
Journal of Artificial Intelligence Research 51 (2014) 1-70 Submitted 2/14; published 9/14

Cooperative Monitoring to Diagnose Multiagent Plans

Roberto Micalizio micalizio@di.unito.it

Pietro Torasso torasso@di.unito.it

Dipartimento di Informatica,

Università di Torino

corso Svizzera 185, 10149 - Torino, Italy

Abstract

Diagnosing the execution of a Multiagent Plan (MAP) means identifying and explaining
action failures (i.e., actions that did not reach their expected effects). Current approaches
to MAP diagnosis are substantially centralized, and assume that action failures are inde-
pendent of each other.

In this paper, the diagnosis of MAPs, executed in a dynamic and partially observable
environment, is addressed in a fully distributed and asynchronous way; in addition, action
failures are no longer assumed as independent of each other.

The paper presents a novel methodology, named Cooperative Weak-Committed Moni-
toring (CWCM), enabling agents to cooperate while monitoring their own actions. Coop-
eration helps the agents to cope with very scarcely observable environments: what an agent
cannot observe directly can be acquired from other agents. CWCM exploits nondetermin-
istic action models to carry out two main tasks: detecting action failures and building
trajectory-sets (i.e., structures representing the knowledge an agent has about the environ-
ment in the recent past). Relying on trajectory-sets, each agent is able to explain its own
action failures in terms of exogenous events that have occurred during the execution of the
actions themselves. To cope with dependent failures, CWCM is coupled with a diagnostic
engine that distinguishes between primary and secondary action failures.

An experimental analysis demonstrates that the CWCM methodology, together with
the proposed diagnostic inferences, are effective in identifying and explaining action failures
even in scenarios where the system observability is significantly reduced.

1. Introduction

Multiagent Plans (MAPs) are adopted in many applicative domains, from Web services to
service robots, whenever the interactions among cooperative agents have to be organized in
advance (i.e., planned), in order to reach an acceptable efficiency level during the execution;
consider for instance, orchestrated Web services (Yan, Dague, Pencolé, & Cordier, 2009),
assembling tasks (Heger, Hiatt, Sellner, Simmons, & Singh, 2005; Sellner, Heger, Hiatt,
Simmons, & Singh, 2006), or service robotics (Micalizio, Torasso, & Torta, 2006). MAPs are
therefore characterized by a cooperative team of agents that perform actions concurrently
in order to achieve a common global goal.

The use of MAPs in real-world scenarios, however, has to cope with a critical issue:
plan actions can deviate from their expected nominal behaviors due to the occurrence of
(unpredictable) exogenous events. These deviations are typically considered as plan failures
since they prevent the agents to reach their goals. Indeed, although MAPs are very versatile

c©2014 AI Access Foundation. All rights reserved.

Micalizio & Torasso

systems, they are also particularly fragile: the failure of an action can easily propagate
through the system causing the failures of other actions, even assigned to different agents.

In order to make the execution of a MAP robust (i.e., tolerant to at least some exogenous
events), it is therefore important to detect and isolate action failures, and provide a human
user (or a plan repair module) with a set of possible explanations for the detected failures.
Some recent works (see e.g., Mi & Scacchi, 1993; Gupta, Roos, Witteveen, Price, & de Kleer,
2012; Micalizio, 2013) have argued that a plan repair procedure can be more effective when
the causes of the plan failure are known (e.g., identified via diagnosis).

Over the last decade, the problem of diagnosing the execution of a MAP has been faced
from different perspectives. Since their seminal work, Kalech and Kaminka (2003) focus on
coordination failures and introduce the notion of social diagnosis. Social diagnosis relies on
an abstract representation of the MAP at hand, given in terms of behaviors, and aims at
explaining why two or more agents have selected conflicting behaviors. Kalech and Kaminka
(2011) and Kalech (2012) present alternative algorithms for inferring a social diagnosis.

Other approaches (see e.g., de Jonge, Roos, & Witteveen, 2009; Roos & Witteveen,
2009; Micalizio & Torasso, 2008, 2009) adopt an explicit representation of a MAP in terms
of agents’ actions and shared resources. In particular, in their diagnostic framework, Roos
and Witteveen (2009) and de Jonge et al. (2009) consider action failures (i.e., actions that
do not reach their expected effects), and introduce the notion of plan diagnosis. A plan
diagnosis is a subset of (already performed) actions that, when assumed abnormal, make
the plan execution consistent with the observations received so far. Since the same set of
observations can possibly be explained by many plan diagnoses, Roos and Witteveen (2009)
present a criterion for identifying preferred diagnoses that is based on the predictive power
of these diagnoses.

These proposals, however, rely on some assumptions that might limit their applicabil-
ity in some real-world scenarios. First of all, they assume some form of synchronization
among the agents (e.g., synchronized selection of behaviors, or execution of actions). More
importantly, action failures are assumed to be mutually independent. Furthermore, in the
particular case of social diagnosis, agents cooperate with each other by exchanging their
own belief states, but this might be a critical issue when they have to keep some informa-
tion private. On the other hand, in the framework proposed by Roos and Witteveen (2009),
diagnostic inferences are substantially centralized.

In this paper we aim at relaxing these assumptions by extending the relational-based
framework introduced by Micalizio and Torasso (2008, 2009). Similarly to Roos and Wit-
teveen, we adopt an explicit representation of the MAP at hand in term of agents’ actions
and shared resources. But differently from them, our action models include nominal as well
as faulty evolutions. As we will argue in the rest of the paper, this kind of extended action
models subsumes the action models proposed by Roos and Witteveen.

In addition, we aim at a fully distributed solution that does not rely on the synchronized
execution of the actions (i.e., no global clock is available). A distributed solution to social
diagnosis was also proposed by Kalech, Kaminka, Meisels, and Elmaliach (2006). In their
work, however, a form of synchronization among the agents is required as agents select their
next behavior simultaneously. Moreover, the agents cooperate with each other by sharing
their own belief states. In our proposal, coordination among the agents is achieved by means
of the exchange of direct observations between agents. The idea is that an observation

2

Cooperative Monitoring to Diagnose Multiagent Plans

acquired by an agent can be used by other agents in their own reasoning. To understand
the difference between exchanging belief states and direct observations, we have to note
that a belief state is an interpretation of observations made by a specific agent according
to its local knowledge. Since the agent might have a partial knowledge of the environment,
its belief states could be ambiguous or even erroneous. Therefore, when agents exchange
with each other their own beliefs, they may also propagate their errors. Conversely, when
the coordination consists in the exchange of direct observations, agents can infer their own
beliefs without the risk of being conditioned by the errors made by others.

We propose a framework that, relying on the notion of Partial-Order, Causal-Link
(POCL) Plans (see Cox, Durfee, & Bartold, 2005; Weld, 1994; Boutilier & Brafman, 2001),
limits the number of messages exchanged between agents to the number of causal links
existing between actions assigned to different agents.

In our proposal, communication plays a central role not only for assuring a consistent
execution of the MAP, but also for easing the diagnostic task. We consider that the en-
vironment where the agents operate is scarcely observable, so agents can directly acquire
information about just a small portion of their surroundings. Dealing with scarce ob-
servations can be very challenging for solving the diagnostic task as this situation might
prevent the detection of action failures. To cope with this issue we propose in this paper
a strategy named Cooperative Weak-Committed Monitoring (CWCM), which extends the
weak-committed monitoring introduced by Micalizio and Torasso (2009). CWCM allows
the agents to cooperate with each other so that an agent can infer the outcome of its own
actions (i.e., failure detection) from the pieces of information provided by the other agents.

As soon as failures are detected, these must be diagnosed in order to identify their
root causes. In this paper, we propose a local diagnostic process where each agent can
diagnose the failure of its own actions without the need of interacting with other agents.
In particular, our diagnostic inferences take into account that failures of different actions
may be dependent. In other words, an action failure can be an indirect consequence (i.e.,
a secondary failure) of the failure of a preceding action (i.e., primary failure). Identifying
primary and secondary failures is essential from the point of view of plan repair as primary
failures are the root causes for the anomalous observed execution. In principle, a plan repair
that recovers from primary failures should also recover from secondary failures. An inter-
esting property of our methodology is that the process of inferring primary and secondary
failures is performed autonomously by each agent, just relying on the trajectory-sets built
during the cooperative monitoring.

1.1 Contributions

The paper contributes to the diagnosis of MAP execution in many ways. First of all,
the paper shows how the extended action models proposed for the monitoring purpose can
be obtained compositionally from the nominal models of actions, and from the models of
the exogenous events that can affect those actions. Thus, a knowledge engineer can take
advantage of this by focusing on the models of the elementary components of the systems
(e.g., actions and exogenous events), and then creating complex, extended, action models
by composing the elementary components.

3

Micalizio & Torasso

In addition, the proposed CWCM framework is fully distributed: each agent monitors
its own actions, and there is no a central agent that traces all actions in progress. Thus,
CWCM can be applied in those domains where agents operate in physically distributed
environments, and hence a centralized solution could be impractical. Another important
feature of CWCM is that it is asynchronous: neither assumption on synchronized execution
of actions, nor assumptions on how long actions should last are made. In other words, agents
do not share a global clock. Of course, some form of synchronization is still necessary when
mutual exclusion is required for accessing critical resources. In such cases, however, we will
prefer to use the term coordination.

CWCM also represents a valid solution whenever a diagnosis of a MAP is performed in
environments characterized by scarce observability levels. In fact, a significant contribution
of CWCM is its cooperative monitoring protocol that enables the agents to acquire informa-
tion about the system resources from each other. In the paper we argue that the number
of messages exchanged via our cooperative protocol is linear in the number of inter-agent
causal links (i.e., causal dependencies existing between any pair of agents).

A last important contribution of the paper is the ability of distinguishing between pri-
mary and secondary failures. Previous approaches (see e.g., Micalizio & Torasso, 2008; Roos
& Witteveen, 2009), in fact, assume that action failures are independent of each other.

1.2 Outline

The paper is organized as follows. In Section 2 we introduce a basic multiagent planning
framework that we use as a starting point of our work. In Section 3 the basic framework is
extended by relaxing some important assumptions. Section 4 formally presents the Cooper-
ative Weak-Committed Monitoring (CWCM) strategy, while the local diagnostic inferences
are discussed in Section 5. The paper closes with a detailed experimental analysis in Section
6, and a critical discussion of related works in Section 7.

The paper also includes an Appendix where we briefly discuss how CWCM can be
implemented by means of Ordered Binary Decision Diagrams (OBDDs) (Bryant, 1992,
1986), and formally analyze the computational complexity of such an implementation.

2. Multiagent Planning: a Basic Framework

This section is organized in three parts. First, we introduce some basic notions on Multi-
agent Planning and the terminology we use throughout the paper. Then, we discuss how
the propositional planning language can be translated into a state-variable representation.
Finally, we present a basic strategy for plan execution in multiagent settings in which we
highlight the importance of the cooperation among the agents even under the strong as-
sumption that no exogenous event occurs. Such an assumption is relaxed in Section 3.

2.1 Preliminary Concepts on Multiagent Planning

Since we are interested in diagnosing systems that can be modeled as multiagent plans, we
begin our discussion by presenting a framework developed within the planning community to
represent and synthesize this kind of plans. It is worth noting that the planning problem is
typically approached in propositional terms: preconditions and effects of actions are literals

4

Cooperative Monitoring to Diagnose Multiagent Plans

that must be true, respectively, before and after the application of the actions themselves.
Thus we intuitively introduce in this section some planning notions in propositional terms,
however, in Section 2.2, we argue that when addressing the problem of plan execution, it is
more convenient to handle a representation of the system in terms of state variables, and
hence we translate the propositional framework into a state variables one.

An important assumption holding throughout the paper is that, although the observa-
tions gathered by agents at execution time can be partial, they are always correct; we will
elaborate more on this point in Section 3.1.

2.1.1 Multiagent Plans

The Multiagent Plan (MAP) systems we take into account in this paper can be modeled as
a tuple S=〈T ,RES , P 〉, where:

• T is the team of cooperating agents; agents are denoted by letters i and j;

• RES is the set of shared resources and objects available in the environment; we
assume that all the resources are reusable (i.e., they are not consumable), and can
only be accessed in mutual exclusion; note that agents can exchange each other pieces
of information about these resources, so the space of resource names is a common
language through which agents communicate;

• P is a completely instantiated Partial-Order Causal-Link Plan (POCL) (Weld, 1994),
resulting from a planning phase as the ones by Boutilier and Brafman (2001) or by
Cox et al. (2005). For the sake of simplicity, our MAP P has a simplified structure
since it does not involve concurrency and non-concurrency constraints. More precisely,
our MAP P is a tuple 〈I,G,A,R,C〉 where:

- I is a set of propositional atoms representing the initial state of the system at
planning time.

- G is another set of propositional atoms representing the global goal to be achieved.
Note that G is the conjunction of sub-goals Gi each agent i ∈ T is in charge of.

- A is the set of the action instances the agents have to execute; each action a is
assigned to a specific agent in T . At planning time, we assume that an action a

is modeled just in terms of preconditions pre(a) and effects eff (a), where both
are conjunctions of grounded atoms (see PDDL level 1, Fox & Long, 2003). In
the rest of the paper, we denote as ail the l-th action performed by agent i.

- R is a set of precedence links between action instances; the precedence link 〈a, a′〉
in R means that action a′ can only start after the completion of action a.

- C is a set of causal links of the form lk : 〈a, q, a′〉; the link lk states that action
a provides action a′ with service q, where q is an atom occurring both in the
effects of a and in the preconditions of a′.

We assume that MAP P :

• is flaw-free: a nominal execution of P from I achieves G;

5

Micalizio & Torasso

• is safe with respect to the use of the resources. Intuitively, we say that a resource
res ∈ RES is used safely iff at each execution step, res is either not assigned, or
assigned to exactly one agent. This is similar to the concurrency requirement (Roos
& Witteveen, 2009): two actions are not executed concurrently if they both require
the same subset of resources;

• has no redundant actions: even though P is not necessarily optimal, it only contains
actions that directly or indirectly provide services to help the achievement of the goal.
This means that there always exists a chain of causal links between any action in the
plan and at least one atom in the goal G.

To guarantee the resource safeness, we introduce the notion of working sessions associ-
ated with resources and agents:

Definition 1 Let res be a resource in RES, and i be an agent in T , a working session
ws〈res,i〉 for i using res is a pair 〈aio, a

i
c〉 of actions in Ai such that:

• aio precedes aic (i.e., aio ≺ aic, where ≺ is the transitive closure of the precedence
relations in R).

• aio is an action in Ai through which agent i acquires res, this is modeled by specifying
the atom available(res) in the preconditions of aio. Moreover, there exists in C an
incoming causal link of the form 〈ajk, available(res), a

i
o〉, where a

j
k is an action assigned

to agent j (possibly a
j
k can be a0 i.e., the pseudo action whose effects determine the

initial state of the system). Action aio “opens” the working session. No other action
aih ∈ Ai between aio and aic (i.e., aio ≺ aih ≺ aic), has an incoming causal link labeled
with service available(res) coming from an action of another agent j 6= i.

• aic is an action in Ai through which agent i relinquishes resource res in favor of another
agent j 6= i. This is modeled by means of a causal link 〈aic, available(res), a

j
k〉 in C,

meaning that action aic releases res as one of its effects, and that available(res) is
one of the preconditions of ajk. Action aic “closes” the working session. Of course,
agent i can release resource res to at most one agent; i.e., the outgoing link
〈aic, available(res), a

j
k〉 is unique. In addition, no action aih ∈ Ai between aio and aic,

has an outgoing link labeled with service available(res) directed towards an action of
another agent j.

• any action aih between aio and aic can use res; i.e., res can be mentioned in the pre-
conditions and effects of aih. More precisely, a causal link mentioning res between two
actions aih and aik in Ai is allowed only if both aih and aik belong to the same working
session, namely, aio ≺ aih ≺ aik ≺ aic.

Given a working session ws〈res,i〉, we denote its opening and closing actions as
opening(ws〈res,i〉) and closing(ws〈res,i〉), respectively. Two working sessions ws〈res,i〉 and
ws′〈res,j〉 are consecutive, ws〈res,i〉 /ws

′
〈res,j〉, if closing(ws〈res,i〉) provides opening(ws

′
〈res,j〉)

with service available(res).

Proposition 1 A MAP P satisfies the resource safeness requirement if for each resource
res ∈ RES, all the working sessions over res can be totally ordered in a sequence
ws1〈res,i1〉 / ws

2
〈res,i2〉

. . . / wsn〈res,in〉, for any agent ij ∈ T (with j : 1..n).

6

Cooperative Monitoring to Diagnose Multiagent Plans

This means that, independently of the agents accessing the resource, two working sessions
over the same resource res never overlap each other. Possibly, an agent i can have more
than one session in the sequence, meaning that the agent acquires and relinquishes resource
res many times along the plan.

The resource safeness requirement is an extension of the concurrency requirement intro-
duced by Roos and Witteveen (2009). In fact, while the concurrency requirement implicitly
imposes an ordering between two actions that cannot be performed simultaneously, the
resource safeness imposes an ordering between blocks of actions identified by a working ses-
sion. This is necessary in order to model situations where an agent uses a set of resources
for a number of consecutive actions that cannot be interleaved with the actions of other
agents. A working session is a sort of critical section that cannot be interrupted. It is worth
noting that, since a working session is associated with a single resource, and since there is
no constraint between the working sessions of two resources, it is possible that an action
aic ∈ Ai closes two different working sessions. For example, let ws〈res,i〉 and ws′〈res′,i〉 be

two working sessions of agent i using resources res and res′, respectively; then it is possible
that an action aic is both closing(ws〈res,i〉) and closing(ws′〈res′,i〉). In addition, the resource

res could be released in favor of agent j, while resource res′ could be released in favor of
another agent k. This is modeled through the two causal links 〈aic, available(res), a

j
x〉 and

〈aic, available(res
′), aky〉.

2.1.2 Local Plans

Since we are interested in a fully distributed framework for both plan execution and plan
diagnosis, we impose that every agent just knows the portion of P it has to perform; we
thus introduce the notion of local plan. Intuitively, a local plan P i is the projection of P
over the actions assigned to agent i; P is therefore partitioned into as many local plans as
there are agents in T . More formally, given an agent i ∈ T , the local plan P i assigned
to i is a tuple P i=〈Ii, Gi, Ai, Ri, Ci

local, C
i
in, C

i
out〉, where Ii represents the portion of the

initial state known by agent i when the plan execution starts; Gi is the sub-goal assigned
to agent i; Ai, Ri and Ci

local have the same meaning as A, R and C, respectively, restricted
to the actions assigned to agent i. The remaining sets, Ci

out and Ci
in, highlight the causal

dependencies existing between the actions of agent i and actions assigned to other agents in
T : Ci

out maintains all the outgoing causal links modeling services that agent i provides other
agents with; whereas, Ci

in maintains all the incoming causal links modeling services that
agent i receives from other agents. To simplify the plan structure, precedence links between
actions of different agents are not allowed in R. This, however, is not a real limitation as
precedence links between actions of different agents could be expressed as causal links in
which the exchanged service refers to a “dummy” resource.

In the rest of the paper we will consider a local plan P i as a partially ordered set of
actions. However, we assume that each agent can perform just one action per time, so in
the rest of the paper we index the actions according to their execution step. In other words,
P i will be executed by i as a sequence 〈ai0, a

i
1, . . . , a

i
n, a

i
∞〉, where ai0 and ai∞ are two pseudo-

actions similar to the ones introduced by Weld (1994). Action ai0 has no preconditions and
its effects coincide to the initial state Ii known by agent i; in particular, this pseudo-action
is also used to determine the initial set of resources assigned to agent i: any link leaving

7

Micalizio & Torasso

from ai0 and labeled with service available(resk) denotes that resk is assigned to agent i.
Action ai∞, on the other hand, has no effects and its preconditions correspond to sub-goal
Gi assigned to i.

2.2 Translating the Propositional Framework into a State-Variable
Representation

Although most of the planning approaches in literature relies on the propositional language
to represent planning problems, we adopt in this paper a representation based on multi-
valued state variables which is similar to the SAS+ approach introduced by Jonsson and
Bäckström (1998). The reason for this choice stems from the fact that a multi-valued
variable implicitly encode mutual exclusion constraints among the values of its domain:
the variable can just assume one value at a given time. Thus, it is easier to represent the
evolution of the system state over the time as a sequence of assignments of values to the state
variables. This solution has also been effectively adopted for the diagnosis of plans (Roos &
Witteveen, 2009), and as Helmert (2009) has proven, it is not restrictive since it is always
possible to translate a propositional representation into a set of multi-valued state variables.
In the rest of the section we briefly describe how the propositional planning language (see
e.g., Nebel, 2000) can be mapped to the state variables representation. Three main aspects
are addressed: (1) how to represent agents’ states in terms of state variables rather than
sets of propositional fluents; (2) how to represent the exchange of services among agents;
and (3) how to model actions in terms of state variables.

2.2.1 Mapping Atoms to Variables

From our point of view, both action models and system states can be represented in terms
of a finite set of multi-valued state variables, each of which has a finite and discrete domain.
Given the MAP system S=〈T , RES,P 〉, we associate all agents in T and resources in
RES with a set of state variables; each of these variables maps a subset of atoms of the
corresponding propositional representation.

It follows that the current system state is given by the values currently assigned to the
state variables of all agents and resources. Such a global view, however, is inadequate to
achieve a fully distributed framework. We thus introduce the notion of agent state, which
just captures the portion of the system state relevant for a specific agent i in the team.
Each agent i ∈ T is associated with a set VARi of variables. Each variable v ∈ VARi has
a finite and discrete domain dom(v). A state Si

l for agent i at a given execution step l is
therefore an assignment of values to the variables in VARi. More precisely, Si

l (v) ∈ dom(v)
is the value assumed by variable v ∈ VARi in the agent state Si

l . A partial agent state σi
l

is an assignment of values to just a subset of variables in VARi.

Variables in VARi are partitioned into two subsets: END i and ENV i. Set END i includes
endogenous state variables (e.g., the agent position); whereas ENV i includes variables about
the shared resources. Because of the partitioning of the global system state into agent states,
the state variables of the resources are duplicated into as many copies as there are agents in
T . Therefore, for each resource resk ∈ RES , there exists a private copy resik belonging to
ENV i. To maintain the consistency among these private copies, we rely on two assumptions:
(1) MAP P is flaw-free, and (2) P satisfies the resource safeness requirement. These two

8

Cooperative Monitoring to Diagnose Multiagent Plans

assumptions induce on variables in ENV i an implicit constraint: at each execution step
only one agent i knows the actual state of a given resource resk. As a consequence, only the
private copy resik keeps the correct value. For all the other agents, resource resk is “out of
sight”; this is modeled by assigning the value unknown to their local variables about resk;
namely, for each j 6= i, resjk =unknown. Thus the consistency among the different private
copies is implicitly maintained.

