
Journal of Artificial Intelligence Research 51 (2014) 533-554 Submitted 02/14; published 10/14

Optimal Scheduling of Contract Algorithms for
Anytime Problem-Solving

Alejandro López-Ortiz alopez-o@uwaterloo.ca
Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

Spyros Angelopoulos spyros.angelopoulos@upmc.fr
CNRS and Laboratoire d’Informatique
Université Pierre et Marie Curie
4 Place Jussieu 75252, France

Angèle M. Hamel ahamel@wlu.ca

Department of Physics and Computer Science

Wilfrid Laurier University

Waterloo, Ontario, Canada, N2L 3C5

Abstract

A contract algorithm is an algorithm which is given, as part of the input, a specified
amount of allowable computation time. The algorithm must then complete its execution
within the allotted time. An interruptible algorithm, in contrast, can be interrupted at
an arbitrary point in time, at which point it must report its currently best solution. It
is known that contract algorithms can simulate interruptible algorithms using iterative
deepening techniques. This simulation is done at a penalty in the performance of the
solution, as measured by the so-called acceleration ratio.

In this paper we give matching (i.e., optimal) upper and lower bounds for the accelera-
tion ratio under such a simulation. We assume the most general setting in which n problem
instances must be solved by means of scheduling executions of contract algorithms in m
identical parallel processors. This resolves an open conjecture of Bernstein, Finkelstein, and
Zilberstein who gave an optimal schedule under the restricted setting of round robin and
length-increasing schedules, but whose optimality in the general unrestricted case remained
open.

Lastly, we show how to evaluate the average acceleration ratio of the class of exponential
strategies in the setting of n problem instances and m parallel processors. This is a broad
class of schedules that tend to be either optimal or near-optimal, for several variants of the
basic problem.

1. Introduction

Anytime algorithms are algorithms whose quality of output improves gradually as the
amount of available computation time increases. This class of algorithms was introduced
first by Dean and Boddy (1988) in the context of time-depending planning, as well as by
Horvitz (1987, 1998) in the context of flexible computation. Anytime algorithms occur

c©2014 AI Access Foundation. All rights reserved.

López-Ortiz, Angelopoulos, & Hamel

naturally in settings where a computationally intensive problem is addressed under uncer-
tainty with respect to the available computation time. An example of this is a problem in
which the answer must be provided when determined by an external input over which we
have no control. For instance, consider an automated trading program for the stock market.
These programs run time-intensive simulations to price various financial instruments. When
a change in the bid price of a given stock occurs the algorithm must produce a decision
(buy/sell/hold) at that very instant, using whatever information it had garnished over the
course of the simulations, so as to take advantage of the newly posted price. Another exam-
ple is given by real-time applications. For instance, consider a motion planning algorithm
for a robot in which a solution must be produced within a certain, but varying, amount
of time: for example if a robot is about to collide a move is needed momentarily even if
the algorithm is to produce a suboptimal move, while in others, there is sufficient time to
carefully compute the next step. In this situation, the amount of allotted time is given to
the algorithm beforehand.

According to Russell and Zilberstein (1991), a further distinction can be made between
two different types of anytime algorithms. On the one hand, interruptible algorithms are
algorithms whose allowable running time is not known in advance, and thus can be inter-
rupted (queried) at any given point throughout their execution. Such algorithms typically
include versions of local search, e.g., simulated annealing and hill climbing. On the other
hand, the more stringent class of contract algorithms consists of algorithms which are given
the amount of allowable computation time (i.e, the intended query time) as part of the
input. However, if the algorithm is interrupted at any point before the contract time ex-
pires, the algorithm may not return any meaningful results. Such algorithms are thus less
flexible than interruptible algorithms, however they tend to be simpler to construct, and
it is easier to prove strict guarantees on their performance. A typical example of contract
algorithms are polynomial-time approximation schemes (PTAS) based on Dynamic Pro-
gramming (DP): the bigger the amount of computation time, the better an approximation
is achieved. However, the algorithm may require all the available computation time in or-
der to fill in the important entries of the DP table, otherwise the solution returned may be
useless.

Consider then the following general scenario: we are given a set P of n different problem
instances, and we want to design an efficient interruptible algorithm that can be applied,
in a concurrent fashion, to all n problem instances. The amount of computation time is
not known in advance; instead, it is expected that at some unknown point in time, an
interruption will occur, at which point the algorithm is stopped and is queried to report
its (partial) solutions to any one among the problem instances. Clearly, the algorithm
must make judicious use of its resources and ensure that it can produce a reasonably good
solution, despite having no knowledge of the exact time at which interruptions may occur.
As indicated earlier, it is hardly surprising that this setting arises very frequently in the
design of AI systems, in applications such as game-playing programs (Althöfer, 1997; Kao,
Reif, & Tate, 1996; Kao, Ma, Sipser, & Yin, 1998), e-trading agents, and medical diagnosis
systems. Essentially the problem captures a fundamental trade-off between the quality of
the solution returned by the algorithm and the amount of available computation time. We
refer the reader to the survey of Zilberstein (1996) for the importance of anytime algorithms
in the design of intelligent systems.

534

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

PTAS (Polynomial Time Approximation Schemes) provide a rich source of contract
algorithms with guaranteed performance. This motivates the study of general constructions
for creating interruptible versions for any given contract algorithm. This provides the
flexibility of focusing only on the design of contract algorithms, then converting them to
interruptible algorithms by applying a standard, “black-box” transformation. Indeed, a
standard method for simulating an interruptible algorithm is by repeatedly executing the
contract algorithm using increasing execution times. Consider the general setting in which
a set M of m processors of identical speed is available for the execution of this simulation,
and each problem instance has a corresponding (single-thread) contract algorithm. The
problem we face is how to schedule the executions of the various contract algorithms to
the processors in a way that guarantees an efficient interruptible algorithm. In this setting,
at query time, the algorithm will report for each problem instance the solution of the
corresponding contract of longest length (i.e., contract time) which has been completed by
query time.

It becomes obvious that a formal measure of the quality of this simulation is required.
While one may think of several possible ways of evaluating the quality of the simulation, in
our work we adopt the standard measure in this area, namely the acceleration ratio (Russell
& Zilberstein, 1991). A formal definition is provided in Section 2; informally, the accelera-
tion ratio indicates how much faster the processors in M should be in order to guarantee
a solution as good as the one of an ideal algorithm that has foreknowledge not only of the
query time t but also of the problem instance p of interest. Such an ideal algorithm would
simply utilize a single processor to run solely a contract for instance p, up to time t. In a
sense, the acceleration ratio reflects the loss in optimality due to lack of future knowledge
about the query times and the problem instance in question, and is motivated by similar
considerations to the competitive ratio in the context of the analysis of online algorithms.

In the case of one problem instance and a single processor, Russell and Zilberstein (1991)
showed that iterative doubling of contract lengths gives rise to an interruptible algorithm of
acceleration ratio at most four. Zilberstein, Charpillet, and Chassaing (2003) showed that
this is the optimal acceleration ratio, in the sense that any scheduling strategy defined over
any set of contracts has acceleration ratio at least four.

