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Abstract

We present an approach to simultaneously reasoning about a video clip @ahan entire
natural-language sentence. The compositional nature of language is exploitedd construct
models which represent the meanings of entire sentences composaat of the meanings of
the words in those sentences mediated by a grammar that encodes theqaticate-argument
relations. We demonstrate that these models faithfully representhe meanings of sentences
and are sensitive to how the roles played by participants (nouns), lheir characteristics (ad-
jectives), the actions performed (verbs), the manner of such actios (adverbs), and changing
spatial relations between participants (prepositions) a ect the meaning of a sentence and
how it is grounded in video. We exploit this methodology in three ways In the rst, a video
clip along with a sentence are taken as input and the participants in the event described
by the sentence are highlighted, even when the clip depicts muiple similar simultaneous
events. In the second, a video clip is taken as input without a ser@nce and a sentence is
generated that describes an event in that clip. In the third, a corpus of video clips is paired
with sentences which describe some of the events in those clips cgaithe meanings of the
words in those sentences are learned. We learn these meanings withauteding to specify
which attribute of the video clips each word in a given sentence refrs to. The learned
meaning representations are shown to be intelligible to humans.

1. Introduction

People use their knowledge of language to make sense of the world around thenot just
to describe their observations or communicate to others. In this work we present an
approach which is able to describe video clips in natural language whilsimultaneously
using that capacity to reason about the content of those clips. While eaikr approaches
can detect individual features in video (Laptev, 2005; Kuehne, Jhuang, @rrote, Poggio, &
Serre, 2011), such as objects or events, we show how knowledge of language iceegrate
information from these di erent feature detectors in order to both im prove their performance
and support novel functionality. To do this, we exploit the compositional nature of language
to construct models for entire sentences from individual word moels, and use such models to
determine if an entire sentence describes a video clip. We calie mechanism for determining
how well a video clip depicts a sentence, and alternatively how ell a sentence describes a
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video clip, the sentence tracker(Yu & Siskind, 2013; Siddharth, Barbu, & Siskind, 2014),
because it simultaneously performs multi-object tracking and recogition of events described
by sentences. This ability to score video-sentence pairs also alle us to perform another
important task that humans naturally engage in: learning word meanings. We fiow how
the sentence tracker can perform this task using the same kind of iwrmation that is
available to children, namely, video paired with entire sentenes which describe some of
the events depicted. This general-purpose inference mechanisfor combining bottom-up
information from low-level video-feature detectors and top-down inbrmation from natural-
language semantics allows us to perform three novel tasks: tracking obgts which are
engaged in a speci ¢ event as described by a sentence, generatingentence to describe a
video clip, and learning word meaning from video clips paired with atire sentences.

Fundamentally, our approach relies on solving two separate problems sinitaneously:
tracking the participants of an event and recognizing the occurrenceof that event. We
formulate this as the combination of two measures: a measure of how well gideo clip
depicts a track collection and how well that track collection depicts an event. Note that
what we mean by “event' is a complex state of a airs described by an ente sentence, not
the common de nition used in the computer vision community, which refers to a single verb
label attached to a video clip. In order to solve both problems simulaneously, we show
how the similarity between tracking and event recognition facilities a common inference
algorithm. We perform single-object tracking by combining the output of an unreliable
detection source, an object detector, with an estimate of the motion preent in the video,
optical ow. The tracks produced consist of strong detections and thér motion agrees
with the motion present in the video. We perform single-word recogniton by representing
the meaning of a word in terms of the gross motion of object tracks. Finallywe show how
single-object tracking and single-word recognition combine to performmulti-object tracking
and whole-sentence recognition by exploiting the compositionality of anguage to combine
word models into sentence models and by formulating both tasks in a ay that is amenable
to dynamic programming.

This ability to perform both tasks simultaneously|in other words, to s core a video-
sentence pair with how well the video clip depicts the sentenglis crucial for attaining
good performance. By integrating top-down and bottom-up information, it corrects errors
in object-detector output. This is important because object detecrs are highly unreliable,
achieving at most 40%-50% average precision on the PASCAL Visual Object Class¢VOC)
challenge (Everingham, Van Gool, Williams, Winn, & Zisserman, 2010). Barlu, Siddharth,
Michaux, and Siskind (2012b) showed how the reliability of object trackng and single-
word recognition (typically for a verb) can be improved by performing both simultaneously.
We build on this earlier work and extend it to track multiple objects and recognize whole
sentences. We further extend that work with a novel approach to setence generation and
learning word meanings.