Of course, when agent j acquires resource resk from agent i, it also comes to know the
actual state of that resource. The values of variables in ENV i can in fact be exchanged
among the agents. In Section 2.3 we present a basic cooperative protocol that enables the
agents to share their knowledge about the resources while preserving the resource safeness
requirement; such a basic protocol will be later extended in Section 4.5. Variables in END i,
on the other hand, refer to agent i, and in our framework cannot be shared with other
agents.

2.2.2 Mapping Services to Variables Assignments

Since we adopt a representation based on state variables, also a service exchanged between
two agents is conveniently modeled as a value assignment to a resource variable. For in-
stance, the causal link lk : 〈ai, available(resk), a

j〉 is used in the propositional representation
to model that action ai ∈ Ai provides action aj ∈ Aj with resource resk. The same link can
be rewritten in the state variables representation as 〈ai, resk = available, aj〉, where resk
is the name with which agents i and j refer to a specific resource in RES . In other words,
resk is a sort of meta-variable that is known both by agent i and agent j. Of course, each
agent maps the meta-variable resk into its own private copy. More precisely, by means of
the link 〈ai, resk = available, aj〉, agent i is able to communicate j a change in the state of
resource resk: agent j knows that, after the execution of ai, its private variable resjk has the
value available, meaning that j can now use resk. It is worth noting that available is just
a special value, used by agents for exchanging resources. In general, agents communicate
each other domain-dependent values about the state of a resource (e.g., the position of a
block in the blocks world domain).

Relying on the state variables representation, we can identify the set of resources
available to a given agent i at the l-th plan execution step as availResi(l) = {resk ∈
RES |Si

l (res
i
k) = available}. In the next subsection we focus on a coordination protocol

that allows agents i and j to exchange information about the shared resources.

2.2.3 Mapping Propositional Action Models to Function-Like Models

Let Q be a subset of the state variables VARi, in the rest of the paper we denote with Σ(Q)
the space of possible assignments to the variables in Q, and with Q we denote a specific
assignment in Σ(Q); that is, a specific partial state for agent i. In the rest of the paper
we use premises(ai

l) and effects(ail) to denote the subset of status variables in VARi over
which preconditions and effects, respectively, of action ail are defined. Thus premises(ail)
represents a specific assignment of values in the space Σ(premises(ail)). Note that the set
of premises includes also those services that must be provided by other agents, and which
therefore correspond to incoming causal links for action ail. Similarly, the set of effects

9

Micalizio & Torasso

includes also those services that agent i provides other agents with, encoded as causal links
outgoing from ail.

Given an action instance ail ∈ Ai, the deterministic (nominal) model of ail is a mapping:

fnom
ai
l

: premises(ail) → effects(ail)

where premises(ail) is an assignment of variables in premises(ail) ⊆ VARi representing
the preconditions of ail , and effects(ail) is an assignment of variables in effects(ail) ⊆ VARi

modeling the effects of the action. We also assume that effects(ail) ⊆ premises(ail); this
is not a substantial limitation, however. Any variable v, that in principle would only be
mentioned in the effects of an action model, can also be mentioned in the premises of
the action by allowing v to assume any possible value of its domain. The reason for this
assumption will be clear in Section 3.2 where we formalize the notion of exogenous events.

Since we are interested in the execution of plans, we reformulate the applicability of
an action to a state (see Nebel, 2000) in terms of executability. Given an agent state Si

l ,
an action instance ail ∈ Ai is executable in Si

l ∈ Σ(VARi) iff Si
l |= premises(ail); indeed,

this strong condition will be relaxed in the next section. Using the same terminology by
Roos and Witteveen (2009), we can say that action ail is executable in Si

l only if ail is fully
enabled in Si

l . The result of the execution of ail enabled in Si
l is the new agent state Si

l+1 in

Σ(VARi), called successor state:

Si
l+1 =























(Si
l \ effects(a

i
l)) ∪ effects(ail) if Si

l |= premises(ail) and

Si
l 6|= ⊥ and effects(ail) 6|= ⊥,

∅, otherwise.

More precisely, Si
l \ effects(ail) is a partial agent state obtained by removing from Si

l

all variables mentioned in effects(ail). Such a partial state is subsequently completed with
the new assignments in effects(ail), yielding a new (complete) agent state Si

l+1. This state
transformation, however, is legal only when: (1) action ail is fully enabled in Si

l (i.e., S
i
l 6|= ⊥

and Si
l |= premises(ail)), and (2) the action effects are consistent (i.e., effects(ail) 6|= ⊥).

Otherwise, the new agent state is undefined.

2.3 Plan Execution Under Nominal Conditions

The actual execution of a MAP requires some form of coordination among the agents.
The decomposition of the global plan into local plans, in fact, allows the agents to exe-
cute their actions in a fully distributed way without the intervention of a global manager:
agents execute actions concurrently and asynchronously (i.e., no global clock is required).
In addition, differently from previous approaches (see e.g., de Jonge et al., 2009; Micalizio
& Torasso, 2008), where actions just take a single time slot to be completed and their ex-
ecution is globally synchronized, we do not make any assumption on the duration of each
action. Agent coordination is therefore essential in order not to violate the precedence and
causal constraints introduced during the planning phase. For the sake of clarity, we first
present a basic coordination strategy by assuming that:

10

Cooperative Monitoring to Diagnose Multiagent Plans

BaDE(P i=〈Ii, Gi, Ai, Ei, Ci
local, C

i
in, C

i
out〉)

1. l← 1
2. Si

l ← Ii

3. while ai
l 6= ai

∞ do

4. Si
l ← consume-inter-agent-messages(inbox)

5. if ai
l is executable in Si

l then

6. execute ai
l

7. Si
l+1 ← fnom

ai

l

(Si
l)

8. obsil+1 ← gather observations
9. if Si

l+1 ∪ obsil+1 |= ⊥ then

10. stop execution and propagate failure
11. end if

12. for each causal link lk ∈ Ci
out such that lk : 〈ai

l, v = d, aj
m〉 do

13. notify agent j about the achievement of service v = d

14. if v ∈ RES and d = available then

15. Si
l+1(v)← unknown

16. end if

17. end for

18. l ← l + 1
19. end if

20. end while

Figure 1: Basic Distributed Plan Execution (BaDE) strategy.

- action-based observability: even though the agents do not have a complete view of the
environment, each agent is always able to observe the preconditions and the effects of
the actions it performs. In addition, observations are assumed reliable and correct.
We denote as obsil+1 the set of observations received by agent i at the l-th plus 1
execution step after the execution of the l-th action. The observations obsil+1 can be
thought of as sets of value assignments to the variables in effects(ail). That is, for each
variable v ∈ effects(ail), an assignment v = d belongs to obsil+1; where d ∈ dom(v);

- deterministic actions: actions can never fail and their models precisely define how the
agent state changes;

- static environment: the environment can change only as a consequence of the execution
of the agents actions.

These three strong assumptions will be relaxed in Section 3, where we will present a more
complex coordination strategy that guarantees a consistent access to the resources even
when actions can fail.

2.3.1 Basic Coordination Protocol

The coordination protocol we adopt is very simple but effective, and exploits the causal links
in P i. Each outgoing link in Ci

out models, in fact, the exchange of a service/resource between
agent i - the service provider - and another agent j - the service client. In order to support
the communication among the agents, we assume that each agent has an inbox, i.e., a folder
where messages coming from the other agents are stored. Whenever i executes an action
ail having outgoing links in Ci

out, i sends a message for each outgoing link of ail notifying
the receiver that the needed service/resource is now available. Likewise, each link in Ci

in

11

Micalizio & Torasso

models the exchange of a service/resource in which i is the receiver and another agent j is
the provider. Whenever i has to execute an action having incoming links in Ci

in, it waits for a
message for each of these links since the action becomes executable only when all the required
services/resources are provided. Under the assumptions made about the MAP P , this
protocol guarantees that resources are always accessed consistently. In fact, by assumption
P satisfies the resource safeness requirement, which assures that working sessions over the
same resource are totally serialized; in particular, two working sessions ws〈res,i〉/ws

′
〈res,j〉 are

serialized by means of a causal link 〈closing(ws〈res,i〉), res = available, opening(ws′〈res,j〉)〉.
Therefore, when ws〈res,i〉 closes, agent i notifies agent j that resource res is now available.

2.4 Basic Distributed Plan Execution (BaDE) Strategy

The high-level plan execution strategy performed by each agent i in the team is outlined
in Figure 1. The strategy consists of a loop that iterates as long as there are actions in
P i to be executed. The first step in the loop is to acquire new information from other
agents about the shared resources. To accomplish this task, agent i plays the role of client
of our coordination protocol and gathers all the notification messages, if any, sent by other
agents; these notification messages (i.e., the value assignments they convey) are asserted
within the current agent state Si

l so that i updates its local view about the system status
and acquires (if available) new resources. After this step, the next action ail is selected: if
ail is not executable yet, agent i keeps waiting for further notification messages (i.e., some
services/resources are still missing). Otherwise, the agent executes ail in the real world, and
then estimates the successor state Si

l+1 by exploiting the nominal model fnom
ai
l

. (Note that

the actual execution of ail in the real world may take some time which is not necessarily
known in advance.)

Once the action ail has been completed, the agent gathers observations about the ef-
fects of the action and matches these observations with the estimated successor state Si

l+1.
Since we are assuming that actions cannot fail, no discrepancy between observations and
estimations can be discovered. We include the control in line 9 for compatibility with the
extension described in sections 3 and 4, where actions may fail.

After the execution of ail, agent i plays the role of provider in our coordination protocol
and propagates the (positive) effects of action ail towards other agents by sending a notifica-
tion message for each outgoing link of ail in Ci

out (see lines 13 through 16 of the algorithm in
Figure 1). In particular, in case agent i has just released a resource (v ∈ RES), the agent
sets its private copy about that resource to unknown, in this way the resource becomes
unreachable to i and the mutual exclusive access is guaranteed.

The last remark about the basic strategy regards the increment of counter l. Note that
l is only incremented when an action is executed; thus l does not correspond to a metric
time, but it is a pointer to the next action to be performed. Adhering to the BaDE strategy,
an agent can conclude its own local plan within a finite amount of time.

Proposition 2 Let S = 〈T , RES,P 〉 be a MAP system such that P is flaw-free and satisfies
the resource safeness requirement. If all agents in T follow the BaDE strategy in Figure 1,
then P is successfully completed in a finite amount of time.

12

Cooperative Monitoring to Diagnose Multiagent Plans

Proof: It is sufficient to show that at least one action of P is always in execution, at
each step, until the achievement of the goal. By contradiction, let us assume that the goal
has not been reached, and no action is in progress. Since we assume here that no failure
can occur, this situation can happen when agents are in deadlock, waiting for services no
one will provide them with. A deadlock may arise either because of an erroneous planning
phase, but then P is not flaw-free as initially assumed, or because the BaDE coordination
strategy is erroneous. Let us show that when all agents adopt the BaDE strategy, and no
failure occurs, the agents never wait indefinitely for accessing a resource. Since P satisfies
by assumption the resource safeness requirement, it must hold that ws〈res,j〉 / ws〈res,i〉; i.e.,
closing(ws〈res,j〉) provides opening(ws〈res,i〉) (i.e., ail) with service res = available. Agent
i waits for service res = available only in two situations: (1) agent j has not performed
action closing(ws〈res,j〉) yet (correct behavior), or (2) agent j has already performed action
closing(ws〈res,j〉), but has not sent the appropriate message to i. This second case con-
tradicts the hypotheses that the agents adopt the BaDE coordination protocol. In fact, as
required by the protocol, whenever a working session ws〈res,j〉 closes, agent j has to send a
message to the next agent accessing that resource.

Therefore, if agents are never in deadlock, at least one action is always in execution, and
since P has a finite number of actions, the goal G must be achieved within a finite amount
of time. �

Example 1. We conclude the section by briefly exemplifying the concepts introduced so
far. In particular, we present here the office-like domain we used as a test scenario for our
experiments (Section 6), this domain is similar to the ones adopted by Micalizio (2013)
and Steinbauer and Wotawa (2008). In this domain, robotic agents deliver parcels to the
desks of a number of clerks. A robot can carry one or two parcels depending on whether
they are heavy or light, respectively. Figure 2 shows the office-like environment we used for
our tests; it includes: 9 desks, distributed over 5 office-rooms, which are connected to each
other by means of 8 doors. Moreover, two repositories contain 12 parcels to be delivered
(8 light and 4 heavy). Parcels, repositories, doors, and desks are all critical resources as
they can be used and accessed by only one agent per time. The domain also includes three
parking areas, these are locations where more agents can be positioned simultaneously as
they are not critical resources. (The term location is used to identify either parking areas
or resources where agent can be physically positioned; e.g., parcels are not locations.)

Agents can perform the following actions: move from a location to another, load/unload
parcels within resources which are locations (i.e., not in parking areas), in addition, we
impose that no more than one parcel can be positioned on a desk, while repositories have
unlimited capacity. Finally, agents can carry one heavy parcel or two light parcels from a
location to another.

Figure 3 shows a simple example of MAP in our office domain. The team involves three
agents A1, A2, and A3, whose plans are in given in three columns, respectively. At the
bottom of the picture the effects of pseudoaction a0 represent the initial states of the three
agents. At the top of the picture, the premises of pseudoaction a∞ represent the desired
final state. The objective of the MAP in the figure is to deliver parcel1 to desk3 (i.e., an
agent has to unload parcel1 when positioned in desk3), and then to bring the parcel back to
its initial position in repository repos1. Similarly, parcel2 has first to be delivered to desk6,

13

Micalizio & Torasso

Figure 2: The office-like environment used for the experiments: five rooms R1-R5, two
repositories: repos1 and repos2, eight doors, nine desks, and three parking areas.

and brought back to repository repos2; while parcel3, that has already been delivered to
desk3, has to be delivered to desk4. To ease the readability of the picture, we only show the
inter-agent causal links. We use two different graphical notations to distinguish between
causal links giving access to resources (diamond-headed), and the causal links that model
other kinds of services (black-circle-headed). For instance, the link between actions a13 and
a24 is diamond-headed, this means that action a13 provides a24 with service desk3 = available

(i.e., after a13, agent A1 has no longer access to desk3). The three dashed rectangles in the
picture represent the working sessions associated with resource desk3, which is used by the
three agents at different execution steps. (The working sessions for the other resources have
not been highlighted to avoid the picture becoming too confused.)

Black-circle-headed links are used to represent all the other services. For instance, the
link between actions a12 and a25 (labeled as 1©) encodes the service desk3.content=empty,
required by action a25 since at most one parcel can be located on a desktop. The link labeled
as 2© (from a25 to a37) encodes two services: desk3.content=parcel1 and parcel1.pos=desk3.
Similar services are encoded by link 3©, but they refer to desk6 and parcel2. �

3. Extending the Framework

In the previous section we have described a simple coordination strategy that guarantees
the consistent execution of a MAP P when three strong assumptions hold: (1) each agent
has an action-based observability: it can precisely observe the preconditions and the effects
of the actions it performs; (2) the environment is static (no exogenous events are permitted);
and (3) the actions are deterministic (no deviation from the nominal behavior is possible).
Henceforth we extend the basic framework by relaxing these three assumptions and, as a
consequence, by increasing the complexity of the strategy for controlling the distributed
plan execution.

14

Cooperative Monitoring to Diagnose Multiagent Plans

carry(door1, desk3)

move(desk4, door2)

unload(desk4, parcel3)

carry(door2, desk4)

carry(desk3, door2)

load(desk3, parcel3)

move(P2, desk3)

move(repos2, P3)

unload(repos2, parcel2)

carry(desk6, repos2)

load(desk6, parcel2)

move(door4, desk6)

move(desk3, P2)

unload(desk3, parcel1)

carry(repos1, door1)

load(repos1, parcel1)

move(P1, repos1)

move(repos1, P1)

unload(repos1, parcel1)

carry(door1, repos1)

carry(desk3, door1)

load(desk3, parcel1)

move(door4, desk3)

move(desk6. door4)

unload(desk6, parcel2)

carry(repos2, desk6)

load(repos2, parcel2)

move(P3, repos2)

move(P2, door4)

desk3

desk3

repos1

door4

repos2

desk6

move(door2, P2)

A1.pos=P2
desk3=avail
desk4=avail
parcel3.pos=desk3
parcel3.delivered=desk3
door2=avail A2.pos=P1

repos1=avail
parcel1.pos=repos1
parcel1.delivered=no
door1=avail

A3.pos=P3
repos2=avail
parcel2.pos=repos2
parcel2.delivered=no
desk6=avail
door4=avail

parcel3.pos=desk4
parecel3.delivered=desk4
A1.pos=P2

parcel2.pos=repos2
parcel2.delivered=desk3
A2.pos=P3

parcel1.pos=repos1
parcel1.delivered=desk6
A3.pos=P1

parcel1

a0

a∞

1©

2©

3©

a11

a12

a13

a14

a15

a16

a17

a21

a22

a23

a24

a25

a26

a27

a28

a29

a210

a211

a212

a31

a32

a33

a34

a35

a36

a37

a38

a39

a310

a311

Figure 3: A simple example of MAP in the office-like domain used for testing.

15

Micalizio & Torasso

3.1 Partial Observability

The first assumption we relax is the action-based observability. In the basic framework,
the observations obsil+1 agent i receives at the (l + 1)-th step of execution cover all the
variables in effects(ail). In the extended framework, obsil+1 becomes just partial since only a
subset of variables in effects(ail) is covered in general, and possibly obsil can even be empty.
Also in this case we assume that the observations are correct, meaning that the actual
state of an agent cannot be inconsistent with the observations received by the agent itself.
However, observations can be ambiguous in the sense that for a given variable, an agent
just receives a disjunction of possible values. In addition, to guarantee the termination of
the plan execution phase, we assume that each agent observes at least the achievement of
the atoms in its local goal Gi ⊂ G.

3.2 Plan Threats

The second extension is about the dynamics of the system: we move from a static system
to a dynamic one. This means that, besides the changes due to the agents’ actions, the
system can also change as a consequence of exogenous, unpredictable events, which typi-
cally represent plan threats (Birnbaum, Collins, Freed, & Krulwich, 1990) for the nominal
execution of the plan. Intuitively, a plan threat can be seen as an abrupt change happened
in the environment (i.e., resources), or in the state of an agent.

In this paper we associate the occurrence of an exogenous event to the execution of
an action. In other words, an exogenous event can only occur during the execution of
an action and can only affect the active variables of that action; namely, the variables
mentioned within the premises and the effects of the action. Thus, an exogenous event
cannot affect simultaneously two or more actions, but it can have indirect effects on many
actions, even of different agents, by means of the shared resources.

In principle, given an exogenous event ξ, one could define a model to predict how ξ will
affect the execution of an action. In real-world domains, however, it is not always possible
to precisely know in advance the actual impact of an exogenous event: on the one hand,
ξ may have non-deterministic effects; on the other hand, not all the effects of ξ may be
known. To take into account the possibly non-deterministic effects of exogenous events, we
model an exogenous event ξ as a relation happens ξ defined as follows:

happensξ ⊆ Σ(affectedbyξ)× {ξ} × Σ(affectedbyξ) (1)

where affectedbyξ ⊆ VARi, and Σ(affectedbyξ) is the space of partial agent states defined
over affectedbyξ. It is worth noting that Σ(affectedbyξ) can only be empty when affectedbyξ is
empty, too. This enables us to state that, when an exogenous event occurs, then a variable in
affectedbyξ must necessarily evolve unexpectedly. Thus, each tuple in the relation happens ξ
represents a non-deterministic effect of ξ; namely, each tuple represents a possible abrupt
change in some agent’s status variables.

To deal with not known effects of an exogenous event ξ, we extend the domain dom(v)
of each variable v ∈ VARi with the special value unknown which leaves open any possible
evolution for v.

We denote as X the set of all exogenous events which might occur during the plan
execution. Note that X also includes a pseudo event ε modeling the absence of abrupt

16

Cooperative Monitoring to Diagnose Multiagent Plans

changes. Only for this special event it must hold that affectedby ε = ∅. Since an exogenous
event ξ is defined as a state transition over agents’ state variables, ξ can only affect an
action ail iff

affectedbyξ ⊆ effects(ail). (2)

Namely, ξ affects a subset of the variables over which action ail is defined.

Given an action ail, X (ail) denotes the subset of exogenous events in X which satisfy
relation (2). Note that, the pseudo event ε is always included in X (ail), for any action
ail ∈ Ai, since affectedby ε (i.e., the empty set) trivially satisfies relation (2).

3.3 Extended Action Models

The last extension we propose is about the action models. Since plan threats occur during
the execution of actions, their effects combine with the actions’ effects. To estimate how
the system evolves over time, it is essential to extend the nominal action model in order to
encode, in a single piece of knowledge, the nominal as well as the anomalous evolutions of an
action. Intuitively, such an extended model should describe how an agent state Si

l evolves
into a new agent state Si

l+1 when agent i has carried out an action instance ail, and when,
during the execution of the action, an exogenous event ξ ∈ X has occurred, possibly just ε.
Moreover, in the basic framework we give for granted that an action is performed when it is
fully enabled. In our extended framework this condition is not necessarily satisfied. Due to
the partial observability, in fact, agent i may be unable to precisely determine whether its
next action is fully enabled or not. To cope with this situation, we introduce in Section 3.4
the concept of possibly enabled action. For the time being, we just anticipate that an agent
may decide to perform an action even when that action is not fully enabled, and hence the
extended action model must be so rich to estimate how the state of agent evolves even in
such a situation.

The extended model M(ail) of action ail is derived from the nominal model fnom
ai
l

, given

in terms of premises and effects, and from the set of exogenous events X (ail); it is formally
defined as:

M(ail) : 〈f
nom
ai
l

,X (ail),∆(ail),Γ(a
i
l)〉,

where fnom
ai
l

and X (ail) have already been introduced; whereas ∆(ail) and Γ(ail) are two

transition relations between partial states in Σ(premises(a)) and in Σ(effects(a)), through
which it is possible to predict how the execution of action ail changes the state of the
environment (i.e., the resources held by i) and of agent i itself.

Relation ∆(ail) estimates the next agent’s states when action ail is fully enabled in a
state Si

l . This relation results from the combination of the nominal action model with the
models of the exogenous events in X (ail):

∆(ail) =
⋃

ξ∈X (ai
l
)

{fnom
ai
l

� happens ξ} (3)

Intuitively, fnom
ai
l

� happens ξ is a set of tuples of the form 〈pre, ξ, eff 〉, where pre equals

premises(ail), and eff ∈ Σ(effects(ail)) models the abrupt changes caused by event ξ to the

17

Micalizio & Torasso

nominal effects of action ail. Formally, for each happening 〈σ, ξ, σ′〉 in happens ξ it holds:

fnom
ai
l

�happensξ =
⋃

〈σ,ξ,σ′〉∈happensξ























premises(ail)× {ξ} × {(effects(ail) \ affectedbyξ) ∪ σ′}

if Si
l |= premises(ail) and premises(ail) |= σ;

∅ otherwise.

