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Abstract

In domains such as biomedicine, ontologies are promineitiged for annotating data. Con-
sequently, aligning ontologies facilitates integratiragjad Several algorithms exist for automati-
cally aligning ontologies with diverse levels of perfornsanAs alignment applications evolve and
exhibit online run time constraints, performing the aligemhin a reasonable amount of time with-
out compromising the quality of the alignment is a cruciadltdnge. A large class of alignment
algorithms is iterative and often consumes more time thaaretin delivering solutions of high
quality. We present a novel and general approach for spgegtirthe multivariable optimization
process utilized by these algorithms. Specifically, we hedédchnique of block-coordinate descent
(BCD), which exploits the subdimensions of the alignmetpem identified using a partitioning
scheme. We integrate this approach into multiple well-kmaignment algorithms and show that
the enhanced algorithms generate similar or improved @légris in significantly less time on a
comprehensive testbed of ontology pairs. Because BCD duewarly constrain how we partition
or order the parts, we vary the partitioning and orderingesods in order to empirically determine
the best schemes for each of the selected algorithms. Asebicine represents a key application
domain for ontologies, we introduce a comprehensive bidoad¢dntology testbed for the com-
munity in order to evaluate alignment algorithms. Becausmbdical ontologies tend to be large,
default iterative techniques find it difficult to produce adajuality alignment within a reasonable
amount of time. We align a significant number of ontology pdiom this testbed using BCD-
enhanced algorithms. Our contributions represent an itapbstep toward making a significant
class of alignment techniques computationally feasible.

1. Introduction

Recent advances in Web-based ontologies provide a needed alengationventional schemas
allowing descriptive annotations of data sets. As an example, the Nationtdr@GenBiomedical
Ontology (NCBO) hosts more than 370 curated biomedical ontologies in its BalRacluding
those in high use such as SNOMED-CT, and whose concepts participateégrimaa 2 billion data
annotations (Musen et al., 2012). Therefore, the present day opalteward data integration and
to manage the multitude of ontologies is to build bridges between ontologies tleadhanapping
scope — a problem often referred to as that of ontology matching whiclupes aralignment(Eu-
zenat & Shvaiko, 2007). We illustrate a partial alignment between biomeatitalogies in Fig. 1.
Consequently, several algorithms exist for automatically aligning ontologieg uarious tech-
niques (Euzenat, Loup, Touzani, & Valtchev, 2004; Jian, Hu, Ch&rgu, 2005; Li, Li, & Tang,
2007; Jean-Mary, Shironoshita, & Kabuka, 2009; Doshi, Kolli, & Them2009; Wang & Xu,
2009; Hanif & Aono, 2009; Bock & Hettenhausen, 2010; 8imaz-Ruiz & Grau, 2011; Shvaiko &
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Figure 1: Biomedicine is an important application domain for ontologies. Alignri(gawn in
dashed red) between portions @f) the Parasite Experiment Ontology (PEO) aftdl the
Ontology of Biomedical Investigations (OBI) as discovered by an autorradtgdithm
called AgreementMaker (Cruz etal., 2012). Both these ontologies atatdeat NCBO.
Each identified map in the alignment signifies an equivalence between theptenc

Euzenat, 2013), with mixed levels of performance. Crucial challengabdse algorithms involve
scaling to large ontologies and performing the alignment in a reasonable aofdime without
compromising on the quality of the alignment. As a case in point, only 6 alignmenitalgs (not
including their variants) out of the 21 that participated in the 2012 and 2&t&noes of the annual
ontology alignment evaluation initiative (OAEI) competition (Shvaiko et al., 2@023) generated
results in an acceptable amount of time for aligning large biomedical ontologies.

Although ontology alignment is traditionally perceived as an offline andtonetask, the sec-
ond challenge is gaining importance. In particular, as Hughes and As(#iifd) note, continu-
ously evolving ontologies and applications involving real-time ontology alignsigett as semantic
search and Web service composition stress the importance of computatioraégity considera-
tions. Recently, established competitions such as OAEI (Shvaiko et al.) B8dan reporting the
execution times of the participating alignment algorithms as well. As ontologiesrieetarger,
efficiency and scalability become key properties of alignment algorithms.

A large class of algorithms that performs automated alignmeiterigtive in nature (Melnik,
Garcia-molina, & Rahm, 2002; Euzenat et al., 2004; Jian et al., 20085;dli,&2007; Doshi et al.,
2009; Wang & Xu, 2009; Hanif & Aono, 2009; Bock & Hettenhausen1l@0 These algorithms
repeatedly improve on the previous preliminary solution by optimizing a measte golution
quality. Often, this is carried out as a guided search through the alignq&ce sising techniques
such as gradient descent or expectation-maximization. These algorithmmemaytil convergence,
which means that the solution cannot be improved further because it issiblydocal, optimum.
However, in practice, the runs are often terminated after an ad hoc nwhiberations. Through
repeated improvements, the computed alignment is usually of high quality bet abpsoaches
also consume more time in general than their non-iterative counterpartex&wmiple, algorithms
performing among the top three in OAEI 2012 in terms of alignment quality su¥iis-+ (Ngo
& Bellahsene, 2012), which ranked first in tbenferencearack, Optima+, ranked third in theon-
ferencerack, andcOMMA (Kirsten et al., 2011), which ranked firstamatomyandlibrary tracks,
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are iterative! On the other hand/AM++ consumed an excessive amount of time in completing the
conferencerack (greater than 5 hours) a@ptima+ consumed comparatively more time as well.

Furthermore, iterative techniques tend to be anytime algorithms, which dalivalignment
even if the algorithm is interrupted before its convergence. While coraidas of computational
complexity have delivered ways of scaling the algorithms to larger ontologies) as through
ontology partitioning (Hu, Zhao, & Qu, 2006; Seddiqui & Aono, 2009;Uémburg, Kalita, Ewing,

& Hines, 2010; Rahm, 2011) and the use of inverted indicesgidén-Ruiz & Grau, 2011), we seek
to speed up the alignment process of multiple algorithms. We think that corgideraf space and
time go hand in hand in the context of usability.

Our primary contribution in this article is a general approach and its compseteeevaluation
for significantly speeding up the convergence of iterative ontology alighteehniques. Thaya-
sivam and Doshi (2012a) provide a preliminary introduction to this ampro®bjective functions
that measure the solution quality are typically multidimensional. Instead of the treditipproach
of modifying the values of a large number of variables in each iteration, wenojgose the prob-
lem into optimization subproblems in which the objective is optimized with respectitmk ©r a
small subset, also calledodock of variables while holding the other variables fixed. This approach
of block-coordinate descefBCD) is theoretically shown to converge faster under considerably
relaxed conditions on the objective function such as pseudoconvexitg e\&n the lack of it in
certain cases — or the existence of optima in each variable (coordinatk) b&mng, 2001). While it
forms a standard candidate tool for multidimensional optimization in statistics aa@uden applied
in contexts such as image reconstruction @irn2000; Fessler & Kim, 2011) and channel capacity
computation (Blahut, 1972; Arimoto, 1972), this article presents its use in gytal@ynment.

We extensively evaluate this approach by integrating it into multiple ontology rakgh al-
gorithms. We selecteBalcon-AO (Jian et al., 2005)MapPSO (Bock & Hettenhausen, 2010),
OLA (Euzenat & Valtchev, 2004) an@ptima (Doshi et al., 2009) as representative algorithms.
These algorithms have participated in OAEI competitions in the past, and sonesrohtve ranked
in the top tier. Consequently, these algorithms in their default forms exhiloitdhble alignment per-
formance. Furthermore, their implementations and source codes thateaiedrfer our approach
are freely accessible.

Using a comprehensive testbed of several ontology pairs — some of at@dhrge — spanning
multiple domains, we show a significant reduction in the execution times of the aligmpmueEesses
thereby converging faster. Corresponding alignment quality continuesrtain the same as before
or is improved by a small amount in some cases. This enables the applicati@sefalgorithms
toward aligning more ontology pairs in a given amount of time, or to more suindetge ontology
partitions. Also, it allows these techniques to run until convergence ifildess contrast to a
predefined ad hoc number of iterations, which possibly leads to the similar covetgpalignments.
This is useful in the context of techniques that are guaranteed to genver

BCD does not constrain how the alignment variables are divided into bioalept for the rule
that each block be chosen at least once in a cycle through all blockkeFuore, we may order the
blocks for consideration in any manner within a cycle. Consequently,emars contribution is an
empirical study of the impact of different ordering and partitioning schemdle improvement that
BCD brings to the alignment. In addition to the default ordering scheme basedreasing height
of grouped entities, we consider reversing this ordering, and a thirdagipin which we sample the

1. GOMMA utilizes multiple matching strategies some of which may not be iterative, ase hertly contributed
toward its performance in OAEI as well.
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blocks based on a probability distribution that represents the estimated liketlifidioding a large
alignment in a block. In the context of partitioning, we additionally consideuging alignment
variables such that the entities are divided in a breadth-first seareti pagition. While our default
approach partitions one of the ontologies in a pair, we also consider thetinfgaartitioning both.
Performances of the iterative algorithms are impacted differently by vaviays of formulating
the blocks and ordering them. Notably, the quality of the alignment may bessdy@mpacted.

Surprisingly, the algorithms differ in which ordering and partitioning scheptemizes their
alignment performance. In order to comprehensively evaluate the effic@ the BCD-enhanced
and optimized algorithms, we contribute a novel biomedical ontology alignmengtedtbaddition
to being an important application domain, aligning biomedical ontologies has itsioigne chal-
lenges. We selected biomedical ontologies published in NCBO for our testhéxh also provides
a primarily UMLS-sourced but incomplete reference alignment. Thirty-twimidint biomedical
ontologies form the 50 pairs in our testbed with about half of these havi®§38,8amed classes.

The rest of this article is organized as follows. In the next section, wdbagplain itera-
tive ontology alignment and introduce the four representative iterativegitighs. Additionally, we
briefly review the technical approach of BCD. We show how BCD may begiated into iterative
ontology alignment algorithms in Section 3. In Section 4, we empirically evaluafeetfiermances
of the BCD enhanced algorithms using a comprehensive data set. ThesttiorSs, we explore
other ways of ordering the blocks and partitioning the alignment variablesre@fter, in Section 6,
we detail a new biomedical ontology benchmark and report the performaffittee BCD enhanced
and optimized iterative technigues on this benchmark. We discuss the imgaCipalong with
its limitations in Section 7, and conclude this article in Section 8. Appendix A outliresaibre-
sentative algorithms and their modifications to utilize BCD, followed by details obitraedical
ontology alignment testbed in Appendix B.

2. Background

We provide a brief overview of the ontology alignment problem in the nelgsaction. This is
followed by brief descriptions of the four algorithms that are represemrtafi iterative alignment
approaches. Finally, we describe the technique of BCD in general.

2.1 Overview of Ontology Alignment

An ontology is a specification of knowledge pertaining to a domain of intemstdlized into
entities and relationships between the entities. Contemporary ontologies utiizeptien log-
ics (Baader, Horrocks, & Sattler, 2003) such as the Web Ontologyuagey(OWL) (McGuinness
& Harmelen, 2004) in order to facilitate publication on the Web. OWL allows tleeafi€lasses to
represent entities, different types of properties to represent redaifms) and individuals to include
instances.

