
Journal of Artificial Intelligence Research 51 (2014) 707-723 Submitted 07/14; published 12/14

On Minimum Representations of Matched Formulas

Ondřej Čepek ondrej.cepek@mff.cuni.cz

Štefan Gurský stevko@mail.ru

Petr Kučera kucerap@ktiml.mff.cuni.cz

Charles University in Prague

Faculty of Mathematics and Physics

Department of Theoretical Computer Science

Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Abstract

A Boolean formula in conjunctive normal form (CNF) is called matched if the system of
sets of variables which appear in individual clauses has a system of distinct representatives.
Each matched CNF is trivially satisfiable (each clause can be satisfied by its representative
variable). Another property which is easy to see, is that the class of matched CNFs is not
closed under partial assignment of truth values to variables. This latter property leads to
a fact (proved here) that given two matched CNFs it is co-NP complete to decide whether
they are logically equivalent. The construction in this proof leads to another result: a much
shorter and simpler proof of Σp

2-completeness of Boolean minimization for matched CNFs.
The main result of this paper deals with the structure of clause minimum CNFs. We prove
here that if a Boolean function f admits a representation by a matched CNF then every
clause minimum CNF representation of f is matched.

1. Introduction

In this paper we study the class of matched formulas introduced by Franco and Van Gelder
(2003). Given a formula ϕ in conjunctive normal form (CNF) we consider its incidence
graph I(ϕ) defined as follows. I(ϕ) is a bipartite graph with one part consisting of clauses
of ϕ and the other part containing the variables of ϕ. An edge {C, x} for a clause C and
variable x is in I(ϕ) if x appears in C. It was observed by Aharoni and Linial (1986),
and Tovey (1984) that if I(ϕ) admits a matching (i.e. a set of pairwise disjoint edges) of
size m (where m is the number of clauses in ϕ), then ϕ is satisfiable. Later the formulas
satisfying this condition were called matched formulas by Franco and Van Gelder (2003).
Since a matching of maximum size in a given graph can be found in polynomial time (e.g.,
Lovász & Plummer, 1986), we can check whether a given formula is matched. Given an
arbitrary CNF ϕ we can measure how far it is from being matched by considering its
maximum deficiency δ∗(ϕ), the number of clauses which remain unmatched in a maximum
matching of I(ϕ). A formula ϕ is thus matched iff δ∗(ϕ) = 0. A weaker notion of deficiency
δ(ϕ) = m−n (where m is the number of clauses and n the number of variables in ϕ) is also
often considered.

Since their introduction, matched formulas were considered as a base class in parame-
terized algorithms for satisfiability (e.g., for an overview of parameterized algorithms theory
see Flum & Grohe, 2006). In particular, Fleischner, Kullmann, and Szeider (2002) show
that satisfiability of the formulas whose maximum deficiency is bounded by a constant

c©2014 AI Access Foundation. All rights reserved.

Čepek, Gurský, & Kučera

can be decided in polynomial time. This result was later improved by Szeider (2003) to
an algorithm for satisfiability parameterized with maximum deficiency of a formula. Pa-
rameterization based on backdoor sets with respect to matched formulas were considered
by Szeider (2007).

Several generalizations of matched formulas were considered in the literature, too. Kull-
mann (2000) generalized the class of matched formulas into the class of linearly satisfiable
formulas and Kullmann (2003) studied autarkies based on matchings. Another generaliza-
tion was considered by Szeider (2005) as classes of bi-clique satisfiable and var-satisfiable
formulas. Unfortunately, for both bi-clique and var-satisfiable formulas it is hard to check
if a formula falls into one of these classes (Szeider, 2005).

The results listed in the previous paragraphs show that matched formulas play a sig-
nificant role in the theory of satisfiability solving which is, without any doubt, one of the
most studied problems in theoretical computer science that has many practical applications.
Despite this fact, little is known about the structure of matched CNFs. We say that a CNF
ϕ representing a function f is irredundant if it is set-minimal representation of f , i.e. if for
any clause C in ϕ we have that ϕ′ = ϕ\{C} does not represent f . We say that ϕ is a prime
CNF representing f if all clauses in ϕ are prime implicates of f , where a clause C is an
implicate of f if it is satisfied by all assignments satisfying f and it is a prime implicate if it
is a set-minimal implicate of f (considering a clause as a set of literals). If we only say that
a CNF ϕ is prime without mentioning the function f in question we implicitly consider f to
be the function represented by ϕ. It is not hard to come up with examples of matched CNFs
such that some logically equivalent prime and irredundant CNFs are not matched. This
is quite an interesting phenomenon which does not occur in most classes with polynomial
time satisfiability testing such as quadratic CNFs (also 2-CNFs, i.e. CNFs consisting of
clauses with at most two literals), Horn CNFs (a CNF is Horn if every clause in it contains
at most one positive literal), and their various generalizations, for which once a CNF is
in the class, all logically equivalent prime CNFs are guaranteed to be in the class as well.
This brings an interesting question: given a (nonprime) matched CNF does there exist at
least one equivalent prime CNF which is also matched? In this paper we give an affirmative
answer to this question. This answer may seem to be quite intuitive because usually it is
enough to consider prime implicates of a function when studying its CNF representations,
however, the proof of this answer is not easy.

Another problem we study in this paper is Boolean minimization of matched CNFs.
The Boolean minimization problem (BM) can be stated as follows: given a CNF find a
logically equivalent CNF with a minimum possible number of clauses. The number of
clauses can be viewed as a number of rules or implicates in a representation of a knowledge
base and it is a standard measure used in this context. One can also consider the length
of the formula, i.e. the total number of literal occurrences in the formula, as a measure
of optimality, in this paper we use the number of clauses as a measure and we leave as
an open question whether the results in this paper could be extended to the case of the
formula length as well. The optimization version of the Boolean minimization problem can
be turned into a decision version by adding a number k and asking whether there exists a
logically equivalent CNF with at most k clauses. Umans (2001) showed that the decision
version of BM is Σp

2-complete (e.g., for related results see the review paper Umans, Villa,
& Sangiovanni-Vincentelli, 2006). Buchfuhrer and Umans (2011) later showed that BM is

708

On Minimum Representations of Matched Formulas

Σp
2-complete when considering general formulas of constant depth as the input and output

to the Boolean minimization problem.
It is also long known that BM is NP-hard already for some classes of CNFs where

SAT is solvable in polynomial time. Maybe a best known example is the class of Horn
CNFs where the NP-hardness with respect to both output measures was proved (Ausiello,
D’Atri, & Sacca, 1986; Boros & Čepek, 1994; Čepek, 1995; Hammer & Kogan, 1993; Maier,
1980). There exists a hierarchy of tractable subclasses of Horn CNFs for which there are
polynomial time minimization algorithms, namely acyclic and quasi-acyclic Horn CNFs
(Hammer & Kogan, 1995), and CQ Horn CNFs (Boros, Čepek, Kogan, & Kučera, 2009).
There are also few heuristic minimization algorithms for Horn CNFs (Boros, Čepek, &
Kogan, 1998).

