2008).

Although the methods above can be very effective in particular instances of the maintenance
task, they are not directly applicable to the most general version of the problem, in which compo-
nents have different characteristics and depend on each other both economically and structurally.
Hence, in practice industry often relies on simple “threshold policies™ that replace all components
with remaining lifetime above a given value (Haurie & L’Ecuyer, 1982; van der Duyn Schouten
& Vanneste, 1990). Unfortunately, it is known that, in general, the optimal policy for the multi-
component-replacement problem does not lie in the space of threshold decision policies (Ozekici,
1988; Xia et al., 2008).

5.2 Experimental Setup

The experiments described in this section were carried out assuming a general version of the main-
tenance task in which components interact with each other. The failure probability of component c;
was modeled as a linear function of the asset’s general condition. Suppose the asset is in state s; and
the decision maker decides to perform action a,. Then, denoting the next state by s,, the probability
of component c; failing is:

(f = fmin) (sij — 1) L7 Yoz j(lu = Siu)

P(skj:0]s,-j>1,ahj:O):f— I —1 Z7é~l s
J u j tu

1)

where f, fmin and f are parameters of the model and it is assumed that /; > 1 for all j. The motivation
for equation (21) is that the probability of a given component failing should depend not only on the
condition of the component itself, but also on the condition of all other components of the asset.
This is in fact a generalization of a commonly used model of the problem; when f = £, and f =0,
equation (21) reduces to the fixed failure probability often assumed in the literature (Sun et al.,
2007; Arruda & Fragoso, 2011). In the experiments, equation (21) was considered with f = 0.1,
finin=0.01, and 7 = 0.1. Thus, if many components in the asset are about to expire, the probability
of component c; failing can more than double.

The formulation of the problem considered here is also general with respect to the character-
istics of the individual components of the asset. Instead of assuming that all components have the
same lifetime and cost, which seems unrealistic, the variables /; and r; were drawn from normal
distributions with means ; = 10 and i, = —10 and common standard deviation ¢;, = 3 (the values
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sampled for /; were rounded to the closest natural number and sampled again in case the result was
smaller than 2). With this configuration, the expected value of the model’s parameters coincide with
the ones adopted by Sun et al. (2007). The constant term of the setup cost was fixed at Ry = —10
and the failure cost was set as Ry = —5n,. As discussed above, when Ry > 0 it might happen that
m*(s;) # 0 even if s;; > 0 for all j. This increases the effective size of the state space, since one
cannot simply discard states without expired components.

The multicomponent-replacement task was modeled as a discounted problem with y = 0.999
(as discussed in Puterman, 1994, in this case ¥ can be seen as a way of emulating the devaluation of
money). For each value of n, € {2,3,...,7}, 100 instances of the problem were randomly generated.
The policy iteration algorithm was then used to find an optimal policy for the resulting MDPs (see
Appendix A.3). As a means of comparison, policy iteration was also applied to the reduced version
of the problem, in which a state s; is removed from the MDP if and only if s;; > O for all j. Note that
such a modification requires the recalculation of the transition probabilities between the states that
remain in the model (Arruda & Fragoso, 2011). Here, in order to accomplish this reduction, actions
were replaced with their temporally extended counterparts, “options,” giving rise to a “semi-MDP”
(options are closed-loop policies with a well-defined termination condition and an initiation set; see
Sutton et al., 1999, for details) .

In order to evaluate the heuristics usually adopted by industry, threshold policies using values
ranging from 1 to 10 were considered. For each value of n., these policies were compared and
the one providing the lowest expected cost was used in the comparisons with the other algorithms.
Notice that a threshold policy using a value of 0 corresponds to the “naive” strategy of only replac-
ing non-operational components. The performance of such a policy was used as a baseline in the
comparisons.

As discussed in Section 4, PISF’s configuration comes down to the definition of matrices D €
RIIAX™ and W € RIS+ In the experiments of this section these matrices were computed by
Algorithm 3. The following function was used as a similarity measure between state-action pairs:

. | =ifa, #a,,
O((si:an): (s:3,)) = { 2?21(1 —aij)\rj](sij — s¢j)? otherwise. (22)

The intuition behind (22) is straightforward: two state-action pairs should be considered similar
if, after the application of the actions to the corresponding states, the remaining lifetimes of the
components are approximately the same (except for eventual failures). Note that the difference
between the remaining lifetimes s;; and s;; is weighed by the magnitude of the cost r; of replacing
the j™ component. The other parameters of Algorithm 3 were defined as follows. The number of
neighbors 1 used in the approximation was set to n., the function @ was defined as the constant
1/7, and the neighborhood radius ¢ was varied in {200,400,600}. Since ¢ was the only parameter
that varied across the experiments, the specific instances of PISF will be referred to as PISF-o (see
Appendix A.3 for more details regarding the implementation of PISF).

5.3 Results

Throughout this section, the following measure will be used to evaluate the algorithms:
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Figure 2: Expected gain on the multicomponent-replacement problem with respect to the naive
decision policy. Error bars represent one standard error over 100 runs.

where v” is the value function of the policy 7 returned by the algorithm under evaluation, V is a
reference value function, and S C S is the set of test states used in the evaluation (note that ¢ can
take on negative values).

