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Abstract

It is widely acknowledged that stochastic local search (Sal§orithms can efficiently find
models for satisfiable instances of the satisfiability (Spigblem, especially for randor-SAT
instances. However, compared to random 3-SAT instancesv@ieS algorithms have shown great
success, randomrSAT instances with long clauses remain very difficult. Relye the notion of
second level score, denotedsasres, was proposed for improving SLS algorithms on long-clause
SAT instances, and was first used in the powerful CCASat saly@ tie breaker.

In this paper, we propose three new scoring functions basecboe,. Despite their simplicity,
these functions are very effective for solving randbf8AT with long clauses. The first function
combinesscore andscores, and the second one additionally integrates the diversific@roperty
age. These two functions are used in developing a new SLS algoritalled CScoreSAT.
Experimental results on large random 5-SAT and 7-SAT irtgamear phase transition show
that CScoreSAT significantly outperforms previous SLS ey However, CScoreSAT cannot
rival its competitors on random-SAT instances at phase transition. We improve CScoreSAT
for such instances by another scoring function which coewiore; with age. The resulting
algorithm HScoreSAT exhibits state-of-the-art perforeeaion randonk-SAT (¢ > 3) instances
at phase transition. We also study the computatiomcofes, including its implementation and
computational complexity.

1. Introduction

The Boolean Satisfiability (SAT) problem is a prototypical NP-complete pmobidose task is to
decide whether the variables of a given Boolean formula can be assigaedch a way as to make
the formula evaluate to TRUE. This problem plays a prominent role in varimasaf computer
science and artificial intelligence, and has been widely studied due to its cigmifmportance in
both theory and applications.

Two popular approaches for solving SAT are conflict driven clausenieg (CDCL) and
stochastic local search (SLS). The latter operates on complete assigameigs to find a model
by iteratively flipping a variable. Although SLS algorithms are typically incompietthe sense
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that they cannot prove an instance to be unsatisfiable, they often find noddalisfiable formulas
surprisingly effectively.

Most SLS algorithms for SAT switch between two different modes, i.e., thedyre
(intensification) mode and the diversification mode. In the greedy modepthésr to flip variables
whose flips can decrease the number of falsified clauses; in the dwatisiii mode, they tend to
better explore the search space and avoid local optima, usually usingmeed strategies and
exploiting diversification properties of variables to pick a variable for this a

SLS is well known as the most effective approach for solving randdisfisdle instances, and
SLS algorithms are often evaluated on uniform randet®AT benchmarks. These benchmarks
have a large variety of instances to test the robustness of algorithms,yandntrolling the
instance size and the clause-to-variable ratio, they provide adjustablieelsarlevels to assess the
solving capabilities. Moreover, the performance of algorithms are usu@bfeson randonk-
SAT instances, either good or bad. Thus, we can easily recognizehgowistics by testing SLS
algorithms on random-SAT instances, and these heuristics may be beneficial for solving realistic
problems. Numerous works have been devoted to designing SLS algorithmenfiomk-SAT
instances with a clause-to-variable ratio at or near the solubility phaséitvanshich are the most
difficult among randon&-SAT instances (Kirkpatrick & Selman, 1994).

Among randomk-SAT instances, random 3-SAT ones exhibit some particular statistical
properties and are easy to solve, for example, by SLS algorithms and #csthfibysics approach
called Survey Propagation (Braunstein, Mézard, & Zecchina, 20@3)as been shown that the
famous SLS algorithm WalkSAT (Selman, Kautz, & Cohen, 1994), which praposed two
decades ago, scales linearly with the number of variables for randofi 8i1&tances near the phase
transition and can solve such instances with one million variables (Kroc,aBabh & Selman,
2010). The latest state of the art in this direction is an SLS algorithm calle@Bywhich solves
random 3-SAT instances near the phase transition (at ratio 4.2) with milliorzsiables within 2-3
hours (Luo, Cai, Wu, & Su, 2013).

In contrast, randomk-SAT instances with long clauses remain very difficult, and the
performance of SLS algorithms on such instances has stagnated for &nfengIndeed, such
instances are challenging for all kinds of algorithms, including the Survegagation algorithm,
which solves random 3-SAT instances extremely fast (Mézard, 20@35also adapted for solving
MaxSAT (Chieu & Lee, 2009). Recently, a few progresses suchttis®dLi & Li, 2012), probSAT
(Balint & Schoning, 2012) and CCASat (Cai & Su, 2013b), have bmade in this direction. In
particular, when solving random instances near the phase transitiomattiraeSalgorithm is good
at solving random 6-SAT and 7-SAT instances, and probSAT is gosdléhg random 4-SAT and
5-SAT instances. Comparatively, CCASat shows good performanab andomk-SAT instances
for k € {4,5,6,7} and won the random track of SAT Challenge 2012. Note that the secahd an
third solvers in that track are variants of the portfolio solver SATzilla (Xutter, Hoos, & Leyton-
Brown, 2008). On the other hand, probSAT and Sattime show betterpenize than CCASat on
randomk-SAT instances at the threshold ratio of phase transition.

A key notion in CCASat is thescores property, which shares the same spirit with the
commonly usedscore property and can be regarded as the second level score. It censide
transformations between clauses with one true literal and those with two traslit8y breaking
ties usingscores, the performance of CCASat is significantly improved for rande®AT instances

1. thescores property is denoted by subscore in CCASat (Cai & Su, 2013b).
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with k£ > 3 (Cai & Su, 2013b). This leads us to such a questiorCan we further improve SLS
algorithms on such instances by making better use okthee, property? In this paper, we give
a positive answer to this question by proposing three new scoring fusdtimeed omcores, and
using them to develop two SLS algorithms which outperform state-of-thee&rérs on random
k-SAT with £ > 3 near and at phase transition.

The first scoring function proposed in this paper is calletre, which is a linear combination
of score andscores. Thecscore function differs from previous hybrid scoring functions in that it
considers two “score” properties of different levels. Based on thusrsg function, we also define
a new type of “decreasing” variables namely comprehensively daeogeaariables. Thescore
function enhances intensification in the greedy mode by integrating thentgneediness and the
look-ahead greediness. Further, by combiniagore with the diversification propertyge (the
definition of age can be found in Section 2.1), we propose the second scoring functigvedu
hscore, which is used to improve the diversification mode. These two scoring funscéice used to
develop an SLS algorithms called CScoreSAT.

We conduct extensive experiments to compare CScoreSAT againstktatart SLS solvers
including winners from the most recent SAT competitions. The experimentarga random 5-
SAT and 7-SAT instances near phase transition show that CScore S#ificsigtly outperforms its
competitors in terms of success rate or run time. In particular, CScoreSAleiscasolve random
5-SAT instances with up to 5000 variables and random 7-SAT instancesivitth 300 variables,
whereas all its competitors fail to solve such instances of this size.

However, the performance of CScoreSAT on rande®AT instances at the threshold ratio of
phase transition is not as good as other state-of-the-art solversspobbés AT and Sattime, which
are the top two solvers in the random SAT category of SAT Competition 20at tNat the major
part of the random SAT benchmark in SAT Competition 2013 consists obrardSAT instances
at phase transition.

The second contribution of this paper is to improve CScoreSAT for ranth@AT instances
at the threshold ratio of phase transition. The idea is to reduce the intetisifich the greedy
mode, because such instances have fewer models (if satisfiable). @udamations give rise to
the third scoring function dubbétkcores, which combinesgcores with age. This function is used
to improve the greedy mode of CScoreSAT, leading to a new algorithm calledrelSAT. In the
greedy mode, HScoreSAT utilizes there property to pick the flipping variable, and breaks ties by
thehscores function. We evaluate HScoreSAT on randdrSAT (k > 3) instances at the threshold
ratio of phase transition, including those from SAT Competition 2013, anddierienental results
show that HScoreSAT significantly improves CScoreSAT on such instance

We note that the first two functions and the CScoreSAT algorithm (Sectiphe8)e been
presented in a conference paper (Cai & Su, 2013a), while the thindhgctunction and the
HScoreSAT algorithm (Section 4), as well as further experimental aesjrscluding Section 3.5
and the whole Section 5) are new contributions in this paper.

This paper proceeds as follows. Section 2 introduces some preliminargmtsncSection 3
presents thescore and hscore functions and describes the CScoreSAT algorithm, along with
experimental evaluations and analyses of CScoreSAT on raid8@&Tl (k¢ > 3) instances near
phase transition. Section 4 presents theores; function and the HScoreSAT algorithm, as
well as evaluations of HScoreSAT on randdrSAT (¢ > 3) instances at phase transition and
related experimental analyses. In Section 5, we study the computatienoed,, including
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its implementation, complexity and computational overhead. Finally, we give somaudling
remarks and future directions in Section 6.

2. Preliminaries

In this section, we first introduce some basic definitions and notation ak®ptdblem. Then, we
briefly review the notion of second level properties and related worksalliz, we introduce the
configuration checking strategy, which is also an important component ialgorithms.