The complexity of BM for matched CNFs does not fit the above picture. Despite the fact
that SAT is trivial for matched CNFs, BM for this class is Σp

2-complete, i.e. as hard as for
the general case. This fact was proved by Gurský (2011), where the proof modifies the proof
for the general case by Umans (2001). In this paper we give a much simpler proof of the
same fact which is based on an observation, that equivalence testing is co-NP-complete for
matched CNFs. We also study the structure of clause minimum CNFs. Based on the above
mentioned result concerning prime CNFs we prove that if a Boolean function f admits a
representation by a matched CNF then every clause minimum CNF representation of f is
matched. This is the main result of the current paper.

The paper is structured as follows. We start by introducing the necessary notation,
definitions and basic results in Section 2. In Section 3 we prove that testing logical equiva-
lence for matched CNFs is co-NP-complete and further use the idea from this proof to show
that BM for matched formulas is Σp

2-complete. This is a known fact, but the current proof
is much shorter and simpler. Section 4 studies prime representations of functions defined
by matched CNFs (possibly nonprime). We prove that every such function has at least
one prime representation which is matched. Finally, in Section 5 we study the structure of
clause minimum representations of functions defined by matched CNFs. Using the result
from Section 4 we prove that if a Boolean function f admits a representation by a matched
CNF then every clause minimum CNF representation of f is matched. Section 6 concludes
the paper with closing remarks.

2. Definitions and Results

We shall start with the basic definitions of the notions we need in this paper. We shall also
recall the results we shall use in this paper.

2.1 Boolean Functions

A Boolean function of n variables is a mapping f : {0, 1}n → {0, 1}. A literal is either a vari-
able (x, called positive literal) or its negation (¬x or x, called negative literal). A clause is
a disjunction of literals. We assume that no clause contains both positive and negative liter-
als of the same variable. Formula ϕ is in conjuntive normal form (CNF) if it is a conjuction
of clauses (we also say that ϕ is a CNF formula). We shall often treat a clause as a set
of its literals and a CNF formula as a set of its clauses. Thus |ϕ| will denote the number
of clauses in ϕ. It is a well known fact that every Boolean function can be represented by

709

Čepek, Gurský, & Kučera

a CNF formula (e.g., Genesereth & Nilsson, 1987). If two CNF formulas ϕ1 and ϕ2 define
the same function, we say that they are equivalent and we denote this fact with ϕ1 ≡ ϕ2.
A CNF ψ is called clause minimum if for every CNF ϕ such that ψ ≡ ϕ we have |ψ| ≤ |ϕ|.

Clause C is called an implicate of f if every assignment ~x ∈ {0, 1}n satisfying f (i.e.
f(~x) = 1) also satisfies C (i.e. C(~x) = 1). We say that a clause C1 subsumes a clause C2, if
every literal from C1 occurs also in C2 (i.e. C1 ⊆ C2). C is a prime implicate of a function
f if it is an implicate of f and there is no other implicate C ′ of f subsuming C (i.e. C
is a set-minimal implicate of f). We say that CNF formula ϕ representing function f is a
prime representation of f if it contains only prime implicates of f (if we refer to a prime
CNF ϕ without specifying a function f we consider the function which is represented by
ϕ). A CNF formula ϕ is irredundant if there is no sub-CNF ϕ′ ⊂ ϕ which represents the
same function as ϕ.

An assignment t which assigns values to only a subset of (possibly to all) variables of
a function f on n is called a partial assignment . Formally, a partial assignment can be
viewed as a mapping t : Y 7→ {0, 1} where Y is a subset of variables of f . Given a CNF ϕ,
ϕ(t) denotes the CNF after applying a partial assignment t. In particular ϕ(t) is produced
from ϕ in the following way: Clauses which contain some literal which is satisfied by t
(assigned value 1) are removed from ϕ, occurences of literals on variables from Y which are
not satisfied by t are removed from all clauses in ϕ.

2.2 Resolution

We say that two clauses have a conflict in variable x if there is a positive occurrence of
x in one clause and a negative occurrence in the other. Two clauses C1 = (C̃1 ∨ x) and

C2 = (C̃2 ∨ x) are resolvable over x if C̃1 and C̃2 do not have a conflict in any variable. We

write R(C1, C2) = C̃1 ∨ C̃2 and this disjunction is called a resolvent of the parent clauses
C1 and C2.

Let ϕ be a CNF formula representing a Boolean function f , we say that C can be derived
from ϕ by a series of resolutions if there is a sequence of clauses C1, . . . , Ck = C such that
every Ci, 1 ≤ i ≤ k, either belongs to ϕ, or Ci = R(Cj1 , Cj2), where j1, j2 < i. Such a series
of resolutions is also called a resolution proof of C from ϕ. A resolution proof of an empty
clause (denoted as ⊥) from an unsatisfiable formula is called refutation. The length of a
resolution proof is the number of clauses in the sequence.

It is a well known fact that for any Boolean function the resolvent of two implicates
is again an implicate (e.g., Büning & Lettmann, 1999). Another well known fact is that
every prime implicate of f can be derived from any CNF representation ϕ of f by a series
of resolutions (e.g., Büning & Lettmann, 1999).

We shall also use the notions of regular and tree-like resolution proofs. A resolution
proof is a tree-like resolution proof if every occurrence of a clause in the proof is used at
most once as the premise of a resolution where the only clause not used as a premise of a
resolution is the conclusion; a tree-like resolution proof can be represented as a tree, where
the leaves are labelled with input clauses, and the root of the tree with the conclusion of
the proof. The depth of a tree-like resolution proof T is then the length of a longest path
from a leaf to the root in T . A resolution proof is regular if in any path in the proof from
an input clause to the conclusion, no variable is resolved more than once.

710

On Minimum Representations of Matched Formulas

It can be observed that if ϕ is an unsatisfiable CNF, then it has a regular tree-like
refutation (Urquhart, 2011), basically we can turn any resolution derivation to a tree-like
resolution derivation by repeating clauses if necessary. Then any tree-like refutation can be
turned into a regular tree-like refutation (Tseitin, 1983; Urquhart, 1995, 2011). It can be
further observed that if C is an implicate which can be derived by a series of resolutions
from ϕ, then there is a clause C ′ ⊆ C which can be derived by a regular tree-like resolution
T satisfying that no variable from C ′ is resolved in T . Indeed, if C is an implicate of ϕ, then
let t be the partial assignment which assigns false to all literals in C. It follows that ϕ(t)
is an unsatisfiable formula, and thus it has a regular tree-like refutation T ′. If we put back
the falsified literals from C and the clauses satisfied by t, we get a resolution derivation of
a sub-CNF C ′ from ϕ. The following proposition now follows immediately.