(4)
It is important to note that, since ε is always part of X (ail), the nominal model 〈premises(ail),
ε, effects(ail)〉 is always included in ∆(ail). In particular, in such a state transition, no vari-
able can assume value unknown. This follows directly by: (1) the nominal model fnom

ai
l

cannot mention the unknown value by definition, and (2) the exogenous event ε cannot
affect any variable since affectedby ε is empty. Thus, the operation fnom

ai
l

� happens ε just

reproduces the nominal behavior.

In addition, note that X (ail) can also include a special exogenous event ξ?. This symbol
denotes an indefinite exogenous event for which no model is given, and hence all variables
in effects(ail) are mapped to unknown: after the occurrence of ξ? no prediction is possible.

Relation Γ(ail) has the same structure as ∆(ail) in terms of preconditions, effects and
exogenous events, but represents a dual version of ∆(ail) since it is defined when ail is not
executable in Si

l . In fact, Γ(ail) is defined in all those states where action ail is not enabled.
Let Σ(premises(ail)) be the space of assignments of values to the variables in premises(ail),
Γ(ail) is defined over the space of states Σ̃(premises(ail))=Σ(premises(ail)) \ premises(ail)
as:

Γ(ail) ⊆ Σ̃(premises(ail))× {ξ?} × 〈unknown, . . . , unknown〉, (5)

where ξ? denotes an indefinite exogenous event as in ∆. Note that Γ(ail) is a weaker model
than ∆(ail) since it invariably assigns the unknown value to each variable in effects(ail).
That is to say, whenever an action is performed in a wrong configuration, its impact on the
effects(ail) variables becomes unpredictable. Although we use the same symbol ξ? to denote
indefinite events occurring in ∆(ail) and in Γ, they have slightly different meanings from a
diagnostic point of view that will be discussed in detail in Section 5.

Remark 1. The relational action models we propose are sufficiently flexible to deal with
incomplete or imprecise knowledge. In many cases, in fact, it may be too costly (or even
impossible) to determine how exogenous events impact the variables in effects(ai

l). The
extended framework copes with this problem by allowing three forms of incompleteness:

- The unknown value included in the domain of each variable allows to represent that, as
an effect of an exogenous event, the value of a variable becomes no more predictable.
In the extreme case, all the variables in the effects of an action are set to unknown
(see the weak model for the exogenous event ξ?).

- Non-deterministic action evolutions can be defined: an exogenous event may have
non-deterministic effects on the states of the agents.

- The weak relation Γ allows us to model the status of an agent after the execution of
an action under wrong conditions.

18

Cooperative Monitoring to Diagnose Multiagent Plans

Remark 2. Since actions can be performed even though they are not fully enabled, how
can we guarantee that the execution of the plan does not violate the resource safeness
requirement? The answer to this question is in the coordination protocol which is part of
the Cooperative Weak-Committed Monitoring (CWCM) strategy discussed in Section 4. It
is useful to anticipate, however, that the coordination protocol guarantees that an agent
uses a resource only when its actions do not violate the resource safeness requirement.

Example 2. Let us consider a simple example from the office domain, and assume that
agent A1 is in charge of performing action carry(A1, Parc2, desk1, desk2); such an
action requires A1 to move from its current position desk1 to position desk2 while it is
loaded with parcel Parc2. The nominal model for such an action can be expressed as the
state transition:

〈pos = desk1, cObj=Parc2, Parc2pos1=A1, ε, pos = desk2, cObj=Parc2, Parc2pos1=A1〉;

where pos and cObj are two endogenous variables for A1 representing the current position
of the agent and the carried object, respectively. The state of shared resource Parc2 is
encoded by variable Parc2pos1, which is the private variable agent A1 keeps to maintain
the position of parcel Parc2. For all the other agents, the local copy of variable Parc2pos

is unknown.

The actual execution of the carry action can be affected by a number of exogenous
events; for instance, ξwheels−blocked prevents the agent from moving at all, while ξwrong−step

allows the agent to move, but in a wrong direction. Another event that can affect the
carry action is ξlost−parcel: while the agent is moving, the carried object(s) is lost; finally,
ξ? denotes an unpredictable event occurring when the carry action is attempted in a state
in which its preconditions are not satisfied. All these alternative situations are summarized
within the extended model showed in Table 1. The first entry of the table is the nominal
state transition, the only one labeled with ε. Entries from 2 to 5 describe how the action
behaves when some known exogenous event occurs. Note that, although the exogenous
event is one of the foreseen possibilities, not all its effects may be precisely known; for
instance, as an effect of ξwrong−step and ξlost−parcel some of the variables assume the value
unknown. The first five entries of the table represent the ∆ relation of the extended model.
The last entry of the table, instead, is the Γ relation which allows us to make just weak
predictions. The tuple 〈pos=*, cObj=*, Parc2-place=*〉 is just a shortcut to represent any
possible assignment in which the preconditions are not satisfied. Note that, from a practical
point of view, it is not necessary to compute this (potentially huge) set explicitly, as we
discuss in Appendix A about the implementation. �

3.4 Extending Some Basic Concepts

Since we have relaxed the three assumptions of the basic framework, we have to review
three important concepts: the state of an agent, the executability of an action, and the
outcome of an action.

19

Micalizio & Torasso

END ENV END ENV

pos cObj Parc2pos1 event pos cObj Parc2pos1

t1 desk1 Parc2 A1 ε desk2 Parc2 A1

t2 desk1 Parc2 A1 ξwheel−blocked desk1 Parc2 A1

t3 desk1 Parc2 A1 ξwrong−step unknown Parc2 A1

t4 desk1 Parc2 A1 ξlost−parcel desk2 empty desk1

t5 desk1 Parc2 A1 ξlost−parcel desk2 empty unknown
t6 * * * ξ? unknown unknown unknown

Table 1: The extended model for the action instance carry(A1, B2, desk1, desk2) from
the office domain.

3.4.1 Agent’s Belief States

First of all, each agent in the team must be able to deal with some form of uncertainty.
Since actions may evolve non-deterministically and since the agent cannot observe all the
effects of its actions, an agent must be able to deal with belief states rather than with agent
states. Like an agent state Si

l , an agent belief state Bi
l encodes the knowledge agent i has

about itself at the l-th execution step. While Si
l is the precise state assumed by i at step

l, Bi
l is a set of possible agent states consistent with the observations received by i. In the

rest of the paper we use lowercase s to indicate an agent state among others within a given
belief state, while we use uppercase S to indicate the actual agent state at a given execution
step. It is important to note that, exactly as an agent state Si

l , a belief state Bi
l is defined

over all the state variables of agent i; but two states s1 and s2 in Bi
l differ for at least one

variable. In other words, there must exists at least one variable v ∈ VARi
l such that s1(v),

the value assumed by v in s1, is different from s2(v). Of course, this ambiguity represents
an issue in understanding whether the next action ail is executable.

3.4.2 Possibly Enabled Actions

Since we have an agent belief state Bi
l , also the notion of action executability needs to be

revised. A very conservative policy would require action ail to be fully enabled in every
state s in Bi

l ; but due to the partial observability this condition might not be satisfied, so
the execution of a MAP could be stopped because no action is enabled even though no plan
threat has occurred.

To avoid this situation, we propose a more optimistic policy and introduce the notion
of possibly enabled action.

Definition 2 Optimistic Policy Action ail is possibly enabled in Bi
l iff ∃s ∈ Bi

l such that
ail is fully enabled in s; namely, s |= premises(ail).

It is worth noting that the value unknown cannot be used to qualify an action as fully
enabled. Such a value, in fact, is used explicitly to state that the agent does not know the
value of a variable. Therefore, if variable v has value unknown in a state s, and v is also
mentioned in premises(ail), then ail is not fully enabled in s.

A possibly enabled action is therefore a sort of conjecture: since the action premises
are satisfied in at least one state of the belief state, the action is assumed executable. Of

20

Cooperative Monitoring to Diagnose Multiagent Plans

course, it may be the case that s, although possible, is not the real state of the agent, and
hence the action is performed when its preconditions are not satisfied in the real world.

3.4.3 Action Outcome

In the basic framework we have given for granted that the outcome of an action is always
nominal. In the extended framework, however, actions can fail. We individuate three possi-
ble action outcomes: the nominal ok, the anomalous failed, and pending for the intermediate
situations.

Definition 3 Action ail has outcome ok iff ∀s ∈ Bi
l+1, s |= effects(ail).

That is, the action’s effects hold in every state in Bi
l+1 (estimated after the execution of ail).

Definition 3 does not hold when there exists at least one state s ∈ Bi
l+1 where the nominal

effects are not satisfied. In some previous approaches (Micalizio & Torasso, 2008, 2007a),
we have introduced and adopted the strong committed policy: when the effects of action ail
are not satisfied in each state of the belief state Bi

l+1, the action has outcome failed (see
Definition 3). The strong committed policy is based on the assumption that, whenever action
ail has been successfully completed, agent i receives an amount of observations sufficient to
detect the success. Thereby, when the success cannot be detected, a failure must have
occurred.

This policy, however, may be unacceptable in some real-world domains where there are
no guarantees about the system observability. As a consequence, agent i could infer a failure
even when action ail has been completed with success, but the observations are not sufficient
to confirm it.

In this paper we define the failure of an action as the dual case of the success:

Definition 4 Action ail has outcome failed iff ∀s ∈ Bi
l+1, s 6|= effects(ail).

Namely, it is not possible to find in Bi
l+1 a state s in which all the expected effects of ail

have been achieved.
In all those situations where neither the success (Definition 3) nor the failure (Definition

4) can be inferred, the action outcome is pending.

Definition 5 Action ail has outcome pending iff ∃s ∈ Bi
l+1, s |= effects(ail) and ∃s′ ∈ Bi

l+1,

s′ 6|= effects(ail).

In other words, whenever agent i is unable to determine the success or the failure of
action ail, it postpones the evaluation of the action outcome to some step in the future; the
action is enqueued into a list pActsi of pending actions maintained by agent i. We refer
to this policy as weak committed since the agent does not take decisions whenever there
are insufficient observations sufficient to support them. In the next section we discuss the
impact of the weak committed policy on the monitoring task.

4. Cooperative Weak-Committed Monitoring

In this section we discuss a fully distributed approach to the problem of monitoring the
execution of a MAP. We consider the extended framework previously discussed which intro-
duces two sources of ambiguity: the agent belief states, and the ambiguous action outcomes.

21

Micalizio & Torasso

To cope with these forms of uncertainty, we propose a monitoring methodology called
Cooperative Weak-Committed Monitoring (CWCM), which relies on the weak-committed
policy. The CWCM approach allows an agent to detect the outcome of an action some
time after its execution. The idea is that the possibly uncertain knowledge an agent has
about the environment and itself can be refined over time by exploiting observations that
the agent will receive in the future. To get this result, CWCM allows the team members to
cooperate with each other during their monitoring tasks.

The rest of this section is organized as follows. We first formalize the notion of trajectory-
set maintained by each agent, and explain how the extended action models can be used
to extend the trajectory-set one step further. Then we discuss how the trajectory-set
is refined through the observations and how this helps in determining the outcomes of
pending actions (if any). Finally, we redefine the cooperative protocol sketched in the basic
framework to obtain a cooperative monitoring protocol. CWCM is entirely formalized in
terms of Relational Algebra operators. (For a short introduction to the used operators, see
Micalizio, 2013.)

4.1 Trajectory-Set

The weak-committed approach requires that an agent be able to reason about its past.
This means that the agent cannot maintain just the last belief state, but it has to keep a
trajectory-set; i.e., a sequence of belief states that traces the recent history of the agent’s
state.

We define a trajectory-set as a generalization of an agent trajectory. An agent trajectory
for agent i, denoted as tri(1, l), is defined over a segment [ai1, . . . , a

i
l−1] of the local plan P i,

and consists of an ordered sequence of agent states interleaved with exogenous events in X
(including ε). An agent trajectory represents a possible evolution of the status of agent i,
consistent with the observations the agent has received so far; more formally:

Definition 6 The agent trajectory tri(1, l) over the plan segment [ai1, . . . , a
i
l−1] is

tri(1, l)=〈s1, e1, s2, . . . , el−1, sl〉

where:
- sk (k : 1..l) is the state of agent i at the k-th step such that obsik ∪ sk 6|= ⊥.
- eh (h : 1..l − 1) is an event in X (ah) labeling the state transition from sh to sh+1.

An agent trajectory is therefore a sequence of agent states, interleaved by events, that traces
the agent behavior along a given plan segment. For the sake of discussion, we consider the
plan segment as starting from the first performed action ai1; in practice, however, the plan
segment under consideration can be an intermediate portion of an agent’s local plan. We
will return on this point in Section 4.6.

Since each state sk (k in [1..l]) is a complete assignment of values to the agent state
variables in VARi, these variables are duplicated as many times as there are actions in the
plan segment under consideration; in the following, we will denote as VARi

k the copies of
the state variables referring to the k-th execution step.

As noticed above, however, the partial system observability is in general not sufficient for
the estimation of a unique trajectory; for this reason agent i keeps a trajectory-set Tri[1..l],

22

Cooperative Monitoring to Diagnose Multiagent Plans

which contains all possible agent trajectories tri(1, l) consistent with the observations re-
ceived during the execution of the plan segment [ai1, . . . , a

i
l−1].

Note that, given a trajectory-set Tri[1, l], the agent belief state at any execution step k

in [1..l] can easily be inferred by projecting Tri[1..l] over the state variables VARi
k:

Bi
k = projectVARi

k
(Tri[1..l]) (6)

Thus definitions 2 (possibly enabled actions), 3 (successfully completed actions), 4 (failed
actions), and 5 (pending action), which are all based on belief states, are still meaningful
and do not require to be redefined.

In the rest of the paper, the term trajectory frontier (or simply frontier) refers to the
last belief state maintained within a trajectory-set. For instance, the frontier of Tri[1, l] is
the belief state Bi

l . As a general rule, we use l to denote the index of the last execution step
(and hence of the frontier); while k is used to refer to a generic execution step in [1, l].

4.2 Extending the Trajectory-Set

The extension of a trajectory-set corresponds to the predictive step of the basic framework
through which the next agent state is estimated. However, while in the basic framework this
step was as easy as a mapping from a state to another, we need a more complex procedure
in our extended framework. Given the current trajectory-set Tri[1, l] and the extended
model M(ail), the estimation step is defined in Relational terms as follows:

Tri[1, l + 1] = Tri[1, l]⊗M(ail) = Tri[1, l] join (∆(ail) ∪ Γ(ail)). (7)

The new trajectory-set Tri[1, l + 1] is built with the contribution of both ∆ and Γ
relations. Both relations are in fact used to estimate how the execution of action ail changes
the state of the system. Relation ∆ is applied to that portion of Bi

l where action ail is fully
enabled. Whereas, relation Γ is applied to all those states in Bi

l where action ail is not
enabled; i.e., the occurrence of an exogenous event has already been assumed.

4.3 Refining the Trajectory-Set with Observations

In the basic framework we have assumed that, whenever action ail is completed, the agent
receives observation obsil+1 just about the new agent state Si

l+1. In the extended framework,
agent i can also receive observation obsik referring to a past execution step k (i.e., 1 ≤ k ≤ l).
In the next section we present the cooperative monitoring protocol that is at the basis of
such a message passing among the agents. In this section we discuss how an observation
about the past is handled by a given agent i. Intuitively, consuming observation obsik means
selecting from Bi

k all the states that are consistent with it; in Relational terms:

refinedBi
k = selectobsi

k
Bi
k (8)

The result is a refined belief state which is less ambiguous than the original one as a number
of states inconsistent with the observations have been pruned off.

It is important to note that the unknown value is consistent with any “concrete” observed
value. Therefore, for each state s ∈ Bi

k, if a variable v is unknown in s, but v is mentioned
in obsik, then v assumes the observed value obsik(v) in refinedBi

k. Note that we do not allow
an observed variable in obsik to assume the value unknown.

23

Micalizio & Torasso

BA1

l

BA1

l+1
ε

s1l

s2l

s1l+1

s2l+1

s3l+1

s4l+1

s5l+1

s6l+1

ξwheel−blocked

ξwrong−step

ξlost−parcel

ξlost−parcel

ξ?

Figure 4: A one-step trajectory-set corresponding to the transition from step l to step l+1.

Example 3. Let us consider again the office domain, and assume that after l steps, the
trajectory frontier of agent A1 consists of the following belief state BA1

l :

s1l : 〈 pos = desk1, cObj = Parc2, Parc2pos1= A1 〉
s2l : 〈 pos = unknown , cObj = Parc2, Parc2pos1= A1 〉

Namely, BA1

l consists of two alternative agent states s1l and s2l. Let us assume that
the next l-th action performed by A1 is a carry action, whose model has been previously
presented in Table 1. According to equation (7), it is easy to see that s1l matches with
state transitions t1 through t5 of the carry action model (∆ portion of the model), whereas
state s2l matches with transition t6 (Γ portion of the model). Figure 4 gives an idea of how
these two relations are used to infer the new frontier:

s1l+1 : 〈 pos = desk2, cObj = Parc2, Parc2pos1= A1 〉
s2l+1 : 〈 pos = desk1, cObj = Parc2, Parc2pos1= A1 〉

s3l+1 : 〈 pos = unknown, cObj = Parc2, Parc2pos1= A1 〉
s4l+1 : 〈 pos = desk2, cObj = empty, Parc2pos1= desk1 〉

s5l+1 : 〈 pos = desk2, cObj = empty, Parc2pos1= unknown 〉
s6l+1 : 〈 pos = unknown , cObj =unknown, Parc2pos1=unknown 〉

Now, let us assume that agent A1 receives the observation obsA1l+1 = {〈pos = desk2〉},
which is used to refine the new frontier. It is easy to see that obsA1l+1 is consistent with all
the states except s2l+1, in which pos is assigned to a different value. States s3l+1 and s6l+1

are consistent with obsA1l+1 because the unknown value is consistent with any precise value.
The new refined frontier is therefore

s1l+1 : 〈 pos = desk2, cObj = Parc2, Parc2pos1= A1 〉
s3l+1 : 〈 pos = desk2 , cObj = Parc2, Parc2pos1= A1 〉

24

Cooperative Monitoring to Diagnose Multiagent Plans

s4l+1 : 〈 pos = desk2, cObj = empty, Parc2pos1= desk1 〉
s5l+1 : 〈 pos = desk2, cObj = empty, Parc2pos1= unknown 〉
s6l+1 : 〈 pos = desk2 , cObj =unknown, Parc2pos1=unknown 〉

It seems that s1l+1 and s3l+1 are now identical, indeed we do not just consider single
belief states, but trajectories; these two states differ in the way they are achieved: s1l+1 is
inferred assuming that everything goes smoothly; s3l+1 is inferred assuming that something
wrong has occurred (i.e., ξwrong−step). Of course, this second hypothesis is not plausible
and we will discuss in the next section how it can be pruned off the trajectory-set. �

This example shows how consuming a set of observations obsik reduces the ambiguity
within the agent belief state Bi

k. In addition, the consumption of messages has also a
beneficial effect in reducing the ambiguity of the trajectory-set Tri[1, l]. In fact, the refined
belief state can in turn be used to filter the trajectory-set as follows:

refinedTri[1, l] = selectrefinedBi
k
Tri[1, l]. (9)

The refinedTri[1, l] maintains all and only the trajectories that at their k-th step have a
state in refinedBi

k. This is an important result since an agent can take advantage of the
observations whenever they are available, even though they refer to a past execution step.

It may happen, in fact, that even though obsik is not enough to determine the outcome
of action aik−1, another belief state Bi

h ∈ refinedTri[1, l] becomes sufficiently precise to
determine the outcome of the pending action aih−1. In the next section, we exploit this
characteristic to determine the outcomes of pending actions.

4.4 Inferring and Propagating Action Outcomes

Whenever the current trajectory-set is refined with observations, it is useful to scan the
pending action list pActsi, and assess, for each action aik ∈ pActsi, whether either Definition
3 or 4 applies.

The outcome of an action is an important piece of information that we can exploit, as
well as observations, to refine the current trajectory-set. The outcome of action aik, either
positive or negative, can in fact be used to infer the outcome of other actions in pActsi.
To reach this result we exploit the notions of causal predecessors of aik (predecessors(aik)),
and of causal successors of aik (successors(aih)). First of all, we say that action aih indirectly
provides action aik with a service, or that aik indirectly receives a service from aih, iff there
exists a sequence of actions aiv1 , . . . , a

i
vn

such that:

1. aiv1 coincides with aih

2. aivn coincides with aik

3. for each action aivx , x : 1..n − 1, there exists a causal link 〈aivx , q, a
i
vx+1

〉 in Ci
local.

In other words, there must exist a chain of causal links that starts from aih, passes
through the actions in the sequence aiv1 , . . . , a

i
vn
, and ends in aik. Indirect causal depen-

dencies that pass through the plans of other agents are not considered by our definition.
For example, having the two causal links 〈aih, q, a

j
v〉 and 〈ajv, q′, aik〉, we cannot say that aih

25

Micalizio & Torasso

indirectly provides aik with a service since action a
j
v belongs to agent j. This is not a limita-

tion, but an advantage as otherwise the agents should interact heavily in order to compute
indirect causal relations. This notion of indirect dependency between actions is at the basis
of a locality principle that allows an agent to consider just a portion of its local plan during
monitoring and diagnosis.

The set predecessors(aik) is therefore the subset of Ai including all and only the actions
that directly or indirectly provide aik with a service. On the other side, successors(aik) is
the subset of Ai including all and only the actions which, directly or indirectly, receive a
service from aik.

Given an action aik, we denote as chains to(aik) the subset of causal links in Ci
local defined

between actions in predecessors(ai
k). Similarly, we denote as chains from(aik) the subset

of causal links in Ci
local defined between actions in successors(ai

k).

Proposition 3 Let aik be an action whose outcome is ok, then all the causal links in
chains to(aik) represent services that have been satisfied.

In fact, if aik has outcome ok, then all the services required by aik were satisfied, and
recursively, all the services required by the actions in predecessors(aik) were satisfied too.

Proposition 4 (Backward Propagation of Success) Let aik be an action whose out-
come is ok, and let us mark as satisfied all causal links in chains to(aik), then any action
a ∈ pActsi∩predecessors(aik) having all outgoing links marked as satisfied, has outcome ok,
too.

Proposition 5 Let aik be an action whose outcome is failed, then the services in
chains from(aik) might be missing.