5.3.1 STANDARD SOLUTIONS

The two most natural ways of addressing the multicomponent-replacement problem is to use dy-
namic programming or to resort to the threshold policies normally adopted in practice. This section
compares these methods with PISF. The performance measure used to evaluate the algorithms is
the relative gain one should expect when using them instead of naively replacing a component only
when it fails. Hence, the reference function ¥ in (23) is the value function of the naive policy, v'%.
When n, <5, it is possible to compute the value functions v* and v exactly, and thus in this
case the set S appearing in (23) is the entire state space S. However, for n. > 5 computing v* and
v™ becomes infeasible in the computers used for the experiments. In this case § was composed of
10,000 test states s; sampled uniformly at random from S, and the corresponding values v and vf"’
were approximated through Monte Carlo roll-outs of length 5,000.*

Figure 2 compares the results of policy iteration (PI), policy iteration applied to the reduced
version of the problem (PI-RED), the best threshold policy (BEST THR), and PISF using o = 200,
o0 =400, and o = 600. One thing that immediately stands out in the figure is the fact that the perfor-
mance of the optimal policies improves as the number of components n. increases. This indicates
that the financial losses of a company that does not make opportunistic replacements increase with
the number of components in the asset.

4. The roll-outs were truncated at a point in which the value of the rewards (in the case of the current application,
dollars) has already decreased in more than 99% (that is, 7/5000 < 0.01).
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THR policies perform better than the naive policy in general. Notice though that the results
shown in Figure 2 correspond to the performance of the best THR policy selected independently for
each value of n.. So, for example, while the average gain provided by the best THR policy when
n. =5 is 13.36%, the average gain of the worst policy of this type is only 3.77%. This means that,
in order to achieve the level of performance shown in Figure 2 in a real application, one cannot
arbitrarily pick one specific THR policy. Rather, it is necessary to have a model of the problem
and be willing to systematically compare all possible threshold values. Even in this case, the re-
sulting policy will be suboptimal. For example, when n. = 5, making optimal decisions increases
the expected profit ¢ of the best THR policy in 27.8%, on average (see Figure 2). Considering the
amounts of money often involved in maintenance activities, such a difference can represent signifi-
cant monetary gains. This is a good illustration of the impact that dynamic programming may have
in practice.

Unfortunately, dynamic programming does not scale well with the number of components in
the multicomponent-replacement task. As mentioned above, in the experiments described here the
optimal policy could not be computed for instances of the problem in which n. > 5. Since in
standard dynamic programming algorithms there is no easy way to control the amount of memory
used, one is left with very few alternatives. In the case of the multicomponent-replacement task, one
possibility is to eliminate states s; > 0 and apply dynamic programing to the reduced MDP. Such a
strategy reduces the state space considerably, which makes it possible to solve MDPs one order of
magnitude bigger (see Figure 2). Although the technique works well with the version of the problem
considered by Arruda and Fragoso (2011), it may fail on the version of the problem considered here,
in which the optimal policy may carry out opportunistic replacements in states without expired
components. This is illustrated by the PI-RED curve in Figure 2, which clearly shows that the
optimal policies of the reduced MDPs do not perform optimally in the original models.

PISF represents an alternative between the two extremes of computing an optimal policy and
resorting to simple heuristics such as the threshold policies. In contrast with conventional dynamic
programming algorithms, PISF provides a practical mechanism to control the trade-off between the
computational resources used and the quality of the resulting decision policy (the order m of the
stochastic factorization, here indirectly defined by the neighborhood radius ¢). This point is better
illustrated when Figure 2 is analyzed in conjunction with Figure 3, which shows the size of the
models generated by each algorithm and the associated time needed to solve them.

The dimension of the matrices processed by the algorithms during the value function computa-
tion is defined by the number of states in the corresponding Markov process. Thus, this number is a
good measure of the algorithms’ time and space complexities. In the case of policy iteration, what
defines the size of the Markov processes is the number of states in the MDP; for PISF, such a num-
ber is m, the order of the stochastic factorization. The size of the Markov processes generated by
each method is shown in Figure 3a. The figure makes it clear how the amount of memory required
by the methods restricts their application. For example, if PI-RED was not run in the MDPs with
n. =7 components, it is because the resulting Markov processes would be bigger than the largest
model shown.

As expected, the size of the Markov processes generated by PISF decreases with ¢. Take the
MDPs with n. =5, for instance. In this case the average reduction on the original models provided
by PISF was 60% when o = 200, 88% when ¢ = 400, and 95% when ¢ = 600. When analyzing
these numbers, one should keep in mind that the computational cost of evaluating a decision policy
is cubic in the size of the Markov process. Thus, if the value functions are computed exactly, a
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Figure 3: Size of the models generated by the algorithms and the associated time needed to compute
a solution. Error bars represent one standard error over 100 runs.

reduction of 88% in the model’s size translates to a decrease of 99, 82% on the number of arithmetic
operations performed at each value-function computation.

