
Journal of Artificial Intelligence Research 51 (2014) 413-441 Submitted 06/14; published 10/14

Scoring Functions Based on Second Level Score
for k-SAT with Long Clauses

Shaowei Cai SHAOWEICAI.CS@GMAIL .COM

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China
Queensland Research Lab, NICTA, Brisbane, Australia

Chuan Luo CHUANLUOSABER@GMAIL .COM

Key Laboratory of High Confidence Software Technologies,
Peking University, Beijing, China

Kaile Su K .SU@GRIFFITH.EDU.AU

Institute for Integrated and Intelligent Systems,
Griffith University, Brisbane, Australia

Abstract

It is widely acknowledged that stochastic local search (SLS) algorithms can efficiently find
models for satisfiable instances of the satisfiability (SAT)problem, especially for randomk-SAT
instances. However, compared to random 3-SAT instances where SLS algorithms have shown great
success, randomk-SAT instances with long clauses remain very difficult. Recently, the notion of
second level score, denoted asscore2, was proposed for improving SLS algorithms on long-clause
SAT instances, and was first used in the powerful CCASat solver as a tie breaker.

In this paper, we propose three new scoring functions based on score2. Despite their simplicity,
these functions are very effective for solving randomk-SAT with long clauses. The first function
combinesscore andscore2, and the second one additionally integrates the diversification property
age. These two functions are used in developing a new SLS algorithm called CScoreSAT.
Experimental results on large random 5-SAT and 7-SAT instances near phase transition show
that CScoreSAT significantly outperforms previous SLS solvers. However, CScoreSAT cannot
rival its competitors on randomk-SAT instances at phase transition. We improve CScoreSAT
for such instances by another scoring function which combinesscore2 with age. The resulting
algorithm HScoreSAT exhibits state-of-the-art performance on randomk-SAT (k > 3) instances
at phase transition. We also study the computation ofscore2, including its implementation and
computational complexity.

1. Introduction

The Boolean Satisfiability (SAT) problem is a prototypical NP-complete problem whose task is to
decide whether the variables of a given Boolean formula can be assignedin such a way as to make
the formula evaluate to TRUE. This problem plays a prominent role in various areas of computer
science and artificial intelligence, and has been widely studied due to its significant importance in
both theory and applications.

Two popular approaches for solving SAT are conflict driven clause learning (CDCL) and
stochastic local search (SLS). The latter operates on complete assignmentsand tries to find a model
by iteratively flipping a variable. Although SLS algorithms are typically incompletein the sense
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that they cannot prove an instance to be unsatisfiable, they often find modelsof satisfiable formulas
surprisingly effectively.

Most SLS algorithms for SAT switch between two different modes, i.e., the greedy
(intensification) mode and the diversification mode. In the greedy mode, theyprefer to flip variables
whose flips can decrease the number of falsified clauses; in the diversification mode, they tend to
better explore the search space and avoid local optima, usually using randomized strategies and
exploiting diversification properties of variables to pick a variable for this aim.

SLS is well known as the most effective approach for solving random satisfiable instances, and
SLS algorithms are often evaluated on uniform randomk-SAT benchmarks. These benchmarks
have a large variety of instances to test the robustness of algorithms, and by controlling the
instance size and the clause-to-variable ratio, they provide adjustable hardness levels to assess the
solving capabilities. Moreover, the performance of algorithms are usually stable on randomk-
SAT instances, either good or bad. Thus, we can easily recognize goodheuristics by testing SLS
algorithms on randomk-SAT instances, and these heuristics may be beneficial for solving realistic
problems. Numerous works have been devoted to designing SLS algorithms for randomk-SAT
instances with a clause-to-variable ratio at or near the solubility phase transition, which are the most
difficult among randomk-SAT instances (Kirkpatrick & Selman, 1994).

Among randomk-SAT instances, random 3-SAT ones exhibit some particular statistical
properties and are easy to solve, for example, by SLS algorithms and a statistical physics approach
called Survey Propagation (Braunstein, Mézard, & Zecchina, 2005).It has been shown that the
famous SLS algorithm WalkSAT (Selman, Kautz, & Cohen, 1994), which wasproposed two
decades ago, scales linearly with the number of variables for random 3-SAT instances near the phase
transition and can solve such instances with one million variables (Kroc, Sabharwal, & Selman,
2010). The latest state of the art in this direction is an SLS algorithm called FrwCB, which solves
random 3-SAT instances near the phase transition (at ratio 4.2) with millions ofvariables within 2-3
hours (Luo, Cai, Wu, & Su, 2013).

In contrast, randomk-SAT instances with long clauses remain very difficult, and the
performance of SLS algorithms on such instances has stagnated for a longtime. Indeed, such
instances are challenging for all kinds of algorithms, including the Survey Propagation algorithm,
which solves random 3-SAT instances extremely fast (Mézard, 2003) and is also adapted for solving
MaxSAT (Chieu & Lee, 2009). Recently, a few progresses such as Sattime (Li & Li, 2012), probSAT
(Balint & Schöning, 2012) and CCASat (Cai & Su, 2013b), have beenmade in this direction. In
particular, when solving random instances near the phase transition, the Sattime algorithm is good
at solving random 6-SAT and 7-SAT instances, and probSAT is good atsolving random 4-SAT and
5-SAT instances. Comparatively, CCASat shows good performance onall randomk-SAT instances
for k ∈ {4, 5, 6, 7} and won the random track of SAT Challenge 2012. Note that the second and
third solvers in that track are variants of the portfolio solver SATzilla (Xu, Hutter, Hoos, & Leyton-
Brown, 2008). On the other hand, probSAT and Sattime show better performance than CCASat on
randomk-SAT instances at the threshold ratio of phase transition.

A key notion in CCASat is thescore2 property1, which shares the same spirit with the
commonly usedscore property and can be regarded as the second level score. It considers
transformations between clauses with one true literal and those with two true literals. By breaking
ties usingscore2, the performance of CCASat is significantly improved for randomk-SAT instances

1. thescore2 property is denoted by subscore in CCASat (Cai & Su, 2013b).
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with k > 3 (Cai & Su, 2013b). This leads us to such a question —Can we further improve SLS
algorithms on such instances by making better use of thescore2 property? In this paper, we give
a positive answer to this question by proposing three new scoring functions based onscore2, and
using them to develop two SLS algorithms which outperform state-of-the-artsolvers on random
k-SAT with k > 3 near and at phase transition.

The first scoring function proposed in this paper is calledcscore, which is a linear combination
of score andscore2. Thecscore function differs from previous hybrid scoring functions in that it
considers two “score” properties of different levels. Based on this scoring function, we also define
a new type of “decreasing” variables namely comprehensively decreasing variables. Thecscore
function enhances intensification in the greedy mode by integrating the current greediness and the
look-ahead greediness. Further, by combiningcscore with the diversification propertyage (the
definition of age can be found in Section 2.1), we propose the second scoring function dubbed
hscore, which is used to improve the diversification mode. These two scoring functions are used to
develop an SLS algorithms called CScoreSAT.

We conduct extensive experiments to compare CScoreSAT against state-of-the-art SLS solvers
including winners from the most recent SAT competitions. The experiments onlarge random 5-
SAT and 7-SAT instances near phase transition show that CScoreSAT significantly outperforms its
competitors in terms of success rate or run time. In particular, CScoreSAT is able to solve random
5-SAT instances with up to 5000 variables and random 7-SAT instances withup to 300 variables,
whereas all its competitors fail to solve such instances of this size.

However, the performance of CScoreSAT on randomk-SAT instances at the threshold ratio of
phase transition is not as good as other state-of-the-art solvers such as probSAT and Sattime, which
are the top two solvers in the random SAT category of SAT Competition 2013. Note that the major
part of the random SAT benchmark in SAT Competition 2013 consists of random k-SAT instances
at phase transition.

The second contribution of this paper is to improve CScoreSAT for randomk-SAT instances
at the threshold ratio of phase transition. The idea is to reduce the intensification of the greedy
mode, because such instances have fewer models (if satisfiable). Our considerations give rise to
the third scoring function dubbedhscore2, which combinesscore2 with age. This function is used
to improve the greedy mode of CScoreSAT, leading to a new algorithm called HScoreSAT. In the
greedy mode, HScoreSAT utilizes thescore property to pick the flipping variable, and breaks ties by
thehscore2 function. We evaluate HScoreSAT on randomk-SAT (k > 3) instances at the threshold
ratio of phase transition, including those from SAT Competition 2013, and the experimental results
show that HScoreSAT significantly improves CScoreSAT on such instances.

We note that the first two functions and the CScoreSAT algorithm (Section 3), have been
presented in a conference paper (Cai & Su, 2013a), while the third scoring function and the
HScoreSAT algorithm (Section 4), as well as further experimental analyses (including Section 3.5
and the whole Section 5) are new contributions in this paper.

This paper proceeds as follows. Section 2 introduces some preliminary concepts. Section 3
presents thecscore and hscore functions and describes the CScoreSAT algorithm, along with
experimental evaluations and analyses of CScoreSAT on randomk-SAT (k > 3) instances near
phase transition. Section 4 presents thehscore2 function and the HScoreSAT algorithm, as
well as evaluations of HScoreSAT on randomk-SAT (k > 3) instances at phase transition and
related experimental analyses. In Section 5, we study the computation ofscore2, including

415



CAI , LUO & SU

its implementation, complexity and computational overhead. Finally, we give some concluding
remarks and future directions in Section 6.