Zilberstein et al. (2003) also studied the generalization of the problem in which multiple
problem instances are considered (assuming |M | = 1), and Bernstein, Perkins, Zilberstein,
and Finkelstein (2002) studied the generalization in which contracts for a single problem
instance must be scheduled in a set of multiple processors. For both versions, algorithms of
optimal acceleration ratios were derived. The problem, in its full generality, involves a set
of processors and a set of problems, both of cardinality greater than one. Bernstein et al.

(2003) showed an upper bound of n
m(m+n

n)
m+n
m on the acceleration ratio; in addition, using

elegant techniques, they showed that this bound is optimal for a restricted, though natural
and intuitive, class of schedules that use a round robin and length-increasing strategy. Such
strategies are known as cyclic strategies. Bernstein et al. leave open the question of whether
this bound is tight among all possible schedules. In this paper we answer this question in
the affirmative.

In general, it has been observed that the theoretical analysis of geometric searches and
robot motion planning is closely linked to the scheduling of heuristics and algorithms for
problem solving. This connection was first established by Kao et al. (1996, 1998) in the

535

López-Ortiz, Angelopoulos, & Hamel

context of randomized algorithms. The work of Bernstein et al. (2003) drew a similar con-
nection between scheduling contract algorithms and robot searching on a set of rays (Alpern
& Gal, 2003). In the latter problem, p robots search for a target that is located in one of
m concurrent rays. We seek a search strategy that minimizes the competitive ratio, namely
the worst-case ratio of the search cost over the distance from the starting position to the
target.

It turns out that interesting parallels can be drawn for the two problems: informally, the
rays correspond to problem instances, the robots to processors, and the (unknown) location
of the target corresponds to the (also unknown) query time. For the general problem of
p robots and m rays López-Ortiz and Schuierer (2004) showed an optimal strategy that

achieves a competitive ratio of 1 + 2m−pp (m
m−p)

m
p . Bernstein et al. (2003) independently

derived the same bound by directly translating their approach in the context of contract
scheduling to a solution for robot searching in parallel rays. It should be noted that the
upper bounds in the work of López-Ortiz and Schuierer and Bernstein et al. are based on
exponential strategies. Informally, these are cyclic strategies where the lengths to which the
rays are searched (respectively, the lengths of contracts in the schedule) form a geometric
sequence (see Section 2 for the precise definition).

At an intuitive level, the problem of scheduling contract algorithms on multiple proces-
sors is more involved than the problem of multi-robot searching in concurrent rays. This
difficulty stems from the fact that multiple searchers on the same ray are of no benefit,
whereas multiple contract algorithms (of different lengths) on the same problem could very
well improve the performance. However, in this paper we show that the ideas behind the
solution of López-Ortiz and Schuierer (2004) can be adapted, in a non-trivial manner, so
as to show the optimality of the schedule of Bernstein et al. (2003) without any restrictions
(such as cyclicality) on the scheduling strategy.

The problem of removing the assumption of cyclicality has a long history in search-
related problems. For instance, Jaillet and Stafford (2001) argue rigorously that cyclicality
can be waived for single-searcher problems on m rays (whereas in the original work Baeza-
Yates, Culberson, & Rawlins, 1993, cyclicality is implicit). Along the same lines, López-
Ortiz and Schuierer (2004) remove cyclicality assumptions in the context of multi-searcher
problems. Similar conclusions are harder to establish concerning randomized algorithms
(for instance, see Schuierer, 2003). In a sense, cyclic strategies are simple to analyze and
provide relatively easy upper bounds; however, the difficulty lies in establishing optimality
within the space of all possible strategies.

The remainder of this paper is organized as follows. In Section 2 we present a formal
discussion of the problem setting. Our main result, namely Theorem 3, is presented in Sec-
tion 3 where we show the optimality of the exponential schedule of Bernstein et al. (2003)
without any restrictions. In Section 4 we present an average-case analysis of the accel-
eration ratio of exponential strategies in the multi-processor setting, assuming a uniform
distribution of the interruption times.

2. Preliminaries

Let P denote the set of n problem instances or simply problems. A contract c is a pair
(p, d), where p ∈ P denotes the problem instance to which c is assigned (also called the

536

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

problem tag of c) and d the duration or length of the contract, which specifies the processing
time required to complete c. We denote by M the set of m identical processors. Let C
denote a (potentially infinite) set of contracts. Define a schedule X for a set of contracts C
as a feasible assignment of all contracts in C to the set M of m processors. In particular,
X can be described as the set {(ci,mi, si) : ci ∈ C}, where mi ∈ {0, . . . ,m − 1} denotes
the processor to which ci is scheduled, and si denotes the time its processing begins. The
schedule X must be feasible, in the sense that for any two contracts ci = (pi, di), cj = (pj , dj)
in C that are assigned to the same processor by X, and such that cj is scheduled immediately
after ci, we have that si + di ≤ sj . In other words, cj does not start before ci has been
completed. Note that we assume non-preemptive schedules, in the sense that we cannot
interrupt and later resume a contract.

Observation 1 Without loss of generality we consider only schedules in which the proces-
sors are never idle, i.e., the start time of a contract is always the finish time of another
contract.

For n problem instances and m identical processors, Bernstein et al. (2003) define the
class of cyclic schedules as schedules which have the following natural properties:

1. Property 1 (Problem Round Robin) If ci = (pi, di) is the ith contract in the cyclic
schedule order, the problem instance pi is such that pi = i mod n.

2. Property 2 (Length Increasing) For all ci = (pi, di) and cj = (pj , dj) if pi = pj and
i < j, then di < dj .

3. Property 3 (Processor Round Robin) mi = i mod m for all i.

An exponential schedule is a cyclic schedule in which the lengths of contracts in the round-
robin order increase exponentially. More formally, the i-th contract in the order has length
bi for some fixed number b.

We use the acceleration ratio as the standard measure of evaluating the quality of a
schedule. Following Bernstein et al. (2003), we assume that when a contract is completed
at time t its solution is available when the interruption occurs at any time after, or including
time t. We also limit the interruptions to occur only after at least one contract for each
problem in P has completed, otherwise the problem is vacuous (this is again a canonical
assumption). Denote by lX(p, t) the length of the longest contract for problem p that has
been completed by or at time t in X (if there is no source of confusion we omit the subscript.)

Definition 1 Given a set P of n problem instances and a set M of m processors of identical
speed, the acceleration ratio of a schedule X for P , denoted by Rm,n(X) is defined as the
smallest value r, with r ≥ 1 such that for any allowable interruption time t, and any
problem p ∈ P , we have that lX(p, t) ≥ t/r. Then the acceleration ratio for P and a set M
of processors of identical speed is defined as

R∗m,n = inf
X
Rm,n(X).

A schedule X is optimal if Rm,n(X) = R∗m,n.

537

López-Ortiz, Angelopoulos, & Hamel

We argue that for a given schedule X, the acceleration ratio Rm,n(X) can be determined
by looking at a discrete subset of the timeline, instead of at all possible interruption times t.
Let ε denote an infinitesimally small positive value, and let F denote the set of finish times
of all contracts in X. Then it is easy to see that it suffices to consider interruptions that
occur only at times t − ε, for all t ∈ F . To see this, consider a certain interruption t that
does not conform with the above rule, and let t′ be the earliest time in which a contract
finishes in X such that t′−ε > t. Then for all problems p, l(p, t′−ε) = l(p, t); in other words
the algorithm has not made any progress on any problem on the time interval [t, t′−ε], thus
t/l(p, t) < (t′ − ε)/l(p, t′ − ε).