Following Yamoto, Ohya, and Ishii (1992), Siskind and Morris (1996), and Starner
Weaver, and Pentland (1998), we represent word meanings in a fashion thatan be grounded
in video as multi-state time-series classi ers, either hiddenMarkov models (HMMs) or
nite-state machines (FSMs), over features extracted from objecttracks in such video. For
example, a model forapproach might use three states to encode an event where the dis-
tance between two tracked objects is initially high, over time deceases, and nally ends
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by being small. Those earlier approaches con ned themselves to repsenting the meaning
of verbs, but we employ the same representation for all words in the bdcon regardless
of their part of speech. This allows us to combine word models togetheinto sentence
models, in essence, creating large factorial models. Unlike earlievork (Kulkarni, Prem-
raj, Dhar, Li, Choi, Berg, & Berg, 2011; Hanckmann, Schutte, & Burghouts, 2012; Babu,
Bridge, Burchill, Coroian, Dickinson, Fidler, Michaux, Mussman, Siddharth, Salvi, Schmidt,
Shangguan, Siskind, Waggoner, Wang, Wei, Yin, & Zhang, 2012a; Krishnamoorthy, Mal&-
rnenkar, Mooney, Saenko, & Guadarrama, 2013), we exploit linguistics, namglthe concept
of linking, to construct the particular factorial model which encodes the predicate-argument
structure of a speci ¢ sentence, not all sentences which happerotshare the same words.
For example the sentence,The person picked up the backpackas very di erent meaning
from the sentenceThe backpack picked up the persordespite sharing all words, and our
method encodes such distinctions.

An overview of the operation of the sentence tracker is shown in Figurd. Information
is extracted from video using object detectors and optical ow, as disussed in Section 2.1.
Independently, a sentence is parsed and the number of participastis determined, together
with a linking function, as discussed in Sections 3. Each word in thesentence has an
associated model, as discussed in Section 2.2. The information extraxt from the sentence
combines with the per-word models to form a model for an entire semnce, as discussed in
Sections 2.3 and 2.4. That model takes, as input, the data extracted from aideo clip and
computes how well the clip depicts the given sentence, the videsentence score shown in
Equation 10.

In order to more formally articulate this approach and its applications, we represent the
measure of how well a video clip depicts a sentence as a functidd : (B,s, ) 7! ( ,J),
where B represents the information extracted from a video clip,s represents the sentence,

represents word meanings, is the video-sentence score, and is a collection of tracks,
one for each participant in the event described by the sentence, cogsponding to the optimal
video-sentence score. We us® and S; to refer to the two components produced byS. This
function internally makes use of the numberL of event participants and , a linking function .
The linking function maps arguments of words in the sentence to evanparticipants. We
make use of dinking process a function : s7! (L, ), that will be described in Section 3,
to derive the number L of participants and the linking function . We now elaborate on
three applications of this approach that we will demonstrate: language inferencelanguage
generation, and language acquisition

In language inferenceone can apply the sentence tracker to the same video cliB, that
depicts multiple simultaneous events taking place in the eld of view, with two di erent sen-
tencess; and sp. In other words, one can computel; = S;(B,s;, )and J, = S;(B, sy, )
to yield two dierent track collections J; and J» corresponding to the dierent sets of
participants in the di erent events described by s; and s,. We demonstrate this in Sec-
tion 5.3. Specically, we show how language inference, unlike many otheapproaches to
event recognition, not only deals with video that depicts multiple simultaneous events, but
is also sensitive to subtle changes in sentence meaning. We presan experiment where we
construct minimal pairs of sentences, given a grammar, which di er inonly a single lexical
constituent, where that varying lexical constituent can itself vary among all parts of speech
and sentential positions. For example the two sentences
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Section 3 Section 2.1
sentences —— l i video B i
e linking process | | |
| | |
number of l i _ |
participants L linking function | | e optical ow
o detections |

Equation 10

Figure 1: An overview of the approach presented and a roadmap to its pres¢ation. Sec-
tion 5.3 demonstrates language inference. Section 5.4 demonstrates languageneration.
Section 5.5 demonstrates language acquisition.

The person tothe left of the trash can put down an object.
The person tothe right of the trash can put down an object.

are minimal pairs which di er in the preposition attached to the subj ect noun phrase. We
construct a video corpus where both sentences in such minimal paroccur simultaneously
in the same video clip and demonstrate how language inference is setig to changes in
sentential meaning by producing two distinct and semantically appopriate sets of tracks
given each of the two sentences as input. To conduct a thoroughevaluation, we employ a
vocabulary of 17 lexical items (5 nouns, 2 adjectives, 4 verbs, 2 adves, 2 spatial-relation
prepositions, and 2 motion prepositions) and a video corpus of 94 clips.

1. By “thorough' we mean the following:

1.
2.
3.

4.

We evaluate all three of the applications of our general method: inference, generation, and acquisition.
We show performance on our entire corpus, without cherry picking.

