
Journal of Artificial Intelligence Research 52 (2015) 203-234 Submitted 8/14; published 1/15

On the Subexponential-Time Complexity of CSP

Ronald de Haan DEHAAN@KR.TUWIEN.AC.AT
Vienna University of Technology
Vienna, Austria

Iyad Kanj IKANJ@CS.DEPAUL.EDU
School of Computing, DePaul University
Chicago, USA

Stefan Szeider STEFAN@SZEIDER.NET

Vienna University of Technology
Vienna, Austria

Abstract
Not all NP-complete problems share the same practical hardness with respect to exact computation.
Whereas some NP-complete problems are amenable to efficient computational methods, others are
yet to show any such sign. It becomes a major challenge to develop a theoretical framework that is
more fine-grained than the theory of NP-completeness, and that can explain the distinction between
the exact complexities of various NP-complete problems. This distinction is highly relevant for
constraint satisfaction problems under natural restrictions, where various shades of hardness can be
observed in practice.

Acknowledging the NP-hardness of such problems, one has to look beyond polynomial time
computation. The theory of subexponential-time complexity provides such a framework, and has
been enjoying increasing popularity in complexity theory. An instance of the constraint satisfaction
problem with n variables over a domain of d values can be solved by brute-force in dn steps (omitting
a polynomial factor). In this paper we study the existence of subexponential-time algorithms, that
is, algorithms running in do(n) steps, for various natural restrictions of the constraint satisfaction
problem. We consider both the constraint satisfaction problem in which all the constraints are given
extensionally as tables, and that in which all the constraints are given intensionally in the form of
global constraints. We provide tight characterizations of the subexponential-time complexity of the
aforementioned problems with respect to several natural structural parameters, which allows us to
draw a detailed landscape of the subexponential-time complexity of the constraint satisfaction prob-
lem. Our analysis provides fundamental results indicating whether and when one can significantly
improve on the brute-force search approach for solving the constraint satisfaction problem.

1. Introduction

It has been observed in various practical contexts that some NP-hard problems are accessible to
efficient exact computational methods, whereas for others such methods are futile. It is a central
challenge for theoreticians to develop a framework, that is more fine-grained than the theory of
NP-completeness, and that can explain the distinction between the exact complexities of NP-hard
problems. Subexponential-time complexity is a framework of complexity theory that provides such
a distinction (Lokshtanov, Marx, & Saurabh, 2011). It is based on the observation that for some
NP-complete problems, one can improve the exponent in the exponential term of the upper bound

c©2015 AI Access Foundation. All rights reserved.

DE HAAN, KANJ, & SZEIDER

on their running time indefinitely—such problems admit subexponential-time algorithms—whereas
for others this is apparently not possible under commonly-believed hypotheses in complexity theory.
In particular, subexponential-time algorithms were developed for many graph problems, including
INDEPENDENT SET and DOMINATING SET, under natural structural restrictions; e.g., see the work
of Alber, Fernau, and Niedermeier (2004), Chen, Kanj, Perkovic, Sedgwick, and Xia (2007) and
Demaine, Fomin, Hajiaghayi, and Thilikos (2005). The benchmark problem for subexponential-time
computation is the satisfiability problem for CNF formulas, where each clause contains at most three
literals, denoted 3-CNF-SAT. The Exponential Time Hypothesis (ETH), proposed by Impagliazzo
and Paturi (2001), states that 3-CNF-SAT with n variables is not decidable in subexponential time,
i.e., not decidable in time 2o(n) (omitting polynomial factors).

The Constraint Satisfaction Problem (CSP) provides a general and uniform framework for the
representation and solution of hard combinatorial problems that arise in various areas of Artificial
Intelligence and Computer Science (Rossi, van Beek, & Walsh, 2006). For instance, in database
theory, CSP is equivalent to the evaluation problem of conjunctive queries on relational databases
(Gottlob, Leone, & Scarcello, 2002). It is well known that CSP is NP-hard, as it entails fundamental
NP-hard problems such as 3-COLORABILITY and 3-CNF-SAT. Hence, we cannot hope for a
polynomial-time algorithm for CSP. On the other hand, CSP can obviously be solved in exponential
time: by simply trying all possible instantiations of the variables, we can solve a CSP instance
consisting of n variables that range over a domain of d values in time dn (omitting a polynomial
factor in the input size). Significant work has been concerned with improving this trivial upper bound
for various restrictions of CSP (Beigel & Eppstein, 2005; Feder & Motwani, 2002; Grandoni &
Italiano, 2006; Moser & Scheder, 2011; Schöning, 1999). For instance, Razgon (2006) showed that
binary CSP with domain size d can be solved in time (d − 1)n by a forward-checking algorithm
employing a fail-first variable ordering heuristic; although there are faster algorithms known, this
result indicates that the exponential running time for CSP can be improved by using heuristic methods
that were designed for solving real-world CSP instances in practice. All these improvements over the
trivial brute-force search give exponential running times in which the exponent is linear in n.

The aim of this paper is to investigate the theoretical limits of such improvements. More precisely,
we explore whether the exponential factor dn can be reduced to a subexponential factor do(n) or
not, considering various natural NP-hard restrictions of classical CSP in which all the constraints
are given extensionally in the form of tables, and of CSP in which the constraints are specified
intensionally using global constraints. For CSP with global constraints, we consider CSP in which
the global constraints are all either

• AllDifferent constraints (denoted CSP6=),

• NValue constraints (denoted CSP=),

• AtLeastNValue constraints (denoted CSP≥),

• AtMostNValue constraints (denoted CSP≤), or

• cTable constraints, i.e., constraints that are specified by tables with compressed tuples (denoted
CSPc).

This study of CSP with global constraints is highly relevant as it is central for the modeling and
the solving of real-world problems to use various global constraints that come along with efficient

204

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

propagation and filtering techniques (Régin, 2011; Van Hoeve & Katriel, 2006). Therefore, the
study of the existence of subexponential-time algorithms for these generic problems under various
restrictions is of prime interest.

In this paper, we obtain lower and upper bounds results, and in most cases draw a detailed
complexity landscape of CSP with extensionally represented constraints and CSP with global
constraints with respect to subexponential-time solvability. Our lower bounds are subject to the
Exponential Time Hypothesis (ETH), even though some of our results are derived under “weaker”
complexity-theoretic hypotheses (Proposition 2, Proposition 3, and Proposition 10). The structural
parameters in a CSP instance that we focus on (when relevant) are: the (instance) size, the domain
size, the number of constraints, the arity (i.e., maximum size of a constraint scope), the maximum
degree (i.e., the maximum number of occurrences of a variable), and the treewidth of the primal
or incidence graph. We highlight below some of the results that we obtain. As it turns out, for
almost all restrictions under consideration, both CSP and its generalization, CSP with the (global)
compressed table constraints (CSPc), exhibit the same behavior with respect to their subexponential-
time solvability. So unless explicitly indicated in the results below, all results about CSP (positive
and negative) mentioned below hold as well for CSPc.

It is easy to see that CSP with bounded domain size and bounded arity has a subexponential-time
algorithm if and only if the ETH fails. Our first result provides evidence that when we drop the
bound on the domain size or the bound on the arity, the problem becomes “harder”; we refer to the
discussion preceding Proposition 2 (n below is the number of variables in the instance):

1. If BOOLEAN CSP is solvable in nonuniform subexponential time then so is (unrestricted) CNF-
SAT. For BOOLEAN CSPc, we show that if BOOLEAN CSPc is solvable in subexponential
time then the parameterized complexity hierarchy collapses at the second level, a consequence
that implies that CNF-SAT is solvable in subexponential time.

2. If 2-CSP (all constraints have arity 2) is solvable in subexponential time then CLIQUE is
solvable in time No(k) (N is the number of vertices and k is the clique-size).

As it turns out, the number of tuples plays an important role in characterizing the subexponential-time
complexity of CSP. We show the following tight result:

3. CSP is solvable in subexponential time for instances in which the number of tuples is o(n),
and unless the ETH fails, is not solvable in subexponential time if the number of tuples in the
instances is Ω(n).

For BOOLEAN CSP of linear size we can even derive an equivalence to the ETH:

4. BOOLEAN CSP for instances of size Ω(n) is solvable in subexponential time if and only if the
ETH fails.

Results 3 and 4 also hold if we consider the total number of tuples in the constraint relations instead
of the input size.

5. CSP is solvable in subexponential time for instances whose primal treewidth is o(n), but is
not solvable in subexponential time for instances whose primal treewidth is Ω(n) unless the
ETH fails.

205

DE HAAN, KANJ, & SZEIDER

6. CSP is solvable in polynomial time for instances whose incidence treewidth is O(1), but is
not solvable in subexponential time for instances whose incidence treewidth is ω(1) unless the
ETH fails.

For CSP 6= we show the following results:

7. CSP 6= is solvable in subexponential time for instances whose domain size is lower bounded by
a function that is ω(1), but is not solvable in subexponential time for any constant domain size
that is at least 3 unless the ETH fails.

We note that the aforementioned result may sound strange because it implies that the problem is
“easier” for larger domain size. This can be explained by the fact that when the domain size gets
large, the allowable upper bound on the subexponential time for solving the problem (i.e., d(n)o(n))
gets larger as well.

8. CSP 6= is solvable in subexponential time for instances whose primal treewidth is o(n), but is
not solvable in subexponential time for instances whose primal treewidth is Ω(n) unless the
ETH fails.

9. CSP 6= is solvable in subexponential time for instances whose incidence treewidth is o(n), but
is not solvable in subexponential time for instances whose primal treewidth is Ω(n) unless the
ETH fails. Contrast this result with the result in (6) above.

For CSP=, CSP≥, and CSP≤, we show the following:

10. CSP≥ is solvable in subexponential time for instances whose number of constraints is constant
and whose domain size is lower bounded by a function that is ω(1), but is not solvable in
subexponential time if the number of constraints is linear and the domain size is constant
unless the ETH fails.

11. CSP= and CSP≤ are not solvable in subexponential time for instances whose domain size is
constant and whose number of constraints is Ω(n) unless the ETH fails.

12. CSP=, CSP≥, and CSP≤ are solvable in subexponential time for instances whose primal
treewidth is o(n), but are not solvable in subexponential time for instances whose primal
treewidth is Ω(n) unless the ETH fails.

The table below provides a map that, for each of the structural parameters considered in the
paper, lists the results in the paper pertaining to that structural parameter. The structural parameters
that we consider for an instance of CSP, or CSP with global constraints, or both are: The size (size),
the maximum size of a constraint scope (arity), the cardinality of the domain (dom), the number of
tuples (tuples), the number of constraints (cons), the treewidth of the incidence graph (tw∗), the
treewidth of the primal graph (tw), and the maximum number of occurrences of a variable (deg).

206

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

Parameter Results

size Theorem 3
arity Propositions 1, 2, 12
dom Theorems 1, 2, 3, 7; Propositions 1, 3, 12, 14, 17; Corollaries 1, 3
tuples Theorem 2
cons Theorems 4, 6, 7; Propositions 14, 17; Corollaries 2, 3
tw∗ Theorem 5; Propositions 16, 19
tw Theorem 5; Propositions 15, 18
deg Proposition 11

The results in this paper shed some light on which instances of the aforementioned variants
of CSP (with and without global constraints) may be feasible with respect to exact computation.
Moreover, some of the results derived in the paper provide strong theoretical evidence that some of
the natural restrictions of CSP may be “harder than” k-CNF-SAT—for which a subexponential-time
algorithm would lead to the failure of the ETH. Hence, our results provide a new point of view of the
relationship between CNF-SAT and CSP, an important topic of recent AI research (Jeavons & Petke,
2012; Dimopoulos & Stergiou, 2006; Benhamou, Paris, & Siegel, 2012; Bennaceur, 2004).

We close this section by mentioning some further work on the subexponential-time complexity
of CSP and problems in AI. Already the pioneering work on the ETH (Impagliazzo & Paturi, 2001;
Impagliazzo, Paturi, & Zane, 2001) considered the k-COLORABILITY problem, which constitutes an
important special case of 2-CSP over a fixed domain of size k. There are several results on 2-CSP
with bounds on tw, the treewidth of the primal graph (see Section 3.3 for definitions). Lokshtanov
et al. (2011) showed the following lower bound, using a result about the LIST COLORING problem
(Fellows et al., 2011a): 2-CSP cannot be solved in time f(tw)no(tw) unless the ETH fails. Marx
(2010) showed that if there is a recursively enumerable class G of graphs with unbounded treewidth
and a function f such that 2-CSP can be solved in time f(G)no(tw/ log tw) for instances whose primal
graph is in G, then the ETH fails. Jonsson, Lagerkvist, and Nordh (2013) investigated BOOLEAN

CSP over finite constraint languages and identify the “easiest” Boolean constraint language for
which CSP is still NP-hard, and show that already this problem has no subexponential-time algorithm
unless the ETH fails. Traxler (2008) studied the subexponential-time complexity of CSP where
the constraints are represented by listing the forbidden tuples; this is in contrast to the standard
representation that we use, where the allowed tuples are given, and which naturally captures database
problems (Gottlob et al., 2002; Grohe, 2006; Papadimitriou & Yannakakis, 1999). This setting
can be considered as a generalization of CNF-SAT; a single clause gives rise to a constraint with
exactly one forbidden tuple. If the arity is bounded by a constant, then it is insignificant whether the
constraints are represented by forbidden or allowed tuples, as one can translate between these two
representations in polynomial time. Finally we would like to point out some recent use of the ETH
for the complexity analysis of problems that are highly relevant for AI like Planning (Bäckström &
Jonsson, 2011), Probabilistic Inference (Kwisthout, Bodlaender, & van der Gaag, 2010), and Text
Analysis (Ge, 2013).