2.1 Basic Definitions and Notation

Given a set o, Booleanwariables {x1, xo, ..., x, }, @literal is either a variable: (which is called
positive literal) or its negatiomz (which is called negative literal), andcdause is a disjunction
of literals. A conjunctive normal form (CNF) formulBl = ¢; A ¢o A ... A ¢, IS @ conjunction of
clauses. A satisfying assignment for a formula is an assignment to its varsalde that the formula
evaluates to true. Given a CNF formuta the Boolean Satisfiability problem is to find a satisfying
assignment or prove that none exists.

A well-known generation model for SAT is the uniform rand@rSAT model (Achlioptas,
2009). In a randonk-SAT instance, each clause contains exaktlgistinct non-complementary
literals, and is picked up with uniform probability distribution from the seZ’?(f,z) possible clauses.
The clause-to-variableatio of a CNF formulaF is defined as = m/n, wheren is the number of
variables andn is the number of clauses.

For a CNF formulaF’, we useV (F') to denote the set of all variables that appeaFinVe say
a variable appears in a clause, if the clause contains eitberz. Two variables are neighbors if
and only if they appear simultaneously in at least one clause. The neiditoouof a variable: is
N(z) = {y|y occurs in at least one clause with, which is the set of alheighboring variables
of variablex. For a subse’ C V(F') and an assignment, «[X] is the projection ofx on the
variables ofX.

We say that a literal is true if the current value of the variable is the same pisase E.g., if
x1 = false, then the negative literal:; is true, while the positive literat; is not true. A clause is
satisfiedf it has at least one true literal, afialsifiedotherwise.

SLS algorithms for SAT usually select a variable to flip in each step underuiuamgce of
scoring functions. Most SLS algorithms have more than one scoring function, and adopifone
them for the current search step according to some conditions, sudheiseva local optimum is
reached. A scoring function can be a simple variable property or any matibahgxpression with
one or more properties.

Perhaps the most popular variable property used by SLS algorithms foisS#ore, which
measures the increase in the number of satisfied clauses by flipping deafiabscore property
is also defined ascore(x) = make(z) — break(x), wheremake andbreak is the number of
clauses that would become satisfied and falsified, respectivelyvire to be flipped. Note that
the two definitions ofcore are equivalent. In dynamic local search algorithms which use clause
weighting technigquesicore measures the increase in the total weight of satisfied clauses by flipping
a variable, whilenake andbreak measures the total weight of clauses that would become satisfied
and falsified, respectively, by flipping. A variable isdecreasing if its score is positive, and
increasing if its score is negative. Thege of a variable is defined as the number of search steps
that have occurred since the variable was last flipped.
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2.2 Second Level Properties

In this subsection, we introduce the second level properties, especaligtlnd level score, which
is an important concept in the proposed scoring functions in this work.

The second level properties take into accounsttésfaction degreef clauses, which is defined
as the number of true literals in the clause (Cai & Su, 2013a). A clause wéhisfagtion degree
of ¢ is said to be a-satisfied clause. For a variabte scores(z) is defined asnakes(x) minus
breaks(x), wheremakes(x) is the number of 1-satisfied clauses that would become 2-satisfied
by flipping =, andbreak, () is the number of 2-satisfied clauses that would become 1-satisfied
by flipping . One can easily define properties of other levels and the weighted verfsibase
properties.

The first SLS solver using second level properties is CCASat (Cai,&813b), which simply
usesscores as a tie breaker and achieves surprising improvements on rake®AT with long
clauses. Then, in the conference version of this paper, we comtiine andscores to develop the
CScoreSAT algorithm (Cai & Su, 2013a). We also propose the notion tif-level properties and
usemakes to improve the famous WalkSAT/SKC algorithm (Cai, Su, & Luo, 2013a). Afseds,
multi-level break is used to improve the probSAT solver (Balint, Biere, Frohlich, & Schoéning,
2014). In this work, we further exploit thecore; property by using it to design scoring functions
that directly guide the algorithm to pick the flipping variable.

We note that both algorithms in this work utilize the unweighted versiostofe, (although
they use the weighted version gfore), just as CCASat does. In our algorithms, the unweighted
scores is found to be much more effective than the weighted one, yet at this time we ot
figure out the reason or find an effective way using weightettes in these algorithms.

2.3 Configuration Checking for SAT

In this subsection, we briefly introduce the configuration checking (@@jegy for SAT, which is
an important component in the proposed algorithms in this work.

Initially introduced for improving local search for the Minimum Vertex CoveéMC) problem
(Cai, Su, & Sattar, 2011), the CC strategy aims at avoiding cycling in loeatkg.e., revisiting
the already visited candidate solutions too early. It has been successfatlyin MVC (Cai et al.,
2011; Cai, Su, Luo, & Sattar, 2013b), as well as SAT (Cai & Su, 20Q1; et al., 2013; Abramé,
Habet, & Toumi, 2014; Luo, Cai, Wu, & Su, 2014; Li, Huang, & Xu, 2014jldMaxSAT (Luo, Cai,
Wu, Jie, & Su, 2014).

The CC strategy is based on the conceptcofnfiguration One can define configuration
in different ways and design different CC strategies accordingly. édbntext of SAT, the
configuration of a variable typically refers to truth values of all its neigimgpvariables (Cai &
Su, 2013b). Formally, given an assignmentthe CC strategy for SAT defines the configuration
C(z;) of a variabler; as a subset af restricted to the variables & (x;), i.e., C(z;) = a[N(z;)].

If a variable inC'(x;) has been flipped since the last flipafthenC(x;) is said changed. The CC
strategy for SAT forbids the flip of a variablg if its configurationC'(z;) has not changed since the
last flip of ;.

The CC strategy is used to decrease blind unreasonable greedy. sBaicktrategy has been
successfully applied to SAT solving, resulting in several efficient SLSralgns for SAT, such as
CCASat (Cai & Su, 2013b), Ncca+ (the bronze medal winner of thdaanSAT track of SAT
Competition 2013) (Abramé et al., 2014), BalancedZ (Li et al., 2014) &®8@CSat (Luo et al.,
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2014) (the silver and bronze medal winner of random SAT track of SAmgetition 2014), and
CCAnr+glucose (Cai & Su, 2012) (the silver medal winner of hard coatbitial SAT track of SAT
Competition 2014), etc.

3. Two New Scoring Functions and the CScoreSAT Algorithm

In this section, we design two new scoring functions, nametyre andhscore. Then we use them
to develop a new SLS algorithm called CScoreSAT, which shows excebefarmance on random
k-SAT with & > 3 near the phase transition.

3.1 Theescore Function

In this subsection, we introduce thecore (short for comprehensive score) function, which is a
linear combination of thecore andscores properties.

The score property characterizes the greediness of flipping a variable at thentgearch step,
as it tends to decrease the number of falsified clauses, which is indedchtbéthe SAT problem.
On the other hand, the:ores property can be regarded as a measurement of look-ahead greedines
as it tends to reduce 1-satisfied clauses by transforming them into 2-shtisfieses, noting that
1-satisfied clauses may become falsified in the next step while 2-satisfisdlomet.

It seems short sighted to simply take there property as the scoring function, especially for
formulas with long clauses, in which the number of true literals varies comgitjeamong satisfied
clauses. To address this issue, we propose a scoring function thgbaraies bothscore and
scorez. When deciding the candidate variables’ priorities of being selected, gltheure is more
important thanscores, in some casescores should be allowed to overwrite the priorities. For
example, for two variables which have a relatively smatire difference and a significastores
difference, it is advisable to prefer to flip the one with greatere,.

The above considerations suggest two principles in designing the desoedg functions.

* First, thescore property plays a more important role;

» Second, thescores property is allowed to overwrite the variables’ priorities (of being
selected).

As a result, we have the notion of comprehensive score, which is formefityad! as follows.

Definition 1. For a CNF formulaF’, the comprehensive score function, denoteddayre, is a
function onV (F) such that

cscore(x) = score(x) + scorey(x)/d,
whered is a positive integer parameter.

Note thatecscore is defined to be an integer function, and thus the valuesedre will be
rounded down to an integer if it is not.

Thecscore function is a linear combination atore andscores with a bias towardscore, and
thus embodies the two principles well. This function is so simple that it can be dethpith little
overhead and the parameter can be easily tuned. Moreover, its simplicity dtidopotential usage
in solving structured SAT instances and perhaps other combinatoriahsg@blems.

Recall that a variable is decreasing if and only if it has a pos#ivee. In the following, we
define a new type of “deceasing” variables based or¢here function.
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Definition 2. Given a CNF formulaF’ and itscscore function, a variablexr is comprehensively
decreasing if and only ifscore(x) > 0 andscore(x) > 0.

While the conditionescore(x) > 0 is straightforward, the other conditiostore(z) > 0
requires the variable to be non-increasing. This is necessary, asdligpincreasing variable leads
the local search away from the objective, which should not be acceyptedut any controlling
mechanism such as the Metroplis probability in Simulated Annealing (Kirkpatatt, &
Vecchi, 1983), unless the algorithm gets stuck in a local optimum.

