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Abstract
In domains such as biomedicine, ontologies are prominentlyutilized for annotating data. Con-

sequently, aligning ontologies facilitates integrating data. Several algorithms exist for automati-
cally aligning ontologies with diverse levels of performance. As alignment applications evolve and
exhibit online run time constraints, performing the alignment in a reasonable amount of time with-
out compromising the quality of the alignment is a crucial challenge. A large class of alignment
algorithms is iterative and often consumes more time than others in delivering solutions of high
quality. We present a novel and general approach for speeding up the multivariable optimization
process utilized by these algorithms. Specifically, we use the technique of block-coordinate descent
(BCD), which exploits the subdimensions of the alignment problem identified using a partitioning
scheme. We integrate this approach into multiple well-known alignment algorithms and show that
the enhanced algorithms generate similar or improved alignments in significantly less time on a
comprehensive testbed of ontology pairs. Because BCD does not overly constrain how we partition
or order the parts, we vary the partitioning and ordering schemes in order to empirically determine
the best schemes for each of the selected algorithms. As biomedicine represents a key application
domain for ontologies, we introduce a comprehensive biomedical ontology testbed for the com-
munity in order to evaluate alignment algorithms. Because biomedical ontologies tend to be large,
default iterative techniques find it difficult to produce a good quality alignment within a reasonable
amount of time. We align a significant number of ontology pairs from this testbed using BCD-
enhanced algorithms. Our contributions represent an important step toward making a significant
class of alignment techniques computationally feasible.

1. Introduction

Recent advances in Web-based ontologies provide a needed alternative to conventional schemas
allowing descriptive annotations of data sets. As an example, the National Center for Biomedical
Ontology (NCBO) hosts more than 370 curated biomedical ontologies in its BioPortal including
those in high use such as SNOMED-CT, and whose concepts participate in more than 2 billion data
annotations (Musen et al., 2012). Therefore, the present day challenge toward data integration and
to manage the multitude of ontologies is to build bridges between ontologies that have overlapping
scope – a problem often referred to as that of ontology matching which produces analignment(Eu-
zenat & Shvaiko, 2007). We illustrate a partial alignment between biomedicalontologies in Fig. 1.

Consequently, several algorithms exist for automatically aligning ontologies using various tech-
niques (Euzenat, Loup, Touzani, & Valtchev, 2004; Jian, Hu, Cheng,& Qu, 2005; Li, Li, & Tang,
2007; Jean-Mary, Shironoshita, & Kabuka, 2009; Doshi, Kolli, & Thomas, 2009; Wang & Xu,
2009; Hanif & Aono, 2009; Bock & Hettenhausen, 2010; Jiménez-Ruiz & Grau, 2011; Shvaiko &
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Figure 1: Biomedicine is an important application domain for ontologies. Alignment(shown in
dashed red) between portions of,(a) the Parasite Experiment Ontology (PEO) and,(b) the
Ontology of Biomedical Investigations (OBI) as discovered by an automatedalgorithm
called AgreementMaker (Cruz et al., 2012). Both these ontologies are available at NCBO.
Each identified map in the alignment signifies an equivalence between the concepts.

Euzenat, 2013), with mixed levels of performance. Crucial challenges for these algorithms involve
scaling to large ontologies and performing the alignment in a reasonable amount of time without
compromising on the quality of the alignment. As a case in point, only 6 alignment algorithms (not
including their variants) out of the 21 that participated in the 2012 and 2013 instances of the annual
ontology alignment evaluation initiative (OAEI) competition (Shvaiko et al., 2012, 2013) generated
results in an acceptable amount of time for aligning large biomedical ontologies.

Although ontology alignment is traditionally perceived as an offline and one-time task, the sec-
ond challenge is gaining importance. In particular, as Hughes and Ashpole(2004) note, continu-
ously evolving ontologies and applications involving real-time ontology alignmentsuch as semantic
search and Web service composition stress the importance of computational complexity considera-
tions. Recently, established competitions such as OAEI (Shvaiko et al., 2011) began reporting the
execution times of the participating alignment algorithms as well. As ontologies become larger,
efficiency and scalability become key properties of alignment algorithms.

A large class of algorithms that performs automated alignment isiterative in nature (Melnik,
Garcia-molina, & Rahm, 2002; Euzenat et al., 2004; Jian et al., 2005; Li et al., 2007; Doshi et al.,
2009; Wang & Xu, 2009; Hanif & Aono, 2009; Bock & Hettenhausen, 2010). These algorithms
repeatedly improve on the previous preliminary solution by optimizing a measure of the solution
quality. Often, this is carried out as a guided search through the alignment space using techniques
such as gradient descent or expectation-maximization. These algorithms mayrun until convergence,
which means that the solution cannot be improved further because it is a, possibly local, optimum.
However, in practice, the runs are often terminated after an ad hoc numberof iterations. Through
repeated improvements, the computed alignment is usually of high quality but these approaches
also consume more time in general than their non-iterative counterparts. Forexample, algorithms
performing among the top three in OAEI 2012 in terms of alignment quality such asYAM++ (Ngo
& Bellahsene, 2012), which ranked first in theconferencetrack,Optima+, ranked third in thecon-
ferencetrack, andGOMMA (Kirsten et al., 2011), which ranked first inanatomyandlibrary tracks,
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are iterative.1 On the other hand,YAM++ consumed an excessive amount of time in completing the
conferencetrack (greater than 5 hours) andOptima+ consumed comparatively more time as well.

Furthermore, iterative techniques tend to be anytime algorithms, which deliveran alignment
even if the algorithm is interrupted before its convergence. While considerations of computational
complexity have delivered ways of scaling the algorithms to larger ontologies,such as through
ontology partitioning (Hu, Zhao, & Qu, 2006; Seddiqui & Aono, 2009; Stoutenburg, Kalita, Ewing,
& Hines, 2010; Rahm, 2011) and the use of inverted indices (Jiménez-Ruiz & Grau, 2011), we seek
to speed up the alignment process of multiple algorithms. We think that considerations of space and
time go hand in hand in the context of usability.

Our primary contribution in this article is a general approach and its comprehensive evaluation
for significantly speeding up the convergence of iterative ontology alignment techniques. Thaya-
sivam and Doshi (2012a) provide a preliminary introduction to this approach. Objective functions
that measure the solution quality are typically multidimensional. Instead of the traditional approach
of modifying the values of a large number of variables in each iteration, we decompose the prob-
lem into optimization subproblems in which the objective is optimized with respect to a single or a
small subset, also called ablock, of variables while holding the other variables fixed. This approach
of block-coordinate descent(BCD) is theoretically shown to converge faster under considerably
relaxed conditions on the objective function such as pseudoconvexity – and even the lack of it in
certain cases – or the existence of optima in each variable (coordinate) block (Tseng, 2001). While it
forms a standard candidate tool for multidimensional optimization in statistics, and has been applied
in contexts such as image reconstruction (Pintér, 2000; Fessler & Kim, 2011) and channel capacity
computation (Blahut, 1972; Arimoto, 1972), this article presents its use in ontology alignment.

We extensively evaluate this approach by integrating it into multiple ontology alignment al-
gorithms. We selectedFalcon-AO (Jian et al., 2005),MapPSO (Bock & Hettenhausen, 2010),
OLA (Euzenat & Valtchev, 2004) andOptima (Doshi et al., 2009) as representative algorithms.
These algorithms have participated in OAEI competitions in the past, and some of them have ranked
in the top tier. Consequently, these algorithms in their default forms exhibit favorable alignment per-
formance. Furthermore, their implementations and source codes that are needed for our approach
are freely accessible.

Using a comprehensive testbed of several ontology pairs – some of whichare large – spanning
multiple domains, we show a significant reduction in the execution times of the alignment processes
thereby converging faster. Corresponding alignment quality continues toremain the same as before
or is improved by a small amount in some cases. This enables the application of these algorithms
toward aligning more ontology pairs in a given amount of time, or to more subsetsin large ontology
partitions. Also, it allows these techniques to run until convergence if possible in contrast to a
predefined ad hoc number of iterations, which possibly leads to the similar or improved alignments.
This is useful in the context of techniques that are guaranteed to converge.

BCD does not constrain how the alignment variables are divided into blocksexcept for the rule
that each block be chosen at least once in a cycle through all blocks. Furthermore, we may order the
blocks for consideration in any manner within a cycle. Consequently, our second contribution is an
empirical study of the impact of different ordering and partitioning schemeson the improvement that
BCD brings to the alignment. In addition to the default ordering scheme based on increasing height
of grouped entities, we consider reversing this ordering, and a third approach in which we sample the

1. GOMMA utilizes multiple matching strategies some of which may not be iterative, and these partly contributed
toward its performance in OAEI as well.

807



THAYASIVAM & D OSHI

blocks based on a probability distribution that represents the estimated likelihood of finding a large
alignment in a block. In the context of partitioning, we additionally consider grouping alignment
variables such that the entities are divided in a breadth-first search based partition. While our default
approach partitions one of the ontologies in a pair, we also consider the impact of partitioning both.
Performances of the iterative algorithms are impacted differently by variousways of formulating
the blocks and ordering them. Notably, the quality of the alignment may be adversely impacted.

Surprisingly, the algorithms differ in which ordering and partitioning scheme optimizes their
alignment performance. In order to comprehensively evaluate the efficiency of the BCD-enhanced
and optimized algorithms, we contribute a novel biomedical ontology alignment testbed. In addition
to being an important application domain, aligning biomedical ontologies has its ownunique chal-
lenges. We selected biomedical ontologies published in NCBO for our testbed, which also provides
a primarily UMLS-sourced but incomplete reference alignment. Thirty-two different biomedical
ontologies form the 50 pairs in our testbed with about half of these having 3,000+ named classes.

The rest of this article is organized as follows. In the next section, we briefly explain itera-
tive ontology alignment and introduce the four representative iterative algorithms. Additionally, we
briefly review the technical approach of BCD. We show how BCD may be integrated into iterative
ontology alignment algorithms in Section 3. In Section 4, we empirically evaluate theperformances
of the BCD enhanced algorithms using a comprehensive data set. Then, in Section 5, we explore
other ways of ordering the blocks and partitioning the alignment variables. Thereafter, in Section 6,
we detail a new biomedical ontology benchmark and report the performances of the BCD enhanced
and optimized iterative techniques on this benchmark. We discuss the impact ofBCD along with
its limitations in Section 7, and conclude this article in Section 8. Appendix A outlines the repre-
sentative algorithms and their modifications to utilize BCD, followed by details on thebiomedical
ontology alignment testbed in Appendix B.

2. Background

We provide a brief overview of the ontology alignment problem in the next subsection. This is
followed by brief descriptions of the four algorithms that are representative of iterative alignment
approaches. Finally, we describe the technique of BCD in general.

2.1 Overview of Ontology Alignment

An ontology is a specification of knowledge pertaining to a domain of interest formalized into
entities and relationships between the entities. Contemporary ontologies utilize description log-
ics (Baader, Horrocks, & Sattler, 2003) such as the Web Ontology Language (OWL) (McGuinness
& Harmelen, 2004) in order to facilitate publication on the Web. OWL allows the use of classes to
represent entities, different types of properties to represent relationships, and individuals to include
instances.