Lemma 2.1 Let ϕ be a CNF and let C be a prime implicate of ϕ, then C can be derived
by a regular tree-like resolution from ϕ.

2.3 Exclusive Sets of Implicates of a Boolean Function

In this section we recall the definition of exclusive sets of implicates of a Boolean function
and we state some of their properties, which were shown by Boros, Čepek, Kogan, and
Kučera (2010).

Let us first introduce the following notation. By Ip(f) we shall denote the set of all
prime implicates of a function f . By I(f) we shall denote the resolution closure of Ip(f),
i.e. an implicate C of f belongs to I(f) if it can be derived by a series of resolutions from
Ip(f).

Definition 2.2 (Boros et al., 2010) Let f be a Boolean function and let X ⊆ I(f) be a
set of clauses. We shall say, that X is an exclusive set of clauses of f if for every pair of
resolvable clauses C1, C2 ∈ I(f) the following implication holds:

R(C1, C2) ∈ X =⇒ C1 ∈ X and C2 ∈ X ,

i.e. the resolvent belongs to X only if both parent clauses are in X . If the function f is
clear from the context, we shall simply say that X is an exclusive set.

We shall recall some of the properties of exclusive sets, which were proved by Boros
et al. (2010) and which we will use in this paper.

Lemma 2.3 (Boros et al., 2010) Let A,B ⊆ I(f) be exclusive sets of implicates of f , then
both A ∪ B and A ∩ B are also exclusive sets of implicates of f .

Theorem 2.4 (Boros et al., 2010) Let f be an arbitrary Boolean function, let C1, C2 ⊆ I(f)
be two distinct sets of clauses which both represent f , and let X ⊆ I(f) be an exclusive set
of clauses. Then C1 ∩ X ≡ C2 ∩ X , i.e. both represent the same function.

Based on this proposition we define an exclusive component of a Boolean function.

Definition 2.5 (Boros et al., 2010) Let f be an arbitrary Boolean function, X ⊆ I(f)
be an exclusive set of clauses of f , and C ⊆ I(f) be a set of clauses which represents f .
The Boolean function fX represented by the set C ∩ X is called the X -component of the
function f . We shall simply call a function g an exclusive component of f , if g = fX for
some exclusive subset X ⊆ I(f).

711

Čepek, Gurský, & Kučera

Theorem 2.4 guarantees that the X -component fX is well defined for every exclusive set
X ⊆ I(f). Theorem 2.4 has the following corollary.

Corollary 2.6 (Boros et al., 2010) Let C1, C2 ⊆ I(f) be two distinct sets of clauses such
that C1 ≡ C2 ≡ f , i.e. such that both sets represent f , and let X ⊆ I(f) be an exclusive set
of clauses. Then (C1 \ X) ∪ (C2 ∩ X) also represents f .

2.4 Autarkies

Autark assignments were introduced by Monien and Speckenmeyer (1985) and they are
defined as follows.

Definition 2.7 Let ψ be a CNF on the set V of variables, let Y ⊆ V be a subset of
variables, let L = {x | x ∈ Y } ∪ {x | x ∈ Y } be the corresponding set of literals, and let
t : Y 7→ {0, 1} be a partial assignment on ψ. Then t is an autarky on ψ if for every clause
C ∈ ψ either C ∩ L = ∅ or C is satisfied by t.

An autarky is a special type of partial assignment which satisfies every clause in which
it substitutes a value for some literal. We shall prove two simple lemmas about autarkies
which will be needed later in this paper. The first lemma was (in a different notation)
shown by Kullmann (2000) as Lemma 3.13, but we will give a short proof here as well to
make this paper self-contained.

Lemma 2.8 Let ψ be a CNF on the set V of variables which represents a function f . Let
Y ⊆ V be a subset of variables, and let t : Y 7→ {0, 1} be an autarky on ψ. Then t is an
autarky on I(f).

Proof : Since all clauses in I(f) can be derived from ψ by resolution, it will suffice to
show that resolution preserves the autarky properties, namely that if the parent clauses
are satisfied by t whenever they contain a literal from L = {x | x ∈ Y } ∪ {x | x ∈ Y },
then so does the resolvent. Let C,C1, C2 ∈ I(f) be clauses such that C = R(C1, C2). Let
` ∈ L be a literal in C. If ` is satisfied by t we are done, so let us asssume that ` is not
satisfied by t. Clause C inherited ` from one of its parent clauses so let us assume without
loss of generality ` ∈ C1. By the autarky property, C1 must be now satisfied by t, so it
must contain another literal `′ ∈ L satisfied by t. Now there are two possibilities: either
`′ ∈ C (clause C inherited both ` and `′ from C1) in which case C is satisfied by t and we
are done, or `′ 6∈ C which means that R(C1, C2) resolves over `′. That implies `′ ∈ C2, i.e.
C2 contains a literal from L not satisfied by t. Thus, by the autarky property, C2 must be
satisfied by t, so it must contain another literal `′′ ∈ L satisfied by t. However, in this case
C inherits `′′ from C2, which finishes the proof.

Corollary 2.9 Let ψ be a CNF on the set V of variables which represents a function f .
Let Y ⊆ V be a subset of variables, and let t : Y 7→ {0, 1} be an autarky on ψ. Let ϕ ⊆ I(f)
be an arbitrary representation of f . Then t is an autarky on ϕ.

Let us mention that Corollary 2.9 would not hold without the assumption ϕ ⊆ I(f).
Consider e.g. a CNF ψ = (x∨ y)∧ z and a CNF ϕ = (x∨ y)∧ (z ∨ y)∧ (z ∨ y). It should be
obvious that ψ ≡ ϕ, i.e. both CNFs represent the same function f , but ϕ 6∈ I(f). Now if t

712

On Minimum Representations of Matched Formulas

is an assignment which sets y to 1, t is autarky on ψ. On the other hand t is not autarky
on ϕ because (z ∨ y) is not satisfied by t.

Lemma 2.10 Let ψ be a CNF on the set V of variables, let Y ⊆ V be a subset of variables,
let L = {x | x ∈ Y }∪{x | x ∈ Y } be the corresponding set of literals, and let t : Y 7→ {0, 1}
be an autarky on ψ. Then ψ(t) represents an exclusive component fX of f defined by the
exclusive set of clauses

X = {C ∈ I(f) | C ∩ L = ∅}.