The following is essentially an alternative definition of the acceleration ratio, based on
the above observation.

Observation 2 (Bernstein et al., 2003) Let F denote the set of all finish times of con-
tracts in the schedule X. The acceleration ratio of a schedule X for P is

Rm,n(X) = sup
p,t

{
t

l(p, t)

}
= sup
p,t∈F,ε→0

{
t− ε

l(p, t− ε)

}
.

For a given interruption time t, let αp(t) denote the function t/l(p, t). In other words, the
acceleration ratio of X is simply the maximum value of αp(t), over all possible interruption
times t and all problem instances p. Figure 1 illustrates an example of a schedule for
2 problem instances and 4 processors. Note how the value of αp peaks just before each
contract is completed, for each problem instance.

Given a schedule X with associated set of contracts C, and two problem instances
p1, p2 ∈ P , let C1, C2 denote two (potentially infinite) subsets of C, such that all contracts
in C1 have problem tag p1, and all contracts in C2 have problem tag p2. Consider a new
set of contracts C ′ which is identical to C, with the exception that every contract in C1

acquires problem tag p2 instead of p1 and every contract in C2 acquires problem tag p1

instead of p2. Consider also the schedule X ′ which is otherwise identical to X (except for
the problem tag swaps described above). We say that X ′ is obtained from X by a swap for
sets C1 and C2.

Following the convention of López-Ortiz and Schuierer (2004), given two schedules X
and X ′, we say that X is contained in X ′ up to time T , denoted by X ⊆T X ′ if the two
schedules are identical up to time T . Given a sequence of schedules V = (X1, X2, . . .) we
say that V converges to a limit schedule X if for all T > 0 there exists N such that for all
m ≥ N , Xm ⊆T Xm+1. The limit schedule X is defined in the obvious way.

3. A Matching Lower Bound on the Acceleration Ratio

In this section we prove a lower bound on the acceleration ratio which applies to all sched-
ules. Before we proceed with the proof of the main result, we present the intuition behind
our approach which is illustrated in Figure 2. Given an arbitrary schedule, we implement
transformations that successively transform it into schedules complying with certain regular-
ization conditions (see Lemma 1, Lemma 2, and Theorem 1 below). These transformations
either preserve or reduce the acceleration ratio, and their purpose is to infuse a certain
amount of structure into the schedule. It is important to observe that the transformation

538

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

10

Time

6

5

4

3

2

1

987654321

Processor 3

Processor 2

Processor 1

Processor 0

(t
)

p
α

Figure 1: The top figure depicts a schedule of contracts for the case of 4 processors and
2 problems, for the first ten time units. Here, the white and hatched rectangles
correspond to executions of contracts for the two problems, respectively, with no
idle time in the schedule. The bottom figure depicts the plots of the function
αp(t) vs time for the two problems (p ∈ {1, 2}). The hatched (white) area on
top corresponds to the solid (hashed) line plot on the bottom (respectively). The
acceleration ratio is the maximum value, on the y axis, attained by either curve,
and in this example it is equal to 4.

of Theorem 1 might actually result in an object which is a non-feasible schedule, but with
a well defined acceleration ratio which is, once again, shown to be no greater than that of
the original schedule. We then lower-bound the acceleration ratio of all the obtained (i.e.,
normalized) schedules, and show that it matches the upper bound of Bernstein et al. (2003).

A similar approach in showing optimality of cyclic strategies was applied by López-Ortiz
and Schuierer (2004), in the context of parallel robot searching in concurrent rays. We need
to emphasize, however, that the series of transformations for the problem we consider in
this paper differ significantly from the ones by López-Ortiz and Schuierer. This is due to
the fact that for the ray-searching problem it is easier to argue about structural properties
of the optimal algorithm. Consider the following example. Suppose that by time t, a given
ray r has been explored up to distance d. Then an optimal algorithm (and indeed every
“reasonable” search algorithm) must be such that at any time t′ > t, if a robot explores ray
r, then it will proceed at least up to distance d from the origin (otherwise, the algorithm
gains nothing from this exploration). In contrast, in the scheduling problem we consider
in this paper, it may be the case that in a certain processor M1, a contract of length l is
scheduled with start time t and finish time t + l, whereas in a different processor M2, a
different contract for the same problem is scheduled with start time bigger than t and finish
time smaller than t + l (i.e., of length smaller than l). At first sight, the latter contract

539

López-Ortiz, Angelopoulos, & Hamel

appears to be redundant; however if l is too large, and an interruption occurs right before
t+ l, then the schedule may gain from the smaller-length contract. In fact, such schedules
are indeed possible in an optimal algorithm, as they are not ruled out by our transformation
techniques. In particular, the above example illustrates that it is difficult to give a “black-
box” transformation of the proof by López-Ortiz and Schuierer to our problem of interest
(although it would be very interesting to obtain such an explicit reduction).

(worst)

(best)

 ratio
 acceleration

Space of all schedules

Lemma 1

Lemma 2

Theorem 1

Figure 2: Illustration of the proof technique. The shaded region corresponds to artificial,
and possibly infeasible, strategies which are by-products of the proof and could
in principle have acceleration ratio strictly smaller than the optimal acceleration
ratio; however, we show that this never happens, thus the shaded region collapses
to the line of all strategies and non-strategies with acceleration ratio exactly equal
to the optimal value.

Note that we can assume, without loss of generality, that the schedule does not start a
contract that is smaller than or equal to one that has already been completed on a given
problem.

Let X be a given schedule of contracts. We will follow the convention of denoting by
lower-case d and upper-case D the lengths of a pair of consecutively completed contracts,
for a given problem p, respectively. More precisely, if (pi, di) denotes a contract of length
di for problem pi, then the earliest contract in X for pi which is completed after contract
(pi, di) finishes will be denoted by (pi, Di).

Definition 2 For a schedule X of contracts, given a contract c of length Dc we define the
acceleration ratio at Dc (that is, immediately before the completion of c in X) as r(c) =
(Tc + Dc)/dc (assuming dc 6= 0), where Tc denotes the time when a processor is to start
working on the contract (pc, Dc).

In particular, let C ′ denote the set of all contracts in the schedule, excluding the first
completed contract for each problem. Then from Observation 2,

Rm,n(X) = sup
c∈C′,ε→0

Tc +Dc − ε
dc

which converges to supc∈C′ r(c).

540

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

The following lemma establishes a quasi-cyclic property of an optimal strategy schedule.
It states that a problem with a shorter-length completed contract should generally be given
precedence over another problem with a longer completed contract; there is one possible
exception: if the smaller-length contract is passed over during a processor assignment then
the next contract in its schedule must be shorter than the one assigned to any problem that
went ahead instead.

Lemma 2 establishes another facet of the quasi-cyclicality property: a problem with
a shorter-length contract, whether favored or not in its next processor assignment, must
complete its next contract before any other problem with a longer completed contract, thus
re-establishing a quasi-cyclic property.

Lemma 1 Consider a schedule X, and suppose that at time Ti a processor is to start
working on contract (pi, Di) for which there is another problem pj with contracts (pj , dj)
and (pj , Dj) in X. Let Tj denote the time at which a processor is to start working on
contract (pj , Dj).