The ontology alignment problem is to find a set of correspondences between two ontologies,O1

andO2. Though OWL is based on description logic, several alignment algorithms model ontologies
as labeled graphs (with some possible loss of information) due to the presence of a class hierarchy
and properties that relate classes, in order to facilitate alignment. For example, Falcon-AO and
Optima transform OWL ontologies into a bipartite graph (Hayes & Gutierrez, 2004)and OLA
utilizes an OL-graph (Euzenat et al., 2004). Consequently, the alignmentproblem is often cast as a
matching problem between such graphs. An ontology graph,O, is defined as,O = 〈V, E, L〉where,
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V is the set of uniquely labeled vertices representing the entities,E is the set of edges representing
the relations, which is a set of ordered 2-subsets ofV , andL is a mapping from each edge to its
label. A correspondence,maα, between two entities,xa ∈ O1 andyα ∈ O2, consists of the relation,
r ∈ {=,⊆,⊇}, and confidence,c ∈ R. However, the alignment algorithms that we use focus on the
possible presence of= relation (also calledequivalentClassin OWL) between entities only. In this
case, an alignment may be represented as a|V1| × |V2| matrix that represents the correspondence
between the two ontologies,O1 = 〈V1, E1, L1〉 andO2 = 〈V2, E2, L2〉:

M =










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
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

Note that if the ontologies are not modeled as graphs, the rows and columns of M are the concepts in
O1 andO2 defined in the description logic. Each assignment variable,maα in M , is the confidence
of the correspondence between entities,xa ∈ V1 andyα ∈ V2. Consequently,M could be a real-
valued matrix, commonly known as the similarity matrix between the two ontologies. However, the
confidence may also be binary with 1 indicating a correspondence, otherwise 0, due to which the
match matrixM becomes a binary matrix representing the alignment. Two of the algorithms that
we use maintain a binaryM while the others use a realM .

An alignment is not limited to correspondences between entities alone, and may include cor-
respondences between the relationship labels as well. In order to facilitate matching relationships,
alignment techniques, including some that we use transform the edge-labeled graphs into unlabeled
bipartite ones by elevating the edge labels to first-class citizens of the graph.This process involves
treating the relationships as resources thereby adding them as nodes to thegraph.

2.2 Iterative Ontology Alignment

A large class of alignment algorithms is iterative in nature (Melnik et al., 2002; Euzenat et al., 2004;
Jian et al., 2005; Li et al., 2007; Doshi et al., 2009; Wang & Xu, 2009; Hanif & Aono, 2009;
Bock & Hettenhausen, 2010; Ngo & Bellahsene, 2012). Iterative algorithms utilize a seed matrix,
M0, which is iteratively improved until it converges. The seed matrix is either input by the user or
generated automatically often using fast string matching and other lexical matching.

Two types of iterative techniques are predominant. These differ in how thenext match matrix,
M , is obtained from the previous iteration’s match matrix at each step. The firsttype of iterative
algorithms improve the real-valued similarity matrix from the previous iteration,M i−1, by directly
updating it:

M i = U(M i−1) (1)

where,U is a function that updates the similarities. This type of algorithms often converges to a
fixed point,M∗, such that,M∗ = U(M∗). 2

The second type of iterative algorithms repeatedly and explicitly search over the space of match
matrices, denoted asM. The goal is to find the alignment that optimizes an objective function,

2. Convergence is predicated onU , and a fixed point may not exist for some techniques. However, convergence is a
desirable property for iterative alignment algorithms; in its absence the stop criteria is often ad hoc.
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Figure 2: Both iterative update and search jump from one alignment to another improving on the
previous one. The two differ in how they obtain the next alignment in each iteration and
in the qualitative metric used for assessing it. An alignment that cannot be improved
further signifies convergence.

which gives a measure of the quality of the alignment in the context of the alignment from the
previous iteration. This approach is appropriate when the search spaceis bounded such as when
the match matrix is binary. Nevertheless, with a cardinality of2|V1||V2| this space could get very
large. Some of the algorithms sample this space to reduce the effective search space though scaling
to large ontologies continues to remain challenging. Formally,

M i
∗ = arg max

M∈M
Q(M, M i−1

∗ ) (2)

where,M i
∗ is the alignment that optimizes theQ function in iterationi given the best alignment

from previous iteration,M i−1
∗ . Convergence of these algorithms occurs when iterations reach a

point, M∗, which cannot be improved on searching for an alignment matrix,M ∈ M, such that
Q(M, M∗) > Q(M∗, M∗). Equations 1 and 2 help solve a multidimensional optimization problem
iteratively withmaα in M as the variables. We abstractly illustrate the iterative approaches in Fig. 2.

In Fig. 3, we show the abstract algorithms for the two types of iterative approaches. In the
iterative update of Fig. 3(a), we may settle for a near fixed point by calculating the distance between
a pair of alignment matrices (line 8) and terminating the iterations when the distanceis within a
parameter,η. As η → 0 we get closer to the fixed point and obtain the fixed point in the limit.
Iterative search in Fig. 3(b) often requires a seed map (line 3) to obtainM0, which is typically
generated using fast lexical matching.

Next, we briefly reviewfour ontology alignment algorithms that optimize iteratively. The se-
lection of these algorithms is based on their accessibility and competitive performance in previous
OAEI competitions, and is meant to be representative of iteration-based alignment algorithms.3

2.2.1 FALCON-AO

Falcon-AO (Jian et al., 2005) is a well-known automated ontology alignment system combining
output from multiple components including a linguistic matcher, an iterative structural graph match-
ing algorithm calledGMO (Hu, Jian, Qu, & Wang, 2005), and a method for partitioning large
ontologies and focusing on some of the parts.

3. We sought to include YAM++ as well in our evaluation, which was the top performer in theconferencetrack of OAEI
2012 and 2013. However, its source code is not freely available and wecould not access it.
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ITERATIVE UPDATE (O1,O2, η)

Initialize:
1. Iteration counteri← 0
2. Calculate similarity between the

entities inO1 andO2 using a measure
3. Populate the real-valued matrix,M0,

with initial similarity values
4. M∗ ←M0

Iterate:
5. Do
6. i← i + 1
7. M i = U(M i−1)
8. δ ← Dist(M i,M∗)
9. M∗ ←M i

10. While δ ≥ η
11. Extract an alignment fromM∗

ITERATIVE SEARCH (O1,O2)

Initialize:
1. Iteration counteri← 0
2. Generate seed map between
O1 andO2

3. Populate binary matrix,M0, with
seed correspondences

4. M∗ ←M0

Iterate:
5. Do
6. i← i + 1
7. SearchM i ← arg max

M∈M
Q(M,M i−1)

8. M∗ ←M i

9. While M∗ 6= M i−1

10. Extract an alignment fromM∗

(a) (b)

Figure 3: General algorithms for iterative(a) update, and(b) search approaches toward aligning
ontologies. The distance function,Dist, in line 8 of (a) is a measure of the difference
between two real-valued matrices.

GMO measures the structural similarity between the ontologies that are modeled as bipartite
graphs (Hayes & Gutierrez, 2004). MatrixM in GMO is real-valued and this similarity matrix
is iteratively updated (Eq. 1) by updating each variable,maα, with the average of its neighborhood
similarities untilM stops changing significantly.GMO takes external input, typically obtained from
lexical matching, as the seed. Equation 1 manifests inGMO as a series of matrix operations:

M i = G1M
i−1GT

2 + GT
1 M i−1G2 (3)

Here,G1 andG2 are the adjacency matrices of the bipartite models of the two ontologiesO1 andO2,
respectively. In the first term of the summation, the outbound neighborhood of entities inO1 and
O2 is considered, while the second term considers the inbound neighborhood. Iterations terminate
when the cosine similarity between successive matrices,M i andM i−1, is less than a parameter,η.
The iterative update algorithm manifests inFalcon-AO as shown in Fig. 17(a) in Appendix A.

2.2.2 MAPPSO

MapPSO (Bock & Hettenhausen, 2010) utilizes discrete particle swarms to perform the optimiza-
tion. Each ofK particles in a swarm represents a valid candidate alignment, which is updated
iteratively. In each iteration, given the particle(s) representing the bestalignment(s) in the swarm,
alignments in other particles are adjusted as influenced by the best particle.

Equation 2 manifests inMapPSO as a two-step process consisting of retaining the best parti-
cle(s) (alignment(s)) and replacing all others with improved ones influenced by the best alignment
in the previous iteration. The measure of the quality of an alignment in thekth particle is determined
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by the mean of the measures of its correspondences as shown below:

Q(M i
k) =

|V1|
∑

a=1

|V2|
∑

α=1
maα × f(xa, yα)

|V1||V2|
(4)

where,maα is a correspondence inM i
k andf represents a weighted combination of multiple syntac-

tic and possibly semantic similarity measures between the entities in the two ontologies.Improved
particles are generated by keeping aside a random number of best correspondences according tof
in a particle, and replacing others based on the correspondences in the previous best particle. Itera-
tions terminate when the increment inQ due to a new alignment matrix is lower than a parameter,
η. Iterative search of Eq. 2 manifests inMapPSO as shown in the algorithm in Fig. 18(a).

2.2.3 OWL-LITE ALIGNMENT

OWL-Lite alignment (OLA) (Euzenat et al., 2004) is limited to aligning ontologies expressed in
OWL with an emphasis on its most restricted dialect called OWL-Lite.OLA adopts a bipartite
graph model of an ontology, and distinguishes between 8 types of nodes such as classes, objects,
properties, restrictions and others; and between 5 types of edges:rdfs:subClassOf, rdf:type, between
classes and properties, objects and property instances,owl:Restriction, and properties in individuals.

OLA computes the similarity between a pair of entities from two ontologies as a weighted
aggregation of the similarities between respective neighborhood entities. Due to its consideration
of multiple types of edges, cycles are common. Consequently, it computes the similarities between
entities as the solution of a large system of linear equations, solved iterativelyfor the fixed point.

Let F(xa) be the set of all nodes inO1, which are connected to the nodexa via an edge type,
F . Formally, similaritySim(xa, yα), between vertex,xa ∈ O1, and vertex,yα ∈ O2, is defined as,

Sim(xa, yα) =
∑

F∈N (xa,yα)

waα
F SetSim(F(xa),F(yα)) (5)

where,N (xa, yα) is the set of all edge types in whichxa, yα participate. Weight,waα
F , for an

entity pair,xa, yα, and edge type,F , is normalized, i.e.,
∑

F∈N (xa,yα)

waα
F = 1. Function,SetSim,

evaluates the similarity between sets,F(xa) andF(yα), as the average of maximal pairing.
OLA initializes a real-valued similarity matrix,M0, with values based on lexical attributes

only, while the iterations update each variable,maα, in the matrix using the structure of the two
ontologies. In particular, if two entities,xa andyα are of the same type, thenmaα is updated using
Eq. 5, otherwise the value is 0. Iterative update of Eq. 1 is realized byOLA as in Fig. 19(a) in
Appendix A.

2.2.4 OPTIMA

Optima (Doshi et al., 2009) formulates ontology alignment as a maximum likelihood problem, and
searches for the match matrix,M∗, which gives the maximum conditional probability of observing
the ontologyO1, given the other ontology,O2, under the match matrixM∗.

It employs generalized expectation-maximization to solve this optimization problem inwhich,
it iteratively evaluates the expected log likelihood of each candidate alignmentand picks the one
which maximizes it. It implements Eq. 2 as a two-step process of computing expectation followed
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by maximization, which is iterated until convergence. The expectation step consists of evaluating
the expected log likelihood of the candidate alignment given the previous iteration’s alignment:

Q(M i|M i−1) =

|V1|
∑

a=1

|V2|
∑

α=1

Pr(yα|xa, M
i−1)× logPr(xa|yα, M i)πi

α (6)

where,xa andyα are entities in ontologiesO1 andO2 respectively, andπi
α is the prior probability

of yα. Pr(xa|yα, M i) is the probability that nodexa is in correspondence with nodeyα given the
match matrixM i. The prior probability is computed as,

πi
α =

1

|V1|

|V1|
∑

a=1

Pr(yα|xa, M
i−1)

The generalized maximization involves finding a matrix,M i
∗, that improves on the previous one:

M i
∗ = M i ∈M : Q(M i|M i−1

∗ ) ≥ Q(M i−1
∗ |M i−1

∗ ) (7)

We show the iterative alignment algorithm ofOptima in Fig. 20(a).