2. Preliminaries

In this section, we first introduce some basic definitions and notation about the problem. Then, we
briefly review the notion of second level properties and related works. Finally, we introduce the
configuration checking strategy, which is also an important component in our algorithms.

2.1 Basic Definitions and Notation

Given a set ofn Booleanvariables {x1, x2, ..., xn}, a literal is either a variablex (which is called
positive literal) or its negation¬x (which is called negative literal), and aclause is a disjunction
of literals. A conjunctive normal form (CNF) formulaF = c1 ∧ c2 ∧ ... ∧ cm is a conjunction of
clauses. A satisfying assignment for a formula is an assignment to its variables such that the formula
evaluates to true. Given a CNF formulaF , the Boolean Satisfiability problem is to find a satisfying
assignment or prove that none exists.

A well-known generation model for SAT is the uniform randomk-SAT model (Achlioptas,
2009). In a randomk-SAT instance, each clause contains exactlyk distinct non-complementary
literals, and is picked up with uniform probability distribution from the set of2k

(

n

k

)

possible clauses.
The clause-to-variableratio of a CNF formulaF is defined asr = m/n, wheren is the number of
variables andm is the number of clauses.

For a CNF formulaF , we useV (F ) to denote the set of all variables that appear inF . We say
a variable appears in a clause, if the clause contains eitherx or ¬x. Two variables are neighbors if
and only if they appear simultaneously in at least one clause. The neighbourhood of a variablex is
N(x) = {y|y occurs in at least one clause withx}, which is the set of allneighboring variables
of variablex. For a subsetX ⊂ V (F ) and an assignmentα, α[X] is the projection ofα on the
variables ofX.

We say that a literal is true if the current value of the variable is the same as itsphase. E.g., if
x1 = false, then the negative literal¬x1 is true, while the positive literalx1 is not true. A clause is
satisfiedif it has at least one true literal, andfalsifiedotherwise.

SLS algorithms for SAT usually select a variable to flip in each step under the guidance of
scoring functions. Most SLS algorithms have more than one scoring function, and adopt oneof
them for the current search step according to some conditions, such as whether a local optimum is
reached. A scoring function can be a simple variable property or any mathematical expression with
one or more properties.

Perhaps the most popular variable property used by SLS algorithms for SAT is score, which
measures the increase in the number of satisfied clauses by flipping a variable. Thescore property
is also defined asscore(x) = make(x) − break(x), wheremake and break is the number of
clauses that would become satisfied and falsified, respectively, ifx were to be flipped. Note that
the two definitions ofscore are equivalent. In dynamic local search algorithms which use clause
weighting techniques,score measures the increase in the total weight of satisfied clauses by flipping
a variable, whilemake andbreak measures the total weight of clauses that would become satisfied
and falsified, respectively, by flippingx. A variable isdecreasing if its score is positive, and
increasing if its score is negative. Theage of a variable is defined as the number of search steps
that have occurred since the variable was last flipped.
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2.2 Second Level Properties

In this subsection, we introduce the second level properties, especially the second level score, which
is an important concept in the proposed scoring functions in this work.

The second level properties take into account thesatisfaction degreeof clauses, which is defined
as the number of true literals in the clause (Cai & Su, 2013a). A clause with a satisfaction degree
of δ is said to be aδ-satisfied clause. For a variablex, score2(x) is defined asmake2(x) minus
break2(x), wheremake2(x) is the number of 1-satisfied clauses that would become 2-satisfied
by flipping x, andbreak2(x) is the number of 2-satisfied clauses that would become 1-satisfied
by flipping x. One can easily define properties of other levels and the weighted versionof these
properties.

The first SLS solver using second level properties is CCASat (Cai & Su, 2013b), which simply
usesscore2 as a tie breaker and achieves surprising improvements on randomk-SAT with long
clauses. Then, in the conference version of this paper, we combinescore andscore2 to develop the
CScoreSAT algorithm (Cai & Su, 2013a). We also propose the notion of multi-level properties and
usemake2 to improve the famous WalkSAT/SKC algorithm (Cai, Su, & Luo, 2013a). Afterwards,
multi-level break is used to improve the probSAT solver (Balint, Biere, Fröhlich, & Schöning,
2014). In this work, we further exploit thescore2 property by using it to design scoring functions
that directly guide the algorithm to pick the flipping variable.

We note that both algorithms in this work utilize the unweighted version ofscore2 (although
they use the weighted version ofscore), just as CCASat does. In our algorithms, the unweighted
score2 is found to be much more effective than the weighted one, yet at this time we could not
figure out the reason or find an effective way using weightedscore2 in these algorithms.

2.3 Configuration Checking for SAT

In this subsection, we briefly introduce the configuration checking (CC) strategy for SAT, which is
an important component in the proposed algorithms in this work.

Initially introduced for improving local search for the Minimum Vertex Cover (MVC) problem
(Cai, Su, & Sattar, 2011), the CC strategy aims at avoiding cycling in local search,i.e., revisiting
the already visited candidate solutions too early. It has been successfullyused in MVC (Cai et al.,
2011; Cai, Su, Luo, & Sattar, 2013b), as well as SAT (Cai & Su, 2012;Luo et al., 2013; Abramé,
Habet, & Toumi, 2014; Luo, Cai, Wu, & Su, 2014; Li, Huang, & Xu, 2014) and MaxSAT (Luo, Cai,
Wu, Jie, & Su, 2014).

The CC strategy is based on the concept ofconfiguration. One can define configuration
in different ways and design different CC strategies accordingly. In the context of SAT, the
configuration of a variable typically refers to truth values of all its neighboring variables (Cai &
Su, 2013b). Formally, given an assignmentα, the CC strategy for SAT defines the configuration
C(xi) of a variablexi as a subset ofα restricted to the variables ofN(xi), i.e., C(xi) = α[N(xi)].
If a variable inC(xi) has been flipped since the last flip ofxi thenC(xi) is said changed. The CC
strategy for SAT forbids the flip of a variablexi if its configurationC(xi) has not changed since the
last flip ofxi.

The CC strategy is used to decrease blind unreasonable greedy search. This strategy has been
successfully applied to SAT solving, resulting in several efficient SLS algorithms for SAT, such as
CCASat (Cai & Su, 2013b), Ncca+ (the bronze medal winner of the random SAT track of SAT
Competition 2013) (Abramé et al., 2014), BalancedZ (Li et al., 2014) and CSCCSat (Luo et al.,
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2014) (the silver and bronze medal winner of random SAT track of SAT Competition 2014), and
CCAnr+glucose (Cai & Su, 2012) (the silver medal winner of hard combinatorial SAT track of SAT
Competition 2014), etc.

3. Two New Scoring Functions and the CScoreSAT Algorithm

In this section, we design two new scoring functions, namelycscore andhscore. Then we use them
to develop a new SLS algorithm called CScoreSAT, which shows excellent performance on random
k-SAT with k > 3 near the phase transition.

3.1 Thecscore Function

In this subsection, we introduce thecscore (short for comprehensive score) function, which is a
linear combination of thescore andscore2 properties.

Thescore property characterizes the greediness of flipping a variable at the current search step,
as it tends to decrease the number of falsified clauses, which is indeed the aim of the SAT problem.
On the other hand, thescore2 property can be regarded as a measurement of look-ahead greediness,
as it tends to reduce 1-satisfied clauses by transforming them into 2-satisfied clauses, noting that
1-satisfied clauses may become falsified in the next step while 2-satisfied ones do not.

It seems short sighted to simply take thescore property as the scoring function, especially for
formulas with long clauses, in which the number of true literals varies considerably among satisfied
clauses. To address this issue, we propose a scoring function that incorporates bothscore and
score2. When deciding the candidate variables’ priorities of being selected, althoughscore is more
important thanscore2, in some casesscore2 should be allowed to overwrite the priorities. For
example, for two variables which have a relatively smallscore difference and a significantscore2
difference, it is advisable to prefer to flip the one with greaterscore2.

The above considerations suggest two principles in designing the desiredscoring functions.

• First, thescore property plays a more important role;

• Second, thescore2 property is allowed to overwrite the variables’ priorities (of being
selected).

As a result, we have the notion of comprehensive score, which is formally defined as follows.

Definition 1. For a CNF formulaF , the comprehensive score function, denoted bycscore, is a
function onV (F ) such that

cscore(x) = score(x) + score2(x)/d,

whered is a positive integer parameter.

Note thatcscore is defined to be an integer function, and thus the value ofcscore will be
rounded down to an integer if it is not.

Thecscore function is a linear combination ofscore andscore2 with a bias towardsscore, and
thus embodies the two principles well. This function is so simple that it can be computed with little
overhead and the parameter can be easily tuned. Moreover, its simplicity allows its potential usage
in solving structured SAT instances and perhaps other combinatorial search problems.

Recall that a variable is decreasing if and only if it has a positivescore. In the following, we
define a new type of “deceasing” variables based on thecscore function.
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Definition 2. Given a CNF formulaF and itscscore function, a variablex is comprehensively
decreasing if and only ifcscore(x) > 0 andscore(x) ≥ 0.