Proof : It suffices to show that X is an exclusive subset of I(f) Let C,C1, C2 ∈ I(f) be
clauses such that C = R(C1, C2) and C ∈ X . Let us assume by contradiction that one of
the parent clauses, say C1, does not belong to X , which means that there exists ` ∈ C1 ∩L.
Since ` 6∈ C, R(C1, C2) must resolve over `, which implies ` ∈ C2. However, one of `, ` is not
satisfied by t, so the corresponding clause (one of C1, C2) must contain some other literal
`′ ∈ L which is satisfied by t because t is an autarky. But now we get `′ ∈ C contradicting
the assumption C ∈ X .

Since t is an autarky on ψ it follows that ψ(t) = ψ ∩X and since ψ ≡ I(f) and X is an
exclusive set of implicates of f , it follows by Theorem 2.4 that ψ(t) = ψ ∩ X ≡ I(f) ∩ X
defines an exclusive compontent fX .

2.5 Matched Formulas

In this subsection we shall define the key concept of this paper. This concept is based on
graph properties, so to this end we shall use standard graph terminology (e.g., see Bollobás,
1998). Given an undirected graph G = (V,E), a subset of edges M ⊆ E is a matching in
G if the edges in M are pairwise disjoint. A bipartite graph G = (A,B,E) is an undirected
graph with disjoint sets of vertices A and B, and the set of edges E satisfying E ⊆ A×B.
For a set W of vertices of G, let Γ(W) denote the neighbourhood of W in G, i.e. the set of
all vertices adjacent to some element of W . We shall use the following well-known result
on matchings in bipartite graphs:

Theorem 2.11 (Hall’s Theorem – Hall, 1935; Lovász & Plummer, 1986) LetG = (A,B,E)
be a bipartite graph. A matching M of size |M | = |A| exists if and only if for every subset
S of A we have that |S| ≤ |Γ(S)|.

Now we are ready to define matched formulas.

Definition 2.12 Let ϕ = C1 ∧ . . . ∧ Cm be a CNF on n variables X = {x1, . . . , xn}. We
shall associate a bipartite graph I(ϕ) = (ϕ,X,E) with ϕ (also called the incidence graph of
ϕ), where the vertices correspond to clauses in CNF ϕ and the variables X. A clause Ci is
connected to a variable xj (i.e. {Ci, xj} ∈ E) if Ci contains xj or xj . A CNF ϕ is matched
if I(ϕ) has a matching of size m, i.e. if there is a matching which pairs each clause with a
unique variable.

Note that a matching of maximum size in a given graph can be found in polynomial
time (e.g., Lovász & Plummer, 1986) and thus we can test in polynomial time whether given
CNF is matched. The fact that a clause Ci is matched to a variable xj in a matching M
will be denoted as {Ci, xj} ∈ M . A variable which is matched to some clause in matching

713

Čepek, Gurský, & Kučera

M is called matched in M , it is free in M otherwise. Note, that a matched CNF is trivially
satisfiable. If a clause Ci is matched to variable xj , then we can simply assign xj a value
which will satisfy Ci. The name “matched” was given to these formulas by Franco and
Van Gelder (2003), although they were already considered by Aharoni and Linial (1986),
and Tovey (1984).

3. Equivalence Testing and Hardness of Clause Minimization of Matched
Formulas

Following a definition given by Čepek, Kučera, and Savický (2012) a class of CNFs X is
called tractable if it satisfies the following four properties.

• Recognition: Given an arbitrary CNF ϕ it is possible to decide in polynomial time
with respect to the size of ϕ whether ϕ ∈ X .

• Satisfiability: Given an arbitrary CNF ϕ ∈ X it is possible to decide in polynomial
time with respect to the size of ϕ whether ϕ is satisfiable.

• Partial assignment: Given an arbitrary CNF ϕ ∈ X , if ψ is produced from ϕ by fixing
some variables to 0 or 1 and substituting these values into ϕ, then ψ ∈ X .

• Prime representations: Given an arbitrary CNF ϕ ∈ X , if ϕ represents a function f
then all prime CNF representations of f belong to X .

It was shown by Čepek et al. (2012) that given two CNFs from a tractable class, it
can be tested in polynomial time, whether these two CNFs are logically equivalent or not.
The class of matched CNFs clearly satisfies the first two tractability conditions, but fails
to satisfy the remaining two. Costructing a counterexample to the third property is easy.
The CNF

(x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)

is clearly matched, but a partial assignment x← 0 creates a CNF

(y ∨ z) ∧ (y ∨ z) ∧ (y ∨ z)

that is not matched. We defer the counterexample to the fourth property to the next
section. In the light of these findings it is an interesting question what is the complexity
of equivalence testing for matched CNFs. Despite the fact that satisfiability is trivial for
matched CNFs, equivalence testing is co-NP-complete.

Matched equivalence

Instance : Two matched CNFs ϕ and ψ

Question : Is ϕ ≡ ψ?

Theorem 3.1 The problem Matched equivalence is co-NP-complete.

714

On Minimum Representations of Matched Formulas

Proof : A nondeterministic polynomial procedure checking that the two CNFs are not
equivalent simply guesses an assignment t and checks whether ϕ(t) 6= ψ(t). The problem
Matched equivalence is thus in co-NP.

To show co-NP-hardness we reduce from the problem of checking that a given CNF α
is unsatisfiable (this problem is a prominent example of a co-NP-complete problem as its
complement is the satisfiability problem, e.g., see Garey & Johnson, 1979). Let α be an
arbitrary CNF on n variables and m clauses, in particular let α = C1 ∧ C2 ∧ . . . ∧ Cm. Let
us define a clause D = (a1 ∨ a2 ∨ . . . ∨ am) on m new variables not occuring in α. Now let
us define two CNFs:

ϕ = (C1 ∨D) ∧ (C2 ∨D) ∧ . . . ∧ (Cm ∨D)

ψ = D

Both ϕ and ψ are obviously matched, since each clause C ′i = (Ci ∨D) can be matched to
a variable ai. Now we have that ϕ ≡ ψ iff α ≡ ⊥, i.e. iff α is unsatisfiable. This follows
directly from the fact that ϕ ≡ α∨D ≡ α∨ψ. We have reduced a co-NP-complete problem
of unsatisfiability to the problem Matched Equivalence and thus the problem Matched
Equivalence is co-NP-complete as well.

The fact, that equivalence testing is co-NP-hard, is probably the principal reason behind
the fact proved by Gurský (2011) that clause minimization of matched CNFs is Σp

2-complete.
The proof by Gurský (2011) basically follows the proof of Σp

2-completeness of general CNFs
presented by Umans (1999), and Buchfuhrer and Umans (2011) and is quite long and
complicated. Here we present a much shorter and simpler proof based on a similar idea as
the proof for the hardness of equivalence testing.

Matched minimization

Instance : A matched CNF ϕ and an integer k

Question : Is there a CNF ψ equivalent to ϕ with at most k clauses?