In fact, since aik has outcome failed, at least one of its expected effects is missing; on the
other hand, action aik could have reached a subset of its effects, and such services could be
sufficient to enable some subsequent actions. The forward propagation of the failure must
therefore take into account the results successfully achieved. Let us denote as miss(aik) the
set of causal links leaving from aik representing missing services.

Proposition 6 (Forward Propagation of Failure) Let aik be an action whose outcome
is failed, and let us mark as missing each causal link cl in chains from(aik) that is reachable
from one of the links in miss(aik) via a chain of missing causal links, unless cl has already
been marked as satisfied. Then, any action a ∈ pActsi ∩ successors(aik), having at least one
outgoing link marked as missing, has outcome failed, too.

Intuitively, properties 4 and 6 assume that an action performed when it is not fully
enabled does not produce correct results. On the other hand, an action that achieves all
its effects must have been performed when it was fully enabled, and hence all the services
mentioned in its premises must have been provided.

26

Cooperative Monitoring to Diagnose Multiagent Plans

... ...

1

2

3

4

5

6

7 8
a1

a2 a3

a4 a5

a6 a7

Figure 5: A portion of a local plan restricted to causal links in Ci
local.

Example 4. In this example we show how the outcome of an action a is actually exploited
to determine the outcomes of other actions. Of course, an agent is able to determine the
outcome of a relying on observations and messages from other agents. The cooperative
protocol is discussed in details in the following subsection; for the time being, it is important
to observe that:

• all the “positive messages” (formalized as confirm messages in the following) received
at a given step are processed before any “negative message” (i.e., disconfirm message)
received at the same step;

• an agent receiving at least one “negative message” will stop the execution of its plan,
and start a diagnostic phase.

Let us consider the plan segment in Figure 5, where only the links in Ci
local are shown,

and let us assume that agent i performs these actions in the order a1, a2, a3, a4, a5, and a6,
and that all these actions are pending. After the execution of a5, agent i discovers that a5 has
outcome ok. The outcome is propagated backwards: predecessors(a5) = {a1, a4}, thereby
the links in chains to(a5) = {4, 5} are marked as satisfied; of course, link 6 is also marked
satisfied because of the nominal outcome of a5. This enables i to conclude that action a4 has
outcome ok; whereas nothing can be concluded about action a1 since links 1 and 7 are neither
marked as satisfied, nor as missing. Let us assume now that i receives some observations
about the service on link 1, and as a consequence it concludes that a1 has outcome failed.
In this case the outcome is propagated forwardly: successors(a1) = {a2, a3, a4, a5, a6, a7},
thereby chains from(a1) = {1, 2, 3, 4, 5, 6, 7, 8}; however, links 4, 5, and 6 have already
been marked as satisfied; in addition, links 7 and 8 are not reachable via chain of missing
causal links from link 1; thus, only links 2, and 3 are marked as missing. Agent i hence
concludes that actions a2 and a3 have both outcome failed. No outcome is inferred for
action a6, which remains pending, and no outcome is inferred for action a7 that has not
been performed yet. The outcome of the pending action a6 is inferred by means of diagnosis
inferences discussed in Section 5. �

Relying on properties 4 and 6, we can determine the outcome of other pending actions
by just exploiting the causal dependencies existing among the actions, even though the
current trajectory-set is still too ambiguous to apply either Definition 3 (outcome ok) or
Definition 4 (outcome failed).

27

Micalizio & Torasso

Note that when we discover that action aih has outcome ok, the exogenous event occurred
during that action is necessarily ε; thus, we can also filter Tri[1, l] as follows:

refinedTri[1, l] = selecteh=εTr
i[1, l] (10)

where eh refers to the h-th exogenous event labeling the transition from state sh to state
sh+1 in Tri[1, l]. Through the refinement in (10) we keep in Tri[1, l] all the trajectories
which at their h-th exogenous event have ε. Thus we keep the transitions that are obtained
through relation ∆, and prune off spurious trajectories contributed by relation Γ.

On the other hand, when the outcome of an action aih is failed, we cannot refine the
trajectory-set via eh since we just know that eh cannot be ε, but this is already implicitly
obtained thanks to the refinement in equation (9).

Summing up, our weak-committed methodology is able to deal with very scarce obser-
vations by using two essential mechanisms. First, we build a trajectory-set maintaining
the history of an agent state, and we keep a list of pending action outcomes. Second, we
take advantage from observations whenever they are available by revising the knowledge an
agent has about itself; in the very favorable case, this revision process can empty the set of
pending actions.

4.5 Cooperative Monitoring Protocol

The last element of our CWCM methodology is a cooperative monitoring protocol that
allows each agent to exploit information provided by others. The idea is that an agent can
take advantage not only of its own direct observations, but also of the observations that
other agents have about the environment, and in particular about the shared resources.

The cooperative protocol plays a central role in preserving the resource safeness require-
ment even when actions that are not fully enabled are performed.

4.5.1 Interaction Scenarios

As in the BaDE strategy, in CWCM two agents, i and j, need to interact with each other
when they share a causal link lk : 〈ail , v = d, a

j
m〉 where v ∈ RES, d ∈ dom(v), and v = d is

a value assignment representing the change in the state of some resource requested by agent
j. Contextually to lk, agent i plays the service provider role (with lk ∈ Ci

out); whereas,
agent j plays the role of service client (with lk ∈ C

j
in). In the following we first present

the three interaction scenarios of CWCM. For each of them we shortly report the messages
exchanged between the two agents. Then, we present the client and provider roles in detail
by means of high-level algorithms.

• Notify-ready interaction In this interaction the provider is sure of having provided the
client with the requested service. Thus, the provider i sends a message 〈about lk notify

v = d ready〉 to the client j; no answer from the client to the provider is required.

• Notify-not-accomplished interaction In this scenario, agent i is sure that the requested
service is missing; it therefore sends agent j a message 〈about lk notify v = d not-

accomplished〉 to client j; no answer from j is foreseen.

• Ask-if interaction In this case, the provider i is unable to determine whether the
service v = d has been achieved; thus i asks j for more info by sending j a message

28

Cooperative Monitoring to Diagnose Multiagent Plans

cooperative-protocol::client(inbox, Tri[1, l], ai
l)

1. for each message m: 〈 about lk notify v = d ready 〉 in inbox s.t. lk is an incoming link for ai
l do

2. remove m from inbox

3. assert v = d in the frontier of Tri[1, l]
4. end for

5. for each message m: 〈 about lk ask-if v = d accomplished? 〉 in inbox s.t. lk is an incoming link for ai
l

do

6. remove m from inbox

7. if unable to observe v then

8. reply 〈 about lk no-info 〉
9. else

10. obs← observe v

11. if obs equals d then

12. reply 〈 about lk confirm v = d 〉
13. else if obs is not equal d then

14. reply 〈 about lk disconfirm v = d 〉
15. end if

16. end if

17. end for

18. for each message m:〈about lk notify v = d not-accomplished〉 in inbox s.t. lk is an incoming message
for ai

l do

19. remove m from inbox

20. stop plan execution
21. end for

Figure 6: The pseudo-code of the cooperative protocol, client behavior.

〈about lk ask-if v = d accomplished?〉. The client can reply to this message in three
different ways:

1. 〈about lk confirm v = d〉, this message confirms to the provider that the expected
service v = d has actually been achieved;

2. 〈about lk disconfirm v = d〉 when the expected service is missing;

3. 〈about lk no-info〉 when the client is unable to determine whether the assignment
v = d holds in the environment or not.

In case i receives a no-info message from j, i will eventually reply either with a ready

message or with a not-accomplished one.

4.5.2 Client Role

The algorithm in Figure 6 outlines the behavior of agent i when behaving as a client. This
algorithm takes as inputs the inbox (i.e., a collector of messages coming from other agents),
the current trajectory-set Tri[1, l], and the next action to be performed ail.

Agent i consumes a message m from inbox only when m is about a service required as a
premise for the execution of ail. For each incoming message m of type ready (lines 1 through
4), agent i uses the information provided by another agent as an observation, we use the
term “assert” (line 3) as a shortcut for the relational operations presented in equations (8)
and (9).

For each incoming message of the ask-if interaction (lines 5 through 17), agent i deter-
mines whether it is capable of observing v (e.g., is i equipped with the right sensor for v?).

29

Micalizio & Torasso

In case i cannot observe v, it replies to the provider with a no-info message. Otherwise, the
agent acquires an observation of v, and replies to the provider accordingly.

Finally, whenever agent i receives a not-accomplished message (lines 18 through 21), i
just stops the execution of its plan as a service required for performing ail is missing.1

It is important to note that an agent playing as a client consumes a message m only
if m is relevant for the next action to be performed. Thereby, an ask-if message could be
answered with a certain amount of delay.

4.5.3 Provider Role

The provider behavior is outlined in Figure 7. The algorithm takes as inputs the inbox, the
current trajectory-set Tri[1, l], the list of pending actions pActsi, and the last performed
action ail. More precisely, the last argument can either be null, when no action has been
performed recently, or an actual action instance whose outcome has still to be assessed. We
refine the concept of recently performed action in the next section where we present the
main CWCM plan execution loop.

The algorithm starts by checking the inbox in order to consume answers (if any) to
previous ask-if interactions. The algorithm specifies the behavior of agent i according to
the type of received message. In case of confirm messages (lines 1 through 5), agent i uses
v = d as an observation to refine its trajectory-set. The term “assert” is used again as
a shortcut for the relational operations in equations (8) and (9); the belief state which is
actually refined is the k-th +1; that is, the one that contains the effects of action aik. In
case of a disconfirm message (lines 6 through 10), agent i prunes off from the k-th +1 belief
state in Tri[1, l] each state s in which v = d holds. In case of an incoming message of
type no-info (line 11 through 18), agent i checks whether all the outgoing links of action
aik in Ci

out have been marked as ans-no-info, meaning that none of the services provided
by aik to other agents have been achieved for sure. If this is the case, agent i marks aik as
not-enough-info.

After these preliminary steps, agent i has possibly acquired some further information
from others. Thus, it can assess the outcome of all pending actions in pActsi, including ail if
not null (line 19). The algorithm in Figure 8 outlines the steps for assessing the outcomes of
actions in pActsi, and is discussed later on. Here it is sufficient to say that assess-pending-
actions returns two lists of actions, ok-list and failed-list, which can be empty, and contain
actions whose outcome is ok or failed, respectively. Of course, whenever an action in pActsi

is found to be either ok or failed, it is removed from pActsi, and added in the corresponding
list. This process also involves actions previously marked as not-enough-info.

If action ail is not null (an action has been performed recently), this is the first time
that the outcome of ail is assessed. Thus, in case ail has outcome pending (line 20), agent
i starts an ask-if interaction (lines 21-24) by asking for further information to all agents
that requires one of the services produced by ail . Otherwise, ail is null or a

i
l outcome is not

pending, and the ask-if interaction can be skipped.

From line 25 through line 34, agent i just sends ready and not-accomplished messages
according to the actions in ok-list and failed-list, respectively. In addition, agent i sends a

1. The impact of an action failure can be estimated by means of a failure propagation mechanism (Micalizio
& Torasso, 2007b). For the sake of discussion, we leave the topic out of this paper.

30

Cooperative Monitoring to Diagnose Multiagent Plans

cooperative-protocol::provider(inbox, Tri[1, l], pActsi, ai
l)

1. for each message m:〈about lk confirm v = d〉 in inbox do

2. remove m from inbox

3. let lk be 〈ai
k, v = d, aj

m〉
4. assert v = d in the k-th +1 belief state within Tri[1, l]
5. end for

6. for each message m:〈about lk disconfirm v = d〉 in inbox do

7. remove m from inbox

8. let lk be 〈ai
k, v = d, aj

m〉
9. prune from the k-th +1 belief state within Tri[1, l] any state s in which v = d

10. end for

11. for each message m:〈about lk no-info〉 in inbox do

12. remove m from inbox

13. let lk be 〈ai
k, v = d, aj

m〉
14. mark lk as ans-no-info
15. if all the links outgoing from ai

k are marked as ans-no-info then

16. mark ai
k as not-enough-info

17. end if

18. end for

19. 〈ok-list, failed-list〉 ← assess-pending-actions(pActsi , Tri[1, l])
20. if ai

l is not null and has outcome pending then

21. for each link lk:〈ai
l , v = d, aj

m〉, lk ∈ Ci
out (i 6= j) do

22. send to j message m:〈 ask-if v = d accomplished?〉
23. end for

24. end if

25. for each action ai
k ∈ ok-list do

26. for each link lk : 〈ai
k, v = d, aj

m〉 do
27. send to j message m:〈about lk notify v = d ready〉
28. end for

29. end for

30. for each action ai
k s.t. (ai

k ∈ failed-list) or (ai
k ∈ pActsi and marked as not-enough-info) do

31. for each link lk : 〈ai
k, v = d, aj

m〉 do
32. send to j message m:〈about lk notify v = d not-accomplished〉
33. end for

34. end for

35. return 〈ok-list, failed-list〉

Figure 7: The pseudo-code of the cooperative protocol, provider behavior.

not-accomplished message for each pending action aik marked as not-enough-info. A pending
action marked as not-enough-info highlights how scarcely observable the environment is.
In fact, neither agent i, nor other agents waiting for services provided by aik, are capable
of determine whether at least one of the expected services has been provided or not. To
deal with such an ambiguity, agent i prudentially considers the action as “probably failed”.
Although this choice could seem strong, it is necessary to preserve the resource safeness
requirement in very scarcely observable environments. Agent i has no evidence supporting
the successful achievement of the effects expected by ail, and hence i cannot notify the
success. At the same time, other agents might be waiting for the services provided by ail,
thus these agents would be stalling without even knowing it. Considering ail as failed allows
i to get out of the impasse by notifying the failure to the other agents, which may attempt
some form of plan repair.

31

Micalizio & Torasso

assess-pending-actions(pActsi , Tri[1, l])
1. ok-list← {}
2. failed-list← {}
3. for each action ai

k ∈ pActsi do

4. if ∀s ∈ Bi
k+1, s |= effects(ai

k) then
5. ok-list← ok-list ∪ {ai

k}
6. Tri[1, l]← selectek=εTr

i[1, l]
7. oks←propagateSuccess(pActsi , ai

k)
8. ok-list← ok-list ∪ oks

9. pActsi ← pActsi \ oks
10. else if ∀s ∈ Bi

k+1, s 6|= effects(ai
k) then

11. failed-list← failed-list ∪ {ai
k}

12. faulty←propagateFailure(pActsi, ai
k)

13. failed-list← failed-list ∪ faulty
14. pActsi ← pActsi\ faulty
15. end if

16. end for

17. remove, if present, mark not-enough-info from any action in ok-list or in failed-list
18. return 〈ok-list, failed-list〉

Figure 8: The pseudo-code for the assessment of the pending actions.

The algorithm terminates by returning the two lists ok-list and failed-list to the calling
algorithm, shown in Figure 10 and discussed in the next section.

4.5.4 Assessing Action Outcomes

Before presenting the main CWCM algorithm, we shortly present the algorithm for assessing
the pending actions in pActsi at a given execution step. As discussed earlier, the assessment
relies on properties 4 and 6, and on equation (10). The algorithm is shown in Figure 8; it
takes as inputs the list of pending actions pActsi, and the current trajectory-set Tri[1, l].
The algorithm returns two lists, ok-list and failed-list, of actions whose outcomes are either
ok or failed, respectively.

The algorithm considers the actions in pActsi (if any), and for each of them tests whether
the action has outcome ok or failed. In the first case, the success is backward propagated
(line 7): oks is the list of successfully completed actions discovered by means of the propa-
gation; these actions are removed from pActsi and added to ok-list. In the second case, the
failure is forward propagated (line 12): faulty is the list of faulty actions discovered by means
of the failure propagation; these actions are removed from pActsi and added to failed-list.
The algorithm terminates by returning the two, possibly empty, lists ok-list and failed-list.
As mentioned above, an action aik ∈ pActsi, previously marked as not-enough-info, can be
found with a definitive outcome (ok or failed). This may happen because, although the
other agents have not provided i with information about the effects of aik, agent i could
exploit the outcome propagation of the actions preceding and following aik. Of course, mark
not-enough-info is removed from actions in ok-list or in failed-list.

Proposition 7 (Protocol Correctness - Resource Usage) The cooperative monitor-
ing protocol guarantees that the resource safeness requirement is never violated during the

32

Cooperative Monitoring to Diagnose Multiagent Plans

execution of MAP P . In other words, shared resources are used correctly throughout the
plan execution even when action failures occur.

Proof: Let us consider the interaction scenarios, and show that in each of them the
resources are accessed consistently; namely, it never happens that two (or more) agents
access the same resource simultaneously.

Given the causal link lk : 〈aik, res = available, a
j
m〉, the interaction activated by agent i

depends on the outcome of action aik.
The notify-ready interaction is equivalent to the only interaction of the BaDE framework,

and occurs when aik has outcome ok. In this case all the expected services have been achieved
for sure. Thus, when i notifies j that res is now available, i has already released res: the
resource is passed from i to j consistently.

The ask-if scenario occurs when aik has outcome pending, and splits into three cases.

1. Agent j (i.e., the client) directly observes that the resource is available. It can therefore
access the resource safely in mutual exclusion.

2. Agent j directly observes that the resource is still occupied by i. In this case j does not
attempt to access res. The resource is being used by a single agent and the resource
safeness requirement is not violated.

3. Agent j is unable to say whether resource res is available. From the point of view
of j, the state of res is unknown, and hence, since the preconditions of ajm are not
satisfied, j keeps waiting for more information from i. Also in this case res is used at
most by one agent.

The last interaction scenario occurs when aik has outcome failed. In this case, i notifies

j that the resource is not available: j does not try to use res as the preconditions of ajm are
not satisfied. �

Proposition 8 (Protocol Correctness - Provided Services) Let i and j be two agents
playing the roles of provider and client, respectively, about a given causal link lk : 〈aik, v =

d, a
j
m〉. The cooperative monitoring protocol enables the two agents to determine the actual

value of variable v or at least to determine whether v is different from the expected value d.

Proof: The proposition can be proved by considering the different interaction scenarios
of the protocol. The notify-ready interaction occurs when agent i can conclude that action
aik has outcome ok. (This may happen by means of direct observations about the effects
of aik, or by means of the backward propagation of nominal outcomes.) Since action aik
has outcome ok, all its effects, including v = d, have been achieved. The ask-if interaction
occurs when agent i cannot determine the outcome of aik, and hence the truth value of
statement v = d is not known. In that case agent j is in charge of determining whether
the statement v = d is true or false. Agent j can reach this result by means of direct
observations on v. The possible answers of j are three:

• j directly observes v = d, thus the service has been provided;

• j directly observes that v is not d, thus the service has not been provided;

33

Micalizio & Torasso

TrA1[1, 5]

BA1

1

BA1

2

BA1

3

BA1

4
BA1

5

εε

ε

ε

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15
ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

ξ11

ξ12

ξ13

obsA14e3 = ε

Figure 9: The trajectory-set kept by agent A1 after the execution of the first four actions.

• j is unable to observe v, in that case agent i relies on answers provided by other agents,
if any, asked about the same link. Agent i can only conclude that v = d is true when
at least one of the received answers allows it to conclude the nominal outcome of aik;
otherwise, the action is assumed failed, and hence also the service v = d is considered
as missing.

In the last interaction scenario, agent i has directly observed, or indirectly inferred by means
of the forward failure propagation, that v = d is false. �

This proposition can be considered as a sort of generalization of Proposition 7 as it
applies to all possible services, not only those services mentioning the available value. This
proposition is important because allows the agents to diagnose themselves without the
necessity of interacting with each other, as we discuss in Section 5.

Proposition 9 (Protocol Complexity) The number of messages exchanged among the
agents is linear in the number n of inter-agent causal links.

Proof: The provider-client interaction occurs only when an agent, playing the role of
provider, has performed an action ail with at least one outgoing, inter-agent causal link.
The number of messages exchanged for handling an inter-agent causal link depends on the
outcome of ail . When ail has either outcome ok or failed, the provider sends just one message
to the client (i.e., ready or not-accomplished, respectively). On the other hand, when ail has
outcome pending, the two agents exchange each other up to three messages: provider sends
ask-if, client answers no-info, and then provider either replies ready or not-accomplished.
Thus in the worst scenario, the number of messages exchanged among the agents is 3·n,
and hence O(n). �

Example 5. Let us assume that after the execution of the first four actions, the trajectory-
set kept by agent A1 is the one depicted in Figure 9. This trajectory-set contains 5 belief
states and none of them is sufficiently refined to determine the outcome of an action; thus,
all the actions are currently pending. The edges from a state to another labeled with
ε represent the nominal progress of the plan execution; the others instead, labeled with
ξ1 . . . ξ13, model the occurrence of some exogenous event (possibly ξ?).

34

Cooperative Monitoring to Diagnose Multiagent Plans

To show how an agent can take advantage of the pieces of information provided by
others, let us assume that agent A1 receives from another agent an observation obsA14 about
the effects of action a3. For instance, let us assume that action a3 corresponds to a move
action, and that observation obsA14 refers to the position of agent A1 after the execution of
a3. Observation obsA14 is therefore used to refine the belief state BA1

4 . In our example, s8
and s9 are the only states in BA1

4 that are consistent with the observation. Thanks to this
first refinement (see equations (8) and (9)) we are able to prune off all those trajectories
that do not pass either through s8 or through s9; these trajectories are depicted as dotted
edges. Dashed edges, on the other hand, are still possible so these trajectories are still kept
within the trajectory set.

However, a further refinement of the trajectory-set is possible when we discover that
the refined BA1

4 is now sufficiently precise to determine that action a3 has outcome ok. In
fact, the A1’s position conveyed by observation obsA14 matches with the expected one; this
means that event e3, affecting a3, has to be ε. By pruning the trajectory-set with e3 = ε

(equation (10)), we are in the fortunate case in which BA1

3 contains just state s4, where the
nominal effects of action a2 are satisfied, too. By backwards propagating the success of a3,
first on a2, and then on a1 we can conclude that the three actions have all outcome ok.
In fact, after this process, the resulting trajectory-set maintains just the bold, solid edges;
whereas all dashed edges have been pruned off. The resulting trajectory-set, however, does
not allow us to conclude anything about a4, which still remains pending. �

4.6 Cooperative Weak-Committed Monitoring: Main Algorithm

The main CWCM algorithm is outlined in Figure 10. Each agent i ∈ T follows this algo-
rithm to execute and monitor its own local plan P i.

After a few initial steps that set up the agent trajectory-set and the set of pending
actions, the algorithm iterates over the actions in P i as far as the next action to be performed
coincides with the pseudo-action ai∞, meaning that P i has been completed. (Remind that
we assume all actions in P i providing atoms in premises(ai∞) have observable effects.) At
the beginning of each iteration, the agent interacts with other agents (line 5) by playing
the client role of the cooperative protocol. At this step, an agent i consumes ready and
not-accomplished messages (if any), and acquires information about the resources required
to perform its next action ail. In case the agent receives a not-accomplished message, it stops
the plan execution as some of the preconditions for ail will never be satisfied. In case an
ask-if message is received, the agent establishes whether it is able to observe the required
service and answers accordingly (see algorithms in figures 6 and 7).