Of course, in a real application the value function is seldom computed exactly. Besides, in
order to use PISF one has to compute the factorization of the MDP. Even considering these factors,
replacing PI with PISF can result in significant time savings. This is illustrated in Figure 3b, which
shows the actual run times of the algorithms. For a concrete example, take again the MDPs with
n. =5 components. In this case, adopting PISF-600 instead of PI results in a 97% reduction of
computing time—which is equivalent to saying that the former algorithm is 37 times faster than
the latter. To put this number in perspective, if it were possible to run PI in the MDPs with n, =7
components, finding a decision policy would take over 8 days. PISF-600 was able to compute an
approximation in less than 5 hours.

But the reduction on the computational cost and memory usage provided by PISF are meaning-
less if the resulting decision policies perform poorly. Comparing Figures 2 and 3, one can clearly
see that this is not the case in the multicomponent-replacement problem. For example, by replac-
ing PI with PISF-400, the average reduction on computing time is over 90% for all values of n,.
In contrast, the expected decrease on the profit ¢ is below 6.2%. If one adopts PISF-600 instead
of PISF-400, the reduction on the computational cost is at least 94%, for all values of n., while
the associated losses are below 9.5%. This illustrates how PISF’s performance degrades grace-
fully with the quality of the MDP’s factorization, as indicated by the theoretical results presented in
Section 3.3.

There is however a clear decrease on the expected gain provided by PISF when 7. increases from
6 to 7, as shown in Figure 2. One possible explanation for this is the fact that in the multicomponent-
replacement task increasing the number of components in the asset increases not only the size of
the state space S, but also the number of actions in A. This means that both the dimension and
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the number of matrices P* increase exponentially with n., making it harder to “summarize” all
the information in a single matrix K. On top of that, and perhaps more important, by keeping the
neighborhood radius ¢ fixed, the relative size of the models generated by PISF actually decreases.
For example, for PISF-400, the average ratio m/|S| is equal to 0.23 when n, = 3, 0.12 when n. =5,
and only 0.06 when n, = 7. Thus, in order to keep the relative size of m fixed, ¢ must increase with
n.. In any case, even in the MDPs with n. = 7 components PISF clearly outperforms the best THR
policy, which is the only feasible alternative among the methods considered in this section. The next
sections investigate other approximate solutions for the multicomponent-replacement problem.

5.3.2 UPPER CONFIDENCE BOUNDS FOR TREES (UCT)

It is only possible to compute an optimal policy for the multicomponent-replacement problem if
the number of components in the asset is below a certain threshold defined by the computational
resources available. Above this threshold, the standard solution adopted by industry is to resort to
simple heuristics. The previous section presented PISF as an alternative solution that allows for
some control on the trade-off between the computational resources used and the quality of the re-
sulting policy. It is only natural to ask whether other approximate methods would also be applicable
in this case.

Two popular approaches for approximately solving an MDP are value-function approximation
and state aggregation. These techniques are closely related to the stochastic-factorization trick, and
will be discussed in Section 6. This section will focus on a set of methods collectively known as
Monte-Carlo tree search (MCTS). MCTS methods are capable of computing approximate solutions
for very large MDPs by combining tree search and random sampling (Browne et al., 2012). These
methods have been receiving a lot of attention recently due to their enormous success in several
applications, most notably in the game of Go (Bouzy & Helmstetter, 2003). MCTS algorithms use
Monte Carlo roll-outs to estimate the return associated with the actions available at the current state.
In order to do so, they build a tree, rooted at the current state, whose structure reflects the transitions
performed during the roll-outs.

The main feature that distinguishes the different MCTS algorithms is the strategy used to select
actions during the roll-outs. The most popular MCTS algorithm is Kocsis and Szepesvari’s (2006)
upper confidence bounds for trees (UCT). In UCT the action selection process is interpreted as
a multi-armed bandit problem in which each arm corresponds to an action (Auer et al., 2002).
Intuitively, UCT works by adding an “exploration bonus” to the values of actions that have been
tried less often. One of the main parameters of the algorithm is the exploration constant C,, used to
weigh the bonus against the value of actions (Kocsis & Szepesvari, 2006).

UCT has nice theoretical properties: given some € > 0, it is guaranteed to return an €-optimal
action if the depth of the tree and the number of roll-outs are large enough (Kocsis & Szepesvari,
2006). Therefore, given enough computation, UCT will always be able to perform at the same level
as PISF (and eventually better, if PISF’s policy is not optimal). An interesting question in this case
is how much computation is needed in practice for that to happen.

In order to answer this question, an experiment was carried out in which UCT and PISF were
compared in the multicomponent-replacement problem. The algorithms were evaluated on the 100
MDPs with n. = 5 components described in Section 5.2. As before, the performance of the resulting
policies was contrasted with that of the naive policy my. The comparisons were based on a single
roll-out starting from a state selected uniformly at random and independently for each MDP. More
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Figure 4: Expected performance on the multicomponent-replacement problem with respect to the
naive decision policy. Error bars and shadow represent three standard errors over 100 runs.

specifically, the set of test states S appearing in (23) was composed of a single state s;, and, as
before, the corresponding values v/ and va were approximated through a Monte Carlo roll-out of
length 5,000.