The ontology alignment problem is to find a set of correspondences éetwe ontologies),
and©®,. Though OWL is based on description logic, several alignment algorithmslroatblogies
as labeled graphs (with some possible loss of information) due to the peeskaclass hierarchy
and properties that relate classes, in order to facilitate alignment. For exdrafien-AO and
Optima transform OWL ontologies into a bipartite graph (Hayes & Gutierrez, 2@04)OLA
utilizes an OL-graph (Euzenat et al., 2004). Consequently, the aligrpneloiem is often cast as a
matching problem between such graphs. An ontology gré&@pis defined as) = (V, E, L) where,
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V is the set of uniquely labeled vertices representing the entiiés the set of edges representing
the relations, which is a set of ordered 2-subset® p&nd L is a mapping from each edge to its
label. A correspondence;,., between two entities;, € O andy,, € 0o, consists of the relation,

r € {=,C, D}, and confidence; € R. However, the alignment algorithms that we use focus on the
possible presence ef relation (also calle@quivalentClasin OWL) between entities only. In this
case, an alignment may be represented @5 ax |V>| matrix that represents the correspondence
between the two ontologie€); = (Vi, Eq, L1) andOy = (Va, Ea, Ls):

mi1 mi2 o M|V
ma1 ma2 o Moy
M =
L Mpvijr M2 0 MY |ve|

Note that if the ontologies are not modeled as graphs, the rows and coléithhare the concepts in
0, andO,, defined in the description logic. Each assignment variahlg, in M, is the confidence
of the correspondence between entities,c V4 andy, € V5. ConsequentlyM could be a real-
valued matrix, commonly known as the similarity matrix between the two ontologiesetanthe
confidence may also be binary with 1 indicating a correspondence, aseedwdue to which the
match matrix)/ becomes a binary matrix representing the alignment. Two of the algorithms that
we use maintain a binary/ while the others use a real .

An alignment is not limited to correspondences between entities alone, and chageirtor-
respondences between the relationship labels as well. In order to facilitatkingarelationships,
alignment techniques, including some that we use transform the edgedaipefgs into unlabeled
bipartite ones by elevating the edge labels to first-class citizens of the graprocess involves
treating the relationships as resources thereby adding them as nodegriaphe

2.2 lterative Ontology Alignment

A large class of alignment algorithms is iterative in nature (Melnik et al., 2002e&at et al., 2004;
Jian et al., 2005; Li et al., 2007; Doshi et al., 2009; Wang & Xu, 2008niH& Aono, 2009;
Bock & Hettenhausen, 2010; Ngo & Bellahsene, 2012). Iterative difigos utilize a seed matrix,
M?, which is iteratively improved until it converges. The seed matrix is eithertibpthe user or
generated automatically often using fast string matching and other lexicalinatch

Two types of iterative techniques are predominant. These differ in howekiematch matrix,
M, is obtained from the previous iteration’s match matrix at each step. Theyfaestof iterative
algorithms improve the real-valued similarity matrix from the previous iterafidéfr,!, by directly
updating it:

Mt =U(M™1) (1)
where,U is a function that updates the similarities. This type of algorithms often corséoge
fixed point, M., such thatM, = U(M.,).?

The second type of iterative algorithms repeatedly and explicitly searchitespace of match
matrices, denoted a&1. The goal is to find the alignment that optimizes an objective function,

2. Convergence is predicated 6h and a fixed point may not exist for some techniques. However,ergance is a
desirable property for iterative alignment algorithms; in its absence tpecsteria is often ad hoc.
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Figure 2: Both iterative update and search jump from one alignment to anotpeving on the
previous one. The two differ in how they obtain the next alignment in eadtibverand
in the qualitative metric used for assessing it. An alignment that cannot bevetpro
further signifies convergence.

which gives a measure of the quality of the alignment in the context of the alignfien the
previous iteration. This approach is appropriate when the search spboanded such as when
the match matrix is binary. Nevertheless, with a cardinalitg!8f!l2! this space could get very
large. Some of the algorithms sample this space to reduce the effectivh space though scaling
to large ontologies continues to remain challenging. Formally,

M = argmax Q(M, M) v
MeM

where, M! is the alignment that optimizes tig function in iteration: given the best alignment
from previous iteration)i~!. Convergence of these algorithms occurs when iterations reach a
point, M,, which cannot be improved on searching for an alignment matrixc M, such that
Q(M, M,) > Q(M,, M,). Equations 1 and 2 help solve a multidimensional optimization problem
iteratively withm,,, in M as the variables. We abstractly illustrate the iterative approaches in Fig. 2.

In Fig. 3, we show the abstract algorithms for the two types of iterativeoagpes. In the
iterative update of Fig. (), we may settle for a near fixed point by calculating the distance between
a pair of alignment matrices (line 8) and terminating the iterations when the diseandtin a
parametery. Asn — 0 we get closer to the fixed point and obtain the fixed point in the limit.
Iterative search in Fig. (8) often requires a seed map (line 3) to obtaiff, which is typically
generated using fast lexical matching.

Next, we briefly reviewfour ontology alignment algorithms that optimize iteratively. The se-
lection of these algorithms is based on their accessibility and competitive perfice in previous
OAEI competitions, and is meant to be representative of iteration-basedaligralgorithms?

2.2.1 FALCON-AO

Falcon-AO (Jian et al., 2005) is a well-known automated ontology alignment system comgbinin
output from multiple components including a linguistic matcher, an iterative stalgitaph match-

ing algorithm calledGMO (Hu, Jian, Qu, & Wang, 2005), and a method for partitioning large
ontologies and focusing on some of the parts.

3. We sought to include YAM++ as well in our evaluation, which was the tofopmer in theconferencérack of OAEI
2012 and 2013. However, its source code is not freely available armduld not access it.
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ITERATIVE UPDATE (O1, O, 1) ITERATIVE SEARCH (O, Os)

Initialize: Initialize:

1. lteration countef — O 1. Iteration countei — O

2. Calculate similarity between the 2. Generate seed map between
entities inO; andO; using a measure O, and®,

3. Populate the real-valued matrix;°, 3. Populate binary matrix}/°, with
with initial similarity values seed correspondences

4. M. —M° 4. M, — MO

Iterate: Iterate:

5.Do 5.Do

6. i+l 6. i+l

7. M =UMT 7. SearchV/? « argmax Q(M, M 1)

8. 0 — DZSt(MZ,Af*) ) MeM

9. M, « M 8. M,—M"

10. While § > 7 9. While M, # M1

11. Extract an alignment from/, 10. Extract an alignment from,

(a) (b)

Figure 3: General algorithms for iteratiye) update, andb) search approaches toward aligning
ontologies. The distance functioist, in line 8 of (a) is a measure of the difference
between two real-valued matrices.

GMO measures the structural similarity between the ontologies that are modelechegebip
graphs (Hayes & Gutierrez, 2004). Matrid in GMO is real-valued and this similarity matrix
is iteratively updated (Eq. 1) by updating each variablg,,, with the average of its neighborhood
similarities until A/ stops changing significantisMO takes external input, typically obtained from
lexical matching, as the seed. Equation 1 manifesGMO as a series of matrix operations:

M'=GIM"™'GY + GT MG, ®3)

Here,GG1 andG, are the adjacency matrices of the bipartite models of the two ontolégiaadO-,
respectively. In the first term of the summation, the outbound neighbdrbbentities inO; and
O, is considered, while the second term considers the inbound neighlobriterations terminate
when the cosine similarity between successive matritEsandM~!, is less than a parametey,
The iterative update algorithm manifestsHalcon-AO as shown in Fig. 1(&) in Appendix A.

2.2.2 MAPPSO

MapPSO (Bock & Hettenhausen, 2010) utilizes discrete particle swarms to perfamogtimiza-
tion. Each of K particles in a swarm represents a valid candidate alignment, which is updated
iteratively. In each iteration, given the particle(s) representing thedbigsiment(s) in the swarm,
alignments in other particles are adjusted as influenced by the best particle.

Equation 2 manifests iMapPSO as a two-step process consisting of retaining the best parti-
cle(s) (alignment(s)) and replacing all others with improved ones influebgéhe best alignment
in the previous iteration. The measure of the quality of an alignment ik‘thearticle is determined
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by the mean of the measures of its correspondences as shown below:

Vil vz

Z Z Maa X f(xaaya)

i\ _ a=la=1
Y= @

where,m, is a correspondence M,i andf represents a weighted combination of multiple syntac-
tic and possibly semantic similarity measures between the entities in the two ontologpesved
particles are generated by keeping aside a random number of bestpmmrdences according fo

in a particle, and replacing others based on the correspondences neviwp best particle. Itera-
tions terminate when the incrementdhdue to a new alignment matrix is lower than a parameter,
7. lterative search of Eq. 2 manifestsNbapPSO as shown in the algorithm in Fig. 18).

2.2.3 OWL-UTE ALIGNMENT

OWL-Lite alignment OLA) (Euzenat et al., 2004) is limited to aligning ontologies expressed in
OWL with an emphasis on its most restricted dialect called OWL-LIH.A adopts a bipartite
graph model of an ontology, and distinguishes between 8 types of nadesas classes, objects,
properties, restrictions and others; and between 5 types of ediigsubClassQfdf:type, between
classes and properties, objects and property instaoafestriction and properties in individuals.
OLA computes the similarity between a pair of entities from two ontologies as a weighted
aggregation of the similarities between respective neighborhood entitiestoDts consideration
of multiple types of edges, cycles are common. Consequently, it computdasiitegites between
entities as the solution of a large system of linear equations, solved iterdtivehe fixed point.
Let F(z,) be the set of all nodes i@, which are connected to the nodg via an edge type,
F. Formally, similaritySim(z,, y.), between vertexy, € Oy, and vertexy, € O,, is defined as,

Sim(za,Ya) = Z wF SetSim(F(xa), F(Ya)) (5)
feN(ﬁayya)

where, N (z,,ya) is the set of all edge types in which,, y, participate. Weightw$®, for an

entity pair,z,, y., and edge typef, is normalized, i.e., ) w% = 1. Function,SetSim,
FeN (za,Ya)

evaluates the similarity between setx,) andF(y,), as the average of maximal pairing.

OLA initializes a real-valued similarity matrix)/°, with values based on lexical attributes
only, while the iterations update each variabte,,, in the matrix using the structure of the two
ontologies. In particular, if two entities,, andy,, are of the same type, then,,, is updated using
Eg. 5, otherwise the value is 0. Iterative update of Eq. 1 is realize@lbY as in Fig. 19a) in
Appendix A.

2.2.4 OPTIMA

Optima (Doshi et al., 2009) formulates ontology alignment as a maximum likelihoodgrgland
searches for the match matrik/,, which gives the maximum conditional probability of observing
the ontology®,, given the other ontology)-, under the match matrix/,.

