
Journal of Artificial Intelligence Research 51 (2014) 779–804 Submitted 09/14; published 12/14

Research Note
BDD Ordering Heuristics for Classical Planning

Peter Kissmann KISSMANN@CS.UNI-SAARLAND.DE

Jörg Hoffmann HOFFMANN@CS.UNI-SAARLAND.DE

Saarland University, Saarbrücken, Germany

Abstract
Symbolic search using binary decision diagrams (BDDs) can often save large amounts of mem-

ory due to its concise representation of state sets. A decisive factor for this method’s success is the
chosen variable ordering. Generally speaking, it is plausible that dependent variables should be
brought close together in order to reduce BDD sizes. In planning, variable dependencies are typi-
cally captured by means of causal graphs, and in preceding work these were taken as the basis for
finding BDD variable orderings. Starting from the observation that the two concepts of “depen-
dency” are actually quite different, we introduce a framework for assessing the strength of variable
ordering heuristics in sub-classes of planning. It turns out that, even for extremely simple planning
tasks, causal graph based variable orders may be exponentially worse than optimal.

Experimental results on a wide range of variable ordering variants corroborate our theoretical
findings. Furthermore, we show that dynamic reordering is much more effective at reducing BDD
size, but it is not cost-effective due to a prohibitive runtime overhead. We exhibit the potential of
middle-ground techniques, running dynamic reordering until simple stopping criteria hold.

1. Introduction

Finding good variable orderings is an important task in many areas of Artificial Intelligence, such as
constraint satisfaction problems (CSPs), SAT, and planning (for some heuristic search approaches,
but especially when applying symbolic search). In many cases, an efficient ordering is determined
by evaluating a graphical representation of the underlying problem. For CSPs, for example, the
constraint graph can be used to determine a variable ordering for backtracking-based approaches.
Typical approaches take the minimum width (Freuder, 1982), maximum degree, or maximum car-
dinality (Dechter & Meiri, 1989) of nodes in the constraint graph into account. An alternative
approach considers the bandwidth of the constraint graph under a given ordering, which is the max-
imal distance in that ordering of any two nodes that are adjacent in the graph; the idea is to find an
ordering that minimizes the bandwidth (Zabih, 1990).

In SAT, a widely used approach to determine the variable order in conflict-driven clause learning
(CDCL) is variable state independent decaying sum (VSIDS) (Moskewicz, Madigan, Zhao, Zhang,
& Malik, 2001). This is based on the weights of propositional variables, i.e., how often such a
variable occurs in the clauses. Recently, Rintanen (2012) noted that for applying SAT solvers to
planning tasks, a different ordering might be more efficient, giving better coverage in the typical
benchmarks of the international planning competition (IPC). This ordering takes the structure of
planning tasks into account, trying to support (sub)goals as early on as possible.

In planning, variable dependencies are typically represented by the causal graph (e.g., Knoblock,
1994; Jonsson & Bäckström, 1995; Brafman & Domshlak, 2003; Helmert, 2006), capturing variable
dependencies in terms of co-occurences in action descriptions. This kind of graph has turned out

c©2014 AI Access Foundation. All rights reserved.

KISSMANN & HOFFMANN

to be useful for a great variety of purposes, including problem decomposition (Knoblock, 1994),
system design (Williams & Nayak, 1997), complexity analysis (e.g. Jonsson & Bäckström, 1995;
Domshlak & Dinitz, 2001; Brafman & Domshlak, 2003; Katz & Domshlak, 2008; Giménez &
Jonsson, 2008; Chen & Giménez, 2010), derivation of heuristic functions (Helmert, 2004, 2006),
and search topology analysis (Hoffmann, 2011b, 2011a). For our purposes here, the causal graph’s
most relevant application is the derivation of variable orderings. That has been done for BDDs, to
which we return in detail below, as well as for merge-and-shrink heuristics (Helmert, Haslum, &
Hoffmann, 2007; Helmert, Haslum, Hoffmann, & Nissim, 2014). In merge-and-shrink, a complete
variable ordering corresponds to a (linear) merging strategy, an order in which variables are merged
into a global abstraction. In a recent extension to non-linear merging strategies (Sievers, Wehrle,
& Helmert, 2014), the order of the merges is instead given by a tree. Such a merge tree bears
some similarity to the concept of vtrees, which are used as a generalization of variable orderings for
sentential decision diagram (SDDs) (Darwiche, 2011). Fan, Müller, and Holte (2014) have shown
that efficient merge trees can be determined by means of the causal graph. To do so, they use Min-
Cuts in the causal graph, putting the two resulting sets of variables into two different branches of
the merge tree and recursively continue in the subgraphs.

In this paper, we are concerned with symbolic search based on binary decision diagrams (BDDs)
(Bryant, 1986) for optimal planning. A variable ordering here refers to the order in which variables
are queried within the BDDs, a key ingredient for the practical efficiency of the approach. In
planning, not much work has been invested into finding good variable orderings, but in model
checking, where symbolic search originated (McMillan, 1993), many different variable ordering
schemes have been proposed in the past (e.g., Malik, Wang, Brayton, & Sangiovanni-Vincentelli,
1988; Minato, Ishiura, & Yajima, 1990). Again, many of those are based on the evaluation of
a graphical representation of the problem. Often, bringing “dependent variables” close together
results in smaller BDDs. This can be straightforwardly applied to planning, by defining “variable
dependencies” via the causal graph. That is exactly how Gamer, a state-of-the-art symbolic search
planner, determines its variable ordering (Kissmann & Edelkamp, 2011).

The starting point of our investigation is a feeling of discomfort with the double use of the word
“dependency” in the above. In causal graphs, such a dependency means that the corresponding
variables appear in at least one common action, so changing the value of one variable may require
changing the other variable as well. BDDs, on the other hand, represent Boolean functions ϕ.
If many assignments to a subset P of all variables immediately determine the truth value of ϕ,
independently of the value of the other variables, then the variables in P should be grouped closely
together. In planning, ϕ typically represents a layer of states sharing the same distance to the initial
state (forward search) or the goal (backward search). So the concept of “dependence” here relates
to determining whether or not a state is a member of such a layer. What, if anything, does this have
to do with causal graph dependencies?

We do not have a conclusive answer to that question, but we contribute a number of insights
suggesting that the two concepts of dependence do not have much in common. We consider the
issue from both a theoretical and a practical perspective. On the theoretical side, we introduce a
simple formal framework for assessing the strength of variable ordering heuristics in sub-classes of
planning. Applying that framework to causal graph based variable orders, we show that these may
be exponentially worse than optimal orderings, even for extremely simple planning tasks.

On the practical side, we experiment with a wide range of variable ordering schemes, several
ones based on the causal graph, and also a range of techniques adapted from the model checking

780

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

literature. To get an idea of “how good” these ordering schemes are, on the grand scale of things,
we use an upper and a lower “delimiter”. For the latter, we use random variable orderings. Not
too surpisingly, most ordering schemes are better than random; surprisingly, not all of them are.
Indeed, Fast Downward’s “level” heuristic (Helmert, 2006) turns out to be much worse than the
average random BDD variable ordering.

As the upper delimiter, we employ dynamic reordering techniques that minimize BDD size
online, during the construction process. Compared to static up-front variable ordering schemes,
such reordering has a much better basis for taking decisions, but is much more time-consuming. It
is thus expected for the BDD size results to be much better. The extent to which that happens in our
experiments is remarkable, however: Static orderings are hardly ever even a tiny bit better, whereas
the advantage of dynamic reordering easily and frequently goes up to three orders of magnitude.

While it has been successfully employed in at least one domain in non-deterministic planning
(Cimatti, Pistore, Roveri, & Traverso, 2003), dynamic reordering usually is prohibitively slow and
not cost-effective. Still, its prowess at reducing BDD size, combined with our pessimistic outlook
on static ordering schemes, suggests that it may be the better alternative. An initial experiment
indicates that this could, indeed, be the case: With very simple adaptive stopping criteria, running
dynamic reordering only up to a certain point, we obtain better results than with any of the static
ordering schemes.

The remainder of the paper is organized as follows. Section 2 gives the necessary background
on our planning framework and the use of BDDs. Section 3 introduces our theoretical framework
and investigates the properties of causal graph based ordering schemes in a range of well-known
planning sub-classes. Section 4 presents our experiments regarding the quality of causal graph
based ordering schemes, and Section 5 presents our experiments with adaptive stopping criteria for
dynamic reordering. Section 6 concludes the paper with a brief discussion and outlook.

This research note is an extension of the authors’ previous short conference paper (Kissmann
& Hoffmann, 2013). The present paper contains comprehensive details regarding the technical
background and the variable orderings we implemented, and it includes full proofs. The experiments
with adaptive stopping criteria for dynamic reordering, Section 5, are new.