Parts of this paper have been published in preliminary form in the proceedings of AAAI’13 and
CP’14 (Kanj & Szeider, 2013; De Haan, Kanj, & Szeider, 2014).

207

DE HAAN, KANJ, & SZEIDER

2. Preliminaries

In this section we introduce the terminologies and background material needed in the paper.

2.1 Constraint Satisfiability and CNF-Satisfiability

An instance I of the CONSTRAINT SATISFACTION PROBLEM (or CSP, for short) is a triple (V,D, C),
where V is a finite set of variables,D is a finite set of domain values, and C is a finite set of constraints.
Each constraint in C is a pair (S,R), where S, the constraint scope, is a non-empty sequence of
distinct variables of V , and R, the constraint relation, is a relation over D whose arity matches
the length of S; a relation is considered as a set of tuples. Therefore, the size of a CSP instance
I = (V,D, C) is the sum

∑
(S,R)∈C |S| · |R|; the total number of tuples is

∑
(S,R)∈C |R|. We assume,

without loss of generality, that every variable occurs in at least one constraint scope and every domain
element occurs in at least one constraint relation. Consequently, the size of an instance I is at least
as large as the number of variables in I . We write var(C) for the set of variables that occur in the
scope of constraint C.

An assignment or instantiation is a mapping from the set V of variables to the domain D. An
assignment τ satisfies a constraint C = ((x1, . . . , xn), R) if (τ(x1), . . . , τ(xn)) ∈ R, and τ satisfies
the CSP instance if it satisfies all its constraints. An instance I is consistent or satisfiable if it is
satisfied by some assignment. CSP is the problem of deciding whether a given instance of CSP is
consistent. BOOLEAN CSP denotes CSP with the Boolean domain {0, 1}. By r-CSP we denote the
restriction of CSP to instances in which the arity of each constraint is at most r.

The primal graph of a CSP instance I has as vertices the variables of I , and two variables are
joined by an edge if and only if the variables occur together in some constraint of I . The incidence
graph of a CSP instance I is a bipartite graph, one side of which consists of the variables in I and
the other side consists of the constraints in I; a variable and a constraint are joined by an edge if the
variable occurs in the constraint.

A tree decomposition of a graph G = (V,E) is a pair (T, χ) consisting of a tree T and a mapping
χ that assigns to each node t of T a subset χ(t) ⊆ V such that the following conditions are satisfied:
(i) for every edge {u, v} ∈ E there is a node t of T such that u, v ∈ χ(t); and (ii) for any three nodes
t1, t2, t3 of T we have χ(t2) ⊇ χ(t1) ∩ χ(t3) if t2 lies on a path between t1 and t3. The width of
(T, χ) is the size of a largest set χ(t) minus 1. The treewidth of G is the smallest width over all its
tree decompositions. Bounding the treewidth is a classical method for restricting the structure of
CSP instances. The method dates back to Freuder (1982). The treewidth parameter can be applied to
CSP in terms of its primal graphs or incidence graphs giving rise to the primal treewidth (also called
induced width (Dechter, 2003)) and incidence treewidth, respectively (Samer & Szeider, 2010), of
CSP instances.

For an instance I = (V,D, C) of CSP we define the following basic parameters.

• vars: the number |V | of variables, usually denoted by n.

• size: the size of the CSP instance defined as
∑

(S,R)∈C |S| · |R|.

• dom: the number |D| of values; that is, the union of all the values that the variables can
assume.

• cons: the number |C| of constraints.

208

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

• arity: the maximum size of a constraint scope.

• deg: the maximum number of occurrences of a variable.

• tw: the treewidth of the primal graph of I .

• tw∗: the treewidth of the incidence graph of I .

A propositional formula F over a set of variable {x1, . . . , xn} is in the conjunctive normal form
(CNF) if it is the conjunction of a set of clauses {C1, . . . , Cm}, where each clause Ci, i = 1, . . . ,m,
is the disjunction of literals (i.e., variables or negations of variables). We say that a propositional
formula F is satisfiable if there exists a truth assignment τ to the variables in F that assigns at least
one literal in each clause of F the value 1 (TRUE); we also say in this case that τ satisfies F . The
CNF-SATISFIABILITY problem, CNF-SAT for short, is given a formula F in the CNF form, decide
whether or not F is satisfiable. The width of a clause in a CNF formula F is the number of literals
in the clause. The k-CNF-SAT problem, where k ≥ 2, is the restriction of the CNF-SAT problem
to instances in which the width of each clause is at most k. It is well known that the k-CNF-SAT

problem for k ≥ 3 is NP-complete (Garey & Johnson, 1979), whereas the 2-CNF-SAT problem is
solvable in polynomial time (Papadimitriou, 1994).

2.2 Global Constraints

It is often preferred to represent a constraint more succinctly than by listing all the tuples of the
constraint relation. Such an intensionally represented constraint is called a global constraint (Régin,
2011; Van Hoeve & Katriel, 2006). The Global Constraints Catalogue (Beldiceanu, Carlsson, &
Rampon, 2006) lists several hundred of global constraints. In this paper we focus on the following
global constraints.

• The AllDifferent global constraint is probably the best-known, most influential, and most
studied global constraint in constraint programming (Van Hoeve & Katriel, 2006). It admits
efficient matching based filtering algorithms (Régin, 1994). An AllDifferent constraint over a
set S of variables is satisfied if each variable in S is assigned a different value.

• The global constraints NValue (Pachet & Roy, 1999), AtLeastNValue (Régin, 1995), and At-
MostNValue (Bessiere, Hebrard, Hnich, Kiziltan, & Walsh, 2006) are widely used in constraint
programming (Beldiceanu et al., 2006). Each such constraint C is associated with an integer
nC ∈ N; here we consider nC as a given integer, not as the value of a variable of the CSP in-
stance. The NValue constraint C over a set SC of variables is satisfied if the number of distinct
values assigned to the variables in SC is exactly nC . The AtLeastNValue and AtMostNValue
constraints are satisfied if the number of distinct values is ≤ nC or ≥ nC , respectively. The
special case of an NValue or AtLeastNValue constraint C where nC equals the arity of C is
equivalent to an AllDifferent constraint.

• The global constraint cTable is a table constraint with compressed tuples. This global constraint
admits a potentially exponential reduction in the space compared to an extensional table
constraint and can be propagated using a variant of the GAC-schema algorithm (Katsirelos
& Walsh, 2007). cTable constraints have also been studied under the name generalized DNF
constraints (Chen & Grohe, 2010). A cTable constraint is a pair (S,U) where S = (v1, . . . , vr)

209

DE HAAN, KANJ, & SZEIDER

is a non-empty sequence of distinct variables, and U is a set of compressed tuples, which are
sequences of the form (V1, . . . , Vr), where Vi ⊆ D(vi), 1 ≤ i ≤ r. One compressed tuple
(V1, . . . , Vr) represents all the tuples (d1, . . . , dr) with di ∈ Vi. Thus, by “decompression”
one can compute from (S,U) a (unique) equivalent table constraint (S,R) where R contains
all the tuples that are represented by the compressed tuples in U .

CSP where all constraints are AllDifferent constraints is denoted CSP6=. This variant of CSP
was studied by Fellows, Friedrich, Hermelin, Narodytska, and Rosamond (2011b) who called it
MAD-CSP (multiple all different CSP). CSP where all constraints are NValue, AtLeastNValue,
or AtMostNValue constraints, is denoted CSP=, CSP≥, and CSP≤, respectively. CSP where all
constraints are cTable constraints is denoted CSPc.

We note that all CSP6=, CSP=, CSP≥, CSP≤, CSPc, are NP-complete. In fact, CSP6= (and there-
fore the more general CSP≥) is even NP-hard for instances consisting of only two constraints (Kutz,
Elbassioni, Katriel, & Mahajan, 2008), and CSP≤ and CSP= are even NP-hard for instances consist-
ing of a single constraint (Bessiere et al., 2007). CSPc is clearly NP-hard as it contains classical CSP
(with table constraints) as a special case. Hence all the considered problems admit the representation
of NP-hard combinatorial problems.

Consider a CSP instance that models some real-world problem and uses, among others, some of
the global constraints considered above, say the AllDifferent constraint. Then, we can combine all the
AllDifferent constraints in the instance into a new global constraint, a multi-AllDifferent constraint.
Filtering this combined constraint is polynomial time equivalent to solving one instance of CSP6=.
Such a combination of several global constraints into a new one has been considered for several
different global constraints (see, e.g., Hnich et al., 2004; Régin & Rueher, 2000).

Guarantees and limits for polynomial-time preprocessing for single NValue, AtLeastNValue, and
AtMostNValue constraints have been given by Gaspers and Szeider (2014).

The Boolean versions of the above global constraints problems, and the parameters vars, dom,
cons, arity, deg, tw, and tw∗, are defined as for CSP. The size of an instance I = (V,D, C) of
CSP6= is defined as

∑
C∈C |SC |. For CSP=, CSP≥, and CSP≤, the size of an instance I = (V,D, C)

is defined as∑
C∈C(|SC |+ log (nC)). For an instance I = (V,D, C) of CSPc, the size of I is defined as∑
(S,U)∈C

∑
(V1,...,Vr)∈U (|V1| + · · · + |Vr|). Note that the definition of the instance size for CSPc

encompasses that for CSP.

2.3 Subexponential Time

A proper complexity function in complexity theory stands for any nondecreasing function f that is
computable inO(n+f(n)) time andO(f(n)) space, where n is the length of the input (see Papadim-
itriou, 1994). The time complexity functions used in this paper are assumed to be proper complexity
function. The o(·) notation used denotes the oeff(·) notation (Flum & Grohe, 2006). More formally,
for any two proper complexity functions f, g : N → N, by writing f(n) = o(g(n)) we mean that
there exists a proper complexity function µ(n) : N→ N, and n0 ∈ N, such that f(n) ≤ g(n)/µ(n)
for all n ≥ n0. The ω(·) notation is defined similarly to the above.

It is clear that CSP and CNF-SAT are solvable in time domn|I|O(1) and 2n|I|O(1), respectively,
where I is the input instance and n is the number of variables in I . We say that CSP (resp. CNF-SAT)
is solvable in uniform subexponential time if there exists an algorithm that solves the problem in time
domo(n)|I|O(1) (resp. 2o(n)|I|O(1)). Using the results of Chen, Kanj, and Xia (2009) and Flum and

210

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

Grohe (2006), the above definition is equivalent to the following: CSP (respectively, CNF-SAT) is
solvable in uniform subexponential time if there exists an algorithm that for all ε = 1/`, where ` is a
positive integer, solves the problem in time domεn|I|O(1) (resp. 2εn|I|O(1)). CSP (resp. CNF-SAT)
is solvable in nonuniform subexponential time if for each ε = 1/`, where ` is a positive integer, there
exists an algorithm Aε that solves the problem in time domεn|I|O(n) (resp. 2εn|I|O(1)) (that is, the
algorithm depends on ε). We note that if a problem admits a subexponential-time algorithm (uniform
or nonuniform) then this means that we can improve the exponent in the exponential-term of the
running time of the algorithm indefinitely.

Let Q and Q′ be two problems, and let µ and µ′ be two functions defined on instances of Q and
Q′, respectively, each assigning with an instance of the corresponding problem a parameter value. In
the case of CSP and CNF-SAT, µ and µ′ will assign the number of variables in the instances of these
problems. A subexponential-time Turing reduction family (Impagliazzo, Paturi & Zane, 2001; see
also Flum & Grohe, 2006) a serf-reduction 1 for short, is an algorithm A with an oracle to Q′ such
that there are computable functions f, g : N −→ N satisfying: (1) given a pair (I, ε) where I ∈ Q
and ε = 1/` (` is a positive integer), A decides I in time f(1/ε)domεµ(I)|I|O(1) (for CNF-SAT

dom = 2); and (2) for all oracle queries of the form “I ′ ∈ Q′” posed by A on input (I, ε), we have
µ′(I ′) ≤ g(1/ε)(µ(I) + log |I|).