It employs generalized expectation-maximization to solve this optimization problerhiamn,
it iteratively evaluates the expected log likelihood of each candidate alignamehnpicks the one
which maximizes it. It implements Eq. 2 as a two-step process of computing expedtdkioved
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by maximization, which is iterated until convergence. The expectation stegist®f evaluating
the expected log likelihood of the candidate alignment given the previousidtgsaalignment:

[Vi] |Va|
QMM =" " Pr(yalza, M'™") x logPr(za|ya, M*)m, (6)

a=1a=1

where,z, andy, are entities in ontologie®; andO, respectively, and?, is the prior probability
of yo. Pr(zq|ya, M?) is the probability that node, is in correspondence with nodg given the
match matrix)/¢. The prior probability is computed as,

_ 1 [V '
= il ZPr(ya\xa,MZ_l)
a=1

=

The generalized maximization involves finding a matfik}, that improves on the previous one:
M =M eM: QM |M™) > QMM )
We show the iterative alignment algorithm©ptima in Fig. 20(a).

Altogether, the four alignment algorithms that we describe in this subsecpoasent a broad
variety of iterative update and search techniques, realized in differayg. This facilitates a broad
evaluation of the usefulness of BCD. Over the years, algorithms suedlen-AO, OLA andOp-
tima have performed satisfactorily in the annual OAEI competitions, Wélcon-AO andOptima
demonstrating strong performances with respect to the comparative qudliey generated align-
ment. For examplekalcon-AO often ranked in the top 3 systems when it participated in OAEI
competitions between 2005 and 2010, and its performance continues to r@rmeaichmark for
other algorithmsOptima enhanced with BCD (calle@ptima+) ranked second in theonference
track (F2-measure and recall) in the 2012 edition of the OAEI competitiony@&inaam & Doshi,
2012b). Consequently, these representative algorithms exhibit stignghant performances. On
the other handVlapPSO'’s performance is comparatively poor but it's particle-swarm based itera
tive approach motivates its selection in our representative set.

2.3 Block-Coordinate Descent

Large-scale multidimensional optimization problems maximize or minimize a real-vatrgih-c
uously differentiable objective functiod), of NV real variables. Block-coordinate descent (BCD)
(Tseng, 2001) is an established iterative technique to gain faster gemeerin the context of such
large-scaleV-dimensional optimization problems. In this technique, within each iteration, d set o
the variables referred to as coordinates are chosen and the objectit®h, ), is optimized with
respect to one of the coordinate blocks while the other coordinatesldréideel In our application
setting, recall that the coordinates are the alignment variables in the match, métrix

Let .S denote a block of coordinates, which is a non-empty subsgt,@f, ..., N}. Define a set
of such blocks asB = {Sp, S1, ..., Sc}, which is a set of subsets each representing a coordinate
block with the constraint thay US; U...U Sc ={1,2,..., N}. B could have a single block or
be a partition of the coordinates although this is not required and the blogkmtaesect. We also
define the complement of a coordinate blosk, wherec € {0,1,...,C}, as,S. = B—S.. To

813



THAYASIVAM & D OSHI

illustrate, let the domain of a real-valued, continuously differentiable, multidsioeal function(,
with N = 10 be,M = {mj, ma, ms, ..., mio}, where each elementis a variable. We may partition
this set of coordinates into two blockS,= 2, so that,B = {Sy, S1}. Let Sy = {mq, m5, msg} and

Sy = {mq, ms, my, mg, mz, mg, myo}. Finally, Sy denotes the blocks; .

BCD converges to a fixed point such as a local or a global optimum of tjeetoke function
under relaxed conditions such as pseudoconvexity of the functioreguites the function to have
bounded level sets (Tseng, 2001). While pseudoconvex functionimuoe to have fixed points, they
may have non-unique optima along different coordinate directions. Inktbenae of pseudocon-
vexity, BCD may oscillate without approaching any fixed point of the functidevertheless, BCD
still converges if the function has unique optima in each of the coordinat&sloc

In order to converge using BCD, we must satisfy the following rule, whituees that each
coordinate is chosen sufficiently often (Tseng, 2001).

Definition 1 (Cyclic rule) There exists a constarif, > C andC > 0, such that every blocls,, is
chosen at least once between fHeiteration and the(i + 7' — 1)*" iteration, for all 4.

In the context of the cyclic rule, BCD does not mandate a specific partitiomiag ordering scheme
for the blocks. A simple way to meet this rule is by sequentially iterating through bbock
although we must continue iterating until each block converges to the fixatl po

Recently, Saha and Tewari (2013) show that the nonasymptotic cemergate® of BCD
under the cyclic rule is faster than that of gradient descent (GC) if tbéy &tart from the same
point, under the conditions that the objective functigh,has a Lipschitz continuous gradient (it
is differentiable everywhere and has a bounded derivative) or inglfr@onvex, andl — VTQ is
isotonic, wherel is the identity function and. is the Lipschitz constant. Starting from the same
initial map, M., = M2, let M}, and M/, denote the alignment at iteratiéiy BCD with
cyclic rule and GC, respectively. Under the condition that the objectetion, Q, which must be
say, minimized, is continuous and isotonit, > 1, Q(MgCD) < Q(Mgc). The nonasymptotic
convergence rate of BCD under the cyclic rule for objective functioitis the previous properties
is, O(1/1), wherei is the iteration count.

3. Integrating BCD into Iterative Alignment

As we mentioned previously, ontology alignment may be approached ascipfgthmultivariable
optimization of an objective function, where the variables are the comelgnces between the
entities of the two ontologies. Different algorithms formulate the objectivetfomdifferently. As
the objective functions are often complex and difficult to differentiate, mioalgterative techniques
are appropriate but these tend to progress slowly. In this context, wepaeay sip the convergence
rate using BCD as we describe below.

3.1 General Approach

In Section 2.2, we identified two types of iterative ontology alignment algorithB@D may be
integrated into both these types. In order to integrate BCD into the iterationmdtah matrix,
M, must be first suitably partitioned into blocks. Of course, existing algorithmsbeaiewed as
having a single block of variables and therefore trivially utilizing BCD.

4. This is the rate of convergence effective from the first iteration itself.
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Though a matrix may be partitioned using one of several ways, we adagi@oach that is
well supported in the context of ontology alignment. An important heuristigchvhas proved
highly successful in both ontology and schema alignment, matches patigissen two ontologies
if their respective child entities were previously matched (Doan, Madhd@amingos, & Halevy,
2003). This motivates grouping together those variabtes, in M, into a coordinate block such
that thez, participating in the correspondence belong to the same height leading totepaf
M. The height of an ontology node is the length of the shortest path fronfiradda. Subsequently,
the alignment in blocks with less height (containing the child entities) is optimizeddilewved by
those with increasing height (containing the parent entities). In determinimbeight, we utilize
the tree or graph model of the ontology that is built internally by the resgectitology alignment
algorithm. These include property nodes and may differ between algorithms.

Let the partition ofM into coordinate blocks béMs,, Mg, , ..., Mg, }, whereC'is the height
of the largest class hierarchy in ontolo@y. Thus, each block is a submatrix with as many rows as
the number of entities aP, at a height and number of columns equal to the number of all entities in
O-. For example, correspondences between the leaf entiti®s ahd all entities ofD, will form
the block,Mg,. In the context of a bipartite graph model as utilizedAajcon-AO andOptima,
which represents properties in an ontology as vertices as well and aefotleepart ofM, these
would be included in the coordinate blocks.

Iterative ontology alignment integrated with BCD optimizes with respect to a sohobé, M,
at an iteration while keeping the remaining blocks fixed. In order to meet tie cyle, we choose
ablock,Mg,, atiterationsj = ¢+ qC whereg € {0,1,2,...}. We point out that BCD is applicable
to both types of iterative alignment techniques outlined in Section 2.2. Alignnigarithms which
update the similarity matrix iteratively as in Eq. 1 will now update only the currkraidof interest,
Ms,, and the remaining blocks are carried forward as is, as shown below:

M} = Us, (M) 8
ML =M1 vSeS, ®)

whereS, is the complement of. in B. Note thathgc combined withMé forall S € S, forms
M*. Update functionl/s,, modifiesU in Eq. 1 to update just a block of the coordinates.

Analogously, iterative alignment which searches for the candidate alignim&nmaximizes
the objective function as in Eq. 2, will now choose a blogks_, at each iteration. It will search
over thereduced search spageertaining to the subset of all variables includeds,, for the best
candidate coordinate block. Formally,

Mfgc . = argmax Qg (Mg, M™1)
) MschSC (g)
- U
Mg* = MS’,* VS e S,
where, Mg is the space of alignments limited to block,. The original objective functiorny, is
modified toQ)s such that it provides a measure of the quality of the blddk,, given the previous
best match matrix. Note that the previous iteration’s maMgﬁ,—l, contains the best block that was
of interest in that iteration.
Performing the updatd/s,_, or evaluating the objective functiof)s, while focusing on a co-
ordinate block may be performed in significantly reduced time as comparedfomimg these

operations on the entire alignment matrix. While we may perform more iteration® ayale
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Figure 4. BCD facilitates faster convergence in aligning ontologissedandsigkddboth related
to conference organization.

through the blocks, the use of partially updated matrices from the previoatigtein evaluating
the next block facilitates faster convergence. We illustrate the impact of &Cierative search
as performed byDptima on an example ontology pair in Fig. 4. Alignment using BCD shows the

faster conve rgence rate.

ITERATIVE UPDATE WITH BCD (04, O3, 1)

Initialize:

1. Iteration countef < 0

2. Calculate similarity between the
entities in@®; andO, using a measure
Populate the real-valued matrid°,
with initial similarity values

Create a partition of/:
{Ms,,Ms,,...,Ms.}

M, — MO

3.
4,
5.

Iterate:
6. Do
7. ¢c—i%(C+1),i—i+1
8. M} —Us (M)
9. ML— M VSeS,
10. If e¢=Cthen
11. & — Dist(M*, M,)
else
12. d is a high value
13. M, « M*
14.While 6 > n
15. Extract an alignment fror/,,

(a)

Figure 5: General iterative algorithms of Fig. 3 are modified to obtainiterative update enhanced
with BCD, and(b) iterative search enhanced with BCD. The update or search steps in line

ITERATIVE SEARCH WITH BCD (04, O5)

Initialize:

1. Iteration countef < 0

2. Generate seed map between
O, andO,

Populate binary matrixy/°,
with seed correspondences
Create a partition of/:

{MSov MSU tey MSC}

M, — MO

3.
4,
5.

Iterate:
6. Do
7. ¢c—i%(C+1),i—1+1

8. SearchV[} , « argmax Qg (Mg, Mi™!)
- Ms.eMs,

M — Mg ! VSeS.
If ¢=Cthen
changed «— M! # Mi=1?
else
12. changed «— true
13. While changed
14. Extract an alignment fromh/!

9.

10.
11.

(b)

numbers 8 and 9 are modified to update only the current block of interest.
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Algorithms in Fig. 5 revise the iterative update and search algorithms of Fig.oBdier to
integrate BCD. The primary differences in both involve creating a partitidhe&lignment matrix,
M (line 4), and iterations that sequentially process each coordinate bldgckvbile keeping the
others fixed (lines 7-9). On completing a cycle through all coordinate blaskdetermined by the
check in line 10, we evaluate whether the new alignment matrix differs frororteen the previous
iteration, and continue the iterations if it does (lines 11-13). Observe thatetjular iterations
improving the full match matrix are now replaced with “mini-iterations” updating tbeks.