While the conditioncscore(x) > 0 is straightforward, the other conditionscore(x) ≥ 0
requires the variable to be non-increasing. This is necessary, as flipping an increasing variable leads
the local search away from the objective, which should not be acceptedwithout any controlling
mechanism such as the Metroplis probability in Simulated Annealing (Kirkpatrick,Gelatt, &
Vecchi, 1983), unless the algorithm gets stuck in a local optimum.

Most SLS algorithms for SAT prefer to flip decreasing variables in the greedy search mode.
In some respect, the notion of comprehensively decreasing variables is an extension of decreasing
variables, and is a good alternative to be considered as flip candidates in the greedy search phases.

3.2 Thehscore Function

We combinecscore with the diversification propertyage, resulting in a hybrid scoring function
dubbedhscore, which can be used to improve the diversification mode.

One of the most commonly used variable property in the diversification mode ofSLS algorithms
for SAT isage. Previous SLS algorithms usually useage to pick the oldest variable from a candidate
variable set (Gent & Walsh, 1993; Li & Huang, 2005; Cai & Su, 2012;Abramé et al., 2014) or only
to break ties (Prestwich, 2005; Pham, Thornton, Gretton, & Sattar, 2007; Luo, Su, & Cai, 2012).
In our opinion, however, these “oldest” strategies are too strict as they always prefer the oldest one,
regardless of other important information such asscore or cscore. Thus, these “oldest” strategies
may miss better variables quite often.

For example, suppose an SLS algorithm gets stuck in a local optimum, and it would like to pick
one variable to flip from such two variablesx1 andx2: the two variables have similar ages andx1
is older thanx2, while cscore(x2) is significantly greater thancscore(x1). In this case, we believe
x2 is the right choice rather than the older variablex1, as the flipping of these two variables leads to
similar diversification and flippingx2 does less harm to the object function.

Based on the above considerations, we design a hybrid scoring functiontaking account into both
the greediness informationcscore and the diversification informationage. The resulting scoring
function is dubbed ashscore and is given as follows.

Definition 3. For a CNF formulaF , thehscore function is a function onV (F ) such that

hsocre(x) = cscore(x) + age(x)/β = score(x) + score2(x)/d+ age(x)/β,

whered andβ are positive integer parameters.

In our algorithms, when reaching a local optimum, the algorithms make use of this hybrid
function. We will show that thehscore function is a better choice than the “oldest” strategy for the
diversification mode.

3.3 The CScoreSAT Algorithm

This section presents the CScoreSAT algorithm, which adopts thecscore function to guide the
search in the greedy mode, and makes use of thehscore function when meets local optima.

Before getting into the details of the CScoreSAT algorithm, we first introduce two techniques
employed in the algorithm.
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1. PAWS weighting scheme.For the sake of diversification, CScoreSAT employs the PAWS
clause weighting scheme (Thornton, Pham, Bain, & Ferreira Jr., 2004). Each clause is
associated with a positive integer as its weight, which is initiated as 1. When a local optimum
is reached, the clause weights are updated as follows. With probabilitysp (the so-called
smooth probability), for each satisfied clause whose weight is larger than one, its weight is
decreased by one; with probability (1− sp), the weights of all falsified clauses are increased
by one.

2. Configuration checking. In order to reduce blind greedy search, we utilize the configuration
checking strategy for SAT (Cai & Su, 2012). Recall that a variable is said to be configuration
changed if and only if after its last flip at least one of its neighboring variables has been
flipped. According to the configuration checking strategy, only configuration changed
variables are allowed to be flipped in the greedy mode.

Algorithm 1 : CScoreSAT
Input : CNF-formulaF , maxSteps
Output : A satisfying assignmentα of F , or “unknown”
begin1

α := randomly generated truth assignment;2

for step := 1 to maxSteps do3

if α satisfiesF then return α;4

if S = {x|x is comprehensively decreasing and configuration changed} 6= ∅ then5

v := a variable inS with the greatestcscore, breaking ties in favor of the oldest6

one;
else7

update clause weights according to PAWS;8

pick a random falsified clauseC;9

v := the variable inC with the greatesthscore;10

α := α with v flipped;11

return “unknown”;12

end13

The CScoreSAT algorithm is outlined in Algorithm 1, as described below. In the beginning,
CScoreSAT generates a random complete assignment, initiates all clause weights to 1 and computes
score andscore2 of variables accordingly. After initialization, CScoreSAT executes a loop until
it finds a satisfying assignment or reaches a limited number of steps denoted by maxSteps (or a
given cutoff time).

Like most SLS algorithms for SAT, CScoreSAT switches between two modes. In each search
step, it works in either the greedy mode or the diversification mode, depending on whether there
exist comprehensively decreasing variables that are configuration changed. If there exist such
variables, CScoreSAT works in the greedy mode. It picks such a variable with the greatestcscore
value to flip, breaking ties by preferring the oldest one.

If no variables are both comprehensively decreasing and configuration changed, then
CScoreSAT switches to the diversification mode. It first updates clause weights according to the
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PAWS scheme. Then it randomly selects a falsified clauseC, and picks the variable fromC with
the greatesthscore value to flip.

3.4 Evaluations of CScoreSAT

In this subsection, we carry out extensive experiments to evaluate CScoreSAT on randomk-SAT
instances withk ∈ {4, 5, 6, 7} near phase transition. First, we compare CScoreSAT with state-of-
the-art SLS solvers on random 5-SAT and 7-SAT instances. Then, wecompare CScoreSAT with
state-of-the-art SLS solvers on randomk-SAT with instancesk ∈ {4, 5, 6, 7} from SAT Challenge
2012. Finally, we study the effectiveness of thecscore andhscore functions through empirical
analysis on random 5-SAT and 7-SAT instances.

3.4.1 BENCHMARKS AND EXPERIMENT PRELIMINARIES

All the instances used in these experiments are generated according to the randomk-SAT model
near the solubility phase transition. Specifically, we adopt the following five benchmarks. The first
two benchmarks are for random 5-SAT, and the third and fourth benchmarks are for random 7-SAT,
while the last one consists of randomk-SAT instances withk = 4, 5, 6, 7 at various ratios.

1. 5-SAT Comp11: all large random 5-SAT instances from SAT Competition 2011 (r = 20,
750 ≤ n ≤ 2000, 50 instances, 10 for each size).

2. 5-SAT Huge: 5-SAT instances generated randomly according to the randomk-SAT model
(r = 20, 3000 ≤ n ≤ 5000, 500 instances, 100 for each size).

3. 7-SAT Comp11: all large random 7-SAT instances from SAT Competition 2011 (r = 85,
150 ≤ n ≤ 400, 50 instances, 10 for each size).

4. 7-SAT Random: 7-SAT instances generated randomly according to the randomk-SAT model
(r = 85, 220 ≤ n ≤ 300, 500 instances, 100 for each size).

5. SAT Challenge 2012:all randomk-SAT instances withk > 3 from SAT Challenge 2012
(480 instances, 120 for eachk-SAT, k = 4, 5, 6, 7), which vary in both size and ratio. These
random instances occupy 80% of the random benchmark in SAT Challenge2012, indicating
that the importance of randomk-SAT instances withk > 3 has been highly recognized by the
SAT community. The instances vary from 800 variables atr = 9.931 to 10000 variables at
r = 9.0 for 4-SAT, from 300 variables atr = 21.117 to 1600 variables atr = 20 for 5-SAT,
from 200 variables atr = 43.37 to 400 variables atα = 40 for 6-SAT, and from 100 variables
at r = 87.79 to 200 variables atr = 85 for 7-SAT.

parameter 4-SAT 5-SAT 6-SAT 7-SAT
sp (for PAWS) 0.62 0.62 0.9 0.9

d 9 8 7 6
β 2000 2000 2000 2000

Table 1: Parameter setting of CScoreSAT
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CScoreSAT is implemented in C++ and compiled by g++ with the ’-O2’ option. The parameter
setting of CScoreSAT is reported in Table 1. We compare CScoreSAT with four state-of-the-art
SLS solvers, includingSparrow2011 (Balint & Fröhlich, 2010),CCASat (Cai & Su, 2013b),
probSAT (Balint & Schöning, 2012), andSattime2012 (Li & Li, 2012). Sparrow2011 and
probSAT won the gold medal of the random SAT track of the SAT competitions 2011 and 2013
respectively. CCASat is the winner of this same category in SAT Challenge 2012. Sattime regularly
won medals during SAT competitions of the same track.

All experiments are carried out parallel on a workstation under a 32-bit Ubuntu Linux Operation
System, using 2 cores of Intel(R) Core(TM) 2.6 GHz CPU and 8 GB RAM. The experiments are
conducted with EDACC, an experimental platform for testing SAT solvers, which has been used
for SAT Challenge 2012 and SAT Competition 2013. Each run terminates uponeither finding a
satisfying assignment or reaching a given cutoff time which is set to 5000 seconds (as in SAT
Competition 2011) for the 5-SAT and 7-SAT benchmarks, and 1000 seconds for the SAT Challenge
2012 benchmark (close to the cutoff in SAT Challenge 2012,i.e., 900 seconds).