2. Background

For BDD-based planning, as argued e.g. by Edelkamp and Helmert (1999), it is important to have
a small encoding of the given planning task. So we use a finite-domain variable representation as
the basis for our investigation. A finite-domain representation (FDR) planning task is a tuple
Π = 〈V,A, I,G〉, where V is the set of state variables and each v ∈ V is associated with its
finite domain D(v). A is a finite set of actions where each a ∈ A is a pair 〈prea, eff a〉 of partial
assignments to V with prea being the precondition and eff a the effect of action a. The initial state
I is a complete assignment to V . The goal G is a partial assignment to V . By V(pa), for a partial
assignment pa, we denote the variables v ∈ V where pa(v) is defined.

An action a ∈ A is applicable in a state s iff prea ⊆ s. For the resulting successor state s′ it
holds that s′(v) = eff a(v) for all v ∈ V(eff a) and s′(v) = s(v) for all v ∈ V \ V(eff a). A plan
is a sequence of actions whose successive application starting in the initial state results in a state sg
with G ⊆ sg. A plan is optimal if no plan of shorter length exists.

Binary decision diagrams (BDDs) as introduced by Bryant (1986) represent Boolean functions
ϕ. A BDD β is a directed acyclic graph with one root and two terminal nodes, the 0-sink and the

781

KISSMANN & HOFFMANN

x1

x2x2

x3x3x3x3

0 1

(a) Full OBDD.

x1

x2

x3

0 1

(b) Reduced OBDD.

Figure 1: Example BDDs for the function ϕ = ((x1∧x2)∨¬x3). Dashed arrows denote low edges;
solid ones high edges.

1-sink. Each internal node corresponds to a binary variable p and has two successors, one following
the high edge taken if p is true and one following the low edge taken if p is false. For any assignment
to all variables the sink reached corresponds to the value of the function ϕ represented by β.

As is common in practice, here we use reduced ordered BDDs. An ordered BDD (OBDD)
is a BDD in which the ordering of the binary variables on any path is fixed. A reduced OBDD
applies two reduction rules to result in a canonical representation: (i) remove any node with identical
successor along the high and the low edge; (ii) merge nodes of the same variable that have the same
successor along the high edge and the same successor along the low edge. Figure 1 illustrates
example BDDs for the function ϕ = ((x1 ∧ x2)∨¬x3) with the ordering 〈x1, x2, x3〉. In Figure 1a
we have the full OBDD without any reduction. When considering the nodes for x3, we note that
the rightmost one can be removed due to rule (i), and the other three can be merged due to rule (ii).
Applying these rules to preceding layers as well, we end up with the reduced OBDD in Figure 1b.

We consider BDD-based planning in terms of symbolic search (McMillan, 1993) as imple-
mented in Gamer (Kissmann & Edelkamp, 2011). The finite-domain variables V of the FDR task
are encoded by replacing each v ∈ V with a binary counter γ(v) using dlog2|D(v)|e bits. For a task
representable by n bits we need 2n BDD variables in two sets, one set x representing the current
state variables, another set x′ representing the successor state variables. Each action a ∈ A is repre-
sented by a transition relation BDD, Ta(x, x′), which captures the changes due to the application
of a but also the frame, i.e., the variables that do not change:

Ta(x, x′) = prea(x) ∧ eff a(x′) ∧ frame(V \ V(eff a), x, x′)

with frame(V ′, x, x′) =
∨

v∈V ′ v(x) ↔ v(x′) modeling the frame. It is possible to create a mono-
lithic transition relation over all actions, i.e., T (x, x′) =

∨
a∈A Ta(x, x′). However, this typically

is not feasible in terms of memory. Thus, we store the transition relations of all actions separately
(Burch, Clarke, & Long, 1991).

In order to calculate the successors of a set of states S, represented in the current state variables,
we use the image function

image(S) =
∨
a∈A
∃x.(S(x) ∧ Ta(x, x′))[x′ ↔ x].

782

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

The conjunction makes sure that only applicable actions are considered, and sets the corresponding
successor state variables. The existential quantification removes the current state variables. The
operator [x′ ↔ x] stands for a swapping of the current and successor state variables, so that in the
end the successor states are again represented in the current state variables, i.e., they are the new
current states. Finally, the disjunction ensures that the successors based on all actions are calculated.
For the case of backward search, the pre-image calculating the predecessors of a set given in the
successor variables looks similar, only that the successor state variables are quantified instead of the
current state variables.

Using these two functions, symbolic breadth-first search is straightforward: Starting at the initial
state (or the set of goal states), iterate the image (or the pre-image), until a goal (or the initial state)
is reached. Storing the entire set of reached states we can ensure completeness. During search, each
layer L of states – a subset of states with identical distance to the initial state (forward search) or
the goal (backward search) – is then represented by a BDD for its characteristic function.

Based on a given variable ordering, the size of the BDD, i.e., the number of nodes needed to
represent the corresponding function, can differ exponentially, so that finding good orderings is
crucial in practice. As the size also has an influence on the runtime (e.g., the time and memory
requirements for the conjunction of two BDDs is polynomial in the product of the sizes of the two
BDDs), smaller size is important not only in terms of memory but also in terms of runtime. BDD
packages typically contain dynamic reordering algorithms, which can reduce the BDD sizes based
on the current situation. However, as previous work has argued (Kissmann & Edelkamp, 2011),
and as our experiments here reconfirm, the runtime overhead of dynamic reordering is prohibitive
in planning. The alternative is to use static variable ordering schemes instead. We define such
schemes as functions Ω mapping any planning task Π to a non-empty set Ω(Π) of variable order-
ings, i.e., orderings of the planning task’s finite-domain variables V . We use a set Ω(Π) here, as
opposed to a single ordering, because the variable ordering schemes we consider here contain am-
biguity, i.e., they impose only some constraints on the final variable ordering as opposed to fixing a
unique complete ordering.

Before the first BDD is created, the set of possible orderings is determined in a pre-processing
step, and the actual ordering 〈v1, . . . , vn〉 = o ∈ Ω(Π) is chosen arbitrarily (i.e., we do not consider
this step here). The calculated ordering is defined over the set of multi-valued variables. Thus, to
get the final BDD binary variable order we replace each finite-domain variable vi in owith its binary
counter γ(vi). This means that the BDD treats these counters like inseparable fixed blocks. (Note
that the bits of the counters are not represented at the level of the planning tasks Π, so that it is
impossible for Ω to make an informed choice for a separation of such a block.) In addition to these
blocks we store the current and successor state variables in an interleaved fashion (Burch, Clarke,
Long, McMillan, & Dill, 1994).

For any layer L and ordering o of the planning task’s finite-domain variables, the ordered BDD
is unique. We denote its size, i.e., the number of nodes, by BDDSize(o, L). By BDDSize∗(L) :=
mino BDDSize(o, L) we denote the size of the BDD for an optimal variable ordering. Finding
such an optimal ordering is NP-hard (Bryant, 1986).

The state of the art ordering scheme in symbolic planning is based on the causal graph CGΠ

of the planning task (Knoblock, 1994; Domshlak & Dinitz, 2001). CGΠ is a directed graph with
nodes V and an arc (v, v′) iff v 6= v′ and there exists an action a ∈ A such that (v, v′) ∈ V(eff a) ∪
V(prea)× V(eff a). In other words, we have an arc from v to v′ if both appear as an effect of some
action or v appears in the precondition of an action that has v′ in its effect.

783

KISSMANN & HOFFMANN

Gamer’s scheme, denoted Ωga, maps Π to the set of orderings o = 〈v1, . . . , vn〉 that minimize
the expression

∑
(vi,vj)∈CGΠ

(i − j)2. The idea is that variables vi, vj that are adjacent in the CG
are dependent and should be brought close together in the ordering by minimizing their distance
|i − j|. This bears some similarity to the minimal bandwidth variable ordering in CSPs (Zabih,
1990), though there the maximum of the distances is to be minimized, while we minimize the sum.
In practice, Gamer approximates Ωga by a limited amount of local search in the space of orderings,
as finding an optimal solution is NP-hard (Kissmann & Edelkamp, 2011). For this, it starts several
searches with a random ordering, swaps two variables and checks if the sum decreased. If it did,
the search continues with the new ordering, otherwise it will stick to the old one. In the end, the
generated ordering with the smallest sum is used. The original hope was that there is a connection
between the two notions of dependency. This was supported by the fact that the new ordering
resulted in improved coverage in the used benchmark set compared to what was used before.

Apart from Ωga, we also consider the scheme Ωcg, which is only defined for an acyclic CGΠ. It
maps Π to the set of topological orderings of the nodes in CGΠ. We consider this to be of theoretical
interest since it is the straightforward way to “trust the causal graph completely”, i.e., to take the
dependencies as derived from the causal graph and order the BDD variables accordingly.