The optimization class SNP consists of all search problems expressible by second-order existential
formulas whose first-order part is universal (Papadimitriou & Yannakakis, 1991). Impagliazzo, Paturi,
and Zane (2001) introduced the notion of completeness for the class SNP under serf-reductions,
and identified a class of problems which are complete for SNP under serf-reductions, such that the
subexponential-time solvability for any of these problems implies the subexponential-time solvability
of all problems in SNP. Many well-known NP-hard problems are proved to be SNP-complete under
the serf-reduction, including 3-SAT, VERTEX COVER, and INDEPENDENT SET, for which extensive
efforts have been made in the last three decades to develop subexponential-time algorithms with
no success. This fact has led to the exponential-time hypothesis, ETH, which is equivalent to the
statement that not all SNP problems are solvable in subexponential time:

Exponential-Time Hypothesis (ETH): The problem k-CNF-SAT, for any k ≥ 3, cannot be solved
in time 2o(n), where n is the number of variables in the input formula. Therefore, there exists
c > 0 such that k-CNF-SAT cannot be solved in time 2cn.

The following result is implied, using the standard technique of renaming variables (Impagliazzo,
Paturi & Zane, 2001, Corollary 1, 2) and from the proof of the Sparsification Lemma (Impagliazzo,
Paruri & Zane, 2001; Flum & Grohe, 2006, Lemma 16.17). For the sake of completeness, we provide
a sketch of how these aforementioned results in the literature are combined to give the statement of
the lemma.

Lemma 1. k-CNF-SAT (k ≥ 3) is solvable in 2o(n) time if and only if k-CNF-SAT with a linear
number of clauses and in which the number of occurrences of each variable is at most 3 is solvable
in time 2o(n), where n is the number of variables in the formula (note that the size of an instance of
k-CNF-SAT is polynomial in n). In particular, choosing k = 3 we get: 3-CNF-SAT in which every
variable occurs at most 3 times, denoted 3-3-SAT, is not solvable in 2o(n) time unless the ETH fails.

1. Serf-reductions were introduced by Impagliazzo, Paturi, and Zane (2001). Here we use the definition given by Flum
and Grohe (2006). There is a slight difference between the two definitions, and the latter definition is more flexible for
our purposes.

211

DE HAAN, KANJ, & SZEIDER

Proof. It was shown by Impagliazzo et al. (2001, Corollary 1, 2) that, for any k ≥ 3, there is a
serf-reduction from k-CNF-SAT to k-CNF-SAT in which the number of clauses m is linear in the
number of variables n. For an instance of k-CNF-SAT in which m = O(n), the total number of
occurrences of the variables is also linear in n (because the width of each clause is at most k). Now
for each variable that appears more than ` > 3 times, using the standard technique of renaming
variables, we can replace (rename) each of the ` occurrences with a new variable, and add a cycle of
` implications (using ` new 2-CNF-SAT clauses) enforcing that all these ` new variables receive the
same value in any satisfying assignment. The resulting formula is a k-CNF-SAT formula in which
the number of occurrences of each variable is at most 3, and in which the number of new variables is
linear in the original number of variables n. This gives a serf-reduction from k-CNF-SAT (for any
k ≥ 3) to k-CNF-SAT in which the number of occurrences of each variable is at most 3 (and hence
also with a linear number of clauses).

The ETH has become a standard hypothesis in complexity theory (Lokshtanov et al., 2011).

Remark 1. In this paper, when we consider CSP (with or without global constraints) restricted
to instances in which a certain parameter is Ω(g(n)) (resp. ω(g(n)), O(g(n)), o(g(n))), for some
proper complexity function g(n) of the number of variables n in the instance, we mean CSP restricted
to all the instances in which the parameter is upper bounded by a prespecified function that is Ω(g(n))
(resp. ω(g(n)), O(g(n)), o(g(n))). For example, when we say “CSP restricted to instances whose
primal treewidth is o(n) is solvable in subexponential time” we mean the following: For any proper
complexity function g(n) = o(n), the problem consisting of the restriction of CSP to instances
whose primal treewidth is at most g(n) is solvable in subexponential time.

3. CSP and CSPc

In this section we investigate the subexponential-time complexity of CSP and CSPc with respect
to restrictions on various structural parameters. We start in Subsection 3.1 by establishing relations
among the subexponential-time complexity of CNF-SAT, CSP, and CSPc; some of these results will
be the corner stones that the results in the subsequent (sub)sections rely upon.

3.1 Relations Among CSP, CSPc, and CNF-SAT

We start with the following simple observation:

Observation 1. For any positive integer constant r, there is a serf-reduction from r-CSP to r-CSPc

and vice versa. Moreover, each of the reductions produces an instance having the same set of
variables and the domain values as those of the original instance.

The fact that there is a serf-reduction from r-CSP to r-CSPc trivially follows from the fact that
r-CSP is a special case of r-CSPc. For the opposite direction, observe that each cTable constraint
of bounded arity can be decompressed to a table constraint, over the same set of variables, in
polynomial time by enumerating all tuples that satisfy the cTable constraint. This is a polynomial
time serf-reduction from r-CSPc to r-CSP.

Proposition 1. BOOLEAN r-CSP, where r ≥ 3, is solvable in subexponential time if and only if the
ETH fails.

212

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

Proof. To prove the first part of the statement, we give a serf-reduction from the r-CNF-SAT to
BOOLEAN r-CSP. Given an instance F of r-CNF-SAT, it is easy to see that we can correspond with
every clause in F a constraint with arity at most r (over the same variables) containing at most 2r

tuples such that the clause is satisfied if and only if the corresponding constraint is. Clearly, this is a
polynomial-time reduction that results in an instance of BOOLEAN r-CSP with the same variable-set
as F , and hence is a serf-reduction.

To prove the converse, we give a serf-reduction from BOOLEAN r-CSP to r-CNF-SAT. Let I
be an instance of BOOLEAN r-CSP. We construct an instance F of r-CNF-SAT as follows. Let C
be a constraint in I . Since the arity of I is at most r, C contains at most r variables and 2r tuples.
We can associate with C a set of clauses in F , each of width at most r, such that C is satisfied if
and only if all the associated clauses are. This can be easily done by considering each tuple over the
variable-set of C that is not contained in C, and adding a clause to F consisting of the disjunction of
the negation of the set of literals that the tuple represents. Since each tuple represents a conjunction
of a set of at most r literals, this results in at most 2r clauses, with each being the disjunction of at
most r literals. Clearly, F is an instance of r-CNF-SAT over the same variable-set as I , and F is
computable in polynomial time. The proof follows.

The following proposition suggests that Proposition 1 may not extend to r-CSP with unbounded
domain size. Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005) showed that if CLIQUE

(decide whether a given a graph on N vertices contains a complete subgraph of k vertices) is solvable
in time No(k) then the ETH fails. The converse, however, is generally believed not to be true. The
idea behind the proof of the following proposition goes back to the paper by Papadimitriou and
Yannakakis (1999), where they used it in the context of studying the complexity of database queries.
We provide the proof for completeness.

Proposition 2. If 2-CSP is solvable in subexponential time then CLIQUE is solvable in time No(k).

Proof. Assume that 2-CSP is solvable in time domo(n), and let (G, k) be an instance of CLIQUE,
where G has N vertices. Assume that the vertices in G are labeled {1, . . . , N}. We construct an
instance I of 2-CSP as follows. The variable-set of I is {x1, . . . , xk}, and the variables range over
the domain {1, . . . , N}; that is, the variables will be used to select the vertices of G that form the
clique (if it exists). For every pair of distinct variables xi, xj , where i < j, we add a constraint Cij
containing all pairs/tuples of the form (u, v) such that uv is an edge in G and u < v.

It is not difficult to verify that G has a clique of k vertices if and only if I is consistent. Since I
has k variables and dom = N , it follows that I , and hence (G, k), can be decided in time No(k).
The proof follows.

By Observation 1, the statement of Proposition 1 holds true for BOOLEAN r-CSPc, and the
statement of Proposition 2 holds true for 2-CSPc.

We explore next the relation between BOOLEAN CSP with unbounded arity and CNF-SAT. We
show that if BOOLEAN CSP is solvable in nonuniform subexponential time then so is CNF-SAT. To
do so, we exhibit a nonuniform subexponential-time Turing reduction from CNF-SAT to BOOLEAN

CSP.
Intuitively, one would try to reduce an instance F of CNF-SAT to an instance I of CSP by

associating with every clause in F a constraint in I whose variables are the variables in the clause,
and whose relation consists of all tuples that satisfy the clause. There is a slight complication in
such an attempted reduction because the number of tuples in a constraint could be exponential if

213

DE HAAN, KANJ, & SZEIDER

the number of variables in the corresponding clause is linear (in the total number of variables). To
overcome this subtlety, the idea is to first apply a subexponential-time (Turing) reduction, which is
originally due to Schuler (2005) and was also used and analyzed by Calabro, Impagliazzo, and Paturi
(2006), that reduces the instance F to subexponentially many (in n) instances in which the width of
each clause is at most some constant k; in our case, however, we will reduce the width to a suitable
nonconstant value. We follow this reduction with the reduction to BOOLEAN CSP described in the
proof of Proposition 1.

Theorem 1. If BOOLEAN CSP has a nonuniform subexponential-time algorithm then so does
CNF-SAT.

Proof. Suppose that BOOLEAN CSP is solvable in nonuniform subexponential time. Then for every
δ > 0, there exists an algorithm A′δ that, given an instance I of BOOLEAN CSP with n′ variables,
A′δ solves I in time 2δn

′ |I|c′ , for some constant c′ > 0.
Let 0 < ε < 1 be given. We describe an algorithm Aε that solves CNF-SAT in time 2εnmO(1).

Set k = b εn
2(1+c′)c. Let F be an instance of CNF-SAT with n variables and m clauses. The algorithm

Aε is a search-tree algorithm, and works as follows. The algorithm picks a clause C in F of width
more than k; if no such clause exists the algorithm stops. Let l1, . . . , lk be any k literals in C. The
algorithm branches on C into two branches. The first branch, referred to as a left branch, corresponds
to one of these k literals being assigned the value 1 in the satisfying assignment sought, and in this
case C is replaced in F by the clause (l1 ∨ . . . ∨ lk), thus reducing the number of clauses in F of
width more than k by 1. The second branch, referred to as a right branch, corresponds to assigning
all those k literals the value 0 in the satisfying assignment sought; in this case the values of the
variables corresponding to those literals have been determined, and the variables can be removed
from F and F gets updated accordingly. Therefore, in a right branch the number of variables in F is
reduced by k. The execution of the part of the algorithm described so far can be depicted by a binary
search tree whose leaves correspond to instances resulting from F at the end of the branching, and in
which each clause has width at most k. The running time of this part of the algorithm is proportional
to the number of leaves in the search tree, or equivalently, the number of root-leaf paths in the search
tree.

Before we continue the description of the algorithmAε, we illustrate the above branching phase of
the algorithm with the following concrete example. Suppose that F is an instance of CNF-SAT over
the 6 variables {x1, . . . , x6} consisting of the 3 clauses C1, C2, C3, where C1 = {x1, x2, x3, x4, x5},
C2 = {x2, x3, x5, x6}, and C3 = {x1, x3, x4, x5, x6}. Suppose that we want to reduce the formula-
width to 3 (i.e., k = 3). We pick any clause of width more than 3, say C1, and branch on any 3
literals in C1, say x1, x2, x3. In the left branch (at least one of these 3 literals is 1) we obtain the
(CNF) formula F1 consisting of the 3 clauses {x1, x2, x3}, C2, and C3; in the right branch (each of
these literals is assigned 0), we obtain the formula F2 consisting of the clause {x4, x5} (C2 and C3

are satisfied in this case). Note that we do not branch anymore on F2 since its width is 2. Since F1

still contains clauses of width more than 3, namely C2 and C3, we branch further on F2 by picking
a clause of width more than 3, say C3, and branching on 3 literals in C3, say x1, x3, x4. In the left
branch, we obtain the formula F1,1 consisting of the 3 clauses {x1, x2, x3}, C2, {x1, x3, x4}; in the
right branch we obtain the formula F1,2 consisting of the 2 clauses {x2, x5, x6} and {x5, x6}. We do
not branch on F1,2 since its width is 3. Since F1,1 contains the clause C2 of width more than 3, we
branch on 3 literals in C2, say x2, x3, x5. In the left branch we obtain the formula F1,1,1 consisting
of the 3 clauses {x1, x2, x3}, {x2, x3, x5}, and {x1, x3, x4}; we do not branch on F1,1,1 since its

214

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

F

F1 F2

F1,1 F1,2

F1,1,1 F1,1,2

Figure 1: The search tree corresponding to the branching of the algorithm in the example.

width is 3. In the right branch we obtain the formula F1,1,2 consisting of the two clauses {x1, x4}
and {x6}; we do not branch on F1,1,2. The algorithm does not branch anymore since all the leaves in
the search tree are formulas of width at most 3. Figure 1 depicts the search tree corresponding to the
branching in the above example.