For the 5-SAT Comp11 and 7-SAT Comp11 benchmarks (where each instance class has 10
instances), we run each solver 10 times for each instance and thus 100 runs for each instance
class. For the 5-SAT Huge and 7-SAT Random benchmarks (where each instance class contains 100
instances) and the SAT Challenge 2012 benchmark (120k-SAT instances for eachk), we run each
solver one time for each instance, as the instances in each class are enough to test the performance
of the solvers.

For each solver on each instance class, we report the number of successful runs in which a
satisfying assignment is found (“suc runs”) or the solved instances (“#solved”), as well as the
PAR10 (“par10”), which is a penalized average run time where a timeout ofa solver is penalized
as 10∗(cutoff time). Note that PAR10 is adopted in SAT competitions and has been widely used in
the literature as a prominent performance measure for SLS-based SAT solvers (KhudaBukhsh, Xu,
Hoos, & Leyton-Brown, 2009; Tompkins & Hoos, 2010; Tompkins, Balint,& Hoos, 2011; Balint
& Schöning, 2012). The results inbold indicate the best performance for an instance class. If a
solver has no successful run on an instance class, the corresponding “par10” is marked with “n/a”.

3.4.2 EXPERIMENTAL RESULTS OFCSCORESAT

In the following, we present the comparative experimental results of CScoreSAT and its competitors
on each benchmark.

Results on 5-SAT Comp11 Benchmark:
Table 2 shows the comparative results on the 5-SAT Comp11 benchmark. Asis clear from Table

2, CScoreSAT shows significantly better performance than other solverson the whole benchmark.
CScoreSAT is the only solver that solves all these 5-SAT instances in all runs. Also, CScoreSAT
significantly outperforms its competitors in terms of run time, which is more obvious asthe instance
size increases. In particular, on the 5-SAT-v2000 instances, which are of the largest size in SAT
competitions, the runtime of CScoreSAT is 15 times less than that of CCASat, and 2orders of
magnitudes less than that of other state-of-the-art SLS solvers.

Results on 5-SAT Huge Benchmark:
The experimental results on the 5-SAT Huge benchmark are presented in Table 3. It is

encouraging to see the performance of CScoreSAT remains surprisinglygood on these very large 5-
SAT instances, where state-of-the-art solvers show very poor performance. CScoreSAT solves these
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Instance
Class

Sattime2012 Sparrow2011 probSAT CCASat CScoreSAT
suc runs suc runs suc runs suc runs suc runs

par10 par10 par10 par10 par10

5-SAT-v750
100 100 100 100 100
754 51 88 47 35

5-SAT-v1000
100 100 100 100 100

1254 159 185 81 38

5-SAT-v1250
95 100 100 100 100

5288 174 237 128 47

5-SAT-v1500
56 99 98 100 100

24101 1231 1753 443 145

5-SAT-v2000
14 72 71 93 100

43249 15288 15635 4386 289

Table 2: Experimental results on the 5-SAT Comp11 benchmark. There are 10 instances in
each class and each solver is executed 10 times on each instance with a cutoff time of
5000 seconds.

Instance
Class

Sattime2012 Sparrow2011 probSAT CCASat CScoreSAT
suc runs suc runs suc runs suc runs suc runs

par10 par10 par10 par10 par10

5-SAT-v3000
0 31 40 64 100

n/a 35360 30867 19403 694

5-SAT-v3500
0 8 6 35 100

n/a 46147 47188 33540 1431

5-SAT-v4000
0 4 3 10 87

n/a 48080 48591 45287 8167

5-SAT-v4500
0 0 0 0 62

n/a n/a n/a n/a 21513

5-SAT-v5000
0 0 0 0 38

n/a n/a n/a n/a 32005

Table 3: Experimental results on the 5-SAT Huge benchmark.There are 100 instances in each
class and each solver is executed one time on each instance with a cutoff time of5000
seconds.

5-SAT instances with up to (at least) 3500 variables consistently (i.e., with 100% success rate), and
is about 30 times faster than other solvers on the 5-SAT-v3500 instances.Furthermore, CScoreSAT
succeeds in 62 and 38 runs for the 5-SAT-v4500 and 5-SAT-v5000 instances respectively, whereas
all its competitors fail to find a solution for any of these instances. Indeed, tothe best of our
knowledge, such large random 5-SAT instances (atr = 20) are solved for the first time. Given the
good performance of CScoreSAT on the 5-SAT instances with 5000 variables, we are confident it
could be able to solve larger 5-SAT instances.
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Instance
Class

Sattime2012 Sparrow2011 probSAT CCASat CScoreSAT
suc runs suc runs suc runs suc runs suc runs

par10 par10 par10 par10 par10

7-SAT-v150
100 100 88 100 100
498 642 6980 232 131

7-SAT-v200
49 17 11 72 90

26998 41912 44806 14912 5853

7-SAT-v250
2 0 0 7 35

49095 n/a n/a 46731 34070

7-SAT-v300
0 0 0 0 11

n/a n/a n/a n/a 44776

7-SAT-v400
0 0 0 0 0

n/a n/a n/a n/a n/a

Table 4: Experimental results on the 7-SAT Comp11 benchmark. There are 10 instances in
each class and each solver is executed 10 times on each instance with a cutoff time of
5000 seconds.

Instance
Class

Sattime2012 Sparrow2011 probSAT CCASat CScoreSAT
suc runs suc runs suc runs suc runs suc runs

par10 par10 par10 par10 par10

7-SAT-v220
39 13 10 68 83

31868 43407 45253 17189 10639

7-SAT-v240
13 2 2 33 66

43935 49051 49052 34158 17901

7-SAT-v260
4 0 0 9 53

48113 n/a n/a 45736 24825

7-SAT-v280
0 0 0 5 24

n/a n/a n/a 47605 39283

7-SAT-v300
0 0 0 0 11

n/a n/a n/a n/a 44889

Table 5: Experimental results on the 7-SAT Random benchmark.There are 100 instances in
each class and each solver is executed one time on each instance with a cutoff time of
5000 seconds.

Results on 7-SAT Comp11 Benchmark:

Table 4 summarizes the experimental results on the 7-SAT Comp11 benchmark.None of the
solvers can solve any 7-SAT instance with 400 variables, indicating that random 7-SAT instances
near the phase transition are so difficult even with a relatively small size. Nevertheless, CScoreSAT
significantly outperforms its competitors on this 7-SAT benchmark, and is the only solver that can
solve such 7-SAT instances with 300 variables. Actually, all the competitors become ineffective
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Instance
Class

Sattime2012 Sparrow2011 probSAT CCASat CScoreSAT
#solved #solved #solved #solved #solved

par10 par10 par10 par10 par10

4-SAT
49 79 111 112 119

6031 3514 778 751 174

5-SAT
32 52 54 71 84

7407 5812 5657 4264 3146

6-SAT
84 72 76 99 110

3187 4193 3877 1887 935

7-SAT
81 65 57 77 91

3422 4714 5380 3734 2559

Over All
246 268 298 359 404

5011 4558 3923 2659 1703

Table 6: Experimental results on SAT Challenge 2012 benchmark.Each instance class contains
120 instances, and each solver is executed once on each instance with a cutoff time of 1000
seconds.

(among which CCASat has the highest success rate of 7%) on the 7-SAT-v250 instances, while
CScoreSAT still achieves a success rate of 35% for this instance class.

Results on 7-SAT Random Benchmark:
The sizes of random 7-SAT instances from SAT Competition 2011 are not continuous enough

to provide a good spectrum of instances for SLS solvers. In order to investigate the detailed
performance of CScoreSAT and state-of-the-art SLS solvers on random 7-SAT instances, we
evaluate them on the 7-SAT Random benchmark, where the instance size increases more slowly.
Once again, Table 5 suggests that the difficulty of such 7-SAT instances increases significantly
with a relatively small increment of the size. As reported in Table 5, the resultsshow CScoreSAT
dramatically outperforms its competitors. Compared to the competitors whose performance
descends steeply as the instance size increases, CScoreSAT shows good scalability. For example,
from 7-SAT-v220 to 7-SAT-v260, the success rates of all the competitors decline eight times or
more, whereas that of CScoreSAT drops only thirty percents. When coming to the 7-SAT-v260
instances, probSAT and Sparrow2011 fail in all runs, and the other competitors succeed in less than
10 runs, while CScoreSAT succeeds in 53 runs. Finally, CScoreSAT is the only solver that survives
throughout the whole benchmark.

Results on SAT Challenge 2012 Benchmark:
To investigate the performance of CScoreSAT on randomk-SAT instances with variousk (k >

3), we compare it with state-of-the-art solvers on all randomk-SAT instances withk > 3 from SAT
Challenge 2012. Table 6 reports the number of solved instances and PAR10 for each solver on each
k-SAT instance class. The results show that CScoreSAT significantly outperforms its competitors
in terms of both metrics. Overall, CScoreSAT solves 404 instances. Further observations show that
CScoreSAT solves 365 instances within half cutoff time, whereas none of itscompetitors solves
more than 360 instances within the cutoff time. More encouragingly, Table 6 shows that CScoreSAT
solves the mostk-SAT instances for eachk, which illustrates its robustness. The good performance
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Figure 1: Comparison of run time distributions on the SAT Challenge 2012 benchmark, with a cutoff
time of 1000 seconds.

of CScoreSAT on the SAT Challenge 2012 benchmark is also clearly illustrated by Figure 1, which
summarizes the run time distributions of the solvers on this benchmark.