3. What’s in a Causal Graph: Theory

As we have pointed out in the introduction, it is doubtful whether the concept of dependency in the
causal graph has any real relation with the concept of dependency relevant to BDD size. We now
frame this in terms of a classification of the guarantees offered, or rather, the guarantees not offered,
by Ωga and Ωcg in restricted classes of planning tasks.

We first introduce our theoretical framework, then outline our results for Ωcg and Ωga.

3.1 Classification Framework

We classify ordering schemes, relative to a given scalable family of planning tasks, as follows:

Definition 1 (Classification of Ordering Schemes). Let F = {Πn} be an infinite family of FDR
planning tasks parameterized by n, where the size of Πn is bounded by a polynomial in n. Let
d ∈ {forward, backward} be a search direction. A variable ordering scheme Ω is:

(i) perfect in F for d if for all Πn ∈ F , all d-layers L in Πn, and all o ∈ Ω(Πn), we have
BDDSize(o, L) = BDDSize∗(L).

(ii) safe in F for d if there exists a polynomial p s.t. for all Πn ∈ F , all d-layers L in Πn, and all
o ∈ Ω(Πn), we have BDDSize(o, L) ≤ p(BDDSize∗(L)).

(iii) viable in F for d if there exists a polynomial p s.t. for all Πn ∈ F and all d-layers L in Πn,
there exists o ∈ Ω(Πn) with BDDSize(o, L) ≤ p(BDDSize∗(L)).

In other words, a perfect Ω guarantees to deliver only optimal orderings, a safe Ω guarantees
at most polynomial overhead, and a viable Ω always delivers at least one good ordering but runs
the risk of super-polynomial overhead. If Ω is not viable, then it actively deceives the planner, in
the sense that all variable orderings suggested are super-polynomially bad in some task and layer.
Note that our interpretation of “viability” is generous in that, while at least one good ordering
must be delivered, that ordering may differ for different search directions and layers, so that the

784

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

x1 x2 x3 x4 x5

(a) Chains

x

g1 g2 g3 g4 g5

(b) Forks

x1 x2 x3 x4 x5

g

(c) Inverted Forks

G∅

Gchain

Gfork

Gifork

Gdag G∀

(d) Relations (arrows mean ⊆)

Figure 2: Causal graph special cases and their relation.

disambiguation over Ω(Πn) is left with the job of determining which ordering actually is the good
one. One could define this notion more strictly, but as our results will be negative anyhow we stick
to this optimistic version.

We extend the classification to arbitrary sub-classes C of FDR (whose sizes still are bounded
by a polynomial) by the worst case over all families F contained in C: if C contains at least one F
where Ω is not perfect, then Ω is not perfect in C; if C contains at least one F where Ω is not safe,
then Ω is not safe in C; if C contains at least one F where Ω is not viable, then Ω is not viable in C.

As we are interested in variable orderings derived from the causal graph, it is natural to consider
sub-classes of FDR characterized by their causal graphs. For a set of directed graphs G, by FDR(G)
we denote the class of FDR planning tasks whose causal graphs are elements of G. We investigate
some widely considered causal graph special cases, namely:

• Chains (Gchain), where we can find an order x1, . . . , xn of the variables so that there are only
arcs from each xi to xi+1 for 1 ≤ i ≤ n− 1 (cf. Figure 2a).

• Forks (Gfork), where we have one variable x, and a set of variables gi, with an arc from x to
each gi (cf. Figure 2b).

• Inverted forks (Gifork), where we have a set of variables xi, and one variable g, with an arc
from each xi to g (cf. Figure 2c).

• Directed acyclic graphs (DAGs, Gdag).

As simple limiting cases, we also consider causal graphs without any arcs (G∅), as well as arbitrary
causal graphs (G∀). Figure 2d illustrates the relations between the cases considered.

Bad cases are inherited in the hierarchy of Figure 2d: if G ⊆ G′, then for any ordering scheme
the classification within FDR(G′) is at least as bad as that in FDR(G), simply because the culprit
worst-case (not-perfect/not-safe/not-viable) family F of FDR planning tasks in FDR(G) will be
contained in FDR(G′) as well.

3.2 Classification Results

We start our investigation with empty causal graphs, i.e., causal graphs with no arcs:

785

KISSMANN & HOFFMANN

0 0

0 1 1 0

1 1

(a) DTG for variable x.

0 0

0 1

1 0

1 1

(b) DTG for variable y.

Figure 3: DTGs for the two variables of the planning task used in the proof of Theorem 1.

Theorem 1. For both search directions, any ordering scheme is safe in FDR(G∅). Ωga and Ωcg are
not perfect.

Proof. If the causal graph has no arcs, then all variables move independently, i.e., each action
may have only a single variable in the precondition, and the same variable in the effect. So any
forward/backward layer with distance d contains exactly the states in which the sum of individual
distances (from a variable’s initial value/to a variable’s goal value) equals d. For any variable v of
the task, the number of vertices (more precisely, of copies of its binary counter γ(v)) needed is thus
bounded by the number of possible individual-distance sums of the variables preceding v. Hence
BDD size is polynomially bounded regardless of the variable ordering.

To see that Ωga and Ωcg are not perfect, consider the following simple example. We design an
FDR task Πn that uses 2 variables x and y, each with a domain of size 4, represented by the values
00, 01, 10, and 11. For forward search, initially x = 00 and y = 00 holds. For the x variable we
have an action setting it to 01 if it is currently 00, another setting it to 10 from 00, and two setting it
to 11 from 01 or 10, respectively. For the y variable we have an action setting it to 01 if it is currently
00, another setting it from 01 to 10 and another setting it from 10 to 11. Thus, for the values of the
x variable we have distances of 0, 1, 1, and 2, respectively, from the initial value of x, and for the y
variable we have distances of 0, 1, 2, and 3, respectively, from y’s initial value. Figure 3 illustrates
the domain transition graphs (DTGs) for variables x and y. A similar task having the same distances
to the goal values can be defined for backward search.

Each variable is represented by two BDD variables, x0, x1 and y0, y1. If we keep the order
within the x and y variables fixed, we have two possible orderings: x before y or vice versa. For
a distance of 1 from the initial (or goal) state, we get the BDDs illustrated in Figure 4: Ordering
x before y results in a slightly larger BDD. Thus, Ωga and Ωcg, which correspond to all possible
orderings, are not perfect, which concludes the proof.

Even though the schemes Ωga and Ωcg do not constrain the set of possible orderings in any way,
Theorem 1 can be seen as a “good case” for the connection of causal graphs and BDD orderings:
Empty causal graphs entail that any ordering is safe. The connection doesn’t seem to carry any
further than this trivial case, though: In all other sub-classes considered, the space of BDD orderings
contains exponentially bad ones. Indeed, that is true not only for the set of all BDD orderings, but

786

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

x0

x1 x1

y0 y0

y1 y1

0 1

(a) x before y.

y0

y1

x0 x0

x1 x1

0 1

(b) y before x.

Figure 4: BDDs showing that not all orderings are perfect in the proof of Theorem 1. Solid arrows
represent high edges, dashed ones low edges.

x1

x2

x3

y1

y2

y3

0 1

(a) Good variable ordering: 〈x1, y1, x2, y2, x3, y3〉

x1

x2x2

x3x3x3x3

y1y1y1y1

y2y2

y3

0 1

(b) Bad variable ordering: 〈x1, x2, x3, y1, y2, y3〉

Figure 5: BDDs with different variable orderings for Q(∨,∧) with n = 3: (x1 ∧ y1) ∨ (x2 ∧ y2) ∨
(x3 ∧ y3). Solid arrows denote high edges, dashed ones low edges.

also for the subsets delivered by Ωga and Ωcg. The classification of these schemes is very bad in
almost all considered cases, with a little bit of hope only for chain causal graphs.

Our negative results employ Boolean functions in quadratic form. These have the variables
{x1, y1, . . . , xn, yn}, and take the form (x1op

lowy1)ophi . . . ophi(xnop
lowyn), where either ophi ∈

{∨,⊕} and oplow = ∧, or vice versa. We denote these functions by Q(ophi, oplow). For each of
these functions, the ordering 〈x1, y1, . . . , xn, yn〉 (i.e., bringing pairs of xi and yi together) yields a
BDD whose size is polynomial in n, while the ordering 〈x1, . . . , xn, y1, . . . , yn〉 (i.e., splitting the
variables in two blocks, one with all x and one with all y variables) yields a BDD of exponential
size. (Wegener, 2000, proves this for Q(∨,∧) as depicted in Figure 5; similar arguments apply for
the other quadratic forms.)

787

KISSMANN & HOFFMANN

g

x1

x2

x3

y1

y2

y3

0 1

(a) g at the front.

ggg

x1

x2

x3

y1

y2

y3

0 1

(b) g within a pair.