Once new information has been acquired and asserted within the agent trajectory-set,
agent i assesses whether the next action ail is possibly enabled (Definition 2). In the positive
case, the action is performed in the real world (line 8). Subsequently, the agent estimates
the possible evolutions of ail by exploiting both ∆(ail) and Γ(ail) to extend the current
trajectory-set (line 9). After the completion of action ail , the agent’s direct observations are
gathered in obsil+1 (line 10) and asserted in the extended trajectory-set (line 11); also in
this case “assert” is a shortcut for the relational operations described in equations (8) and
(9). Action ail is then temporarily put into the list of the pending actions (line 12). The
outcome assessment is in fact postponed as this step regards all the current pending actions,

35

Micalizio & Torasso

Cooperative-Weak-Committed-Monitoring(P i)
1. l← 1
2. Tri[1, l]← Ii //The initial belief state is the initial state of agent i
3. pActsi ← ∅
4. while ai

l 6= a∞ do

5. cooperative-protocol::client(inbox, Tri[1, l], ai
l)

6. last← null

7. if ai
l is possibly enabled in frontier of Tri[1, l] then

8. execute ai
l

9. Tri[1, l + 1]← Tri[1, l]⊗M(ai
l)// trajectory-set extension by using ∆(ai

l) and Γ(ai
l)

10. obsil+1 ← gather direct observations
11. assert obsil+1 in the frontier of Tri[1, l + 1]
12. pActsi ← pActsi ∪ {ai

l}
13. last← ai

l

14. l ← l + 1
15. end if

16. 〈ok-list, failed-list〉 ←cooperative-protocol::provider(inbox, Tri[1, l], pActsi, last)
17. if failed-list 6= ∅ or ∃ai

k ∈ pActsi marked as not-enough-info then

18. stop execution

19. diagnose(P i, pActsi, ok-list, failed-list, T ri[1, l])
20. switch to safe mode
21. end if

22. end while

Figure 10: Cooperative Weak-Committed Monitoring: high-level algorithm.

and it is activated even when no action has been executed. It is important to note that
each iteration of the loop does not necessarily corresponds to the execution of an action.
As we have seen, the provider behavior of the cooperative protocol needs to know whether
an action has been “recently” performed or not (i.e., whether an action has been performed
in the current iteration). To this purpose we use variable last, which is set to null at the
beginning of each iteration, and set to action ail only when the action is actually performed
(line 13). Whenever an action has been performed, the counter l is incremented (line 14);
that is, the l-th plan execution step has been completed.

The while loop proceeds with agent i behaving as provider (line 16). This step also
includes the evaluation of the outcomes of all the actions in the pActsi list (see algorithm in
Figure 7). The provider behavior returns two lists, ok-list and failed-list, maintaining the
actions with outcome ok and failed, respectively; of course, both lists could be empty. As a
side effect, pActsi is modified by removing any action whose outcome is no longer pending.
When the list failed-list is not empty, or at least one action in pActsi is marked as not-

enough-info, the agent stops the plan execution, and starts a diagnostic process (discussed in
Section 5), then switches to safe mode. An agent in safe mode does not perform actions, but
interacts with other agents trying to reduce the impact of its failure. First of all, an agent
in safe mode answers any ask-if message with no-info, this prevents the sender from waiting
indefinitely for an answer. Moreover, an agent in safe mode releases as many resources as
possible by sending appropriate ready messages; this allows other agents to access those
resources and proceed with their plans. A detailed discussion of the safe mode is out the
scope of this paper, but it can be found in the works by Micalizio and Torasso (2007b) and
Micalizio (2013).

36

Cooperative Monitoring to Diagnose Multiagent Plans

In case no failure has been discovered, and all actions performed so far have outcome
ok (i.e., pActsi gets empty), the trajectory-set Tri can be simplified. In fact, since all the
past actions have a nominal outcome, it is no longer required to keep the whole past history
since the beginning of the plan execution. Thus, it is safe and convenient to forget the past
and keep within the trajectory-set just the frontier. The implementation we used in our
experiments adopts this strategy for keeping the size of a trajectory-set manageable. For
the sake of discussion, we do not provide further details on this point.

4.7 Cooperative Weak-Committed Monitoring: Correctness

We conclude this section by discussing the correctness of the algorithm in Figure 10.

Theorem 1 [CWCM Correctness] CWCM assigns action aik outcome:
- ok iff the action has not been affected by exogenous events;
- failed iff an exogenous event, possibly ξ?, has affected aik;
- alternatively, CWCM marks a pending action aik as not-enough-info iff no outcome can
be inferred relying on observations from other agents, nor on the outcome propa-

gation technique.

Proof: Part 1: action aik has outcome ok iff aik is not affected by exogenous events. In
other words, we have to show that aik reaches effects(aik) iff ek = ε in each trajectory within
Tri[1, l], where k : 1..l − 1.
(⇒) By contradiction, let us assume that effects(aik) have been reached, but the nominal
trajectory has been pruned off Tri[1, l]. This can happen during the monitoring process in
just two ways: (a) through observations, or (b) through the outcome propagation. Let us
consider case (a), and let us suppose that during the monitoring phase agent i receives ob-
servations obsik+1 consistent with effects(aik). As an effect of pruning Tri[1, l] with obsik+1,
the nominal transition ek = ε is pruned off Tr1[1, l]; this, however, is in contradiction with
the definition of extended model M(aik), in which only the nominal transitions labeled with
ε lead to the nominal effects(aik). Thus, either obs

i
k+1 is inconsistent with effects(aik), and

hence aik cannot be ok, or obsik+1 is consistent with effects(aik) and ek is ε in all trajectories
within Tri[1, l].

Let us now consider case (b), the outcome propagation. There are two cases: backward
propagation of ok, and forward propagation of failed. The backward propagation of ok
possibly assigns the nominal outcome to actions aik ∈ pActsi; after the propagation, ek
equals ε in each trajectory within Tri, by definition. The forward propagation of failed
possibly assigns the not nominal outcome to some actions in aik ∈ pActsi; after the prop-
agation ek is not ε in any trajectory in Tri[1, l]. The two propagations cannot change the
outcome of an action which is not in pActsi: if an action has already been assigned an out-
come, that outcome cannot be changed anymore. In particular, if aik has outcome ok, and
aih ∈ predecessors(aik) is discovered faulty, then the forward propagation of failed cannot
prune ek = ε from Tri[1, l]. In fact, as discussed in Proposition 6, the forward propagation
impacts only the causal links that are neither marked as satisfied, nor as missing, and that
are along a chain of links starting from one of the links in miss(aih). But if aik has been
assigned outcome ok, then agent i must have received sufficient observations to determine
that the premises of aik were satisfied. It follows that the services required by aik have

37

Micalizio & Torasso

already been marked as satisfied. Thus, the nominal transition ek = ε cannot be lost as an
effect of the outcome propagation.
(⇐) If aik is not affected by an exogenous event, and hence eh = ε in each trajectory within
Tr1[1, l], then aik has outcome ok (i.e., reaches effects(aik)). By construction, the extended
model M(aik) guarantees that only the transitions labeled as ε leads to states where all
expected effects hold. It follows that, when ek = ε in all trajectories in Tri[1, l], aik must
have outcome ok necessarily.
Part 2: action aik has outcome failed iff an exogenous event, possibly ξ?, has affected its
execution. This can be demonstrated following a reasoning similar to the one in Part 1; we
omit it for brevity.
Part 3: action aik marked as not-enough-info iff no outcome can be inferred relying on
observations from other agents, nor on the outcome propagation technique. It is easy to see
that CWCM marks aik as not-enough-info only in one occasion: in the provider behavior,
after that all the answers gathered about aik in an ask-if interaction are no-info. This exactly
means that no other agent in the team can provide information about the services provided
by aik. On the other hand, the marking is removed only after that aik has been inserted either
into ok-list or failed-list; thus it cannot happen that an action with a definite outcome is
also marked as not-enough-info. �

Theorem 2 Given the MAP system S = 〈T , RES,P 〉, where P is the plan 〈I,G,A,R,C〉,
the global goal G is achieved from I iff all actions in A have outcome ok.

Proof: In the previous theorem we have demonstrated that an action has outcome ok only
when all its effects have been achieved, and that such an outcome cannot be changed as an
effect of further refinements of the trajectory-set. Thereby, if the global goal G has been
reached, all actions in A must have reached their effects, and hence must have outcome ok.
In fact, since we assume that P has no redundant action (i.e., each action in P contributes
to G), it is sufficient that at least one action fails reaching one effect to have: 1) at least
one action has outcome failed, and 2) at least one piece of G has not been achieved.

On the other hand, if all actions in A have outcome ok, G must have been achieved
necessarily. By absurd, all actions in A are ok, but G has not been reached. This can only
happen when P has a flaw, and does not produce G even under nominal conditions, against
the initial assumptions (see Section 2) that P is flaw-free and actually produces G. �

Example 5 can be used to clarify the proof. In this example we have shown that, when
we restrict BA1

4 to a belief state in which each state satisfies the expected effects of action
a3, then action a3 has outcome ok. At the same time, this outcome is backward propagated
so that only edges labeled with ε can lead to BA1

4 . If action a4 were the last action of A1’s
plan, the effects of such an action must be observable, by hypothesis. Now, depending on
the available observations, agent A1 can either conclude that s12 is the actual state after a4
(thereby: (1) the goal has been reached, (2) the trajectory-set contains just one trajectory
in which each edge is labeled with ε, and (3) all actions have outcome ok), or s13 is the
actual agent’s state, and hence at least one action (i.e., a4 itself) must have outcome failed.

Corollary 1 When the global goal G is achieved, each agent i ∈ T keeps in its trajectory-set
Tri[1, l] only the nominal trajectory 〈s1, ε, s2, . . . , ε, sl+1〉, where s1 |= Ii and sl+1 |= Gi.

38

Cooperative Monitoring to Diagnose Multiagent Plans

Proof: This follows from the two previous theorems. If G has been reached, all actions
in A have outcome ok (Theorem 2). On the other hand, since aik is ok iff ek = ε in
every trajectory within Tri[1, l] (Theorem 1), it follows that each agent i only keeps in its
trajectory-set the nominal trajectory. �

The correctness of the monitoring process can therefore be summarized in the following
statement: When the execution of P is not affected by any anomalous event, the cooperative
monitoring is able to keep a trace of the progress until the achievement of the goal G since
the nominal transition is never lost. On the other hand, when the execution of P is affected
by at least one anomalous event, even not known in advance, the cooperative monitoring is
able to detect it and to stop the execution phase. In addition, Proposition 7 assures that
in nominal, as well as anomalous, situations the resources are always accessed consistently.

5. Plan Diagnosis: a Local Strategy

Plan diagnostic inferences start as soon as the CWCM algorithm has discovered the failure
of at least one action (i.e., failed-list is not empty), or a pending action is marked as not-
enough-info. In this section we discuss what we mean by plan diagnosis, and how it can be
inferred. We propose a distributed approach in which each agent infers a diagnosis about
its local plan autonomously. In fact, thanks to Proposition 8, the plan execution is safe
with respect to the use of resources, so an agent can never blame other agents to explain
its own action failures.

5.1 Inputs from CWCM

In the previous section we have focused on the monitoring purpose of the CWCM methodol-
ogy. It is important to note, however, that CWCM also produces useful pieces of information
from a diagnostic point of view. First of all, the actions in failed-list could be considered as
a plan diagnosis according to the definition by Roos and Witteveen (2009); namely, a subset
of actions that when assumed faulty explain the observations. However, in failed-list we
do not take into account that some action failures might be the indirect consequences of
others. Thus, failed-list is not sufficient as we would like to isolate the primary action
failures that have caused other secondary action failures.

In addition, CWCM produces a trajectory-set Tri[1, l], which can be seen as a set
of consistency-based diagnoses (Reiter, 1987). Each trajectory in Tri[1, l] is a possible
explanation for the agent’s behavior consistent with the observations received by the agent
itself.

5.2 Event-Based Explanations

Dealing directly with Tri[1, l], however, might be awkward since it encodes all the possi-
ble explanations, including the ones mentioning the indefinite exogenous event ξ?, which
should be considered as very unlikely. Moreover, trajectories which share the same sequence
of events, but differ for a few state variables, are considered as completely different expla-
nations. Thus, Tri[1, l] needs to be processed in order to be useful. A first reduction of
Tri[1, l] is given by projecting it over the event variables e1, . . . , el−1; we call the resulting

39

Micalizio & Torasso

structure Event-based Explanations (EVE):

EVE = projecte1,...,el−1
Tri[1, l]. (11)

EVE is a set of sequences of exogenous events (including ε and ξ?). Each sequence in
this set is a possible consistency-based diagnosis for the anomalous behavior of the agent.
Since EVE could still contain a huge number of diagnoses, EVE is not very informative
for a human user who has to decide how to recover from a plan failure. One way for
further reducing the number of diagnoses would be to prefer diagnoses which involve the
minimum number of exogenous events. Unfortunately, this preference criterion would lead
to misleading results because events are dependent on one another. To find meaningful
explanations, one should identify what exogenous events have caused primary action failures
and what exogenous events correspond to secondary action failures.

5.3 Minimum Primary Action Failures

To facilitate the identification of primary action failures, we distinguish between indefinite
events ξ∆? contributed by the ∆ portion of an action model, and indefinite events ξΓ? con-
tributed by the Γ portion. While this distinction is not necessary in CWCM, it turns out to
be useful for the diagnostic purpose. Intuitively, ξ∆? denotes the occurrence of an exogenous
event affecting the execution of a (possibly) enabled action; ξ∆? is therefore an unknown
abrupt change affecting the nominal behavior of an action. On the other hand, ξΓ? is just
the indefinite event we use to label state transitions when an action has been performed
from a state not satisfying its preconditions. Relying on this distinction, it is possible to
identify a primary failure by means of the following definition.

Definition 7 An action ak ∈ pActsi∪failed-list is a primary action failure iff there exists
an explanation x ∈ EVE such that x[ek] 6= ε and x[ek] 6= ξΓ? , where x[ek] is the k-th event
in explanation x.

In other words, an action ak is considered as a primary failure in a given event-based
explanation x ∈ EVE iff the occurrence of an exogenous event mentioned in ∆(ak) is
assumed in x. Note that in Definition 7 we also examine the set of pending actions pActsi,
including actions marked as not-enough-info. In addition, note that the set of primary action
failures can never be empty. In fact, an agent starts a diagnosis phase only when one of its
performed actions has been labeled as failed. On the other hand, when an agent stops the
execution of its plan because of another agent fails in providing a service, the first agent is
exonerated from diagnosing itself since none of its actions have been labeled as failed, and
the root causes for the missing service have been located outside its plan.

Secondary failures are caused by a primary failure, and are defined as follows:

Definition 8 Let x ∈ EVE be a possible explanation, let ak ∈ failed-list ∪ pActsi be
a primary failure in x, then all actions ah ∈ successors(ak) such that x[eh] = ξΓ? are
secondary failures caused by ak according to explanation x.

Note that, given a primary failure ak in an explanation x ∈ EVE , not all the actions in
successors(ak) are necessarily secondary failures (see Proposition 4). In fact, even though
ak has not achieved all its effects (i.e., it has outcome failed), the action may have reached

40

Cooperative Monitoring to Diagnose Multiagent Plans

some of them. As a consequence, some of the actions in successors(ak) may be enabled
despite the failure of ak. For this reason, in Definition 8 we require that an action ah ∈
successors(ak) is labeled as a secondary failure only when the exogenous event ξΓ? is assumed
in the explanation x. From the definitions of primary and secondary failures the proposition
below follows directly.

Proposition 10 Given an explanation x ∈ EVE, the set of primary action failures Prmx,
and the set of secondary action failures Sndx extracted from x are disjointed.

Relying on this proposition, we define Primary Action Failure Diagnoses (PADs):

Definition 9 Let x ∈ EVE be a possible event-based explanation, the primary action-failure
explanation (PAD) extracted from x is the pair 〈Prmx, Sndx〉 such that Prmx and Sndx
are the sets of primary and secondary failures, respectively, extracted from x.

Of course, since EVE in general contains several explanations, and since primary failures are
assumed to be independent of each other, it is possible to extract the minimum cardinality
primary action-failure diagnoses (mPADs) by simply selecting the explanations with the
minimum set of primary failures:

mPADs = {Prmx such that x ∈ EVE and |Prmx| is minimum } (12)

Minimum primary action failure diagnoses (mPADs) are indeed what we mean for plan
diagnosis: they localize which actions should be qualified as failed in order to explain the
anomalous observations.2

5.4 Refining the Plan Diagnosis

Having inferred plan diagnosis, one can refine these diagnoses by identifying their root
causes. Our refined explanations are expressed in terms of exogenous events, and can be
extracted from the EVE set.

Definition 10 Let ah be a primary action failure, and let EVE(ah) be the set of explana-
tions x ∈ EVE such that ah ∈ Prmx, then the refined explanation for action ah is

refinedExp(ah) =
⋃

x∈EVE(ah)

x[eh]. (13)

In other words, refinedExp(ah) consists of all the exogenous events that might have
occurred during the execution of action ah, and hence might have caused the failure of ah.
Of course, since ah is a primary failure, all secondary failures caused by ah can also be
explained by the occurrence of one of the events in refinedExp(ah).

2. Note that different preference criteria could be adopted to select explanations in EVE . For instance, one
could prefer minimality rather than minimum cardinality.

41

Micalizio & Torasso

a1 a2 a3 a4 a5 a6 a7 a8

Figure 11: A portion of the local plan assigned to agent i

Example 6. Let us consider the simple local plan in Figure 11 assigned to agent i. To
simplify the picture we just show the local causal links in Ci

local. Let us assume that, after
the execution of such a local plan, agent i detects the failure of action a8. The diagnostic
process is activated in order to explain such a failure by identifying its (minimum) set of
primary action failures. The diagnostic process receives in input the list of failed actions
failed-list={a8}, the list of successfully completed actions ok-list={a4}, and the list of
the pending actions pActsi = {a1, a2, a3, a5, a6, a7}. In addition, the diagnostic process
receives also the trajectory-set Tri[1, 9], but for simplicity we show in Table 2 just the set
of event-based explanations (EVE) extracted from the trajectory-set.

From Table 2 it is easy to see that all the explanations, except the last one, explain
the failure of action a8 as an indirect effect of a previous failure (i.e., a8 is a secondary
failure). Only the last explanation considers a8 as a primary failure, but an unknown, and
very unlikely, exogenous event ξ∆? must be assumed.

The first step of the diagnostic process consists in inferring the set of mPADs diagnoses.
Thus, we identify primary and secondary failures for each explanation in EVE :

PAD : { x1, x2 : 〈{a1}, {a3, a5, a8}〉

x3 : 〈{a6, a7}, {a8}〉

x4 : 〈{a3, a6, a7}, {a8}〉

x5 : 〈{a2}, {a7, a8}〉

x6 : 〈{a8}, ∅〉 }

We can observe some interesting consequences. First of all, some explanations in EVE are
collapsed within a single explanation in PADs; see for instance explanations x1 and x2.
This is an advantage as we can reduce the number of alternative explanations. In addition,
the sets of primary action failures can be used to identify (subset-)minimal diagnoses. For
instance, explanation {a6, a7} derived from x3 is a minimal diagnosis, whereas explanation
{a3, a6, a7} extracted from x4 is not. Finally, since we assume that primary failures are
independent of each other, we can prefer the subset-minimal diagnoses whose cardinality is

a1 a2 a3 a4 a5 a6 a7 a8
x1 ξ1 ε ξΓ? ε ξΓ? ε ε ξΓ?
x2 ξ5 ε ξΓ? ε ξΓ? ε ε ξΓ?
x3 ε ε ε ε ε ξ2 ξ3 ξΓ?
x4 ε ε ξ6 ε ε ξ2 ξ3 ξΓ?
x5 ε ξ4 ε ε ε ε ξΓ? ξΓ?
x6 ε ε ε ε ε ε ε ξ∆?

Table 2: The set EVE maintained within the current trajectory-set

42

Cooperative Monitoring to Diagnose Multiagent Plans

minimal. In our example they are mPADs = {{a1}, {a2}, {a8}}. In fact, it is thus sufficient
to assume the failure of one of these actions to explain the observations.

As a further step, for each action in mPADs, one can also infer a refined diagnosis.
For instance, it is easy to see that the primary action failure a1 has two alternative refined
diagnoses: either ξ1 or ξ5 (see Table 2); whereas the primary action failure a2 has ξ4 as
single possible refined diagnosis. Finally, one has to assume the occurrence of ξ∆? to explain
the primary action failure a8. Relying on refined diagnoses, other preference criteria could
be employed and conclude that the primary failure a8 is less likely than a1 and a2, and
hence it could be disregarded. �

Note that, since each agent is able to diagnose its own plan autonomously, a plan
diagnosis at global level could be inferred by combining the local solutions inferred by each
agent in the team, and such an integration is guaranteed to be globally consistent. In fact,
thanks to Proposition 8 an agent can never blame another agent for the failure of one of its
actions.

6. Experimental Analysis

So far we have addressed both the CWCM methodology and the diagnostic inferences in
a declarative manner by means of relations and Relational operators between relations.
Relations are a simple, yet powerful formalism to represent nondeterministic action models
and ambiguous belief states. In addition, they can also be used to model very complex
structures such as the trajectory-set and the event-based explanations (EVE).

When it comes to actually implementing the CWCM methodology, however, it must be
noticed that the computational complexity of the algorithm in Figure 10 is dominated by the
complexity of the (macro-)operator ⊗ involved in the extension of the current trajectory-
set. On the other hand, the diagnostic inferences are based on the projection of the current
trajectory-set over the event variables (see equation 11). Both these steps might be com-
putationally very expensive, and an efficient implementation of relations and relational
operators therefore becomes essential. A possible way to cope with this issue is to translate
the relations into some symbolic, and hence compact, formalism, and then encode the Rela-
tional operators as operations in the selected symbolic formalism. Alternatively, it may be
possible to exploit the recent advancements in Continuous Query Languages (CQLs) to deal
with data streams (see e.g., the STREAM system in Arasu, Babu, & Widom, 2006), and im-
plement CWCM relying on the primitives made available by the Data Stream Management
System at hand.

In this paper, we have chosen the method of knowledge compilation, and in particular,
we have selected the Ordered Binary Decision Diagram (OBDD) (Bryant, 1986, 1992) for-
malism to encode relation and Relational operators. This choice is justified by two main
reasons: first, OBDDs are nowadays a well-known language made available through many
mature libraries; second, the theoretical results by Darwiche and Marquis (2002) suggest
that OBDDs can answer most of queries in polynomial time provided that their sizes remain
tractable. An in-depth description on how the cooperative monitoring and diagnosis have
been implemented via OBDDs is reported in the Appendix.