Theorem 3.2 The problem Matched minimization is Σp
2-complete.

Proof : Since Matched Minimization is a special case of Boolean minimization, and it
is known that Boolean minimization is Σp

2-complete, Matched Minimization must be in
Σp

2. To see that this problem is Σp
2-hard, we reduce the Σp

2-complete Boolean minimization
to it.

Let (α, k) be an instance of Boolean minimization where α = C1 ∧ C2 ∧ . . . ∧ Cm. Now
let us repeat the construction from the proof of Theorem 3.1. Let a1, a2, . . . , am be new
variables that do not occur in α. Let then ϕ be a matched CNF defined by α ∨ (a1 ∨ a2 ∨
. . .∨ am), that is ϕ = C ′1 ∧C ′2 ∧ . . .∧C ′m where C ′i = (Ci ∨ a1 ∨ a2 ∨ . . .∨ am) for 1 ≤ i ≤ m.
The instance of Matched minimization is now (ϕ, k).

Let (α, k) be a positive instance of Boolean minimization. Then there exists CNF
β = D1∧D2∧ . . .∧Dk′ (with k′ ≤ k) that is equivalent to α. Let ψ be a CNF equivalent to
β ∨ (a1∨a2∨ . . .∨am) that is let ψ = D′1∧D′2∧ . . .∧D′k′ where D′i = Di∨a1∨a2∨ . . .∨am

715

Čepek, Gurský, & Kučera

for 1 ≤ i ≤ k′. Clearly ψ is equivalent to ϕ and has at most k clauses. Therefore (ϕ, k) is a
positive instance of Matched minimization.

To see the other direction let (ϕ, k) be a positive instance of Matched minimization
and let ψ be a CNF equivalent to ϕ with at most k clauses. Let β be a CNF originating
from ψ by a partial assignment that sets all a-variables to zero and sets no other variable.
Since ψ is equivalent to ϕ and that is equivalent to α ∨ (a1 ∨ a2 ∨ . . . ∨ am), we have that
β is equivalent to α. Clearly |β| ≤ |ψ| ≤ k and since β is equivalent to α we conclude that
(α, k) is a positive instance of Boolean minimization.

Remark 3.3 Since all occurrences of a-variables in ϕ in the proof of Theorem 3.2 were
positive, every resolution from ϕ keeps all a-variables in every derived clause. We can assume
that ψ is prime and therefore every clause of ψ also contains all a-variables positively and
thus in fact β has the same number of clauses as ψ.

4. Prime Representations of Matched Formulas

It is not difficult to see that unlike some well-behaved classes of CNFs (such as e.g. Horn
CNFs or quadratic CNFs) for which all prime and irredundant CNFs lie inside the class,
this is not the case for matched CNFs. Consider the CNF

(a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a)

which is matched and a logically equivalent CNF

(a ∨ b) ∧ (b ∨ a) ∧ (c ∨ b) ∧ (b ∨ c)

which is not matched despite being prime and irredundant. Thus it is a legitimate question,
whether given a (nonprime) matched CNF, there exists at least one logically equivalent
prime and irredundant CNF which is also matched. In the rest of this section we will prove
an affirmative answer to this question. Let us start with a simple but useful observation.

Observation 4.1 Let ϕ = C1∧. . .∧Cm be a matched CNF and let C be a clause derived by
a regular tree-like resolution derivation T from ϕ. Let C = R(D1, D2), where D1 = (A1∨z)
and D2 = (A2 ∨ z), i.e. the resolution is over z. Let T1 denote the subtree of T rooted at
D1, and let T2 denote the subtree of T rooted at D2. If Ci ∈ ϕ, i ∈ {1, . . . ,m} is a leaf
clause in both T1 and T2, then Ci contains neither z nor z and thus it cannot be matched
to z in any matching for ϕ.

Proof : Since T is regular, the only resolution over z in T is C = R(D1, D2). Thus there
can be no z in T1 and no z in T2, since then they would be in D1 and D2 respectively as
well. Thus Ci which is in both T1 and T2 cannot contain z at all.

The following lemma will allow us to exchange one free variable with a matched variable
in any matching for a given matched CNF ϕ.

Lemma 4.2 Let ϕ = C1∧ . . .∧Cm be a matched CNF and let M be a matching for ϕ. Let
D be a clause derived by a regular tree-like resolution T from ϕ. Let x ∈ D be a variable
which is free in M , then there is a variable y ∈ D matched in M and a matching M ′ for ϕ
which satisfy the following property: If X denotes the set of variables which are matched
in M , and X ′ denotes the set of variables matched in M ′, then X ′ = (X \ {y}) ∪ {x}.

716

On Minimum Representations of Matched Formulas

Proof : We shall proceed by induction on the depth of the regular tree-like resolution
proof T of D. If D is in ϕ, then we set y to be the variable matched with D in M and

M ′ :=
(
M \

{
{D, y}

})
∪
{
{D,x}

}
.

Now let us assume that D = R(D1, D2), where D1 and D2 are either clauses in ϕ, or
they are derived by a regular tree-like resolution from ϕ. Suppose the resolution is over a
variable z and let us denote D1 = (A1 ∨ z), D2 = (A2 ∨ z). For i = 1, 2 let Ti denote the
subtree rooted at Di, Li the set of leaf clauses in Ti, ϕi the sub-CNF of ϕ formed by clauses
in Li, Mi the sub-matching of M on clauses from ϕi, and Xi the set of variables matched
in Mi.

First let us assume that variable x ∈ A1 \ A2. Let us without loss of generality assume
that x appears positively in D1 (otherwise we can switch the polarity of x in ϕ), thus
D1 = (A′1 ∨ x ∨ z), where A′1 = A1 \ {x}. Now we can use the induction hypothesis on the
subtree T1 rooted at D1, and matching M1 on ϕ1. It follows that there is a matching M ′1
on ϕ1 in which x is a matched variable and there is a variable y1 in D1 which is matched
in M1 but free in M ′1. Moreover if X ′1 denotes the set of variables matched in M ′1, then
X ′1 = (X1 \ {y1}) ∪ {x}. We can extend the matching M ′1 to the whole ϕ by adding pairs
matching clauses in L2\L1 to variables in X2\X1 as in M , let the new matching be denoted
M ′′. If y1 6= z, then y1 occurs in D and we can set M ′ = M ′′.