Altogether, the four alignment algorithms that we describe in this subsection represent a broad
variety of iterative update and search techniques, realized in differentways. This facilitates a broad
evaluation of the usefulness of BCD. Over the years, algorithms such asFalcon-AO, OLA andOp-
tima have performed satisfactorily in the annual OAEI competitions, withFalcon-AO andOptima
demonstrating strong performances with respect to the comparative quality of the generated align-
ment. For example,Falcon-AO often ranked in the top 3 systems when it participated in OAEI
competitions between 2005 and 2010, and its performance continues to remaina benchmark for
other algorithms.Optima enhanced with BCD (calledOptima+) ranked second in theconference
track (F2-measure and recall) in the 2012 edition of the OAEI competition (Thayasivam & Doshi,
2012b). Consequently, these representative algorithms exhibit strong alignment performances. On
the other hand,MapPSO’s performance is comparatively poor but it’s particle-swarm based itera-
tive approach motivates its selection in our representative set.

2.3 Block-Coordinate Descent

Large-scale multidimensional optimization problems maximize or minimize a real-valued contin-
uously differentiable objective function,Q, of N real variables. Block-coordinate descent (BCD)
(Tseng, 2001) is an established iterative technique to gain faster convergence in the context of such
large-scaleN -dimensional optimization problems. In this technique, within each iteration, a set of
the variables referred to as coordinates are chosen and the objective function,Q, is optimized with
respect to one of the coordinate blocks while the other coordinates are held fixed. In our application
setting, recall that the coordinates are the alignment variables in the match matrix, M .

Let S denote a block of coordinates, which is a non-empty subset of{1, 2, . . . , N}. Define a set
of such blocks as,B = {S0, S1, . . . , SC}, which is a set of subsets each representing a coordinate
block with the constraint that,S0 ∪ S1 ∪ . . . ∪ SC = {1, 2, . . . , N}. B could have a single block or
be a partition of the coordinates although this is not required and the blocks may intersect. We also
define the complement of a coordinate block,Sc, wherec ∈ {0, 1, . . . , C}, as,S̃c = B − Sc. To
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illustrate, let the domain of a real-valued, continuously differentiable, multidimensional function,Q,
with N = 10 be,M = {m1, m2, m3, . . . , m10}, where each element is a variable. We may partition
this set of coordinates into two blocks,C = 2, so that,B = {S0, S1}. Let S0 = {m2, m5, m8} and
S1 = {m1, m3, m4, m6, m7, m9, m10}. Finally, S̃0 denotes the block,S1.

BCD converges to a fixed point such as a local or a global optimum of the objective function
under relaxed conditions such as pseudoconvexity of the function and requires the function to have
bounded level sets (Tseng, 2001). While pseudoconvex functions continue to have fixed points, they
may have non-unique optima along different coordinate directions. In the absence of pseudocon-
vexity, BCD may oscillate without approaching any fixed point of the function. Nevertheless, BCD
still converges if the function has unique optima in each of the coordinate blocks.

In order to converge using BCD, we must satisfy the following rule, which ensures that each
coordinate is chosen sufficiently often (Tseng, 2001).

Definition 1 (Cyclic rule) There exists a constant,T ≥ C andC > 0, such that every block,Sc, is
chosen at least once between theith iteration and the(i + T − 1)th iteration, for all i.

In the context of the cyclic rule, BCD does not mandate a specific partitioning or an ordering scheme
for the blocks. A simple way to meet this rule is by sequentially iterating through each block
although we must continue iterating until each block converges to the fixed point.

Recently, Saha and Tewari (2013) show that the nonasymptotic convergence rate4 of BCD
under the cyclic rule is faster than that of gradient descent (GC) if they both start from the same
point, under the conditions that the objective function,Q, has a Lipschitz continuous gradient (it
is differentiable everywhere and has a bounded derivative) or is strongly convex, andI − ▽Q

L
is

isotonic, whereI is the identity function andL is the Lipschitz constant. Starting from the same
initial map,M0

BCD = M0
GC , let M i

BCD andM i
GC denote the alignment at iterationi by BCD with

cyclic rule and GC, respectively. Under the condition that the objective function,Q, which must be
say, minimized, is continuous and isotonic,∀i ≥ 1, Q(M i

BCD) ≤ Q(M i
GC). The nonasymptotic

convergence rate of BCD under the cyclic rule for objective functions with the previous properties
is,O(1/i), wherei is the iteration count.

3. Integrating BCD into Iterative Alignment

As we mentioned previously, ontology alignment may be approached as a principled multivariable
optimization of an objective function, where the variables are the correspondences between the
entities of the two ontologies. Different algorithms formulate the objective function differently. As
the objective functions are often complex and difficult to differentiate, numerical iterative techniques
are appropriate but these tend to progress slowly. In this context, we may speed up the convergence
rate using BCD as we describe below.

3.1 General Approach

In Section 2.2, we identified two types of iterative ontology alignment algorithms.BCD may be
integrated into both these types. In order to integrate BCD into the iterations, thematch matrix,
M , must be first suitably partitioned into blocks. Of course, existing algorithms may be viewed as
having a single block of variables and therefore trivially utilizing BCD.

4. This is the rate of convergence effective from the first iteration itself.
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Though a matrix may be partitioned using one of several ways, we adopt anapproach that is
well supported in the context of ontology alignment. An important heuristic, which has proved
highly successful in both ontology and schema alignment, matches parent entities in two ontologies
if their respective child entities were previously matched (Doan, Madhavan, Domingos, & Halevy,
2003). This motivates grouping together those variables,maα in M , into a coordinate block such
that thexa participating in the correspondence belong to the same height leading to a partition of
M . The height of an ontology node is the length of the shortest path from a leaf node. Subsequently,
the alignment in blocks with less height (containing the child entities) is optimized first followed by
those with increasing height (containing the parent entities). In determining this height, we utilize
the tree or graph model of the ontology that is built internally by the respective ontology alignment
algorithm. These include property nodes and may differ between algorithms.

Let the partition ofM into coordinate blocks be{MS0
, MS1

, . . . , MSC
}, whereC is the height

of the largest class hierarchy in ontologyO1. Thus, each block is a submatrix with as many rows as
the number of entities ofO1 at a height and number of columns equal to the number of all entities in
O2. For example, correspondences between the leaf entities ofO1 and all entities ofO2 will form
the block,MS0

. In the context of a bipartite graph model as utilized byFalcon-AO andOptima,
which represents properties in an ontology as vertices as well and are therefore part ofM , these
would be included in the coordinate blocks.

Iterative ontology alignment integrated with BCD optimizes with respect to a singleblock,MSc
,

at an iteration while keeping the remaining blocks fixed. In order to meet the cyclic rule, we choose
a block,MSc

, at iterations,i = c+qC whereq ∈ {0, 1, 2, . . .}. We point out that BCD is applicable
to both types of iterative alignment techniques outlined in Section 2.2. Alignment algorithms which
update the similarity matrix iteratively as in Eq. 1 will now update only the current block of interest,
MSc

, and the remaining blocks are carried forward as is, as shown below:

M i
Sc

= USc
(M i−1)

M i

S̃
= M i−1

S̃
∀S̃ ∈ S̃c

(8)

whereS̃c is the complement ofSc in B. Note thatM i
Sc

combined withM i

S̃
for all S̃ ∈ S̃c forms

M i. Update function,USc
, modifiesU in Eq. 1 to update just a block of the coordinates.

Analogously, iterative alignment which searches for the candidate alignment that maximizes
the objective function as in Eq. 2, will now choose a block,MSc

, at each iteration. It will search
over thereduced search spacepertaining to the subset of all variables included inMSc

, for the best
candidate coordinate block. Formally,

M i
Sc,∗ = arg max

MSc∈MSc

QS

(

MSc
, M i−1

∗

)

M i

S̃,∗
= M i−1

S̃,∗
∀S̃ ∈ S̃c

(9)

where,MSc
is the space of alignments limited to block,Sc. The original objective function,Q, is

modified toQS such that it provides a measure of the quality of the block,MSc
, given the previous

best match matrix. Note that the previous iteration’s matrix,M i−1
∗ , contains the best block that was

of interest in that iteration.
Performing the update,USc

, or evaluating the objective function,QS , while focusing on a co-
ordinate block may be performed in significantly reduced time as compared to performing these
operations on the entire alignment matrix. While we may perform more iterations as we cycle
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Figure 4: BCD facilitates faster convergence in aligning ontologiesiastedandsigkddboth related
to conference organization.

through the blocks, the use of partially updated matrices from the previous iteration in evaluating
the next block facilitates faster convergence. We illustrate the impact of BCDon iterative search
as performed byOptima on an example ontology pair in Fig. 4. Alignment using BCD shows the
faster convergence rate.

ITERATIVE UPDATE WITH BCD (O1,O2, η)

Initialize:
1. Iteration counteri← 0
2. Calculate similarity between the

entities inO1 andO2 using a measure
3. Populate the real-valued matrix,M0,

with initial similarity values
4. Create a partition ofM :
{MS0

,MS1
, . . . ,MSC

}
5. M∗ ←M0

Iterate:
6. Do
7. c← i % (C + 1), i← i + 1
8. M i

Sc
← USc

(M i−1)

9. M i

S̃
←M i−1

S̃
∀S̃ ∈ S̃c

10. If c = C then
11. δ ← Dist(M i,M∗)

else
12. δ is a high value
13. M∗ ←M i

14. While δ ≥ η
15. Extract an alignment fromM∗

ITERATIVE SEARCH WITH BCD (O1,O2)

Initialize:
1. Iteration counteri← 0
2. Generate seed map between
O1 andO2

3. Populate binary matrix,M0,
with seed correspondences

4. Create a partition ofM :
{MS0

,MS1
, . . . ,MSC

}
5. M∗←M0

Iterate:
6. Do
7. c← i % (C + 1), i← i + 1
8. SearchM i

Sc,∗ ← arg max
MSc∈MSc

QS

(

MSc
,M i−1

∗

)

9. M i

S̃,∗
←M i−1

S̃,∗
∀S̃ ∈ S̃c

10. If c = C then
11. changed←M i

∗ 6= M i−1
∗ ?

else
12. changed← true
13. While changed
14. Extract an alignment fromM i

∗

(a) (b)

Figure 5: General iterative algorithms of Fig. 3 are modified to obtain,(a) iterative update enhanced
with BCD, and(b) iterative search enhanced with BCD. The update or search steps in line
numbers 8 and 9 are modified to update only the current block of interest.
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Algorithms in Fig. 5 revise the iterative update and search algorithms of Fig. 3 inorder to
integrate BCD. The primary differences in both involve creating a partition ofthe alignment matrix,
M (line 4), and iterations that sequentially process each coordinate block only while keeping the
others fixed (lines 7-9). On completing a cycle through all coordinate blocks as determined by the
check in line 10, we evaluate whether the new alignment matrix differs from theone in the previous
iteration, and continue the iterations if it does (lines 11-13). Observe that the regular iterations
improving the full match matrix are now replaced with “mini-iterations” updating the blocks.

Given the general modifications brought about by BCD, we describe how these manifest in the
four iterative alignment systems that form our representative set. The modifications are based on
the type of iterative technique and are uniform within each group. They donot change the core
alignment approach of each algorithm given the input as we see next.