We illustrate deep semantic grounding by way of minimal pairs that vary all lexical items and all
sentential positions.

We demonstrate deep semantic grounding by rendering the thematic-role assignments for sentences
on associated videos, illustrating correct assignment of evert participants to roles and predicate
arguments.

We compare our learned models with ground-truth meaning representations and precisely measure
the KL divergence of such in Table 10.
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In language generation we take a video clipB as input and systematically search the
space of all possible sentences that can be generated by a context-free grammar, and nd
the sentence with maximal video-sentence score:

argmaxS (B,s, )
S

This generates a sentence that best describes an input video cliB. We demonstrate this
in Section 5.4. Unlike previous approaches to sentence generation fromddo which are
largely ad hoqBarbu et al., 2012a; Hanckmann et al., 2012; Krishnamoorthy et al., 2013),
we present an approach which is optimal, in the sense that the generatesentence is that
which will produce the highest video-sentence score. Our evaluitn for language generation
uses the same video corpus, grammar, and lexicon as used for language infere

In language acquisition we exploit the fact that we can simultaneously reason both about
the presence and motion of participants in a video clip and about the meaimg of a sentence
describing that clip to compute models for word meaning from a trainng set of video clips
paired with sentences. In other words, given a training setf(B1,51),:::,(Bm,Sw)g of
video-sentence pairs where the word meanings are unknown, we compe

argmax S (Bm,Sm, )
m=1

which nds the word meanings that maximize the aggregate score for all video-sentence
pairs in the training set. We demonstrate this in Section 5.5. We learnword meanings
without needing to annotate which word refers to which attribute of t he video and without
annotating the tracks for the objects which participate in the event described in the training
sentences. To conduct a thorough evaluation, we employ a vocabulary of léxical items
(6 nouns, 4 verbs, 2 adverbs, 2 spatial-relation prepositions, and 2 mamin prepositions) and
a video corpus of 94 clips out of which a total of 276 video-sentence pairs amnstructed.

The central contribution of this work is the sentence tracker, a precise mathematical and
computational framework for performing simultaneous object detection,multi-object track-
ing, action recognition, and recognition of multiple predicates assignedd di erent subsets
of participants, culminating in Equation 10, as implemented as an e cient algorithm as
illustrated in Figures 11 and 12, that implements exact inference in ajoint model, along
with the method for training such solely from videos paired with seriential annotation.
The current focus in the computational linguistics community has been on large-scale unre-
stricted text processing for a long time now. The computer visioncommunity is currently
undergoing a similar transition towards processing large-scale unstricted image and video
corpora. Our sentence tracker imot intended to process unrestricted text and video. Nor is
it intended to produce natural-sounding text descriptions of video. We are more concerned
with semantics, as re ected by the truth of the text descriptions and the accuracy of the
learned meaning representations. Moreover, we evaluate it on a corpubat is considerably
smaller than what is currently used in both the computational linguistics and computer
vision communities. We do this because we intend our work to addresan orthogonal set
of concerns:

1. We provide a uni ed framework that supports inference, generation and acquisition.
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2. We demonstrate that it learns correct meanings of all words, with no pror meanings
of any words, from video paired with whole sentences, with no manual gdiance as to
which words correspond to which components of the video.

3. We demonstrate that it has deep understanding of sentential semantis, grounded in
video, and that such are derived by a systematic computational procesérom deep
word meanings grounded in video.

4. This deep understanding allows the framework to distinguish betveen subtle semantic
distinctions that are manifest in two sentences that di er in a single word or in word
order, i.e., it understands the mapping between objects detected in the vide and the
particular semantic roles they play in the sentences.

This does not mean that it has greater or lesser limitations than currentwork in computa-
tional linguistics or computer vision. Di erent research has di erent limitations. The above
four points highlight some of the limitations that such current work exhibits that are absent
from the work presented here.

2. Joint Tracking and Event Recognition

We represent word meanings, and ultimately sentence meanings, as cdrants over the

time-varying spatial relations between event participants: their relative and/or absolute

positions, velocities, and/or accelerations. This requires that we tack the positions of
event participants over the course of a video clip. In an ideal world,we would be able to
accurately determine which object classes were present in any ve frame and for those
that are, precisely determine the positions of all instances of thoselasses in the eld of
view. Unfortunately, the current state of the art in object detection is far from this ideal.

Object detectors only achieve between 3.8% and 65% average precision onetfPASCAL

VOC benchmark (Everingham et al., 2010). This means that, in practice, they su er from

both false positives and false negatives, as illustrated in Figure 2. Wi we wish to produce
a single detection for each of the person and backpack, as shown in Figuread( in practice,

we often get spurious detections (false positives), as happens for theerson detector in
Figure 2(b), and fail to obtain the desired detection (false negatives) as happens for the
backpack detector in Figure 2(c).