If y1 = z, then it is a free variable in M ′′. Let M ′′2 denote the sub-matching of M ′′ on
clauses of ϕ2. Now we can use induction hypothesis on ϕ2, its resolvent D2, and variable
y1 = z (playing role of the free variable). By this we find a matching M∗2 for ϕ2 and a
variable y in D2 such that y1 is matched in M∗2 , y is free in M∗2 while it was matched in M ′′2 .
In particular if X∗2 denotes the set of matched variables in M∗2 and X ′′2 denotes the set of
variables matched in M ′′2 , then X∗2 = (X ′′2 \ {y}) ∪ {y1}. We can now extend the matching
M∗2 to the whole formula ϕ by adding pairs matching clauses in L1 \L2 to variables X ′′1 \X ′′2
as in M ′′ (here X ′′1 denotes the set of variables matched in M ′′ to leaves of T1). In this
way we obtain the desired matching M ′. It is clear that y 6= z and thus y ∈ D. Moreover
X ′ = (X \ {y}) ∪ {x}.

Now, let us assume x ∈ A1 ∩ A2. By Observation 4.1 we have that z 6∈ X1 ∩ X2. Let
i ∈ {1, 2} be such that z 6∈ Xi. Now let us use induction hypothesis on ϕi and variable
x. We get a matching M ′i for formula ϕi which can be extended to the whole ϕ by adding
the pairs matching clauses in L3−i \ Li to variables in X3−i \ Xi as in M (the extended
matching is then the desired matching M ′). We also get a variable y which is matched in
Mi, but which is free in M ′i . Since y ∈ Xi, we get that y 6= z and thus y is in D. Clearly
X ′ = (X \ {y}) ∪ {x}.

Lemma 4.3 Let ϕ = C1 ∧ C2 ∧ . . . ∧ Cm be a matched CNF and let us assume that an
implicate D is derived by a regular tree-like resolution derivation T from ϕ in which C1 is
used, then ϕ′ = D ∧ C2 ∧ . . . ∧ Cm is a matched CNF.

Proof : The fact that C1 is used in this resolution derivation implies that C1 is a leaf
clause in T . We shall proceed by induction on the depth of T . Let M be a matching for
ϕ and let X denote the set of variables, which are matched in M . We shall preserve the
following invariant:

717

Čepek, Gurský, & Kučera

(*) If M ′ is a matching for ϕ′ constructed by the proof and X ′ denotes the matched
variables in M ′, then X ′ = X.

Let us at first assume that D = C1. Then the proposition trivially follows and invariant
(*) is satisfied. Now let us suppose that D = R(C1, Cj), where j ∈ {2, . . . ,m}. Let y be
the variable which is matched to C1 in M , i.e. {C1, y} ∈M . If y ∈ D, then we set

M ′ =
(
M \

{
{C1, y}

})
∪
{
{D, y}

}
.

If y 6∈ D, then it follows that C1 and Cj resolve over y. Let us without loss of generality
assume that y appears positively in C1 and let us denote C1 = (A1 ∨ y) and Cj = (Aj ∨ y),
hence D = A1 ∨ Aj . Then Cj is matched with another variable z ∈ Aj in M , thus we can
set

M ′ =
(
M \

{
{C1, y}, {Cj , z}

})
∪
{
{Cj , y}, {D, z}

}
.

Then M ′ is a matching for ϕ′ with X ′ = X.

Now let us assume that D = R(D1, D2) where D1 and D2 are themselves derived by
resolution derivation from ϕ, or they belong to ϕ. Suppose the resolution is over a variable
z and let us denote D1 = (A1∨z), D2 = (A2∨z). For i = 1, 2 let Ti denote the subtree of T
rooted at Di, Li the set of leaf clauses in Ti, ϕi the sub-CNF of ϕ formed by clauses in Li,
let Mi be the sub-matching of M on clauses from ϕi, and Xi the set of variables matched
in Mi.

Let us at first assume that C1 ∈ L1 ∩ L2. By Observation 4.1 we get that z 6∈ X1 ∩X2.
Let i ∈ {1, 2} be such that z /∈ Xi. Let us use the induction hypothesis on Ti and Di to
find a matching for a formula ϕ′i which is a CNF formed by clauses (Li \ {C1})∪ {Di}. By
the induction hypothesis ϕ′i is a matched formula, let M ′i be a matching constructed for ϕ′i
which satisfies invariant (*), i.e. the set of matched variables in M ′i is Xi. Let x be the
variable matched with Di in M ′i . Now since z 6∈ Xi we have that x ∈ Ai, thus x belongs
to D as well. We can now construct a matching M ′ for ϕ′ by extending M ′i with pairs
matching variables in X3−i \Xi to clauses in L3−i \ Li as in M . Moreover we replace the
pair {Di, x} with the pair {D,x}. The result M ′ is a matching for ϕ′ in which exactly the
variables in X are matched and thus M ′ satisfies invariant (*).

In the rest of the proof we shall assume that C1 ∈ L1 \ L2. We can use induction
hypothesis on T1 and D1 to find a matching M ′1 for a formula ϕ′1 which is again a CNF
formed by clauses (L1 \ {C1}) ∪ {D1}. By induction hypothesis M ′1 satisfies invariant (*)
and thus the matched variables in M ′1 are exactly the variables in set X1. Let x be the
variable to which clause D1 is matched in M ′1. Now there are two cases to consider .

1. If x ∈ A1, then we can construct a matching M ′ for the whole formula ϕ′ by extending
M ′1 with pairs matching clauses in L2 \ L1 to variables in X2 \ X1 as in M , and we
replace pair {D1, x} with pair {D,x}. Then M ′ is a matching which again matches
variables in X and thus it also satisfies invariant (*).

2. If x = z, the situation is more complicated. In this case we can observe that z ∈ X1\X2

(z 6∈ X1∩X2 by Observation 4.1, on the other hand z is matched in M1 and M ′1). Let
M ′2 be a matching for the sub-CNF ϕ2 formed by clauses in L2 which is constructed

718

On Minimum Representations of Matched Formulas

as follows. The clauses in L1 ∩ L2 are matched to the same variables as in M ′1, the
clauses in L2 \L1 are matched to the same variables as in M . Note that M ′2 formed in
this way is really a matching, in particular C1 does not belong to L2 and thus it does
not matter that it is not matched to any variable in M ′1. Moreover, if X ′2 denotes the
set of variables matched in M ′2, then each variable in X ′2 is matched to exactly one
clause. This is because M ′1 did not change anything on clauses in L2 \ L1 and it did
not match any of the variables in X2 \X1. Note, that X ′2 is not necessarily equal to
X2, because M ′1 is allowed to use variables from X1 \X2 for the clauses in L1 ∩ L2,
but we have that X = X ′2 ∪X1. We also have that z is a free variable in M ′2, that is
because z ∈ X1 \X2, thus it is not matched to any clause in L2 in M , and because z
is matched to D1 in M ′1, thus z is not matched to any clause in L1 ∩ L2 in M ′1.