The rest of the section is organized as follows. First, in Section 6.1, we sketch the
software architecture of our implementation; then in Section 6.2, we present the experimen-

43

Micalizio & Torasso

XML XML XML

XML

A1 AN

domain

exogenous events

initial
state P

P A1 P ANRA1 RAN

TrA1 TrAN

outcome assessmentoutcome assessment

A1’s next action

AN’s next action

extend trj extend trj

CWCMCWCM DIAGNOSISDIAGNOSIS

DISPATCHER

...

SIMULATOR domain; initial state

detected failuredetected failure

cooperative protocol messages

observations for A1

observations for AN

Figure 12: The software architecture of the CWCM implementation used in tests.

tal setting we used to carry out the tests, consisting in the simulated execution of several
MAPs. Finally, we discuss the most interesting results about monitoring (Section 6.4), and
diagnosis (Section 6.5).

6.1 Software Architecture and Implementation

The CWCM proposal has been implemented as a Java SDK 7 program. The software
architecture is shown in Figure 12, highlighting the main actors: the Dispatcher, the N

agents of a team (from agent A1 to agent AN), and the Simulator. The picture also shows
the internal architecture of the agents. Solid edges between modules represent data flows,
dashed edges represents instead control flows, whereas the dotted edge between CWCMs
abstracts all the messages exchanged by the agents during the cooperative monitoring. The
simulation of a MAP P starts by submitting to the Dispatcher module three XML files
containing, respectively, the system domain (i.e., what agents and objects are defined in the
scenario at hand), the system initial state (e.g., the initial positions of agents, the initial
states of resources, etc.), and the MAP P to be performed. The Dispatcher decomposes
P into local plans so that each agent will receive just the portion of P of its interest. In
particular, once P has been decomposed, the Dispatcher activates the agents, which are
implemented as threads, by passing them their initial states and their local plans.

44

Cooperative Monitoring to Diagnose Multiagent Plans

OBDDs are made available through the JavaBDD library 3, which provides a java, easy-
to-use interface between Java and BuDDy 4, a popular and mature library for manipulating
OBDDs written in C.

Besides the agents, the Dispatcher activates also a Simulator, implemented as a thread.
Differently from agents, however, the Simulator does not receives in input a plan, but just
the initial state of the system. In addition, the Simulator reads from a fourth XML file the
exogenous events that have to be injected during the plan execution. More precisely, the
file is a list of agents’ actions, each of which is associated with the anomalous event that
must occur during the execution of that action. Of course, only the subset of actions to be
affected by exogenous events are mentioned in this file.

Once the environment has been set-up, the Dispatcher starts the agents, which will
execute the CWCM algorithm as discussed in Section 4. The actual execution of an action
is just simulated by the Simulator: Whenever an agent intends to perform an action, it
sends a message to the Simulator conveying the action to be performed. The Simulator
will simulate the action execution taking into account possible exogenous events that have
to be injected. If the action is associated with observations, the Simulator sends to the
corresponding agent an appropriate message. It is worth noting that also the Simulator,
like any other agent, uses OBDDs to estimate the next state of the whole system according
to the actions that are currently in progress. Differently from the agents, however, the
Simulator always knows the precise state of each agent and resource in the system. Some
more details about the use of OBDDs for handling relations are given in Appendix A.
As discussed in Section 4, whenever the failure of an action is detected by an agent i,
the Diagnosis module of that agent is activated. The results of the diagnosis inferences,
discussed in Section 5 are saved in a report file Ri associated with agent i.

The experiments described in the following were performed on a PC, Intel Core 2 Duo,
2.80 Ghz, 8 GB RAM equipped with Windows 7 OS. Each test is repeated ten times,
and average values are considered in the experimental analysis in order to absorb load
fluctuations of the CPU.

6.2 Experimental setting

The domain we used for our tests has already been introduced in Example 1. The actions
each agent can perform are summarized in Table 3 5, reporting some details about the
encoding of the action models as OBDDs. More precisely, # variables is the number of state
variables over which the OBDD is defined; this number includes one variable for encoding
the possibly anomalous event occurring during the action execution; the remaining variables
are used to encode an agent state transition from step t, when the action starts, to step t+1,
when the action ends. Columns #∆-nodes and #∆-trans. report, respectively, the number
of nodes of the OBDD encoding the ∆ portion of the action model, and the number of state
transitions encoded by ∆. Columns #M-nodes and #M-trans. refer to the whole extended
model M, including the Γ portion. In such a domain, each agent handles 36 variables to
encode its own belief state about the environment.

3. http://javabdd.sourceforge.net/index.html
4. http://sourceforge.net/projects/buddy/
5. Examples of test cases and action models can be found at

http://www.di.unito.it/∼micalizi/CWCM/index.html.

45

Micalizio & Torasso

variables #∆-nodes #∆-trans. #M-nodes #M-trans.

move 15 193 34 291 420
carry 19 346 38 374 1857
load 17 386 40 892 169
unload 17 386 40 892 169

Table 3: Some details on the relational action models.

6.3 Objectives of the Experimental Analysis

There are at least three main questions that we want to get answered by means of our
experiments. These questions are:

• Does CWCM scale up well as the number of agents in the team grows?

• Is CWCM affected by the level of system observability? and if so to what extent?

• Is the cooperation among agents really useful for the monitoring purpose?
To answer these questions, we carried out our tests by varying three main characteristics:
team size, observability level, and monitoring strategy.

6.3.1 Team Size

To assess the scalability of CWCM, we have generated MAPs with teams from 3 to 8 agents.
Thus, we have 6 scenarios, and for each of them, we have synthesized 30 MAPs. The main
characteristics of these MAPs are reported in Table 4. Note that the MAPs are not trivial as
they consist of a significant number of actions and subgoals to be achieved. The term MAP-
span refers to the number of execution steps that are required to complete the plan under
nominal conditions and full observability. The concurrency rate, computed as the number
of actions divided by MAP-span, indicates that agents do perform actions concurrently.
Finally, the number of inter-agent causal links shows how often agents interact with each
other to achieve their own subgoals.

6.3.2 Observability Level

To assess the competence of CWCM, the MAPs were performed under different conditions
of observability. In particular, we considered three degrees of domain observability. In the
following, the term FULL denotes a complete observability of the effects of the actions
performed by the agents. Such a level of observability is unrealistic in practice, but it
represents our benchmark to compare the performance of CWCM in the other observability
conditions. The term HIGH denotes a degree of observability that guarantees to observe
the effects of 70% of the MAPs actions, randomly selected. Finally, the term LOW denotes
a degree of observability of just 30% of the MAPs actions, again randomly selected.

6.3.3 Monitoring Strategies

Finally, to assess the actual benefits achieved by the cooperation among the agents during
the monitoring phase, we considered three alternative monitoring strategies:

• BaDE, already presented in Section 2, is the simplest strategy, based on the strong
committed policy.

46

Cooperative Monitoring to Diagnose Multiagent Plans

scenario #agents #actions #subgoals MAP-span concurrency

rate

#causal

links

#inter-agent

links

SCN3 3
67.67

±14.04

47.00

±10.20

30.78

±9.94
2.2

226.44

±32.82

10.5

±1.87

SCN4 4
69.00

±5.42

52.00

±3.15

27.90

±2.93
2.5

239.30

±13.39

20.1

±1.45

SCN5 5
91.60

±7.37

77.80

±3.97

34.40

±3.10
2.7

329.80

±11.34

26.8

±1.1

SCN6 6
128.90

±40.27

73.60

±4.63

27.00

±8.10
4.8

377.70

±70.14

28

±4.75

SCN7 7
180.40

±36.84

73.90

±18.35

30.90

±5.27
5.9

467.20

±60.55

36.6

±4.92

SCN8 8
156.40

±6.13

48.80

±7.63

20.50

±2.70
7.2

360.60

±6.90

45.00

±2.82

Table 4: Characteristics of the MAPs in the six scenarios under nominal conditions (average
values and confidence intervals).

• WCM (Weak-Committed Monitoring) introduced by Micalizio and Torasso (2008,
2009) is based on the weak-committed policy that allows agents to keep trajectory-
sets to cope with scarce observability. In WCM, an agent i is able to keep pending
actions as far as these actions do not provide services to other agents. Differently
from CWCM, in WCM agents cannot cooperate with each other; therefore, when the
outcome of an action a cannot be precisely determined, and a provides another agent
j (i.e., i 6= j) with a service, a is assumed as failed by i, which also stops the execution
of its own plan.

• CWCM, discussed in Section 4, extends the weak-committed policy with the active
cooperation among the agents.

6.3.4 Exogenous Events

Although exogenous events have been generated randomly, their generation reflects the
(expected) probability with which a given exogenous event can occur. For instance, a com-
pletely unexpected event, encoded by ξ?, is very unlikely to occur, and hence its frequency
in our experiments is pretty low. Table 5 shows the probability distribution used to generate
exogenous events randomly.

6.4 Experimental Analysis: Monitoring

The experimental analysis of the monitoring task is subdivided into two main parts. In
the first one, we assess the three strategies BaDE, WCM, and CWCM, under nominal
conditions; that is, when no exogenous event occurs during the simulated execution of
MAPs. The goal is to study the impact of the observability degree on the competence

47

Micalizio & Torasso

Exogenous event Probability

blocked-wheel 25 %
wrong-move 10 %
lose-parcel 25 %
slip-parcel 10 %
blocked-arm 25 %

ξ? 5 %

Table 5: The exogenous events and their frequencies in the experiments.

3 4 5 6 7 8

agent

0

20

40

60

80

100

%
 p

e
rf

o
rm

e
d
 a

c
ti

o
n
s

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 a

c
h
ie

v
e
d
 s

u
b
g
o
a
ls

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 p

e
rf

o
rm

e
d
 a

c
ti

o
n
s

BaDE WCM CWCM

LOW observability

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 a

ch
ie

v
e
d
 s

u
b
g
o
a
ls

BaDE WCM CWCM

LOW observability

Figure 13: [Nominal Conditions] Competence: percentage of performed actions and
achieved goals.

of the three strategies. In the second part, we assess again the competence of the three
strategies when exogenous events do occur.

6.4.1 Nominal Conditions

Competence. The competence is estimated as the percentage of actions performed and
subgoals actually achieved by the agents. Since under the condition of FULL observability
the agents perform 100% of their actions and achieve 100% of their subgoals in each of the
three strategies, in Figure 13 we just report the results under HIGH and LOW conditions.
As expected, BaDE is very sensitive to the observability degree. On the other hand, since
WCM and CWCM keep trajectory-sets, they are more tolerant to partial observability,
and generally behave much better than BaDE. CWCM does better than WCM as the
cooperation between the agents allows them to compensate the lack of direct observations
with messages coming from others. As discussed in Section 4.5, however, it may be possible
that even the other agents are unable to provide useful pieces of information. Thus, also
with the CWCM strategy, an agent decides to stop the execution of its own plan when,
even asking other agents for more observations, it is not possible to determine the outcome
of an action. As explained in Section 4.5, in this case an agent stops the execution of its
plan by marking some actions as not-enough-info. This is the reason why the percentage
of performed actions and achieved goals is below 100% with observability levels HIGH and

48

Cooperative Monitoring to Diagnose Multiagent Plans

3 4 5 6 7 8

agents

0

50

100

150

200

250

300

m
s
e
c

BaDE WCM CWCM

FULL observability

3 4 5 6 7 8

agents

0

50

100

150

200

250

300

m
s
e
c

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

50

100

150

200

250

300

m
s
e
c

BaDE WCM CWCM

LOW observability

Figure 14: [Nominal Conditions] Monitoring time (average and 95% confidence interval) for
a single execution step.

LOW. The results obtained by CWCM are in any case remarkable: in the worst case, SCN5,
at least 80% of actions have been performed and 70% of subgoals have been achieved despite
only 30% of the actions were observable.

Computational Time. Figure 14 shows the average time (and the 95% confidence inter-
val) for monitoring a single step of execution. Note that for the BaDE strategy the moni-
toring just consists in estimating the next belief state; whereas, WCM and CWCM have to
extend their trajectory-sets. In addition, CWCM has also to cooperate with other agents.
The cooperation can introduce further costs as the consumption of a message from another
agent corresponds to an operation on the OBDD encoding the current trajectory-set. A first
positive result emerging from Figure 14 is that, even in the worst scenario, CWCM takes
no more than 300 milliseconds for monitoring the execution of an action. This allows us to
conclude that CWCM could be employed effectively in real-world domains where agents’
actions are performed in the order of seconds.

In addition, it is easy to see that computational time strongly depends on the observabil-
ity level. For example, under FULL observability, CWCM and WCM behave very similarly;
in this case, in fact, CWCM agents do not need to cooperate each other, and hence the
two strategies are almost the same. However, when the observability decreases, CWCM
is slightly more expensive than WCM and BaDE. This higher cost is counterbalanced by
the competence of CWCM, that, as already noticed, outperforms the competence of both
BaDE and WCM.

From the charts in Figure 14 it is also apparent that there is no strict dependency
between the number of agents in the team and the computational time of the three strategies.
This, in fact, is a consequence of our distributed approach where each agent maintains its
own point of view about the environment, and the cooperation with other agents is just
based on the exchange of messages and not belief states.

OBDD dimensions. The relation between time and observability becomes clear when
we consider the sizes of the OBDDs encoding the trajectory-sets; see Figure 15, left. For
brevity we just report the average sizes of the OBDDs maintained by the three strategies
under HIGH and LOW observability conditions6. It is easy to see that there exists a relation
between the computational time shown in Figure 14 and the sizes of the OBDDs in Figure

6. In the FULL observability case, the OBDD sizes for CWCM are well below 3000 nodes, on average. In
addition, CWCM and WCM generate OBDDs with similar sizes, as expected.

49

Micalizio & Torasso

3 4 5 6 7 8

agents

0

4000

8000

12000

16000

#
 O

B
D

D
 n

o
d
e
s

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

10

20

30

40

50

60

70

80

#
 t

r
a
je

c
to

r
ie

s

WCM CWCM

HIGH observability

3 4 5 6 7 8

#agents

0.00

2.00

4.00

6.00

8.00

10.00

12.00

L
e
n
g
th

 o
f

a
 t

ra
je

c
to

ry

WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

4000

8000

12000

16000

#
 O

B
D

D
 n

o
d
e
s

BaDE WCM CWCM

LOW observability

3 4 5 6 7 8

agents

0

10

20

30

40

50

60

70

80

#
 t

ra
je

c
to

ri
e
s

WCM CWCM

LOW observability

3 4 5 6 7 8

#agents

0.00

2.00

4.00

6.00

8.00

10.00

12.00

L
e
n
g
th

 o
f

a
 t

ra
je

c
to

ry

WCM CWCM

LOW observability

Figure 15: [Nominal Conditions] Left: Sizes of OBDDs in number of nodes (average and
95% confidence interval); center: Average number of trajectories within a
trajectory-set; right: Average length of one trajectory.

15, left: the bigger the OBDDs the higher the computational time. As we have already
noted, although OBDDs may get very large, the computational time is still acceptable.
(The biggest OBDD that has been observed had 17,707 nodes, and was built by CWCM in
SCN5 under LOW observability.)

Obviously, the level of observability has a strong impact on the dimensions of the OB-
DDs. In fact, a reduced level of observability makes the trajectory-sets more ambiguous,
and hence more trajectories have to be encoded within a single OBDD. This is made ex-
plicit in Figure 15, center, where we show the number of trajectories encoded, on average,
within a trajectory-set at each time instant, and their length (Figure 15, right). Of course,
in these two last charts, we only consider WCM and CWCM since the BaDE strategy does
not build trajectory-sets. Moreover, note that in the actual implementation of CWCM, the
extension of a trajectory-set does not cover the whole plan performed so far, but only the
current subset of pending actions.

CWCM Communication Analysis. We conclude the study under nominal conditions
with an analysis of the communication required by the CWCM methodology. Figure 16
shows the average number of messages exchanged among the agents. The first interesting
result is that, under FULL conditions, the number of exchanged messages coincides with
the number of inter-agent causal links. In fact, since these results are taken under nominal
conditions, each action reaches its nominal effects; therefore, the cooperative protocol han-
dles each inter-agent causal link by means of a simple ready message sent by the provider to
the client, no answer is required. When the observability level is just HIGH, however, the
number of messages tends to increase, even though it does not increase significantly except
for scenario SCN8. As expected, the largest number of messages is exchanged when the
observation is LOW, as expected.

50

Cooperative Monitoring to Diagnose Multiagent Plans

3 4 5 6 7 8

agents

0

10

20

30

40

50

60

70

#
 m

e
s
s
a
g
e
s

FULL HIGH LOW

CWCM messages in nominal conditions

Figure 16: The number of messages exchanged by CWCM agents in nominal conditions.

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 p

e
rf

o
rm

e
d
 a

c
ti

o
n
s

BaDE WCM CWCM

FULL observability

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 p

e
rf

o
rm

e
d
 a

c
ti

o
n
s

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 p

e
rf

o
rm

e
d
 a

c
ti

o
n
s

BaDE WCM CWCM

LOW observability

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 a

c
h
ie

v
e
d
 s

u
b
g
o
a
ls

BaDE WCM CWCM

FULL observability

3 4 5 6 7 8

agents

0

20

40

60

80

100

%
 a

c
h
ie

v
e
d
 s

u
b
g
o
a
ls

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

20

40

60

80

100
%

 a
c
h
ie

v
e
d
 s

u
b
g
o
a
ls

BaDE WCM CWCM

LOW observability

Figure 17: [Faulty Conditions] Competence: percentages of performed actions and achieved
goals.

6.4.2 Faulty Conditions

Competence. Let us now consider the same test set as before, but we randomly inject
a single exogenous event in each MAP. The goal is to assess how well the three strategies
behave when partial observability and exogenous events combine together. Figure 17 shows
the competence of the three strategies in such a faulty setting under the three observability
levels. When the environment is fully observable, the three strategies behave exactly the
same, as expected. Of course, the percentages of performed actions and achieved goals
depend on how early, or how late, the exogenous event occurs in the MAP. In general, we
can say that at least 70% of the actions are performed despite the injected exogenous event.
A similar consideration can be made for the percentage of achieved goals.

When the observability conditions degrade to HIGH and LOW, however, it is easy to
see that CWCM outperforms the other two strategies. This means that CWCM is actually
more tolerant than the other strategies to partial observability even in the faulty scenario.

51

Micalizio & Torasso

3 4 5 6 7 8

agents

0

50

100

150

200

250

300

m
s
e
c

BaDE WCM CWCM

FULL observability

3 4 5 6 7 8

agents

0

50

100

150

200

250

300

m
s
e
c

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

50

100

150

200

250

300

m
s
e
c

BaDE WCM CWCM

LOW observability

Figure 18: [Faulty Conditions] Monitoring time (average and 95% confidence interval) for
a single execution step.

3 4 5 6 7 8

agents

0

2000

4000

6000

8000

10000

12000

14000

#
 O

B
D

D
 n

o
d
e
s

BaDE WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

10

20

30

40

50

60

#
 t

ra
je

c
to

ri
e
s

WCM CWCM

HIGH obervability

3 4 5 6 7 8

agents

0

2

4

6

8

10

12

L
e
n
g
th

 o
f

a
 t

ra
je

c
to

ry

WCM CWCM

HIGH observability

3 4 5 6 7 8

agents

0

2000

4000

6000

8000

10000

12000

14000

#
 O

B
D

D
 n

o
d
e
s

BaDE WCM CWCM

LOW observability

3 4 5 6 7 8

agents

0

10

20

30

40

50

60

#
 t

ra
je

c
to

ri
e
s

WCM CWCM

LOW observability

3 4 5 6 7 8

agents

0

2

4

6

8

10

12

le
n
g
th

 o
f

a
 t

ra
je

c
to

ry

WCM CWCM

LOW observability

Figure 19: [Faulty Conditions] Average sizes of OBDDs encoding a trajectory-set (left),
average number of trajectories within a trajectory-set (center), average length
of a trajectory-set (right).

In particular, since the only difference between CWCM and WCM is the cooperative mon-
itoring, we can conclude that the cooperation among the agents is actually beneficial.

Computational time. Figure 18 reports the computational cost, in milliseconds, of the
three strategies under faulty conditions and for the three levels of system observability. It
is important to note that also in this case the computational time strongly depends on
observability level; whereas it does not depend on the number of agents in the team, nor
on the presence of an exogenous event. In fact, the time for monitoring a MAP affected by
an exogenous event has the same order of magnitude as the monitoring of a MAP under
nominal conditions. The differences that can be observed by comparing charts in Figure
14 with charts in Figure 18 are due to the fact that the execution of a MAP affected by a
fault terminates earlier than a MAP executed under nominal conditions, independently on
the level of observability.

Of course, the BaDE strategy is the cheapest of the three, but it is unable to monitor
effectively the execution of a MAP. In fact, the strong committed policy at the basis of this

52

Cooperative Monitoring to Diagnose Multiagent Plans

3 4 5 6 7 8

#agents

0

10

20

30

40

50

60

#
 m

e
s
s
a
g
e
s

FULL HIGH LOW

CWCM messages in faulty conditions

Figure 20: The number of messages exchanged by CWCM agents in faulty conditions.

strategy is too sensitive to the level of observability, and under HIGH and LOW conditions
it performs poorly.

OBDD dimensions. Let us consider the dimensions of the OBDDs maintained by the
three strategies. On the left-hand side of Figure 19, we report the sizes, in number of
nodes, of the OBDDs representing the current belief state (BaDE strategy), and the current
trajectory-set (WCM and CWCM strategies) under the three conditions of observability.
As expected, BaDE keeps the smallest OBDDs since it just maintains the last belief state,
but this makes the BaDE strategy unable to deal with low observability levels. WCM
and CWCM behave similarly under FULL observability conditions, but CWCM tends to
maintain bigger OBDDs when the observability level decreases. This result can be explained
by the fact that CWCM can build longer trajectory-sets than WCM (Figure 19, right), and
these longer trajectory-sets tend to be more ambiguous as demonstrated by the average
number of trajectories within a trajectory-set (Figure 19, right).

CWCM Communication Analysis. Figure 20 shows the number of messages exchanged
by CWCM agents under faulty conditions. The trend is similar to that of nominal condi-
tions, however, the number of messages is slightly lower. This happens because the occur-
rence of a failure prevents the agents from performing some actions, and as a consequence
some messages will not be exchanged. This is also the reason for having slightly less mes-
sages in SCN6 than SCN5. In fact, the number of inter-agent causal links in the two
scenarios is almost the same, but faults in SCN6 have a stronger impact than in SCN5, this
is evident looking at the number of performed actions in SCN5 and SCN6 (see Figure 17).