2.1 Detection-Based Tracking

The general approach to resolving this problem is taovergenerate We lower the acceptance
threshold for the detector, trading o a higher false-positive rate for a lower false-negative
rate, as in Figure 2(d). We attempt to lower the threshold su cientl y to completely elim-
inate false negatives, biasing it to have a preponderance of false pasis. The tracking
problem then reduces to the problem of selecting detections fromhe frames of a video clip
to assemble coherent tracks.

Let us assume, for a moment, that we wish to track a single instance of a ggi ed object
class known to be present in the eld of view throughout a video clip We track that object
by selecting a single detection in each frame from the pool of deteains for that object
class. The sequence of the top-scoring detection in each frame mighonhbe temporally
coherent, as shown in Figure 3(a). Likewise, the most temporally-coh@nt sequence of
detections might consist of low-scoring misdetections, as shown ifigure 3(b). Thus our
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(©) (d)

Figure 2: State-of-the-art object detectors are imperfect. While wewish a single detection
for the person and backpack, as in (a), in practice we often get spurious dections (false
positives), as in (b), or fail to obtain the desired detection (false regatives), as in (c).
Reducing the acceptance threshold biases the detector to trade o aigher false-positive
rate for a lower false-negative rate, as in (d).

approach is to balance these two extremes by incorporating both the deiction score and a
temporal-coherence score into the selection criterion. This oftercan yield the desired track,
as shown in Figure 3(c).

We adopt an objective function that linearly combines both the sum of the detection
scores in all video frames and the sum of a temporal-coherence score apdl to all pairs
of adjacent video frames. More formally, in a video clipB of T frames, with J! detec-
tions til, T b‘Jt in frame t, we seek a trackj, namely a sequencg 1. v T of detection
indices, that maximizes the sum of the detection score‘o‘(q‘t) and the temporal-coherence

scoresg(bj‘t 111 bjtt):
I I

X X '
max () + o) (1)
=1

t t=2
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Figure 3: Assembling a track from a single detection per frame seleatefrom a pool of
overgenerated detections. Selecting the top-scoring detectiomieach frame of a video
clip can yield an incoherent track, as shown in (a). Selecting tracksdo maximize temporal
coherence can lead to tracks incorporating solely low-scoring misdettions, as shown in (b).
Selecting tracks to maximize an appropriate combination of detection sore and temporal-
coherence score can lead to the desired track, as shown in (c).

The objective function in Equation 1 constitutes a measure of how wela video clip B depicts
atrack j. We employ this particular objective function because it can be optimized e ciently
with dynamic programming (Bellman, 1957), namely the Viterbi (1967) algorithm. This
leads to a lattice, as shown in Figure 4. The columns of the lattice corrgpond to video
frames, the detections in each frame constitute the columns, and a &ick constitutes a path
through the lattice.

The general approach to tracking by overgenerating detections and setéing among
those to yield a track is known asdetection-based tracking (Han, Sethi, Hua, & Gong,
2004; Avidan, 2004; Wu & Nevatia, 2007). Our approach to using the Viterbi algorithm for
this purpose was rst explored by Wolf, Viterbi, and Dixon (1989) to track r adar detections.
It relies on an analogy:

\... detections correspond to HMM states, the detection score correspnds to
the HMM output probability, the temporal-coherence score correspondso the
HMM state-transition probability, and nding the optimal track corresp onds
to nding the maximum a posteriori probability (MAP) estimate of the HMM
state sequence (where the computation of the MAP estimate is perforngein log
space)."

We crucially rely on this analogy for the entire remainder of this paper.

The above can trivially be modi ed to denote a MAP estimate in log spacewith suitable
normalization by a constant factor. For our purposes, however, all that is elevant is that
it optimizes a linear combination of two score components: the sum of stat-based scores
and the sum of transition-based scores. In particular, the Viterbi algorthm can be applied
to Equation 1, without any constraint on permissible values for the score f (b) and g(&°, b).

608



Grounding Language Inference, Generation, and Acquisitio n in Video

j = Jt bt, bgz b§’3 ’ e b

J JT

f g
detectiontemporal
score coherence
score

Figure 4: The lattice constructed by the Viterbi algorithm for detecti on-based tracking.

The columns correspond to video framed = 1, :::, T. Each column contains the overgen-
erated collectionb, :::, b, of detections for that frame. The rows correspond to detection
indicesj. A track j, namely a sequencg?l,:::,jT of detection indices, corresponds to a

path through the lattice. The Viterbi algorithm nds the path that optimi zes Equation 1,
among the exponentially many potential tracks, in time O(T J?), where J is the maximum
of J1,:::,J7.