Now we have the following situation: We have a formula ϕ2, we have a clause D2

which is derived by a regular tree-like resolution T2 from ϕ2. We have a matching M ′2
for ϕ2 which matches the variables in set X ′2. We have a variable z which is free in
M ′2, thus we can use Lemma 4.2 to find another matching M ′′2 for ϕ2 and a variable
y in D2 such that z is matched to some clause in M ′′2 , and y is now free in M ′′2 while
it was matched in M ′2. Moreover, if X ′′2 denotes the set of variables matched in M ′′2 ,
then X ′′2 = (X ′2 \ {z}) ∪ {y}. Necessarily z 6= y, and thus y ∈ A2. Now we are ready
to form desired matching M ′ for ϕ.

(a) A clause C from L1 \ (L2 ∪ {C1}) is matched to variable a in M ′ such that
{C, a} ∈M ′1.

(b) A clause C from L2 is matched to a variable a in M ′ such that {C, a} ∈M ′′2 .

(c) A clause D is matched to the variable y in M ′.

M ′ defined in this way is indeed a matching, in particular if C ∈ L1\(L2∪{C1}), then
the matched variable a belongs to X1 \ (X ′2 ∪ {z}), and thus a is free in both M ′2 and
M ′′2 , and it still can be used for C. Let us also observe that M ′ preserves invariant
(*), in particular if X ′ denotes the set of variables matched in M ′, then X ′ = X. Let
a be a variable from X ′, we shall show that a ∈ X as well, because |X ′| = |X|, it
follows that X ′ = X.

(a) If a is matched to a clause C ∈ L1 \(L2∪{C1}), then this is because {C, a} ∈M ′1
since by induction hypothesis invariant (*) is preserved for M ′1 we have that
a ∈ X1 and thus a ∈ X.

(b) If a is matched to a clause C ∈ L2, then this is because {C, a} ∈ M ′′2 , then
a ∈ X ′′ = (X ′2 \ {y}) ∪ {z}. We know that z ∈ X and that X ′2 ⊆ X.

(c) If a is matched to D, then a = y ∈ X ′2 ⊆ X.

Together we have that invariant (*) is satisfied for M ′.

In any case we found a matching M ′ for CNF ϕ′ which satisfies invariant (*), and the proof
is finished.

Theorem 4.4 Let ϕ be a matched CNF representing function f , then there is a prime
and irredundant representation of f which is also matched.

719

Čepek, Gurský, & Kučera

Proof : This follows from Lemma 4.3. Firstly, we can drop any redundant clauses from ϕ
without spoiling its matched property. If ϕ′ is an irredundant representation of f originated
from ϕ by dropping these redundant clauses, then we can turn it into a prime representation
by using Lemma 4.3 as follows. If ϕ′ = C1 ∧ . . . ∧ Cm, and C ′1 (C1 is a prime implicate,
then C ′1 can be derived by a resolution derivation from ϕ′. Since ϕ′ is already irredundant,
in every resolution derivation of C ′1 from ϕ′ we have to use C1. Thus by Lemma 4.3, the
formula ϕ′′ = C ′1 ∧ C2 ∧ . . . ∧ Cm is also matched. In this way we can replace every clause
in ϕ′ by a prime subimplicate. Thus we obtain a prime and irredundant representation of
f .

5. Minimum Representations of Matched Formulas

In the previous sections we have seen that for a matched CNF there may be some logically
equivalent prime and irredundant CNFs which are not matched but always at least one such
CNF is matched. In this section we shall show that a stronger statement holds for CNFs
which are not only prime and irredundant but also clause minimum. We shall prove that
if a Boolean function f admits a matched CNF representation, then every clause minimum
CNF representation of f is a matched CNF.

Theorem 5.1 Let ϕ be a matched CNF representing function f on the set of variables V
and let ψ be a clause minimum CNF representation of f . Then ψ is a matched CNF.

Proof : Due to Theorem 4.4 we may assume that ϕ is prime and irredundant and thus
ϕ ⊆ I(f). Let us assume by contradiction that ψ is not matched and that ψX ⊆ ψ is a
maximal (under inclusion) sub-CNF violating Hall’s condition (such a subset must exist
due to Theorem 2.11). Let us denote X the set of variables in the sub-CNF ψX , Y = V \X
the set of remaining variables in ψ, and ψY = ψ \ψX the remaining clauses in ψ (note that
clauses in ψY may contain variables not only from Y but also from X). Now the following
holds:

• By the violation of Hall’s condition we have |ψX | > |X|.

• By the maximality of ψX there exists a matching M of all clauses in ψY to variables
in Y , i.e. ψY is a matched CNF even if we drop all variables in X from its clauses.
This follows from the fact that every subset of ψY must satisfy Hall’s condition even
with respect to the variables in Y , since otherwise any such violating subset could be
added to ψX contradicting its maximality.

The existence of matching M implies that ψY can be satisfied using only variables from Y
(each clause can be satisfied by its matched variable). So let t : Y 7→ {0, 1} be some partial
assignment satisfying all clauses in ψY (t is not necessarily unique). Clearly, t is an autarky
on ψ as it satisfies every clause containing an assigned literal.

It follows from Lemma 2.10 that ψ(t) = ψX represents an exclusive component fX of f
defined by the exclusive set X ⊆ I(f), which contains all clauses consisting only of variables
from X. Since ϕ also represents f and we assumed ϕ ⊆ I(f), it follows from Corollary 2.9
that t is an autarky also on ϕ. Thus, similarly as for ψ(t) above, we can conclude that
ϕ(t) is a sub-CNF of ϕ which represents the exclusive component fX of f , i.e. ψ(t) ≡ ϕ(t).

720

On Minimum Representations of Matched Formulas

However, ϕ is matched, so every its sub-CNF (and in particular ϕ(t)) is matched, and thus
|ϕ(t)| ≤ |X| while |ψ(t)| = |ψX | > |X|. But now, since both ϕ(t) and ψ(t) = ψX represent
an exclusive component of f , also CNF ψ′ = (ψ \ψ(t))∪ϕ(t) represents f by Corollary 2.6.
However, we get |ψ′| < |ψ| contradicting the assumed minimality of ψ.

6. Conclusions

In this paper we study the class of matched CNFs which is an important class of formulas
in the theory of parametrized SAT algorithms. We focus on clause minimum CNF repre-
sentations of Boolean functions which can be represented by matched CNFs. The results
presented in this paper are of two types:

1. Complexity results. We show that testing logical equivalence of two matched CNFs
is co-NP-complete. Then we use a similar construction to prove that Boolean mini-
mization for matched CNFs is Σp

2-complete. This is an already known fact, but the
presented proof is much shorter and simpler than the proof by Gurský (2011). Both
results appear in Section 3.