We now continue the description of the algorithm Aε. Let F ′ be an instance resulting from F at
a leaf of the search tree. We reduce F ′ to an instance IF ′ of BOOLEAN CSP as follows. For each
clause C ′ in F ′, we correspond to it a constraint whose variable-set is the set of variables in C ′, and
whose tuples consist of at most 2k − 1 tuples corresponding to all assignments to the variables in C ′

that satisfy C ′. Clearly, IF ′ can be constructed in time 2kmO(1) (note that the number of clauses in
F ′ is at most m). To the instance IF ′ , we apply the algorithm A′δ with δ = ε/2. The algorithm Aε
accepts F if and only if A′δ accepts one of the instances IF ′ , for some F ′ resulting from F at a leaf
of the search tree.

To illustrate this phase of the algorithm using the example above, for each of the formulas F2,
F1,2, F1,1,1, and F1,1,2, corresponding to the leaves of the search tree (see Figure 1), we associate
an instance of BOOLEAN CSP. For example, the instance of BOOLEAN CSP associated with F1,2

consists of two constraints. The first constraint corresponds to clause {x2, x5, x6}; it has (x2, x5, x6)
as its sequence of variables, and
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1), (1, 0, 1)} as its relation. The second con-
straint corresponds to clause {x5, x6} in F1,2; it has (x5, x6) as its sequence of variables, and
{(0, 0), (0, 1), (1, 0)} as its relation.

The running time of Aε is upper bounded by the number of leaves in the search tree, multiplied
by a polynomial in the length of F (polynomial in m) corresponding to the (maximum) total running
time along a root-leaf path in the search tree, multiplied by the time to construct the instance IF ′

corresponding to F ′ at a leaf of the tree, and multiplied by the running time of the algorithm A′δ
applied to IF ′ . Note that the binary search tree depicting the execution of the algorithm is not a
complete binary tree. To upper bound the size of the search tree, let P be a root-leaf path in the
search tree, and let ` be the number of right branches along P . Since each right branch removes k
variables, ` ≤ n/k and the number of variables left in the instance F ′ at the leaf endpoint of P is
n − `k. Noting that the length of a path with ` right branches is at most m + ` (each left branch
reduces m by 1 and hence there can be at most m such branches on P , and there are ` right branches),
we conclude that the number of root-leaf paths, and hence the number of leaves, in the search tree is
at most

∑dn/ke
`=0

(
m+`
`

)
.

215

DE HAAN, KANJ, & SZEIDER

The reduction from F ′ to an instance of BOOLEAN CSP can be carried out in time 2kmO(1), and
results in an instance IF ′ in which the number of variables is at most n′ = n− `k, the number of
constraints is at most m, and the total size is at most 2kmO(1). Summing over all possible paths in the
search tree, the running time of Aε is 2εnmO(1). This is a consequence of the following estimation:

dn/ke∑
`=0

(
m+ `

`

)
2kmO(1) · 2δ(n−`k).(2kmO(1))c

′ ≤ 2(1+c
′)k+δnmO(1)

dn/ke∑
`=0

(
m+ dn/ke

`

)
≤ 2(1+c

′)k+δnmO(1)

(
2m

dn/ke

)
(1)

≤ 2(1+c
′)k+δnmO(1) · (2m)n/k (2)

≤ 2(1+c
′)k+δnmO(1) (3)

≤ 2εnmO(1).

The first inequality follows after replacing ` by the larger value dn/ke in the upper part of the
binomial coefficient, and upper bounding the term 2−`δk by 1. Inequality (1) follows from the
fact that the largest binomial coefficient in the summation is

(m+dn/ke
dn/ke

)
≤
(

2m
dn/ke

)
(m ≥ dn/ke,

otherwise m is a constant, and the instance of CNF-SAT can be solved in polynomial time from the
beginning), and hence, the summation can be replaced by the largest binomial coefficient multiplied
by the number of terms (dn/ke+1) in the summation, which gets absorbed by the term mO(1).
Inequality (2) follows from the trivial upper bound on the binomial coefficient (the ceiling can be
removed because polynomials in m get absorbed). Inequality (3) follows after noting that n/k is a
constant (depends on ε), and after substituting k and δ by their values/bounds.

It follows that the algorithm Aε solves CNF-SAT in time 2εnmO(1). Therefore, if BOOLEAN

CSP has a nonuniform subexponential-time algorithm, then so does CNF-SAT. The algorithm is
nonuniform because the polynomial factor in the running time (exponent of m) depends on ε.

Theorem 1 provides strong evidence that BOOLEAN CSP is not solvable in subexponential
time. We show next that BOOLEAN CSPc is not solvable in subexponential time under a weaker
hypothesis than that assumed in Theorem 1. By SAT[3] we denote the satisfiability of normalized
propositional formulas of depth 3 (Flum & Grohe, 2006), that is, propositional formulas that are
the conjunction-of-disjunction-of-conjunction of literals. It is well known that if SAT[3] is solvable
in subexponential time then the W -hierarchy in parameterized complexity collapses at the second
level (Chen et al., 2006), that is, W [2] = FPT, which is a consequence that is deemed very unlikely
and would imply that CNF-SAT is solvable in subexponential time (Chen et al., 2006).

Proposition 3. Unless W [2] = FPT, BOOLEAN CSPc is not solvable in subexponential time.

Proof. It is easy to see that an instance of SAT[3] is polynomial-time reducible to an instance of
BOOLEAN CSPc on the same set of variables. In this reduction, every disjunction-of-conjunction of
literals in the Boolean formula is associated with a cTable constraint, where each compressed tuple
(V1, . . . , Vr) of this constraint represents a conjunction of literals: a positive literal xi is represented
by Vi = {1}, a negative literal ¬xi is represented by Vi = {0}, and if a variable xi does not occur in
the conjunction, it is represented by Vi = {0, 1}. Therefore, there is a serf-reduction from SAT[3] to
BOOLEAN CSPc. The statement now follows from the result by Chen et al. (2006).

216

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

3.2 Instance Size and Number of Tuples

In this section we give characterizations of the subexponential-time complexity of CSP and CSPc

with respect to the instance size and the number of tuples. We also show that the subexponential-time
solvability of BOOLEAN CSP and BOOLEAN CSPc with linear size, or linear number of tuples, is
equivalent to the statement that the ETH fails.

Proposition 4. Unless the ETH fails, the restriction of BOOLEAN CSP to instances whose size is
Ω(n) is not solvable in subexponential time.

Proof. Let s(n) = Ω(n) ≥ cn be a proper complexity function, where c > 0 is a constant. Suppose
that the restriction of BOOLEAN CSP to instances of size at most s(n) is solvable in subexponential
time, and we will show that 3-CNF-SAT is solvable in subexponential time. By Lemma 1, it is
sufficient to show that 3-CNF-SAT with a linear number of clauses is solvable in 2o(n) time. Using
a padding argument2, we can prove the preceding statement assuming any linear upper bound on
the number of clauses; this is true because we can pad any instance of 3-CNF-SAT with a large
number of new variables to obtain an equivalent instance in which the number of clauses satisfies the
(smaller) desired upper bound. We pick this linear upper bound to be cn/24, where c is the constant
in the upper bound on s(n).

Let F be an instance of 3-CNF-SAT with n variables and at most cn/24 clauses. We reduce F
to an instance IF of BOOLEAN CSP using the same reduction described in the proof of Theorem 1:
for each clause C of F we correspond a constraint whose variables are those in C and whose tuples
are those corresponding to the satisfying assignments to C. Since the width of C is 3 and the number
of clauses is at most cn/24, the instance IF consists of at most cn/24 constraints, each containing at
most 3 variables and 8 tuples. Therefore, the size of IF is at most cn. We now apply the hypothetical
subexponential-time algorithm to IF . Since |I| is linear in n, and since the reduction takes linear time
in n, we conclude that 3-CNF-SAT is solvable in time 2o(n)nO(1) = 2o(n). The proof follows.

Since BOOLEAN CSP is a special case of BOOLEAN CSPc, the statement of Proposition 4 holds
true for BOOLEAN CSPc as well.

Proposition 5. The restriction of CSPc to instances with o(n) tuples is solvable in subexponential
time.

Proof. Let s(n) = o(n) be a proper complexity function, and consider the restriction of CSPc to
instances with at most s(n) tuples. We will show that this problem is solvable in time doms(n)|I|O(1).
Let I be an instance of the problem under consideration. Consider the algorithm A that, for each
compressed tuple in a constraint in I , branches on whether or not the compressed tuple is satisfied
by the satisfying assignment sought. A branch in which more than one compressed tuple in any
constraint is selected as satisfied is rejected, and likewise for a branch in which no compressed
tuple in a constraint is selected. For each remaining branch, the algorithm checks if the branch is
consistent, which would imply that there is an assignment to the variables that aligns with the branch
and satisfies I . Checking if a branch is consistent is done as follows. Let x be a variable in I , and let
t1, . . . , tp be the compressed tuples selected by the branch in the cTables that contain x as a variable.

2. A padding argument is a general tool that is used in complexity theory to extend a result to a larger class of problems.
For our purpose in this paper, the padding argument works by adding/padding a “dummy” part to the instance to create
an equivalent new instance in which a relation holds true between certain parameters in the new instance. We will use
the padding argument several times in this paper, and skip the details once the argument is clear.

217

DE HAAN, KANJ, & SZEIDER

Let V x
i , i = 1, . . . , p, be the set of values admissible for x in the cTable from which ti was selected

by the branch. A branch is consistent with respect to x if
⋂p
i=1 V

x
i 6= ∅, and a branch is consistent if

it is consistent with respect to every variable in I . Clearly, for a given branch by the algorithm A,
checking whether or not the branch is consistent can be done in polynomial time in |I|.

If a branch is consistent, the algorithm accepts; the algorithm rejects if no branch corresponds
to a consistent assignment. Clearly, the algorithm A is correct, and runs in time 2s(n)|I|O(1) =
doms(n)|I|O(1) (we assume that dom ≥ 2, otherwise the problem is trivial).

Noting that the number of tuples is a lower bound for the instance size, the following proposition
follows from Proposition 4 and Proposition 5:

Proposition 6. The restriction of CSP to instances in which the number of tuples is o(n) is solvable
in subexponential time, and unless the ETH fails, the restriction of CSP to instances in which the
number of tuples is Ω(n) is not solvable in subexponential time. The same holds true for CSPc.

Next, we show that the subexponential-time solvability of BOOLEAN CSP with linear size, or
with linear number of tuples, is equivalent to the statement that the ETH fails. We first need the
following proposition:

Proposition 7. If the ETH fails then the restriction of BOOLEAN CSPc to instances with linear
number of tuples is solvable in subexponential time.

Proof. We give a polynomial-time serf-reduction from BOOLEAN CSPc with linear number of tuples
to CIRCUIT SATISFIABILITY with linear size circuits. The result will then follow from the fact that
CIRCUIT SATISFIABILITY with linear size circuits is SNP-complete under serf-reductions (and hence
is solvable in subexponential time if and only if the ETH fails) (Impagliazzo, Paturi & Zane, 2001).
Let s(n) ≤ cn be a proper complexity function, where c > 0 is a constant. Consider the restriction
of BOOLEAN CSPc to instances in which the number of tuples is at most cn, and let I be an instance
of this problem. We construct a Boolean circuit CI as follows. The circuit CI is a depth-3 circuit
whose output gate is an AND-gate, and whose set of variables is the same as that of I . With each
cTable constraint T in I we correspond an OR-gate gT that is connected to the output gate of C. Let
T be a cTable constraint in I over the Boolean variables (v1, . . . , vr), and let t = (V1, . . . , Vr) be a
compressed tuple in T . We correspond to t an AND-gate gt in CI that is connected to the OR-gate
gT corresponding to T in CI ; the input to gt are literals in CI that are determined as follows. For
each vi, i = 1, . . . , r, if Vi = {1} then connect the variable corresponding to vi in CI to gt, and if
Vi = {0} then connect the negation of the variable corresponding to vi in CI to gt (we do nothing if
Vi = {0, 1} because there is no constraint imposed by the tuple on the Boolean value of vi). It is
easy to see that t is satisfied if and only if the corresponding gate gt in CI evaluates to 1, and hence T
is satisfied if and only if gT evaluates to 1. It follows that I is satisfied if and only if CI is. Moreover,
the size of CI is linear in the number of tuples in I , and subsequently in the number of variables in
CI . Since the construction of CI can be done in polynomial time, the proof follows.