This detection-based tracking framework is very general. It can use an detection
source(s), any methodf (b) for scoring such detectionsb, and any method g(t°, b) for scor-
ing temporal coherence between detections® and b in adjacent frames. In the work re-
ported here, we use the deformable part model (DPM) detector (Felenszwalb, Girshick,
McAllester, & Ramanan, 2010a; Felzenszwalb, Girshick, & McAllester, 2010b)xs the de-
tection source, which yields detections represented as axis-aligd rectangles and use the
scores provided by DPM as the basis of (b). The raw DPM score ranges from 1 to
1 . Nominally, Equation 1 and the Viterbi algorithm can support such scores. Havever,
these raw DPM scores, unfortunately, are incomparable across objecta$ses. For reasons
to be discussed in Section 2.3, joint tracking of multiple objects rquires that the detection
scores be comparable across their object classes. Moreover, for reasoansbe discussed
in Section 4, language acquisition requires moderately accurate indicain of which object
classes are present in the eld of view, which could be ascertained the detection scores
were comparable across object classes. To address the above, we nornealize detection
scoresf (b) within each object class using a sigmoid

1
1+exp( (f(b) )
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where the parameters and are empirically determined per object class so that detection
score correlates with the probability of a detection being a true podive. We convert this,
and other values discussed in later sections, to log space, to proteeigainst under ow in
oating-point calculations. Choosing the parameters and in this fashion on a per-class
basis allows the resulting detection scores to be comparable acrosss$es. Note that while
the resulting values off (b) are in the range (1 , 0], we do not take these to represent log
probabilities.

We use optical ow to compute the adjacent-frame temporal-coherencecore. We employ
the FlowLib optical- ow library (Werlberger, Pock, & Bischof, 2010) as it is one of the
highest-performing methods on optical- ow benchmarks (Baker, Schrstein, Lewis, Roth,
Black, & Szeliski, 2011). More speci cally, to computeg(bIt L b}l), we compute the optical
ow for frame t 1, compute the average ow vectorv inside the axis-aligned rectangle
for detection bJ‘t 1 forward project this detection one frame by translating that rectangle
along v, and compute the square of the Euclidean distance between the cemtef that
translated rectangle and the center of the corresponding rectangle fob}t. This yields a
value that measures how well the local detection displacement matets a local estimate
of its velocity and ranges from 0 tol in a fashion that is inversely related to temporal
coherence. We wish this value to be comparable to the detection scofdh) so that temporal
coherence neither overpowers nor is overpowered by detectiort@e. Thus we normalize
temporal coherence with a sigmoid as well, using a negative to invert the polarity, and
convert to log space. Unlike for detection score, a single set of sigmoidapameters can
be used across all object classes, because the temporal-coherence esaotly depends on
detection centers. Note that again, while the resulting values ofg(k’, b) are in the range
(1 ,0], we do not take these to represent log probabilities. Moreover, v&n though the
values off (b) and g(b°, b) are in the range (1 ,0], and the values produced by Equation 1
also lie in that range, they do not represent log probabilities.

2.2 Event Recognition Based on Motion Pro le using HMMs

Given a patrticular track collection, one can determine whether thosetracks depict a given
event by measuring time-varying properties of those tracks. Such mperties could be the
relative and/or absolute object positions, velocities, and/or acceleratons. The time-varying
properties can be represented abstractly as a time-series of feativectors computed from
the tracks. In this view, event recognition can be formulated as timeseries classi cation.
Such classi cation can be performed by hidden Markov models (HMMs) gither by comput-
ing a likelihood or a MAP estimate. Let us limit consideration, for a moment, to events
with a single participant. In this case, we can abstractly take such an HMM to consist
of K states, a state-transition function a(k® k) in log space, and an output modelh(k, b)
which denotes the log probability of generating a detectionb in state k. Let us refer to
the collection of K, a, and h as an event model . In log space, the MAP estimate for a
particular track j is | !

X ' X
max h(k', ) + a(k! 1 kY 2)
k t=1 t=2
wherek is a sequencé®,:::, k™ of states. LetB; denote the detection sequench',, :::, b’y

selected from the video clipB by the track j. Equation 2 constitutes a measure of how
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well the detection sequenceB; selected from a video clipB by a track j depicts an event
model . Higher MAP estimates result from tracks that better depict the event model.
MAP estimates can be computed e ciently using the Viterbi algorithm i n time O(TK 2).
Note the similarity between Equations 2 and 1. This is due to the aforemationed analogy.
Momentarily, we will crucially avail ourselves of the fact that both can be computed with
the Viterbi algorithm. But we rst need to address several subtleties in our formulation.