3.2 BCD Enhanced Falcon-AO

We enhanceFalcon-AO by modifyingGMO to utilize BCD as it iterates. As depicted in Fig. 17(b),
we begin by partitioning the similarity matrix used byGMO into C + 1 blocks based on the height
of the entities inO1 that are part of the correspondences, as mentioned previously.GMO is then
modified so that at each iteration, a block of the similarity matrix is updated while the other blocks
remain unchanged. If block,Sc, is updated at iterationi, then Eq. 3 becomes:

M i
Sc

= G1,Sc
M i−1GT

2 + GT
1,Sc

M i−1G2

M i

S̃
= M i−1

S̃
∀S̃ ∈ S̃c

(10)

Here,G1,Sc
focuses on that portion of the adjacency matrix ofO1 that corresponds to the outbound

neighborhood of entities participating in correspondences of blockSc, while GT
1,Sc

focuses on the
inbound neighborhood of entities inSc. Adjacency matrix,G2, is utilized as before. The outcome
of the matrix operations is a similarity matrix, with as many rows as the variables inSc and columns
corresponding to all the entities inO2. The complete similarity matrix is obtained at iteration,i, by
carrying forward the remaining blocks unchanged, which is then utilized in the next iteration. The
general iterative update modified to perform BCD of Fig. 5(a) may be realized inFalcon-AO as in
the algorithm of Fig. 17(b) in Appendix A.

3.3 BCD Enhanced MapPSO

We may integrate BCD intoMapPSO by ordering the particles in a swarm based on a measure
of the quality of a coordinate block,Sc, in each particle in an iteration. Equation 4 is modified to
measure the quality of the correspondences in just the coordinate blockSc, in thekth particle by
taking the average:

QS(M i
k) =

|V1,c|
∑

a=1

|V2|
∑

α=1
maα × f(xa, yα)

|V1,c||V2|
(11)

where,V1,c denotes the set of entities of ontology,O1, of identical height participating in the cor-
respondences included in blockSc. As before, we retain the best particle(s) based on this measure
and improve on the alignment in a coordinate block,M i

k,Sc
, in the remaining particles using the best

particle in the previous iteration. The remaining coordinates are held unchanged. Iterative search of
MapPSO modified using BCD is shown in the algorithm of Fig. 18(b).
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3.4 BCD Enhanced OLA

As explained earlier,OLA evolves its similarity matrixM by similarity exchange between pairs of
neighboring entities. In each iteration, it performs an element-wise matrix update operation.OLA is
enhanced with BCD by adopting Eq. 8. Specifically, the similarity values of the coordinates of the
chosen block,Sc, will be updated using the similarity computations (Eq. 5). The remaining blocks,
M i

S̃c
, are kept unchanged.

mi
aα =

{

Sim(xa, yα) if types ofxa andyα are the same
0 otherwise

,∀mi
aα∈M i

Sc

M i

S̃
= M i−1

S̃
∀S̃ ∈ S̃c

(12)

3.5 BCD Enhanced Optima

As we mentioned previously,Optima utilizes generalized expectation-maximization to iteratively
improve the likelihood of candidate alignments. Jeffery and Alfred (1994) discuss a BCD in-
spired expectation-maximization scheme and call it the space alternating generalized expectation-
maximization (SAGE). Intuitively, SAGE maximizes the expected log likelihood of a block of co-
ordinates thereby limiting the hidden space, instead of maximizing the likelihood of the complete
alignment. The sequence of block updates in SAGE monotonically improves the objective likeli-
hood. For a regular objective function, the monotonicity property ensures that the sequence will not
diverge, but it does not guarantee convergence. However, proper initialization lets SAGE converge
locally. 5 In each iteration,Optima enhanced using SAGE chooses a block of the match matrix,
M i

Sc
, and its expected log likelihood is estimated. As in previous techniques, we choose the blocks

in a sequential manner such that all the blocks are iterated in order.
Equation 6 changes to estimate the expected log likelihood of a block of a candidate alignment:

QS(M i
Sc
|M i−1) =

|V1,c|
∑

a=1

|V2|
∑

α=1

Pr(yα|xa, M
i−1)× logPr(xa|yα, M i

Sc
) πi

α,c (13)

Recall thatV1,c denotes the set of entities of ontology,O1, participating in the correspondences
included inSc. Notice that the prior probability,πi

α,c, is modified as well to utilize justV1,c in its
calculations.

The generalized maximization step now involves finding a match matrix block,M i
Sc,∗, that

improves on the previous one:

M i
Sc,∗ = M i

Sc
∈MSc

: QS(M i
Sc,∗|M

i−1
∗ ) ≥ QS(M i−1

Sc,∗|M
i−1
∗ ) (14)

Here,M i−1
Sc,∗ is a part ofM i−1

∗ .

At iteration i, the best alignment matrixM i
∗, is formed by combining the blockM i

Sc,∗, which

improvesQS as defined in Eq. 14 with the remaining blocks from the previous iteration,M i−1
S̃,∗

, in

the complement ofSc, unchanged.

5. Furthermore, the convergence rate may be improved by choosing the hidden space with less Fisher information (Hero
& Fessler, 1993).
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The algorithm in Fig. 20(b) shows howOptima may be enhanced with BCD. We expect signif-
icant savings in time because of the search over a reduced space of alignments focused on a block,
MSc

, in each iteration. Additionally, both the objective function,QS , and the prior operate on a
single coordinate block in reduced time. Finally, using aligned blocks in the next iteration improves
the convergence rate.

4. Empirical Analysis

While the use of BCD is expected to make the iterative approaches exhibit a greater rate of improve-
ment, and if the approach converges, reach the fixed point faster, we seek to empirically determine:

1. The amount of speed up obtained for the various alignment algorithms by integrating BCD;
and

2. Changes in the quality of the final alignment, if any, due to BCD. This may happen because
the iterations converge to a different local optimum.

Ontology Named Classes Properties
Conferencedomain

ekaw 74 33
sigkdd 49 28
iasted 150 41
cmt 36 59
edas 104 50
confOf 38 36
conference 60 64

Life Sciences
mouse anatomy 2,744 2
human anatomy 3,304 3

Table 1: Ontologies from OAEI 2012 used in our evaluation. We show the number of named classes
and properties in each as an estimate of their size. Notice that our evaluation includes
some large ontologies from different domains as well. Additionally, Thayasivam and
Doshi (2012a) present evaluations on the four pairs in the 300 range of the bibliography
benchmark competition.

We use a comprehensive testbed of several ontology pairs – some of which are large – spanning
two domains. We used ontology pairs from the OAEI competition in its 2012 version as the testbed
for our evaluation (Shvaiko et al., 2012). Among the OAEI tracks, we focus on the test cases
that involve real-world ontologies for which the reference (true) alignment was provided by OAEI.
These ontologies were either acquired from the Web or created independently of each other and
based on real-world resources. This includes all pairs of the expressive ontologies in theconference
track all of which structure knowledge related to conference organization, and theanatomytrack,
which consists of a pair of mid-sized ontologies from the life sciences describing the anatomy
of an adult mouse and human. We list the ontologies from OAEI participating in our evaluation
in Table 1 and provide an indication of their sizes. Additionally, Thayasivamand Doshi (2012a)
evaluateFalcon-AO, MapPSO andOptima with BCD on the four pairs in the 300 range of the
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bibliographybenchmark competition. Ontology pairs in the 100 and 200 ranges of the bibliography
benchmark were not utilized as the participating ontologies are very small with just 33 classes and
64 properties. Subsequently, our representative iterative techniquesalign these very quickly in the
order of milliseconds leaving no significant room for improvement.

We align ontology pairs using the four representative algorithms, in their original forms and with
BCD using the same seed alignment,M0, if applicable. The iterations were run until the algorithm
converged and we measured the total execution time, final recall, precisionand F-measure, and the
number of iterations performed until convergence. Recall measures the fraction of correspondences
in the reference alignment that were found by an algorithm while precision measures the fraction of
all the found correspondences that were in the reference alignment thereby indicating the fraction
of false positives. F-measure represents a harmonic mean of recall andprecision.

We averaged results of 5 runs on every ontology pair using both the original and the BCD
enhanced version of each algorithm. Because of the large number of totalruns, we ran the tests on
two different computing platforms while ensuring comparability. One of these isa Red Hat machine
with Intel Xeon Core 2, processor speed of about 3 GHz with 8GB of memory (anatomy ontology
pair) and the other one is a Windows 7 machine with Intel Core i7, 1.6 GHz processor and 4GB of
memory (benchmark and conference ontology pairs). While comparing the performance metrics for
statistical significance, we tested the data for normality and used Student’s paired t-test if it exhibits
normality. Otherwise, we employed the Wilcoxon signed-rank test. We utilized the1% level (p ≤
0.01) to deem significance.

As Thayasivam and Doshi (2012a) did not previously evaluateOLA on the bibliography domain
ontology pairs, we discuss its performance in this article for completeness. Similar to the other algo-
rithms, the introduction of BCD inOLA reduced its execution time on all four pairs by a total of 1.3
seconds compared to the original time of 27.3 seconds.OLA’s precision and recall reduced slightly
causing its F-measure to reduce by 1% for the ontology pair (302,101), while the the alignments for
the other pairs remained the same.

The ontologies in theconferencedomain vary widely in their size and structure. As shown
in Fig. 6, the introduction of BCD to the four iterative techniques clearly improves their speed of
convergence and the differences for each algorithm are significant (Student’s paired t-test,p ≪
0.01). In particular, we observed an order of magnitude reduction in time for aligning relatively
larger ontologies such asiastedandedas. For example, pairs(conference, iasted)onMapPSO and
(edas, iasted)on Optima showed such reductions. Overall, we observed a total reduction of 50
seconds forFalcon-AO to 3 minutes, 1 minute and 37 seconds forMapPSO, 31 seconds forOLA
to a total of 1 minute and 37 seconds, and by 29 minutes and 20 seconds forOptima to 4 minutes
and 53 seconds.

Falcon-AO shows no change due to BCD in its alignment, holding its precision at 25% and
recall at 66%.Optima shows a 4% improvement in average precision from 56% to 60% but average
recall reduced from 70% to 68%. Nevertheless, this causes a 2% improvement in average F-measure
to 64%. MapPSO with BCD resulted in a significant improvement in final precision from 9% to
43% on average, although the difference in recall was not significant. The precision and recall for
OLA remained unchanged.

The mid-sizedanatomyontologies for mouse and human were not successfully aligned by
MapPSO andOLA despite the use of BCD. However, BCD reducedFalcon-AO’s average exe-
cution time for aligning this single ontology pair by 6.2 seconds to 2.6 minutes, and drastically
reducedOptima’s average execution time to 4.4 minutes from 62.7 minutes. The alignment gen-
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Figure 6: Average execution time consumed by,(a) Falcon-AO, (b) MapPSO, (c) OLA, and(d)
Optima in their original form and with BCD, for 6 of the 21 ontology pairs fromconfer-
encedomain. We ran the algorithms forall the pairs, and selected ontology pairs which
exhibited the three highest and the three lowest differences in average execution times
for clarity. Note that the time axis of(d) is in log scale. Notice the improvements in
execution time for the larger pairs. Specifically, about a 50% reduction in average execu-
tion time for the ontology pair(edas, iasted)by Falcon-AO and an order of magnitude
reductions in average run time for ontology pairs(conference, iasted)in MapPSO and
(edas, iasted)in Optima, were observed.

erated byFalcon-AO with BCD remained unchanged at 76.1% precision and 80% recall while
the alignment fromOptima with BCD improved to a precision of 96% and recall of 74.2%. Both
Falcon-AO andOptima automatically utilized their ontology partitioning methods in order to align
these mid-sized pairs.