Most SLS algorithms for SAT prefer to flip decreasing variables in thedyrsearch mode.
In some respect, the notion of comprehensively decreasing variablesigdension of decreasing
variables, and is a good alternative to be considered as flip candidatesgreddy search phases.

3.2 Thehscore Function

We combinecscore with the diversification propertyge, resulting in a hybrid scoring function
dubbedhscore, which can be used to improve the diversification mode.

One of the most commonly used variable property in the diversification ma8e®algorithms
for SAT isage. Previous SLS algorithms usually usge to pick the oldest variable from a candidate
variable set (Gent & Walsh, 1993; Li & Huang, 2005; Cai & Su, 208Bramée et al., 2014) or only
to break ties (Prestwich, 2005; Pham, Thornton, Gretton, & Sattar, 208¥,; 3u, & Cai, 2012).
In our opinion, however, these “oldest” strategies are too strict as theys prefer the oldest one,
regardless of other important information suchsag e or cscore. Thus, these “oldest” strategies
may miss better variables quite often.

For example, suppose an SLS algorithm gets stuck in a local optimum, andldt ikeuto pick
one variable to flip from such two variables andzs: the two variables have similar ages and
is older thanz,, while cscore(x2) is significantly greater thamscore(x1). In this case, we believe
T is the right choice rather than the older variable as the flipping of these two variables leads to
similar diversification and flipping. does less harm to the object function.

Based on the above considerations, we design a hybrid scoring futedtiog account into both
the greediness informatiarscore and the diversification informatioaage. The resulting scoring
function is dubbed akscore and is given as follows.

Definition 3. For a CNF formulaF’, thehscore function is a function oV (F’) such that
hsocre(x) = cscore(x) + age(x)/B = score(x) + scorez(z)/d + age(x) /5,
whered and 3 are positive integer parameters.

In our algorithms, when reaching a local optimum, the algorithms make use ofythiglh
function. We will show that théscore function is a better choice than the “oldest” strategy for the
diversification mode.

3.3 The CScoreSAT Algorithm

This section presents the CScoreSAT algorithm, which adoptgshee function to guide the
search in the greedy mode, and makes use ofthere function when meets local optima.

Before getting into the details of the CScoreSAT algorithm, we first introduoetéahniques
employed in the algorithm.
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1. PAWS weighting scheme.For the sake of diversification, CScoreSAT employs the PAWS
clause weighting scheme (Thornton, Pham, Bain, & Ferreira Jr., 2004ch Elause is
associated with a positive integer as its weight, which is initiated as 1. Whenlajioaum
is reached, the clause weights are updated as follows. With probadili(lhe so-called
smooth probability, for each satisfied clause whose weight is larger than one, its weight is
decreased by one; with probability £ sp), the weights of all falsified clauses are increased
by one.

2. Configuration checking. In order to reduce blind greedy search, we utilize the configuration
checking strategy for SAT (Cai & Su, 2012). Recall that a variableittseebe configuration
changed if and only if after its last flip at least one of its neighboring varsahbes been
flipped. According to the configuration checking strategy, only condigom changed
variables are allowed to be flipped in the greedy mode.

Algorithm 1: CScoreSAT

o N

10

11

12
13

Input: CNF-formulaF’, maxSteps

Output: A satisfying assignment of I, or “unknown”

begin

« := randomly generated truth assignment;

for step := 1to maxSteps do

if o satisfiest’ then return «;

if S = {x|z is comprehensively decreasing and configuration charjggd) then
v := a variable inS with the greatestscore, breaking ties in favor of the oldest
| one;

else

update clause weights according to PAWS;

pick a random falsified clausg;

v := the variable inC' with the greateshscore;

a = « with v flipped,;

return “unknown”;
end

The CScoreSAT algorithm is outlined in Algorithm 1, as described below. érbdginning,

CScoreSAT generates a random complete assignment, initiates all claubesweiyand computes
score and scores Of variables accordingly. After initialization, CScoreSAT executes a laup u
it finds a satisfying assignment or reaches a limited number of steps denotedabteps (or a
given cutoff time).

Like most SLS algorithms for SAT, CScoreSAT switches between two modesadh search

step, it works in either the greedy mode or the diversification mode, demeond whether there
exist comprehensively decreasing variables that are configuratemgel. If there exist such
variables, CScoreSAT works in the greedy mode. It picks such a \emdth the greatestscore
value to flip, breaking ties by preferring the oldest one.

If no variables are both comprehensively decreasing and configurati@nged, then

CScoreSAT switches to the diversification mode. It first updates claegghtg according to the
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PAWS scheme. Then it randomly selects a falsified clatisand picks the variable fror@' with
the greateskscore value to flip.

3.4 Evaluations of CScoreSAT

In this subsection, we carry out extensive experiments to evaluate €9&bron randonk-SAT
instances withk € {4, 5,6, 7} near phase transition. First, we compare CScoreSAT with state-of-
the-art SLS solvers on random 5-SAT and 7-SAT instances. Thewrpom@are CScoreSAT with
state-of-the-art SLS solvers on randérSAT with instances: € {4,5,6,7} from SAT Challenge
2012. Finally, we study the effectiveness of theore and hscore functions through empirical
analysis on random 5-SAT and 7-SAT instances.

3.4.1 BENCHMARKS AND EXPERIMENT PRELIMINARIES

All the instances used in these experiments are generated according amdoentc-SAT model
near the solubility phase transition. Specifically, we adopt the following fwvebmarks. The first
two benchmarks are for random 5-SAT, and the third and fourth benisrage for random 7-SAT,
while the last one consists of randdBAT instances wittk = 4, 5,6, 7 at various ratios.

1. 5-SAT Compll: all large random 5-SAT instances from SAT Competition 2041 20,
750 < n < 2000, 50 instances, 10 for each size).

2. 5-SAT Huge: 5-SAT instances generated randomly according to the rand@AT model
(r = 20, 3000 < n < 5000, 500 instances, 100 for each size).

3. 7-SAT Compl1l: all large random 7-SAT instances from SAT Competition 201 1( 85,
150 < n < 400, 50 instances, 10 for each size).

4. 7-SAT Random: 7-SAT instances generated randomly according to the rakd8@I model
(r = 85,220 < n < 300, 500 instances, 100 for each size).

5. SAT Challenge 2012:all randomk-SAT instances withk > 3 from SAT Challenge 2012
(480 instances, 120 for eaghSAT, k = 4,5, 6, 7), which vary in both size and ratio. These
random instances occupy 80% of the random benchmark in SAT Cha®8ige indicating
that the importance of randomSAT instances witlt: > 3 has been highly recognized by the
SAT community. The instances vary from 800 variables at 9.931 to 10000 variables at
r = 9.0 for 4-SAT, from 300 variables at = 21.117 to 1600 variables at = 20 for 5-SAT,
from 200 variables at = 43.37 to 400 variables at = 40 for 6-SAT, and from 100 variables
atr = 87.79 to 200 variables at = 85 for 7-SAT.

parameter || 4-SAT | 5-SAT | 6-SAT | 7-SAT
sp (for PAWS) || 0.62 062 |09 0.9
d 9 8 7 6
B 2000 | 2000 | 2000 | 2000

Table 1: Parameter setting of CScoreSAT
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CScoreSAT is implemented in C++ and compiled by g++ with the -O2’ option. Erarpeter
setting of CScoreSAT is reported in Table 1. We compare CScoreSAT withstate-of-the-art
SLS solvers, includingpar r ow2011 (Balint & Frohlich, 2010),CCASat (Cai & Su, 2013b),
pr obSAT (Balint & Schoéning, 2012), an®@atti me2012 (Li & Li, 2012). Sparrow2011 and
probSAT won the gold medal of the random SAT track of the SAT competiti@id Zand 2013
respectively. CCASat is the winner of this same category in SAT Challedit2 Sattime regularly
won medals during SAT competitions of the same track.

All experiments are carried out parallel on a workstation under a 32kt Linux Operation
System, using 2 cores of Intel(R) Core(TM) 2.6 GHz CPU and 8 GB RAM: &kperiments are
conducted with EDACC, an experimental platform for testing SAT solvetschvhas been used
for SAT Challenge 2012 and SAT Competition 2013. Each run terminates eiffwer finding a
satisfying assignment or reaching a given cutoff time which is set to 50€8nds (as in SAT
Competition 2011) for the 5-SAT and 7-SAT benchmarks, and 1000 dedonthe SAT Challenge
2012 benchmark (close to the cutoff in SAT Challenge 20%2,900 seconds).

For the 5-SAT Comp11 and 7-SAT Compll benchmarks (where each destéess has 10
instances), we run each solver 10 times for each instance and thus i®®@rueach instance
class. For the 5-SAT Huge and 7-SAT Random benchmarks (whenéredance class contains 100
instances) and the SAT Challenge 2012 benchmark [138T instances for each), we run each
solver one time for each instance, as the instances in each class arb emtesj the performance
of the solvers.