Figure 6: BDDs representing ¬g ∧Q(∨,∧) with different positions of the g variable. Solid arrows
represent high edges, dashed ones low edges.

Theorem 2. For both search directions, Ωga and Ωcg are not safe in FDR(Gifork).

Proof. To prove the claim for backward search, consider the function Q(∨,∧) =
∨n

i=1(xi ∧ yi).
We design an FDR task Πn that uses 2n+ 1 Boolean variables, {g, x1, y1, . . . , xn, yn} including an
additional variable g that the goal requires to be true. There are n actions achieving g, each of which
requires a pair (xi ∧ yi) to be true as the precondition. Clearly, Πn ∈ FDR(Gifork). The backward
layer with a distance of 1 from the goal is characterized by ¬g ∧

∨n
i=1(xi ∧ yi).

An optimal ordering for Q(∨,∧) consists of pairs of (xi, yi) or (yi, xi). Adding the g variable,
an optimal ordering places it either at the front (as depicted in Figure 6a) or at the end. These cases
require exactly one node representing the g variable. Placing the g variable anywhere else requires
as many nodes representing g as there are nodes (different from the 0-sink) reached by edges passing
through that layer. In this case, there are two g nodes if g is placed between two pairs, and up to
three nodes if it is placed between two nodes constituting a pair (see Figure 6b for the latter case).

Any ordering following Ωga(Πn) places g in the middle and the x and y variables in an arbitrary
order around it. Any ordering following Ωcg(Πn) places g at the end and the x and y variables in an
arbitrary order before it. In both cases, all x variables may be placed before all y variables, resulting
in an exponential overhead which concludes the proof for backward search.

For forward search, we consider the same function Q(∨,∧), and construct Πn, which has the
same variables {g, x1, y1, . . . , xn, yn} but where the domains of {x1, y1, . . . , xn, yn} are ternary:
unknown, true (>), or false (⊥). All x and y variables are initially unknown, and can be set to either
true or false if they are currently unknown. There are n actions achieving g, exactly as above. Then
in the states with initial state distance 2n + 1 all x and y variables are either true or false and the
states are exactly those that satisfy g ∧ Q(∨,∧) = g ∧

∨n
i=1(xi = >) ∧ (yi = >). As the causal

788

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

d1

x1 dx1 dy1 y1

d2

dx2 dy2x2
y2

d3

dn

dxn dynxn yn

dn+1

Figure 7: DTG for variable z used in the proof of Theorem 3. The dashed edges correspond to
preconditions for changes in the value of the corresponding variable.

graph remains unchanged, the set of possible orderings following Ωga(Πn) and Ωcg(Πn) remains
the same as in backward search as well, so that again some orders result in exponential overhead
which concludes the proof for forward search.

Note that, while the proof construction shows that some orders possible in Ωga and Ωcg are
super-polynomially bad, other possible orders are good. Hence, while as claimed we prove that Ωga

and Ωcg are not safe in FDR(Gifork), it might be the case that Ωga and Ωcg are viable in FDR(Gifork).
We leave this as an open question.

Theorem 3. For both search directions, Ωga and Ωcg are not safe in FDR(Gfork).

Proof. For both search directions, we use the same functionQ(∧,⊕) =
∧n

i=1(xi⊕yi), and the same
FDR task Πn with Boolean variables {x1, y1, . . . , xn, yn} plus an additional variable z with domain
{d1, dx1, dy1, d2, dx2, dy2, . . . , dn, dxn, dyn, dn+1}. The actions are such that, for 1 ≤ i ≤ n,
z can move from di to either dxi or dyi, and from each of these to di+1 (see Figure 7). An action
preconditioned on dxi achieves xi, an action preconditioned on dyi achieves yi. Initially, z = d1

and all xi, yi are false. The goal requires that z = dn+1 and all xi, yi are true. In forward search, the
states with initial state distance 3n are exactly those where z = dn+1 and Q(∧,⊕) is true, and in
backward search the states with goal state distance 3n are exactly those where z = d1 and Q(∧,⊕)
is true.

Any ordering following Ωga(Πn) places z in the middle and the x and y variables arbitrarily
around it; any ordering following Ωcg(Πn) places z at the beginning and the x and y variables
arbitrarily after it. Thus, there is no constraint on the variables {x1, y1, . . . , xn, yn}, so that placing

789

KISSMANN & HOFFMANN

x1 y1x2 y2x3 y3

g

Figure 8: Causal graph for the planning task used in the proof of Theorem 4.

all x variables before all y variables is an ordering compatible with both schemes, and results in
exponential overhead.

Again, the proof shows that Ωga and Ωcg are not safe, but makes no statement regarding viability.
Note also that the task in the proof construction is unsolvable. It is easy to modify the task to be
solvable without breaking the proof argument for the forward search direction. We did not investi-
gate whether the same is true of the backward search direction as well. In practice, while proving
unsolvability has not traditionally been a popular objective in planning, state space exhaustion is
one of the traditional purposes BDDs are deemed to be good for.

For DAG causal graphs, we prove that there are cases where all orderings admitted by Ωga and
Ωcg are super-polynomially bad:

Theorem 4. For both search directions, Ωga and Ωcg are not viable in FDR(Gdag).

Proof. For the backward search claim, we use the combination of a chain causal graph and an
inverted fork as illustrated in Figure 8. We design an FDR task Πn that uses 2n + 1 Boolean
variables, {g, x1, y1, . . . , xn, yn}, including a variable g that the goal requires to be true. There are
n actions achieving g, each of which requires a pair (xi ∧ yi) to be true as the precondition (this
part of the task is the same as in the proof of Theorem 2). We add actions ensuring that in our two
schemes all x variables will be placed before all y variables (or vice versa). One action has an empty
precondition and sets x1 to true in its effect, another one requires xn to be true in the precondition
and sets y1 to true in its effect, the rest have xi−1 (or yi−1) in the precondition and set xi (or yi) to
true in the effect. All states with a goal distance of 1 are thus characterized by ¬g ∧Q(∨,∧).

Any order induced by Ωga places g in the middle, and either places all x variables in increasing
order before g and all y variables in increasing order after g, or places all y variables in decreasing
order before g and all x variables in decreasing order after g. Ωcg induces an order starting with
all x variables in increasing order, followed by all y variables in increasing order, followed by g.
Thus, in all cases, the x variables are placed separately from the y variables, resulting in exponential
overhead which proves the claim for the backward search direction.

For forward search we use the same approach as in the proof of Theorem 2, namely to extend
the domain of all x and y variables to {true (>), false (⊥), unknown}. All x and y variables are
initialized to the value unknown. There are n actions setting g to true, all requiring a pair of (xi∧yi)
to be true. The additional actions are as follows. Two require x1 to be unknown and set it to true
or false, respectively. Two require xn to be true and y1 to be unknown and set y1 to true or false,
respectively. Two require xn to be false and y1 to be unknown and set y1 to true or false, respectively.
In the same manner we have four actions for each xi and yi (2 ≤ i ≤ n), requiring xi−1 (yi−1) to be
true respectively false, and requiring xi (yi) to be unknown, and setting xi (yi) to true respectively
false. Thus, all states with an initial state distance of 2n + 1 can be characterized by the function
g ∧Q(∨,∧) = g ∧

∨n
i=1(xi = >) ∧ (yi = >). The variable orders induced by Ωga and Ωcg are the

same as in backward search, resulting in exponential overhead, concluding the proof.

790

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

x1 y1 x2 y2 x3 y3

Figure 9: Causal graph for the planning task used in the proof of Theorem 5.

x1

y1y1

x2

y2y2 y2

x3

y3 y3

0 1

(a) Optimal ordering

x1

x2x2

x3x3x3x3

y1y1y1y1y1y1y1

y2y2y2y2

y3y3

0 1

(b) Exponential ordering

Figure 10: BDDs representing
⊕3

i=1 yi ∧
∨3

i=1(xi ∧ yi), as used in the proof of Theorem 5. Solid
arrows represent high edges, dashed ones low edges.

From this we immediately get (recall that Ωcg is defined only for acyclic causal graphs):

Corollary 1. Ωga is not viable in FDR(G∀).

We close our investigation with a somewhat positive result for chain causal graphs:

Theorem 5. For both search directions, Ωga and Ωcg are not perfect in FDR(Gchain). There exists
an ordering scheme that is not viable in FDR(Gchain).

Proof. The first part of the claim is inherited from FDR(G∅), i.e., as a corollary of Theorem 1.
For the second part of the claim, existence of a non-viable ordering scheme, we consider first

the backward search direction, using the function Q(∨,∧) =
∨n

i=1(xi ∧ yi). We design an FDR
task Πn that uses 2n Boolean variables, {x1, y1, . . . , xn, yn}. The goal requires all y variables to be
false. We have an action without precondition to set x1 to true, actions with preconditions requiring
yi−1 to be false setting xi to true, and actions preconditioned on xi being true setting yi to false.
The causal graph is depicted in Figure 9. Clearly, Πn ∈ FDR(Gchain).