3.5 Experimental Analyses ofcscore andhscore Functions

In order to demonstrate the effectiveness of thecscore andhscore functions, we also test two
alternative versions of CScoreSAT, namely CScoreSAT1 and CScoreSAT2. These two algorithms
are modified from CScoreSAT as follows.

• CScoreSAT1: in the greedy mode, CScoreSAT1 usesscore as the scoring function instead of
cscore; also, CScoreSAT1 does not utilize the concept of comprehensively decreasing, and a
variable is allowed to flip if it is decreasing and configuration changed.

• CScoreSAT2: in the diversification mode, CScoreSAT2 uses theage property instead of
hscore as the scoring fucntion,i.e., it picks the oldest variable from the selected falsified
clause.

We carry out experiments to compare CScoreSAT with its two degraded versions on random 5-
SAT and 7-SAT instances. The experimental results are reported in Table7. An obvious observation
is that the performance of CScoreSAT1 is essentially worse than that of CScoreSAT. For example,
it cannot solve any 5-SAT instance with 2000 variables or any 7-SAT instance with 250 instance.
This indicates thecscore function is critical to the good performance of CScoreSAT. Compared
to cscore, thehscore function used in the random mode does not show that much contribution.
Nevertheless, the usage ofhscore does improve CScoreSAT’s performance on 5-SAT and 7-SAT
instances. A more careful comparison of CScoreSAT and CScoreSAT2 shows thathscore is more
important in solving 7-SAT instances than 5-SAT ones.
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Instance
Class

CScoreSAT1 CScoreSAT2 CScoreSAT
suc runs suc runs suc runs

par10 par10 par10

5-SAT-v1500
41 100 100

31452 152 145

5-SAT-v2000
0 100 100

n/a 330 289

5-SAT-v4000
0 78 87

n/a 12118 8167

7-SAT-v150
89 100 100

5359 569 131

7-SAT-v200
22 75 90

40406 13669 5853

7-SAT-v250
0 10 35

n/a 45329 34070

Table 7: Comparison of CScoreSAT and its two alternative algorithms on random 5-SAT and
7-SAT instances.

4. Improving CScoreSAT on Randomk-SAT at Phase Transition

The above section shows the excellent performance of CScoreSAT on randomk-SAT (k > 3) near
phase transition. However, the performance of CScoreSAT degradeson those instances at phase
transition. CScoreSAT participated in the satisfiable random category of SAT Competition 2013,
where the major part of the benchmark consists of instances generated atthe threshold ratio of phase
transition. Although it is ranked 4th in the category, its performance is not good enough on this kind
of instances, and is worse than other state-of-the-art SLS solvers such as probSAT and Sattime2013,
which are the top two solvers in the satisfiable random category of SAT Competition 2013.

This section improves CScoreSAT for randomk-SAT (k > 3) at phase transition. To this end,
we propose another scoring function combiningscore2 andage, and utilize it to improve the greedy
mode of CScoreSAT, resulting in a new algorithm called HScoreSAT. Our experiments show that
HScoreSAT significantly improves CScoreSAT and gives state-of-the-art performance on randomk-
SAT (k > 3) at the threshold ratio of phase transition. We also compare CScoreSAT and HScoreSAT
on instances with various ratios and find the boundary ratios beyond whichHScoreSAT outperforms
CScoreSAT.

4.1 Thehscore2 Function and the HScoreSAT Algorithm

An important issue in SLS algorithms for SAT is the balance between intensification and
diversification. Indeed, most improvements on SLS algorithms for SAT are due to proper regulation
of intensification and diversification in local search. For randomk-SAT instances at the solubility
phase transition, most of the search regions do not contain a model (if the instance is satisfiable).
Therefore, it is inadvisable to have strong intensification for such instances, which might waste the
search much time on unpromising regions so that the search does not explore enough regions for
discovering a model.
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In order to improve CScoreSAT for randomk-SAT instances at phase transition, we propose to
reduce intensification in the greedy mode. In CScoreSAT, we usecscore as the scoring function, and
break ties byage. As mentioned before, thecscore function is quite a greedy scoring function as it
combinesscore andscore2, which represent the greediness and look-ahead greediness respectively.
Therefore, in our opinion,cscore is not suitable for randomk-SAT instances at phase transition.

Recalling that the object of SLS algorithms for SAT is to minimize the number or total weight
of falsified clauses, thescore property should be the primary criterion in the greedy mode. Also,
we believe thescore2 property is important information for solving long-clause instances, as it
considers the satisfaction degree of clauses. However, whenscore and score2 are combined
together as the primary scoring function, it is too intensifying for solving (satisfiable) randomk-
SAT instances at phase transition.

Based on the above considerations, we movescore2 from the primary scoring function to the
tie-breaking function, where it is combined with the diversification propertyage. This leads to a
new scoring function which we refer to ashscore2 as it is a hybrid function ofscore2 andage.

Definition 4. For a CNF formulaF , thehscore2 function is a function onV (F ) such that

hscore2(x) = score2(x) + age(x)/θ,

whereθ is a positive integer parameter.

Accordingly, we modify the greedy mode of CScoreSAT, and obtain a new algorithm which we
refer to as HScoreSAT. The pseudo-codes of HScoreSAT is given inAlgorithm 2.

HScoreSAT differs from CScoreSAT in the following two aspects. First, although both
algorithms utilize the CC strategy, HScoreSAT only allows decreasing variables to be flipped in the
greedy mode, while CScoreSAT allows comprehensively decreasing variables (which is a super-set
of decreasing variables) to be flipped. More importantly, HScoreSAT useshscore2 to break ties in
the greedy mode, while CScoreSAT breaks ties byage.

Since thehscore2-based tie-breaking is an important component of HScoreSAT, we are
interested in this question:when there exist configuration changed decreasing variables, how often
the tie-breaking is executed to pick one from them?We have conducted an experiment on the
threshold benchmark from the random satisfiable category of SAT Competition 2013 to calculate
this frequency, which is the ratio of the following two statistics.

• #stepsccd: the number of steps in which configuration changed decreasing (CCD) variables
exist.

• #stepsbt: the number of steps in which configuration changed decreasing (CCD) variables
exist, and the best CCD variable is picked viahscore2-based tie-breaking.

The experimental results are summarized in Table 8, which are averaged over all instances
with each run per instance. As is demonstrated in Table 8, the frequency of the hscore2-based
tie-breaking in CCD steps is significant, and is very high for 4-SAT and 5-SAT (68% and 60%
respectively). This indicates that thehscore2-based tie-breaking mechanism plays a critical role
in HScoreSAT. Another interesting observation is that this frequency decreases with the length of
clauses in the instance.
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Algorithm 2 : HScoreSAT
Input : CNF-formulaF , maxSteps
Output : A satisfying assignmentα of F , or “unknown”
begin1

α := randomly generated truth assignment;2

for step := 1 to maxSteps do3

if α satisfiesF then return α;4

if S = {x|x is decreasing and configuration changed} 6= ∅ then5

v := a variable inS with the greatestscore, breaking ties by preferring the one6

with the greatesthscore2;

else7

update clause weights according to PAWS;8

pick a random falsified clauseC;9

v := a variable inC with the greatesthscore;10

α := α with v flipped;11

return “unknown”;12

end13

4-SAT 5-SAT 6-SAT 7-SAT
#stepsbt 218465135 514417498 198497368 17260095
#stepsccd 317682739 849513823 404629074 43678889
#stepsbt
#stepsccd

68% 60% 49% 38%

Table 8: Averaged number of CCD steps andhscore2-based tie-breaking steps, as well as their
averaged ratio for eachk-SAT with k ∈ {4, 5, 6, 7} in the threshold benchmark from SAT
Competition 2013.

4.2 Evaluations of HScoreSAT on Threshold Instances

In this subsection, we carry out extensive experiments to evaluate HScoreSAT on randomk-SAT
instances withk ∈ {4, 5, 6, 7} at phase transition. First, we compare HScoreSAT with CScoreSAT
as well as state-of-the-art SLS solvers on the random benchmark at thethreshold of phase transition
from SAT Competition 2013. Then, we compare HScoreSAT with state-of-the-art SLS solvers on
large-sized randomk-SAT (k ∈ {4, 5, 6, 7}) instances generated randomly at the threshold of phase
transition.

4.2.1 BENCHMARK AND EXPERIMENT PRELIMINARIES

In the experiments in this section, all benchmark instances are generated according to the random
k-SAT model at the threshold ratio of the solubility phase transition. These instances have a clause-
to-variable ratio equal to the conjectured threshold ratio of the solubility phase transition2 (Mertens,
Mézard, & Zecchina, 2006). Specifically, we adopt the following two benchmarks.

2. The clause-to-variable ratio for which 50% of the uniform random formulas are satisfiable. For most algorithms, the
closer a formula is generated near the threshold ratio, the harder it is to solve it.
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1. Threshold Comp13: the threshold benchmark from the random satisfiable category of SAT
Competition 2013. For eachk-SAT, the instances have various sizes. We also note that
no filtering was applied to construct the competition suite. As a consequence,a significant
fraction (approximately 50%) of the generated threshold instances is unsatisfiable. The details
of the benchmark are given in Table 9.