Given any two problems pi and pj as described above for which dj < di and Tj > Ti, then
either Dj < Di or we can define a new schedule such that Dj < Di, and whose acceleration
ratio is no worse than that of the original schedule.

Proof. Suppose X is such that dj < di and Tj > Ti, and suppose that Dj > Di. Execute
a swap of program tags for all contracts on pi that complete after (pi, di) and all contracts
on pj that complete after (pj , dj), so as to obtain a new schedule X ′ (recall the definition
of problem swapping, as given in Section 2).

Observe that all contracts before the swapping remain untouched. Likewise, contracts
for problems not involved in the swap are also unaffected. Therefore, the contribution of
the acceleration ratio for those is unchanged.

Consider now the contracts for the swapped problems once their very first swapped
contract is completed. That is, let cr for r > i be a contract for problem pi in the original
schedule. In that schedule its contribution to the acceleration ratio is (Tr+Dr)/dr. After the
swap this expression still denotes the acceleration ratio but now corresponding to problem
pj , since contracts dr and Dr are now run on problem pj , which implies that the schedule
remains unaffected by the swapping for those contracts as well.

Thus the only place where the acceleration ratio changes is right at the time of the
swapping when the previously longest completed contract (the denominator) comes from
the old schedule while the new contract about to be completed comes from the new schedule
(the numerator). We will show that the acceleration ratio of the new schedule X ′ on those
contracts is no worse than that of the original schedule.

The acceleration ratio of the original schedule at Di, Dj is

max

{
Ti +Di

di
,
Tj +Dj

dj

}
whereas the acceleration ratio of X ′ at Di, Dj is

max

{
Ti +Di

dj
,
Tj +Dj

di

}
.

541

López-Ortiz, Angelopoulos, & Hamel

Then since Tj > Ti and Dj > Di, we have that
Tj+Dj

dj
≥ Ti+Di

dj
; moreover since dj < di,

we have
Tj+Dj

dj
≥ Tj+Dj

di
. Therefore, the acceleration ratio of X is greater than or equal to

the acceleration ratio of the alternative schedule. �

Corollary 1 Given a schedule X there is a schedule X ′ of no worse acceleration ratio with
the property that for any two problems pi and pj, with dj < di in X, and Tj > Ti, it is
always the case that Dj < Di in X ′.

Proof. If X already satisfies this condition then set X ′ := X and there is nothing to show.
Otherwise we apply the process, i.e., appropriate problem swapping, as argued in the proof
of Lemma 1 in the following way: Let F = {f1, f2, . . . , } be the sorted sequence of contract
finish times for all problems in X. For a given f` define p(f`) to be the problem associated
with finishing time f` in X. Let pj = p(f`) and let dj be the length of the contract associated
with f`. Now starting with f1 and letting f` range over ` = 1, 2 . . . we check that for each
dj < di and Tj > Ti we have Dj < Di and if not, we swap the contracts as described in the
proof of Lemma 1. �

We introduce some notation that will be needed in the statement and proof of Lemma 2.
For a schedule X, let ST denote the set of all contracts completed by time T inclusive.
Also let ST be the complement of ST , namely all contracts in X − ST . Fix a contract
C0 = (p0, D0), which is scheduled to start at time T0. For any problem pj observe that
because of Lemma 1 we have Dj = min{D : (pj , D) ∈ ST0+D0}. Observe that in the context
of the above definitions, we have dj = max{d : (pj , d) ∈ ST0+D0}.

Lemma 2 Let Ci = (pi, Di) be a contract scheduled by X at time Ti and Cj = (pj , Dj) be
any contract in STi. Then there exists a schedule X ′ of no worse acceleration ratio such
that if di ≥ dj for a problem pj 6= pi then Ti +Di ≥ Tj +Dj.

Proof. If X itself satisfies the conditions then we set X ′ := X and the lemma holds.
Otherwise if this is not the case, the schedule X is such that di ≥ dj for at least one
problem pj 6= pi and Ti + Di < Tj + Dj . Consider then the swap in which all contracts
for problems pi and pj in STi+Di swap problem tags as defined in Section 2. We will argue
that the swap gives rise to a new schedule X ′ which has no worse acceleration ratio. One
can see that it suffices to look at how the acceleration ratio is affected at the points right
before Ci and Cj are completed. First, note that before the swap, the acceleration ratio at
these two points is equal to the quantity

α = max

{
Ti +Di

di
,
Tj +Dj

dj

}
and after the swap, the acceleration ratio at the same two points becomes

β = max

{
Ti +Di

dj
,
Tj +Dj

di

}
.

Since dj ≤ di and Ti +Di ≤ Tj +Dj we have β ≤ Tj+Dj

dj
and thus β ≤ α, which means that

the acceleration ratio does not worsen at those two specific points. �

542

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

As in Lemma 1 we can apply this process repeatedly, starting with dj which is the length
of the contract associated with the smallest finish time f` (with ` = 1, 2 . . .) and checking
that no larger contract length di ≥ dj is such that Ti+Di ≤ Tj+Dj . If there are one or more
such contracts, we select the Di with the smallest completion time Ti + Di and swap tags
with (pj , Dj). We then proceed to the next finishing time f`+1. This produces a schedule
in which for all contracts such that di ≥ dj (and pj 6= pi) we have that Ti +Di ≥ Tj +Dj .

Definition 3 A schedule X is said to be normalized if it satisfies the conditions of Corol-
lary 1 and Lemma 2.

Lemma 3 There exists an optimal normalized schedule.

Proof. Since Lemma 2 is stronger than Lemma 1, applying Lemma 2 cannot violate
the conditions of Lemma 1 on the pair of contracts being swapped. It is indeed possible,
however, that after the swap some other contract is now in conflict with the earliest of the
recently modified contracts. To be more precise, consider the configuration of Figure 3(a)
where in the original schedule after the next scheduled contracts after the completion of
contracts di and dj , were such that Tj+Dj was originally larger than Ti+Di. After the swap
we get new completion times T ′j +D′j := Ti +Di and T ′i +D′i := Tj +Dj . Observe, however
that the new completion time T ′i +D′i can create a new conflict with another schedule dk as
illustrated in Figure 3. It is not hard to verify that this figure represents the general case
and that no other type of conflict can be created.

dj di dk Ti +Di Tk +Dk Tj +Dj

dj di dk T ′
j +D′

j Tk +Dk T ′
i +D′

i

Figure 3: Situation before and after a single application of Lemma 2.

The key now is to observe that in the original setting the pairs 〈dj , di〉 and 〈dj , dk〉 formed
an inversion, i.e. each constituted a violation of Lemma 2. However after the application
of the lemma both inversions disappeared while a new inversion 〈di, dk〉 is created for a
net decrease of one in the number of inversions in the schedule. Hence this process must
eventually resolve all inversions involving contracts up to an index N for any fixed value of
N and this process converges to a well defined strategy. �

Theorem 1 The acceleration ratio Rm,n(X) of an optimal normalized schedule X for n
problems with m processors is at least

Rm,n(X) ≥ sup
k≥0

k+n∑
i=0

xsi

k∑
i=k−m+1

xsi

(1)

where Xs = (xs0, x
s
1, . . .) is the sorted sequence of contract lengths (in increasing order, ties

broken arbitrarily) in the schedule Xand we define xsi = 0 if i < 0.