Clearly, the statement of the above proposition holds true for BOOLEAN CSP as well.
Proposition 4, combined with Proposition 7 after noting that the size is an upper bound on the

number of tuples, gives the following results:

Theorem 2. The restriction of BOOLEAN CSP to instances with linear number of tuples is solvable
in subexponential time if and only if the ETH fails. The same result holds for BOOLEAN CSPc.

218

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

Theorem 3. The restriction of BOOLEAN CSP to instances with linear size is solvable in subexpo-
nential time if and only if the ETH fails. The same result holds for BOOLEAN CSPc.

3.3 Number of Constraints and Treewidth

In this section we give characterizations of the subexponential-time complexity of CSP and CSPc

with respect to the number of constraints, and the treewidth of the primal and incidence graphs. We
start withe following proposition:

Proposition 8. Unless the ETH fails, the restriction of CSP to instances in which the number of
constraints is ω(1) is not solvable in subexponential time.

Proof. Let λ(n) = ω(1) be a proper complexity function. We show that, unless the ETH fails, the
restriction of CSP to instances in which cons ≤ λ(n), denoted CSPλ is not solvable in domo(n)

time. By Proposition 1, it suffices to provide a serf-reduction from BOOLEAN 3-CSP with a linear
number of constraints to BOOLEAN CSPλ.

Let I be an instance of BOOLEAN CSP in which cons = n′ ≤ cn, where c > 0 is a constant. Let
C1, . . . , Cn′ be the constraints in I; we partition these constraints arbitrarily into bλ(n)cmany groups
C1, . . . , Cr, where r ≤ bλ(n)c, each containing at most dn′/λ(n)e constraints. The serf-reduction A
works as follows. A “merges” all the constraints in each group Ci, i = 1, . . . , r, into one constraint
C ′i as follows. The variable-set of C ′i consists of the union of the variable-sets of the constraints
in Ci. For each constraint C in Ci, iterate over all tuples in C. After selecting a tuple from each
constraint in Ci, check if all the selected tuples are consistent, and if so merge all these tuples into a
single tuple and add it to C ′i. By merging the tuples we mean form a single tuple over the variables
in these tuples, and in which the value of each variable is its value in the selected tuples (note that
the values are consistent). Since each constraint in I has arity at most 3, and hence contains at
most 8 tuples, and since each group contains at most dn′/λ(n)e constraints, C ′i can be constructed
in time 8dn

′/λ(n)en′O(1) = 2o(n), and hence, all the constraints C ′1, . . . , C
′
r can be constructed in

time 2o(n)nO(1) = 2o(n). We now form the instance I ′ whose variable-set is that of I , and whose
constraints are C ′1, . . . , C

′
r. Since r ≤ bλ(n)c, I ′ is an instance of CSPλ. Moreover, it is easy to see

that I is consistent if and only if I ′ is. Since I ′ can be constructed from I in subexponential time and
the number of variables in I ′ is at most that of I , it follows that A is a serf-reduction from BOOLEAN

3-CSP with a linear number of constraints to CSPλ.

Proposition 9. The restriction of CSPc to instances in which cons = O(1) is solvable in polynomial
time.

Proof. If the number of constraints in an instance is O(1), then in polynomial time we can enumerate
each subset of tuples such that the subset contains exactly one compressed tuple from each constraint
in the instance (because the size of such a subset is O(1)). We can then verify consistency (as
described in the proof of Proposition 5), and deduce an instantiation of the set of variables if it exists
in polynomial time.

Clearly, Proposition 8 holds true for CSPc, and Proposition 9 holds true for CSP. Therefore,
combining Proposition 8 and Proposition 9 we have:

Theorem 4. The restriction of CSP to instances with O(1) constraints is solvable in polynomial
time, and unless the ETH fails, the restriction of CSP to instances with ω(1) constraints is not
solvable in subexponential time. The same holds true for CSPc.

219

DE HAAN, KANJ, & SZEIDER

When now turn our attention to treewidth. We have the following proposition:

Proposition 10. Unless CSP (in general) is solvable in subexponential time (and hence the ETH
fails), the restriction of CSP to instances whose tw is Ω(n) is not solvable in subexponential time.

Proof. Let s(n) = cn, where c > 0 is a constant, and consider the restriction of CSP to instances
whose tw is at most s(n), denoted LINEAR-tw-CSP. Note that the number of vertices in the primal
graph is n, and hence tw ≤ n. Therefore, if c ≥ 1, then the statement trivially follows. Suppose now
that c < 1, and let I be an instance of CSP with n variables. By “padding” d1/ce disjoint copies of
I we obtain an instance I ′ that is equivalent to I , whose number of variables is N ′ = d1/cen, and
whose tw is the same as that of I . Since the tw of I is at most n, it follows that the tw of I ′ is at
most cN ′, and hence I ′ is an instance of LINEAR-tw-CSP. This gives a serf-reduction from CSP to
LINEAR-tw-CSP.

We note that the hypothesis “CSP is solvable in subexponential time” in the above theorem
implies that the “ETH fails” by Proposition 1, and implies that CNF-SAT has a nonuniform
subexponential-time algorithm by Theorem 1.

The following theorem provides a tight characterization of the subexponential-time complexity
of CSPc (and CSP) with respect to the primal and incidence treewidth.

Theorem 5. The following statements are true:

(i) The restriction of CSPc to instances in which tw = o(n) is solvable in subexponential time,
and unless the ETH fails, the restriction of CSPc to instances in which tw = Ω(n) is not
solvable in subexponential time.

(ii) The restriction of CSPc to instances in which tw∗ = O(1) is solvable in subexponential time
(even in P), and unless the ETH fails, the restriction of CSPc to instances in which tw∗ = ω(1)
is not solvable in subexponential time.

Proof. (i) Note that an upper bound on the primal treewidth implies the same upper bound on the
arity. Let I be an instance of CSPc whose tw = o(n). Since arity = o(n), each constraint contains
at most d(n)o(n) many satisfying tuples. By decompressing compressed tuples, i.e., by enumerating
all the satisfying tuples in each constraint in time O∗(d(n)o(n)) we can reduce the instance I to
an instance of CSP on the same set of variables, domain, and primal tree width. Now we can
compute a tree decomposition of width at most 4 · tw in time 24.38tw|I|O(1) (Amir, 2010). It is well
known (Freuder, 1990) that CSP is solvable in time O∗(d(n)tw) ⊆ O∗(d(n)o(n)), and hence I can
be decided in subexponential time. The hardness result follows from the same hardness result for
CSP in Proposition 10.

(ii) The hardness result is a direct consequence of the hardness result in Theorem 4, since cons
is an upper bound on tw∗. Establishing the first statement requires some work. Consider an instance
I of CSPc whose incidence treewidth is a constant w.

We apply a construction of Samer and Szeider (2010) to transform I into an equivalent instance
I ′ of CSPc whose incidence treewidth is at most w + 1 and where each variable appears in the
scope of at most 3 constraints. The construction keeps all constraints of I and adds binary equality
constraints and copies of variables. The equality constraints enforce that a variable and all its copies
get assigned the same value. The construction of Samer and Szeider is stated for table constraints

220

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

but clearly works also for cTable, since the constraints of I are not changed at all, and the newly
introduced constraints are binary.

Consider the dual graph Gd of I ′ which has as vertices the constraints of I ′, and where two
constraints are joined by an edge if and only if they share at least one variable. Because each
variable appears in the scope of at most 3 constraints, a further result of Samer and Szeider (2010,
Lemma 2(5)) applies, which is based on a construction due to Kolaitis and Vardi (2000), and from
which it follows that the treewidth of Gd is at most 2w + 2.

Next we obtain the the CSP instance I ′′ which is “dual” to the instance I ′. This construction is
a straightforward generalization of a known construction for CSP with table constraints (see, e.g.,
Dechter, 2003, Definition 2.1). Each constraint C = (S,U) of I ′ gives rise to a variable x[C] of I ′′;
the domain D(x[C]) is U , a set of compressed tuples. Between any two variables x[C1], x[C2] of
I ′′ corresponding to constraints C1 = (S1, U1) and C2 = (S2, U2), respectively, of I ′ that share at
least one variable we add a binary table constraint ((x[C1], x[C2]), R). Here, the relation R contains
all pairs (t1, t2) ∈ U1 × U2 that are consistent in the sense that for all variables x that appear in
the scopes of C1 and C2, the coordinate V 1

i of t1 corresponding to x and the coordinate V 2
j of

t2 corresponding x have a nonempty intersection. It is straightforward to see that I ′ and I ′′ are
equivalent. It remains to observe that Gd is isomorphic to the primal graph of I ′′, and hence the
primal treewidth of I ′′ is 2w + 2, a constant. Hence we can solve I ′′ in polynomial time (Freuder,
1990).

Clearly the same results in Theorem 5 hold true for CSP since the positive results in the theorem
were shown for the more general CSPc, and the negative results were proved for CSP.

We note the difference between the subexponential-time complexity of CSPc (and CSP) with
respect to the two structural parameters tw and tw∗: Whereas the threshold function for the
subexponential-time solvability of CSPc and CSP with respect to tw is o(n), the threshold function
with respect to tw∗ is O(1).

3.4 Degree and Arity

In this section we give characterizations of the subexponential-time complexity of CSP and CSPc

with respect to the degree and the arity.

Proposition 11. Unless the ETH fails, the restriction of CSP to instances whose deg ≥ 2 is not
solvable in subexponential time.

Proof. The statement follows from the proof of Theorem 1 after noting that, by Lemma 1, one can
use 3-3-SAT in the reduction. This will result in instances of BOOLEAN 3-CSP with degree at most
3 as well. Now for each variable x of degree 3 in an instance of BOOLEAN 3-CSP, we introduce two
new variables x′, x′′, and add a constraint whose variables are {x, x′, x′′}, and containing the two
tuples (0, 0, 0) and (1, 1, 1); this constraint stipulates that the values of x, x′, x′′ be the same. We
then substitute the variable x in one of the constraints it appears in with x′, and in another constraint
that it appears in with x′′. Therefore, in the new instance, the degree of each of x, x′, x′′ becomes 2.
After repeating this step to every variable of degree 3, we obtain an instance of BOOLEAN 3-CSP in
which the degree of each variable is at most 2. Since the increase in the number of variables is linear,
the above reduction is a serf-reduction from 3-3-SAT to BOOLEAN 3-CSP with degree at most 2,
and gives the statement of the proposition.

221

DE HAAN, KANJ, & SZEIDER

Proposition 12. Unless the ETH fails, the restriction of CSP to instances whose arity ≥ 2 (and
dom ≥ 3) is not solvable in subexponential time.

Proof. We will give a serf-reduction from the 3-COLORABILITY problem to CSP with arity = 2
and dom = 3. Since the 3-COLORABILITY problem is SNP-complete under serf-reductions (Im-
pagliazzo, Paturi & Zane, 2001), the statement of the theorem will follow. Recall that the 3-
COLORABILITY problem asks if the vertices of a given graph can be properly colored (no two
adjacent vertices are assigned the same color) with at most 3 colors.

The reduction is folklore. Given an instance of G = (V,E) of 3-COLORABILITY, where G
has n vertices, we construct an instance I of CSP as follows. The variables of I correspond to the
vertices of G, and the domain of I corresponds to the color-set {1, 2, 3}. For every edge of the graph
we construct a constraint of arity = 2 over the two variables corresponding to the endpoint of the
edge. The constraint contains all tuples corresponding to valid colorings of the endpoints of the edge.
It is easy to see that G has a 3-coloring if and only if I is consistent. Since for the instance I we
have vars = n, which is the number of vertices in G, and since arity = 2 and dom = 3, this is a
(polynomial-time) serf-reduction from the 3-COLORABILITY problem to CSP with arity = 2 and
dom = 3.

Clearly, Proposition 11 and Proposition 12 hold true for CSPc as well.
We note that CSPc and CSP with dom = 2 and arity = 2 are solvable in polynomial time via

simple reductions to 2-CNF-SAT.
As it turns out, both CSP and CSPc exhibit the same subexponential-time complexity behavior

with respect to the same restrictions on the structural parameters considered above. On the other
hand, the negative result proved in Proposition 3 for BOOLEAN CSPc assumes a weaker hypothesis
than the result about BOOLEAN CSP proved in Theorem 1.

4. CSP 6=, CSP=, CSP≥, and CSP≤

In this section we consider CSP 6=, CSP=, CSP≥, and CSP≤. Since our results for CSP=, CSP≥,
and CSP≤ are related, and rely on the results that we establish for CSP 6=, we start by presenting our
results for CSP 6=.

4.1 CSP 6=

Let I be an instance of CSP6= with constraints C1, . . . , Cc for some integer c > 0, over the set of
variables {x1, . . . , xn}. Denote by Di, i = 1, . . . , n, the domain of xi.

Proposition 13. CSP6= can be solved in time O∗(2n).