Given the general modifications brought about by BCD, we describetiese manifest in the
four iterative alignment systems that form our representative set. Théicatidns are based on
the type of iterative technique and are uniform within each group. Theyotl@hange the core
alignment approach of each algorithm given the input as we see next.

3.2 BCD Enhanced Falcon-AO

We enhancé&alcon-AO by modifyingGMO to utilize BCD as it iterates. As depicted in Fig.(,
we begin by partitioning the similarity matrix used ®MO into C' + 1 blocks based on the height
of the entities inO; that are part of the correspondences, as mentioned previda®p is then
modified so that at each iteration, a block of the similarity matrix is updated whilettiee blocks
remain unchanged. If blocl§,, is updated at iteratiof) then Eq. 3 becomes:

Mi, = G5, M7\GY + GT g MG, (10
Mi=Mg ' vSeS.

Here,G s, focuses on that portion of the adjacency matrixXfthat corresponds to the outbound
neighborhood of entities participating in correspondences of bfockvhile G{SC focuses on the
inbound neighborhood of entities #).. Adjacency matrix(7s, is utilized as before. The outcome
of the matrix operations is a similarity matrix, with as many rows as the variablgsand columns
corresponding to all the entities @,. The complete similarity matrix is obtained at iterationhy
carrying forward the remaining blocks unchanged, which is then utilizedeiméixt iteration. The
general iterative update modified to perform BCD of Fig:)omay be realized ifralcon-AO as in
the algorithm of Fig. 1) in Appendix A.

3.3 BCD Enhanced MapPSO

We may integrate BCD intdapPSO by ordering the particles in a swarm based on a measure
of the quality of a coordinate blocl§,., in each particle in an iteration. Equation 4 is modified to
measure the quality of the correspondences in just the coordinate $lpak the k" particle by

taking the average:
Vil [V
Maa X f(xaa ya)

[Viel[Val

where,V; . denotes the set of entities of ontolody;, of identical height participating in the cor-
respondences included in blogk. As before, we retain the best particle(s) based on this measure
and improve on the alignment in a coordinate bldtz.'li, s.» in the remaining particles using the best
particle in the previous iteration. The remaining coordinates are held ugetiatierative search of
MapPSO modified using BCD is shown in the algorithm of Fig.(28

QS(M]@) — a=1 a=1

(11)
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3.4 BCD Enhanced OLA

As explained earlielQLA evolves its similarity matrix\/ by similarity exchange between pairs of
neighboring entities. In each iteration, it performs an element-wise matrixeipgarationOLA is
enhanced with BCD by adopting Eq. 8. Specifically, the similarity values ofdbedinates of the
chosen blocksS,, will be updated using the similarity computations (Eg. 5). The remaining blocks,
Mg are kept unchanged.

acx

= Sim(za,ya) iftypes ofz, andy, are the same , _
10 otherwise * "™aa€Ms,

(12)
i _ il &~ &
Mg_MS VS €S,

3.5 BCD Enhanced Optima

As we mentioned previousl¥ptima utilizes generalized expectation-maximization to iteratively
improve the likelihood of candidate alignments. Jeffery and Alfred (19%uds a BCD in-
spired expectation-maximization scheme and call it the space alternatingligseexpectation-
maximization (SAGE). Intuitively, SAGE maximizes the expected log likelihood dbakbof co-
ordinates thereby limiting the hidden space, instead of maximizing the likelihooc aioimplete
alignment. The sequence of block updates in SAGE monotonically improvedbjbetioe likeli-
hood. For a regular objective function, the monotonicity property esghed the sequence will not
diverge, but it does not guarantee convergence. Howeverepnoitialization lets SAGE converge
locally. ® In each iterationOptima enhanced using SAGE chooses a block of the match matrix,
Mg and its expected log likelihood is estimated. As in previous techniques, weelio® blocks
in a sequential manner such that all the blocks are iterated in order.

Equation 6 changes to estimate the expected log likelihood of a block of a etmdidynment:

Vil [Val
QS(MéJMl_l) = Z Zpr(yalmel_l) x logPr(za|ya, Ms,) Teove (13)

a=1 a=1

Recall thatV; . denotes the set of entities of ontolody;, participating in the correspondences
included inS,. Notice that the prior probabilityré’c, is modified as well to utilize jusy; . in its
calculations.

The generalized maximization step now involves finding a match matrix ngﬁ:*v that
improves on the previous one: 4

Mg, . = M, € Ms, : Qs(M, [M™1) > Qs (Mg [M™) (14)

Here, M| is a part of M.

At iteration i, the best alignment matrix/?, is formed by combining the bIocMgm*, which
improvesQ@s as defined in Eq. 14 with the remaining blocks from the previous iteraﬂ@l, in
the complement of.., unchanged.

5. Furthermore, the convergence rate may be improved by choositidilen space with less Fisher information (Hero
& Fessler, 1993).
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The algorithm in Fig. 2(b) shows howOptima may be enhanced with BCD. We expect signif-
icant savings in time because of the search over a reduced space ofatigrfocused on a block,
Mg, in each iteration. Additionally, both the objective functi@pg, and the prior operate on a
single coordinate block in reduced time. Finally, using aligned blocks in thigteeation improves
the convergence rate.

4. Empirical Analysis

While the use of BCD is expected to make the iterative approaches exhibigrate of improve-
ment, and if the approach converges, reach the fixed point fastegekgsempirically determine:

1. The amount of speed up obtained for the various alignment algorithmadgyrating BCD;
and

2. Changes in the quality of the final alignment, if any, due to BCD. This mapdrapecause
the iterations converge to a different local optimum.

| Ontology | Named Classes] Properties |
Conferencalomain
ekaw 74 33
sigkdd 49 28
iasted 150 41
cmt 36 59
edas 104 50
confOf 38 36
conference 60 64
Life Sciences
mouse anatomy 2,744 2
human anatomy 3,304 3

Table 1: Ontologies from OAEI 2012 used in our evaluation. We show thdeuof named classes
and properties in each as an estimate of their size. Notice that our evaluatiodes
some large ontologies from different domains as well. Additionally, Thagasiand
Doshi (2012a) present evaluations on the four pairs in the 300 rdrtpe bibliography
benchmark competition.

We use a comprehensive testbed of several ontology pairs — some tfavhitarge — spanning
two domains. We used ontology pairs from the OAEI competition in its 2012 veesidhe testbed
for our evaluation (Shvaiko et al., 2012). Among the OAEI tracks, waigoon the test cases
that involve real-world ontologies for which the reference (true) aligrimes provided by OAEI.
These ontologies were either acquired from the Web or created indemtindf each other and
based on real-world resources. This includes all pairs of the exyeesgologies in theonference
track all of which structure knowledge related to conference organigadiod theanatomytrack,
which consists of a pair of mid-sized ontologies from the life sciences itdesgrthe anatomy
of an adult mouse and human. We list the ontologies from OAEI participatingirirealuation
in Table 1 and provide an indication of their sizes. Additionally, Thayasiaach Doshi (2012a)
evaluateFalcon-AO, MapPSO and Optima with BCD on the four pairs in the 300 range of the
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bibliographybenchmark competition. Ontology pairs in the 100 and 200 ranges of the bi#piog
benchmark were not utilized as the participating ontologies are very small witB3uclasses and
64 properties. Subsequently, our representative iterative techratjgaghese very quickly in the
order of milliseconds leaving no significant room for improvement.

We align ontology pairs using the four representative algorithms, in theinatifprms and with
BCD using the same seed alignmeht?, if applicable. The iterations were run until the algorithm
converged and we measured the total execution time, final recall, preaisibR-measure, and the
number of iterations performed until convergence. Recall measuresthi®h of correspondences
in the reference alignment that were found by an algorithm while precisiasunes the fraction of
all the found correspondences that were in the reference alignmeebyhiedicating the fraction
of false positives. F-measure represents a harmonic mean of recalteaision.

We averaged results of 5 runs on every ontology pair using both the alrigimd the BCD
enhanced version of each algorithm. Because of the large number afuatale ran the tests on
two different computing platforms while ensuring comparability. One of thead®isd Hat machine
with Intel Xeon Core 2, processor speed of about 3 GHz with 8GB of mgifamatomy ontology
pair) and the other one is a Windows 7 machine with Intel Core i7, 1.6 GH2psoc and 4GB of
memory (benchmark and conference ontology pairs). While comparingtf@rmance metrics for
statistical significance, we tested the data for normality and used Studdand'd peest if it exhibits
normality. Otherwise, we employed the Wilcoxon signed-rank test. We utilizeti%hkvel p <
0.01) to deem significance.

As Thayasivam and Doshi (2012a) did not previously eval@dt& on the bibliography domain
ontology pairs, we discuss its performance in this article for completengsaiSo the other algo-
rithms, the introduction of BCD i®LA reduced its execution time on all four pairs by a total of 1.3
seconds compared to the original time of 27.3 seco@®d#\’s precision and recall reduced slightly
causing its F-measure to reduce by 1% for the ontology pair (302,10il® thb the alignments for
the other pairs remained the same.

The ontologies in theonferencedomain vary widely in their size and structure. As shown
in Fig. 6, the introduction of BCD to the four iterative techniques clearly imgsaweir speed of
convergence and the differences for each algorithm are signifiSand€nt's paired t-tesp <
0.01). In particular, we observed an order of magnitude reduction in timalifming relatively
larger ontologies such aastedandedas For example, pair&onference, iasted)n MapPSO and
(edas, iastedpn Optima showed such reductions. Overall, we observed a total reduction of 50
seconds foFalcon-AO to 3 minutes, 1 minute and 37 secondstapPSO, 31 seconds foDLA
to a total of 1 minute and 37 seconds, and by 29 minutes and 20 secor@gtiiora to 4 minutes
and 53 seconds.

Falcon-AO shows no change due to BCD in its alignment, holding its precision at 25% and
recall at 66% Optima shows a 4% improvement in average precision from 56% to 60% but &verag
recall reduced from 70% to 68%. Nevertheless, this causes a 2% impeavén average F-measure
to 64%. MapPSO with BCD resulted in a significant improvement in final precision from 9% to
43% on average, although the difference in recall was not significdrg.pfecision and recall for
OLA remained unchanged.

The mid-sizedanatomyontologies for mouse and human were not successfully aligned by
MapPSO and OLA despite the use of BCD. However, BCD redudedcon-AQO’s average exe-
cution time for aligning this single ontology pair by 6.2 seconds to 2.6 minutes, @stichlly
reducedOptima’s average execution time to 4.4 minutes from 62.7 minutes. The alignment gen-
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Figure 6: Average execution time consumed (ay, Falcon-AO, (b) MapPSO, (¢) OLA, and(d)
Optima in their original form and with BCD, for 6 of the 21 ontology pairs framnfer-
encedomain. We ran the algorithms fail the pairs and selected ontology pairs which
exhibited the three highest and the three lowest differences in avexagetien times
for clarity. Note that the time axis qfd) is in log scale. Notice the improvements in
execution time for the larger pairs. Specifically, about a 50% reductiorerage execu-
tion time for the ontology paifedas, iastedpy Falcon-AO and an order of magnitude
reductions in average run time for ontology pdicenference, iastedh MapPSO and
(edas, iastedin Optima, were observed.

erated byFalcon-AO with BCD remained unchanged at 76.1% precision and 80% recall while
the alignment fronOptima with BCD improved to a precision of 96% and recall of 74.2%. Both
Falcon-AO andOptima automatically utilized their ontology partitioning methods in order to align
these mid-sized pairs.