For each solver on each instance class, we report the number ossfudaeins in which a
satisfying assignment is found (“suc runs”) or the solved instancesolf/¢d”), as well as the
PAR10 (“parl0”), which is a penalized average run time where a timeoatsolver is penalized
as 1&(cutoff time). Note that PAR10 is adopted in SAT competitions and has beemywisied in
the literature as a prominent performance measure for SLS-based &AafsstKhudaBukhsh, Xu,
Hoos, & Leyton-Brown, 2009; Tompkins & Hoos, 2010; Tompkins, Balktioos, 2011; Balint
& Schoning, 2012). The results iold indicate the best performance for an instance class. If a
solver has no successful run on an instance class, the correspdpdia0” is marked with “n/a”.

3.4.2 EXPERIMENTAL RESULTS OFCSCORESAT

In the following, we present the comparative experimental results of @Séd and its competitors
on each benchmark.

Results on 5-SAT Comp11 Benchmark:

Table 2 shows the comparative results on the 5-SAT Comp11 benchmaiskcldar from Table
2, CScoreSAT shows significantly better performance than other sawdise whole benchmark.
CScoreSAT is the only solver that solves all these 5-SAT instances inrall iilso, CScoreSAT
significantly outperforms its competitors in terms of run time, which is more obviotheasstance
size increases. In particular, on the 5-SAT-v2000 instances, wh&cbfahe largest size in SAT
competitions, the runtime of CScoreSAT is 15 times less than that of CCASat, ardegs of
magnitudes less than that of other state-of-the-art SLS solvers.

Results on 5-SAT Huge Benchmark:

The experimental results on the 5-SAT Huge benchmark are presenteabia 3. It is
encouraging to see the performance of CScoreSAT remains surprigimgdlyon these very large 5-
SAT instances, where state-of-the-art solvers show very poarnpesihce. CScoreSAT solves these
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Instance Sattime2012 Sparrow2011 probSAT | CCASat| CScoreSAT
Class SucC runs SUcC runs| Ssuc runs| suc runs Suc runs
parl0 parl0 parl0 parl0 parl0

100 100 100 100 100

5-SAT-v750 754 51 88 47 35
100 100 100 100 100

5-SAT-v1000 1254 159 185 81 38
95 100 100 100 100

5-SAT-v1250 5288 174 237 128 47
56 99 98 100 100

5-SAT-v1500 24101 1231 1753 443 145
14 72 71 93 100

5-SAT-v2000 43249 15288| 15635 4386 289

Table 2: Experimental results on the 5-SAT Comp11 benchmark. There are 10 instances in
each class and each solver is executed 10 times on each instance withf dirmataff

5000 seconds.
Instance Sattime2012 Sparrow2011 probSAT | CCASat| CScoreSAT
Class Suc runs SucC runs| Suc runs| suc runs Suc runs
parl0 parlO parl0 parl0 parl0
>SAT V3000 nlz 353%%3 308?307 194%2 (1382
>"SATv3500 n/(; 461487 4718?3 3353150 1}12?1
>-SATv4000 n/g 4808% 485931 452%3% 818677
>-SAT V4500 n/(; n/(; n/(; n/(; 2156:3L23
5-SAT-v5000 n/g n/g n/g n/C; 3203(385

Table 3: Experimental results on the 5-SAT Huge benchmark.There are 100 instances in each
class and each solver is executed one time on each instance with a cutoff ts5@80f

seconds.

5-SAT instances with up to (at least) 3500 variables consistengly (vith 100% success rate), and
is about 30 times faster than other solvers on the 5-SAT-v3500 instdfweksermore, CScoreSAT
succeeds in 62 and 38 runs for the 5-SAT-v4500 and 5-SAT-v5@0@rines respectively, whereas
all its competitors fail to find a solution for any of these instances. Indeethetdest of our
knowledge, such large random 5-SAT instances (at20) are solved for the first time. Given the
good performance of CScoreSAT on the 5-SAT instances with 5000blesiave are confident it

could be able to solve larger 5-SAT instances.
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Instance Sattime2012 Sparrow2011] probSAT | CCASat| CScoreSAT
Class suc runs suc runs| Ssuc runs| suc runs suc runs
parl0 parl0O parl0 parl0 parl0

100 100 88 100 100

/-SAT-v150 498 642 6980 232 131
49 17 11 72 90

7-SAT-v200 26998 41912| 44806| 14912 5853
2 0 0 7 35

/-SAT-v250 49095 n/a nla| 46731 34070
0 0 0 0 11

7-SAT-v300 n/a n/a n/a n/a 44776
7-SAT-v400 0 0 0 0 0
n/a n/a n/a n/a n/a

Table 4: Experimental results on the 7-SAT Comp11 benchmark. There are 10 instances in
each class and each solver is executed 10 times on each instance withf dirtgtaff

5000 seconds.
Instance Sattime2012 Sparrow2011] probSAT | CCASat| CScoreSAT
Class suc runs suc runs| sucruns| sucruns|  suc runs
parl0 parl0| parl0| parl0 parl0
7-SATv220 318?()5?3 434:(L)3; 45215(1)3 171%% 106%35’9
7-SATv240 439133; 490521 490522 341%35)3 179%61
7-SAT-v260 481143 n/g n/c; 4573% 24852%
7-SATv280 n/g n/g n/(; 476055 392%32
7-SATv300 n/(; n/c; n/g n/ce)l 448%3%9

Table 5: Experimental results on the 7-SAT Random benchmark.There are 100 instances in
each class and each solver is executed one time on each instance withf dirmetaff

5000 seconds.

Results on 7-SAT Comp11 Benchmark:

Table 4 summarizes the experimental results on the 7-SAT Compl1 benchN@rk. of the
solvers can solve any 7-SAT instance with 400 variables, indicating thdbma 7-SAT instances
near the phase transition are so difficult even with a relatively small siagertfeless, CScoreSAT
significantly outperforms its competitors on this 7-SAT benchmark, and is tlyesolver that can
solve such 7-SAT instances with 300 variables. Actually, all the competigmsrbe ineffective
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Instance Sattime2012 Sparrow2011] probSAT | CCASat| CScoreSAT
Class #solved #solved| #solved| #solved #solved
parl0 parl0 parl0 parl0 parl0

49 79 111 112 119

4-SAT 6031 3514 778 751 174
32 52 54 71 84

5-SAT 7407 5812 5657 4264 3146
84 72 76 99 110

6-SAT 3187 4193 3877 1887 935
81 65 57 77 91

7-SAT 3422 4714 5380 3734 2559
over Al 246 268 298 359 404
5011 4558 3923 2659 1703

Table 6: Experimental results on SAT Challenge 2012 benchmarkEach instance class contains
120 instances, and each solver is executed once on each instanceuwtdfif fme of 1000
seconds.

(among which CCASat has the highest success rate of 7%) on the ¥v2Z3ATinstances, while
CScoreSAT still achieves a success rate of 35% for this instance class.

Results on 7-SAT Random Benchmark:

The sizes of random 7-SAT instances from SAT Competition 2011 areambincious enough
to provide a good spectrum of instances for SLS solvers. In order &stigate the detailed
performance of CScoreSAT and state-of-the-art SLS solvers atlonan/-SAT instances, we
evaluate them on the 7-SAT Random benchmark, where the instance geasies more slowly.
Once again, Table 5 suggests that the difficulty of such 7-SAT instancesases significantly
with a relatively small increment of the size. As reported in Table 5, the restutts CScoreSAT
dramatically outperforms its competitors. Compared to the competitors whoserrparfce
descends steeply as the instance size increases, CScoreSAT slhohsglability. For example,
from 7-SAT-v220 to 7-SAT-v260, the success rates of all the competidecline eight times or
more, whereas that of CScoreSAT drops only thirty percents. When gotmithe 7-SAT-v260
instances, probSAT and Sparrow2011 fail in all runs, and the otmepettors succeed in less than
10 runs, while CScoreSAT succeeds in 53 runs. Finally, CScoreSAE @rly solver that survives
throughout the whole benchmark.

Results on SAT Challenge 2012 Benchmark:

To investigate the performance of CScoreSAT on ran@e8AT instances with variouk (k >
3), we compare it with state-of-the-art solvers on all rande®AT instances wittk > 3 from SAT
Challenge 2012. Table 6 reports the number of solved instances andPaRsach solver on each
k-SAT instance class. The results show that CScoreSAT significantly réerpe its competitors
in terms of both metrics. Overall, CScoreSAT solves 404 instances. Fuliben@ations show that
CScoreSAT solves 365 instances within half cutoff time, whereas none obritpetitors solves
more than 360 instances within the cutoff time. More encouragingly, Tablevgsstinat CScoreSAT
solves the most-SAT instances for each, which illustrates its robustness. The good performance
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Figure 1: Comparison of run time distributions on the SAT Challenge 2.2 benchmark, with a cutoff

time of 1000 seconds.

0]

of CScoreSAT on the SAT Challenge 2012 benchmark is also clearly illudtogt€igure 1, which
summarizes the run time distributions of the solvers on this benchmark.