We use HMMs to encode probability distributions over time-series of feature vectors
extracted from object tracks. These in turn serve to represent tle meanings of verbs that
describe the motion of such participant objects. For example, the meaing of the word
bounce might be represented with an HMM, like that in Figure 5, that places high prob-
ability on a track that exhibits alternating downward and upward motion. While such
representations are tolerant of noisy input and can be learned using BauriVelch (Baum,
Petrie, Soules, & Weiss, 1970; Baum, 1972), HMMs with many states, many featas, and
non-sparsely populated state-transition functions and output modelsare di cult for hu-
mans to understand and create. In Sections 5.3 and 5.4, we conduct experents with
human-generated meaning representations. While, in Section 5.5, weonduct experiments
with machine-learned meaning representations, we also compare suelith human-generated
meaning representations. To facilitate perspicuity in human-geneated meaning represen-
tations, we adopt a regular-expression notation, such as the following mesentation of the
meaning of the word bounce

4

bounce = ( movingDown *

movingUp *)*

In the above, movingDown (b) and movingUp (b) are predicates over detections that are
used to construct the output model h(k, b) and the regular expression is used to determine
the number K of states, the state-transition function a(k® k), and which predicate to employ
as the output model for a given state. These can be straightforwardly conerted to nite-
state machines (FSMs) which can, in turn, be viewed as a special casd HMMs with 0/1
state-transition functions and output models (1 /0 in log space).

Equation 2 is formulated abstractly around a single state-transition function a(k® k). We
also must include distributions over initial and nal states. Tradi tional HMM formulations
only incorporate initial-state distributions but not nal-state dist ributions. Such HMMs
might recognize a pre x of an event specication and not be constrained tomatch the
entire event speci cation. (Without an initial-state distributi on, it might recognize any
subinterval of an event speci cation.) Our actual formulations include such initial- and
nal-state distributions but we omit them from our presentation for th e sake of expository
clarity.

Formulating the output model h(k,b) so as to depend on the detections in a single
track allows an HMM to encode time-varying constraints on that single track. This can be
used to represent the meaning of an intransitive verb that descriles the motion of a single
participant. We wish, however, to also be able to represent the manings of transitive verbs
that describe the motion of pairs of participants. We accomplish this by extending the
output model h(k, b, ) to depend on pairs of detections, one from each track. If we have
two distinct tracks ji = (j1,:::,j]) and j» = (j4,:::,jJ) for two distinct participants,
we can think of them as deriving from the same detection pool. This allws extending
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Figure 5: An HMM that represents the meaning of the word bounceas a track that exhibits
alternating downward and upward motion.

Equation 2 as | I

XT t ' Xr t 1t
max h(k', by, B:) + ak' kb 3)
t=1 t=2
to support this.

HMMs can be susceptible to short-term noise in the input signal. If ore were to have
an event model, such as that in Figure 6(a), that is intended to match a tme series where
there is an interval where the velocity is zero, followed by an inteval where there is upward
motion, followed by an interval where the velocity is again zero, it may unintentionally
match a time series where the interval of upward motion is but a singleframe that is
spurious and the result of noisy tracking and feature extraction. The ame thing might
happen with an FSM representation such as

rest (b, bp) 2 stationary (bp) ~ stationary (bp) » close (b, bp)
action (by, ) 2 stationary  (by) » movingUp (bp) » close (by, by)
pick up 2 rest * action * rest *

that is intended to model the meaning of pick up as a period of time where the agent is
stationary and close to the patient that is subdivided into three sequential intervals where
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Figure 6: (a) An HMM that is susceptible to short-term noise in the input signal. The
central state might admit a noisy impulse lasting a single frame. (b) Avariant of (a) that
constrains the central interval to hold for at least 3 frames.

the patient is at rst stationary, then moves up, and then is stationary again. This can
unintentionally match a time series where the patient is continualy stationary except for
a single frame that is spurious and the result of noisy tracking and featte extraction. We
can address this issue by requiring the central interval to have aninimum duration. We

indicate such with the regular-expression operatorRf"-9 2 P :{'z:_Fi R to indicate that

n
the R must be repeated at leastn times. A de nition such as

4 .
vick up = rest * action "9 rest *

can be reduced to an FSM within our framework. Similarly, one can add a mimum state-
duration requirement to an HMM, such as that in Figure 6(a), by recoding it as in Fig-
ure 6(b).

The above handles short-term false positives, namely the presencd# a short-term spu-
riously true signal. We also need to handle short-term false negativesiamely an intended
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longer interval where a signal must meet a speci ed condition but fais to do so due to
a short-term failure to meet that condition. We use a new regular-expession operator

RN 2 (R [true ])'™9 to indicate that R must be repeated at leastn times but can op-
tionally have a single frame of noise between each repetition. One carxtend HMMs in
a similar fashion though we have not found the need to do so because the tput models
already can tolerate some noise.