In summary, the introduction of BCD led to significant reductions in convergeime for all
four iterative algorithms on several ontology pairs, some extending tadem of magnitude. Simul-
taneously, the quality of the final alignments as indicated by F-measure indpimva few pairs,
with one pair showing a reduction in the contex@yitima. However, we did not observe a change
in the F-measure for many of the pairs. Therefore, our empirical oasens indicate that BCD
does not have a significant adverse impact on the quality of the alignment.
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5. Optimizing BCD using Ordering and Partitioning Schemes

As we mentioned previously, BCD does not overly constrain the formatitimeaoordinate blocks
and neither does it impose an ordering on the consideration of the bladties, tban satisfying
the cyclic rule. Consequently, we explore other ways of ordering thekbland partitioning the
alignment variables in the context of the representative algorithms. Theladen

1. Ordered from roots to leave£ycle over blocks of decreasing height starting with the block
containing entities with the largest height.

2. Ordered by similarity distributionObtain an aggregate measure of the lexical similarity be-
tween the ontology entities participating in each block. The normalized distribotisimi-
larities provides the likelihood of picking the next block.

3. Both ontologies partitionedA block contains participating entities from each ontology that
are at the same height.

4. Subtree-based partitioningransform the ontology into a tree and form a block of variables
such that the participating entities are a part of a subtree of a predeifieed s

5. Random partitioningForm a block by randomly selecting alignment variables for inclusion.

While the partitioning and ordering utilized in the previous section are intuitirepbjective is to
discover if other ways may further improve the run time performances ofigiogitams. In subse-
guent experimentation, we exclubiapPSO from our representative set due to the randomness in
its algorithm, which leads to comparatively high variability in its run times.

5.1 Ordering The Blocks

The order in which the blocks are processed may affect performanhis. is because updated
correspondences from the previous blocks are used in generatialiptiment for the current block.
Initially, blocks with participating entities of increasing height beginning with tlaeds were used
as illustrated in Fig. 7. Other ordering schemes could improve performance:

e \We may reverse the previous ordering by cycling over blocks of dsitrgaeight, beginning
with the block that contains entities with the largest height. This leads to pioggsarent
entities first followed by the children.

e We may obtain a quick and approximate estimate of the amount of alignment in adflock
variables. One way to do this is to compute an aggregate measure of the séxidality
between the entities of the two ontologies participating in the block. Assuming thersimila
ity to be an estimate of the amount of alignment in a block, we may convert the estimate
into a probability distribution that gives the likelihood of finding multiple correxgtences
in a block. The block to process next is then sampled from this distributiois. afiproach
requires a relaxation of the cyclic rule because a particular block is rmwtgteed to be se-
lected. In this regard, an expectation of selecting each block is sufftci@btain asymptotic
convergence of BCD (Nesterov, 2012).
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Figure 7: Presence or absence of correspondences between ehtitie®ntologies is represented
in the match matrix. Conceptsug, sample andresearchemre all leaves and correspon-
dences with these may be grouped into a block (highlighted). We may pribiestock
first followed by the block containindataandagent Alternately, we may reverse this
ordering for optimizing blocks.

We compare the performances of the alternate ordering schemes with theoimitted 21 on-
tology pairs in theconferencedomain. The results of reversing the order of the original scheme
are shown in Fig. 8. Clearly, the original ordering allows all three BCbhagiced approaches to
converge faster in general. Whi@ptima’s average recall across all pairs improved slightly from
68% to 70%, average precision reduced by 4% to a final of 3&#eon-AQ’s average F-measure
improved insignificantly at the overall expense of 40 seconds in run timeerRag the order has
no impact on the precision and recall®LA. These results are insightful in that they reinforce the
usefulness of the alignment heuristic motivating the original ordering scheme

Our second alternate ordering scheme involves determining the aggregeaé demilarity be-
tween the entities participating in a block. The distribution of similarities is normaliaddtee next
block to consider is sampled from this distribution. Notice from Fig. 9 Faton-AO andOLA
demonstrate significant increases in convergence time ().01) compared to utilizing BCD with
the initial ordering scheme; on the other hand, the overall time reducé&ptima and by orders
of magnitude for some of the pairs containing the larger ontologies suedasandiasted We
select 6 pairs, which exhibit the highest and lowest differences irageszxecution times to show
in Fig. 9. Falcon-AQ’s precision and recall show no significant change and its F-measuane
unchangedOLA loses both precision and recall with the similarity distribution scheme. The preci-
sion across all pairs went down to 13% from 37% along with a 24% dropallieom 58% leading
to a drop in F-measure to 19%. Howev@ptima’s F-measure remains largely unaffected.

Recall that bothFalcon-AO and OLA perform iterative updates whil®ptima conducts an
iterative search. While all sampled blocks undergo updates by the itewptiete algorithms, search
algorithms may not improve the blocks having low similarity. Consequently, blagts high
similarity that are sampled more often are repeatedly improved. This resultekegaonvergence
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Figure 8: Average execution times @f) Falcon-AO, (b) OLA, and(c) Optima, with BCD that
uses the initial ordering scheme and with BCD ordering the blocks froms)aot{eaves,
for 6 of the 21 ontology pairs from th@nferencalomain. While we ran the algorithms
for all the pairs, we selected ontology pairs which exhibited the highestoaresbt dif-
ferences in average execution times. This alternate ordering increasemttimes to
convergence and we did not observe significant improvements in the funesa

to a different and peculiar local optima where the blocks with high similarity baweerged while
the others predominantly remain unchanged. Thus, the alignment quality sargiely unaffected
while the convergence time is reduced, as we see in the cont&jitoha.

5.2 Partitioning the Alignment Variables
Because BCD does not impose a particular way of grouping variables,wéil-founded partition-
ing schemes may yield significant improvements:

e An extension of the initial scheme (Fig. ®&0) would be to group variables representing
correspondences such that the participating entities from eath ahdO, are at the same
height in relation to a leaf entity in the ontology, as we illustrate in FighLONote that
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Figure 9: Average execution time consumed fay), Falcon-AO, (b) OLA and (c¢) Optima with
BCD utilizing the previous ordering scheme and with BCD ordering the blogksirhi-
larity distribution, for 6 of the 21 ontology pairs frooonferencadlomain. Although we
ran the algorithms for all the pairs, we show ontology pairs which exhibitedhitje
est and lowest differences in average execution times. The new gdeslipedOptima
further cut down the total execution time by 262 seconds while finding 1 norect
correspondence and 6 false positives across all pairs.

the entity heights may differ between the two ontologies. This is based on tkevabsn
that the generalization-specialization hierarchy of concepts pertaininguotapic is usually
invariant across ontologies.

¢ A more sophisticated scheme founded on the same observation is to tempoaasfpitm
each ontology, which is modeled as a labeled graph, into a tree. We may ut¥izgaph
search technique that handles repeated nodes, such as bread#nafich for graphs (Russell
& Norvig, 2010), to obtain the tree. If the ontology has isolated graphsrgad separate
trees, we use the owl:thing node to combine them into a single tree. Subsegwerghpup
those variables such that participating entities from each ontology arefpmdubtree of a
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Figure 10: Matrices representing an intermediate alignment between entities arid O,. (a)
Identically shaded rows form a block of variables because the camdspm entities
of O; are at the same heigh{b) Identically shaded rows and columns correspond to
entities at the same heights@h andOs, respectively. Variables in overlapping regions
form a block. (¢) Entities corresponding to identically shaded rows or columns form
subtrees. A fourth approach is to randomly select variables for inclisioma block.

predefined size (Fig. 16)). We may discard the ontology trees after forming the blocks.
While the previous schemes form blocks of differing numbers of variatiiessscheme forms
all but one block with the same number of variables by limiting the subtree size.

e A simple point for comparison would be a scheme that randomly selects alignarediles
for inclusion in a block. With no clear way to determine how many variables todieciu a
block, we randomly inserted variables into 5 blocks.

Based on the findings in the previous subsection, the blocks are otokesed on height of the
participating entities or the subtrees’ root nodesHaicon-AO andOLA. We begin with the blocks
of smaller height and proceed to those with increasing height Optima, we sample the blocks
using a distribution based on the lexical similarity between participating entities.

As illustrated in Fig. 11, partitioning both the ontologies hel@atima the most and signifi-
cantly saves on its execution times< 0.01). For the pairs involving some of the larger ontologies,
it reduced by more than an order of magnitude. Furthern©@ptima gains in precision over all
pairs by 6% with a 1% reduction in recall resulting in a 3% gain in F-measuredo LA saves
on execution time as well — relatively less tHaptima — with a slight improvement in its alignment
guality. On the other handkalcon-AO experienced an increase in its total execution time over all
the pairs.Optima’s improved performance is attributed to blocks that are now smaller allowing a
more comprehensive coverage of the search space in less time. On thiearttigiterative update
techniques such dsalcon-AO do not show any improvement because the smaller blocks may be a
sign of overpartitioning.

Figure 12 illustrates the impact of subtree-based partitioning in all thredtalgst Falcon-AO
exhibited a significant reduction in execution timgs{ 0.01) simultaneously with an improvement
in precision and F-measure over all the pairs by 3%. Similar to the previdimipgtion, OLA’s
execution time reduces significantly as well £ 0.01) while keeping its output unchanged. On
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Figure 11: Execution times consumed lfy) Falcon-AO, (b) OLA, and(c) Optima with BCD
that uses blocks obtained by partitioning a single ontology and with BCD thategtiliz
partitions of both the ontologies, for 6 of the 21 ontology pairs femnferencelomain.
Although we ran the algorithms for all the pairs, we selected ontology paiichvelx-
hibited the highest and lowest differences in execution tifdggima’s total execution
time over all pairs reduced by 274 seconds. False positive correspoesireduced by
37 at the expense of 3 correct correspondenGsh cut down 10 seconds of the total
execution time and 2 incorrect correspondences.

the other hand, this partitioning technique reduces the efficien@ptima with a small reduction
in alignment quality as wellFalcon-AO’s GMO employs an approach that relies on inbound and
outbound neighbors, which is benefited by using blocks whose partigipeatitities form subtrees.
As structure-based matching @ptima is limited to looking at the correspondences between the
immediate children, including larger subtrees in blocks may not be of benéfjtimna.

Finally, in Fig. 13 we explore the impact of randomly partitioning the variablesbfdoks on
all three alignment algorithms. Boffalcon-AO and OLA showed significant increases in execu-
tion time (p < 0.01) on the conference pairs. Whikalcon-AQ's precision improved by less than
1%, its recall dropped by 2% with an overall reduction in F-measure of QA exhibited a mi-
nor increase in precision of 0.2% while the recall remained unchangellingsin an increase of
F-measure by 0.2%ptima demonstrated mixed results as shown in Figc18ith the execution
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Figure 12: Execution times consumed By) Falcon-AO, (b) OLA, and(c) Optima, with BCD
that uses the default partitioning approach and with BCD that uses sifatsed parti-
tioning, for 6 of the 21 ontology pairs fromonferencelomain. We ran the algorithms
for all the pairs of which we selected ontology pairs that exhibited the higinedowest
differences in execution times. The total execution timeal€on-AO for the complete
conference track reduces by 8 sec along with a reduction of 71 falstives. OLA
saves 1.5 sec in total execution time while keeping the output alignments uechang
However,0Optima consumes 192 seconds more.

time increasing for some pairs while reducing for others. On the whole, weatidbserve a statis-
tically significant difference in execution times. Furthermore, BCD due tdoampartitioning did
not improve beyond the seed alignment for many of the pairs, with an odexatase in F-measure
of 1% across all pairs.