3.5 Experimental Analyses ofcscore and hscore Functions

In order to demonstrate the effectiveness of ¢heore and hscore functions, we also test two
alternative versions of CScoreSAT, namely CScoreS&id CScoreSAL. These two algorithms
are modified from CScoreSAT as follows.

» CScoreSAT: in the greedy mode, CScoreSAlisesscore as the scoring function instead of
cscore; also, CScoreSATdoes not utilize the concept of comprehensively decreasing, and a
variable is allowed to flip if it is decreasing and configuration changed.

e CScoreSAY: in the diversification mode, CScoreSATises theage property instead of
hscore as the scoring fucntion,e., it picks the oldest variable from the selected falsified
clause.

We carry out experiments to compare CScoreSAT with its two degradeidwsien random 5-
SAT and 7-SAT instances. The experimental results are reported in Talteobvious observation
is that the performance of CScoreSAE essentially worse than that of CScoreSAT. For example,
it cannot solve any 5-SAT instance with 2000 variables or any 7-SATrostavith 250 instance.
This indicates the:score function is critical to the good performance of CScoreSAT. Compared
to cscore, the hscore function used in the random mode does not show that much contribution.
Nevertheless, the usage fcore does improve CScoreSAT's performance on 5-SAT and 7-SAT
instances. A more careful comparison of CScoreSAT and CScores#dws thatiscore is more
important in solving 7-SAT instances than 5-SAT ones.
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CScoreSAT | CScoreSAYT | CScoreSAT

Instance
Class SucC runs Suc runs SucC runs
parl0 parl0 parl0
41 100 100
5-SAT-v1500 31452 152 145
0 100 100
5-SAT-v2000 fa 330 589
0 78 87
5-SAT-v4000 n/a 12118 8167
89 100 100
/-SAT-v150 5359 569 131
22 75 90
7-SAT-v200 40406 13669 5853
0 10 35
1-SAT-v250 n/a 45329 34070

Table 7: Comparison of CScoreSAT and its two alternative algorithms on ramlom 5-SAT and
7-SAT instances.

4. Improving CScoreSAT on Randomk-SAT at Phase Transition

The above section shows the excellent performance of CScoreSAhdomk-SAT (k > 3) near
phase transition. However, the performance of CScoreSAT degoadd®se instances at phase
transition. CScoreSAT participated in the satisfiable random category DiCnpetition 2013,
where the major part of the benchmark consists of instances gener#tedraeshold ratio of phase
transition. Although it is ranked 4th in the category, its performance is rad gaough on this kind
of instances, and is worse than other state-of-the-art SLS solvdrasprobSAT and Sattime2013,
which are the top two solvers in the satisfiable random category of SAT Gaiop013.

This section improves CScoreSAT for rand@rSAT (k > 3) at phase transition. To this end,
we propose another scoring function combinsiagre, andage, and utilize it to improve the greedy
mode of CScoreSAT, resulting in a new algorithm called HScoreSAT. Operaxents show that
HScoreSAT significantly improves CScoreSAT and gives state-of4tiygegformance on randokt
SAT (k > 3) at the threshold ratio of phase transition. We also compare CScore 8AT%nore SAT
on instances with various ratios and find the boundary ratios beyond WiscbreSAT outperforms
CScoreSAT.

4.1 Thehscorez Function and the HScoreSAT Algorithm

An important issue in SLS algorithms for SAT is the balance between intensificatial
diversification. Indeed, most improvements on SLS algorithms for SATweealproper regulation
of intensification and diversification in local search. For rande®AT instances at the solubility
phase transition, most of the search regions do not contain a model (ifstiamae is satisfiable).
Therefore, it is inadvisable to have strong intensification for such insgm¢ehich might waste the
search much time on unpromising regions so that the search does noeespbugh regions for
discovering a model.
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In order to improve CScoreSAT for randdSAT instances at phase transition, we propose to
reduce intensification in the greedy mode. In CScoreSAT, wedsee as the scoring function, and
break ties byrge. As mentioned before, thecore function is quite a greedy scoring function as it
combinesscore andscores, which represent the greediness and look-ahead greedinesstiespe
Therefore, in our opinion;score is not suitable for randorh-SAT instances at phase transition.

Recalling that the object of SLS algorithms for SAT is to minimize the number or tetagiw
of falsified clauses, thecore property should be the primary criterion in the greedy mode. Also,
we believe thescores property is important information for solving long-clause instances, as it
considers the satisfaction degree of clauses. However, where and score, are combined
together as the primary scoring function, it is too intensifying for solvingiggable) randonk-
SAT instances at phase transition.

Based on the above considerations, we mavees from the primary scoring function to the
tie-breaking function, where it is combined with the diversification propeg; This leads to a
new scoring function which we refer to ascores as it is a hybrid function ofcore, andage.

Definition 4. For a CNF formulaF’, thehscores function is a function o' (F') such that
hscores(x) = scores(x) + age(x)/0,
wheref is a positive integer parameter.

Accordingly, we modify the greedy mode of CScoreSAT, and obtain a tgovithm which we
refer to as HScoreSAT. The pseudo-codes of HScoreSAT is givalgorithm 2.

HScoreSAT differs from CScoreSAT in the following two aspects. Firéthoaigh both
algorithms utilize the CC strategy, HScoreSAT only allows decreasing vasigblee flipped in the
greedy mode, while CScoreSAT allows comprehensively decreasiraples (which is a super-set
of decreasing variables) to be flipped. More importantly, HScoreSAS us@re, to break ties in
the greedy mode, while CScoreSAT breaks ties iy

Since thehscores-based tie-breaking is an important component of HScoreSAT, we are
interested in this questionvhen there exist configuration changed decreasing variables, how ofte
the tie-breaking is executed to pick one from them have conducted an experiment on the
threshold benchmark from the random satisfiable category of SAT Compe2ifiv3 to calculate
this frequency, which is the ratio of the following two statistics.

» #steps.q: the number of steps in which configuration changed decreasing (C&ixples
exist.

 #steps;: the number of steps in which configuration changed decreasing (Cax@bles
exist, and the best CCD variable is picked kiaores-based tie-breaking.

The experimental results are summarized in Table 8, which are averagealbinstances
with each run per instance. As is demonstrated in Table 8, the frequence akdbre,-based
tie-breaking in CCD steps is significant, and is very high for 4-SAT and\b-68% and 60%
respectively). This indicates that thecores-based tie-breaking mechanism plays a critical role
in HScoreSAT. Another interesting observation is that this frequencsedses with the length of
clauses in the instance.
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Algorithm 2 : HScoreSAT
Input: CNF-formulaF, maxSteps
Output: A satisfying assignment of I, or “unknown”
1 begin
2 « := randomly generated truth assignment;
3 for step := 1 to maxSteps do
4 if o satisfiest' then return o;
5
6

if S = {z|x is decreasing and configuration changpé () then
v := a variable inS with the greatestcore, breaking ties by preferring the one
| with the greateskscores;

7 else
8 update clause weights according to PAWS,;
pick a random falsified clausg;
10 | v:=avariable inC' with the greateskscore;
11 a := a with v flipped,;

12 return “unknown”;
13 end

4-SAT 5-SAT 6-SAT 7-SAT
#steps, | 218465135 514417498 198497368 17260095
#steps.q | 317682739| 849513823| 404629074| 43678889
3 stepspy 68% 60% 49% 38%

#stepsced

Table 8: Averaged number of CCD steps dndores-based tie-breaking steps, as well as their
averaged ratio for eadr SAT with k& € {4, 5,6, 7} in the threshold benchmark from SAT
Competition 2013.

4.2 Evaluations of HScoreSAT on Threshold Instances

In this subsection, we carry out extensive experiments to evaluate &fS&bron randonk-SAT
instances wittk € {4,5, 6,7} at phase transition. First, we compare HScoreSAT with CScoreSAT
as well as state-of-the-art SLS solvers on the random benchmarkthtélsbold of phase transition
from SAT Competition 2013. Then, we compare HScoreSAT with state-e&th8LS solvers on
large-sized randork-SAT (k € {4, 5,6, 7}) instances generated randomly at the threshold of phase
transition.

4.2.1 BENCHMARK AND EXPERIMENT PRELIMINARIES

In the experiments in this section, all benchmark instances are generatediag to the random
k-SAT model at the threshold ratio of the solubility phase transition. Thesaoetdave a clause-
to-variable ratio equal to the conjectured threshold ratio of the solubilityepinassitiod (Mertens,
Mézard, & Zecchina, 2006). Specifically, we adopt the following twodb@marks.

2. The clause-to-variable ratio for which 50% of the uniform randomrmidas are satisfiable. For most algorithms, the
closer a formula is generated near the threshold ratio, the harder it ilvéoitso
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1. Threshold Comp13: the threshold benchmark from the random satisfiable category of SAT
Competition 2013. For each-SAT, the instances have various sizes. We also note that

no filtering was applied to construct the competition suite. As a consequesignificant
fraction (approximately 50%) of the generated threshold instances itsfizdde. The details
of the benchmark are given in Table 9.