As described above, before each action selection UCT builds a tree based on Monte-Carlo roll-
outs. As the number of roll-outs grows, the quality of the value function approximation increases,
but so does the computational cost of the algorithm. Thus, one way of evaluating UCT is to impose a
time limit #,,,x on each iteration of the algorithm and check the performance of the resulting policy
as a function of f,,x. Note that, given a fixed time budget 7., there is a trade-off between the
number of roll-outs carried out and their length, and finding the right compromise between these
two corresponds to finding the right balance between the bias and the variance of the value function
approximation (Hastie et al., 2002). Here this issue was resolved by changing the maximum depth
of the tree, hmay, in the set {5,50,500,5000}.% Also, UCT’s exploration parameter C » was varied
in {10°,10',10%,10%}. Therefore, for each MDP and each value of 4, UCT was run 16 times—
corresponding to all possible combinations of values for Ay,x and C,—, and then the best result was
selected and compared to that of the naive policy through (23). Figure 4 shows the average value of
@(v™,v™) as a function of fy.x. As a reference for comparison, the average result of PISF-600 on
the same MDPs is also shown.

As shown in Figure 4, UCT performs worse than the naive policy 7y for f.x < 15. Assuming the
logarithmic trend shown in the figure will persist for #,x > 15, UCT would need over 46 seconds
per step to reach the level of performance of my. In order to find solutions comparable to those
found by PISF-600, UCT would require around 115 seconds per step, or approximately 1.74 times
the time needed by the former algorithm to compute a decision policy for the entire state space.

5. The policies were evaluated from a single test state only because the nature of the UCT algorithm makes it compu-
tationally impractical to carry out many roll-outs of length 5,000. In any case, the small variance of (23) across the
MDPs indicates that this decision did not have a strong effect on the comparisons.

6. Since |(Viax — Vigin)/7*| < 0.002 for all MDPs, where v* = 1/|S] Z!ﬂl v7, the value of leaf nodes was set to zero.
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Note that, even though a time limit of #,,x = 15 seconds per step may not seem like much at first,
the run time of UCT quickly escalates with the horizon of the problem. This becomes clear when
one observes that a trajectory of 5,000 steps with UCT using #ynax = 15 takes more than 20 hours,
while computing the optimal decision policy for the same problem takes an average of 34 minutes.

It should be mentioned that the most basic version of UCT was used in the experiments of this
section. Nowadays there are several extensions available in the literature (see for example Chaslot
et al., 2008; Gelly et al., 2012; Keller & Eyerich, 2012). These strategies, when built on top of
UCT, tend to improve its performance. That said, the fact that UCT needs orders of magnitude
more computation than PISF to reach the same level of performance is not surprising, since the
former only uses the MDP as a generative model—that is, the algorithm only samples from the
conditional distributions represented by the transition matrices—while the latter fully exploits all
the information available in the model.

5.3.3 FACTORED MDPs

The previous section illustrated how exploiting all the information available about a problem can
be important for computational efficiency. This section shifts the focus of the discussion to another
issue, namely that of the structure of the model. In particular, it describes a specific structured model
known as factored MDPs.

In a factored MDP the transition dynamics can be described by a dynamic Bayesian network
(DBN, Dean & Kanazawa, 1989; Boutilier et al., 1995). Let s® and s¢+) denote, respectively, the
state at the current time and at the next step. The transition graph of a DBN is a two-layer directed
acyclic graph whose nodes are the variables in the set S = {SY) s s ,S({H) ,sg“) e, SED }. An

arc from s(]f) to si.t“) indicates that the value of the i variable at time # + 1 depends on the value of

the j variable at time ¢. Let p(s{ ") denote the set of all nodes with an arc to s{'"". The transition

model of a factored MDP is given by P(s¢+)|s®) = [T;P(s\ ™" |p(s{™")). What allows a compact
representation—and efficient solution—of a factored MDP is the assumption that the DBN is sparse,
that is, p(sﬁ’*l)) is restricted to a small subset of S for all i. In addition, it is assumed that the reward
is given by a summation of functions that depend on the status of only a few variables. When these
assumptions hold, that is, when the MDP is truly factored, it is possible to represent the model’s dy-
namics very compactly using structures like decision trees or algebraic decision diagrams (Boutilier
et al., 1995; Hoey et al., 1999). Therefore, the number of states in the MDP remains the same; the

computational gain comes from the fact that the state space is never explicitly enumerated.

At first, one might expect that the structure of a factored MDP would induce a value function
with similar structure. If this were indeed the case, it would be possible to compute an optimal policy
for a factored MDP much faster than dynamic programming algorithms that ignore the models’
special structure. Unfortunately, Koller and Parr (1999) have shown that, in general, the value
function of a factored MDP is not factored. Therefore, practical algorithms developed for factored
MDPs only compute an approximate solution (see Guestrin et al., 2003, and references therein).