2. Structural results. We prove that given a (non-prime) matched CNF representing
function f , there may be some prime representations of f which are not matched, but
there exists at least one prime representation of f which is matched. Furthermore we
prove that in such a case all clause minimum CNFs of f are guaranteed to be matched.
The latter result of course implies the former, however, the proof of the latter result
uses the former one. Thus both subsequently appear in the text as the main results
of Sections 4 and 5.

An interesting question for future research is whether the structural results from Sec-
tions 4 and 5 can be extended in some way from matched CNFs, i.e. CNFs with maximum
deficiency zero, to CNFs with maximum deficiency bounded by a constant (see Section 1
for the definition of maximum deficiency).

In our paper we use the number of clauses in a CNF as a measure of optimality. It is
an interesting question whether our result would hold if the total length of the formula (i.e.
the total number of literal occurrences in a formula) would be considered.

Acknowledgments

The second author gratefully acknowledges the support of the Charles University Grant
Agency (grant No. 1390213).

References

Aharoni, R., & Linial, N. (1986). Minimal non-two-colorable hypergraphs and minimal
unsatisfiable formulas. Journal of Combinatorial Theory, Series A, 43 (2), 196 – 204.

Ausiello, G., D’Atri, A., & Sacca, D. (1986). Minimal representation of directed hyper-
graphs. SIAM Journal on Computing, 15 (2), 418–431.

721

Čepek, Gurský, & Kučera

Bollobás, B. (1998). Modern Graph Theory, Vol. 184 of Graduate Texts in Mathematics.
Springer.

Boros, E., & Čepek, O. (1994). On the complexity of Horn minimization. Tech. rep. 1-94,
RUTCOR Research Report RRR, Rutgers University, New Brunswick, NJ.

Boros, E., Čepek, O., & Kogan, A. (1998). Horn minimization by iterative decomposition.
Annals of Mathematics and Artificial Intelligence, 23, 321 – 343.

Boros, E., Čepek, O., Kogan, A., & Kučera, P. (2009). A subclass of Horn CNFs optimally
compressible in polynomial time. Annals of Mathematics and Artificial Intelligence,
57, 249–291.

Boros, E., Čepek, O., Kogan, A., & Kučera, P. (2010). Exclusive and essential sets of
implicates of boolean functions. Discrete Applied Mathematics, 158 (2), 81 – 96.

Buchfuhrer, D., & Umans, C. (2011). The complexity of boolean formula minimization.
Journal of Computer and System Sciences, 77 (1), 142 – 153.

Büning, H. K., & Lettmann, T. (1999). Propositional Logic: Deduction and Algorithms.
Cambridge University Press, New York, NY, USA.

Čepek, O. (1995). Structural Properties and Minimization of Horn Boolean Functions.
Ph.D. dissertation, Rutgers University, New Brunswick, NJ, October 1995.

Čepek, O., Kučera, P., & Savický, P. (2012). Boolean functions with a simple certificate for
CNF complexity. Discrete Applied Mathematics, 160 (4-5), 365 – 382.

Fleischner, H., Kullmann, O., & Szeider, S. (2002). Polynomial-time recognition of mini-
mal unsatisfiable formulas with fixed clause-variable difference. Theoretical Computer
Science, 289 (1), 503 – 516.

Flum, J., & Grohe, M. (2006). Parameterized complexity theory, Vol. 3. Springer.

Franco, J., & Van Gelder, A. (2003). A perspective on certain polynomial-time solvable
classes of satisfiability. Discrete Appl. Math., 125 (2-3), 177–214.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, San Francisco.

Genesereth, M., & Nilsson, N. (1987). Logical Foundations of Artificial Intelligence. Morgan
Kaufmann, Los Altos, CA.

Gurský, Š. (2011). Minimization of matched formulas. In Šafránková, J., & Pavl̊u, J. (Eds.),
WDS’11 Proceedings of Contributed Papers: Part I – Mathematics and Computer
Science, pp. 101–105, Prague. Matfyzpress.

Hall, P. (1935). On representatives of subsets. Journal of The London Mathematical Society-
second Series, s1-10, 26–30.

Hammer, P., & Kogan, A. (1993). Optimal compression of propositional Horn knowledge
bases: Complexity and approximation. Artificial Intelligence, 64, 131 – 145.

Hammer, P., & Kogan, A. (1995). Quasi-acyclic propositional Horn knowledge bases: Op-
timal compression. IEEE Transactions on Knowledge and Data Engineering, 7 (5),
751 – 762.

722

On Minimum Representations of Matched Formulas

Kullmann, O. (2000). Investigations on autark assignments. Discrete Applied Mathematics,
107 (1–3), 99 – 137.

Kullmann, O. (2003). Lean clause-sets: generalizations of minimally unsatisfiable clause-
sets. Discrete Applied Mathematics, 130 (2), 209 – 249.

Lovász, L., & Plummer, M. D. (1986). Matching Theory. North-Holland.

Maier, D. (1980). Minimal covers in the relational database model. Journal of the ACM,
27, 664 – 674.

Monien, B., & Speckenmeyer, E. (1985). Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics, 10 (3), 287 – 295.

Szeider, S. (2003). Minimal unsatisfiable formulas with bounded clause-variable difference
are fixed-parameter tractable. In Warnow, T., & Zhu, B. (Eds.), Computing and
Combinatorics, Vol. 2697 of Lecture Notes in Computer Science, pp. 548–558. Springer
Berlin Heidelberg.

Szeider, S. (2005). Generalizations of matched CNF formulas. Annals of Mathematics and
Artificial Intelligence, 43 (1-4), 223–238.

Szeider, S. (2007). Matched formulas and backdoor sets. In Marques-Silva, J., & Sakallah,
K. (Eds.), Theory and Applications of Satisfiability Testing – SAT 2007, Vol. 4501 of
Lecture Notes in Computer Science, pp. 94–99. Springer Berlin Heidelberg.

Tovey, C. A. (1984). A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8 (1), 85 – 89.

Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus. In Au-
tomation of Reasoning, pp. 466–483. Springer.

Umans, C. (2001). The minimum equivalent DNF problem and shortest implicants. J.
Comput. Syst. Sci., 63 (4), 597–611.

Umans, C., Villa, T., & Sangiovanni-Vincentelli, A. L. (2006). Complexity of two-level
logic minimization. IEEE Trans. on CAD of Integrated Circuits and Systems, 25 (7),
1230–1246.

Umans, C. M. (1999). Hardness of approximating Σp
2 minimization problems. In FOCS ’99:

Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pp.
465–474, Washington, DC, USA. IEEE Computer Society.

Urquhart, A. (1995). The complexity of propositional proofs. The Bulletin of Symbolic
Logic, 1 (4), pp. 425–467.

Urquhart, A. (2011). The depth of resolution proofs. Stud. Log., 99 (1-3), 349–364.

723