In summary, the introduction of BCD led to significant reductions in convergence time for all
four iterative algorithms on several ontology pairs, some extending to an order of magnitude. Simul-
taneously, the quality of the final alignments as indicated by F-measure improved for a few pairs,
with one pair showing a reduction in the context ofOptima. However, we did not observe a change
in the F-measure for many of the pairs. Therefore, our empirical observations indicate that BCD
does not have a significant adverse impact on the quality of the alignment.
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5. Optimizing BCD using Ordering and Partitioning Schemes

As we mentioned previously, BCD does not overly constrain the formation ofthe coordinate blocks
and neither does it impose an ordering on the consideration of the blocks, other than satisfying
the cyclic rule. Consequently, we explore other ways of ordering the blocks and partitioning the
alignment variables in the context of the representative algorithms. These include:

1. Ordered from roots to leaves: Cycle over blocks of decreasing height starting with the block
containing entities with the largest height.

2. Ordered by similarity distribution: Obtain an aggregate measure of the lexical similarity be-
tween the ontology entities participating in each block. The normalized distributionof simi-
larities provides the likelihood of picking the next block.

3. Both ontologies partitioned: A block contains participating entities from each ontology that
are at the same height.

4. Subtree-based partitioning: Transform the ontology into a tree and form a block of variables
such that the participating entities are a part of a subtree of a predefined size.

5. Random partitioning: Form a block by randomly selecting alignment variables for inclusion.

While the partitioning and ordering utilized in the previous section are intuitive, our objective is to
discover if other ways may further improve the run time performances of the algorithms. In subse-
quent experimentation, we excludeMapPSO from our representative set due to the randomness in
its algorithm, which leads to comparatively high variability in its run times.

5.1 Ordering The Blocks

The order in which the blocks are processed may affect performance.This is because updated
correspondences from the previous blocks are used in generating thealignment for the current block.
Initially, blocks with participating entities of increasing height beginning with the leaves were used
as illustrated in Fig. 7. Other ordering schemes could improve performance:

• We may reverse the previous ordering by cycling over blocks of decreasing height, beginning
with the block that contains entities with the largest height. This leads to processing parent
entities first followed by the children.

• We may obtain a quick and approximate estimate of the amount of alignment in a blockof
variables. One way to do this is to compute an aggregate measure of the lexicalsimilarity
between the entities of the two ontologies participating in the block. Assuming the similar-
ity to be an estimate of the amount of alignment in a block, we may convert the estimates
into a probability distribution that gives the likelihood of finding multiple correspondences
in a block. The block to process next is then sampled from this distribution. This approach
requires a relaxation of the cyclic rule because a particular block is not guaranteed to be se-
lected. In this regard, an expectation of selecting each block is sufficientto obtain asymptotic
convergence of BCD (Nesterov, 2012).
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Figure 7: Presence or absence of correspondences between entitiesof two ontologies is represented
in the match matrix. Conceptsdrug, sample, andresearcherare all leaves and correspon-
dences with these may be grouped into a block (highlighted). We may processthis block
first followed by the block containingdataandagent. Alternately, we may reverse this
ordering for optimizing blocks.

We compare the performances of the alternate ordering schemes with the initialon the 21 on-
tology pairs in theconferencedomain. The results of reversing the order of the original scheme
are shown in Fig. 8. Clearly, the original ordering allows all three BCD-enhanced approaches to
converge faster in general. WhileOptima’s average recall across all pairs improved slightly from
68% to 70%, average precision reduced by 4% to a final of 56%.Falcon-AO’s average F-measure
improved insignificantly at the overall expense of 40 seconds in run time. Reversing the order has
no impact on the precision and recall ofOLA. These results are insightful in that they reinforce the
usefulness of the alignment heuristic motivating the original ordering scheme.

Our second alternate ordering scheme involves determining the aggregate lexical similarity be-
tween the entities participating in a block. The distribution of similarities is normalized and the next
block to consider is sampled from this distribution. Notice from Fig. 9 thatFalcon-AO andOLA
demonstrate significant increases in convergence time (p ≪ 0.01) compared to utilizing BCD with
the initial ordering scheme; on the other hand, the overall time reduces forOptima and by orders
of magnitude for some of the pairs containing the larger ontologies such asedasand iasted. We
select 6 pairs, which exhibit the highest and lowest differences in average execution times to show
in Fig. 9. Falcon-AO’s precision and recall show no significant change and its F-measure remains
unchanged.OLA loses both precision and recall with the similarity distribution scheme. The preci-
sion across all pairs went down to 13% from 37% along with a 24% drop in recall from 58% leading
to a drop in F-measure to 19%. However,Optima’s F-measure remains largely unaffected.

Recall that bothFalcon-AO and OLA perform iterative updates whileOptima conducts an
iterative search. While all sampled blocks undergo updates by the iterativeupdate algorithms, search
algorithms may not improve the blocks having low similarity. Consequently, blockswith high
similarity that are sampled more often are repeatedly improved. This results in quicker convergence

823



THAYASIVAM & D OSHI

 0

 10

 20

 30

 40

 50

(c
m

t,s
ig

kdd)

(C
onfe

re
nce,confO

f)

(C
onfe

re
nce,edas)

(C
onfe

re
nce,sig

kdd)

(c
onfO

f,e
das)

(e
das,ia

ste
d)

T
im

e
 (

s
e
c
)

Falcon-AO with BCD
Falcon-AO with BCD (ordered from roots to leaves)

(a)

 0

 2

 4

 6

 8

 10

 12

 14

(c
m

t,C
onfe

re
nce)

(c
m

t,c
onfO

F)

(C
onfe

re
nce,edas)

(C
onfe

re
nce,ia

ste
d)

(c
onfO

f,s
ig

kdd)

(e
das,ia

ste
d)

T
im

e
 (

s
e
c
)

OLA with BCD
OLA with BCD (ordered from roots to leaves)

(b)

 1

 10

 100

 1000

(C
onfe

re
nce,ekaw)

(C
onfe

re
nce,ia

ste
d)

(c
onfO

f,i
aste

d)

(e
kaw, ia

ste
d)

(e
kaw,sig

kdd)

(ia
ste

d,sig
kdd)

T
im

e
 (

s
e
c
)

Optima with BCD
Optima with BCD (ordered from roots to leaves)

(c)

Figure 8: Average execution times of,(a) Falcon-AO, (b) OLA, and(c) Optima, with BCD that
uses the initial ordering scheme and with BCD ordering the blocks from root(s) to leaves,
for 6 of the 21 ontology pairs from theconferencedomain. While we ran the algorithms
for all the pairs, we selected ontology pairs which exhibited the highest andlowest dif-
ferences in average execution times. This alternate ordering increases the run times to
convergence and we did not observe significant improvements in the F-measures.

to a different and peculiar local optima where the blocks with high similarity haveconverged while
the others predominantly remain unchanged. Thus, the alignment quality remains largely unaffected
while the convergence time is reduced, as we see in the context ofOptima.

5.2 Partitioning the Alignment Variables

Because BCD does not impose a particular way of grouping variables, other well-founded partition-
ing schemes may yield significant improvements:

• An extension of the initial scheme (Fig. 10(a)) would be to group variables representing
correspondences such that the participating entities from each ofO1 andO2 are at the same
height in relation to a leaf entity in the ontology, as we illustrate in Fig. 10(b). Note that
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Figure 9: Average execution time consumed by,(a) Falcon-AO, (b) OLA and (c) Optima with
BCD utilizing the previous ordering scheme and with BCD ordering the blocks by simi-
larity distribution, for 6 of the 21 ontology pairs fromconferencedomain. Although we
ran the algorithms for all the pairs, we show ontology pairs which exhibited thehigh-
est and lowest differences in average execution times. The new ordering helpedOptima
further cut down the total execution time by 262 seconds while finding 1 more correct
correspondence and 6 false positives across all pairs.

the entity heights may differ between the two ontologies. This is based on the observation
that the generalization-specialization hierarchy of concepts pertaining to asubtopic is usually
invariant across ontologies.

• A more sophisticated scheme founded on the same observation is to temporarily transform
each ontology, which is modeled as a labeled graph, into a tree. We may utilize any graph
search technique that handles repeated nodes, such as breadth-first search for graphs (Russell
& Norvig, 2010), to obtain the tree. If the ontology has isolated graphs leading to separate
trees, we use the owl:thing node to combine them into a single tree. Subsequently, we group
those variables such that participating entities from each ontology are partof a subtree of a
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Figure 10: Matrices representing an intermediate alignment between entities ofO1 andO2. (a)
Identically shaded rows form a block of variables because the corresponding entities
of O1 are at the same height.(b) Identically shaded rows and columns correspond to
entities at the same heights inO1 andO2, respectively. Variables in overlapping regions
form a block. (c) Entities corresponding to identically shaded rows or columns form
subtrees. A fourth approach is to randomly select variables for inclusioninto a block.

predefined size (Fig. 10(c)). We may discard the ontology trees after forming the blocks.
While the previous schemes form blocks of differing numbers of variables, this scheme forms
all but one block with the same number of variables by limiting the subtree size.

• A simple point for comparison would be a scheme that randomly selects alignmentvariables
for inclusion in a block. With no clear way to determine how many variables to include in a
block, we randomly inserted variables into 5 blocks.

Based on the findings in the previous subsection, the blocks are orderedbased on height of the
participating entities or the subtrees’ root nodes forFalcon-AO andOLA. We begin with the blocks
of smaller height and proceed to those with increasing height. ForOptima, we sample the blocks
using a distribution based on the lexical similarity between participating entities.

As illustrated in Fig. 11, partitioning both the ontologies helpedOptima the most and signifi-
cantly saves on its execution times (p≪ 0.01). For the pairs involving some of the larger ontologies,
it reduced by more than an order of magnitude. Furthermore,Optima gains in precision over all
pairs by 6% with a 1% reduction in recall resulting in a 3% gain in F-measure to 67%. OLA saves
on execution time as well – relatively less thanOptima – with a slight improvement in its alignment
quality. On the other hand,Falcon-AO experienced an increase in its total execution time over all
the pairs.Optima’s improved performance is attributed to blocks that are now smaller allowing a
more comprehensive coverage of the search space in less time. On the other hand, iterative update
techniques such asFalcon-AO do not show any improvement because the smaller blocks may be a
sign of overpartitioning.

Figure 12 illustrates the impact of subtree-based partitioning in all three algorithms.Falcon-AO
exhibited a significant reduction in execution times (p < 0.01) simultaneously with an improvement
in precision and F-measure over all the pairs by 3%. Similar to the previous optimization,OLA’s
execution time reduces significantly as well (p < 0.01) while keeping its output unchanged. On
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Figure 11: Execution times consumed by,(a) Falcon-AO, (b) OLA, and(c) Optima with BCD
that uses blocks obtained by partitioning a single ontology and with BCD that utilizes
partitions of both the ontologies, for 6 of the 21 ontology pairs fromconferencedomain.
Although we ran the algorithms for all the pairs, we selected ontology pairs which ex-
hibited the highest and lowest differences in execution times.Optima’s total execution
time over all pairs reduced by 274 seconds. False positive correspondences reduced by
37 at the expense of 3 correct correspondences.OLA cut down 10 seconds of the total
execution time and 2 incorrect correspondences.

the other hand, this partitioning technique reduces the efficiency ofOptima with a small reduction
in alignment quality as well.Falcon-AO’s GMO employs an approach that relies on inbound and
outbound neighbors, which is benefited by using blocks whose participating entities form subtrees.
As structure-based matching inOptima is limited to looking at the correspondences between the
immediate children, including larger subtrees in blocks may not be of benefit toOptima.