Proof. We reduce the instance I to an instance of the LIST COLORING problem. Recall that in the
LIST COLORING problem we are given a graph, each of whose vertices is associated with a list
of colors, and we are asked to decide if there exists a proper coloring of the graph such that each
vertex is assigned a color from its list. To reduce I to an instance of LIST COLORING, we construct
the graph G whose vertices are x1, . . . , xn (without loss of generality, we label the vertices in G
with their corresponding variables’ names in I) and such that there is an edge between two vertices
xi and xj , 1 ≤ i < j ≤ n, if and only if xi and xj appear together in some constraint in I. For
each vertex xi in G, associate with it a list of colors Li = Di. It is not difficult to see that I is a

222

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

yes-instance of CSP6= if and only if the graph G has a proper list coloring. It is known that the LIST

COLORING problem is solvable in time O∗(2n) (Björklund, Husfeldt, & Koivisto, 2009), and hence
so is CSP6=.

Corollary 1. Let d(n) = ω(1) be a proper complexity function. The restriction of CSP6= to instances
in which dom ≥ d(n) is solvable in subexponential time.

Proof. Let d(n) = ω(1) be a proper complexity function, and consider the restriction of CSP6=

to instances in which dom ≥ d(n). By Proposition 13, CSP6= is solvable in time O∗(2n) =
O∗(d(n)n/ log (d(n))) ⊆ O∗(domo(n)).

We note that the above result may sound strange, especially when taken in conjunction with the
next proposition, because it implies that the problem becomes “easier” for larger domain size. This
can be explained by the fact that when the domain size gets large, the allowable upper bound on the
subexponential time for solving the problem (i.e., d(n)o(n)) gets larger as well.

By Corollary 1, we can focus our investigation of the subexponential-time complexity of CSP6=

on instances in which dom = O(1) = d, for some integer constant d. Note that dom is an upper
bound on arity because each constraint must have arity at most dom (otherwise it cannot be satisfied).
If d ≤ 2, then each constraint can have arity at most 2, and CSP6= in this case reduces to 2-CNF-SAT,
which is in P. Therefore, we can assume in the remainder of this section that d ≥ 3.

Proposition 14. Unless the ETH fails, the restriction of CSP6= to instances in which dom = d ≥ 3
and cons = Ω(n) is not solvable in subexponential time.

Proof. It suffices to prove the result for cons = s(n), where s(n) is any specific function such that
s(n) is linear in n (Θ(n)), as the result would extend using a padding argument to any function
that is linear in n (we can add new “dummy” variables and new “dummy” constraints on those new
variables to make the relation between the constraints and the variables satisfy the desired function
s(·)).

By Lemma 1, 3-3-SAT is not solvable in subexponential time unless the ETH fails. The standard
polynomial-time reduction from 3-SAT to 3-COLORABILITY (see Cormen et al., 2009), establishing
the NP-hardness of 3-COLORABILITY, reduces an instance of 3-SAT on n variables and m clauses
to an instance of 3-COLORABILITY with O(n + m) vertices and O(n + m) edges. Therefore, if
we use the same reduction but start from 3-3-SAT instead of 3-SAT, we end up with an instance of
3-COLORABILITY in which the number of vertices is O(n) and the number of edges is O(n) as well.
Hence, we have a serf-reduction from 3-3-SAT to the restriction of 3-COLORABILITY to instances
whose size is linear in the number of vertices, denoted LINEAR-3-COLORABILITY. Now if we use
the standard reduction from 3-COLORABILITY to CSP6= (in which each vertex becomes a variable,
each edge becomes a constraint of arity 2, and the domain is the set of 3 colors), but instead we
start from an instance of LINEAR-3-COLORABILITY, we obtain an instance of CSP6= on n variables
(the same as the number of vertices in the graph), linear number of constraints, and domain size
dom = 3. Therefore, the previous reduction is a serf-reduction from LINEAR-3-COLORABILITY

to the restriction of CSP6= to instances in which the number of constraints is linear, and dom = 3.
Composing the two serf-reductions above gives a serf reduction from 3-3-SAT to the problem under
consideration, and thus proves the proposition.

Remark 2. We note that we did not phrase the statement of Corollary 1 to consider the restriction of
CSP6= to instances in which dom = ω(1) (as we had been been doing in the paper) because such

223

DE HAAN, KANJ, & SZEIDER

restriction will encompass a slice of the problem that is hard (instances whose domain size is upper
bounded by a constant), as shown in Proposition 14. So we had to explicitly consider only instances
whose domain size is lower-bounded by a function that is ω(1). Proposition 17, in the next section,
is handled similarly.

Remark 3. We do not consider the restriction of CSP 6= to instances in which cons = o(n) and
dom = O(1). This is because each constraint must have arity ≤ dom, and hence, if cons = o(n)
then it would follow that the total number of variables is o(n). It follows that Proposition 14 and
Corollary 1 provide tight characterizations of the subexponential-time complexity of CSP6= with
respect to each of cons and dom.

The following proposition provides a tight characterization of the subexponential-time complexity
of CSP6= with respect to the treewidth of the primal graph:

Proposition 15. The restriction of CSP6= to instances in which tw = o(n) is solvable in subexponen-
tial time, and unless the ETH fails, the restriction of CSP6= to instances in which tw = Ω(n) is not
solvable in subexponential time.

Proof. To derive the subexponential-time result, we can assume that the domain size is d, for some
constant d ≥ 3, because in the other case we get that CSP6= is solvable in subexponential time by
Corollary 1. Let I be an instance of CSP6= such that the treewidth of its primal graph is o(n). Since
the arity of each constraint in I is at most d and the domain size is d, in polynomial time we can
reduce I to an instance of CSP on the same set of variables, and with the same domain, constraints,
and primal treewidth. By part (i) of Theorem 5, the restriction of CSP to instances whose tw = o(n)
is solvable in subexponential time, and hence I can be decided in subexponential time.

The hardness result follows from a general observation about the primal treewidth of CSP
instances. First note that the number of variables n is an upper bound on the primal treewidth; that
is, tw ≤ n. Therefore, for any upper bound s(n) = Ω(n) on tw, using a padding argument (adding
a linear number of dummy new variables and singleton constraints that do not increase the primal
treewidth) we can reduce a general instance of CSP6= to an instance in which tw ≤ s(n) at the cost
of a linear increase in the number of variables and the instance size. This provides a serf-reduction
from a general instance of CSP6= to an instance in which tw ≤ s(n) = Ω(n). The result now follows
from the same result for CSP6= on general instances (implied, e.g., from Proposition 14).

It is well known that tw ≤ arity · (tw∗ − 1) and tw∗ ≤ tw + 1 (Kolaitis & Vardi, 2000). If
arity = O(1), then tw and tw∗ are within a multiplicative constant from one another. Therefore,
from Proposition 15 we can infer the following tight result:

Proposition 16. The restriction of CSP6= to instances in which tw∗ = o(n) is solvable in subexpo-
nential time, and unless the ETH fails, the restriction of CSP6= to instances in which tw∗ = Ω(n) is
not solvable in subexponential time.

Remark 4. There are several width parameters for CSP that are even more general than tw∗ in
the sense that any instances for which tw∗ is small, the other width parameter is small as well;
but there are instances for which the other width parameter is small but tw∗ can be arbitrarily
large. Prominent examples for such width parameters are hypertree width (Gottlob et al., 2002)
and submodular width (Marx, 2013). The lower bound statement of Proposition 16 clearly carries
over to the more general width parameters. The same holds true for the lower bound statements in
Proposition 19 and Theorem 5.

224

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

4.2 CSP=, CSP≥, and CSP≤

We start by presenting an exact algorithm for CSP≥; we do so by reducing CSP≥ to CSP 6=. We use
the example illustrated in Figure 2 as a running example to explain the idea behind this reduction. In
this example, the instance of CSP≥ consists of three constraints C1, C2, C3, where the variables in
C1 are x1, x2, x3, x4, the variables in C2 are x4, x5, and the variables in C3 are x1, x5, x6, x7. The
domain of x1 is {a, b}, the domain of both x2 and x3 is {b}, the domain of x4 is {b, c}, the domain
of x5 is {a}, and the domain of both x6 and x7 is {d, e}. The number of distinct values that need to
be assigned to the variables of C1 is at least 3, to the variables of C2 is at least 2, and to the variables
of C3 is at least 3.

In a solution S (i.e., an assignment of variables to domain values) to an instance I of CSP≥, and
for a constraint C in I, it is possible for several variables in C to be assigned the same value by the
solution S (in the running example we are forced to assign both x2 and x3 the value b). Therefore,
if we attempt a straightforward reduction from CSP≥ to CSP 6= that produces the same instance I,
the solution S to I as an instance of CSP≥ may not be a solution to I as an instance of CSP 6=. It
is possible that the above happens due to the fact that there are variables in I that can be removed
without affecting the satisfiability of I, because there is a solution to I in which each constraint will
still be satisfied without considering the values assigned to those variables.

The algorithm starts by trying each subset of the variables as a subset for which there exists a
solution in which each of those variables is “essential” for this solution; the algorithm then removes
all the other (nonessential) variables, updates the instance, and works toward finding a solution
under this assumption in the resulting instance. (In the running example, we remove x3 from C1;
see the Venn diagram on the left in Figure 2.) Even with the above assumption, it is still possible
that in a solution to the resulting instance, two variables in a constraint C are assigned the same
value. One cannot simply ignore (remove) one of these variables on the basis that removing it will
not affect the satisfiability of C, because the removed variable may contribute to the satisfiability
of a constraint other than C, in which this variable appears as well. (In the running example, we
are forced to assign both x1 and x5 the same value, which would violate constraint C3 of CSP 6=.)
Therefore, the resulting instance, even though it may be a satisfiable instance of CSP≥, it may not
be a satisfiable instance of CSP 6=. However, as it will be shown in Lemma 2, it is possible in such
an instance to “reassign” each variable to a subset of the constraints that it appears in, so that after
this reassignment/repartitioning each variable contributes to the satisfiability of each constraint that
it appears in. After such a reassignment, the resulting instance of CSP≥ becomes an equivalent
instance of CSP 6=. (In the running example, variable x5 is not contributing to C3, and can be safely
reassigned to C2; see the Venn diagram on the right in Figure 2.) We now proceed to the formal
proofs.

Let I be an instance of CSP≥ with constraints C1, . . . , Cc for some integer value c > 0, over the
variables x1, . . . , xn. Let ni, i = 1, . . . , c, be the nonnegative integer associated with constraint Ci.
Denote by Di, i = 1, . . . , n, the domain of variable xi, and let D =

⋃n
i=1Di. Set k = |D|. If we

consider each Ci, i = 1, . . . , c, as a set consisting of all the variables in Ci, and we draw the Venn
diagram for the Ci’s, then this Venn diagram consists of at most s ≤ 2c many nonempty regions,
where each region Rj , j = 1, . . . , s, is defined as the intersection of all the sets containing the
variables that lie in Rj in the Venn diagram. For a solution S to the instance I, we call a variable xi
essential (to S) if discounting the value assigned to xi by S violates at least one of the constraints
(containing xi), and hence no longer gives a solution to I. It is clear that by enumerating every

225

DE HAAN, KANJ, & SZEIDER

C1

C2

C3

x2 x1

x4 x5

x6 x7

C ′1

C ′2

C ′3

x2 x1

x4

x5

x6 x7

Figure 2: Illustration of the example of the reduction from CSP≥ to CSP 6=.

subset of the variables in I, which takes O(2n) time, we can work under the assumption that we are
looking for a solution such that every variable is essential to S . Since we are working on an instance
of CSP≥, adding the nonessential variables to the solution afterwards (and assigning them values
from their domains) will not hurt the solution. Therefore, without loss of generality, we will assume
that each of the variables x1, . . . , xn is essential to the solution sought (if any exists). We start with
the following lemma.

Lemma 2 (The Repartitioning Lemma). Let I be an instance of CSP≥. There is a solution to I
if and only if there is an instance I ′ on the same set of variables as I, and whose constraints are
C ′1, . . . , C

′
c, such that:

(1) the variables in C ′i are a subset of those in Ci, for i = 1, . . . , c;

(2) the numbers n1, . . . , nc are the same in both I and I ′; and

(3) there is a solution to I ′ satisfying that for every value v, and for any two distinct variables
xi, xj that are assigned the value v in the solution for I ′, the set of constraints that xi belongs
to in I ′ is disjoint from that that xj belongs to in I ′.