543

López-Ortiz, Angelopoulos, & Hamel

Proof. Let X be an optimal normalized schedule. Consider a time T0 such that processor
M0 is about to begin a new contract. Since X is a normalized schedule, M0 will choose
a problem p0 in a way that satisfies the conditions of Corollary 1. Let D0 be the alloted
processing time that M0 will devote to p0 starting at time T0. Let the longest completed
contract for problem p0 at time just before T0 +D0 be d0.

Now observe that, because of Lemmas 1 and 2, every contract of length strictly smaller
than d0 must complete within the open interval (0, T0 + D0), and hence at the end of this
interval every processor is engaged in a contract of length at least d0 and every problem
has completed a contract to length at most d0 in the previous step.

The lengths of these contracts d` ≥ d0 for 0 ≤ ` ≤ n − 1 are elements in the sequence
Xs. Similarly let Mj denote a processor and denote as Ij the set of indices in Xs of all the
contracts executed on processor Mj up to time T0 +D0, not inclusively, for 0 ≤ j ≤ m− 1.
Note that d0 = xsk0 , for some k0 ≥ 0.

Furthermore, let Dj be the last completed contract on processor Mj , say for a problem
p`, such that the previous completed contract dj for p`, is less than d0. Then the acceleration
ratio for the problem p` at Dj is given by∑

i∈Ij x
s
i

xskj

according to Observation 2, for 0 ≤ j ≤ m − 1. Hence, the worst case acceleration ratio
that has occurred up to the time when all the contracts first exceeding d0 are completed is
at least

Rm,n(X) ≥ max
0≤j≤m−1

{∑
i∈Ij x

s
i

xskj

}
≥
∑m−1

j=0

∑
i∈Ij x

s
i∑m−1

j=0 xskj

. (2)

Here we make use of the fact that max {a/c, b/d} ≥ (a+b)/(c+d), for all a, b, c, d > 0. Note
that the sum A =

∑m−1
j=0

∑
i∈Ij x

s
i contains as summands all xsi that have been completed

up to time T0 +D0. In particular we know that A includes all xs` that are smaller than xsk0 ,
as Lemma 2 guarantees that any problem completed to a contract dj will complete another
contract Dj before a problem completed to a contract d0 ≥ dj before T0 + D0 and hence
the summation given at time T0 +D0 contains all xs` ’s (i.e. dj ’s) that are smaller than xsk0
(i.e. d0). In other words, every element up to xsk0 in the sorted schedule Xs appears in A.

Now observe that the other n − 1 problems p1, . . . , pn−1 must have been completed to
durations exceeding xsk0 as otherwise the current contract of length D0 would have been
assigned to that problem instead of p0. Then we have that A contains all sorted values in
Xs up to xsk0 plus at least n − 1 larger values corresponding to the finished contracts in
each of the n − 1 problems. The smallest choices for these n − 1 values together with the
D0 itself are xsk0+1, . . . , x

s
k0+n. Hence, we obtain

m−1∑
j=0

∑
i∈Ij

xsi ≥
k0+n∑
i=0

xsi . (3)

Consider now the values xkj = dj , for 1 ≤ j ≤ m−1. Recall that the value Dj is the time to
which problem pj will be completed at time T0 +D0 by processor Mj and dj is the longest

544

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

completed contract for pj just before time Tj +Dj . Then by Lemma 2 d0 is the largest time
among the di’s. The m− 1 largest di values are xsk0−m+1, . . . , x

s
k0−1 and

m−1∑
j=0

dj ≤
k0∑

i=k0−m+1

xsi . (4)

Combining (2),(3) and (4) we have

Rm,n(X) ≥
∑m−1

j=0

∑
i∈Ij x

s
i∑m−1

j=0 xskj

≥

k0+n∑
i=0

xsi

k0∑
i=k0−m+1

xsi

,

for all k0 ≥ n. �
In order to prove a lower bound on the right hand side of Inequality (1) we make use of

the results by Gal (1980) and Schuierer (2001) which we state here without proof and in a
simplified form for completeness; in particular, we follow the work of Schuierer (2001, Thm.
1)1. Define Ga = (1, a, a2, . . .) to be the geometric sequence in a and X+i = (xi, xi+1, . . .)
the suffix of sequence X starting at xi.

Theorem 2 (Schuierer, 2001) Let X = (x0, x1, . . .) be a sequence of positive numbers,
r an integer, and a = limn→∞(xn)1/n, for a ∈ R ∪ {+∞}. If Fk, k ≥ 0, is a sequence of
functionals which satisfy

1. Fk(X) only depends on x0, x1, . . . , xk+r,

2. Fk(X) is continuous, for all xi > 0, with 0 ≤ i ≤ k + r,

3. Fk(αX) = Fk(X), for all α > 0,

4. Fk(X + Y) ≤ max{Fk(X), Fk(Y)}, and

5. Fk+i(X) ≥ Fk(X+i), for all i ≥ 1,

then

sup
0≤k<∞

Fk(X) ≥ sup
0≤k<∞

Fk(Ga).

For our case, the sequence X represents the lengths of the contracts in the schedule.
The acceleration ratio at the completion of each contract forms a sequence of functionals.
The value of each functional depends only on the prefix of contracts whose start time is
before the current time. The sequence Ga represents a geometric sequence, for which we
wish to show that it describes the optimal schedule.

1. Theorem 1 as proven by Schuierer (2001) applies in a broad setting, and for the purposes of our proof it
suffices to consider only the case “p = 1”.

545

López-Ortiz, Angelopoulos, & Hamel

Proposition 1 Let Fk(X
s) be a sequence of functionals defined as follows:

Fk(X
s) =

k+n∑
i=0

xsi

/ k∑
i=k−m+1

xsi ,

then Fk(Xs) satisfies the conditions of Theorem 2.

Proof. It is straightforward to see that Fk(X
s) satisfies conditions (1)-(3). To verify

condition (4), let XT =
k+n∑
i=0

xsi , XB =
k∑

i=k−m+1

xsi and define YT and YB analogously (i.e.,

by substituting xsi with ysi). Observe that YT = YB +Q, where Q =
k−m∑
i=0

ysi +
k+n∑
i=k+1

ysi . Now,

we wish to show that Fk(X + Y) ≤ max{Fk(X), Fk(Y)} or equivalently

XT + YT
XB + YB

=
XT + YB +Q

XB + YB
≤ max

{
XT

XB
,
YT
YB

}
(5)

which follows from the previously noted inequality max {a/c, b/d} ≥ (a+ b)/(c+ d), for all
a, b, c, d > 0.

To verify Condition (5) of Theorem 2, first note that from the definition of Fk(X
s) we

have

Fk+j(X) =

∑k+n+j
i=0 xsi∑k+j

i=k−m+1+j x
s
i

while

Fk(X
+j) =

∑k+n
i=0 x

s
i+j∑k

i=k−m+1 x
s
i+j

=

∑k+n+j
i=j xsi∑k+j

i=k−m+1+j x
s
i

.