The factored MDP model captures the dynamics of many real-world decision-making tasks (Pow-
ell, 2007). In fact, it is safe to say that some MDPs solved using this technique are among the largest
solved to date (Guestrin et al., 2003, see also Section 5.4). However, there are decision problems
of great interest whose dynamics do not satisfy the assumptions of such models. The version of the
multicomponent-maintenance problem addressed here is a good example: since the probability of
a given component failing depends on the condition of all other components, the resulting DBN is
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not sparse (cf. equation (21)). But what happens if one ignores the fact that an MDP is not truly
factored and applies the algorithms developed under such an assumption anyway?

To help answering this question, an experiment was performed in the following way. Let M
be one of the MDPs with n. = 5 components described in Section 5.2. For each component c;
and each value of z € {1,2,3,4}, a set p;(c;) C {1,2,3,4,5} — {j} containing z distinct elements
was generated uniformly at random. Then, for each value of z, the transition matrices of M were
regenerated with (21) replaced by
(f_fmin)(sij - 1) +f ZM¢p2(6j>(lu - Siu) +Zuepz(c,~)(lu - lu/z)

li—1 Yol ’

(24)
giving rise to the MDP M,. Using (24) corresponds to enforcing the sparsity of the DBN describing
the components’ failure probabilities. Note that, instead of completely ignoring the influence of the
components ¢, with u € p.(c;), their remaining lifetimes was replaced by [,/2, the middle point
of the range of possible values. This is a way of making the factored model closer to the original
one without incurring in a denser DBN. After the transition matrices of M, were generated, policy
iteration was used to compute an optimal policy, &) (note that this computation is exact). Finally,
the performance of 7} in the original MDP M was compared to that of 7*, an optimal policy of M
(thus, in this experiment the reference value function ¥ appearing in (23) is v*, and § = S). This
entire process was repeated for each one of the 100 MDPs with n, = 5 components.

Figure 5a compares the performance of 7, the policies returned by policy iteration on the
artificially-factored MDPs (PI-FAC), with that of PISF-200, PISF-400, and PISF-600. Observe how
the performance of PI-FAC degenerates as the level of sparsity z of the artificially-factored MDPs
increases. This is expected, since the derived models deviate from the original ones as z approaches
ne. Since the computational cost of the algorithms developed for factored MDPs decreases with
Z, one has to trade performance for speed when choosing which interactions between variables to
ignore. But the important point to note here is the fact that PI-FAC is outperformed by all instances
of PISF when z > 1. Since 7 is an optimal policy of the factored MDPs, its performance is the
best one can reasonably hope for when using algorithms that approximate it. In other words, a
factored MDP algorithm using (24) will outperform PISF on the multicomponent-replacement task
only if the approximation it computes “luckily” induces a policy that performs better than 7 in the
original, non-factored, MDP.

This experiment shows that, by “pretending” that a non-factored MDP is factored, one may
severely restrict the quality of the resulting policy, regardless of the specific algorithm chosen to
solve the factored MDP. There is no reason to believe that this phenomenon is restricted to the
multicomponent-replacement domain. Thus, there is a niche of problems that are too big to be
solved by standard dynamic programming and cannot be reliably solved by algorithms developed
for factored MDPs. For these problems, it might be a good alternative to resort to algorithms that
exploit other types of structure, such as PISF.

This is not to say that the stochastic-factorization trick should be seen as an alternative to fac-
tored MDPs. In principle, the properties of an MDP being “factored” or “factorizable” are orthog-
onal to each other, and therefore both structures can potentially be exploited in conjunction. To
illustrate this point, an experiment was carried out in which PISF and the THR policies were run in
the factored MDPs M,. Note the difference with respect to the previous experiment: while there the
models M, were considered as approximations of the MDPs M, here it is assumed that they are the
true models. Thus, both PISF and the THR policies were compared to the optimal policies 7. The

P(Skj :O’S,'j > l,ahj :O) :f—
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Figure 5: Expected loss on the multicomponent-replacement problem with respect to the optimal
decision policy. Error bars and shadows represent one standard error over 100 runs.

idea is to investigate how the structure of a transition matrix induced by a sparse DBN affects PISF’s
performance. Figure 5b shows the performance of PISF and the best THR policy on the factored
MDPs M, as a function of the level of sparsity z (cf. equation (24)). Although the performance of
PISF degenerates slightly when z increases, the relative performance with respect to the best THR
policy generally improves as the model gets more sparse.

This experiment illustrates how the stochastic-factorization trick can potentially be useful in
the computation of a policy for a factored MDP, which may lead to the solution of very large
sequential decision problems. Of course, in order to simultaneously exploit the “factored” and
“factorizable” structures of a model, one has to apply the trick without explicitly manipulating the
matrices involved. This constitutes an interesting extension of the current research, and is left as a
suggestion for future work.