Finally, in Fig. 13 we explore the impact of randomly partitioning the variables intoblocks on
all three alignment algorithms. BothFalcon-AO andOLA showed significant increases in execu-
tion time (p < 0.01) on the conference pairs. WhileFalcon-AO’s precision improved by less than
1%, its recall dropped by 2% with an overall reduction in F-measure of 1%.OLA exhibited a mi-
nor increase in precision of 0.2% while the recall remained unchanged resulting in an increase of
F-measure by 0.2%.Optima demonstrated mixed results as shown in Fig. 13(c) with the execution
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Figure 12: Execution times consumed by,(a) Falcon-AO, (b) OLA, and(c) Optima, with BCD
that uses the default partitioning approach and with BCD that uses subtree-based parti-
tioning, for 6 of the 21 ontology pairs fromconferencedomain. We ran the algorithms
for all the pairs of which we selected ontology pairs that exhibited the highest and lowest
differences in execution times. The total execution time ofFalcon-AO for the complete
conference track reduces by 8 sec along with a reduction of 71 false positives. OLA
saves 1.5 sec in total execution time while keeping the output alignments unchanged.
However,Optima consumes 192 seconds more.

time increasing for some pairs while reducing for others. On the whole, we didnot observe a statis-
tically significant difference in execution times. Furthermore, BCD due to random partitioning did
not improve beyond the seed alignment for many of the pairs, with an overalldecrease in F-measure
of 1% across all pairs.

In summary, a side-by-side comparison of the various block ordering andpartitioning techniques
discussed previously is presented in Fig. 14 for all three alignment algorithms on a single ontology
pair,(edas, iasted). We do not include the random partitioning as its alignment performance in terms
of recall and precision was poor on many of the ontology pairs making it illsuited as a candidate.
Differences in run time performance of the algorithms on(edas, iasted)is representative of their
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Figure 13: Execution times consumed by,(a) Falcon-AO, (b) OLA, and(c) Optima, with BCD
that uses the default partitioning approach and with BCD that uses randompartitioning.
We show 6 of the 21 ontology pairs fromconferencedomain. We ran the algorithms for
all the pairs of which we selected ontology pairs that exhibited the highest and lowest
differences in execution times. The total execution time ofFalcon-AO for the complete
conference track increases by 19.5 secs due to the random partitioning.OLA takes an
additional 28 secs in total execution time whileOptima saves 8.5 seconds over all the
pairs at the expense of alignment quality.

performances on the larger data set in general. In particular,Falcon-AO’s run time reduces on
using subtree-based partitioning to obtain the blocks.OLA’s run time reduces the most when both
ontologies in the pair are partitioned using entity height, whileOptima benefits from ordering
blocks based on a preliminary measure of the similarity of the participating entities and forming
blocks by partitioning both ontologies.

6. Aligning Large Biomedical Ontologies

Ontologies are becoming increasingly critical in the life sciences (Bodenreider & Stevens, 2006;
Lambrix, Tan, Jakoniene, & Stromback, 2007) with multiple repositories suchas Bio2RDF (Bel-
leau et al., 2008), OBO Foundry (Smith et al., 2007) and NCBO’s BioPortal(Musen et al., 2012)
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rithm with BCD where the blocks are ordered based on the height of the participating
entities from the leaves to the root and a single ontology is partitioned to form theblocks.
Differences in run times are indicative of the performance in general.

publishing a growing number of biomedical ontologies from different domains such as anatomy
and molecular biology. For example, BioPortal hosts more than 370 ontologieswhose domains fall
within the life sciences. These ontologies are primarily being used to annotate biomedical data and
literature in order to facilitate improved information exchange. With the growth in ontology usage,
reconciliation between those that overlap in scope gains importance.

Evaluation of general ontology alignment algorithms has benefited immensely from the standard-
setting benchmark – OAEI (Shvaiko et al., 2012). In addition to multiple tracks with real-world test
cases, the competition emphasizes on benchmark comparison tracks that usetest pairs that are mod-
ifications of a single ontology pair in order to systematically identify the strengthsand weaknesses
of the alignment algorithms. One of the tracks on real-world ontology pairs involves aligning the
ontology on the adult mouse anatomy with the human anatomy portion of NCI thesaurus (Golbeck
et al., 2003), while another seeks to align the foundational model of anatomy(FMA), SNOMED CT
and the national cancer institute thesaurus (NCI). However, aligning biomedical ontologies poses
its own unique challenges. In particular,

1. Entity names are often identification numbers instead of descriptive names.Hence, the align-
ment algorithm must rely more on the labels and descriptions associated with the entities,
which are expressed differently using different formats.

2. Although annotations using entities of some ontologies such as the gene ontology (Ashburner
et al., 2000) are growing rapidly, for other ontologies they continue to remain sparse. Conse-
quently, we may not overly rely on the entity instances while aligning biomedical ontologies.

3. Finally, biomedical ontologies tend to be large with many including over a thousand entities.
This motivates the alignment approaches to depend less on “brute-force”steps, and compels
assigning high importance to issues related to efficiency and scalability.

Given these specific challenges, we combed through more than 370 ontologies hosted at NCBO
(Musen et al., 2012) and OBO Foundry (Smith et al., 2007), and isolated a community benchmark of
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50 different biomedical ontology pairs. Thirty-two ontologies with sizes ranging from a few hundred
to tens of thousands of entities constitute the pairs. We provide the list of ontologies participating
in the benchmark and the ontology pairs in Appendix B. This new benchmark guides comparative
evaluation of alignment algorithms to the context of a key application domain of biomedicine.

Our primary criteria for including a pair in the benchmark was an expectation of a sufficient
amount of correspondences between the ontologies in the pair, as determined from NCBO’s Bio-
Portal. In particular, we calculated the ratio of the correspondences posted in BioPortal for each
ontology pair to the largest number of possible correspondences that could exist. We selected the
50 pairs with the largest such ratio. Existing correspondences will servein the reference alignment.
These include maps from the UMLS Metathesaurus and those that are crowd sourced. Neverthe-
less, our analysis reveals that the existing correspondences constitute just a small fraction of the
total alignment that is possible between two ontologies.

We sought to align the pairs in our new biomedical ontology alignment testbed using the BCD-
enhanced representative algorithms. The obtained alignments are evaluated using the existing cor-
respondences previously present in BioPortal; the reference alignments between the pairs are likely
incomplete. A secondary objective is to discover new correspondencesbetween the ontologies and
submit them to NCBO’s BioPortal for curation.

Informed by the experimentation described in Section 5, blocks for the BCD inFalcon-AO were
formed using subtree-based partitioning of one ontology and ordered asthey were created. Blocks
in OLA were formed similarly though both ontologies were partitioned while blocks inOptima
were formed by partitioning both ontologies on the basis of the height of the entities and ordered
from leaves to root. The execution times and F-measure for all the pairs successfully aligned within
an arbitrary window of 5 hours per pair by the BCD-enhanced algorithms are shown in Figs. 15
and 16. We point out that BCD speeds up the algorithms but does not explicitly promote scalability.
In other words, while it reduces the time to convergence it does not provide a way to manage the
memory in order to align large ontologies.

OLA with BCD failed to align a single pair within our time window. BothFalcon-AO enhanced
with BCD and without aligned 47 pairs within the time window.Falcon-AO was unable to parse
one or both the ontologies in the remaining 3 pairs due to which no results are available for these.
Falcon-AO with BCD aligned the pairs taking 3.7 hours less time in total than the original which
consumed about 7.5 hours for all the pairs. We show the time for each pair inFig. 15(a). A closer
look reveals thatFalcon-AO with BCD exhibited time greater than the default on 9 of the 47 pairs.
Time on these few pairs did not exceed by more than 16 seconds and is due toperforming the
subtree-based partitioning of the variables for forming the blocks in BCD. The corresponding F-
measure did not change significantly due to the use of BCD over all the pairswith the F-measure
over all the pairs being 54.7%.

Optima enhanced with BCD aligned 42 pairs each within the time window compared to 30 pairs
without BCD.Optima was unable to parse one or both ontologies in the remaining 8 pairs due to
which no results are available for these. Focusing on the 30 pairs that were aligned by both within
the time window (Fig. 16),Optima with BCD aligned these pairs in 2.3 hours taking 11.4 hours
less time compared to the original algorithm. Simultaneously, it found an additional269 correct
correspondences across all the pairs with an increase in F-measure ofabout 2%.

LogMap, a fast non-iterative algorithm that targets biomedical ontologies returnedalignments
for all 50 pairs in 20 minutes of total time. It produced a precision and recallof 23.5% and 39.5%
(F-measure = 29.5%), respectively over all the pairs. These are significantly less than those of
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Figure 15: (a) Time consumed, and(b) F-measure attained by the originalFalcon-AO and that
with optimized BCD for 47 pairs of our large biomedical ontology testbed, respectively.
Note that the time axis is in log scale. Ontology names are NCBO abbreviations. The
alignment was performed on a Red Hat machine with Intel Xeon Core 2, processor speed
of about 3 GHz with 8GB of memory.

Falcon-AO, which exhibited a precision and recall of 80.9% and 41.3% respectively,for the pairs
it aligned.Optima with BCD exhibited a precision of 76.1% and a recall of 35.8% with an overall
F-measure of 48.7%. While the recall is less thanLogMap, the F-measure is significantly better
due to the improved precision.

Finally, we submitted 15 new correspondences between entities in the pairs ofthe testbed to
NCBO for curation and publication. These are nontrivial correspondences identified by both algo-
rithms, not present in the reference alignments and appropriately validatedby us.
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Figure 16: (a) Time consumed, and(b) F-measure attained by the originalOptima and that with
optimized BCD, for 42 pairs of our biomedical ontology testbed, respectively. Note that
the time axis is in log scale.

7. Discussion

Performances of the iterative update and search techniques are impacteddifferently by various ways
of formulating the blocks and the order of processing them. Importantly, the quality of the alignment
may be adversely impacted. Nevertheless, the approach of grouping alignment variables into blocks
based on the height of the participating entities in the ontologies is motivated by a recognized
heuristic and leads to competitive performance with no observed negative impact on the precision
and recall of the alignments. However, different ontology pairs may lead toa differing number of
blocks of various sizes: in particular, “tall” ontologies that exhibit a deep class hierarchy result in
more blocks than “short” ontologies.
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Given the BCD-based enhancement and optimization, how well do these algorithms compare
in terms of execution time and alignment quality with the state of the art? In order to answer this
question, we compare with the performances of 18 algorithms that participatedin the conference
track of OAEI 2012 (Shvaiko et al., 2012). Among these, an iterative alignment algorithm,YAM++,
produced the best F-measure for the 21 pairs followed byLogMap – which does not utilize opti-
mization –CODI, andOptima+, which isOptima augmented with BCD. These latter approaches
all produced F-measures that were tied or within 2% of each other.Optima+ ranked second after
YAM++ when the alignment is evaluated using F2 measure due to its comparatively high recall.

OAEI reports run time on a larger task of aligning 120conferenceontology pairs. On this task,
while YAM++ consumed more than 5 hours for all the pairs,LogMap took slightly less than 4
minutes andOptima+ consumed 22 minutes. BecauseFalcon-AO andOLA did not participate in
OAEI 2012, we ran them separately on the 120 pairs on our machines, whose configurations are
comparable to that utilized by OAEI.Falcon-AO andOLA enhanced with BCD consumed 11 and
5 minutes respectively although their alignment quality is lower than that ofOptima+. This would
place all three representative algorithms in the top two-thirds among the 18 thatparticipated in the
conferencetrack of OAEI in terms of run time withOLA in the top half, andOptima+ andOLA in
group 1 with respect to alignment quality.6 While 7 competing algorithms completed the evaluation
faster, 5 of these exhibit alignment quality that is substantially worse than thatof the representative
algorithms. In the absence of BCD, the representative algorithms would have ranked among the
bottom third or exceeded the 5 hour cut off. Performance on theanatomypair due to BCD would
place bothFalcon-AO andOptima+ in the top half of the 14 algorithms that participated in terms
of run time and F-measure. Previously,Optima without BCD ranked in the bottom quarter.