Lastly we observe that since all the terms in Xs are positive and hence

j−1∑
i=0

xsi ≥ 0 =⇒
j−1∑
i=0

xsi+

k+n+j∑
i=j

xsi ≥
k+n+j∑
i=j

xsi =⇒
∑j−1

i=0 x
s
i +

∑k+n+j
i=j xsi∑k+j

i=k−m+1+j x
s
i

≥
∑k+n+j

i=j xsi∑k+j
i=k−m+1+j x

s
i

as required. �
Therefore, combining Theorem 1, Proposition 1 and Theorem 2 we have:

Rm,n(X) ≥ sup
0≤k<∞

Fk(X
s) ≥ sup

0≤k<∞
Fk(Ga) = sup

0≤k<∞

{
k+n∑
i=0

ai
/ k∑

i=k−m+1

ai

}
.

Note that for a 6= 1, we have

k+n∑
i=0

ai

k∑
i=k−m+1

ai
= ak+n+1−1

ak+1−ak−m+1 =
an− 1

ak+1

1−a−m . Therefore, if a < 1,

we deduce that Rm,n(X) tends to infinity as k → ∞. Moreover, if a = 1, we obtain that

546

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

Rm,n(X) = k+n+1
m , which, likewise, tends to infinity as k →∞. Hence, we can assume that

a > 1 and obtain

Rm,n(X) ≥ sup
0≤k<∞

{
(ak+n+1 − 1)/(a− 1)

(ak+1 − ak−m+1)/(a− 1)

}
= sup

0≤k<∞

{
ak+n+1 − 1

ak+1 − ak−m+1

}
(a>1)

=
an

1− a−m
=

an+m

am − 1
.

The above expression is minimized for a = ((m+ n)/n)1/m, which implies that the acceler-
ation ratio of X is bounded from below by

Rm,n(X) ≥
(
m+n
n

)(m+n)/m

m+n
n − 1

=
(n
m

)(m+ n

n

)m+n
m

.

We have thus shown the following theorem:

Theorem 3 Given n problem instances and m processors, every schedule that simulates an
interruptible algorithm using executions of contract algorithms has an acceleration ratio no
less than (n

m

)(m+ n

n

)m+n
m

.

It is worth pointing out that the round-robin schedule of contract lengths 1, a, a2, ... for

a value of a = m+n
n

1
m has acceleration ratio that is precisely

(
n
m

) (
m+n
n

)m+n
m , as shown by

Bernstein et al. (2003), and thus matches our lower bound. In other words, the round robin
and length-increasing schedule proposed by Bernstein et al. is optimal among all possible
schedules whether round robin and length-increasing, or not. This is not to say that all
optimal schedules are round robin and length-increasing, in fact one can easily construct
optimal non round-robin schedules for the case when n is a multiple of m. More formally,
we obtain the following theorem.

Theorem 4 The optimal schedule for n problems and m processors that simulates an in-
terruptible algorithm using executions of contract algorithms has an acceleration ratio of(n

m

)(m+ n

n

)m+n
m

.

Theorem 4 provides a tight bound on the worst-case acceleration ratio. More precisely,
we assume that interruptions are issued by a malicious adversary, typically right before
a contract algorithm terminates its execution. In this sense, the measure is extremely
pessimistic, and reflects only the performance of a schedule in an adversarial setting. In the
next section we show how to upper-bound the average-case acceleration ratio of exponential
schedules. The issue of stochastic deadlines has been addressed by Zilberstein et al. (2003) in
the case of a single processor and n problem instances. In their setting, there is uncertainty
about both the interruption and the quality of the output of the contract algorithm. Similar
types of analysis have been applied by Kao and Littman (1997) to the ray-search problem
on two rays, assuming some probabilistic knowledge on the placement of the target.

547

López-Ortiz, Angelopoulos, & Hamel

G0

G3

b b b
b

0 1 2

3

Figure 4: Example with m = 2, n = 3. Each line corresponds to the acceleration ratio on
that problem if interrupted at time t.

4. Average-Case Analysis of Exponential Strategies

In this section we present an average-case analysis of the acceleration ratio of exponential
strategies (recall the formal definition given in Section 2). In this scenario, the interruption
occurs at a time which is not chosen adversarially, rather it is chosen uniformly at random
in the interval [0, U], for some U > 0. Likewise, the problem instance which is queried is
also chosen uniformly at random among the n problems.

A similar problem has been considered in the context of robots searching for a target on
m rays. A natural scenario is a hiker who becomes injured in the woods. The searchers must
then efficiently explore the forest trails as to find the injured person as soon as possible.
In this setting there is no reason to expect that the hiker would locate itself adversarially.
Hence while the worst case bound provides an exact upper bound on the worst possible
delay in reaching the target, the average case analysis gives a more realistic estimate of the
expected amount of time before the target is found. Kao et al. (1996) showed that on the
average the target is found nearly twice as fast as in the worst case scenario.

Here we consider the analogous setting in which the interruption time is chosen indepen-
dently at random, rather than adversarially. Hence, we expect that the randomly-chosen
interruption will most likely not coincide with interruptions that yield high values of the
acceleration ratio in the worst-case scenario.

For the remainder of this section, we consider an exponential schedule X with base b;
that is, the length of the k-th contract in the cyclic ordering is bk. Let Gk denote the finish
time of this contract. We also assume that the problems are numbered 0, . . . , n − 1; this
ordering makes the presentation easier to follow.

Before formalizing the concept of the average acceleration ratio we illustrate the intuition
using an example. Refer to Figure 4, which depicts an example with n = 3 problems
and m = 2 processors. Here, each of the three jagged line segments corresponds to the
acceleration ratio of each problem as a function of interruption time. More precisely, each
line is a plot of the function αp(t), as formally defined in Section 2. Consider for example
problem 0 as shown by the solid line in Figure 4. The first contract completed for this
problem is contract 0, of length b0, and has completion time G0. After this contract is
completed, the available processors are occupied computing contracts of length b1 and b2

548

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

for problems 1 and 2 respectively. Eventually, a processor becomes available and computes
a contract of length b3 for problem 0, which is completed at time G3. Note that the
acceleration ratio for problem 0 degrades linearly (i.e., increases) in the time interval between
G0 and G3. Similar observations can be made for the remaining linear segments of the plot,
as well as for the other two problems.

The average acceleration ratio for a specific problem is then described by the area under
its respective acceleration ratio curve, normalized by the length U of the sampled space
[0, U]. The overall average acceleration ratio is then given by the average of the individual
acceleration ratio averages for each of the n problems2. Since the acceleration ratio for
each problem is a piece-wise linear function, in order to obtain the average we compute
the integral under each line segment, and sum over all segments. To normalize, we need to
divide by the length of the interval as well as by the number n of problems.

Consider now an interruption T in the interval [Gk, Gn+k), for some index k in the cyclic
order, and let pk denote the problem that corresponds to the contract with finish time Gk.
Since the schedule is exponential, it follows that αpk(T) = T/bk. Since T is a random
variable, αpk is also a random variable. Thus, we can compute the average acceleration
ratio for problem pk within the interval [Gk, Gn+k) as

E[Gk,Gk+n)[αpk] =
1

Gk+n −Gk

∫ Gk+n

Gk

αpk(x) dx

=
1

Gk+n −Gk

∫ Gk+n

Gk

x

bk
dx

=
1

Gk+n −Gk

∫ Gk+n−Gk

0

Gk + x

bk
dx

=
1

Gk+n −Gk
·
(
Gk(Gk+n −Gk)

bk
+

(Gk+n −Gk)2

2 bk

)
=

Gk+n +Gk
2bk

.