6.5 Experimental Analysis: Diagnosis

Competence. The competence of the diagnostic inferences is evaluated as the percentage
of cases in which the action affected by the injected exogenous event has been included
within the set of preferred explanations mPADs. Figure 21 (left-hand side) shows how our
diagnostic inferences behave in the three levels of observability. Obviously, under FULL
observability, the diagnostic inferences always identify the correct primary action failure.
Under HIGH and LOW observability, however, the impaired agent can stop the plan execu-
tion due to lack of observations (i.e., not-enough-info). In those cases the diagnosis cannot
identify the primary failure. Figure 21 (right-hand side) shows also the average distance
(i.e., number of actions), between the action affected by an exogenous event, and the action

53

Micalizio & Torasso

3 4 5 6 7 8

#agents

0

20

40

60

80

100

%
 d

ia
g
n
o
s
e
d
 c

a
s
e
s

FULL HIGH LOW

3 4 5 6 7 8

#agents

0

2

4

6

8

#
a
c
ti
o
n
s

FULL HIGH LOW

Figure 21: [Diagnosis] Competence (left), and responsiveness (right).

3 4 5 6 7 8

agents

0

10

20

30

40

50

#
 e

x
p
la

n
a
ti

o
n
s

FULL HIGH LOW

EVE: all inferred explanations

3 4 5 6 7 8

agents

0

1

2

3

4

5

#
 e

x
p
la

n
a
n
ti

o
n
s

FULL HIGH LOW

������ ���	����
 �xplanations

Figure 22: [Diagnosis] EVE explanations (left), mPADs explanations (right).

in which the failure is actually detected. Under FULL observability, the diagnosis is highly
responsive as it detects an action failure as soon as the exogenous event occurs (i.e., the
distance is zero). On the other hand, when the observability is just partial, a CWCM agent
can take longer to detect a failure.

Explanations and Preferred Explanations. In Section 5, we have pointed out that,
given a trajectory-set, one can identify two types of explanations: EVE and mPADs. The
set EVE represents all the explanations that are consistent with the observations received
by an agent; whereas mPADs is the set of primary action failures inferred from EVE . Fig-
ure 22 shows the cardinalities (on average) of the two sets inferred in the six scenarios and
with different levels of observability. From the two charts in Figure 22 we can draw two con-
clusions. First, the cardinality of EVE strongly depends on the observability level; namely,
the reduction in the observability level causes an increment in the number of possible ex-
planations. However, the cardinality of mPADs is almost independent of the observability
level. In fact, the number of preferred explanations inferred with LOW observability is sim-
ilar to the number of preferred explanations inferred with FULL observability in all the six
scenarios. Of course, mPADs sets computed under LOW observability tend to be slightly
bigger than mPADs sets computed under FULL observability, but this is a consequence
of the fact that the initial EVE set was more ambiguous under LOW observability. This
means that, regardless of the initial ambiguity of the EVE sets, the preferred explanations
are reduced to almost the same subsets in all the six scenarios.

The second important conclusion is that mPADs explanations are substantially more
useful in identifying a fault than EVE explanations. In fact, the average cardinality of
mPADs sets is three in the worst cases with LOW observability; whereas, the average

54

Cooperative Monitoring to Diagnose Multiagent Plans

3 4 5 6 7 8

agents

0

200

400

600

800

1000

m
s
e
c

FULL HIGH LOW

Diagnosis: Computational Time

Figure 23: Diagnosis: Computational Time.

number of EVE explanations in the best case with FULL observability is eight, but it
rises up to 38 in the worst case with LOW observability (see SCN3). This means that the
mPADs explanations may actually help a human user refine her/his hypotheses about the
current situation of the system. This is essential when we consider that diagnosis is just
the first step for recovery (Micalizio, 2013). Thus, a human user, or possibly an automatic
supervisor, has to consider a small number of alternative explanations, and hence can better
focus the plan recovery process on the fault(s) that are believed more plausible.

Computational Effort. Finally, we consider the computational time required to infer the
diagnoses. In inferring the EVE explanations, the computational cost is mainly due to the
cost of removing non-relevant variables from the trajectory-set provided by CWCM (see the
Appendix for a discussion from a theoretical point of view about the cost of such variable
removal). Figure 23 reports the average computational time, in milliseconds, for extracting
EVE explanations in the six scenarios and with the three different levels of observability.
As noticed in the previous section, under LOW observability, the trajectory-set tends to
be bigger than with the other two observability levels. As a consequence the time for
inferring diagnoses under LOW conditions tends to be higher; however, this time is below
1 second even in the worst case. On the other side, under HIGH observability conditions,
the worst time is below 150 milliseconds (see scenario SCN3). The worst time falls below
50 milliseconds when we consider the FULL observability level. These computational times
allow us to conclude that the diagnostic task, as the monitoring one, can be performed
on-line in a number of applicative domains where actions are performed in the order of
seconds, or even minutes.

6.6 Discussion

At the beginning of this experimental analysis we posed three questions, and now we are in
the position to answering them. First of all, the experimental results show that CWCM is
not sensitive to number of agents in the team. This is a consequence of the partitioning of
the global plan into local plans. In such a way, in fact, each agent keeps just its own point
of view on the states of the shared resources; namely, each agent has a local belief state that
does not depend on the number of agents in the team. As we have seen, the consistency
among these local beliefs is guaranteed through the exchange of messages whose number is
linear in the number of inter-agent causal links of the MAP under consideration.

55

Micalizio & Torasso

On the other hand, the level of observability of the system has a strong impact both on
the computational effort of CWCM and on the ambiguity of the trajectory-sets computed.
The lower the observability, the higher is the computational cost and the bigger is the
trajectory-sets. An important result that emerges from our analysis is that the worst-case
scenarios depicted in the Appendix are very rare, and never occurred during our exper-
iments. Indeed, the compact encoding of trajectory-sets and action models obtained via
OBDDs facilitates a very efficient implementation of CWCM that takes, on average, just
hundreds of milliseconds to monitor a single action. This allows us to conclude that CWCM
can be successfully employed for on-line monitoring in many real-world domains.

The level of observability has also an impact on the diagnostic inferences. In fact,
the number of EVE explanations significantly grows as the observability level decreases.
However, the number of preferred mPADs explanations is not so strongly influenced by
the observability level.

Finally, the direct comparison between CWCM and WCM demonstrates that the co-
operation among the agents is essential to be tolerant to very scarce observations. The
cooperation, in fact, is the means through which an agent in CWCM can keep longer
trajectory-sets than in WCM. These longer trajectory-sets give each agent more chances to
collect pieces of information about the successful completion of some pending actions.

7. Related Works

We consider four main families of model-based approaches to the diagnosis of dynamic
systems close to our MAPs:

• Discrete-Event Systems (DESs);

• Relation-oriented;

• Team-oriented;

• Resource-oriented.

In the rest of this section we briefly review the main approaches within these families,
highlighting differences and similarities with the CWCM methodology proposed here.

7.1 Discrete-Event Systems

Since the seminal work by Sampath, Sengupta, Lafortune, Sinnamohideen, and Teneketzis
(1995) on the Diagnoser, a huge number of works have addressed the diagnosis of dynamic
systems by modeling such systems as DESs. While the Diagnoser approach compiles the
diagnostic model (i.e., the Diagnoser itself) of the whole system off-line, other approaches
(see e.g., Lamperti & Zanella, 2002; Cordier & Grastien, 2007) compute all possible system
behaviors, and check which of these behaviors are correct. Grastien, Haslum, and Thiébaux
(2012) extends to DESs the conflict-based approach initially proposed by Reiter (1987) on
static systems.

To the best of our knowledge, the DES framework that gets closer to ours is the one
presented by Grastien, Anbulagan, Rintanen, and Kelareva (2007). In such a framework,
a diagnosis is a label either normal or faulty, associated with a system trajectory; where a
trajectory is a sequence of system states interleaved with events, thus very similar to the

56

Cooperative Monitoring to Diagnose Multiagent Plans

trajectories kept within our trajectory-sets. A trajectory is normal if it does not contain
fault events; the trajectory is faulty, otherwise.

Grastien et al. propose to reduce a diagnosis problem to a SAT one. The idea is to for-
mulate a SAT problem, in order to answer the question “is the observed behavior compatible
with at most i faults occurring?”. Of course, when the answer is yes for i = 0, the system is
assumed nominal as there exists at least one normal path consistent with the observations.
In principle, the proposed system description could encode a MAP: the execution of actions
could be modeled by a subset of observable events; whereas our exogenous events could be
mapped to unobservable events directly. However, the DES framework cannot be directly
applied to the same domains CWCM can deal with. First of all, in the DES approach the
next state of the whole system is inferred taking into account the synchronous occurrence
of a set of events. Thus, if agents are event generators, it follows that they can only perform
actions synchronously, but in CWCM this restriction is not imposed. Moreover, the SAT-
based methodology is centralized as trajectories are about whole system states, whereas
CWCM enables each agent to build local trajectory-sets in a distributed way.

7.2 Relation-Oriented Approaches

Relation-oriented approaches have been proposed by Micalizio and Torasso (2008, 2009). We
define these works as relation-oriented since action models are expressed in terms of relations
over agents’ state variables. The advantage of such a kind of model is the possibility of
representing in a single piece of knowledge both the nominal and the abnormal evolutions of
an action. The CWCM methodology falls within such a category, and extends the previous
works in two ways. First of all, CWCM is able to deal with completely unexpected events,
denoted as ξ?, for which no model exists. Indeed, the occurrence of ξ? during the execution
of an action a maps all variables in effects(a) to the unknown value; meaning that these
variables are no longer predictable.

The second important extension is the protocol that allows the agents to cooperate with
each other during the monitoring task. As the experimental results have demonstrated,
cooperation among agents is essential to cope with very scarce observations. By means of
the cooperation, in fact, an agent can acquire new pieces of information that it would not
acquire directly. These further pieces can therefore be used to refine its own trajectory-set,
and possibly the outcome of some pending actions could be determined.

7.3 Teamwork-Oriented Approaches

Rather than diagnosing action failures, as in CWCM, teamwork-oriented approaches are
focused on diagnosing teamwork failures; i.e., coordination failures. This type of failures
are not necessarily due to erroneous actions, but to wrong decisions taken by the agents.

The detection of teamwork failures has been addressed in some seminal works by Tambe
(1998) and Kaminka and Tambe (2000). Kalech and Kaminka (2003) have later focused
on the diagnosis of these coordination failures, and have introduced the notion of social
diagnosis. More specifically, the team of cooperating agents is represented in abstract
terms by means of a hierarchy of behaviors. A behavior is an abstraction of the concrete
actions that an agent actually takes in the real world. Indeed, behaviors abstract not just
single actions, but possibly sequences of actions. Thus, differently from relational- and

57

Micalizio & Torasso

resource-oriented approaches (see later), an explicit model of the agents’ plans is missing in
teamwork-oriented solutions.

The social diagnosis framework assumes that agents synchronize themselves to jointly
select a team behavior. A disagreement arises when at least two agents select two behaviors
that are incompatible with each other. Such disagreements represent instances of social
diagnosis problems. Of course, agents select their behaviors according to their own beliefs,
thus a social diagnosis for a disagreement is a set of conflicting belief states held by a subset
of agents. Kalech and Kaminka (2005, 2007, 2011) propose different methods for inferring
a social diagnosis. These solutions, however, rely on some assumptions that may limit their
applicability in real-world scenarios. First of all, it is assumed that all the agents in the team
share the hierarchy of behaviors and that the belief states of the agents are homogeneous
(i.e., defined over the same set of propositional atoms). Moreover, agents must be willing
to exchange each other their own beliefs. The CWCM methodology we propose, however,
does not suffer from these limitations. CWCM, in fact, makes no assumption about the
agents’ internal beliefs. In addition, the communication among the agents does not exchange
agents’ internal beliefs, but observations about shared resources that agents directly gather,
and this guarantees the agents a high degree of privacy.

7.4 Resource-Oriented Approaches

The approaches within the resource-oriented family have mainly been proposed by Roos and
Witteveen. We call their approaches resource-oriented because, from their point of view,
the system to be diagnosed is a plan, and the state of such a system is given by the states of
the system resources. The execution of an action can just change the state(s) of one or more
resource(s). These approaches deserve particular attention as they have some similarities
with the CWCM methodology, but there are also a number of relevant differences.

Witteveen, Roos, van der Krogt, and de Weerdt (2005) present the basic framework that
they use and extend in their subsequent works. In this framework, actions are modeled as
atomic plan steps; more precisely, action models are functions that deterministically map
resource states in input into resource states in output. These models therefore represent
just the changes normally caused by actions when they are successfully performed. The
faulty behavior of actions, conversely, is modeled via a very weak abnormal function, which
maps the state of each resource in input to the unknown value. This means that, when an
action fails, the states of the resources handled by that action become unpredictable.

A diagnostic problem arises when the observations received at an execution step are
inconsistent with the nominal predictions made through the action models. This means
that at least one of the actions performed so far behaved abnormally. Witteveen et al.
(2005) introduce the notion of plan diagnosis as a subset of plan actions that, once qualified
as abnormal, make the observations consistent with the predictions made assuming all the
other actions as nominal.

Of course, since there may exist many possible plan diagnoses, it is important to look for
diagnoses that are more preferable than others. Roos and Witteveen (2009) propose a dif-
ferent preference criterion based on the predictive power that each plan diagnosis has. They
therefore introduce the notion of maximally-informative plan diagnosis (maxi-diagnosis) as
a set of plan diagnoses that predict correctly the biggest subset of observations. This no-

58

Cooperative Monitoring to Diagnose Multiagent Plans

tion of diagnosis is subsequently refined by the notion of minimal maximally-informative
plan diagnosis (mini-maxi-diagnosis), which is just a subset of maxi-diagnosis such that the
number of failed actions to be assumed is minimal.

In the work by de Jonge et al. (2009), the basic framework is extended: agents are
seen as resources, and action models also includes variables about agents’ equipment and
environment events (i.e., exogenous events). This extension allows the distinction between
primary and secondary diagnoses. While a primary diagnosis is a plan diagnosis (i.e.,
expressed in terms of failed actions), a secondary diagnosis can be thought of as a second
level diagnosis that tries to explain why a given action failure has occurred.

CWCM tries to resolve the same problem as the one addressed by Roos and Witteveen
(2009): Diagnosing the execution of a MAP. However, action models are significantly dif-
ferent in the two approaches. From Roos and Witteveen’s point of view, action models are
deterministic functions of nominal behavior only. Whereas in CWCM, we model actions
as relations that easily accommodate both nominal and faulty evolutions. In particular,
faulty evolutions can be nondeterministic, and just partially specified as they support the
unknown value to indicate that no expectations are possible for a given variable.

Another important difference between the two approaches is about the execution of
actions. Roos and Witteveen assume that actions take just one time instant to be performed
and that action execution proceeds synchronously all over the agents. Our CWCM is more
realistic since action execution is asynchronous: even though actions are modeled just in
terms of preconditions and effects, their actual duration is not necessarily one time instant.
As we have seen, in fact, agents cooperate with each other by exploiting the causal and
precedence links that are explicitly defined within our plan model. The plan model adopted
by Roos and Witteveen, instead, mentions explicitly precedence links only, while it does
not include causal links.

Also the process with which a diagnosis is inferred presents substantial differences.
Witteveen et al. (2005) and de Jonge et al. (2009) present a centralized method to carry out
diagnostic inferences. A distributed procedure for qualifying actions as abnormal is proposed
by Roos and Witteveen (2009), but also in this case the detection of a diagnostic problem is
made in a centralized way. Moreover, the methodology proposed by Roos and Witteveen is a
sort of strong committed approach, in the sense that whenever there are some observations,
the system has to infer a diagnosis. On the other hand, our CWCM methodology is fully
distributed both in the detection of a diagnostic problem (i.e., monitoring), and in its
solution. In addition, CWCM is inherently weak committed: observations do not necessarily
trigger a diagnostic process, but diagnosis inferences start after an interpretation of the
observations that either lead to (1) determining an action failure, or (2) determining that a
service produced in favor of another agent’s action is actually missing. CWCM achieves this
second point by exploiting both direct observations gathered by the agent, and messages
coming from other agents. This means that when observations are not sufficient to either
reach condition (1) or (2), a diagnosis is not inferred.

As said above, de Jonge et al. (2009) introduce a distinction between primary and
secondary diagnosis. Such a distinction can also be found in our methodology. The primary
diagnosis by de Jonge et al. corresponds to our minimum primary action failures (mPADs),
which identify the actions that should be assumed faulty in order to make the plan execution
consistent with the observations. The secondary diagnosis, on the other hand, corresponds

59

Micalizio & Torasso

to our refined explanations (refinedExp), in which we associate each action in mPADs with
a set of exogenous events that, consistently with the observations, might have occurred and
hence caused the action failure.

In this paper we also assess the impact of a primary action failure a ∈ mPADs by
inferring the set of secondary action failures; namely, the subset of actions that fail as an
indirect consequence of the failure of a. Although the identification of secondary failures
would be possible, de Jonge et al. do not take into account the problem.

In conclusion, the CWCM framework can be considered as an extension of the frame-
works by de Jonge et al. (2009) and Roos and Witteveen (2009). In fact, the action models
proposed by Roos and Witteveen can be reproduced within our framework by including in
each relation-based model just two entries: one for the deterministic nominal evolution of
the action, and one for the abnormal behavior where all the agent variables become un-
known as a consequence of an unpredictable event. These action models could be used by
CWCM as usual to infer a plan diagnosis in a fully distributed way.

8. Conclusion

Plan diagnosis is an essential step to implement robust multiagent planning systems. As
shown in other works (Mi & Scacchi, 1993; Gupta et al., 2012; Micalizio, 2013), in fact, the
explanations provided by a plan diagnosis can steer a repair procedure and make the repair
process more effective.

In this paper we have addressed the problem of plan diagnosis by splitting it into two
subproblems: the detection of action failures, and the actual explanation of the detected
action failures in terms of exogenous events that might have occurred. The detection of ac-
tion failures is achieved by means of the Cooperative Weak-Committed Monitoring (CWCM)
strategy, which allows agents to cooperate with each other during the monitoring task. Co-
operation among agents plays a central role not only for the detection of action failures, but
also for their explanations. The CWCM methodology, in fact, allows each agent to build
a structure (i.e., a trajectory-set), that is an internal representation of the world from the
point of view of the agent itself. Relying on this structure, each agent can infer explanations
for its own action failures without the need of interacting with other agents.

The proposed framework to the diagnosis of MAPs extends previous approaches in
literature. First of all, CWCM is fully distributed and asynchronous. Previous approaches
(see e.g., Kalech & Kaminka, 2011; Roos & Witteveen, 2009; Micalizio & Torasso, 2008),
instead, are all based on some synchronous step (e.g., agents execute actions synchronously).
In our framework an agent can perform its next action as soon as the action’s preconditions
are satisfied. To verify this condition, we just impose that agents adhere to a coordination
protocol that guarantees the consistent access to the shared resources.

In addition, we propose here an extension to the relational language for modeling non-
deterministic actions (Micalizio & Torasso, 2008). In the previous approach, in fact, we
assume to know in advance all the exogenous events that can affect a given action; in this
paper we are able to deal with partial knowledge about the exogenous events. In partic-
ular, we allow to specify just a subset of the effects an exogenous event has on an action
(i.e., some agent’s variables might become unknown after the event), but we also allow to
specify that an action might be affected by an indefinite event whose effects are completely

60

Cooperative Monitoring to Diagnose Multiagent Plans

unpredictable (i.e., all agent’s variables become unknown due to the event). This kind of
extended action model subsumes the action models proposed by Roos and Witteveen, which
just consists of two parts: the nominal action model, and an abnormal model that maps
each agent’s variable into the unknown value.

Cooperation among agents and nondeterministic action models make CWCM particu-
larly apt to deal with dynamic and partially observable environments. On the one side, the
nondeterministic action models we have discussed here capture unexpected changes in the
environment. On the other side, the cooperative monitoring allows each agent to acquire
information about the environment from the other agents. It is important to note that,
differently from other works where agents exchange each other their internal belief states
(see e.g., Kalech & Kaminka, 2011), in CWCM an agent just needs to communicate what
it observes. This enables agents to keep private their internal beliefs; in addition, agents
could adopt specific policies for deciding what observations should be forwarded to what
agents. Forwarding some observations to more agents, and not just to a single agent as
in the current proposal, might help the agents to discover earlier the outcomes of some
pending actions; we leave this opportunity for future research.

It must also be noted that CWCM just assumes that observations are correct: The
actual state of an agent must not be pruned off the agent belief state due to an erroneous
observation. This assumption is often made also in many model-based approaches to di-
agnosis (see e.g., Birnbaum et al., 1990; Brusoni, Console, Terenziani, & Theseider Dupré,
1998; Pencolé & Cordier, 2005; Roos & Witteveen, 2009; Eiter, Erdem, Faber, & Senko,
2007, just to mention a few). Correctness of the observations, however, does not implies
that observations must be precise. CWCM can in fact consume ambiguous messages given
as a disjunction of values for the same variable (i.e., var = v1 ∨ var = v2 ∨ . . . var = vn),
or as a negation of a specific value (i.e., var 6= v). From the point of view of CWCM,
consuming such observations simply corresponds to the selection of states within the belief
state the observations refer to. Although this aspect has not been emphasized in the paper,
the ability of dealing with ambiguous observations enriches the communicative capacities
of the agents. For instance, in an ask-if interaction, a client, rather than answering with
a generic no-info, could give the provider a disjunction of possible resource states among
which, however, the client is incapable to discriminate the actual one. This set of alternative
states is, from the point of view of the provider, much more informative than no-info, and
possibly could lead the provider to determine the actual state of the resource at hand.

From the point of view of the diagnostic inference, we have shown that it is possible to
explain action failures by extracting explanations from the trajectory-sets built by CWCM.
In particular, we have pointed out that assuming action failures independent of each other
might lead to spurious diagnoses. For this reason we have proposed a methodology for
identifying primary action failures and secondary action failures, which are just an indirect
consequence of the primary ones. A simple preference criterion, based on the minimality of
the primary action failures, has been proposed to prefer alternative explanations.

A deep experimental analysis has shown that both the cooperative monitoring and diag-
nosis are practically feasible. An efficient implementation based on OBDDs is discussed in
the Appendix together with a computational analysis from a theoretical point of view. The
experiments have highlighted that CWCM scales up well with the number of agents, but it is
affected by the level of observability of the environment: the trajectory-sets tend to be big-

61

Micalizio & Torasso

ger as the environment is less observable. However, the experiments demonstrate that the
cooperation is effective even in dealing with very scarcely observable environments. Com-
petence rates for noncooperative solutions, in fact, are comparable with those of CWCM
only when the environment is fully observable; in other situations, instead, CWCM always
exhibits the highest competence.