5.4 Discussion

This section described the application of PISF to a large problem of real interest. It was shown that,
by using Algorithm 3 to compute D and W, it is possible to handle MDPs whose exponentially large
state and action spaces preclude the use of standard dynamic programming. The largest instance
of the problem solved by PISF had 39,916,800 states and 128 actions, or 359 times the size of the
largest MDP solved by policy iteration. Note that in the maintenance problem studied here it is
trivial to define heuristics that perform reasonably well, but in other applications this may not be
true. For example, Dekker et al. (1996) point out that the multicomponent-replacement problem
has a structure similar to that of other important decision-making tasks arising in production and
inventory control. In such scenarios PISF can be an even more valuable tool.
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It should be mentioned that the experiments of this section considered the classical scenario of
dynamic programming, in which one seeks a decision policy defined over the entire state space S.
Other formulations of the decision problem are possible. For example, in the field of automated
planning it is often assumed that the decision maker must perform well from a small number of
initial states only, and that at any state s; € S only a small set of actions A(s) C A is available (Ghallab
et al., 2004; Geffner & Bonet, 2013). On top of that, it is sometimes assumed that the dynamics
of the MDP are truly factored (Sanner, 2010). When all these assumptions hold, it is possible for
the decision maker to perform well visiting only a small fraction of the state space, and, since the
MDP’s dynamics are factored, sometimes not even this small subset must be explicitly enumerated.
Therefore, algorithms developed for this scenario can be applied to very large MDPs (Keller &
Eyerich, 2012; Kolobov et al., 2012).

PISF is not a direct competitor of planning algorithms developed for the scenario above because
it was not designed with such assumptions in mind. Since PISF is an offline method that computes
a policy for the entire state space, it will never scale to MDPs as large as those handled by on-line
methods that compute a policy on demand, such as UCT. Similarly, an MDP with truly factored
dynamics should favor methods that exploit this structure. On the other hand, as the experiments of
this section show, when the assumptions that underlie other planning algorithms do not hold, they
can be largely outperformed by PISF.

In the end, what determines the success of a given algorithm is the suitability of its underlying
assumptions to the scenario of interest. PISF has been developed for MDPs that are factorizable or
nearly so—a structural regularity not exploited by any other dynamic programming algorithm. How
often this structure arises in problems of interest and how well it can be exploited together with other
assumptions, such as those usually considered in automated planning, are interesting questions to
be addressed in future research.

6. Related Work

This section reviews some of the approaches that have been proposed to circumvent dynamic pro-
gramming’s curse of dimensionality, and discusses how these methods relate to the stochastic-
factorization trick.

6.1 Value-Function Approximation

Perhaps the most straightforward approach to deal with a large MDP is to use a compact parametric
representation of its value function. This is not a new idea; in fact, Bellman and Dreyfus explored
the use of polynomials to approximate the value function in as early as 1959. Since then the theory
has evolved a lot, and nowadays it is possible to find books that cover the subject in detail (Bertsekas
& Tsitsiklis, 1996; Powell, 2007).

The main issue regarding the use of a parametric representation of the value function is the dam-
aging effect it may have on dynamic programming algorithms. In particular, it is well known that the
use of general approximators may cause instabilities or even the divergence of the algorithms (Boyan
& Moore, 1995; Baird, 1995; Tsitsiklis & Roy, 1996, 1997). The most common strategy to deal
with this problem is to restrict the structure of the approximator to compact representations with a
linear dependence on the parameters (Tsitsiklis & Roy, 1997; Tadi¢, 2001; Schoknecht & Merke,
2003). Indeed, the use of linear approximators has led to a number of successful algorithms with
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good convergence properties (Tsitsiklis & Roy, 1996; Bradtke & Barto, 1996; Perkins & Precup,
2003; Lagoudakis & Parr, 2003; Sutton et al., 2008).

There is some evidence in the literature that the instability caused by some function approxima-
tors is related to their tendency to exaggerate the difference between two successive estimates of the
value function (Thrun & Schwartz, 1993; Gordon, 1995; Ormoneit & Sen, 2002). For this reason,
many researches have advocated the use of “conservative” function approximators that compute the
value of a state as a weighted average of other states’ values (Gordon, 1995; Tsitsiklis & Roy, 1996;
Rust, 1997; Munos & Moore, 1999; Ormoneit & Sen, 2002; Szepesvari & Smart, 2004). Examples
of such approximators include kernel averaging, linear interpolation, k-nearest neighbor, and some
types of splines. In general, the combination of these approximators with dynamic programming
leads to convergent algorithms (Gordon, 1995; Tsitsiklis & Roy, 1996).

Conservative function approximators are similar in nature to the stochastic-factorization trick.
To see why this is so, consider the class of function approximators which Gordon (1995) called
averagers. An averager approximates the value of a state by a convex combination of other states’
values and possibly some predetermined constants. Given an MDP M = (S,A,P,R,7), let S be a
subset of the state space S, with |S| = m, and let v € R™ represent the values of the states in this
subset. An averager would compute an approximation of the value function as

Vi =djpc;i + 27:1 dijﬁj, (25)

with ¢; €R, d;; € R* and '}1:0 d;; = 1. Since in the approximation scheme above the values of all
states can be determined from the values of the states in S, only the latter must be updated during
dynamic programming’s iterative process.