The states with distance 1 from the goal are the ones where all except one yi are false, and for
the single true yi we have xi true as well. This is characterized by the formula

⊕n
i=1 yi∧Q(∨,∧) =⊕n

i=1 yi ∧
∨n

i=1(xi ∧ yi). It is easy to see that the exclusive or part of this formula does not change
the relevant properties of BDDs for the quadratic form, i.e., we still have orderings with polynomial
and other orderings with exponential number of nodes, e.g., those placing all x variables before all y

791

KISSMANN & HOFFMANN

G∅

trivially
safe

Gchain
safe?

Gfork
not safe

Gifork
not safe

Gdag

not
viable

G∀

not
viable

Figure 11: Overview of our classification results. These hold for each of Ωga and Ωcg, and for each search
direction.

variables (see Figure 10 for illustration). Any ordering scheme including only such latter orderings
is not viable.

For the forward search direction case, we construct a planning task where all x and y variables
are ternary (unknown, true (>), false (⊥)), and are unknown initially. The value of x1 can be set
freely; yi can be set to true or false if xi is true, and can only be set to true if xi is false; xi+1

can be set freely once yi has been set to either true or false. In 2n steps, we can reach exactly the
states characterized by Q(∧,∨) =

∧n
i=1(xi = >) ∨ (yi = >). A BDD representing Q(∧,∨) is of

exponential size if, e.g., all x variables are placed before all y variables, and any ordering scheme
including only such orderings is not viable.

Note that, for both planning task families {Πn} just described, both Ωga and Ωcg and force the
xi and yi variable to be ordered in pairs, resulting in BDDs of minimal size (see Figure 10a). In that
sense, these two planning task families constitute our only truly positive result: Within them, the
ordering information in the causal graph keeps us from making exponentially bad mistakes. That
positive message would be much stronger if Ωga and Ωcg were safe for all families of tasks with
chain causal graphs. It remains an open question whether that is so.

Figure 11 gives an overview of our results. The evidence speaks rather clearly against a strong
connection between causal graph dependencies and dependencies as relevant for BDD size. Note
that the causal graph underlying Theorem 4 – non-viability for FDR(Gdag) – has a very simple
form combining a chain with an inverted fork, and that Theorem 2 – non-safety for FDR(Gifork) –
relies on planning tasks which fall into a known syntactically identified tractable class for optimal
planning (Katz & Domshlak, 2010). Note also that being “not safe” already is quite bad in practice,
incurring an exponential risk unless we have a clever way of choosing an ordering within Ω(Π)
(which, at the moment, we do not have).

4. What’s in a Causal Graph: Practice

While we have shown poor worst-case performance of causal graph based variable ordering schemes
in theory, practice might be another matter. To assess the latter, we implemented a comprehensive
set of causal graph based variable ordering schemes, comprising 12 such schemes in total, and ran
them in comparison to practical “good”/“bad” delimiters. As the “bad” delimiter, we used random
orderings. As the “good” delimiter, we used the off-the-shelf dynamic reordering algorithm of
Gamer’s BDD package CUDD, which is based on sifting (Rudell, 1993).

A few words are in order regarding how sifting works. The variable with the greatest number
of nodes in the current BDD is chosen. It is first moved towards the end of the ordering, then

792

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

towards the beginning of the ordering, by iteratively swapping its position with the next variable in
the corresponding direction. Once all positions have been tried, the variable is moved to the position
where the BDD size was smallest. This done, the next variable is chosen, until all variables have
been processed. For better comparability with our ordering schemes, we restrict the algorithm to
keep the variables representing each γ(v) together.

As previously indicated, dynamic reordering consumes too much runtime to be cost-effective.
In the present experiments, where we are interested only in BDD size, we give dynamic reorder-
ing ample runtime. In Section 5, we will identify simple adaptive criteria for stopping dynamic
reordering automatically during the search, taking advantage of its size reduction capacity without
suffering too much from its runtime consumption.

We ran the benchmarks of the 2011 International Planning Competition (IPC’11), and we used
Gamer as the base implementation for all planners, running them on one core of an Intel Xeon
X5690 CPU with 3.47 GHz. Unless otherwise stated, we used the IPC’11 settings, namely a timeout
of 30 minutes and a memory limit of 6 GB.

4.1 Ordering Schemes

We ran six schemes based directly on the causal graph:

Gamer is Gamer’s original ordering scheme, which approximates Ωga.

GamerPre is like Gamer but on a causal graph extended by arcs between pairs of precondition
variables. The idea here is to capture not only dependency for forward search, but also for
backward search, i.e., when inverting the actions.

WGamer is like Gamer but with arcs weighted by the number of relevant actions, i.e., the number
of actions inducing the corresponding arcs.

WGamerPre is like GamerPre with weighted arcs.

CGLevel is Fast Downward’s (Helmert, 2006) level heuristic, which approximates Ωcg. It orders
the variables by strongly connected components and, within these components, considers the
weighted causal graph and orders variables with smallest incoming weight first. Similar to
WGamer, the weights correspond to the number of actions that induce an arc.

CGSons is another approximation of Ωcg. It always selects a variable v all of whose parents have al-
ready been selected; or at least one of whose parents has already been selected; or an arbitrary
variable if no such v exists.

Additionally, we used six ordering schemes we adopted from the model checking literature,
based on a structure called the abstract syntax tree (AST) (e.g., Maisonneuve, 2009). That is a
directed graph containing a root node for the overall task and subtrees for all actions. Each subtree
consists of nodes representing the subformulas of the specified action (i.e., subformulas for the
action’s precondition and its effect). The variables of the task are the leaves of the AST. The leaves
are merged, i.e., we have only one node for each variable of the task. Edges point from a node
representing some function to all corresponding subtrees.

We construct the AST based on the PDDL input. Consider the following example actions, sim-
ilar to those in the Floortile domain. We have predicates at(r, t), denoting the tile t robot r is

793

KISSMANN & HOFFMANN

A

a1

∧

¬

a2

at(r1, t1) painted(t2)

∧

¬

at(r2, t3)

Figure 12: Example AST.

currently on and painted(t) denoting whether tile t has already been painted. We have two actions
a1 = paint(r1, t1, t2) with precondition (at(r1, t1) ∧ ¬painted(t2)) and effect (painted(t2)) de-
noting that a robot r1 can paint tile t2 if it currently is on t1 and t2 has not been painted. Similarly,
action a2 = paint(r2, t3, t2) with precondition (at(r2, t3)∧¬painted(t2)) and effect (painted(t2))
denotes that robot r2 can paint tile t2 if it currently is on t3 and t2 has not been painted.

Figure 12 illustrates the corresponding AST. We have the root for all actions A, and one subtree
for each of the two actions a1 and a2. For both actions the preconditions and effects are encoded
but we retain only one copy of each variable in the leaves (here relevant only for painted(t2)).

Using their first author’s names for reference, the additional ordering schemes are the following.

Butler (Butler, Ross, Kapur, & Mercer, 1991) is an extension of an approach by Fujita, Fujisawa,
and Kawato (1988). The latter proposed to perform a depth-first search (DFS) in the AST,
starting at the root node, and to order the variables in the order in which they are reached the
first time. Butler et al. extended this to a setting with several roots (if we remove the overall
root and retain only the subtrees for the various actions we arrive at exactly the same setting).
Their approach starts the DFS at the action containing the highest number of variables. Within
the tree it advances in a similar manner: It always continues with the subtree that contains the
highest number of variables among all subtrees of the current node. The retrieved ordering is
then again in the order in which the variables are reached the first time.

Chung1 (Chung, Hajj, & Patel, 1993) is a two-step approach. In the first step it assigns values
to all nodes of the AST. Starting at the leaves, assigning them a value of 0, it assigns each
inner node the maximum of the values assigned to its successors plus 1. In the second step it
performs a DFS starting at the root, which is guided by the values of the nodes, visiting those
successors with highest value first. The order in which the variables are reached for the first
time is then chosen as the variable ordering.

Chung2 (Chung et al., 1993) determines the shortest distance between each pair of variables, which
can be calculated by considering all edges in the AST as undirected. Additionally, the total
distances, i.e., the sum of the minimal distances to all other variables, are stored for all vari-
ables. A variable with smallest total distance is chosen first. The next one is the one closest

794

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

to the last variable inserted into the ordering. In case of a tie the distance to the preceding
variables is also taken into account.

Maisonneuve (Maisonneuve, 2009) is a greedy approach starting with an empty sequence. In each
step it temporarily extends the current sequence by a variable not yet in the sequence. For
this variable, a weight is determined, which is the number of variables from this extended
sequence that appear in an action, summed over all actions. The variable is then removed
from the sequence and the next one added. When all weights are calculated the variable with
highest weight is appended to the sequence, and the next iteration starts, calculating the new
weights for the remaining variables. In the end, the last sequence contains all variables and
thus corresponds to the variable ordering.