To compute the average acceleration ratio of problem pk over the entire span [0, U] we need
to add up the area below the entire jagged line that corresponds to this problem. Observe
that the area below a single sawtooth is given by the quantity (Gk+n−Gk) ·E[Gk,Gk+n)[αpk].
This allows us to give expressions for the acceleration ratio of each one of the n problems.

2. Normally, a standard assumption is that interruptions occur after at least one contract for each problem
is completed, namely after time Gn−1. We make the simplifying assumption that interruptions can occur
earlier than Gn−1, in which case the acceleration ratio is 0. A refinement to interruptions only after
Gn−1 follows along the lines of the discussion in this section. In this case the average is over the sampled
space [Gn−1, U) and has a net zero effect on the asymptotic acceleration ratio (the extra term goes to
zero as U goes to infinity), but it results in much more complicated expressions.

549

López-Ortiz, Angelopoulos, & Hamel

In particular, the average acceleration ratio of problem 0 is given by:

E[0,U)[α0] =
1

U

br/nc∑
k=0

(
G(k+1)n−Gkn

)
E[Gkn,G(k+1)n)[α0] + (U−Gr+n)E[Gr+n,U)[α0]


=

1

U

br/nc∑
k=0

G2
(k+1)n −G

2
kn

2bkn
+
U2 −G2

r+n

2br+n

 (6)

where r is such that U ∈ [Gr+n, Gr+n+1). Note that the last term corresponds to the
truncated sawtooth in the interval [Gr+n, U].

The expression for the average acceleration ratio for problem i ∈ {1, . . . n − 1} is sim-
ilar; however, instead of endpoints at G0, Gn, G2n, . . . we need to consider the endpoints
Gi, Gn+i, G2n+i, . . .; More precisely, we obtain the expression

E[0,U)[αi] =
1

U

b
r−i
n c∑

w=0

G2
(w+1)n+i −G

2
wn+i

2bwn+i
+
U2 −G2

r+i

2br+i

 . (7)

The overall acceleration ratio α is a random variable defined as α = 1
n

∑n−1
i=0 αi. Using (6)

and (7) we obtain

E[0,U][α] =
1

n

n−1∑
i=0

E[0,U][αi]

=
1

nU

(
r∑

k=0

(Gk+n −Gk)E[Gk,Gk+n)[α0] +

n−1∑
i=1

(U −Gr+i)E[Gr+i,U][αi]

)

=
1

nU

(
r∑

k=0

G2
k+n −G2

k

2bk
+
n−1∑
i=1

U2 −G2
r+i

2br+i

)
. (8)

It is easy to compute Gk (Bernstein et al., 2003, Proof of Theorem 1). Namely,

Gk =

bk/mc∑
i=0

bmi+(k mod m) = bk mod m

bk/mc∑
i=0

bmi =
bk+m − bk mod m

bm − 1
.

For simplicity of presentation we consider only the case U = Gr+n. The more general case
is analogous, though contains slightly more complicated expressions.

E[0,Gr+n][α] =
1

nGr+n

(
r∑

k=0

G2
k+n −G2

k

2bk
+
n−1∑
i=1

G2
r+n −G2

r+i

2br+i

)

=
1/(bm − 1)

2n(br+n+m − bJr+nKm)

(
r∑

k=0

(bk+n+m − bJk+nKm)2 − (bk+m − bJkKm)2

bk

+

n−1∑
i=1

(br+n+m − bJr+nKm)2 − (br+i+m − bJr+iKm)2

br+i

)
. (9)

550

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

where JxKm denotes x mod m We now evaluate separately the two summations involved
in (9). First,

r∑
k=0

(bk+n+m − bJk+nKm)2 − (bk+m − bJkKm)2

bk
=

=
r∑

k=0

(
b2(n+m)+k − 2bn+m+Jk+nKm +

b2Jk+nKm

bk
− b2m+k + 2bm+JkKm − b2JkKm

bk

)

=

r∑
k=0

(
(b2(n+m) − b2m)bk − 2bn+m+Jk+nKm +

b2Jk+nKm

bk
+ 2bm+JkKm − b2JkKm

bk

)

≤
r∑

k=0

(
(b2(n+m) − b2m)bk + 2bn+2m +

b2m

bk
+ 2b2m +

b2m

bk

)
=

(
b2(n+m) − b2m

) br+1 − 1

b− 1
+O

(
rbn+2m

)
+O

(
b2m+1

b− 1

)
, (10)

where in the penultimate step we used that JxKm < m. Second, we get

n−1∑
i=1

(br+n+m − bJr+nKm)2 − (br+i+m − bJr+iKm)2

br+i
=

=

n−1∑
i=1

(
b2(n+m)+r − 2bn+m+Jr+nKm

bi
+
b2Jr+nKm

br+i
− b2m++i + 2bm+Jr+iKm − b2Jr+iKm

br+i

)
= b2m+r+n+1 b

n−1 − 1

b− 1
+O

(
2b2m+1(bn−1 − 1)

br(b− 1)

)
− b2m+r+1 b

n−1 − 1

b− 1
+

+ O
(
nb2m

)
+O

(
b2m+1−n(bn−1 − 1)

br(b− 1)

)
. (11)

Substituting (10) and (11) in (9) and using simple algebraic expansion and simplification
we obtain

E[0,Gr+n][α] =
(bm − 1)−1

2n(bn+m − bJr+nKm−r)

[(
b2(n+m) − b2m

) b

b− 1
+
(
b2m+n+1 − b2m+1

) bn−1 − 1

b− 1

]
+

(bm − 1)−1

2n(bn+m − bJr+nKm−r)

[
O

(
rnbn+2m · 1

br

)
+O

(
b2m+1(bn−1 − 1)

b− 1
· 1

br

)]
. (12)

Note that in (12) the O-terms tend asymptotically to 0 as r approaches infinity. Hence,
these terms have negligible impact on the acceleration ratio when the interruption occurs
far ahead in time, and in this sense they can be considered error terms. In particular, we
obtain the following simplified expression for the asymptotic acceleration ratio:

E[0,Gr+n][α]
r→∞

=
(bm − 1)−1

2nbn+m

[(
b2(n+m) − b2m

) b

b− 1
+
(
b2m+n+1 − b2m+1

) bn−1 − 1

b− 1

]
=

bm(bn − 1)(b+ 1)

2n(bm − 1)(b− 1)
.

551

López-Ortiz, Angelopoulos, & Hamel

Theorem 5 The asymptotic average acceleration ratio of an exponential schedule bi, for
i = 0, 1, . . ., with interruption chosen uniformly at random in [0, U] is bounded by

(bm+n − bm) (b+ 1)

2n (bm − 1) (b− 1)
.

Proof. Follows from the discussion above. �

Corollary 2 The asymptotic average acceleration ratio of the optimal schedule in Theorem
4 is bounded by

(m+ n)
((

m+n
n

) n
m − 1

)((
m+n
n

) 1
m + 1

)
2mn

((
m+n
n

) 1
m − 1

) .

Corollary 3 The schedule with optimal acceleration ratio has a non-optimal average accel-
eration ratio.