For the sake of simplicity, suppose that there is an averager for which d;, = 0 for all i €
{1,2,...,|S|}. In this case, approximate dynamic programming using (25) corresponds to its exact
version in a reduced MDP M = (S, A, P,R,y) where P“(sj|s;) = ZLS:“ pSdij and 7 (s;) = r(s;) (Gor-
don, 1995, Thm. 4.1). This model represents a particular case of the stochastic-factorization trick
in which there is a single matrix D € RP*™ and one matrix K* € R™I! for each a € A (Barreto
et al., 2011). The dynamics of the reduced model are given by P4 = KD, where K is the matrix
composed of the rows of the original transition matrix P¢ € RSS! associated with the states s; € S.
By interpreting conservative approximators as a particular case of the stochastic-factorization trick,
schemes similar to (25) can be thought of as approximating the MDP itself. Thus, both the definition
of the approximator’s architecture and the configuration of its parameters are converted into a well
defined optimization problem, in which the objective is to find matrices D and W¢ that minimize
d(M*,DW*) for all a € A.

6.2 Model Reduction

Another way of handling large-scale decision-making problems is to find a compact representation
of the associated MDP. In this case, the simplest idea is to aggregate states that share a common
characteristic. There are many proposals of this type in the literature, and what distinguishes them
is the criterion used to group states. For a detailed account of model approximation techniques, the
reader is referred to the review provided by Li et al. (2006).

One of the earliest works on model approximation was that of Bertsekas and Castafion (1989),
who propose aggregating and disaggregating states dynamically, during the value function compu-
tation, according to the residual left after a few applications of the Bellman operator. An alternative
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approach is to group states based on their associated transition probabilities and rewards. Following
this line, Givan et al. (2003) suggest the notion of stochastic bisimulation as a criterion to aggregate
states. Roughly speaking, two states are bisimilar if they have the same expected reward associated
with each action, and the same transition probabilities to all groups of bisimilar states. This notion
is closely related to Ravindran’s (2004) concept of homomorphism between MDPs. Both bisimula-
tion and homomorphism are principled criteria for state aggregation, and as such they guarantee the
optimality of the decision policy “lifted” from the compact model. However, they are too restrictive
to be applied in many real situations. Realizing that, several authors have proposed relaxed versions
of these criteria (Dean et al., 1997; Ferns et al., 2006; Ravindran, 2004; Sorg & Singh, 2009).

Regardless of the specific criterion used to group states, state aggregation can be very naturally
represented as a stochastic factorization. In this case, the rows of matrix W represent the dynamics
associated with each group and matrix D has one nonzero element per row indicating the group to
which each state-action pair belongs (note the flexibility of aggregating state-action pairs instead of
states only). In this context, applying the stochastic-factorization trick corresponds to computing
the probabilities of transitions between groups. A slightly more general approach for model reduc-
tion is to assume a soft aggregation of states, in which each state belongs to a group with given
probability (Singh et al., 1995; Sorg & Singh, 2009). Soft aggregation is also naturally represented
as a stochastic factorization by letting D have more than one nonzero element per row. In fact, it can
be shown that Sorg and Singh’s (2009) concept of soft homomorphism is equivalent to the particular
case of the stochastic-factorization trick discussed in Section 6.1 (Barreto et al., 2011).

As one can see, the stochastic-factorization trick can serve as a useful formalism for thinking
about state aggregation. For example, a hard aggregation of states corresponds to a matrix D in
which each row contains a single ‘1’ and all rows associated with a given state have the nonzero el-
ement in the same column. In a soft aggregation of state-action pairs both restrictions are removed.
Also, a single application of the trick leads to a (soft) homomorphism, while successive applications
lead to an aggregation/disaggregation scheme similar to Bertsekas and Castafion’s (1989) approach.
Perhaps more important, as with conservative approximators, the stochastic factorization turns the
aggregation problem into a well defined optimization problem. This can provide a unifying frame-
work for the analysis, comparison, and solution of the different versions of the aggregation problem.

7. Conclusion

The approach presented in this paper builds on a simple idea, called here the stochastic-factorization
trick: given a stochastic factorization of a transition probability matrix, one can swap the factors of
the multiplication to obtain another transition matrix, possibly much smaller than the original. This
property can be exploited to reduce the number of states of a Markov process. Intuitively, the
stochastic-factorization trick corresponds to creating a small number of representative states (or
state-action pairs) and redirecting the transitions of the original model according to some similarity
measure. Formally, this process can be posed as a well defined optimization problem.

The stochastic-factorization trick can be extended to an MDP in at least two ways: one can
factor each Markov process that comes up in the search for a decision policy or factor the Markov
processes associated with the actions of the problem before the search begins. If a single matrix K
and a single vector T are used in the latter, the PISF algorithm can be used to compute a decision
policy for the problem at hand. PISF reduces the computational complexity of standard policy
iteration from a cubic dependence on |S| to a function that grows only linearly with the size of
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the MDP. PISF also enjoys nice theoretical guarantees, since it always converges to a decision
policy whose performance improves with the quality of the MDP’s factorization. As in general the
factorization improves with its order, m, one can use this parameter to control the trade-off between
the use of computational resources and the performance of the resulting policy.