Malik (Malik et al., 1988) assigns a level value (the maximal level of all its predecessors plus 1)
to each node within the AST. The root is assigned value 0. The variables are then ordered
according to their level values, those with highest values coming first.

Minato (Minato et al., 1990) calculates weights for all nodes in the AST. The weight of the root
node of each action is set to 1, that of all successors of a node tow/m ifw is the node’s weight
andm the number of successors of that node. One of the variables with highest weight is then
chosen first and all its nodes removed (along with all ingoing edges and – recursively – those
nodes with no remaining successors). For the reduced graph the weights are recalculated and
the procedure continues until finally all variables are in the ordering.

4.2 Bad Delimiter

To get the bad delimiter we ran 5000 “random orderings”, where each such ordering corresponds
to one run of the IPC’11 benchmark tasks, using a random variable ordering for each instance. To
make this feasible we used a time-out of one minute (our backward search implementation is not
viable for such a short time-out, so that we use only forward search here). For comparison to this
data, the same settings (1 minute time-out, only forward search) was used with the twelve static
ordering schemes. Initially we ran all ordering schemes and the random orderings on all tasks; after
200 random runs we removed all tasks from the benchmark set that were not solved at least once
during the previous (random or static ordering) runs, retaining 85 tasks. Figure 13 shows coverage,
i.e., the number of solved planning tasks, on the x axis, and the fraction of random orderings having
that coverage on the y axis. The coverage data for the ordering schemes are shown as vertical lines.

Malik and CGLevel lie in and below the middle of the Gaussian distribution, respectively. In
other words, Malik is as bad as, and CGLevel is even worse than, the average random ordering.
Matters are not as bleak for the other ten ordering schemes, which are close together and lie clearly
above the Gaussian distribution. Compared to a best-of over the random orders, however, all the
ordering schemes appear rather humble. Consider Table 1. In particular, consider n−r+Ω, giving the
number of instances solved by ordering scheme Ω but not by any random order, and consider n+r

−Ω,
giving the number of instances not solved by the scheme but solved by some random order. As
Table 1 shows, n−r+Ω is strictly smaller than n+r

−Ω in all but three of the ordering schemes Ω, and is
strictly larger (by a single task) only for one of the schemes (namely Butler). The average over n−r+Ω

is 2.92 while that over n+r
−Ω is 9.08.

795

KISSMANN & HOFFMANN

0

2

4

6

8

10

12

14

16

20 30 40 50 60 70 80

Pe
rc

en
ta

ge
of

R
an

do
m

O
rd

er
in

gs

Coverage

CGLevel
Malik

Maisonneuve+WGamerPre
Minato+WGamer

CGSons
Gamer+GamerPre

Chung1+Chung2
Butler

Figure 13: Coverage for random orders vs. ordering schemes. Schemes are ordered top-to-bottom
from worst to best coverage. X+Y means that both schemes,X and Y , result in the same coverage.

Ty
pe

B
ut

le
r

C
G

Le
ve

l

C
G

So
ns

C
hu

ng
1

C
hu

ng
2

G
am

er

G
am

er
P

re

M
ai

so
nn

eu
ve

M
al

ik

M
in

at
o

W
G

am
er

W
G

am
er

P
re

B
es

tS
ch

em
e

n−r+Ω 3 1 2 4 2 5 5 3 0 4 3 3 6

n+r
−Ω 2 26 4 4 2 6 6 11 22 8 7 11 1

n+r
+Ω 77 53 75 75 77 73 73 68 57 71 72 68 78

n−r−Ω 3 5 4 2 4 1 1 3 6 2 3 3 0

Table 1: Differences in solved instances for the 85 IPC’11 tasks (1 minute timeout); −r means
solved by no random ordering, +r by at least one random ordering, −Ω not solved by the corre-
sponding ordering scheme, +Ω solved by the corresponding ordering scheme.

4.3 Good Delimiter

Here we performed bidirectional blind search, i.e., the most competitive setup in general. Figure 14
contains one data point for every pair (I,Ω) of IPC’11 benchmark instance I and ordering scheme
Ω that were solved by both (a) Gamer using dynamic reordering starting from an arbitrary variable
order (the one returned by Gamer’s grounding process), and (b) Gamer using ordering scheme Ω
(without dynamic reordering). The time-out is 6 hours for (a), and 30 minutes for (b). The x-value
of each data point is the size of the largest BDD constructed for I by (a), the y-value is the size of the
largest BDD constructed for I by (b). We allowed a much higher time-out for dynamic reordering
because such reordering is not runtime effective: The question we are asking here is merely which
of the two methods yields smaller BDDs. Figure 14 shows that dynamic reordering is universally
much better at this, giving us sizes that are up to three orders of magnitude smaller than those of the
schemes. For a total of 1911 instances (solved by both an ordering scheme and dynamic reordering),
in 1431 cases the BDD sizes are smaller by a factor of up to 10 when using dynamic reordering, in

796

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

104

105

106

107

108

104 105 106 107 108

Pe
ak

Si
ze

O
rd

er
in

g
Sc

he
m

es

Peak Size Dynamic Reordering

Figure 14: BDD size for dynamic reordering vs. ordering schemes.

Domain B
ut

le
r

C
G

Le
ve

l

C
G

So
ns

C
hu

ng
1

C
hu

ng
2

G
am

er

G
am

er
P

re

M
ai

so
nn

eu
ve

M
al

ik

M
in

at
o

W
G

am
er

W
G

am
er

P
re

D
yn

am
ic

R
eo

rd
er

in
g

Barman 4 4 4 4 8 8 7 4 4 4 5 4 9(5)
Elevators 19 19 19 19 19 19 19 19 19 19 19 19 19(17)
Floortile 8 8 7 8 8 8 8 7 7 8 8 8 7(6)

NoMystery 14 14 14 14 14 13 14 14 15 14 14 14 14(12)
Openstacks 20 18 20 20 20 20 20 19 19 19 20 20 20(20)

PARC-Printer 6 6 5 6 5 6 6 6 5 6 6 7 8(7)
PegSol 17 17 17 17 17 18 18 17 17 17 18 18 18(17)

Scanalyzer 8 7 9 9 8 9 9 9 9 9 9 7 9(9)
Sokoban 17 18 18 17 19 19 19 18 18 18 19 19 19(13)
Tidybot 16 7 14 15 15 9 12 14 9 15 12 8 16(8)

Transport 8 9 9 7 8 8 8 9 7 9 7 7 10(7)
VisitAll 11 9 11 11 11 11 11 11 10 10 11 11 12(11)

Woodworking 16 13 10 14 16 16 16 12 8 16 15 16 19(16)

Total (260) 164 149 157 161 168 164 167 159 147 164 163 158 180(148)

Table 2: Coverage in the IPC’11 tasks. For dynamic reordering, the numbers in parentheses repre-
sent the coverage with a 30 minute timeout.

406 cases they are smaller by a factor between 10 and 100, and in 20 cases they are smaller by a
factor of more than 100.

Table 2 shows the coverage of the different schemes on the IPC’11 tasks. We can make a
similar observation to that of the one minute, only forward search results, namely that CGLevel
and Malik are clearly behind the others. The last column shows the coverage of Gamer using
dynamic reordering, and provides two numbers, first the coverage with the 6 hours timeout, second
the coverage with the same timeout as the schemes, i.e., 30 minutes. From this it becomes clear that
applying dynamic reordering for the entire search time is not feasible in practice when limiting the
runtime.

797

KISSMANN & HOFFMANN

0
100
200
300
400
500
600

0 2 4 6 8 10 12

Ti
m

e
(s

)

Reorderings

Total Runtime
Reordering Time

Transition Relation Creation

(a) VisitAll, task 011

0
200
400
600
800

1000
1200
1400

0 2 4 6 8 10 12 14 16

Ti
m

e
(s

)

Reorderings

Total Runtime
Reordering Time

Transition Relation Creation

(b) PegSol, task 015

Figure 15: Total runtime and time spent in reordering for limited number of reordering steps for two
example IPC’11 tasks. All reorderings until the vertical line were performed during the transition
relation creation.

5. Limited Dynamic Reordering

Given the much more memory-efficient behavior of dynamic reordering, a possible approach is
to run dynamic reordering for a limited time only, hoping to get an ordering that is good enough
for the remainder of the search. Reordering is automatically started when the number of allocated
BDD nodes reaches a certain threshold (by default, the first threshold is 4000 nodes), which is
dynamically adapted after each reordering (by default, the next threshold is set to 2 times the number
of nodes after reordering). A simple way to control dynamic reordering is to limit the number of
reordering steps, and to turn dynamic reordering off once the desired number of reorderings has
been performed.