Nominally, our detections q‘ are axis-aligned rectangles represented as image coordi-
nates. This allows the output modelsh(k, b) to depend on quantities that can be computed
from such, e.g., position of the detection center, the size of the dettion, and the aspect
ratio of the detection, which can indicate notions like big, small, tall, or wide. It also allows
two-track output models h(k, by, ;) to depend on quantities like the distance between de-
tection centers or the orientation of a line between those centers, hich can indicate notions
like close far, above or below Without further information, it is not possible for the output
models to depend on relative or absolute velocity, which would be reded to encode notions
like fast, slow, stationary, moving, upwards downwards towards, or away from. One way
to achieve such would be to extend the output models to depend on dections from adja-
cent frames, as inh(k, b, b) or h(k, &, by, 8, ). We can accomplish such with a variant of

Equation 2 that sums over pairs of adjacent detections.

X |

max h(kt,bjt[ Lo+ akt hkY
t=2

This can be further generalized by extending the sums over threadjacent frames for ac-
celeration, or even over more frames for longer-term velocity and acomlation. However,
multiple-point estimates, e.g., two-point velocity estimates or three-point acceleration es-
timates, su er from noise due to inaccurate tracking. Moreover, suchextensions would
not support other desired features that could be extracted from the image, such as color.
Thus we instead extend the notion of detection to include any informaton that might be
extracted from the image at the location of the detection, such as averageue or optical
ow inside the detection, and retain the initial formulation of output modelsh(k,b) and
h(k, by, bp) that depends on detections in a single frame.

2.3 The Event Tracker

The aforementioned method operates as a feed-forward pipeline. Equan 1 produces tracks
for event participants, a time series of feature vectors is extractd from such tracks, and
those time series are classi ed with HMMs to detect verb/event ocairrences. This approach,
however, can be very brittle. Failure earlier in the pipeline necessarily leads to failure later in
the pipeline. This is particularly of concern, since the pipelire starts with object detections
and, as we mentioned before, state-of-the-art object detection is umliable.

Barbu et al. (2012b) presented a novel approach for addressing this briteness called
the event tracker. This approach originates from the observation that Equations 1 and 2
share the same structure due to the aforementioned analogy, and thus sharan analogous
algorithmic framework for performing the optimization through analogous lattices. The
feed-forward pipeline essentially cascades these algorithms and lates, as shown in Fig-
ure 7(a). This independently optimizes Equation 1, as a measure of howell a video clip B
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depicts a track j, and Equation 2, as a measure of how well the detection sequends
selected from a video clipB by the track | depicts an event model , performing the for-
mer before the latter, and constructing the latter optimization probl em around the track j
produced by the former. Doing so takes Equation 2 as the sole measure oblw well a video
clip B depicts an event model . More precisely, it performs the following optimization:

| |

X ’ X
t t 1t
max h(k',B) + a(k! kb
t=1 t=2 I ! 4)
4 X
where” = argmax f(g) + Q(t}tt g b.)
j t=1 t=2

While this does measure how well the detection sequend®; selected from the video clipB
by the track j depicts an event model , it might not measure how well the video clip B
depicts the event model because it fails to incorporate into that measure how well the
video clip B depicts the track j. Thus, we might instead take the sum of Equations 1 and 2
as the measure of how well a video cliB depicts an event model . More precisely, we
could adopt the following measure which involves the same optimizatioras Equation 4:

| | " | !
NG ! NG 1% T ! T I#
max f(g) + 9(H. L)+ max h(k',b) + a(k' *, k")
' = t=2 I K ! t=2
X X
where” = argmax f(go) + g(bj‘1 L5

] t=1 t=2

(5)

This still independently optimizes the track j with Equation 1 and the state sequencek
with Equation 2. We could, however, attempt to jointly optimize the t rack j and the state
sequencek. This could be done by lifting both the maximizations over the track j and
the state sequencek outside the summation of the measures of how well the video clif3
depicts the track j and how well the detection sequencd3; selected from the video clipB
by the track j depicts the event model . This leads to the following optimization problem:

| | I
XT

X ' X ! X '
max  f(d) + ol LH) o+ hGGH) o+ T akt LK) (6)

],k t=1 t=2 t=1 t=2

The crucial observation by Barbu et al. (2012b) is that Equation 6 has the same tsucture as
both Equations 1 and 2 and can be optimized using the same Viterbi algorithmby forming
a cross-product of the tracker and HMM lattices, as shown in Figure 7(b) where each node
in the resulting lattice combines a detection and an HMM state, as show in Figure 7(c).
Since the width of the cross-product lattice is O(JK ), applying the Viterbi algorithm to
this cross-product lattice nds the path that optimizes Equation 6, am ong the exponentially
many potential paths, in time O(T(JK )?).