2. Large-sized Threshold: randomk-SAT instances at the threshold ratio of phase transition,

generated randomly by the randdnBAT generatot used in SAT Competition 2013. This
benchmark contains 400 instances, 100 for éa8AT class withk € {4,5,6,7}. The sizes
of instances in this benchmark € 2000, 550, 250, 150 far = 4, 5, 6, 7, respectively) are
relatively large compared to those in the Threshold Comp13 benchmarke Tristances are
evenly divided into two categories: the ai ni ng set andtest set, both of which
have 50 instances for eaghSAT class.

Note that thet r ai ni ng set is only used to tune the parameters in HScoreSAT, and then

HScoreSAT with the tuned parameter setting is evaluated on Threshold Cdrapd3mark and the
t est set in Large-sized Threshold benchmark.

4-SAT 5-SAT 6-SAT 7-SAT
#inst. 50 50 50 50
ratio 9.931 21.117 43.37 87.79
size | n € {830,860, ...,2300} | n € {305,310, ...,550} | n € {191,192, ...,240} | n € {91,92, ..., 140}

Table 9: The instance numbers, ratios and sizes for éaSAT with & € {4,5,6,7} in the
Threshold Comp13 benchmark.

HScoreSAT is implemented on the basis of CScoreSAT source code andleximpg++ with
the '-O2’ option. The parameter setting of HScoreSAT is presented in Tdhlevhich are tuned

based on thér ai ni ng set of the Large-sized Threshold benchmark. We compare HScoreSAT

with CScoreSAT, as well as three other state-of-the-art SLS solvetading CCASat , pr obSAT

(version 2013) an@at t i me2013. Especially, we note that probSAT and Sattime2013 are the top

two solvers in the random SAT track in SAT Competition 2013.

parameter 4-SAT | 5-SAT | 6-SAT | 7-SAT
0.75 |0.75 092 |09

9 8 7 6

50 100 500 500
500 500 500 500

»
QQDQ.,B

Table 10: Parameter setting of HScoreSAT

The computing environments for these experiments are the same as thoser es@eriments
in Section 3. Following the experiment setup in SAT Competition 2013, we peréach solver
one run on each instance, where each run terminates upon either firghtigiging assignment or
reaching a given cutoff time which is set to 5000 seconds. We reportithber of solved instances

3. http://sourceforge.net/projects/ksatgenerator/
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Instance CCASat| Sattime2013 probSAT | CScoreSAT| HScoreSAT
Class #solved #solved| #solved #solved #solved
parl0O parl0 parl0 parl0 parl0

4-SAT 10 8 13 9 14
(r =9.931) 40168 42174 37160 41193 36176
5-SAT 9 9 10 8 11
(r =21.117) 41117 41153 40185 42176 39296
6-SAT 15 18 15 13 19

(r =43.37) 35435 31445 35440 37211 31538
7-SAT 23 26 23 21 25

(r = 87.79) 27308 24351 27363 29189 25275
over All 57 61 61 51 69
36007 35006 35037 37442 33071

Table 11: Experimental results on Threshold Comp13 benchmarkEach instance class contains
50 instances and each solver is executed once on each instance witff fimatof 5000

seconds.

(“#solved”) and PAR10 for eackh-SAT class and the whole benchmark (as in the competition). The
rules at SAT competitions establish that the winner is the solver which solvesdseinstances,
and ties are broken by selecting the solver with the minimum PAR10.

4.2.2 EXPERIMENTAL RESULTS ONTHRESHOLD BENCHMARK

In the following, we present the comparative experimental results of ##Séd and its competitors
on each benchmark.

Results on Threshold Comp13 Benchmark:

Table 11 presents the experimental results of HScoreSAT and its competitaedomék-
SAT instances at phase transition from SAT Competition 201Since HScoreSAT is based on
CScoreSAT, we first compare these two solvers. As shown in Table $a¢cidSAT solves more
instances than CScoreSAT on all instance classes. Overall, CScose8AE 51 instances, while
HScoreSAT solves 69 instances, which is 1.35 times as many as CScore8&4T d

HScoreSAT solves a few more instances than probSAT and Sattime20&&liOMScoreSAT
solves 69 instances, compared to 61 for both probSAT and Sattime2053 &mdCCASat. Further
observation shows that, HScoreSAT has similar performance with prob8A&ndom 4-SAT and
5-SAT instances, and has similar performance with Sattime2013 on 6-SAT-8Ad instances.

Results on Large-sized Threshold Benchmark:

To mesure the performance of HScoreSAT on random phase-transiB# instances more
accurately, we additionally test HScoreSAT on thest set of the Large-sized Threshold
benchmark, compared with Sattime2013 and probSAT, which are the top lvevsm the random
SAT track in SAT Competition 2013.

4. It seems that our machine is slightly slower than the ones used in SAp&ition 2013, as Sattime2013, probSAT
and CScoreSAT all solved slightly fewer instances in our experimentttiggndid in the competition. CCASat did
not participate in SAT Competition 2013.
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The results are presented in Table 12. For 4-SAT class, HScoreSAprabSAT solve the
same number of instances, but HScoreSAT has less accumulative run tones-FAT and 6-
SAT classes, HScoreSAT solves the most instances. Particularly, €&bishows significantly
superior performance than other solvers on 6-SAT class, where iesd@vinstances, while
Sattime2013 and probSAT both solve 4 instances. The only instance ctaghitth HScoreSAT
does not give the best performance is 7-SAT. Nevertheless, on themaesclass, HScreSAT has
similar performance as the best solver Sattime2013, solving only one lesscmstor the whole
benchmark, HScoreSAT solves 40 instances, compared to 26 and 2&esstar Sattime2013 and
probSAT.

Sattime2013 probSAT | HScoreSAT

Instance
Class #solved| #solved #solved
parl0 parl0 parl0
4-SAT-v2000 0 8 8
(r =9.931) n/a 42197 42181
5-SAT-v550 8 9 10
(r = 21.117) 42147 41262 40130
6-SAT-v300 4 4 9
(r = 43.37) 46120 46132 41523
7-SAT-v150 14 7 13
(r = 87.79) 36433 43248 37091
26 28 40
Over Al 43675| 43209 40231

Table 12: Experimental results on the Large-size Threshold benchmark.Each instance class
contains 50 instances and each solver is executed once on each ingidmnaecutoff
time of 5000 seconds.

4.3 Experimental Analyses of thehscore, Function

To demonstrate the effectiveness of thecores function, we test two alternative versions
of HScoreSAT. These two algorithms are different from HScoreSAly am the tie-breaking
mechanism in the greedy mode.

» HScoreSAT breaks ties in the greedy mode by preferring the variable with the greatest
scores;

» HScoreSAT breaks ties in the greedy mode by preferring the variable with the gregiest

The comparative results of HScoreSAT and its two alternative versiengisplayed in Table
13. ltis clear from the table that HScoreSAT has superior performtrareboth its alternatives
on all instance classes. More careful observations show that féfT4aB8d 5-SAT instances, the
performance of HScoreSATand HScoreSAT are similar, which are significantly better than that of
HScoreSAT. This indicates that thege property is more suitable thanores as a tie-breaker for 4-
SAT and 5-SAT, and is almost as good ashkeore, for tie-breaking. In contrast, the performance
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HScoreSAT | HScoreSAT, | HScoreSAT

Instance
Class #solved #solved #solved
parl0 parl0 parl0O
4-SAT 5 13 14
(r =9.931) 45062 37242 36176
5-SAT 7 10 11
(r =21.117) 43136 40293 39296
6-SAT 16 16 19
(r = 43.37) 34255 34371 31538
7-SAT 24 22 25
(r = 87.79) 26328 28128 25275
52 61 69
Over Al 37195 35008 33071

Table 13: Comparative results of HScoreSAT and its two alternative solversn the Threshold
Comp13 benchmark. Each solver is executed one time on each instance, with a cutoff
time of 5000 seconds.

of HScoreSAT and HScoreSAT on 7-SAT are similar, which are better than that of HS&dke
This indicates thatcore, is more suitable thatge as a tie-breaker for 7-SAT. Indeed, it is from this
experimental analysis that we gain the intuition to&eét the hscores function to be a relatively
small value for 4-SAT and 5-SAT instances, and a relatively large valu@-SAT. However, for
6-SAT, both alternatives cannot achieve performance close to theofitd SAT.

4.4 Evaluation on Huge Randomk-SAT in SAT Competition 2013

In the random SAT category of SAT Competition 2013, there are two kindisstdinces. Besides
the instances at phase-transition threshold, there are also instancss natios are not that close
to phase transition while at the same time they have huge sizes. In this subseetioanduct
experiments to evaluate the performance of our solvers on these hugecestaompared with
state-of-the-art solvers.

The experimental results are presented in Table 14, which show that&&dois clearly the
best solver on this benchmark of huge instances. CScoreSAT givdeghgerformance for all
k-SAT instance classes except for 4-SAT, and especially it solves m8AT &nd 7-SAT instances
than all other solvers. For 4-SAT, CScoreSAT solves as many instasq@®bSAT but the PAR10
is a little more than probSAT’s. These experimental results confirm the geddrmance of
CScoreSAT on the huge benchmark in SAT Competition 2013, where it aléedsmore huge
instances than probSAT and Sattime2013.