The proposed framework can be extended in different ways. As mentioned above, we
have so far adopted a careful approach to communication by restricting the agents to talk
with each other only about the exchanged services. However, the agents might be willing
to communicate further pieces of knowledge they have acquired. An interesting possible
extension is to improve the cooperative protocol along this direction. The intuition, in fact,
is that when an agent acquires more information, it could infer the outcome of some of
its pending actions earlier than what it does now. Of course, the communication must not
become a bottleneck, so agents should be able to identify what piece of information is worth
to be forwarded to what agents, and avoid broadcasting every observation to all the agents.

The most important extension we aim at, however, is to relax the assumption that
communication among the agents is always reliable. Removing such an assumption has
many consequences. First of all, the cooperative monitoring protocol should be extended in
order to deal with messages that can be lost. Moreover, Proposition 7, about the safe use
of resources, might no longer be guaranteed by CWCM; thus resources could be accessed
inconsistently. To diagnose these situations we could take a point of view similar to Kalech
and Kaminka’s social diagnosis. In fact, erroneous access to resources, could be considered
as coordination failures. This would impact the diagnostic inferences that should no longer
be local, but distributed. That is, as for the monitoring task, also diagnosis should be
performed by means of the cooperation of a number of agents.

Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful comments, that
have substantially contributed to the final shape of this work.

Appendix A. Implementation and Computational Analysis

In this Appendix we first recall some basic OBDD operators and their complexities, and
then we study the computational cost of the most expensive relational operations involved
by the CWCM and diagnostic methodologies discussed above.

A.1 OBDD Operators and their Complexities

The computational analysis we discuss in the next subsection relies on the results presented
by Bryant (1986, 1992). In these works, the author discusses an efficient implementation of
OBDDs operators and their corresponding computational complexities. These results are
summarized in Table 6, where f , f1, and f2 denote the Boolean functions, encoded by the
reduced function graphs G, G1, and G2, respectively. The size of graph G corresponds to
the number of its vertices, and it is represented as |G|. The primitive OBDD operators are
reported in the upper side of Table 6:

62

Cooperative Monitoring to Diagnose Multiagent Plans

- reduce builds the canonical form of a Boolean function f ; i.e., given a specific variables
ordering, the reduce operator gets a graph G whose size is minimal.

- apply implements binary logical operations between two Boolean functions f1 and f2;
the operator works on graphs G1 and G2 encoding the two functions, respectively;
op can be any binary logical operator (∧,∨,→,↔). The computational complexity
in the worst case is O the product of the sizes (i.e., number of vertices) of the two
graphs.

- restrict substitutes a constant b to a variable xi in time almost linear in the number
of vertices within the graph G.

- rename renames a set of variables ~x with a new one ~x′; its complexity is exponential
in the number of renamed variables.

- equiv checks the equivalence of the two Boolean functions f1 and f2; since this operator
scans the two corresponding graphs simultaneously, the computational complexity is
linear in their sizes.

In the lower side of Table 6 we report the computational cost in time and space for the rela-
tional operators join, intersect, union and project that can be obtained by combining
primitive OBDD operators. Observe that, among the relational operators, the projection
is the most expensive; in fact, it is exponential in the number of the (binary) variables to
be removed (see e.g., Torta & Torasso, 2007; Torasso & Torta, 2006 for details).

A.2 CWCM: Computational Analysis

To analyze the computational complexity of CWCM, we consider the high-level algorithm
presented in Figure 10, and focus on the computational cost of performing a single iteration
of the while loop when an action ail is actually performed in the real-world. In such a
situation there are three main steps that hide potentially expensive operations on relations:

• the extension of the current trajectory-set (line 9);

• the refinement of the trajectory-set with the available observations (line 11);

• the detection of the outcomes of the pending actions (line 19, Figure 7).

In the rest of this section we analyze the computational effort of each of these steps.

operator time size

reduce(f) O(|G| · log |G|) |G|
apply(op, f1, f2) O(|G1| · |G2|) ≤ |G1| · |G2|
restrict(xi, b, f) O(|G|) ≤ |G|

rename (f , ~x, ~x′) O(|G| · 2|~x|) ≤ |G| · 2|~x|

equiv(f1, f2) O(max(|G1|, |G2|)) N/A

join (f1, f2); union(f1, f2); O(|G1| · |G2|) ≤ |G1| · |G2|
intersect(f1, f2) (i.e., select) O(|G1| · |G2|) ≤ |G1| · |G2|

project(f , {x1, . . . , xn}, {y1, . . . , ym}) O((2(n−m) · |G|)2) ≤ 2(n−m)|G|

Table 6: OBDD operators and their complexity.

63

Micalizio & Torasso

A.2.1 Extending the Trajectory-Set

According to equation (7), the operator ⊗, which from Tri[1, l] yields a new trajectory-set
Tri[i, l+1], involves two join operations: one between Tri[1, l] and ∆(ail), and one between
Tri[1, l] and Γ(ail). The results of these two operations are subsequently merged into a new
trajectory-set Tri[1, l + 1] via a union operation. To understand the computational cost of
these relational operations, it is necessary to map them into OBDD operators. As already
shown in previous works (see e.g., Torta & Torasso, 2007; Micalizio, 2013), the natural
join can be mapped to the and between two Boolean functions (and hence between two
OBDDs), whereas the union of two relations becomes the Boolean or. Let Gl, Gl+1, G∆,
and GΓ be the OBDDs corresponding to the relations Tri[1, l], Tri[1, l + 1], ∆(ail), and
Γ(ail), respectively; the ⊗ operator can be mapped to the following expression in terms of
OBDDs operations:

Gl+1 = apply(∨, apply(∧, Gl, G∆), apply(∧, Gl, GΓ)) (14)

Given the operator complexities in Table 6, the computational effort to infer the new
trajectory-set is in the worst case:

O(|Gl+1|) = O(|Gl| · |G∆|) · O(|Gl| · |GΓ|)

= O(|Gl|
2 · |G∆| · |GΓ|). (15)

A.2.2 Refinement with Observations

Once the new trajectory-set has been inferred, it is refined with the observations obsik
received by the agent. For the sake of exposition, in equations (8) and (9) we defined
the refinement of a trajectory-set as an intersection between the trajectory-set itself and
the belief state Bi

k refined with obsik. Note that the extraction of a belief state is a very
expensive operation, thus we try to avoid this operation whenever possible. In this particular
case, since the agent variables V ARi

k are included within the current trajectory-set, the
refinement operation can be carried out as an intersection between Tri[1, l + 1] and obsik;
in terms of OBDD operators:

Gref .l+1 = apply(∧, Gl+1, Gobsi
k
) (16)

where Gobsi
k
is the OBDD encoding obsik, and Gref .l+1 is the OBDD corresponding to the

refined trajectory-set refinedTri[1, l + 1]. It follows that the computational cost of this
operation is

O(|Gref .l+1|) = O(|Gl+1| · |Gobsi
k
|) (17)

A.2.3 Detecting Pending Actions’ Outcomes

The last step of the CWCM algorithm we consider is the assessment of the outcome of every
action currently within the list of pending actions pActsi. In Section 4, we noted that to
verify the success of a given action aik ∈ pActsi, it is sufficient to check whether the nominal
effects of aik are satisfied in every state in Bi

k+1 (Definition 3). In case such a condition does
not hold, one has to verify whether the expected nominal effects of aik are missing in each

64

Cooperative Monitoring to Diagnose Multiagent Plans

state of Bi
k+1 (Definition 4). If both checks result in a negative answer (i.e., the belief state

Bi
k+1 is still too ambiguous), action aik remains pending.

Extracting the belief state Bi
k+1 for explicitly checking these conditions might be par-

ticularly expensive, especially when the trajectory-set grows over time. The extraction of
a belief state through the project operation, in fact, would require the elimination from
Tri[1, l+1] of all the variables we are not interested in; thus, we would remove the variables
about steps 1, 2, . . . , k, k + 2, . . . , l + 1, that is l · |VARi| variables. As Table 6 shows, the
complexity of project is exponential in the number of variables to be removed, so it could
easily become a bottleneck.

To cope with this problem, we implemented the checking for the ok and failed outcomes
in a different way. In particular, from Definition 3 it directly follows:

Proposition 11 aik has outcome ok iff Bi
k+1 join effects(aik) equals Bi

k+1.

Proof: The proof is straightforward: by definition aik has outcome ok iff its nominal effects
are satisfied in every state in Bi

k+1; the join between Bi
k+1 and effects(aik) yields B

i
k+1 only

when the nominal effects are already included in every state in Bi
k+1, and hence the action

has outcome ok. �

Since Bk+1 is included in refinedTri[1,+l + 1], the above proposition can be extended
to the whole trajectory-set:

Proposition 12 aik has outcome ok iff

refinedTri[1, l + 1] join effects(aik)equalsrefinedTr
i[1, l + 1].

That is to say, after the refinement of the trajectory-set with the observations, action aik has
outcome ok iff its nominal effects do not filter out any trajectory from refinedTri[1, l + 1].
Relying on this proposition, we can verify whether aik has outcome ok in two steps: first,
we build a temporary OBDD maintaining the result of the join between Tri[1, l + 1] and
effects(aik), and then we check whether the temporary OBDD is equivalent to the original
trajectory-set; in terms of OBDD operators:

outcomeOK? = equiv(Gref.l+1, apply(∧, Gref.l+1, Geffects(ai
k
))) (18)

Since the size of G
effects(ai

k
) is negligible when compared to the size of Gref.l+1, computa-

tional complexity of this check is about O(|Gref.l+1|
2).

The failed outcome can be checked in a similar way; in this case we want to discover
whether the nominal effects of aik are missing in Tri[1, l + 1]; this happens only when the

negation of the effects effects(aik) do not represent a possible filter for Tri[1, l + 1] so that

Tri[1, l + 1] join effects(aik) is again equals to Tri[1, l + 1]. In terms of OBDD operators

outcomeFailed? = equiv(Gref.l+1, apply(∧, Gref.l+1, G
effects(ai

k
)
)) (19)

It is important to note that the OBDD G
effects(ai

k
)
is computed in constant time directly

from G
effects(ai

k
); in fact, given a Boolean function f and the corresponding graph Gf , it

is sufficient to exchange with each other the 0 and 1 nodes in Gf to obtain the graph
representation of the Boolean function not(f). Thus, also this check is about O(|Gref.l+1|

2).

65

Micalizio & Torasso

It follows that the cost for determining the outcomes of the actions in pActsi is:

O(|pActsi| · |G(ref.)l+1|
2). (20)

From equation (20), it is easy to see that the computational cost of the CWCM method-
ology strongly depends on the amount of available observations. The worst case is in fact
when at a give step l, due to very scarce observations, the number of pending actions is
close to l itself; that is, |pActsi| ≈ l, meaning that almost all the actions performed so far
have outcome pending.

A.3 Diagnosis: Computational Analysis

The computational cost of the diagnostic process is strongly dominated by the cost for
inferring the event-based explanations (EVE). As we have shown, in fact, it is possible to
extract the set of minimum cardinality primary action failures explanations (mPADs) from
such a structure. According to Equation 11, the EVE set can be extracted as a projection
of the current trajectory-set Tri[1, l] over the event variables e1, . . . , el−1; unfortunately, in
this case there is no way to avoid this expensive operation.

To estimate its computational cost, we have first to consider how many binary variables
are within the OBDD Gl encoding Tr

i[1, l], and how many (binary) variables we are going to
remove from that OBDD. Each state and event variable in Tri[i, l] is in fact a multi-valued
variable that is actually implemented in terms of a number of binary variables within the
OBDD Gl. The number of required binary variables depends on the size of the domain of
the original high-level variable. Let us assume that d is the size of the largest domain of the
variables in VARi, then we can estimate that we need b = log d binary variables for each
variable mentioned in Tri[1, l] (both state and event variables). It is easy to see that the
number of binary variables required to represent a single belief state is w = b ∗ |VARi|: for
each multi-valued variable in VARi we have b binary variables at OBDD level.

The number of binary variables encoding the trajectory-set Tri[i, l] is therefore p =
l ·w+ (l− 1) · b; in fact, within Tri[1, l], we have l beliefs and l-1 event variables. The cost
of projecting Tri[1, l] over the event variables is therefore:

O((2p−l·w · |Gl|)
2). (21)

Once EVE diagnoses have been extracted, it is possible to infer the minimum cardinality
primary failures by exploiting techniques by Torasso and Torta (2003), which are proven to
be polynomial in the size of the OBDD.

A.4 Discussion

A first important result that emerges from the computational analysis above is that the
monitoring of a single execution step with CWCM is not exponential. In fact, we have
shown that each step of its declarative definition can be mapped into a number of OBDD
operators whose complexity is polynomial, provided that the sizes of the involved OBDDs
remain manageable. In particular, we have shown that the only exponential operation used
in the declarative definition, the projection, can be avoided in the actual implementation.
The main concern with CWCM is that the trajectory-set may grow over time as an agent

66

Cooperative Monitoring to Diagnose Multiagent Plans

performs actions without receiving observations. Consequently, also the computational cost
of CWCM tends to grow over time since the size of the OBDD encoding the trajectory-
set may increase. It is important to note, however, that such a growth is not exponential
but quadratic (see equation (15)). In addition, to estimate the computational costs of
both monitoring and diagnosis, we exploited the estimations reported in Table 6; these,
however, are estimates of the very worst possible cases, but in practice these cases are not
very common. Bryant conjectures that, although the theoretical cost of the apply operator
between two OBDDs G1 and G2 is O(|G1| · |G2|) in the worst case, in practice the actual
cost is in most of the cases closer to O(|G1|+ |G2|+ |G3|) where G3 is the resulting OBDD
(Bryant, 1986). Thus also the size of the resulting, intermediate OBDDs plays a central
role in determining the actual computational cost.

In the specific case of CWCM, we have to observe that it is not very common for an
agent to perform a long portion of its plan without receiving observations. The CWCM
allows in fact the agents to communicate with each other; therefore, unless an agent is
completely isolated from others, each agent will likely receive observations coming from the
other agents about the services it has provided them with. This means that, in practice,
the size of the OBDD encoding the trajectory-set should not become intractable because of
the cooperation among the agents, and the experiments we have conducted so far support
this hypothesis.

On the other hand, the diagnostic inferences are slightly more expensive than the mon-
itoring strategy. This because the project operation cannot be avoided in order to infer a
diagnosis. In this case, however, we have to observe that the plan execution has already
been stopped as a consequence of a detected failure. Thus, the diagnosis can take more
time to infer a result since it is not constrained to be on-line.

References

Arasu, A., Babu, S., & Widom, J. (2006). The CQL continuous query language: semantic
foundations and query execution. The International Journal on Very Large Data
Bases, 15 (2), 121–142.

Birnbaum, L., Collins, G., Freed, M., & Krulwich, B. (1990). Model-based diagnosis of
planning failures. In Proc. of Association for the Advancement of Artificial Intelligence
(AAAI’90), pp. 318–323.

Boutilier, C., & Brafman, R. I. (2001). Partial-order planning with concurrent interacting
actions. Journal of Artificial Intelligence Research, 14, 105–136.

Brusoni, V., Console, L., Terenziani, P., & Theseider Dupré, D. (1998). A spectrum of
definitions for temporal model based diagnosis. Artificial Intelligence, 102, 39–79.

Bryant, R. (1986). Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35 (8), 677–691.

Bryant, R. (1992). Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computer Surveys, 24, 293–318.

67

Micalizio & Torasso

Cordier, M.-O., & Grastien, A. (2007). Exploiting independence in a decentralised and
incremental approach of diagnosis. In Proc. of the International Joint Conference on
Artifical Intelligence (IJCAI’07), pp. 292–297.

Cox, J. S., Durfee, E. H., & Bartold, T. (2005). A distributed framework for solving the
multiagent plan coordination problem. In Proc. of International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’05), pp. 821–827.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 229–264.

de Jonge, F., Roos, N., & Witteveen, C. (2009). Primary and secondary diagnosis of multi-
agent plan execution. Journal of Autonomous Agent and Multiagent Systems, 18 (2),
267–294.

Eiter, T., Erdem, E., Faber, W., & Senko, J. (2007). A logic-based approach to finding
explanations for discrepancies in optimistic plan execution. Fundamenta Informaticae,
79 (1-2), 25–69.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20, 61–124.

Grastien, A., Anbulagan, Rintanen, J., & Kelareva, E. (2007). Diagnosis of discrete-event
systems using satisfiability algorithms. In Proc. of Association for the Advancement
of Artificial Intelligence (AAAI’07), pp. 305–310.

Grastien, A., Haslum, P., & Thiébaux, S. (2012). Conflict-based diagnosis of discrete event
systems: Theory and practice. In Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’12), pp. 489–499.

Gupta, S., Roos, N., Witteveen, C., Price, B., & de Kleer, J. (2012). Exploiting shared
resource dependencies in spectrum based plan diagnosis. In Proc. of Association for
the Advancement of Artificial Intelligence (AAAI’12), pp. 2425 – 2426.

Heger, F. W., Hiatt, L. M., Sellner, B., Simmons, R., & Singh, S. (2005). Results in Sliding
Autonomy for Multi-Robot Spatial Assembly. In Proc. International Symposium on
Artificial Intelligence, Robotics and Automation in Space (iSAIRAS).

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks. Arti-
ficial Intelligence, 173 (5-6), 503–535.

Jonsson, P., & Bäckström, C. (1998). State-variable planning under structural restrictions:
Algorithms and complexity. Artificial Intelligence, 100 (1-2), 125–176.

Kalech, M. (2012). Diagnosis of coordination failures: A matrix-based approach. Journal
of Autonomous Agents and Multiagent Systems, 24 (1), 69–103.

Kalech, M., & Kaminka, G. A. (2003). On the design of social diagnosis algorithms for
multi-agent teams. In Proc. International Joint Conference on Artificial Intelligence
(IJCAI03), pp. 370–375.

Kalech, M., & Kaminka, G. A. (2005). Diagnosing a team of agents: Scaling up. In Proc.
of International Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS’05), pp. 249–255.

68

Cooperative Monitoring to Diagnose Multiagent Plans

Kalech, M., & Kaminka, G. A. (2007). On the design of coordination diagnosis algorithms
for teams of situated agents. Artificial Intelligence, 171 (8-9), 491–513.

Kalech, M., & Kaminka, G. A. (2011). Coordination diagnostic algorithms for teams of
situated agents: Scaling up. Computational Intelligence, 27 (3), 393–421.

Kalech, M., Kaminka, G. A., Meisels, A., & Elmaliach, Y. (2006). Diagnosis of multi-robot
coordination failures using distributed CSP algorithms. In Proc. of Association for
the Advancement of Artificial Intelligence (AAAI’06), pp. 970–975.

Kaminka, G. A., & Tambe, M. (2000). Robust multi-agent teams via socially-attentive
monitoring. Journal of Artificial Intelligence Research, 12, 105–147.

Lamperti, G., & Zanella, M. (2002). Diagnosis of discrete-event systems from uncertain
temporal observations. Artificial Intelligence, 137 (1-2), 91–163.

Mi, P., & Scacchi, W. (1993). Articulation: an integrated approach to the diagnosis, re-
planning, and rescheduling of software process failures. In Proc. of Knowledge-Based
Software Engineering Conference, pp. 77–84.

Micalizio, R. (2013). Action failure recovery via model-based diagnosis and conformant
planning. Computational Intelligence, 29 (2), 233–280.

Micalizio, R., & Torasso, P. (2007a). On-line monitoring of plan execution: a distributed
approach. Knowledge-Based Systems, 20 (2), 134–142.

Micalizio, R., & Torasso, P. (2007b). Plan diagnosis and agent diagnosis in multi-agent
systems. In Proc. Congress of the Italian Association for Artificial Intelligence
(AI*IA’07), Vol. 4733 of LNCS, pp. 434–446.

Micalizio, R., & Torasso, P. (2008). Monitoring the execution of a multi-agent plan: Dealing
with partial observability. In Proc. of European Conference on Artificial Intelligence
(ECAI’08), pp. 408–412.

Micalizio, R., & Torasso, P. (2009). Agent cooperation for monitoring and diagnosing a
MAP. In Proc. of Multiagent System Technologies (MATES’09), Vol. 5774 of LNCS,
pp. 66–78.

Micalizio, R., Torasso, P., & Torta, G. (2006). On-line monitoring and diagnosis of a team
of service robots: a model-based approach. AI Communications, 19 (4), 313–349.

Nebel, B. (2000). On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research, 12, 271–315.

Pencolé, Y., & Cordier, M. (2005). A formal framework for the decentralized diagnosis of
large scale discrete event systems and its application to telecommunication networks.
Artificial Intelligence, 164, 121–170.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32 (1),
57–96.

Roos, N., & Witteveen, C. (2009). Models and methods for plan diagnosis. Journal of
Autonomous Agent and Multiagent Systems, 19 (1), 30–52.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995).
Diagnosability of discrete event systems.. IEEE Transactions on Automatic Control,
40 (9), 1555–1575.

69

Micalizio & Torasso

Sellner, B., Heger, F., Hiatt, L., Simmons, R., & Singh, S. (2006). Coordinated multi-
agent teams and sliding autonomy for large-scale assembly. IEEE - Special Issue on
Multi-Robot Systems, 94 (7), 1425 – 1444.

Steinbauer, G., & Wotawa, F. (2008). Enhancing plan execution in dynamic domains using
model-based reasoning. In Intelligent Robotics and Applications, First International
Conference, (ICIRA’08), Vol. 5314 of LNAI, pp. 510–519.

Tambe, M. (1998). Implementing agent teams in dynamic multi-agent environments. Applied
Artificial Intelligence, 12 (2-3), 189–210.

Torasso, P., & Torta, G. (2003). Computing minimum-cardinality diagnoses using OBDDs.
In German Conference on AI (KI’03), Vol. 2821 of LNCS, pp. 224–238.

Torasso, P., & Torta, G. (2006). Model-based diagnosis through OBDD compilation: A com-
plexity analysis. In Reasoning, Action and Interaction in AI Theories and Systems,
Vol. 4155 of LNCS, pp. 280–298.

Torta, G., & Torasso, P. (2007). On the role of modeling causal independence for system
model compilation with OBDDs. AI Communications, 20 (1), 17–26.

Weld, D. S. (1994). An introduction to least commitment planning. AI Magazine, 15 (4),
27–61.

Witteveen, C., Roos, N., van der Krogt, R., & de Weerdt, M. (2005). Diagnosis of single
and multi-agent plans. In Proc. of International Conference on Autonomous Agents
and Multiagent Systems (AAMAS’05), pp. 805–812.

Yan, Y., Dague, P., Pencolé, Y., & Cordier, M.-O. (2009). A model-based approach for
diagnosing fault in web service processes. Journal of Web Service Research., 6 (1),
87–110.

70