For different reordering limits, the total runtime for a task often looks similar to the situation
depicted in Figure 15a. With too few reorderings it takes a long time to solve the task due to a
bad initial ordering. Also, the first reorderings can sometimes hurt, as they are performed at the
very beginning or during construction of the transition relation, before enough information on good
orderings is available. However, with too many reorderings solving takes a long time due to an
immense overhead in reordering time, which grows exponentially with each step.

An important different behavioral pattern is depicted in Figure 15b: In some domains, such as
PegSol or Sokoban, the minimum of the curve is at the very beginning (without any reordering),
and the total runtime only increases afterward (mainly based on the increase in reordering time).
An explanation for this behavior might be that the initial ordering is already pretty good, so that
dynamic reordering cannot improve much and its overhead is incurred in vain. The same also often
happens in the easier tasks of a domain, so that learning a good setting based on the simpler tasks
seems impossible.

Attempting to exploit these observations to design adaptive stopping criteria, geared at finding
a good point for stopping dynamic reordering, given only the available observations (e.g., number
of BDD nodes before/after reordering, reordering times, current total runtimes), we experimented
with the following approaches.

First, we noticed that early on the reordering time increases from step to step by a small factor,
but later on that factor increases. In some preliminary runs we saw that often the area of smallest
runtime coincides with the situation when the increase in reordering time reaches some threshold,
often between 1.25 and 1.75 (see, e.g., Figure 16a and compare it to the runtime minimum in
Figure 15a for the same planning task). We call this the factor criterion.

798

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

Fa
ct

or

Reorderings

Factor

(a) Factor of the time for the last reordering and
the previous one.

0
10
20
30
40
50
60
70

0 2 4 6 8 10 12

Pe
rc

en
ta

ge

Reorderings

Percentage

(b) Percentage of the time for the last reordering
of the total runtime so far.

Figure 16: Factor and percentage criterion for limited number of reordering steps for task 011 of
the IPC’11 VisitAll domain.

Second, another observation from these preliminary runs is that the percentage of the time spent
in the last reordering step on the total current runtime often follows a U-like curve, and the minimum
of that curve often lies close to the same number of reorderings as the total runtime minimum (see,
e.g., Figure 16b and compare to the runtime minimum in Figure 15a for the same task). We employ
a percentage criterion, which stops reordering after a (possibly local) minimum has been reached,
i.e., we compare the percentage of the current step with that of the previous step; when the current
one is greater we stop reordering.

Finally, A simple combination of both criteria is to stop reordering as soon as one of them tells
us to do so.

To evaluate these adaptive stopping criteria, we ran all tasks of the IPC’11 domains with differ-
ent limits for the number of reorderings, ranging from 0 to 20.1 Based on those runs we calculated
the results we would achieve with the adaptive stopping criteria. See Table 3. The best possible
coverage, i.e., the number of tasks solved by at least one setting with limited number of reorderings,
is 175, while without any reordering we found 167 solutions. The adaptive stopping criteria yield
coverage between 158 and 171. Performance is reasonable for the factor criterion, but is quite bad
for the percentage criterion and the combination of both criteria. Recall that the percentage crite-
rion aims at stopping reordering before incurring prohibitive overhead. Indeed, with this criterion,
reordering is often stopped earlier than with the factor criterion. In some cases this was detrimental,
particularly in the Woodworking domain where this strategy happens to fall into a dramatic local
peak of the total-runtime curve, resulting in 9 problem instances no longer being solved.

As, in several cases, dynamic reordering during the transition relation creation was counterpro-
ductive, we also ran delayed reordering, where dynamic reordering is started only after the BDDs
for the transition relation have been created. The results are in Table 4. The case without reordering
is unchanged with respect to Table 3. The best possible result is now slightly worse than before,
with coverage 174. For the adaptive stopping criteria, the picture changes substantially: In contrast
to Table 3, the percentage criterion now excels, delivering coverage just 1 short of the best possible.
Regarding the factor criteria, overly small or large factors now are bad and the best behavior (2 short
of best possible) is obtained in the middle.

1. In all those cases the highest number of reorderings we could observe was clearly below 20. Either the planner ran
out of time or memory, or finished before the last reorderings could be performed. In all cases we used GamerPre as
the initial ordering, which turned out to be among the best in a preliminary set of experiments.

799

KISSMANN & HOFFMANN

no best factor criterion percentage both criteria
Domain reord possible 1.25 1.5 1.75 2.0 criterion 1.25 1.5 1.75 2.0
Barman 7 8 8 8 8 8 8 8 8 8 8

Elevators 19 19 19 19 19 19 19 19 19 19 19
Floortile 8 8 7 8 8 8 8 7 8 8 8

NoMystery 14 16 14 14 14 14 14 14 14 14 14
Openstacks 20 20 20 20 20 20 20 20 20 20 20

PARC-Printer 6 7 6 6 7 7 6 6 6 6 6
PegSol 18 18 17 17 17 18 17 17 17 17 17

Scanalyzer 9 9 9 9 9 9 9 9 9 9 9
Sokoban 19 19 17 17 17 17 17 17 17 17 17
Tidybot 12 14 14 14 14 14 13 13 13 13 13

Transport 8 9 9 9 9 9 9 9 9 9 9
VisitAll 11 12 11 12 12 12 11 11 11 11 11

Woodworking 16 16 10 15 16 16 7 9 7 7 7
Total 167 175 161 168 170 171 158 159 158 158 158

Table 3: Coverage results for different stopping criteria. Immediate reordering.

no best factor criterion percentage both criteria
Domain reord possible 1.25 1.5 1.75 2.0 criterion 1.25 1.5 1.75 2.0
Barman 7 8 8 8 8 7 8 8 8 8 8

Elevators 19 19 19 19 19 19 19 19 19 19 19
Floortile 8 8 7 8 8 8 8 7 8 8 8

NoMystery 14 16 16 16 14 14 16 16 16 16 16
Openstacks 20 20 20 20 20 20 20 20 20 20 20

PARC-Printer 6 7 6 7 7 6 7 6 7 7 7
PegSol 18 18 17 17 17 17 17 17 17 17 17

Scanalyzer 9 9 9 9 9 9 9 9 9 9 9
Sokoban 19 19 19 19 19 19 19 19 19 19 19
Tidybot 12 13 13 13 13 13 13 13 13 13 13

Transport 8 9 9 9 9 9 9 9 9 9 9
VisitAll 11 12 12 12 12 12 12 12 12 12 12

Woodworking 16 16 10 15 16 16 16 10 15 16 16
Total 167 174 165 172 171 169 173 165 172 173 173

Table 4: Coverage results for different stopping criteria. Delayed reordering, i.e., reordering started
only after creation of the transition relation BDDs.

To shed some light on these observations, Figure 17 shows coverage as a function of more
different factor values, for both the case of immediate reordering (Figure 17a) and that of delayed
reordering (Figure 17b). In Figure 17a, we see that the percentage criterion stops reordering too
early. Without it, the coverage resulting from stopping reordering based solely on the factor criterion
can get as high as 173. However, before the ascend in the coverage actually starts the percentage
criterion stops reordering, thus cutting off many solutions. In Figure 17b, up to a factor of 1.6
both curves are identical, both mainly increasing with increasing factor. After that, the combination
criterion rises another little bit, while the factor criterion alone drops substantially. The combined
criterion avoids that drop because, at some point (here, at a factor of roughly 2.0), the percentage
criterion stops reordering at least as early as the factor criterion.

800

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

150
155
160
165
170
175
180

0 0.5 1 1.5 2 2.5 3

C
ov

er
ag

e

Factor

Factor
Both

(a) Immediate reordering.

150
155
160
165
170
175
180

0 0.5 1 1.5 2 2.5 3

C
ov

er
ag

e

Factor

Factor
Both

(b) Delayed reordering.

Figure 17: Coverage as a function of factor, for the factor criterion alone, and for its combination
with the percentage criterion (denoted as “Both”).

6. Conclusion

It is tempting to equate the “variable dependencies” in BDD-based symbolic search with those
identified in causal graphs, and previous research has done so unquestioningly. Looking a little more
closely at this issue, we have shown that causal graph based variable orderings are exponentially bad
even in severely restricted sub-classes of planning. Empirically, Fast Downward’s level heuristic is
worse than random, and all ordering schemes lag far behind off-the-shelf reordering.

One may wonder about the meaning of the theoretical results: How could a static ordering
scheme not incur exponential overhead in the worst case? We agree with that view in principle,
but we did not expect this to happen in planning tasks so restricted as to be tractable for domain-
independent optimal planning. It remains to be seen to what extent our classification framework is
suitable to characterize the properties of other ordering schemes and/or planning fragments.