In summary, a side-by-side comparison of the various block orderingamitioning techniques
discussed previously is presented in Fig. 14 for all three alignment algwritim a single ontology
pair, (edas, iasted)We do not include the random patrtitioning as its alignment performance in terms
of recall and precision was poor on many of the ontology pairs making it ild@itea candidate.
Differences in run time performance of the algorithms(edas, iasted)s representative of their
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Figure 13: Execution times consumed ky) Falcon-AO, (b) OLA, and(c) Optima, with BCD

that uses the default partitioning approach and with BCD that uses rapalditioning.
We show 6 of the 21 ontology pairs fromonferencelomain. We ran the algorithms for
all the pairs of which we selected ontology pairs that exhibited the highddbarest
differences in execution times. The total execution timeal€on-AQO for the complete
conference track increases by 19.5 secs due to the random partiti@iiAgtakes an
additional 28 secs in total execution time whid@tima saves 8.5 seconds over all the
pairs at the expense of alignment quality.

performances on the larger data set in general. In partickcon-AQO’s run time reduces on
using subtree-based partitioning to obtain the blo€XsA’s run time reduces the most when both
ontologies in the pair are partitioned using entity height, wikiigtima benefits from ordering
blocks based on a preliminary measure of the similarity of the participating entitéefoaming
blocks by patrtitioning both ontologies.

6. Aligning Large Biomedical Ontologies

Ontologies are becoming increasingly critical in the life sciences (Bodear&idstevens, 2006;
Lambrix, Tan, Jakoniene, & Stromback, 2007) with multiple repositories asdBio2RDF (Bel-
leau et al., 2008), OBO Foundry (Smith et al., 2007) and NCBOQO’s BioP¢vtaken et al., 2012)
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Figure 14: A side-by-side comparison of the performances of the thregivee algorithms using
various block ordering and formation techniques. A single moderately targgogy
pair, (edas, iasted)is aligned. The “default” represents the iterative alignment algo-
rithm with BCD where the blocks are ordered based on the height of thieipating
entities from the leaves to the root and a single ontology is partitioned to forbhdbles.
Differences in run times are indicative of the performance in general.

publishing a growing number of biomedical ontologies from different domairch as anatomy
and molecular biology. For example, BioPortal hosts more than 370 ontolgiese domains fall

within the life sciences. These ontologies are primarily being used to annaiatedical data and
literature in order to facilitate improved information exchange. With the growtiminlogy usage,

reconciliation between those that overlap in scope gains importance.

Evaluation of general ontology alignment algorithms has benefited immengeiytie standard-
setting benchmark — OAEI (Shvaiko et al., 2012). In addition to multiple tradtksreal-world test
cases, the competition emphasizes on benchmark comparison tracks tieat psérs that are mod-
ifications of a single ontology pair in order to systematically identify the streragidsveaknesses
of the alignment algorithms. One of the tracks on real-world ontology paidvies aligning the
ontology on the adult mouse anatomy with the human anatomy portion of NCI thisg&bolbeck
et al., 2003), while another seeks to align the foundational model of angtevtd), SNOMED CT
and the national cancer institute thesaurus (NCI). However, aligning biicaleontologies poses
its own unique challenges. In particular,

1. Entity names are often identification numbers instead of descriptive n&taese, the align-
ment algorithm must rely more on the labels and descriptions associated withtifiese
which are expressed differently using different formats.

2. Although annotations using entities of some ontologies such as the getaggrisshburner
et al., 2000) are growing rapidly, for other ontologies they continue toiresparse. Conse-
quently, we may not overly rely on the entity instances while aligning biomeditalagies.

3. Finally, biomedical ontologies tend to be large with many including over a #mabentities.
This motivates the alignment approaches to depend less on “brute-&ieps, and compels
assigning high importance to issues related to efficiency and scalability.

Given these specific challenges, we combed through more than 370 desdhogted at NCBO
(Musen et al., 2012) and OBO Foundry (Smith et al., 2007), and isolatethananity benchmark of
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50 different biomedical ontology pairs. Thirty-two ontologies with sizegiagnfrom a few hundred
to tens of thousands of entities constitute the pairs. We provide the list of gigelparticipating
in the benchmark and the ontology pairs in Appendix B. This new benchmadlegcomparative
evaluation of alignment algorithms to the context of a key application domain ofdaine.

Our primary criteria for including a pair in the benchmark was an expectafiensofficient
amount of correspondences between the ontologies in the pair, as deidifinoim NCBO's Bio-
Portal. In particular, we calculated the ratio of the correspondencésdowsBioPortal for each
ontology pair to the largest number of possible correspondences thdtexist. We selected the
50 pairs with the largest such ratio. Existing correspondences will setlie reference alignment.
These include maps from the UMLS Metathesaurus and those that aré somrced. Neverthe-
less, our analysis reveals that the existing correspondences constiugesmnall fraction of the
total alignment that is possible between two ontologies.

We sought to align the pairs in our new biomedical ontology alignment testlegl the BCD-
enhanced representative algorithms. The obtained alignments are evaisiatg the existing cor-
respondences previously present in BioPortal; the reference aligaimetwveen the pairs are likely
incomplete. A secondary objective is to discover new correspondéetesen the ontologies and
submit them to NCBO’s BioPortal for curation.

Informed by the experimentation described in Section 5, blocks for the BEBIaon-AO were
formed using subtree-based partitioning of one ontology and ordernbeasvere created. Blocks
in OLA were formed similarly though both ontologies were partitioned while blockSptima
were formed by partitioning both ontologies on the basis of the height of ttiesrand ordered
from leaves to root. The execution times and F-measure for all the pagesaially aligned within
an arbitrary window of 5 hours per pair by the BCD-enhanced algoritastaown in Figs. 15
and 16. We point out that BCD speeds up the algorithms but does notidypiomote scalability.

In other words, while it reduces the time to convergence it does not raviday to manage the
memory in order to align large ontologies.

OLA with BCD failed to align a single pair within our time window. Bd#alcon-AO enhanced
with BCD and without aligned 47 pairs within the time windoftalcon-AO was unable to parse
one or both the ontologies in the remaining 3 pairs due to which no resultsaitalde for these.
Falcon-AO with BCD aligned the pairs taking 3.7 hours less time in total than the original which
consumed about 7.5 hours for all the pairs. We show the time for each #ag.ih5«). A closer
look reveals thaFalcon-AO with BCD exhibited time greater than the default on 9 of the 47 pairs.
Time on these few pairs did not exceed by more than 16 seconds and is gagdoning the
subtree-based partitioning of the variables for forming the blocks in BGie. dorresponding F-
measure did not change significantly due to the use of BCD over all thevpidirshe F-measure
over all the pairs being 54.7%.

Optima enhanced with BCD aligned 42 pairs each within the time window compared tar30 pa
without BCD. Optima was unable to parse one or both ontologies in the remaining 8 pairs due to
which no results are available for these. Focusing on the 30 pairs thatagned by both within
the time window (Fig. 16)Optima with BCD aligned these pairs in 2.3 hours taking 11.4 hours
less time compared to the original algorithm. Simultaneously, it found an addi@&®atorrect
correspondences across all the pairs with an increase in F-measireuh2%.

LogMap, a fast non-iterative algorithm that targets biomedical ontologies retwaiigguments
for all 50 pairs in 20 minutes of total time. It produced a precision and re€&B8.5% and 39.5%
(F-measure = 29.5%), respectively over all the pairs. These are sagilfi less than those of
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Figure 15: (a) Time consumed, anth) F-measure attained by the origirfedlcon-AO and that
with optimized BCD for 47 pairs of our large biomedical ontology testbed eretsgely.
Note that the time axis is in log scale. Ontology names are NCBO abbreviatioes. Th
alignment was performed on a Red Hat machine with Intel Xeon Core Zgsocspeed
of about 3 GHz with 8GB of memory.

Falcon-AO, which exhibited a precision and recall of 80.9% and 41.3% respectieelihe pairs

it aligned. Optima with BCD exhibited a precision of 76.1% and a recall of 35.8% with an overall
F-measure of 48.7%. While the recall is less thagMap, the F-measure is significantly better
due to the improved precision.

Finally, we submitted 15 new correspondences between entities in the péms tstbed to
NCBO for curation and publication. These are nontrivial correspoceidentified by both algo-
rithms, not present in the reference alignments and appropriately valiokatesi
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Figure 16: (a) Time consumed, anth) F-measure attained by the origirf@ptima and that with
optimized BCD, for 42 pairs of our biomedical ontology testbed, respdgtiMate that
the time axis is in log scale.

7. Discussion

Performances of the iterative update and search techniques are imgiffetetly by various ways
of formulating the blocks and the order of processing them. Importantlyuhiityof the alignment
may be adversely impacted. Nevertheless, the approach of groupingahigmariables into blocks
based on the height of the participating entities in the ontologies is motivated d&gognized

heuristic and leads to competitive performance with no observed negatieetimp the precision
and recall of the alignments. However, different ontology pairs may leaddiffering number of

blocks of various sizes: in particular, “tall” ontologies that exhibit a ddepschierarchy result in
more blocks than “short” ontologies.
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Given the BCD-based enhancement and optimization, how well do thesétaigeo compare
in terms of execution time and alignment quality with the state of the art? In ordesteearhis
guestion, we compare with the performances of 18 algorithms that particijpatiee conference
track of OAEI 2012 (Shvaiko et al., 2012). Among these, an iterative alighaigorithm,YAM++,
produced the best F-measure for the 21 pairs followetdyMap — which does not utilize opti-
mization —CODI, andOptima+, which isOptima augmented with BCD. These latter approaches
all produced F-measures that were tied or within 2% of each ofgtima+ ranked second after
YAM++ when the alignment is evaluated using F2 measure due to its comparativelgbadh r

OAEI reports run time on a larger task of aligning 1&ihferencentology pairs. On this task,
while YAM++ consumed more than 5 hours for all the paltegMap took slightly less than 4
minutes andptima+ consumed 22 minutes. Becausacon-AO andOLA did not participate in
OAEI 2012, we ran them separately on the 120 pairs on our machinesevdomfigurations are
comparable to that utilized by OAHFalcon-AO andOLA enhanced with BCD consumed 11 and
5 minutes respectively although their alignment quality is lower than th@jptaima+. This would
place all three representative algorithms in the top two-thirds among the Ygaiti@ipated in the
conferencdrack of OAEI in terms of run time witlOLA in the top half, an®Dptima+ andOLA in
group 1 with respect to alignment qualijWhile 7 competing algorithms completed the evaluation
faster, 5 of these exhibit alignment quality that is substantially worse thaoftttzé representative
algorithms. In the absence of BCD, the representative algorithms woukdraaked among the
bottom third or exceeded the 5 hour cut off. Performance omtiaomypair due to BCD would
place bothFalcon-AO andOptima+ in the top half of the 14 algorithms that participated in terms
of run time and F-measure. PreviousBptima without BCD ranked in the bottom quarter.