The reductions in convergence time and the observed increases in precision of the alignment
due to BCD is, in part, because of the optimized correspondences found for the previous coordi-
nate block, which influence the selection of the correspondences for thecurrent coordinate block.
Furthermore, as we mentioned previously, limiting the randomly generated correspondences in
MapPSO to the block instead of the whole ontology makes the search more guided. This isrep-
resentative of the effect that BCD has on iterative search in general. Focusing on a single block
significantly reduces the space of alignments over which iterative techniques must search thereby
arriving at an optimum quicker. However, a greater number of these smaller optimization subprob-
lems must be solved but as our results imply the smaller optimization problem offsetsthis expense.

Given that on integrating BCD the iterative algorithms converged to different values of theQ
function during iterative search or different match matrices,M∗, during iterative update, which
often produced better quality alignments, we infer that the original algorithms were converging to
local optima instead of the global optima, and that using BCD has likely resulted inconvergence to
(better) local optima as well. While this insight is not new (Euzenat et al., 2004), it is significant
because it further reinforces the presence of local optima in the alignmentspace of these algorithms.
This may limit the efficacy of iterative alignment techniques.

Falcon-AO andOptima+’s comparatively better performance measured using F-measure against
the fast, non-iterative algorithm,LogMap, on the biomedical ontology alignment testbed indicates
that iterative techniques continue to be among the best in the quality of the obtained alignment in-
cluding on large ontology pairs. This motivates ways of making them efficient,such as BCD, and
more scalable.

6. Note thatMapPSO with BCD would have placed in the bottom third.
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8. Conclusion and Future Work

While techniques for scaling automated alignment to large ontologies have beenpreviously pro-
posed, we presented a novel approach based on BCD tospeed upthe alignment process of an
important class of algorithms. These algorithms are iterative and anytime demonstrating high qual-
ity alignments while often consuming more time than non-iterative algorithms. We demonstrated
this technique in the context of four different iterative algorithms and evaluated its impact on both
the total time of execution and the final alignment’s precision and recall. We reported significant
reductions in the total execution times of the algorithms enhanced using BCD. These reductions
were most noticeable for larger ontology pairs. Often the algorithms converged in a lesser number
of iterations. Simultaneously, utilizing our default scheme of grouping those alignment variables
such that the participating entities from one ontology in a block have the same height and optimiz-
ing the blocks in the order of increasing height, we observe an improvementin the precision of the
alignments generated by some of the algorithms with no significant change in the recall.

While it is possible to improve on the run time performance of the default partitioning and
ordering scheme by utilizing other schemes, we note that some of these may negatively impact the
alignment quality. Subsequently, the default scheme is generally recommended for existing and new
iterative alignment techniques that seek to utilize BCD.

The ability to improve quickly allows an iterative alignment algorithm to run until convergence if
possible, in contrast to the common practice of terminating the alignment processafter an arbitrary
number of iterations. As predefining a common bound for the number of iterations is difficult,
speeding up the convergence becomes vital. We observe that BCD does not promote scalability to
large ontologies.

Finally, we demonstrated the benefits of BCD toward aligning pairs in a new biomedical on-
tology testbed. Due to the large number of ontologies in biomedicine, there is a critical need for
ontology alignment in this vast domain. Our future work is to continue to focus on methods that
would allow general and principled alignment approaches such asFalcon-AO andOptima to per-
form better on this testbed by producing better quality alignment for more pairsin less time, and on
aligning other large biomedical ontologies that are in popular use such as SNOMED-CT and NCI.
Consequently, we believe that our community benchmark could potentially drive future research
toward pragmatic ontology alignment.

9. Acknowledgment

This research is supported in part by grant number R01HL087795 from the National Heart, Lung,
And Blood Institute. The content is solely the responsibility of the authors anddoes not necessarily
represent the official views of the National Heart, Lung, And Blood Institute or the National Insti-
tutes of Health. The authors thank Todd Minning and Rick Tarleton from the Center for Tropical
and Emerging Diseases at the University of Georgia and Amit Sheth at Wright State University for
useful discussions. The authors also thank the anonymous reviewers for feedback that benefited the
article greatly.

835



THAYASIVAM & D OSHI

Appendix A. Representative Iterative Algorithms Enhanced with BCD

We chose four representative iterative alignment algorithms,Falcon-AO, MapPSO, OLA andOp-
tima in order to illustrate how iterative algorithms could be enhanced with BCD. In thissection, we
present each alignment algorithm in its original form and enhanced with BCD, to facilitate a direct
comparison and a quick identification of the needed modifications.

FALCON-AO/GMO (O1,O2, η)
Initialize:
1. Iteration counteri← 0
2. G1 ← AdjacencyMatrix (O1)
3. G2 ← AdjacencyMatrix (O2)
4. For eachmaα ∈M0 do
5. maα← 1
6. M∗ ←M0

Iterate:
7. Do
8. i← i + 1
9. M i← G1M

i−1GT
2 + GT

1 M i−1G2

10. δ ← CosineSim(M i,M∗)
11. M∗ ←M i

12. While δ ≥ η
13. Extract an alignment fromM∗

FALCON-AO/GMO-BCD (O1,O2, η)

Initialize:
1. Iteration counteri← 0
2. G1← AdjacencyMatrix (O1)
3. G2← AdjacencyMatrix (O2)
4. For eachmaα ∈M0 do
5. maα← 1
6. Create a partition ofM :
{MS0

,MS1
, . . . ,MSC

}
7. M∗ ←M0

Iterate:
8. Do
9. c← i % (C + 1), i← i + 1
10. M i

Sc
← G1,Sc

M i−1GT
2 + GT

1,Sc
M i−1G2

11. M i

S̃
←M i−1

S̃
∀S̃ ∈ S̃c

12. If c = C then
13. δ ← CosineSim(M i,M∗)

else
14. δ is a very high value
15. M∗ ←M i

16. While δ ≥ η
17. Extract an alignment fromM∗

Figure 17: (a) Iterative update in the structural matcher,GMO, in Falcon-AO. (b) Iterative update
in GMO modified to perform BCD.

In Fig. 17, we show the iterative algorithm of theGMO component ofFalcon-AO and its
enhancement due to the use of BCD. AdjacencyMatrix (O1) (line 2 in Fig. 17(a)) produces a binary
matrix, G1, of size |V1| × |V1|, where a value of 1 in theith row andjth column represents an
edge from the vertex indexed byi to the vertex indexed byj in the bipartite graph model ofO1;
analogously for AdjacencyMatrix (O2). The update and distance functions are implemented as
shown in lines 9 and 10, respectively, of the algorithm. In particular, the cosine similarity computes
the cosine of the two matrices from consecutive iterations serialized as vectors. Notice that in each
iteration of Fig. 17(b), just a block of variables,M i

Sc
, are updated using Eq. 10 while holding the

remaining blocks fixed (lines 10 and 11). This yields a partially updated but complete alignment
matrix in reduced time, which is utilized in the next iteration.

MapPSO’s iterative search algorithm that performs particle swarm optimization and its modi-
fication due to BCD are shown in Fig. 18. The algorithm takes as input the number of particles,K,
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MAPPSO (O1,O2, K, η)
Initialize:
1. Iteration counteri← 0
2. Generate seed map betweenO1 andO2

3. Populate binary matrix,M0, with
seed correspondences

4. GenerateK particles using the
seedM0: P = {M0

1 ,M0
2 , . . . ,M0

K}
5. SearchM0

∗ ← arg max
M0

k
∈P

Q(M0
k )

Iterate:
6. Do
7. i← i + 1
8. For k ← 1, 2, . . . ,K do
9. M i

k ← UpdateParticle(M i
k,M i−1

∗ )
10. SearchM i

∗ ← arg max
Mi

k
∈P

Q(M i
k)

11. While |Q(M i
∗)−Q(M i−1

∗ )| ≥ η
12. Extract an alignment fromM i

∗

MAPPSO-BCD (O1,O2, K, η)

Initialize:
1. Iteration counteri← 0
2. Generate seed map between
O1 andO2

3. Populate binary matrix,M0, with
seed correspondences

4. GenerateK particles using the
seedM0: P = {M0

1 ,M0
2 , . . . ,M0

K}
5. Create a partition ofM :
{MS0

,MS1
, . . . ,MSC

}
6. SearchM0

∗ ← arg max
M0

k
∈P

Q(M0
k )

Iterate:
7. Do
8. c← i % (C + 1), i← i + 1
9. For k ← 1, 2, . . . ,K do
10. M i

k,Sc
← UpdateBlock(M i

k,Sc
,M i−1

∗ )

11. M i

k,S̃
←M i−1

k,S̃
∀S̃ ∈ S̃c

12. SearchM i
∗ ← arg max

Mi
k
∈P

QS(M i
k)

13. If c = C then
14. changed← |Q(M i

∗)−Q(M i−1
∗ )| ≥ η?

else
15. changed← true
16. While changed
17. Extract an alignment fromM i

∗

(a) (b)

Figure 18: (a) Iterative search inMapPSO. Objective function,Q, is as given in Eq. 4. (b)
MapPSO’s particle swarm based iterative algorithm enhanced with BCD.

and the threshold,η, in addition to the two ontologies to be aligned. It iteratively searches for an
alignment until it is unable to find one that improves on the previous best alignment by more than
or equal toη. The objective function,Q, is modified toQS in Fig. 18(b), such that it is calculated
for the coordinate block of interest. A coordinate block in each particle,k, is updated while keeping
the remaining blocks unchanged (lines 10 and 11), followed by searchingfor the best particle based
on a measure of the alignment in the block (line 12). Both these steps may be performed in reduced
time. Additionally, the randomly generated mappings inMapPSO are limited to the block instead
of the whole ontology, due to which the search becomes more guided.

OLA’s iterative algorithm is shown in Fig. 19(a), and its enhancement due to the use of BCD in
Fig. 19(b). The distance function of line 11 measures the similarity between the updated alignment
matrix with that from the previous iteration. The iterations terminate when the distance falls below
the parameter,η. Observe that we cycle through the blocks in the BCD enhanced algorithm in
Fig. 19(b) and only the coordinates belonging to the current block,M i

Sc
, are updated in lines 8-11.
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OLA (O1,O2, η)
Initialize:
1. Iteration counteri← 0
2. Fill real-valued matrix,M0, with lexical similarity
3. M∗←M0

Iterate:
4. Do
5. i← i + 1
6. for eachmaα ∈M i

7. if the types ofxa andyα are the samethen
8. maα ←

∑

F∈N (xa,yα)

waα
F SetSim(F(xa),F(yα))

9. else
10. maα ← 0
11. δ ← Dist(M i,M∗)
12. M∗ ←M i

13. While δ ≥ η
14. Extract an alignment fromM∗

OLA-BCD (O1,O2, η)

Initialize:
1. Iteration counteri← 0
2. Populate the real-valued matrixM0

with lexical similarity values
3. Create a partition ofM :
{MS0

,MS1
, . . . ,MSC

}
4. M∗ ←M0

Iterate:
5. Do
6. c← i % (C + 1), i← i + 1
7. for eachmaα ∈M i

Sc

8. if the types ofxa andyα are the same
then

9. maα ←
∑

F∈N (a,α)

waα
F SetSim(F(a),F(α))

10. else
11. maα ← 0

12. M i

S̃
= M i−1

S̃
∀S̃ ∈ S̃c

13. If c = C then
14. δ ← Dist(M i,M∗)

else
15. δ is a high value
16. M∗ ←M i

17. While δ ≥ η
18. Extract an alignment fromM∗

(a) (b)

Figure 19: (a) OLA iteratively updates the alignment matrix using a combination of neighboring
similarity values.(b) OLA’s BCD-integrated iterative ontology alignment algorithm.