Our impression at this point is that static ordering schemes are so limited as to be hopeless.
Prior to actually building the BDDs, it appears impossible to extract any reliable information about
which form they will take. The way forward, then, is to use dynamic reordering techniques in a
more targeted manner. Our initial experiments in that direction did not meet with an immediate
breakthrough, but certainly they show promise, especially considering the primitive nature of the
method and of the stopping criteria employed. Promising future directions include more flexible
on/off strategies for dynamic reordering, machine learning for deciding when to toggle the switch,
and planning-specific reordering techniques exploiting the particular structure of the BDDs at hand.

Acknowledgments

We thank the anonymous reviewers of the ICAPS 2013 short version and those of a previous version
of this article, whose comments helped tremendously to improve the paper.

References

Brafman, R., & Domshlak, C. (2003). Structure and complexity in planning with unary operators.
Journal of Artificial Intelligence Research, 18, 315–349.

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, 35(8), 677–691.

801

KISSMANN & HOFFMANN

Burch, J. R., Clarke, E. M., & Long, D. E. (1991). Symbolic model checking with partitioned
transition relations. In Halaas, A., & Denyer, P. B. (Eds.), Proceedings of the International
Conference on Very Large Scale Integration (VLSI-91), Vol. A-1 of IFIP Transactions, pp.
49–58, Edinburgh, Scotland. North-Holland.

Burch, J. R., Clarke, E. M., Long, D. E., McMillan, K. L., & Dill, D. L. (1994). Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 13(4), 401–424.

Butler, K. M., Ross, D. E., Kapur, R., & Mercer, M. R. (1991). Heuristics to compute variable
orderings for efficient manipulation of ordered binary decision diagrams. In Proceedings
of the 28th Conference on Design Automation (DAC-91), pp. 417–420, San Francisco, CA,
USA. ACM.

Chen, H., & Giménez, O. (2010). Causal graphs and structurally restricted planning. Journal of
Computer and System Sciences, 76(7), 579–592.

Chung, P.-Y., Hajj, I. N., & Patel, J. H. (1993). Efficient variable ordering heuristics for shared
ROBDD. In Proceedings of the 1993 IEEE International Symposium on Circuits and Systems
(ISCAS-93), pp. 1690–1693, Chicago, IL, USA. IEEE.

Cimatti, A., Pistore, M., Roveri, M., & Traverso, P. (2003). Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147(1–2), 35–84.

Darwiche, A. (2011). SDD: A new canonical representation of propositional knowledge bases. In
Walsh, T. (Ed.), Proceedings of the 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI’11), pp. 819–826. AAAI Press/IJCAI.

Dechter, R., & Meiri, I. (1989). Experimental evaluation of preprocessing techniques in constraint
satisfaction problems. In Sridharan, N. S. (Ed.), Proceedings of the 11th International Joint
Conference on Artificial Intelligence (IJCAI-89), pp. 271–277, Detroit, MI. Morgan Kauf-
mann.

Domshlak, C., & Dinitz, Y. (2001). Multi-agent offline coordination: Structure and complexity. In
Cesta, A., & Borrajo, D. (Eds.), Recent Advances in AI Planning. 6th European Conference
on Planning (ECP-01), Lecture Notes in Artificial Intelligence, pp. 34–43, Toledo, Spain.
Springer-Verlag.

Edelkamp, S., & Helmert, M. (1999). Exhibiting knowledge in planning problems to minimize
state encoding length. In Biundo, S., & Fox, M. (Eds.), Recent Advances in AI Planning.
5th European Conference on Planning (ECP’99), Lecture Notes in Artificial Intelligence, pp.
135–147, Durham, UK. Springer-Verlag.

Fan, G., Müller, M., & Holte, R. (2014). Non-linear merging strategies for merge-and-shrink based
on variable interactions. In Edelkamp, S., & Bartak, R. (Eds.), Proceedings of the 7th Annual
Symposium on Combinatorial Search (SOCS’14). AAAI Press.

Freuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the Association
for Computing Machinery, 29(1), 24–32.

Fujita, M., Fujisawa, H., & Kawato, N. (1988). Evaluation and improvements of boolean compar-
ison method based on binary decision diagrams. In Proceedings of the 1988 International
Conference on Computer-Aided Design (ICCAD-98), pp. 2–5. IEEE Computer Society Press.

802

BDD ORDERING HEURISTICS FOR CLASSICAL PLANNING

Giménez, O., & Jonsson, A. (2008). The complexity of planning problems with simple causal
graphs. Journal of Artificial Intelligence Research, 31, 319–351.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Koenig, S., Zilberstein,
S., & Koehler, J. (Eds.), Proceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS’04), pp. 161–170, Whistler, Canada. Morgan Kaufmann.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence Re-
search, 26, 191–246.

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal se-
quential planning. In Boddy, M., Fox, M., & Thiebaux, S. (Eds.), Proceedings of the 17th
International Conference on Automated Planning and Scheduling (ICAPS’07), pp. 176–183,
Providence, Rhode Island, USA. Morgan Kaufmann.

Helmert, M., Haslum, P., Hoffmann, J., & Nissim, R. (2014). Merge & shrink abstraction: A method
for generating lower bounds in factored state spaces. Journal of the Association for Comput-
ing Machinery, 61(3).

Hoffmann, J. (2011a). Analyzing search topology without running any search: On the connection
between causal graphs and h+. Journal of Artificial Intelligence Research, 41, 155–229.

Hoffmann, J. (2011b). Where ignoring delete lists works, part II: Causal graphs. In Bacchus, F.,
Domshlak, C., Edelkamp, S., & Helmert, M. (Eds.), Proceedings of the 21st International
Conference on Automated Planning and Scheduling (ICAPS’11), pp. 98–105. AAAI Press.

Jonsson, P., & Bäckström, C. (1995). Incremental planning. In European Workshop on Planning.

Katz, M., & Domshlak, C. (2008). New islands of tractability of cost-optimal planning. Journal of
Artificial Intelligence Research, 32, 203–288.

Katz, M., & Domshlak, C. (2010). Implicit abstraction heuristics. Journal of Artificial Intelligence
Research, 39, 51–126.

Kissmann, P., & Edelkamp, S. (2011). Improving cost-optimal domain-independent symbolic plan-
ning. In Burgard, W., & Roth, D. (Eds.), Proceedings of the 25th National Conference of the
American Association for Artificial Intelligence (AAAI-11), pp. 992–997, San Francisco, CA,
USA. AAAI Press.

Kissmann, P., & Hoffmann, J. (2013). What’s in it for my BDD? On causal graphs and variable or-
ders in planning. In Borrajo, D., Fratini, S., Kambhampati, S., & Oddi, A. (Eds.), Proceedings
of the 23rd International Conference on Automated Planning and Scheduling (ICAPS’13), pp.
327–331, Rome, Italy. AAAI Press.

Knoblock, C. (1994). Automatically generating abstractions for planning. Artificial Intelligence,
68(2), 243–302.

Maisonneuve, V. (2009). Automatic heuristic-based generation of MTBDD variable orderings for
PRISM models. Internship report, Oxford University Computing Laboratory.

Malik, S., Wang, A., Brayton, R., & Sangiovanni-Vincentelli, A. (1988). Logic verification using
binary decision diagrams in a logic synthesis environment. In Proceedings of the 1988 In-
ternational Conference on Computer-Aided Design (ICCAD-98), pp. 6–9. IEEE Computer
Society Press.

803

KISSMANN & HOFFMANN

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Publishers.

Minato, S., Ishiura, N., & Yajima, S. (1990). Shared binary decision diagram with attributed edges
for efficient boolean function manipulation. In Proceedings of the 27th ACM/IEEE Design
Automation Conference (DAC-90), pp. 52–57, Orlando, FL, USA. IEEE Computer Society
Press.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Conference on Design Automation (DAC-
01), Las Vegas, Nevada, USA. IEEE Computer Society.

Rintanen, J. (2012). Planning as satisfiability: Heuristics. Artificial Intelligence, 193, 45–86.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams. In Lightner,
M. R., & Jess, J. A. G. (Eds.), Proceedings of the 1993 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD-93), pp. 42–47, Santa Clara, CA, USA. IEEE Computer
Society.

Sievers, S., Wehrle, M., & Helmert, M. (2014). Generalized label reduction for merge-and-shrink
heuristics. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI’14),
Québec City, Québec, Canada. AAAI Press.

Wegener, I. (2000). Branching Programs and Binary Decision Diagrams. SIAM.

Williams, B. C., & Nayak, P. P. (1997). A reactive planner for a model-based executive. In Pollack,
M. (Ed.), Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI-97), pp. 1178–1185, Nagoya, Japan. Morgan Kaufmann.

Zabih, R. (1990). Some applications of graph bandwidth to constraint satisfaction problems. In
Proceedings of the 8th National Conference of the American Association for Artificial Intel-
ligence (AAAI-90), pp. 46–51, Boston, MA. MIT Press.

804