The reductions in convergence time and the observed increases ingrexishe alignment
due to BCD is, in part, because of the optimized correspondences foutlkf previous coordi-
nate block, which influence the selection of the correspondences fouthent coordinate block.
Furthermore, as we mentioned previously, limiting the randomly generatedspomdences in
MapPSO to the block instead of the whole ontology makes the search more guided. Tafs is
resentative of the effect that BCD has on iterative search in geneoauskg on a single block
significantly reduces the space of alignments over which iterative tectmiqust search thereby
arriving at an optimum quicker. However, a greater number of these sroptienization subprob-
lems must be solved but as our results imply the smaller optimization problem dffsetxpense.

Given that on integrating BCD the iterative algorithms converged to differgnes of thel)
function during iterative search or different match matricks, during iterative update, which
often produced better quality alignments, we infer that the original algorithene wsonverging to
local optima instead of the global optima, and that using BCD has likely resultamhirergence to
(better) local optima as well. While this insight is not new (Euzenat et al., 2004 significant
because it further reinforces the presence of local optima in the aligrapacg of these algorithms.
This may limit the efficacy of iterative alignment techniques.

Falcon-AO andOptima+’s comparatively better performance measured using F-measure against
the fast, non-iterative algorithnhogMap, on the biomedical ontology alignment testbed indicates
that iterative techniques continue to be among the best in the quality of theexb&lignment in-
cluding on large ontology pairs. This motivates ways of making them efficseich as BCD, and
more scalable.

6. Note thaMapPSO with BCD would have placed in the bottom third.
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8. Conclusion and Future Work

While techniques for scaling automated alignment to large ontologies havepb@eausly pro-
posed, we presented a novel approach based on BGpded uphe alignment process of an
important class of algorithms. These algorithms are iterative and anytime deatmgshigh qual-
ity alignments while often consuming more time than non-iterative algorithms. We dtratad
this technique in the context of four different iterative algorithms and etatlits impact on both
the total time of execution and the final alignment’s precision and recall. Wetegbsignificant
reductions in the total execution times of the algorithms enhanced using B&3eThductions
were most noticeable for larger ontology pairs. Often the algorithms cpedlén a lesser number
of iterations. Simultaneously, utilizing our default scheme of grouping thibgenaent variables
such that the participating entities from one ontology in a block have the sagte had optimiz-
ing the blocks in the order of increasing height, we observe an improvemtrg precision of the
alignments generated by some of the algorithms with no significant change ictile r

While it is possible to improve on the run time performance of the default partitioaird
ordering scheme by utilizing other schemes, we note that some of these nadiyelggmpact the
alignment quality. Subsequently, the default scheme is generally recomdifen@gisting and new
iterative alignment techniques that seek to utilize BCD.

The ability to improve quickly allows an iterative alignment algorithm to run untiveogence if
possible, in contrast to the common practice of terminating the alignment praftesan arbitrary
number of iterations. As predefining a common bound for the number of itesaisodifficult,
speeding up the convergence becomes vital. We observe that BCD atqg®mote scalability to
large ontologies.

Finally, we demonstrated the benefits of BCD toward aligning pairs in a hew bicedeon-
tology testbed. Due to the large number of ontologies in biomedicine, there iscalaneed for
ontology alignment in this vast domain. Our future work is to continue to focusiethods that
would allow general and principled alignment approaches suélalasn-AO andOptima to per-
form better on this testbed by producing better quality alignment for moreipdéss time, and on
aligning other large biomedical ontologies that are in popular use such@M&®M-CT and NCI.
Consequently, we believe that our community benchmark could potentiallg firiure research
toward pragmatic ontology alignment.
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Appendix A. Representative Iterative Algorithms Enhanced wth BCD

We chose four representative iterative alignment algoritifakon-AO, MapPSO, OLA andOp-
tima in order to illustrate how iterative algorithms could be enhanced with BCD. Irs#ddgon, we
present each alignment algorithm in its original form and enhanced with, BRcilitate a direct
comparison and a quick identification of the needed modifications.

FALCON-AO/GMO-BCD (04, O3, 1)

Initialize:

1. Iteration countei < O
IFA-ITCFNTAO/GMO (O1,02,1m) 2. G < AdjacencyMatrix (0;)
nitialize: . 3. Gy «— AdjacencyMatrix ()
1. Iteration _counter — 0_ 4. Foreachm,, € M°do
2. G1 « AdjacencyMatrix (0) 5 M e 1
3. G2 < AdjacencyMatrix (07) 6. Create a partition af/:
4. Foreachm,, € M°do {Ms,, Ms Mg}

0?7 17 C
5- Maa < 1 7 M* — ]\/[0
6. M, M°
erate: Iterate:
7efg e: 8. Do
8. o 1 9. ¢c«—i%(C+1),i—i+1
. 11 ) i—1 T T i—1
. , ‘ 10. M Gis MG Gi o MG

9. M —GM7'G] +GI MG, 11 Mls'c:Mﬁc VS e ; o 2
10. § « CosineSim(M?*, M,) 12' If s Ctﬁen ‘
11. M, — M ST
12. While 6 > 1 13. I5 «— CosineSim(M", M,)
13. Extract an alignment from/, 14 € ;?s a very high value

15. M, « M’

16. While 6 > 7

17. Extract an alignment fromy/.,

Figure 17: (a) Iterative update in the structural match&@MO, in Falcon-AO. (b) Iterative update
in GMO modified to perform BCD.

In Fig. 17, we show the iterative algorithm of ti@&MO component ofFalcon-AO and its
enhancement due to the use of BCD. AdjacencyMat®iy ((line 2 in Fig. 17a)) produces a binary
matrix, G, of size|V;| x |V1|, where a value of 1 in thé" row and;*" column represents an
edge from the vertex indexed biyto the vertex indexed by in the bipartite graph model a@;;
analogously for AdjacencyMatrix(;). The update and distance functions are implemented as
shown in lines 9 and 10, respectively, of the algorithm. In particular, temecsimilarity computes
the cosine of the two matrices from consecutive iterations serialized agveNitice that in each
iteration of Fig. 17b), just a block of variablesMgc, are updated using Eqg. 10 while holding the
remaining blocks fixed (lines 10 and 11). This yields a partially updated dmptete alignment
matrix in reduced time, which is utilized in the next iteration.

MapPSO'’s iterative search algorithm that performs particle swarm optimization and it$-mo
fication due to BCD are shown in Fig. 18. The algorithm takes as input the erushiparticles K,
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MAPPSO-BCD (0, 05, K, 1)

Initialize:
1. |Iteration countef < O
2. Generate seed map between

MAPPSO Oy, Oz, K, 1) O, andO,
Initialize: _ 3. Populate binary matrix}/°, with
1. Ilteration countei < O seed correspondences
2. Generate seed map betw&@nandO, 4. Generatds particles using the
3. Populate binary matrix\/°, with seedM®: P = (MO, MY, ..., M%)}

seed correspondences 5. Create a partition af/:
4. Generatd( particles using the (Ms,, M. M

; Soy 4V LSy SC}

seedM": P = {M}, Mg, ..., My} 6. SeaFcW£1<— arg max Q(M})

5. SearchV/? « argmax Q(M}) MOep
MPeP
Iterate:
Iterate: 7.Do
6.Do 8. c—i%(C+1),i—i+1
7o e+l 9. For k«1,2,...,Kdo
8. For k—1,2,...,Kdo o 10. M g « UpdateBlock(M;  , Mi~1)
9. M} — UpdateParticle(M}, Mi™1) 11 M M v§ed.
10. SearchVf! « argmax Q(M;) ' kS kS <o
Miep 12. SearchVf; « argmax Qs(M})
11.While [Q(M;) — QM) > 1 Mier
12. Extract an alignment from/? 13. If c¢=Cthen ; i1
14.  changed — |Q(M;) — Q(M;~')| = n?

else
15. changed «— true
16. While changed
17. Extract an alignment from/?

(a) (b)

Figure 18: (a) Iterative search irMapPSO. Objective function,@, is as given in Eq. 4. (b)
MapPSO'’s particle swarm based iterative algorithm enhanced with BCD.

and the thresholdy, in addition to the two ontologies to be aligned. It iteratively searches for an
alignment until it is unable to find one that improves on the previous best aligriogemore than

or equal ton. The objective functiong), is modified toQs in Fig. 18b), such that it is calculated
for the coordinate block of interest. A coordinate block in each partiglis, updated while keeping
the remaining blocks unchanged (lines 10 and 11), followed by searfdritige best particle based
on a measure of the alignment in the block (line 12). Both these steps mayftent in reduced
time. Additionally, the randomly generated mapping8liapPSO are limited to the block instead

of the whole ontology, due to which the search becomes more guided.

OLA's iterative algorithm is shown in Fig. 1@), and its enhancement due to the use of BCD in
Fig. 190b). The distance function of line 11 measures the similarity between the updatechafig
matrix with that from the previous iteration. The iterations terminate when the destafis below
the parametery. Observe that we cycle through the blocks in the BCD enhanced algorithm in
Fig. 19(b) and only the coordinates belonging to the current blddg'cé, are updated in lines 8-11.
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OLA-BCD (01, 05, 1)

Initialize:
1. lteration countei < 0

2. Populate the real-valued matdix®
IO.IE.Al.(O?’ O2,m) with lexical similarity values
ninalize: ) 3. Create a partition of/:
1. lteration countei — 0 (Ms,, M. Ms,)}
2. Fill real-valued matrix)/°, with lexical similarity 4 M S(O_’ M%l’ oS
3. M,—M° T
Iterate:
Iterate: 5. Do
g.DQ 1 6. C(—’L'%(C—‘rl),ibi—kl
o ]f ! +h v 7. foreachmg, € M}
or €achmaq € 8. if the types ofr, andy,, are the same
7. if the types ofr, andy, are the saméhen then
8 Maq FGN(Z )waﬁSetSzm(}‘(xa),}‘(ya) 9. Mua— Yy, wESetSim(F(a),F(a))
9 | FaYa FeN(a,a)
- €ISe 10. else
10.  maa <0 11 m.. 0
11. § « Dist(M", M) il uE &
12. M. — M 12. My = M VS e S,
14. Extract an alignment from/, 14. elsée(_ Dist(M*, M)
15. ¢ is a high value
16. M, «— M?
17.While 6 > n

18. Extract an alignment fror/,,

(a) (b)

Figure 19: (a) OLA iteratively updates the alignment matrix using a combination of neighboring
similarity values.(b) OLA's BCD-integrated iterative ontology alignment algorithm.

Finally, in Fig. 20, we outline the iterative search undertake®pyima and its modification
due to BCD.Optima’s expectation-maximization based iterative search uses binary maffixo
represent an alignment. Objective functidp, is defined in Eg. 6. The search for an improved
alignment in line 8 is implemented using the two steps of expectation and maximizatiatiolie
terminate when no sample’? € M, which improves the objective functio@), further, is available.
The search is modified in Fig. 20) to explore a reduced search spatés_, as we cycle through
the blocks. Both the objective functio§,s, and the prior operate on a single coordinate block.