Finally, in Fig. 20, we outline the iterative search undertaken byOptima and its modification
due to BCD.Optima’s expectation-maximization based iterative search uses binary matrix,M i, to
represent an alignment. Objective function,Q, is defined in Eq. 6. The search for an improved
alignment in line 8 is implemented using the two steps of expectation and maximization. Iterations
terminate when no sampleM i ∈M, which improves the objective function,Q further, is available.
The search is modified in Fig. 20(b) to explore a reduced search space,MSc

, as we cycle through
the blocks. Both the objective function,QS , and the prior operate on a single coordinate block.

Appendix B. Biomedical Ontology Alignment Benchmark

Biomedical ontologies bring unique challenges to the ontology alignment problem. Moreover, there
is an explicit interest for ontologies and ontology alignment in the domain of biomedicine. Con-
sequently, we present a new biomedical ontology alignment testbed, which provides an important
application context to the alignment research community. Due to the large sizes of biomedical
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OPTIMA (O1,O2)
Initialize:
1. Iteration counteri← 0
2. For all α ∈ {1, 2, . . . , |V2|} do
3. π0

α ←
1

|V2|

4. Generate seed map between
O1 andO2

5. Populate binary matrix,M0
∗ ,

with seed correspondences

Iterate:
6. Do
7. i← i + 1
8. SearchM i

∗ ← arg max
M∈M

Q(M |M i−1
∗ )

9. πi
α ←

1
|V1|

∑|V1|
a=1 Pr(yα|xa,M i−1

∗ )

10. While M i
∗ 6= M i−1

∗

11. Extract an alignment fromM i
∗

OPTIMA-BCD (O1,O2)

Initialize:
1. Iteration counteri← 0
2. For all α ∈ {1, 2, . . . , |V2|} do
3. π0

α ←
1

|V2|

4. Generate seed map between
O1 andO2

5. Populate binary matrix,M0
∗ ,

with seed correspondences
6. Create a partition ofM :
{MS0

,MS1
, . . . ,MSC

}

Iterate:
7. Do
8. c← i % (C + 1), i← i + 1
9. SearchM i

Sc,∗ ← arg max
MSc∈MSc

QS(M i
Sc
|M i−1

∗ )

10. M i

S̃,∗
←M i−1

S̃,∗
∀S̃ ∈ S̃c

11. πi
α,c ←

1
|V1,c|

∑|V1,c|
a=1 Pr(yα|xa,M i−1

∗ )

12. If c = C then
13. changed←M i

∗ 6= M i−1
∗ ?

else
14. changed← true
15. While changed
16. Extract an alignment fromM i

∗

(a) (b)

Figure 20: (a) Optima’s expectation-maximization based iterative search algorithm.(b)
Expectation-maximization based iterative ontology alignment ofOptima with BCD.

ontologies, the testbed could serve as a comprehensive large ontology benchmark. Existing corre-
spondences in NCBO may serve as the reference alignments for the pairs,although our analysis
reveals that these maps represent just a small fraction of the total alignmentthat is possible between
two ontologies. Consequently, new correspondences that are discovered during benchmarking may
be submitted to NCBO for curation and publication.

In order to create the testbed, we combed through more than 370 ontologies hosted at NCBO
and OBO Foundry, and isolated a benchmark of 50 different biomedical ontology pairs. Thirty-two
ontologies with sizes ranging from a few hundred to tens of thousands of entities constitute the
pairs, and are listed in Table 2. We provide a snapshot of the full benchmark in Table 3. The testbed
with reference alignments is available for download athttp://tinyurl.com/n4t2ns3. Our
primary criteria for including a pair in the benchmark was the presence of a sufficient amount of
correspondences between the ontologies in the pair, as determined from NCBO’s BioPortal. We
briefly describe the steps in creating the testbed:

1. We selected ontologies, which exist in either OWL or RDF models.
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2. We paired the ontologies and ordered the pairs by the percentage of available correspon-
dences. This is the ratio of correspondences that exist in BioPortal forthe pair of ontologies
under consideration divided by the product of the number of entities in boththe ontologies.

3. Top 100 ontology pairs based on the above ratio are selected, followedby ordering the pairs
based on their joint sizes.

4. We created 5 bins of equal sizes and randomly sampled each bin with a uniform distribution
to obtain the final 50 pairs.

Ontology
Named
Classes

Data
Properties

Object
Properties

Bilateria anatomy (BILA) 114 0 9
Common Anatomy Reference Ontology (CARO) 50 0 9
Plant Growth and Development Stage (POPSDA) 282 2 0
FlyBase Controlled Vocabulary (FBcv) 821 0 10
Spatial Ontology (BSPO) 129 0 9
Amphibian gross anatomy (AAO) 1603 0 9
Anatomical Entity Ontology (AEO) 238 0 6
Cereal plant gross anatomy (GRCPGA) 1270 7 0
Plant Anatomy (POPAE) 1,270 6 0
Subcellular Anatomy Ontology (SAO) 821 0 85
Xenopus anatomy and development (XAO) 1,041 0 10
vertebrate Homologous Organ Groups (sHOG) 1,184 0 7
Hymenoptera Anatomy Ontology (HAO) 1,930 4 4
Teleost Anatomy Ontology (TAO) 3,039 0 9
Tick gross anatomy (TADS) 628 0 0
Zebrafish anatomy and development (ZFA) 2,788 5 0
Medaka fish anatomy and development (MFO) 4,358 0 6
BRENDA tissue / enzyme source (BTO) 5,139 4 9
Expressed Sequence Annotation for Humans (eVOC) 2274 0 7
Drosophila gross anatomy (FBbt) 7,797 0 10
Phenotypic quality (PATO) 2,281 24 0
Uber anatomy ontology (UBERON) 7,294 112 0
Fly taxonomy (FBsp) 6,599 0 0
Protein modification (MOD) 1,338 4 0
Human developmental anatomy (EHDAA) 2,314 0 7
Human developmental anatomy timed version (EHDA) 8,340 0 7
Plant Ontology (PO) 1,585 7 0
NIF Cell (NIF Cell) 2,703 73 5
Mouse adult gross anatomy (MA) 2,982 1 6
Mosquito gross anatomy (TGMA) 1,864 3 0
Ontology for Biomedical Investigations (OBI) 3,537 102 6
Chemical entities of biological interest (CHEBI) 31,470 9 0

Table 2: Selected ontologies from NCBO in the biomedical ontology
alignment testbed and the number of named classes and properties in
each. Notice that this data set includes large ontologies. NCBO abbrevi-
ations for these ontologies are also provided.
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Biomedical ontology alignment testbed
OntologyO1 OntologyO2 |V1| × |V2|
Common Anatomy Reference Ontology
(CARO)

Human developmental anatomy (EHDAA) 115,700

Bilateria anatomy (BILA) Human developmental anatomy (EHDAA) 263,796
Bilateria anatomy (BILA) Human developmental anatomy (EHDAA) 263,796
Spatial Ontology (BSPO) Human developmental anatomy (EHDAA) 298,506
Plant Growth and Development Stage
(PO PSDA)

Plant Ontology (PO) 446,970

Anatomical Entity Ontology (AEO) Human developmental anatomy (EHDAA) 550,732
FlyBase Controlled Vocabulary (FBcv) Cereal plant gross anatomy (GRCPGA) 1,042,670
FlyBase Controlled Vocabulary (FBcv) Plant Ontology (PO) 1,301,285
Tick gross anatomy (TADS) Human developmental anatomy (EHDAA) 1,453,192
Amphibian gross anatomy (AAO) Xenopus anatomy and development (XAO) 1,668,723
Cereal plant gross anatomy (GRCPGA) Plant Ontology (PO) 2,012,950
Plant Anatomy (POPAE) Plant Ontology (PO) 2,012,950
Subcellular Anatomy Ontology (SAO) NIF Cell (NIF Cell) 2,219,163

Xenopus anatomy and development (XAO)
Expressed Sequence Annotation for Humans
(eVOC)

2,367,234

Xenopus anatomy and development (XAO) Human developmental anatomy (EHDAA) 2,408,874
vertebrate Homologous Organ Groups
(sHOG)

Expressed Sequence Annotation for Humans
(eVOC)

2,692,416

vertebrate Homologous Organ Groups
(sHOG)

Human developmental anatomy (EHDAA) 2,739,776

Xenopus anatomy and development (XAO) Zebrafish anatomy and development (ZFA) 2,902,308
Xenopus anatomy and development (XAO) Teleost Anatomy Ontology (TAO) 3,163,599
vertebrate Homologous Organ Groups
(sHOG)

Mouse adult gross anatomy (MA) 3,530,688

Hymenoptera Anatomy Ontology (HAO) Mosquito gross anatomy (TGMA) 3,597,520

Teleost Anatomy Ontology (TAO)
vertebrate Homologous Organ Groups
(sHOG)

3,598,176

Amphibian gross anatomy (AAO)
Expressed Sequence Annotation for Humans
(eVOC)

3,645,222

Amphibian gross anatomy (AAO) Human developmental anatomy (EHDAA) 3,709,342
Hymenoptera Anatomy Ontology (HAO) Human developmental anatomy (EHDAA) 4,466,020
Amphibian gross anatomy (AAO) Zebrafish anatomy and development (ZFA) 4,469,164
Amphibian gross anatomy (AAO) Teleost Anatomy Ontology (TAO) 4,871,517
Expressed Sequence Annotation for Humans
(eVOC)

Human developmental anatomy (EHDAA) 5,262,036

Phenotypic quality (PATO) Human developmental anatomy (EHDAA) 5,278,234
Zebrafish anatomy and development (ZFA) Human developmental anatomy (EHDAA) 6,451,432
Plant Anatomy (POPAE) BRENDA tissue / enzyme source (BTO) 6,526,530
Teleost Anatomy Ontology (TAO) Human developmental anatomy (EHDAA) 7,032,246
Xenopus anatomy and development (XAO) Uber anatomy ontology (UBERON) 7,593,054
Zebrafish anatomy and development (ZFA) Teleost Anatomy Ontology (TAO) 8,472,732

Continued on next page
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Ontology 1 Ontology 2 |V1| × |V2|
vertebrate Homologous Organ Groups
(sHOG)

Uber anatomy ontology (UBERON) 8,636,096

Medaka fish anatomy and development
(MFO)

Expressed Sequence Annotation for Humans
(eVOC)

9,910,092

Medaka fish anatomy and development
(MFO)

Human developmental anatomy (EHDAA) 10,084,412

BRENDA tissue / enzyme source (BTO)
Expressed Sequence Annotation for Humans
(eVOC)

11,686,086

Amphibian gross anatomy (AAO) Uber anatomy ontology (UBERON) 11,692,282
BRENDA tissue / enzyme source (BTO) Human developmental anatomy (EHDAA) 11,891,646
Hymenoptera Anatomy Ontology (HAO) Uber anatomy ontology (UBERON) 14,077,420
Hymenoptera Anatomy Ontology (HAO) Drosophila gross anatomy (FBbt) 15,048,210
Expressed Sequence Annotation for Humans
(eVOC)

Uber anatomy ontology (UBERON) 16,586,556

Drosophila gross anatomy (FBbt)
Expressed Sequence Annotation for Humans
(eVOC)

17,730,378

Zebrafish anatomy and development (ZFA) Uber anatomy ontology (UBERON) 20,335,672
Uber anatomy ontology (UBERON) Mouse adult gross anatomy (MA) 21,750,708

Fly taxonomy (FBsp)
Ontology for Biomedical Investigations
(OBI)

23,340,663

BRENDA tissue / enzyme source (BTO) Uber anatomy ontology (UBERON) 37,483,866
Drosophila gross anatomy (FBbt) BRENDA tissue / enzyme source (BTO) 40,068,783

Protein modification (MOD)
Chemical entities of biological interest
(CHEBI)

42,106,860

Table 3: The biomedical ontology pairs in our testbed sortedin terms of
|V1| × |V2|. This metric is illustrative of the complexity of aligning the
pair.
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