4.5 Boundary Ratios for Performance of CScoreSAT and HScoreSAT

As we mentioned before, CScoreSAT has good performance on sobmpmk-SAT (k > 3)
instances at some ratios near the phase-transition threshold, such asideeof large random
instances in SAT Competition 2011. On the other hand, HScoreSAT is impfoyadCScoreSAT

for solving randonk-SAT (k > 3) instances at the phase-transition threshold. Thus, we conjecture
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Instance CCASat| Sattime2013 probSAT | CScoreSAT| HScoreSAT
Class #solved #solved| #solved #solved #solved
parl0 parl0 parl0 parl0 parl0

4-SAT-v500000 4 3 5 5 5
(r € [7.0,9.5)) 17017 25205 8385 9096 9418
5-SAT-v250000 3 2 4 4 3
(r € [15.0,20.0]) 25106 33502 16710 16535 25116
6-SAT-v100000 2 2 2 3 2
(r € [30.0,40.0]) 33386 33710 33338 25200 33376
7-SAT-v50000 1 1 1 2 1
(r € [60.0,85.0]) 41693 41963 41669 34167 41683
over All 10 8 12 14 11
29300 33595 25026 21249 27398

Table 14: Experimental results on huge random k-SAT (k > 3) instances from SAT
Competition 2013.Each instance class contains 6 instances and each solver is executed
once on each instance with a cutoff time of 5000 seconds.

there exists a boundary ratio for eatfSAT, beyond which HScoreSAT outperforms CScoreSAT.
This subsection is dedicated to finding these boundary ratios throughraepés.

Our experiment is carried out on SAT Challenge 2012 benchmark, védaatek-SAT has 10
different ratios and there are 12 instances for each ratio. Details oktttertark can be found in
its benchmark description. We run CScoreSAT and HScoreSAT one timeabmiestance with a
cutoff time of 1000 seconds, and compare the performance of the twasalveach ratio.

The comparison results are presented in Table 15. The results suggethdre exists a
boundary ratior*, beyond which HScoreSAT gives better performance than CScoreBAS is
especially clear for 4-, 5- and 7-SAT, while not so clear for 6-SAT &bteSAT solves more
instances than CScoreSAT at all rations which are not smaller 42859 except for one ratio
r = 42.696, where CScoreSAT solves one more instance. To check whether thisisgjsist an
outlier due to a single instance, we conduct an additional experiment totexecth solvers 10
times on each instanceat= 42.696. The experimental results show that the two solvers have very
close performance — HScoreSAT succeeds in 84 runs while CScore@®&Eeds in 83 runs. We
give the conjectured intervat . 77 ..) of the boundary ratie* for eachk-SAT in Table 16.

These results suggest that, a hybrid solver combining CScoreSAT andréfAT would
have good performance drSAT instances with long clauses at different ratios. However, both
CScoreSAT and HScoreSAT have poor performance on randomT3i&fances. Hence, these
two solvers or their hybrid solver did not participate in SAT Competition 20%4ha competition
requires a participating solver to be a core solver which can have at mogliffierent solvers.
Instead, we develop a solver called CSCCSat, which combines two solersiynFrwCB (for
large sized instances) (Luo et al., 2014) and DCCASat (for threshstdrnioes) (Luo et al., 2014).
Note that DCCASat is improved from HScoreSAT by using the double coraigpn checking
heuristic, and it also uses thacore andhscores functions for randonk-SAT with k£ > 3. In SAT
Competition 2014, CSCCSat won the bronze medal of random SAT tradkespecially it gives
the best performance for threshold instances, indicating the effeeigesf our scoring functions.
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CScoreSAT CScoreSAT CScoreSAT CScoreSAT
HScoreSAT HScoreSAT HScoreSAT HScoreSAT

4-SAT 4.812) 5-SAT 222(12) 6-SAT 4.1(12) 7-SAT 4345(7)
r=9 6.5(12) r=20 1060(11) r=40 11.5(12) r=85 8346(2)
4-SAT 9.7(12) 5-SAT 271(12) 6-SAT 8.6(12) 7-SAT 2767(9)

r=9.121|  10.8(12)|| r=20.155| 2022(10)|| r=40.674|  36.3(12)|| r=85.558 6773(4)
4-SAT 11.612) || 5SAT| 1918(10)|| 6-SAT| 29.412) || 7-SAT 2666(9)
r=9.223|  18.6(12)|| r=20.275 3471(8)|| r=41.011| 52.3(12)|| r=85.837 5065(6)
4-SAT 19.412) || 5-SAT 2035(9) || 6-SAT | 76.612) || 7-SAT 3435(8)
r=9.324|  29.1(12) || r=20.395 6025(5) || r=41.348|  98.4(12) || r=86.116 4296(7)

4-SAT|  42.712) || 5-SAT 6108(5)|| 6-SAT 83(12) || 7-SAT| 1902(10)
r=9.425|  63.8(12) || r=20.516 7647(3) || r=41.685| 1827(10)|| r=86.395 2797(9)
4-SAT 66.512) || 5-SAT 4363(7)||  6-SAT 31(12) || 7-SAT 3499(8)

r=9.526|  72.2(12)|| r=20.636 6003(5) || r=42.022| 1928(10)|| r=86.674 4340(7)
4-SAT 13312) || 5-SAT 3468(8) || 6-SAT | 1003(11)|| 7-SAT 3415(8)
r=9.627 192(12) || 1=20.756 4452(7) || r=42.359 227(12) || r=86.953 2646(9)
4-SAT 243(12) || 5-SAT 5118(6) || 6-SAT 2757(9) || 7-SAT 150(12)
r=9.729 21212) || r=20.876 3051(8) || r=42.696 3528(8) || r=87.232 13512)
4-SAT | 1252(11)|] 5-SAT 5100(6) || 6-SAT 4418(7)|| 7-SAT 2589(9)
r=9.83 344(12) || r=20.997 4436(7) || r=43.033 3647(8) || r=87.511| 1054(11)
4-SAT 149(12)||  5-SAT 2522(9) || 6-SAT 939(11) || 7-SAT 899(11)
r=0.931 11812) || r=21.117| 1772(10)|| r=43.37 165(12) || r=87.79 74(12)

Table 15: Comparing CScoreSAT and HScoreSAT at each ratio of randomk-SAT (k > 3) in SAT
Challenge 2012 benchmark.Each solver is executed one time on each instance, with & cuto
time of 1000 seconds. Each cell reports the result of CS&drés the upper row and that of
HScoreSAT in the lower row, in the form of “parl0(#solvedyVe color the ratio: gray at which
HScoreSAT performs better than CScoreSAT. Note that foAB-&8 r = 42.696 where the results
seem a little odd, we conduct an additional experiment axkegioth solvers 10 times on each
instance, and HScoreSAT succeeds in 84 runs while CScore8édeeds in 83 runs.

4-SAT 5-SAT 6-SAT 7-SAT
(9.627,9.729) (20.756,20.876) (42.022,42.359) (86.674,86.953

*

(T;km'n7 Tmax)

Table 16: The conjectured interval of the boundary ratio »*. HScoreSAT has worse performance
than CScoreSAT at ratios< r; . , and has better (or at least competitive) performance

at ratiosr > r* ., based on experiments on the SAT Challenge 2012 benchmark.

max’

5. On Computation of score,

For algorithms employing scoring functions basedaire,, such as CScoreSAT and HScoreSAT,

the computation ofscores has a considerable impact on their efficiency. In this section,
we investigate the computation issues @fore,.  Particularly, we propose a cache-based
implementation and analyze its time complexity in each flip. We also measure its avérhea

the two algorithms through experiments.

435



CAl, LUo & Su

5.1 Implementation and Complexity of Computingscores

We propose a caching implementation for computing variables*e, values, which is inspired
by the caching implementation for computing variable scores. Typically, neaa#ible scores (or
scores vValues) change after each search step; this suggests that rathexabieaputing all variable
scores (0kcores Values) in each step, it should be more efficient to compute all scoresda
values) when the search is initialized, but to subsequently only updatedtesgorscore, values)
affected by a variable that has been flipped (Hoos & Stitzle, 2004).

In our caching implementation, thheore, values of all variables are computed when the search
is initialized, and are subsequently updated in each flip. The initialized computti@ore, is
straightforward according to the definition @fores and will not be discussed. Comparatively, the
procedure of updatingcore, values are of much more interest.

To facilitate describing the procedure of updatiagpres values and analyzing its time
complexity, we first introduce some notations and definitions below.

Given a CNF formula?r’,

» for avariabler € V(F'), CL(z) = {c|cis a clause inF’ andz appears ir};
» foraclause: € F, c.num_true_litis the number of true literalsdn

« for a clause: € I with exactly two true literals, we use true_lit_v@rénd true_lit_varz{) to
record the two corresponding variables of the two true literals(ihese two notations will
only be used in pseudo-code for the sake of formalization);

» we usexr* to denote the variable flipped in the current step;

* n,m, k,r is the number of variables, the number of clauses, the maximum clause lemgjth, a
the clause-to-variable ratio.