In order to apply PISF to a decision-making problem, one must find an approximate factorization
of the corresponding MDP, M ~ DW. One way to compute such a factorization is to see the rows
of W as prototypical vectors that represent the dynamics of M and interpret the elements of D
as a similarity measure between these vectors and the rows of M. This way, D and W can be
computed based on a dissimilarity measure defined in the problem’s state-action space S < A. Such
a technique allows the approximation M ~ DW to be computed in time linear in |S|. Therefore, the
entire process of computing a decision policy with PISF will depend only linearly on the number of
states of the MDP. Exploiting this fact, PISF was able to find approximate solutions for instances
of an important decision task with more than 5 billion state-action pairs. The solutions found were
considerably better than those found by a heuristic commonly adopted in practice.

Evidently, this paper does not exhaust the discussion on the stochastic-factorization trick and
PISF. One subject that calls for further investigation is the development of alternative methods to
efficiently compute matrices D and W (or the identification of scenarios where a factorization is
available or easy to compute). Another promising research topic is the application of the stochastic-
factorization trick to factored MDPs or other types of structured models. Finally, PISF may also
be useful in the context of model-based reinforcement learning. In this case, instead of collecting
sample transitions in order to estimate all parameters of an MDP M, one can leverage the use of data
by focusing on the prototypical state-action pairs represented in W. After W has been determined,
the elements of D can be computed based on some measure of similarity defined in S x A, as done
in the experiment presented in this paper. These topics constitute interesting directions for future
research.

Appendix A. Modified Policy Iteration and Modified PISF

Throughout the paper, it is assumed that the value function v” is computed exactly at each step
of policy iteration. This facilitates the analysis of the theoretical properties and computational
complexity of the algorithms. However, most of the ideas discussed extend naturally to the case in
which v” is only approximated.

A.1 Modified Policy Iteration

In Puterman and Shin’s (1978) modified policy iteration, v" is estimated through ¢ applications of
T™. Thus, in this case each value function computation involves O(|S|?¢) operations. Decreasing ¢
reduces the computational cost of evaluating a decision policy, but in general it also increases the
number of policies that must be evaluated until convergence (Puterman, 1994). Note that when
t = 1 one recovers the value iteration algorithm. Similarly, for 7 > |S| one can simply compute v*
exactly by solving the associated linear system, which comes down to conventional policy iteration.
Therefore, both value iteration and policy iteration can be seen as special cases of modified policy
iteration.

The amount of memory used by modified policy iteration depends on the specific implementa-
tion adopted. In general, the memory usage is inversely proportional to the algorithm’s effective run
time. One extreme implementation strategy is to only store one vector corresponding to the current
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estimate of the value function, ¥*. Note though that in this case each multiplication P*¥" requires
loading the rows of P* from secondary memory (or computing them on demand), thus significantly
increasing the algorithm’s run time. One can speed up the algorithm by keeping the entire MDP
loaded in memory at all times, therefore increasing the use of memory from O(|S]) to O(|S|*|A]).
An intermediate solution between these two extremes is to load (or compute) P* before each value
function computation, which leads to O(|S|?) memory usage.

A.2 Modified PISF

The definition of modified PISF is straightforward: the only change needed is to replace the exact
computation of ¥ in line 6 of Algorithm 2 with ¢ applications of T7¥ = F+ yP”¥. In this case, using
PISF instead of modified policy iteration reduces the computational cost of each value function
computation from O(|S|*t) to O(m?t). The reduction on memory usage depends on the strategy
used to represent the models, as discussed in Appendix A.1.

It should be clear that using modified PISF with r = 1 corresponds to combining the stochastic-
factorization trick with value iteration. Note though that, in terms of computational cost, this may
not be the best alternative. As discussed in Appendix A.1, decreasing ¢ tends to increase the number
of iterations performed by PISF. Each iteration of PISF involves building matrix D* and computing
the multiplication KD” (lines 4 and 5 of Algorithm 2, respectively), which can be seen as “con-
structing” the operator 77 for the current 7. Since the construction of 77 takes O(|S|?m) operations
and its application is only O(m?), one may be wasting computational effort by only applying this
operator once.

A.3 Implementation Details

The experiments of Section 5 were performed using modified policy iteration and modified PISF
(Appendices A.1 and A.2, respectively). Instead of fixing a value for ¢, the iterative value function
computation was interrupted according to the stop criterion described in Puterman’s (1994) Propo-
sition 6.6.5, with € = 107, Policy iteration and PISF were run until two successive policies were
identical, as shown in Algorithms 1 and 2. The matrices P* of modified policy iteration were loaded
before each value function computation, since this represents a compromise between memory usage
and computational cost (see Appendix A.1). In the case of PISF only matrix K was kept in memory
at all times; the matrices D" were computed on demand at each iteration of the algorithm. All the
statements in Section 5 regarding the algorithms’ computational requirements refer to this specific
implementation.
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