Proof. Suppose that I has a solution S; by the discussion preceding this lemma, we can assume that
every variable is essential to S . We define the instance I ′ on the same set of variables as I as follows.
The constants n1, . . . , nc remain the same in I ′. We define the constraints in I ′ by a sequence of
changes performed to the constraints in I; initially the constraints of I ′ are identical to those of I.
For every value v ∈ D assigned to some variable by the solution S, let x1v, . . . , x

`
v be the variables

assigned the value v by S . For each xjv, j = 1, . . . , `− 1, considered in the listed order, let Cjv be the
set of constraints containing xjv in I ′, and let Cjv,∪ be the union of all constraints containing any of
the variables xj+1

v , . . . , x`v. Remove xjv from each constraint in Cjv ∩ Cjv,∪.
We claim that the same solution to I is a solution to I ′ that satisfies all the conditions in the

statement of the lemma. First, from the construction of the constraints in I ′, for any value v in the
solution, the set of constraints containing each variable assigned the value v are mutually disjoint
because each variable xiv (i < `) assigned a value v is removed from each constraint that some
subsequent variable in xi+1

v , . . . , x`v is contained in. Moreover, because each constraint C ′i is obtained
from Ci only by (possibly) removing variables from Ci, we have C ′i ⊆ Ci, for i = 1, . . . , c. Finally,

226

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

when a variable xiv that is assigned a value v is removed from a constraint C ′j , this removal will not
affect the number of different values assigned to the variables in C ′j by S; this is because we know
for sure that there will be a subsequent variable xpv, p ∈ {i+ 1, . . . , `}, that is assigned value v and
that will remain in C ′j , namely the variable xpv with the maximum index p that appears in C ′j .

Conversely, because each C ′i is a subset of Ci, for i = 1, . . . , c, it is easy to see that any solution
to I ′ is also a solution to I.

Theorem 6. CSP≥ can be solved in time O∗((2(cons + 1) + 1)n).

Proof. Let I be an instance of CSP≥ with constraints C1, . . . , Cc for some integer c > 0, over the
variables x1, . . . , xn. Let ni, i = 1, . . . , c, be the nonnegative integer associated with constraint Ci.

We first enumerate each subset of the variables {x1, . . . , xn} as the subset of essential variables
for the solution S sought. Fix such an enumerated subset X , remove the other variables from I, and
update the instance accordingly (i.e., update the constraints); without loss of generality, we will still
refer to the resulting instance as I.

By Lemma 2, there is a solution to I if and only if there is an instance I ′ on the same set of
variables as I , and whose constraints are C ′1, . . . , C

′
c, such that: (1) the variables in C ′i form a subset

of those in Ci, for i = 1, . . . , c, (2) the numbers n1, . . . , nc are the same in both I and I ′, and (3)
there is a solution to I ′ satisfying that for every value v, and for any two distinct variables xi, xj that
are assigned the value v in the solution for I ′, the set of constraints that xi belongs to in I ′ is disjoint
from that that xj belongs to in I ′.

To find the instance I ′, we will try every possible partitioning of the variables in X into c
constraints to determine the new constraints C ′1, . . . , C

′
c in I ′. For each such partitioning π in which

C ′i ⊆ Ci and at least ni variables are in C ′i, for i = 1, . . . , c, we form the instance of CSP 6= on the set
of variables X and the set of constraints C ′1, . . . , C

′
c, and invoke the algorithm for CSP 6= described

in Proposition 13 on this instance; if the algorithm returns a solution then we return the same solution
as a solution to I . If for each enumerated subset X and each enumerated partitioning π the algorithm
for CSP 6= rejects, then we reject the instance I.

It is easy to see the correctness of the above algorithm. Clearly, if there is a solution to the CSP 6=

instance then there is a solution to I ′, and hence to I. This is because each constraint contains at
least ni variables, which must receive ni distinct values in the solution to the CSP 6= instance, hence
satisfying each constraint Ci and satisfying I. On the other hand, if I has a solution, then there is
an enumerated partitioning of the variables in X that will correspond to the constraints in I ′. Now
because there is a solution to I ′ that satisfies properties (1)-(3) in Lemma 2, no two variables in the
same constraint of I ′ receive the same value v in this solution (by property (3)). Therefore, this
solution will also be a solution to the constructed instance of CSP 6=. This shows the correctness of
the above algorithm.

The running time of the algorithm is the time taken to enumerate all subsets of the variables, and
for each subset X , the time to enumerate all partitions of X into c constraints, and finally for each
such partition the time taken to invoke the CSP 6= algorithm on the resulting instance. The number
of subsets of variables of {x1, . . . , xn} is

∑n
i=0

(
n
i

)
. For each subset of cardinality i, there are at

most 2ci many ways of partitioning it into c constraints. Finally, for each instance on i variables,
the CSP 6= algorithm takes O∗(2i) time. Putting everything together, the overall running time of the
algorithm is a polynomial factor multiplied by:

227

DE HAAN, KANJ, & SZEIDER

n∑
i=0

(
n

i

)
· 2ci · 2i =

n∑
i=0

(
n

i

)
· 2(c+1)i = (2(c+1) + 1)n.

Therefore, the running time of the algorithm is O∗((2(cons + 1) + 1)n) as claimed.

Corollary 2. The restriction of CSP≥ to instances in which cons = O(1) is solvable in O∗(2O(n))
time.

Corollary 3. The restriction of CSP≥ to instances in which cons = o(log dom) is solvable in
subexponential time.

Proof. The result follows from Theorem 6 after noticing that if cons = o(log dom) then 2cons =
domo(1).

Proposition 17. Let d(n) = ω(1) be a proper complexity function. The restriction of CSP≥ to
instances in which cons = O(1) and dom ≥ d(n) is solvable in subexponential time, and unless the
ETH fails, the restriction of CSP≥ to instances in which cons = Ω(n) (even when dom = O(1)) is
not solvable in subexponential time.

Proof. The positive result follows from Corollary 3. The hardness result follows from the hardness
result for CSP6= in Proposition 14 (CSP6= is a special case of CSP≥).

The NP-hardness reduction for CSP= with a single constraint (and linear domain size), given
by Bessiere et al. (2007), which also works for CSP≤, is actually a serf-reduction from 3-CNF-SAT.
This implies that, unless the ETH fails, neither CSP= nor CSP≤, restricted to instances with a single
constraint and dom = O(n), is solvable in subexponential time. We show next the same result for
the restrictions of CSP≤ and CSP= to instances with a constant domain size and a linear number of
constraints:

Theorem 7. The restrictions of CSP≤ and CSP= to instances where dom = O(1) and cons =
Ω(n) are not solvable in subexponential time, unless the ETH fails.

Proof. We give a serf-reduction from 3-3-SAT to CSP≤; the result will then follow by Lemma 1. The
same serf-reduction also works for the case of CSP=. Take an instance ϕ of 3-3-SAT with n variables.
We construct in polynomial time an instance of CSP≤, with cons = O(n) and dom = O(1) that
is a yes-instance if and only if ϕ ∈ 3-3-SAT. We proceed in two steps: firstly, we modify the
well-known polynomial-time reduction from 3-SAT to VERTEX COVER (Garey & Johnson, 1979) to
a reduction from 3-3-SAT to CSP≤, resulting in an instance with cons = O(n) and dom = O(n);
secondly, we transform this instance of CSP≤ to an equivalent instance of CSP≤ with cons = O(n)
and dom = O(1).

We start with the first step. Let ϕ consist of the clauses c1, . . . , cm, where ci = li1 ∨ li2 ∨ li3
for each 1 ≤ i ≤ m. The well-known reduction to VERTEX COVER produces a graph G =
(V,E), containing vertices vx, vx for each variable x occurring in ϕ, and a vertex vij for each literal
occurrence, where 1 ≤ i ≤ m and 1 ≤ j ≤ 3. The variables vx and vx are adjacent, for each
variable x, and the vertices vi1, v

i
2, v

i
3 form a triangle, for each 1 ≤ i ≤ m. Moreover, there is

an edge between vij and vl, where l = lij . Then ϕ is satisfiable if and only if G has a vertex
cover consisting of n + 2m vertices. More specifically, ϕ is satisfiable if and only if G has a

228

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

vertex cover containing exactly one vertex from vx, vx for each variable x and exactly two vertices
from vi1, v

i
2, v

i
3 for each 1 ≤ i ≤ m. We now construct an instance of CSP≤ as follows. For each

edge e = {v1, v2} ∈ E, we introduce a variable ue with domain {v1, v2}. Then, for each clause ci,
we define the set Eci to consist of all edges between vi1, v

i
2, v

i
3, between vij and vlij and between vlij

and v
lij

, for each 1 ≤ j ≤ 3. Then, we add a constraint ensuring that the variables ue for all
nine e ∈ Eci take at most 5 different values. The assignments to the variables ue that satisfy all these
constraints exactly correspond to the vertex covers of G containing exactly one vertex from vx, vx
for each variable x and exactly two vertices from vi1, v

i
2, v

i
3 for each 1 ≤ i ≤ m. These particular

vertex covers, in turn, correspond exactly to truth assignments (which set one of x, x to true, for each
variable x) satisfying ϕ. The construction of such a constraint is illustrated in Figure 3.

◦ •
vi2

•
vi1

• vi3
◦◦

◦•
vx4

•
vx4

◦•
vx1

•
vx1

◦•
vx5

•
vx5

◦
◦

◦

◦ •
vj2

•
vj1

• vj3
◦◦

◦•
vx6

•
vx6

◦•
vx7

•
vx7

◦
◦
◦

Figure 3: The CSP≤ constraints corresponding to example clauses ci = (x1 ∨ x4 ∨ x5) and cj =
(x5∨x6∨x7). Variables are denoted by ◦, and values by •. The constraints are indicated by
dashed lines. The nine variables in each constraint must be assigned to at most 5 different
values. The double lines indicate an assignment to the variables satisfying the constraint
that corresponds to the truth assignment {x1 7→ >, x4 7→ ⊥, x5 7→ >, x6 7→ >, x7 7→ ⊥}.

In the second step, we transform the instance of CSP≤ in such a way that dom = O(1). In order
to do so, we will use the following observation. Whenever two vertices v1, v2 ∈ V have the property
that there is no constraint both containing a variable ue1 for some edge e1 incident with v1 and a
variable ue2 for some edge e2 incident with v2, then we can safely identify the domain values v1
and v2 in the instance of CSP≤. Consequently, we can identify allmmany domain values v11, . . . , v

m
1

into a single value, and similarly identify all domain values v12, . . . , v
m
2 and v13, . . . , v

m
3 . Next, to

reduce dom even more, we will identify a number of domain values vx with each other (and similarly
identify their complementary values vx with each other). Consider the primal graph of ϕ, i.e., the
graph Gpϕ containing as vertices the variables of ϕ where two vertices x, x′ are adjacent if and only
if x and x′ occur together in a clause (positively or negatively). Since each variable occurs at most 3
times in ϕ, we know that the maximum degree of Gpϕ is bounded above by 8. Then, by Brooks’
Theorem (Brooks, 1941), we know that there exists a proper coloring of Gpϕ by at most 9 colors, and
that such a coloring can be computed in linear time. Take such a proper coloring c of Gpϕ. Now, for
each color b used by the coloring c, we let Xb ⊆ Var(ϕ) be the set of variables x such that c(x) = b.
Then, since c is a proper coloring of the primal graph Gpϕ of ϕ, we know that for any color b no two
variables x, x′ ∈ Xb occur together in any clause of ϕ. Therefore, for each color 1 ≤ b ≤ 3 we
can safely identify all domain values vx for x ∈ Xb with each other in the instance of CSP≤, and
similarly we can safely identify all domain values vx for x ∈ Xb with each other. This results in an
equivalent instance of CSP≤ with cons = O(n) and dom = O(1).

229

DE HAAN, KANJ, & SZEIDER

We next consider the subexponential-time complexity of CSP=, CSP≥, and CSP≤ with respect
of the primal treewidth. We have the following tight result:

Proposition 18. The restriction of each of CSP=, CSP≥, and CSP≤ to instances in which tw = o(n)
is solvable in subexponential time, and unless the ETH fails, the restriction of each of CSP=, CSP≥,
and CSP≤ to instances in which tw = Ω(n) is not solvable in subexponential time.

Proof. The proof of this proposition for each of CSP=, CSP≥, and CSP≤ is exactly the same as the
proof of Proposition 15.

Finally, the following hardness result for CSP= and CSP≥ with respect to tw∗ follows from
Proposition 16 since CSP6= is a special case of each of CSP= and CSP≥:

Proposition 19. Unless the ETH fails, the restriction of CSP= (resp. CSP≥) to instances in which
tw∗ = Ω(n) is not solvable in subexponential time.

5. Conclusion

We have provided a first analysis of the subexponential-time complexity of CSP with extensionally
represented constraints and CSP with global constraints, for the latter focusing on instances that are
composed of the fundamental global constraints AllDifferent, AtLeastNValue, AtMostNValue, and
cTable, respectively. Our results show a detailed complexity landscape for these problems under
various natural structural restrictions. In most cases, we were able to obtain tight bounds that exactly
determine the borderline between the classes of instances that can be solved in subexponential time,
and those for which the existence of subexponential-time algorithms is unlikely. There are several
ways for extending the current work such as considering other global constraints, the combination of
different global constraints, and other structural restrictions on the primal or incidence graphs.