Definition 5. Given a clause and a variabler, we say the contribution of clauggo scores(z) is
+1 if flipping = would cause: transform from 1-satisfied to 2-satisfied, -1 if flippingvould cause
c transform from 2-satisfied to 1-satisfied, and O otherwise.

A useful observation is that for a variabtec V' (F'), scores(z) equals the sum of contributions
of all clauses to it. Also, it is obvious that clauses in whicboes not appear always contribute 0
to scores(x).

Now we describe in detail the procedure of updatingre, values in each flip, whose pseudo-
code is shown in Algorithm 3. After flipping*, according to the definition ofcores, scores(x*)
just changes to its opposite number (lines 1 and 21). The essential padiisngscores values for
variables that share clauses with (since other variables would not change theisre; values),
which is accomplished with a loop (lines 2-20). In each iteration of the loolasec € C'L(z*) is
considered and necessary updates are performed, according tiffesend cases: either the literal
of 2* in ¢ becomes a true literal, or not. Here we explain the updates for the firstasabsthose for
the other case can be understood similarly.

In the first case (i.e., the literal of* in ¢ becomes a true literal), along with the flip of,
c.num_true_litis increased by 1. Suppeseum_true_lit changes from— 1 to ¢. If neithert — 1
nort is 1 or 2, then flippinge* causes no change to any variable/sre, (easy to see from the
definition of scores). So, we only need to consider the following three cases.
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Algorithm 3: updatingscore, values in a flip step

1 org_scores(x*) := scores(x*);
2 for eachc € CL(z*) do

3

~N o o b~

[ee]

10
11

12
13
14
15
16

17
18

19
20

21

if the literal of z* in ¢ becomes a true literghen

c.num_true_lit+=1;

if c.num_true_lit=3then
scores(true_lit_varg))+=1,;
scores(true_lit_var2¢))+=1,

else ifc.num_true_lit=2then
L for eachz; € ¢ do scores(x;)—=1,;

else ifc.num_true_lit=1then
L for eachz; € ¢ do scores(x;)+=1;

else

c.num_true_lit-=1;

if c.num_true_lit=2then
scores(true_lit_varg))—=1;

L scores(true_lit_var2¢))—=1;

else ifc.num_true_lit=1then
| for eachz; € ¢ do scorey(w;)+=1;

else ife.num_true_lit=0then
L for eachz; € ¢ do scores(x;)—=1,;

scores(x*) := —org_scores(x™*);

» c.num_true_lit changes from 2 to 3. Before flipping, ¢ had two true literals, and let us
denote their corresponding variablesyiasandys. The contributions of to scores(y;) and
scores(y2) were both -1 before flipping*. After flipping 2*, ¢ becomes a 3-satisfied clause,
and the contributions af to scores(y;) andscores(y2) both become 0. Hence, along with
flipping z*, the changes oBcores(y1) and scores(y2) are both 0-(-1)=+1 (lines 6-7). For
other variables ir, either before or after the flip af*, the contributions of to their scores
values are 0.

* c.num_true_lit changes from 1 to 2: Before flipping, ¢ had only one true literal, and let
us denote its corresponding variableyas The contribution of: to scores(y;) was 0 before
flipping z*, but becomes -1 after flipping*, indicating a change of -1 o$rorex(y;). For
other variables i (exceptx™), the contributions ot to their scores; values were +1 before
flipping =*, but become 0 after flipping*, indicating a change of -1 on theitores values.
Therefore, for all variables ir (exceptz*), along with flippingx*, the changes on their
scorey values are -1 (lines 8-9).

Note that we include* in the loop (line 9) just in order to save computational consumption.
As we have a special update fafores(z*), any change orcores(z*) between line 1 and
line 21 has no impact in effect.
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e c.num_true_lit changes from 0 to 1: Before flippinty for all variables in, the contributions
of ¢ to theirscores values were 0. After flipping*, ¢ becomes 1-satisfied (the true literal’'s
corresponding variable i8*), and for all variables irc (exceptz*), the contributions ot:
to their scores values become +1. Therefore, for all variables:ifexceptx*), along with
flipping z*, the changes on thesrores values are +1 (lines 10-11).

The complexity of thescore, updating procedure in each flip is determined by the main loop
(lines 2-20). When flipping a variable, there ardC'L(x)| items in the main loop, and in each
iteration there are three possible cases, where the first case requyr@operationsand the latter
two require©(k) operations. Therefore, the worst-case time complexity ofstlaees updating
procedure in each flip iI®(maz,cy () |CL(z)| - maz{2, k, k})=0(maz ey 7y |CL(z)| - k).

For uniform randomk-SAT formulas with clause-to-variable ratig there are totallym - k
literals and each variable is expected to have/n = kr literals. That is, each variablec V (F)
is expected to appear kr clauses (whemn approaches tg-oo, this is true with probability almost
1), i.e.,|CL(x)| ~ kr. Therefore, the complexity of thecores updating procedure in each flip
become® (kr - k) = O(k?r).

Fortunately, for uniform randonk-SAT formulas with constant ratie, both & and r are
constants. Therefore, independent of instance size, this implementatianreh, computation
achieves a time complexity @d(1) for each search step, just as the caching implementation of
score computation does (referring to pages 272-273 in (Hoos & Stitzle, 2004))

5.2 Computational Overhead of Computingscores

In this subsection, we study the computational overhead of compsiting, in CScoreSAT and
HScoreSAT. We carry out experiments with the Threshold Comp13 bemkhimdigure out the
CPU time perl0” steps for computingcores and its percentage in the total CPU time of the solver
per107 steps.

4-SAT | 5-SAT | 6-SAT | 7-SAT
CScoreSAT 13.9 28.5 524 | 94.6

computingscores 1.6 8.0 17.9 37.1
percentage 11.5% | 28.1% | 34.2% | 39.2%
HScoreSAT 14.3 28.7 53.2 95.1

computingscores 1.6 8.4 17.8 | 36.9
percentage 11.2% | 29.3% | 33.5% | 38.8%

Table 17: CPU time consumption (in seconds) p&t steps for CScoreSAT and HscoreSAT, and
for computingscores, as well as their ratios. The results are averaged over all instances
in the Threshold Comp13 benchmark.

Our investigation shows that the overhead of computingre, occupies a considerable
percentage of the solvers’ whole run time, ranging from 11% to 40%. fiteless, sincecores is
critical to the solvers, this price indeed pays off. Further observati@ate that more than 90% of

5. note that true_lit_vaef and true_lit_var2f) are recorded initially for accelerating updating variable scores, arsd thu
we do not need extra price to maintain themdesre, updates.
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the solvers’ run time are due to the flip function, where two most costly pats:are andscores
updates. Another interesting phenomenon is that the percentage otaslethused bycore,
computation rises as the clause length increases, altheugh, is less used (for tie-breaking) for
longer clauses (see Table 8). The reason might be that as the claubehengases, the portion of
variables whosecore, values need to be updated is increasing compared to that of variables whos
scores need to be updated.

6. Summary and Future Work

In this paper, we proposed three new scoring functions basesc@re, for improving SLS
algorithms on random SAT instances with long clauses. Despite their simplicityprdposed
scoring functions are very effective, and the resulting SLS algorithmselyaCScoreSAT and
HscoreSAT show excellent performance on rande®AT instances with long clauses.

First, we combined thecore andscore, properties to design a scoring function namnecbre
(comprehensive score), which aims to improve the greedy mode by combi@adiness and look-
ahead greediness. We also defined comprehensively decreasaigeseaccordingly. We further
proposed theéiscore function combiningescore with the diversificationage, which is devoted
to improving the diversification mode. These two scoring functions werd tsalevelop the
CScoreSAT algorithm. The experiments show that the performance ofr€S&D exceeds that of
state-of-the-art SLS solvers by orders of magnitudes on large raBe®AT and 7-SAT instances
near phase transition. Moreover, CScoreSAT significantly outperfasnc®@mpetitors on random
k-SAT instances with various ratios for eakle {4, 5,6, 7} from SAT Challenge 2012.

To improve CScoreSAT for solving randoktSAT instances at the threshold ratio of phase
transition, we propose another scoring function calledores, which combinesscore, andage.
By usinghscores to break ties and adjust the greedy mode accordingly, we obtain the FE2dore
algorithm. Experiments on random-SAT instances at phase-transition threshold show that
HScoreSAT significantly improves CScoreSAT and outperforms statlkesért SLS algorithms.

Finally, as thescores property is a key notion in our algorithms, we also present the
implementation details okcores computation, and analyze its complexity per flip and its
computational overhead.

As for future work, a significant research issue is to improve SLS algostfor structured
instances byscores-based scoring functions. Furthermore, the notions in this work are sdesimp
that they can be easily applied to other problems, such as constrainedctiamtisind graph search
problems.
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