Proof. This can readily be verified by computing the derivative of the expression from
Theorem 5 and evaluating it around the value b∗ = ((m+n)/n)1/m used by the optimal worst
case strategy. One can then observe through algebraic manipulation that the derivative is
always negative at this point, which implies that a larger value b′ = b∗+ ε results in a lower
(i.e. better) average acceleration ratio and hence the worst-case optimal schedule is not
optimal in the average sense. �

5. Conclusion

In this paper we resolved an open question posed by Bernstein et al. (2003) concerning
the optimal acceleration ratio of a schedule of contract algorithms. This is a well-studied
problem in artificial intelligence, with several applications in the design of real-time systems.
Our main result shows that optimal schedules can be found in the class of cyclic schedules,
or, alternatively, that we cannot improve the quality of the simulation by designing more
complicated schedules. We also performed an average-case analysis of exponential schedules,
assuming a uniform distribution of the interruption times.

In more recent work, Angelopoulos, López-Ortiz, and Hamel (2008) were able to apply
similar techniques so as to design optimal schedules for interruptible algorithms at the
presence of soft deadlines. In this setting, the interruption is not a hard deadline, in the sense
that when an interruption occurs, the algorithm is allowed an additional window of time to
complete its execution (which can be seen, intuitively, as a “grace period”). The algorithm
must then report the solution to the queried problem within the additional time window.
In a different example of further work, Angelopoulos and López-Ortiz (2009) addressed
refinements of the acceleration ratio which reflect better the performance of schedules when
the number of problems is larger than the number of available processors. In both cases,
we resorted to the use of normalization techniques along the same lines as Section 3. This
provides evidence that our techniques are not tied to this specific variant of the problem,
but instead can be applicable in much wider settings.

An interesting open problem is to find tight bounds for randomized strategies, namely
schedules in which the length of contracts, as well as the processors to which the contracts

552

Optimal Scheduling of Contract Algorithms for Anytime Problem-Solving

are assigned are random variables. Note that randomization is known to be of help in the
context of the ray searching problem (Kao et al., 1996). A related (and very challeng-
ing) problem is to find schedules that achieve optimal average-case acceleration ratio. Are
exponential schedules optimal under this measure? Based on our analysis in Section 4,
we expect that an answer to this question will be fairly technical and involved. An even
more ambitious problem is to find optimal schedules assuming a certain known probability
distribution on the interruption times and problems that are queried.

Exponential schedules can be seen as an example of a doubling algorithm, in that the
lengths of contracts increase geometrically. The challenging part of this work (as in An-
gelopoulos et al., 2008; Angelopoulos & López-Ortiz, 2009) is to lower-bound the perfor-
mance of arbitrary strategies: this is accomplished by lower-bounding the supremum of a
sequence of functions by functionals over geometric sequences (Theorem 2). We believe that
similar techniques can be applied to many other optimization problems for which doubling
algorithms are known to perform well (see, e.g., the survey of Chrobak & Mathieu, 2006).
A recent example can be found in the work of Langetepe (2010), concerning the optimality
of spiral search for locating a target on the plane.

Last, but not least, while the optimal schedule presented in our work has parallels to
search strategies for the problem of searching m rays using p robots, the exact correspon-
dence remains to be shown. Such a correspondence would extend the one established by
Bernstein et al. (2003) concerning cyclic schedules and strategies.

6. Acknowledgments

A preliminary version of this paper (López-Ortiz, Angelopoulos, & Hamel, 2006) appeared in
the Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI).

References

Alpern, S., & Gal, S. (2003). The Theory of Search Games and Rendezvous. Kluwer
Academic Publishers.

Althöfer, I. (1997). A symbiosis of man and machine beats grandmaster Timoshchenko.
Journal of the International Computer Chess Association., 20 (1), 40–47.

Angelopoulos, S., & López-Ortiz, A. (2009). Interruptible algorithms for multi-problem
solving. In Proceedings of the 21st International Joint Conference on Artificial Intel-
ligence (IJCAI), pp. 380–386.

Angelopoulos, S., López-Ortiz, A., & Hamel, A. (2008). Optimal scheduling of contract
algorithms with soft deadlines. In Proceedings of the 23rd National Conference on
Artificial Intelligence (AAAI), pp. 868–873.

Baeza-Yates, R., Culberson, J., & Rawlins, G. (1993). Searching in the plane. Information
and Computation, 106, 234–252.

Bernstein, D. S., Finkelstein, L., & Zilberstein, S. (2003). Contract algorithms and robots
on rays: Unifying two scheduling problems.. In Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 1211–1217.

553

López-Ortiz, Angelopoulos, & Hamel

Bernstein, D., Perkins, T. J., Zilberstein, S., & Finkelstein, L. (2002). Scheduling con-
tract algorithms on multiple processors. In Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI), pp. 702–706.

Chrobak, M., & Mathieu, C. (2006). Competitiveness via doubling. SIGACT News, 37 (4),
115–126.

Dean, T., & Boddy, M. S. (1988). An analysis of time-dependent planning. In Proceedings
of the 7th National Conference on Artificial Intelligence, pp. 49–54.

Gal, S. (1980). Search Games. Academic Press.

Horvitz, E. (1987). Reasoning about beliefs and actions under computational resource con-
straints. In Proceedings of the Third Annual Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 301–324.

Horvitz, E. (1998). Reasoning under varying and uncertain resource constraints. In Proceed-
ings of the 7th National Conference on Artificial Intelligence (AAAI), pp. 111–116.

Jaillet, P., & Stafford, M. (2001). Online searching. Operations Research, 49, 501–515.

Kao, M.-Y., & Littman, M. L. (1997). Algorithms for informed cows. In AAAI workshop
on Online Search.

Kao, M.-Y., Ma, Y., Sipser, M., & Yin, Y. (1998). Optimal constructions of hybrid algo-
rithms. Journal of Algorithms, 29 (1), 142–164.

Kao, M.-Y., Reif, J. H., & Tate, S. R. (1996). Searching in an unknown environment: An op-
timal randomized algorithm for the cow-path problem. Information and Computation,
131 (1), 63–79.

Langetepe, E. (2010). On the optimality of spiral search. In Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA).

López-Ortiz, A., Angelopoulos, S., & Hamel, A. (2006). Optimal scheduling of contract
algorithms for anytime problems. In Proceedings of the 21st National Conference on
Artificial Intelligence (AAAI).

López-Ortiz, A., & Schuierer, S. (2004). On–line parallel heuristics, processor scheduling
and robot searching under the competitive framework. Theoretical Computer Science,
310, 527–537.

Russell, S. J., & Zilberstein, S. (1991). Composing real-time systems. In Proceedings of the
12th International Joint Conference on Artificial Intelligence (IJCAI), pp. 212–217.

Schuierer, S. (2001). Lower bounds in on-line geometric searching. Computational Geometry:
Theory and Applications, 18 (1), 37–53.

Schuierer, S. (2003). A lower bound for randomized searching on m rays. In Computer
Science in Perspective, pp. 264–277.

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine, 17 (3),
73–83.

Zilberstein, S., Charpillet, F., & Chassaing, P. (2003). Real-time problem-solving with
contract algorithms. Annals of Mathematics and Artificial Intelligence, 39 (1–2), 1–
18.

554