References

Alber, J., Fernau, H., & Niedermeier, R. (2004). Parameterized complexity: exponential speed-up for
planar graph problems. Algorithmica, 52(1), 26–56.

Amir, E. (2010). Approximation algorithms for treewidth. Algorithmica, 56(4), 448–479.

Bäckström, C., & Jonsson, P. (2011). All pspace-complete planning problems are equal but some are
more equal than others. In Borrajo, D., Likhachev, M., & López, C. L. (Eds.), Proceedings
of the Fourth Annual Symposium on Combinatorial Search, SOCS 2011, Castell de Cardona,
Barcelona, Spain, July 15.16, 2011. AAAI Press.

Beigel, R., & Eppstein, D. (2005). 3-coloring in time O(1.3289n). J. Algorithms, 54(2), 168–204.

Beldiceanu, N., Carlsson, M., & Rampon, J.-X. (2006). Global constraint catalog. Tech.
rep. T2005:08, SICS, SE-16 429 Kista, Sweden. On-line version at http://www.emn.fr/x-
info/sdemasse/gccat/.

Benhamou, B., Paris, L., & Siegel, P. (2012). Dealing with satisfiability and n-ary CSPs in a logical
framework. Journal of Automated Reasoning, 48(3), 391–417.

Bennaceur, H. (2004). A comparison between SAT and CSP techniques. Constraints, 9(2), 123–138.

230

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., & Walsh, T. (2006). Filtering algorithms for the
NValue constraint. Constraints, 11(4), 271–293.

Bessiere, C., Hebrard, E., Hnich, B., & Walsh, T. (2007). The complexity of reasoning with global
constraints. Constraints, 12(2), 239–259.

Björklund, A., Husfeldt, T., & Koivisto, M. (2009). Set partitioning via inclusion-exclusion. SIAM J.
Comput., 39(2), 546–563.

Brooks, R. L. (1941). On colouring the nodes of a network. Mathematical Proceedings of the
Cambridge Philosophical Society, 37, 194–197.

Calabro, C., Impagliazzo, R., & Paturi, R. (2006). A duality between clause width and clause density
for SAT. In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20
July 2006, Prague, Czech Republic, pp. 252–260. IEEE Computer Society.

Chen, H., & Grohe, M. (2010). Constraint satisfaction with succinctly specified relations. J. of
Computer and System Sciences, 76(8), 847–860.

Chen, J., Kanj, I., Perkovic, L., Sedgwick, E., & Xia, G. (2007). Genus characterizes the complexity
of certain graph problems: Some tight results. Journal of Computer and System Sciences,
73(6), 892–907.

Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I. A., & Xia, G. (2005). Tight lower
bounds for certain parameterized NP-hard problems. Information and Computation, 201(2),
216–231.

Chen, J., Huang, X., Kanj, I. A., & Xia, G. (2006). Strong computational lower bounds via parame-
terized complexity. J. of Computer and System Sciences, 72(8), 1346–1367.

Chen, J., Kanj, I. A., & Xia, G. (2009). On parameterized exponential time complexity. Theoretical
Computer Science, 410(27-29), 2641–2648.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (Third
edition). The MIT Press, Cambridge, MA.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Demaine, E., Fomin, F., Hajiaghayi, M., & Thilikos, D. (2005). Subexponential parameterized
algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52, 866–893.

Dimopoulos, Y., & Stergiou, K. (2006). Propagation in CSP and SAT. In Benhamou, F. (Ed.),
Principles and Practice of Constraint Programming - CP 2006, 12th International Conference,
CP 2006, Nantes, France, September 25-29, 2006, Proceedings, Vol. 4204 of Lecture Notes in
Computer Science, pp. 137–151. Springer Verlag.

Feder, T., & Motwani, R. (2002). Worst-case time bounds for coloring and satisfiability problems. J.
Algorithms, 45(2), 192–201.

Fellows, M. R., Fomin, F. V., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S., & Thomassen, C.
(2011a). On the complexity of some colorful problems parameterized by treewidth. Information
and Computation, 209(2), 143–153.

Fellows, M. R., Friedrich, T., Hermelin, D., Narodytska, N., & Rosamond, F. A. (2011b). Constraint
satisfaction problems: Convexity makes alldifferent constraints tractable. In Walsh, T. (Ed.),
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 522–527. IJCAI/AAAI.

231

DE HAAN, KANJ, & SZEIDER

Flum, J., & Grohe, M. (2006). Parameterized Complexity Theory, Vol. XIV of Texts in Theoretical
Computer Science. An EATCS Series. Springer Verlag, Berlin.

Freuder, E. C. (1982). A sufficient condition for backtrack-bounded search. J. of the ACM, 29(1),
24–32.

Freuder, E. C. (1990). Complexity of k-tree structured constraint satisfaction problems. In Shrobe,
H. E., Dietterich, T. G., & Swartout, W. R. (Eds.), Proceedings of the 8th National Conference
on Artificial Intelligence. Boston, Massachusetts, July 29 - August 3, 1990, 2 Volumes, pp. 4–9.
AAAI Press / The MIT Press.

Garey, M. R., & Johnson, D. R. (1979). Computers and Intractability. W. H. Freeman and Company,
New York, San Francisco.

Gaspers, S., & Szeider, S. (2014). Guarantees and limits of preprocessing in constraint satisfaction
and reasoning. Artificial Intelligence, 216, 1–19.

Ge, R. (2013). Provable Algorithms for Machine Learning Problems. Ph.D. thesis, Princeton
University.

Gottlob, G., Leone, N., & Scarcello, F. (2002). Hypertree decompositions and tractable queries. J. of
Computer and System Sciences, 64(3), 579–627.

Grandoni, F., & Italiano, G. F. (2006). Algorithms and constraint programming. In Benhamou,
F. (Ed.), Principles and Practice of Constraint Programming - CP 2006, 12th International
Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings, Vol. 4204 of
Lecture Notes in Computer Science, pp. 2–14. Springer Verlag.

Grohe, M. (2006). The structure of tractable constraint satisfaction problems. In Kralovic, R., &
Urzyczyn, P. (Eds.), Mathematical Foundations of Computer Science 2006, 31st International
Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings,
Vol. 4162 of Lecture Notes in Computer Science, pp. 58–72. Springer Verlag.

de Haan, R., Kanj, I., & Szeider, S. (2014). Subexponential time complexity of CSP with global
constraints. In Proceedings of CP 2014, the 20th International Conference on Principles and
Practice of Constraint Programming, Lyon, France, September 8-12, 2014. Springer Verlag.

Hnich, B., Kiziltan, Z., & Walsh, T. (2004). Combining symmetry breaking with other constraints:
Lexicographic ordering with sums. In AI&M 1-2004, Eighth International Symposium on
Artificial Intelligence and Mathematics, January 4-6, 2004, Fort Lauderdale, Florida, USA.

van Hoeve, W.-J., & Katriel, I. (2006). Global constraints. In Rossi, F., van Beek, P., & Walsh, T.
(Eds.), Handbook of Constraint Programming, chap. 6. Elsevier.

Impagliazzo, R., & Paturi, R. (2001). On the complexity of k-SAT. J. of Computer and System
Sciences, 62(2), 367–375.

Impagliazzo, R., Paturi, R., & Zane, F. (2001). Which problems have strongly exponential complex-
ity?. J. of Computer and System Sciences, 63(4), 512–530.

Jeavons, P., & Petke, J. (2012). Local consistency and SAT-solvers. J. Artif. Intell. Res., 43, 329–351.

Jonsson, P., Lagerkvist, V., & Nordh, G. (2013). Blowing holes in various aspects of computational
problems, with applications to constraint satisfaction. In Schulte, C. (Ed.), Principles and
Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala,

232

ON THE SUBEXPONENTIAL-TIME COMPLEXITY OF CSP

Sweden, September 16-20, 2013. Proceedings, Vol. 8124 of Lecture Notes in Computer Science,
pp. 398–414. Springer Verlag.

Kanj, I., & Szeider, S. (2013). On the subexponential time complexity of CSP. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI Press.

Katsirelos, G., & Walsh, T. (2007). A compression algorithm for large arity extensional constraints.
In Bessiere, C. (Ed.), Principles and Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings,
Vol. 4741 of Lecture Notes in Computer Science, pp. 379–393. Springer Verlag.

Kolaitis, P. G., & Vardi, M. Y. (2000). Conjunctive-query containment and constraint satisfaction. J.
of Computer and System Sciences, 61(2), 302–332. Special issue on the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Seattle, WA,
1998).

Kutz, M., Elbassioni, K., Katriel, I., & Mahajan, M. (2008). Simultaneous matchings: hardness and
approximation. J. of Computer and System Sciences, 74(5), 884–897.

Kwisthout, J., Bodlaender, H. L., & van der Gaag, L. C. (2010). The necessity of bounded treewidth
for efficient inference in Bayesian networks. In Coelho, H., Studer, R., & Wooldridge, M. (Eds.),
ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August
16-20, 2010, Proceedings, Vol. 215 of Frontiers in Artificial Intelligence and Applications, pp.
237–242. IOS Press.

Lokshtanov, D., Marx, D., & Saurabh, S. (2011). Lower bounds based on the exponential time
hypothesis. Bulletin of the European Association for Theoretical Computer Science, 105,
41–72.

Marx, D. (2010). Can you beat treewidth?. Theory of Computing, 6, 85–112.

Marx, D. (2013). Tractable hypergraph properties for constraint satisfaction and conjunctive queries.
J. of the ACM, 60(6), Art. 42, 51.

Moser, R. A., & Scheder, D. (2011). A full derandomization of Schöning’s k-SAT algorithm. In
STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 245–251.
ACM, New York.

Pachet, F., & Roy, P. (1999). Automatic generation of music programs. In Jaffar, J. (Ed.), Principles
and Practice of Constraint Programming - CP’99, 5th International Conference, Alexandria,
Virginia, USA, October 11-14, 1999, Proceedings, Vol. 1713 of Lecture Notes in Computer
Science, pp. 331–345. Springer Verlag.

Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.

Papadimitriou, C. H., & Yannakakis, M. (1991). Optimization, approximation, and complexity
classes. J. of Computer and System Sciences, 43(3), 425–440.

Papadimitriou, C. H., & Yannakakis, M. (1999). On the complexity of database queries. J. of
Computer and System Sciences, 58(3), 407–427.

Razgon, I. (2006). Complexity analysis of heuristic CSP search algorithms. In Hnich, B., Carlsson,
M., Fages, F., & Rossi, F. (Eds.), Recent Advances in Constraints, Joint ERCIM/CoLogNET
International Workshop on Constraint Solving and Constraint Logic Programming, CSCLP

233

DE HAAN, KANJ, & SZEIDER

2005, Uppsala, Sweden, June 20-22, 2005, Revised Selected and Invited Papers, Vol. 3978 of
Lecture Notes in Computer Science, pp. 88–99. Springer Verlag.

Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In Hayes-Roth, B.,
& Korf, R. E. (Eds.), Proceedings of the 12th National Conference on Artificial Intelligence,
Seattle, WA, USA, July 31 - August 4, 1994, Volume 1, pp. 362–367. AAAI Press / The MIT
Press.

Régin, J.-C. (1995). Développement d’outils algorithmiques pour l’Intelligence Artificielle. Ph.D.
thesis, Montpellier II. in French.

Régin, J.-C. (2011). Global constraints: A survey. In van Hentenryck, P., & Milano, M. (Eds.),
Hybrid Optimization: The Ten Years of CPAIOR, Vol. 45 of Optimization and Its Applications,
chap. 3, pp. 63–134. Springer Verlag.

Régin, J.-C., & Rueher, M. (2000). A global constraint combining a sum constraint and difference
constraints. In Dechter, R. (Ed.), Principles and Practice of Constraint Programming - CP
2000, 6th International Conference, Singapore, September 18-21, 2000, Proceedings, Vol.
1894 of Lecture Notes in Computer Science, pp. 384–395. Springer Verlag.

Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of Constraint Programming. Elsevier.

Samer, M., & Szeider, S. (2010). Constraint satisfaction with bounded treewidth revisited. J. of
Computer and System Sciences, 76(2), 103–114.

Schöning, U. (1999). A probabilistic algorithm for k-SAT and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science (New York, 1999), pp. 410–414.
IEEE Computer Soc., Los Alamitos, CA.

Schuler, R. (2005). An algorithm for the satisfiability problem of formulas in conjunctive normal
form. J. Algorithms, 54(1), 40–44.

Traxler, P. (2008). The time complexity of constraint satisfaction. In Grohe, M., & Niedermeier, R.
(Eds.), Parameterized and Exact Computation, Third International Workshop, IWPEC 2008,
Victoria, Canada, May 14-16, 2008. Proceedings, Vol. 5018 of Lecture Notes in Computer
Science, pp. 190–201. Springer Verlag.

234