Appendix B. Biomedical Ontology Alignment Benchmark

Biomedical ontologies bring unique challenges to the ontology alignment pnoiMereover, there
is an explicit interest for ontologies and ontology alignment in the domain of mime. Con-
sequently, we present a new biomedical ontology alignment testbed, winicidlgs an important
application context to the alignment research community. Due to the large sibésntedical
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OPTIMA-BCD (04, 05)
Initialize:
1. lteration countef «— O
OPTIMA (01, ©) 2 Fora(ll 0461{1,2,-~,\V2|}d0
Initialize: 3. To < T3]
1. Ilteration countei «— O 4. Generate seed map between
2. Forall ae{l1,2,...,|Vs|} do 07 andO;
3. 0 — |71\ 5. Populate binary matrix\/?,
2 .
4. Generate seed map between with seed correspondences
0O, and O, 6. Create a partition aof/:
5. Populate binary matrix\/?, {Ms,, Ms,, ..., Ms. }
with seed correspondences
lterate:
lterate: 7.Do
6. Do 8. c—i%(C+1),i—i+1 . 4
7. ie—i+t1 9. SearchM} , — argmax Qg(Mg [MI™1)
i i—1 _ ) Ms.eMs,
8. SearchV; — aggemj\ij(M|M* ) 0. M — [é_*l vie s,
i Vi i— 7 ’ i .
9. mh vy ZL;‘llpr(yalxa,M* D) 1. 7, i S0 Pr(yalza, MiTY)
10. While M; 7 M.~ 4 12. If ¢= C then
11. Extract an alignment from/; 13. changed «— M! # Mi=1?
else
14. changed «— true
15. While changed
16. Extract an alignment from/?

(a) (0)

Figure 20: () Optima’s expectation-maximization based iterative search algorithmb)
Expectation-maximization based iterative ontology alignme@mtima with BCD.

ontologies, the testbed could serve as a comprehensive large ontologyrk. Existing corre-
spondences in NCBO may serve as the reference alignments for thegtéiosigh our analysis
reveals that these maps represent just a small fraction of the total aligtivatistpossible between
two ontologies. Consequently, new correspondences that are disdalwing benchmarking may
be submitted to NCBO for curation and publication.

In order to create the testbed, we combed through more than 370 ontologtes fat NCBO
and OBO Foundry, and isolated a benchmark of 50 different biomediatalagy pairs. Thirty-two
ontologies with sizes ranging from a few hundred to tens of thousandstities constitute the
pairs, and are listed in Table 2. We provide a snapshot of the full bemkhm&able 3. The testbed
with reference alignments is available for downloatiat p: // ti nyurl . com n4t 2ns3. Our
primary criteria for including a pair in the benchmark was the presence offigisnt amount of
correspondences between the ontologies in the pair, as determined €&®'8IBioPortal. We
briefly describe the steps in creating the testbed:

1. We selected ontologies, which exist in either OWL or RDF models.

839



THAYASIVAM & D OSHI

2. We paired the ontologies and ordered the pairs by the percentagailafoles correspon-
dences. This is the ratio of correspondences that exist in BioPortdddgrair of ontologies
under consideration divided by the product of the number of entities inthetontologies.

3. Top 100 ontology pairs based on the above ratio are selected, follpnediering the pairs
based on their joint sizes.

4. We created 5 bins of equal sizes and randomly sampled each bin withoenulifstribution

to obtain the final 50 pairs.

Ontology Named Dqta Obj(?ct

Classes Properties Properties
Bilateria anatomy (BILA) 114 0 9
Common Anatomy Reference Ontology (CARO) 50 0 9
Plant Growth and Development Stage (PSDA) 282 2 0
FlyBase Controlled Vocabulary (FBcv) 821 0 10
Spatial Ontology (BSPO) 129 0 9
Amphibian gross anatomy (AAO) 1603 0 9
Anatomical Entity Ontology (AEO) 238 0 6
Cereal plant gross anatomy (GERPGA) 1270 7 0
Plant Anatomy (PCPAE) 1,270 6 0
Subcellular Anatomy Ontology (SAO) 821 0 85
Xenopus anatomy and development (XAO) 1,041 0 10
vertebrate Homologous Organ Groups (SHOG) 1,184 0 7
Hymenoptera Anatomy Ontology (HAO) 1,930 4 4
Teleost Anatomy Ontology (TAO) 3,039 0 9
Tick gross anatomy (TADS) 628 0 0
Zebrafish anatomy and development (ZFA) 2,788 5 0
Medaka fish anatomy and development (MFO) 4,358 0 6
BRENDA tissue / enzyme source (BTO) 5,139 4 9
Expressed Sequence Annotation for Humans (eVOC) 2274 0 7
Drosophila gross anatomy (FBbt) 7,797 0 10
Phenotypic quality (PATO) 2,281 24 0
Uber anatomy ontology (UBERON) 7,294 112 0
Fly taxonomy (FBsp) 6,599 0 0
Protein modification (MOD) 1,338 4 0
Human developmental anatomy (EHDAA) 2,314 0 7
Human developmental anatomy timed version (EHDA) 8,340 0 7
Plant Ontology (PO) 1,585 7 0
NIF Cell (NIF_Cell) 2,703 73 5
Mouse adult gross anatomy (MA) 2,982 1 6
Mosquito gross anatomy (TGMA) 1,864 3 0
Ontology for Biomedical Investigations (OBI) 3,537 102 6
Chemical entities of biological interest (CHEBI) 31,470 9 0

Table 2: Selected ontologies from NCBO in the biomedicablugy
alignment testbed and the number of nhamed classes and fiespier
each. Notice that this data set includes large ontologi€B® abbrevi-
ations for these ontologies are also provided.
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Biomedical ontology alignment testbed

Ontology O, Ontology O, [Vi] x |Va|
%IRng)c)m Anatomy - Reference OntOIOnguman developmental anatomy (EHDAA) 115,700
Bilateria anatomy (BILA) Human developmental anatomy (EHDAA) 263,796
Bilateria anatomy (BILA) Human developmental anatomy (EHDAA) 263,796
Spatial Ontology (BSPO) Human developmental anatomy (EHDAA) 298,506
Plant Growth and Development Stag

(PG PSDA) “plant Ontology (PO) 446,970
Anatomical Entity Ontology (AEO) Human developmental anatomy (EHDAA) 550,732
FlyBase Controlled Vocabulary (FBcv) Cereal plant gross anatomy (GEPGA) 1,042,670
FlyBase Controlled Vocabulary (FBcv) Plant Ontology (PO) 1,301,285
Tick gross anatomy (TADS) Human developmental anatomy (EHDAA) 1,453,192
Amphibian gross anatomy (AAQO) Xenopus anatomy and development (XAQ) 1,668,723
Cereal plant gross anatomy (GEPGA) Plant Ontology (PO) 2,012,950
Plant Anatomy (PCPAE) Plant Ontology (PO) 2,012,950
Subcellular Anatomy Ontology (SAO) NIF Cell (NIF_Cell) 2,219,163
Xenopus anatomy and development (XAQ) (Eg;p(r)eg)sed Sequence Annotation for Humans 2,367,234
Xenopus anatomy and development (XAQ) Human developmental anatomy (EHDAA) 2,408,874
vertebrate Homologous Organ Groupgxpressed Sequence Annotation for Humans 2692416
(sHOG) (eVOC) U
\(/::gbGr?te Homologous  Organ ~ Grou PHuman developmental anatomy (EHDAA) 2,739,776
Xenopus anatomy and development (XAQ) Zebrafish anatomy and development (ZFA) 2,902,308
Xenopus anatomy and development (XAQ) Teleost Anatomy Ontology (TAO) 3,163,599
\(/:I:tgtg?te Homologous  Organ ~ Grou PRouse adult gross anatomy (MA) 3,530,688
Hymenoptera Anatomy Ontology (HAO) | Mosquito gross anatomy (TGMA) 3,597,520
Teleost Anatomy Ontology (TAO) ‘(’::(e)kgf‘te Homologous  Organ  Groups 5 54 176
Amphibian gross anatomy (AAO) (E;;p(r)eg)sed Sequence Annotation for Humans 3,645,222
Amphibian gross anatomy (AAO) Human developmental anatomy (EHDAA) 3,709,342
Hymenoptera Anatomy Ontology (HAO) | Human developmental anatomy (EHDAA) 4,466,020
Amphibian gross anatomy (AAO) Zebrafish anatomy and development (ZFA) 4,469,164
Amphibian gross anatomy (AAO) Teleost Anatomy Ontology (TAO) 4,871,517
E;i%%)sed Sequence Annotation for Humarﬁuman developmental anatomy (EHDAA) 5,262,036
Phenotypic quality (PATO) Human developmental anatomy (EHDAA) 5,278,234
Zebrafish anatomy and development (ZFA) Human developmental anatomy (EHDAA) 6,451,432
Plant Anatomy (PCPAE) BRENDA tissue / enzyme source (BTO) 6,526,530
Teleost Anatomy Ontology (TAO) Human developmental anatomy (EHDAA) 7,032,246
Xenopus anatomy and development (XAQ) Uber anatomy ontology (UBERON) 7,593,054
Zebrafish anatomy and development (ZFA) Teleost Anatomy Ontology (TAQO) 8,472,732

Continued on next pag
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(CHEBI)

Ontology 1 Ontology 2 (V1] x |Va|
\(/Se:(e)tg;;lte Homologous  Organ  Grou PUber anatomy ontology (UBERON) 8,636,096
Medaka fish anatomy and developmenExpressed Sequence Annotation for Humans 9910 092
(MFO) (eVOC) e
l(\l/\l/(leggl)(a fish anatomy and developme nIt—luman developmental anatomy (EHDAA) 10,084,412
BRENDA tissue / enzyme source (BTO) (Ee’%eé’)sed Sequence Annotation for HUMANS 11 sag oag
Amphibian gross anatomy (AAO) Uber anatomy ontology (UBERON) 11,692,282
BRENDA tissue / enzyme source (BTO) | Human developmental anatomy (EHDAA) 11,891,646
Hymenoptera Anatomy Ontology (HAO) | Uber anatomy ontology (UBERON) 14,077,420
Hymenoptera Anatomy Ontology (HAO) | Drosophila gross anatomy (FBbt) 15,048,210
(Ee)%ecs)sed Sequence Annotation for HUMANg, - tomy ontology (UBERON) 16,586,556
Drosophila gross anatomy (FBbt) E)ilp(geé)'sed Sequence Annotation for Humans 17,730,378
Zebrafish anatomy and development (ZFA) Uber anatomy ontology (UBERON) 20,335,672
Uber anatomy ontology (UBERON) Mouse adult gross anatomy (MA) 21,750,708
Fly taxonomy (FBsp) (OonéclJ)Iogy for Biomedical Investigations 23,340,663
BRENDA tissue / enzyme source (BTO) | Uber anatomy ontology (UBERON) 37,483,866
Drosophila gross anatomy (FBbt) BRENDA tissue / enzyme source (BTO) 40,068,783
Protein modification (MOD) Chemical entities of biological interest 42,106,860

Table 3: The biomedical ontology pairs in our testbed sarnedrms of
[Vi| x |Va|. This metric is illustrative of the complexity of aligninbe

pair.
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