2. Large-sized Threshold: randomk-SAT instances at the threshold ratio of phase transition,
generated randomly by the randomk-SAT generator3 used in SAT Competition 2013. This
benchmark contains 400 instances, 100 for eachk-SAT class withk ∈ {4, 5, 6, 7}. The sizes
of instances in this benchmark (n = 2000, 550, 250, 150 fork = 4, 5, 6, 7, respectively) are
relatively large compared to those in the Threshold Comp13 benchmark. These instances are
evenly divided into two categories: thetraining set andtest set, both of which
have 50 instances for eachk-SAT class.

Note that thetraining set is only used to tune the parameters in HScoreSAT, and then
HScoreSAT with the tuned parameter setting is evaluated on Threshold Comp13benchmark and the
test set in Large-sized Threshold benchmark.

4-SAT 5-SAT 6-SAT 7-SAT
#inst. 50 50 50 50
ratio 9.931 21.117 43.37 87.79
size n ∈ {830, 860, ..., 2300} n ∈ {305, 310, ..., 550} n ∈ {191, 192, ..., 240} n ∈ {91, 92, ..., 140}

Table 9: The instance numbers, ratios and sizes for eachk-SAT with k ∈ {4, 5, 6, 7} in the
Threshold Comp13 benchmark.

HScoreSAT is implemented on the basis of CScoreSAT source code and complied by g++ with
the ’-O2’ option. The parameter setting of HScoreSAT is presented in Table10, which are tuned
based on thetraining set of the Large-sized Threshold benchmark. We compare HScoreSAT
with CScoreSAT, as well as three other state-of-the-art SLS solvers, includingCCASat, probSAT
(version 2013) andSattime2013. Especially, we note that probSAT and Sattime2013 are the top
two solvers in the random SAT track in SAT Competition 2013.

parameter 4-SAT 5-SAT 6-SAT 7-SAT
sp 0.75 0.75 0.92 0.9
d 9 8 7 6
θ 50 100 500 500
β 500 500 500 500

Table 10: Parameter setting of HScoreSAT

The computing environments for these experiments are the same as those usedfor experiments
in Section 3. Following the experiment setup in SAT Competition 2013, we performeach solver
one run on each instance, where each run terminates upon either finding asatisfying assignment or
reaching a given cutoff time which is set to 5000 seconds. We report the number of solved instances

3. http://sourceforge.net/projects/ksatgenerator/
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Instance
Class

CCASat Sattime2013 probSAT CScoreSAT HScoreSAT
#solved #solved #solved #solved #solved

par10 par10 par10 par10 par10

4-SAT 10 8 13 9 14
(r = 9.931) 40168 42174 37160 41193 36176

5-SAT 9 9 10 8 11
(r = 21.117) 41117 41153 40185 42176 39296

6-SAT 15 18 15 13 19
(r = 43.37) 35435 31445 35440 37211 31538

7-SAT 23 26 23 21 25
(r = 87.79) 27308 24351 27363 29189 25275

Over All
57 61 61 51 69

36007 35006 35037 37442 33071

Table 11: Experimental results on Threshold Comp13 benchmark.Each instance class contains
50 instances and each solver is executed once on each instance with a cutoff time of 5000
seconds.

(“#solved”) and PAR10 for eachk-SAT class and the whole benchmark (as in the competition). The
rules at SAT competitions establish that the winner is the solver which solves themost instances,
and ties are broken by selecting the solver with the minimum PAR10.

4.2.2 EXPERIMENTAL RESULTS ONTHRESHOLDBENCHMARK

In the following, we present the comparative experimental results of HScoreSAT and its competitors
on each benchmark.

Results on Threshold Comp13 Benchmark:
Table 11 presents the experimental results of HScoreSAT and its competitorson randomk-

SAT instances at phase transition from SAT Competition 20134. Since HScoreSAT is based on
CScoreSAT, we first compare these two solvers. As shown in Table 11, HSocreSAT solves more
instances than CScoreSAT on all instance classes. Overall, CScoreSATsolves 51 instances, while
HScoreSAT solves 69 instances, which is 1.35 times as many as CScoreSAT does.

HScoreSAT solves a few more instances than probSAT and Sattime2013. Overall, HScoreSAT
solves 69 instances, compared to 61 for both probSAT and Sattime2013 and57 for CCASat. Further
observation shows that, HScoreSAT has similar performance with probSATon random 4-SAT and
5-SAT instances, and has similar performance with Sattime2013 on 6-SAT and7-SAT instances.

Results on Large-sized Threshold Benchmark:
To mesure the performance of HScoreSAT on random phase-transitionk-SAT instances more

accurately, we additionally test HScoreSAT on thetest set of the Large-sized Threshold
benchmark, compared with Sattime2013 and probSAT, which are the top two solvers in the random
SAT track in SAT Competition 2013.

4. It seems that our machine is slightly slower than the ones used in SAT Competition 2013, as Sattime2013, probSAT
and CScoreSAT all solved slightly fewer instances in our experiment thanthey did in the competition. CCASat did
not participate in SAT Competition 2013.
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The results are presented in Table 12. For 4-SAT class, HScoreSAT and probSAT solve the
same number of instances, but HScoreSAT has less accumulative run time. For 5-SAT and 6-
SAT classes, HScoreSAT solves the most instances. Particularly, HScoreSAT shows significantly
superior performance than other solvers on 6-SAT class, where it solves 9 instances, while
Sattime2013 and probSAT both solve 4 instances. The only instance class for which HScoreSAT
does not give the best performance is 7-SAT. Nevertheless, on this instance class, HScreSAT has
similar performance as the best solver Sattime2013, solving only one less instance. For the whole
benchmark, HScoreSAT solves 40 instances, compared to 26 and 28 instances for Sattime2013 and
probSAT.

Instance
Class

Sattime2013 probSAT HScoreSAT
#solved #solved #solved

par10 par10 par10

4-SAT-v2000 0 8 8
(r = 9.931) n/a 42197 42181
5-SAT-v550 8 9 10
(r = 21.117) 42147 41262 40130
6-SAT-v300 4 4 9
(r = 43.37) 46120 46132 41523
7-SAT-v150 14 7 13
(r = 87.79) 36433 43248 37091

Over All
26 28 40

43675 43209 40231

Table 12: Experimental results on the Large-size Threshold benchmark.Each instance class
contains 50 instances and each solver is executed once on each instancewith a cutoff
time of 5000 seconds.

4.3 Experimental Analyses of thehscore2 Function

To demonstrate the effectiveness of thehscore2 function, we test two alternative versions
of HScoreSAT. These two algorithms are different from HScoreSAT only in the tie-breaking
mechanism in the greedy mode.

• HScoreSAT1 breaks ties in the greedy mode by preferring the variable with the greatest
score2;

• HScoreSAT2 breaks ties in the greedy mode by preferring the variable with the greatestage.

The comparative results of HScoreSAT and its two alternative versions are displayed in Table
13. It is clear from the table that HScoreSAT has superior performancethan both its alternatives
on all instance classes. More careful observations show that for 4-SAT and 5-SAT instances, the
performance of HScoreSAT2 and HScoreSAT are similar, which are significantly better than that of
HScoreSAT1. This indicates that theage property is more suitable thanscore2 as a tie-breaker for 4-
SAT and 5-SAT, and is almost as good as thehscore2 for tie-breaking. In contrast, the performance
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Instance
Class

HScoreSAT1 HScoreSAT2 HScoreSAT
#solved #solved #solved

par10 par10 par10

4-SAT 5 13 14
(r = 9.931) 45062 37242 36176

5-SAT 7 10 11
(r = 21.117) 43136 40293 39296

6-SAT 16 16 19
(r = 43.37) 34255 34371 31538

7-SAT 24 22 25
(r = 87.79) 26328 28128 25275

Over All
52 61 69

37195 35008 33071

Table 13: Comparative results of HScoreSAT and its two alternative solverson the Threshold
Comp13 benchmark. Each solver is executed one time on each instance, with a cutoff
time of 5000 seconds.

of HScoreSAT1 and HScoreSAT on 7-SAT are similar, which are better than that of HScoreSAT2.
This indicates thatscore2 is more suitable thanage as a tie-breaker for 7-SAT. Indeed, it is from this
experimental analysis that we gain the intuition to setθ in thehscore2 function to be a relatively
small value for 4-SAT and 5-SAT instances, and a relatively large value for 7-SAT. However, for
6-SAT, both alternatives cannot achieve performance close to that of HScoreSAT.

4.4 Evaluation on Huge Randomk-SAT in SAT Competition 2013

In the random SAT category of SAT Competition 2013, there are two kinds ofinstances. Besides
the instances at phase-transition threshold, there are also instances whose ratios are not that close
to phase transition while at the same time they have huge sizes. In this subsection, we conduct
experiments to evaluate the performance of our solvers on these huge instances, compared with
state-of-the-art solvers.

The experimental results are presented in Table 14, which show that CScoreSAT is clearly the
best solver on this benchmark of huge instances. CScoreSAT gives thebest performance for all
k-SAT instance classes except for 4-SAT, and especially it solves more 6-SAT and 7-SAT instances
than all other solvers. For 4-SAT, CScoreSAT solves as many instancesas probSAT but the PAR10
is a little more than probSAT’s. These experimental results confirm the good performance of
CScoreSAT on the huge benchmark in SAT Competition 2013, where it also solved more huge
instances than probSAT and Sattime2013.

4.5 Boundary Ratios for Performance of CScoreSAT and HScoreSAT

As we mentioned before, CScoreSAT has good performance on solving randomk-SAT (k > 3)
instances at some ratios near the phase-transition threshold, such as the ratios of large random
instances in SAT Competition 2011. On the other hand, HScoreSAT is improvedfrom CScoreSAT
for solving randomk-SAT (k > 3) instances at the phase-transition threshold. Thus, we conjecture
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Instance
Class

CCASat Sattime2013 probSAT CScoreSAT HScoreSAT
#solved #solved #solved #solved #solved

par10 par10 par10 par10 par10

4-SAT-v500000 4 3 5 5 5
(r ∈ [7.0, 9.5]) 17017 25205 8385 9096 9418
5-SAT-v250000 3 2 4 4 3

(r ∈ [15.0, 20.0]) 25106 33502 16710 16535 25116
6-SAT-v100000 2 2 2 3 2

(r ∈ [30.0, 40.0]) 33386 33710 33338 25200 33376
7-SAT-v50000 1 1 1 2 1

(r ∈ [60.0, 85.0]) 41693 41963 41669 34167 41683

Over All
10 8 12 14 11

29300 33595 25026 21249 27398

Table 14: Experimental results on huge random k-SAT (k > 3) instances from SAT
Competition 2013.Each instance class contains 6 instances and each solver is executed
once on each instance with a cutoff time of 5000 seconds.

there exists a boundary ratio for eachk-SAT, beyond which HScoreSAT outperforms CScoreSAT.
This subsection is dedicated to finding these boundary ratios through experiments.

Our experiment is carried out on SAT Challenge 2012 benchmark, whereeachk-SAT has 10
different ratios and there are 12 instances for each ratio. Details of the bechmark can be found in
its benchmark description. We run CScoreSAT and HScoreSAT one time on each instance with a
cutoff time of 1000 seconds, and compare the performance of the two solvers at each ratio.

The comparison results are presented in Table 15. The results suggest that there exists a
boundary ratior∗, beyond which HScoreSAT gives better performance than CScoreSAT. This is
especially clear for 4-, 5- and 7-SAT, while not so clear for 6-SAT as HScoreSAT solves more
instances than CScoreSAT at all rations which are not smaller than42.359 except for one ratio
r = 42.696, where CScoreSAT solves one more instance. To check whether this result is just an
outlier due to a single instance, we conduct an additional experiment to execute both solvers 10
times on each instance atr = 42.696. The experimental results show that the two solvers have very
close performance — HScoreSAT succeeds in 84 runs while CScoreSATsucceeds in 83 runs. We
give the conjectured interval(r∗

min
, r∗max) of the boundary ratior∗ for eachk-SAT in Table 16.

These results suggest that, a hybrid solver combining CScoreSAT and HScoreSAT would
have good performance onk-SAT instances with long clauses at different ratios. However, both
CScoreSAT and HScoreSAT have poor performance on random 3-SAT instances. Hence, these
two solvers or their hybrid solver did not participate in SAT Competition 2014, as the competition
requires a participating solver to be a core solver which can have at most two different solvers.
Instead, we develop a solver called CSCCSat, which combines two solvers namely FrwCB (for
large sized instances) (Luo et al., 2014) and DCCASat (for threshold instances) (Luo et al., 2014).
Note that DCCASat is improved from HScoreSAT by using the double configuration checking
heuristic, and it also uses thehscore andhscore2 functions for randomk-SAT with k > 3. In SAT
Competition 2014, CSCCSat won the bronze medal of random SAT track, and especially it gives
the best performance for threshold instances, indicating the effectiveness of our scoring functions.
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CScoreSAT CScoreSAT CScoreSAT CScoreSAT
HScoreSAT HScoreSAT HScoreSAT HScoreSAT

4-SAT 4.8(12) 5-SAT 222(12) 6-SAT 4.1(12) 7-SAT 4345(7)
r=9 6.5(12) r=20 1060(11) r=40 11.5(12) r=85 8346(2)

4-SAT 9.7(12) 5-SAT 271(12) 6-SAT 8.6(12) 7-SAT 2767(9)
r=9.121 10.8(12) r=20.155 2022(10) r=40.674 36.3(12) r=85.558 6773(4)
4-SAT 11.6(12) 5-SAT 1918(10) 6-SAT 29.1(12) 7-SAT 2666(9)

r=9.223 18.6(12) r=20.275 3471(8) r=41.011 52.3(12) r=85.837 5065(6)
4-SAT 19.1(12) 5-SAT 2935(9) 6-SAT 76.6(12) 7-SAT 3435(8)

r=9.324 29.1(12) r=20.395 6025(5) r=41.348 98.4(12) r=86.116 4296(7)
4-SAT 42.7(12) 5-SAT 6108(5) 6-SAT 83(12) 7-SAT 1902(10)

r=9.425 63.8(12) r=20.516 7647(3) r=41.685 1827(10) r=86.395 2797(9)
4-SAT 66.5(12) 5-SAT 4363(7) 6-SAT 31(12) 7-SAT 3499(8)

r=9.526 72.2(12) r=20.636 6003(5) r=42.022 1928(10) r=86.674 4340(7)
4-SAT 133(12) 5-SAT 3468(8) 6-SAT 1003(11) 7-SAT 3415(8)

r=9.627 192(12) r=20.756 4452(7) r=42.359 227(12) r=86.953 2646(9)
4-SAT 243(12) 5-SAT 5118(6) 6-SAT 2757(9) 7-SAT 150(12)

r=9.729 212(12) r=20.876 3051(8) r=42.696 3528(8) r=87.232 135(12)
4-SAT 1252(11) 5-SAT 5100(6) 6-SAT 4418(7) 7-SAT 2589(9)
r=9.83 344(12) r=20.997 4436(7) r=43.033 3647(8) r=87.511 1054(11)
4-SAT 149(12) 5-SAT 2522(9) 6-SAT 939(11) 7-SAT 899(11)

r=9.931 118(12) r=21.117 1772(10) r=43.37 165(12) r=87.79 74(12)

Table 15: Comparing CScoreSAT and HScoreSAT at each ratio of randomk-SAT (k > 3) in SAT
Challenge 2012 benchmark.Each solver is executed one time on each instance, with a cutoff
time of 1000 seconds. Each cell reports the result of CScoreSAT in the upper row and that of
HScoreSAT in the lower row, in the form of “par10(#solved)”.We color the ratiosgray at which
HScoreSAT performs better than CScoreSAT. Note that for 6-SAT at r = 42.696 where the results
seem a little odd, we conduct an additional experiment executing both solvers 10 times on each
instance, and HScoreSAT succeeds in 84 runs while CScoreSATsucceeds in 83 runs.

4-SAT 5-SAT 6-SAT 7-SAT
(r∗

min
, r∗max) (9.627,9.729) (20.756,20.876) (42.022,42.359) (86.674,86.953)

Table 16: The conjectured interval of the boundary ratio r∗. HScoreSAT has worse performance
than CScoreSAT at ratiosr ≤ r∗

min
, and has better (or at least competitive) performance

at ratiosr ≥ r∗max, based on experiments on the SAT Challenge 2012 benchmark.

5. On Computation of score2

For algorithms employing scoring functions based onscore2, such as CScoreSAT and HScoreSAT,
the computation ofscore2 has a considerable impact on their efficiency. In this section,
we investigate the computation issues ofscore2. Particularly, we propose a cache-based
implementation and analyze its time complexity in each flip. We also measure its overhead in
the two algorithms through experiments.
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5.1 Implementation and Complexity of Computingscore2

We propose a caching implementation for computing variables’score2 values, which is inspired
by the caching implementation for computing variable scores. Typically, not allvariable scores (or
score2 values) change after each search step; this suggests that rather than recomputing all variable
scores (orscore2 values) in each step, it should be more efficient to compute all scores (orscore2
values) when the search is initialized, but to subsequently only update the scores (orscore2 values)
affected by a variable that has been flipped (Hoos & Stützle, 2004).

In our caching implementation, thescore2 values of all variables are computed when the search
is initialized, and are subsequently updated in each flip. The initialized computation of score2 is
straightforward according to the definition ofscore2 and will not be discussed. Comparatively, the
procedure of updatingscore2 values are of much more interest.

To facilitate describing the procedure of updatingscore2 values and analyzing its time
complexity, we first introduce some notations and definitions below.

Given a CNF formulaF ,

• for a variablex ∈ V (F ), CL(x) = {c|c is a clause inF andx appears inc};

• for a clausec ∈ F , c.num_true_lit is the number of true literals inc;

• for a clausec ∈ F with exactly two true literals, we use true_lit_var(c) and true_lit_var2(c) to
record the two corresponding variables of the two true literals inc (these two notations will
only be used in pseudo-code for the sake of formalization);

• we usex∗ to denote the variable flipped in the current step;

• n,m, k, r is the number of variables, the number of clauses, the maximum clause length, and
the clause-to-variable ratio.

Definition 5. Given a clausec and a variablex, we say the contribution of clausec to score2(x) is
+1 if flipping x would causec transform from 1-satisfied to 2-satisfied, -1 if flippingx would cause
c transform from 2-satisfied to 1-satisfied, and 0 otherwise.

A useful observation is that for a variablex ∈ V (F ), score2(x) equals the sum of contributions
of all clauses to it. Also, it is obvious that clauses in whichx does not appear always contribute 0
to score2(x).

Now we describe in detail the procedure of updatingscore2 values in each flip, whose pseudo-
code is shown in Algorithm 3. After flippingx∗, according to the definition ofscore2, score2(x∗)
just changes to its opposite number (lines 1 and 21). The essential part is updatingscore2 values for
variables that share clauses withx∗ (since other variables would not change theirscore2 values),
which is accomplished with a loop (lines 2-20). In each iteration of the loop, a clausec ∈ CL(x∗) is
considered and necessary updates are performed, according to two different cases: either the literal
of x∗ in c becomes a true literal, or not. Here we explain the updates for the first case, and those for
the other case can be understood similarly.

In the first case (i.e., the literal ofx∗ in c becomes a true literal), along with the flip ofx∗,
c.num_true_lit is increased by 1. Supposec.num_true_lit changes fromt − 1 to t. If neithert − 1
nor t is 1 or 2, then flippingx∗ causes no change to any variable’sscore2 (easy to see from the
definition ofscore2). So, we only need to consider the following three cases.
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Algorithm 3 : updatingscore2 values in a flip step

org_score2(x∗) := score2(x∗);1

for eachc ∈ CL(x∗) do2

if the literal ofx∗ in c becomes a true literalthen3

c.num_true_lit+=1;4

if c.num_true_lit=3then5

score2(true_lit_var(c))+=1;6

score2(true_lit_var2(c))+=1;7

else ifc.num_true_lit=2then8

for eachxi ∈ c do score2(xi)−=1;9

else ifc.num_true_lit=1then10

for eachxi ∈ c do score2(xi)+=1;11

else12

c.num_true_lit−=1;13

if c.num_true_lit=2then14

score2(true_lit_var(c))−=1;15

score2(true_lit_var2(c))−=1;16

else ifc.num_true_lit=1then17

for eachxi ∈ c do score2(xi)+=1;18

else ifc.num_true_lit=0then19

for eachxi ∈ c do score2(xi)−=1;20

score2(x∗) := −org_score2(x∗);21

• c.num_true_lit changes from 2 to 3: Before flippingx∗, c had two true literals, and let us
denote their corresponding variables asy1 andy2. The contributions ofc to score2(y1) and
score2(y2) were both -1 before flippingx∗. After flippingx∗, c becomes a 3-satisfied clause,
and the contributions ofc to score2(y1) andscore2(y2) both become 0. Hence, along with
flipping x∗, the changes onscore2(y1) andscore2(y2) are both 0-(-1)=+1 (lines 6-7). For
other variables inc, either before or after the flip ofx∗, the contributions ofc to theirscore2
values are 0.

• c.num_true_lit changes from 1 to 2: Before flippingx∗, c had only one true literal, and let
us denote its corresponding variable asy1. The contribution ofc to score2(y1) was 0 before
flipping x∗, but becomes -1 after flippingx∗, indicating a change of -1 onscore2(y1). For
other variables inc (exceptx∗), the contributions ofc to theirscore2 values were +1 before
flipping x∗, but become 0 after flippingx∗, indicating a change of -1 on theirscore2 values.
Therefore, for all variables inc (exceptx∗), along with flippingx∗, the changes on their
score2 values are -1 (lines 8-9).

Note that we includex∗ in the loop (line 9) just in order to save computational consumption.
As we have a special update forscore2(x∗), any change onscore2(x∗) between line 1 and
line 21 has no impact in effect.
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• c.num_true_lit changes from 0 to 1: Before flippingx∗, for all variables inc, the contributions
of c to theirscore2 values were 0. After flippingx∗, c becomes 1-satisfied (the true literal’s
corresponding variable isx∗), and for all variables inc (exceptx∗), the contributions ofc
to their score2 values become +1. Therefore, for all variables inc (exceptx∗), along with
flipping x∗, the changes on theirscore2 values are +1 (lines 10-11).

The complexity of thescore2 updating procedure in each flip is determined by the main loop
(lines 2-20). When flipping a variablex, there are|CL(x)| items in the main loop, and in each
iteration there are three possible cases, where the first case requires only 2 operations5 and the latter
two requireΘ(k) operations. Therefore, the worst-case time complexity of thescore2 updating
procedure in each flip isΘ(maxx∈V (F )|CL(x)| ·max{2, k, k})=Θ(maxx∈V (F )|CL(x)| · k).

For uniform randomk-SAT formulas with clause-to-variable ratior, there are totallym · k
literals and each variable is expected to havemk/n = kr literals. That is, each variablex ∈ V (F )
is expected to appear inkr clauses (whenn approaches to+∞, this is true with probability almost
1), i.e., |CL(x)| ≈ kr. Therefore, the complexity of thescore2 updating procedure in each flip
becomesΘ(kr · k) = Θ(k2r).

Fortunately, for uniform randomk-SAT formulas with constant ratior, both k and r are
constants. Therefore, independent of instance size, this implementation ofscore2 computation
achieves a time complexity ofΘ(1) for each search step, just as the caching implementation of
score computation does (referring to pages 272-273 in (Hoos & Stützle, 2004)).

5.2 Computational Overhead of Computingscore2

In this subsection, we study the computational overhead of computingscore2 in CScoreSAT and
HScoreSAT. We carry out experiments with the Threshold Comp13 benchmark to figure out the
CPU time per107 steps for computingscore2 and its percentage in the total CPU time of the solver
per107 steps.

4-SAT 5-SAT 6-SAT 7-SAT
CScoreSAT 13.9 28.5 52.4 94.6

computingscore2 1.6 8.0 17.9 37.1
percentage 11.5% 28.1% 34.2% 39.2%
HScoreSAT 14.3 28.7 53.2 95.1

computingscore2 1.6 8.4 17.8 36.9
percentage 11.2% 29.3% 33.5% 38.8%

Table 17: CPU time consumption (in seconds) per107 steps for CScoreSAT and HscoreSAT, and
for computingscore2, as well as their ratios. The results are averaged over all instances
in the Threshold Comp13 benchmark.

Our investigation shows that the overhead of computingscore2 occupies a considerable
percentage of the solvers’ whole run time, ranging from 11% to 40%. Nevertheless, sincescore2 is
critical to the solvers, this price indeed pays off. Further observation reveals that more than 90% of

5. note that true_lit_var(c) and true_lit_var2(c) are recorded initially for accelerating updating variable scores, and thus
we do not need extra price to maintain them forscore2 updates.
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the solvers’ run time are due to the flip function, where two most costly parts are score andscore2
updates. Another interesting phenomenon is that the percentage of overhead caused byscore2
computation rises as the clause length increases, althoughscore2 is less used (for tie-breaking) for
longer clauses (see Table 8). The reason might be that as the clause length increases, the portion of
variables whosescore2 values need to be updated is increasing compared to that of variables whose
scores need to be updated.

6. Summary and Future Work

In this paper, we proposed three new scoring functions based onscore2 for improving SLS
algorithms on random SAT instances with long clauses. Despite their simplicity, theproposed
scoring functions are very effective, and the resulting SLS algorithms namely CScoreSAT and
HscoreSAT show excellent performance on randomk-SAT instances with long clauses.

First, we combined thescore andscore2 properties to design a scoring function namedcscore
(comprehensive score), which aims to improve the greedy mode by combininggreediness and look-
ahead greediness. We also defined comprehensively decreasing variables accordingly. We further
proposed thehscore function combiningcscore with the diversificationage, which is devoted
to improving the diversification mode. These two scoring functions were used to develop the
CScoreSAT algorithm. The experiments show that the performance of CScoreSAT exceeds that of
state-of-the-art SLS solvers by orders of magnitudes on large random5-SAT and 7-SAT instances
near phase transition. Moreover, CScoreSAT significantly outperformsits competitors on random
k-SAT instances with various ratios for eachk ∈ {4, 5, 6, 7} from SAT Challenge 2012.

To improve CScoreSAT for solving randomk-SAT instances at the threshold ratio of phase
transition, we propose another scoring function calledhscore2, which combinesscore2 andage.
By usinghscore2 to break ties and adjust the greedy mode accordingly, we obtain the HScoreSAT
algorithm. Experiments on randomk-SAT instances at phase-transition threshold show that
HScoreSAT significantly improves CScoreSAT and outperforms state-of-the-art SLS algorithms.

Finally, as thescore2 property is a key notion in our algorithms, we also present the
implementation details ofscore2 computation, and analyze its complexity per flip and its
computational overhead.

As for future work, a significant research issue is to improve SLS algorithms for structured
instances byscore2-based scoring functions. Furthermore, the notions in this work are so simple
that they can be easily applied to other problems, such as constrained satisfaction and graph search
problems.
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