Like before, Equation 6 can trivially be modi ed to denote a MAP estimate in log space
with suitable normalization. However, we do not need to do so becauséhe constant factor
introduced by such normalization would not change the result of the joirt optimization of
the track | and the state sequence. Like before, the Viterbi algorithm can be applied to
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Figure 7: (a) A pipeline consisting of a cascade of a tracker lattice followed by artHMM lattice
used for verb/event recognition. In (a), nding the track | that optimizes the measure of how well
a video clip B depicts that track, Equation 1, happens independently of and prior to nding the
state sequencek that optimizes the measure of how well the detection sequencB; selected from
a video clip B by the track j depicts the event model , Equation 2, the latter depending on the
track j produced by the former. Since only the portion from Equation 2 is usedas the measure of
how well video clip B depicts event model , this corresponds to optimizing the scoring function
in Equation 4. Taking the measure of how well a video clipB depicts an event model as a
combination of measures of how well the video cliB depicts the track j and how well the detection
sequenceB; selected from the video clipB by the track j depicts an event model can be viewed as
optimizing the scoring function in Equation 5, the sum of the two measues. (b) A variant of (a) that
jointly optimizes the two measures corresponding to the optimizaton in Equation 6 that migrates
the optimization outside the sum. (c) A method for performing the joint optimization in (b) by
forming a cross-product lattice.
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Equation 6 without any constraint on permissible values for the detecton scoref (b), the
temporal-coherence scorg(kP, b), the output model h(k, b), and the state-transition function
a(k® k) However, constraining them to lie in the same range empirically allavs it to serve
as a good scoring function.

The event tracker ameliorates the brittleness of the feed-forward jpeline by allowing top-
down information about the event to in uence tracking. Using HMMs as event recognizers is
accomplished by selecting that event model which best ts the eent. This involves running
each event model independently on the data. In the context of runnig a particular event
model on the data, that event model could in uence tracking in a top-down fashion. For
example, in the context of evaluating how well an event model forwalk ts the data, the
tracker would be biased to produce tracks which move at a normal walkig pace. Stationary
tracks, or those that move too quickly, would not depict the target event and would be
ltered out by Equation 6 but not by Equations 1, 4, or 5, when such tracks comprised
high-scoring detections and were temporally coherent.

Equation 6 jointly optimizes a single tracker and a single event model As such, it can
only recognize events that have a single participant, such as those degbed by intransitive
verbs. Events with two participants, such as those described by ransitive verbs, can be
encoded using the methods from Section 2.2, by using Equation 3 insad of Equation 2
and forming the cross product of this with two trackers instead of one.

X ' X 1 X X L
Jr;nj?)li f (q[i) + g(bjttl 1 l:ﬁttl) + f (bjté) + g(bjt; 11 qté) (7)
t=1 t=21 t=1 t=2
X ' X '
+ h(kt,q‘i,b};) + a(k! 1 kY
t=1 t=2
This can be further generalized from two participants to L participants.
" ! 1%
X X X
max f(t}tlt) + g(b‘[ 1|q[|l) (8)
=1 _t=1 t=2 !
X X
+ h(k!, qt i q‘ ) + a(k' 1, kY
t=1 t=2
In the above, J denotes a track collectionj1,:::,j. which, in turn, comprises detection

indicesj|. Equations 7 and 8 can also be optimized with the Viterbi algorithm by forming
a cross-product lattice. Since the width of this cross-product ttice is O(J-K), applying
the Viterbi algorithm to this cross-product lattice nds the path th at optimizes Equation 8,
among the exponentially many potential paths, in time O(T(J'K)?). Note that this is
exponential in the number L of participants. In practice, however, the arity of the semantic
predicate underlying most events is limited, such as to three irthe case of ditransitive verbs.
Let B; denote the detection-sequence coIIectlorbll,.. bTT,::: bjll,:. bTT selected
from the video clip B by the track collection J. Equatlon 8 Jomtly optlelzes a measure
of how well the video clip B depicts the event model as a combination of measures
of how well the video clip B depicts the track collection J and how well the detection-
sequence collectiorB ; selected from the video clipB by the track collection J depicts an
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by by P2 P2

bl P2 b2 P1

Figure 8: Example showing the necessity for normalization of detectiorscores across dif-
ferent object classes. (left) Image depicting two pairs of detectins for the person and
backpackobject classes. (right top) Distribution of raw detection scores for he two object
classes. Indicated are scores corresponding to the detections inghmage wheref (by) = 4,
f(p) =6, f(p2) =11, and f (p1) = 14. (right bottom) Distribution of detection scores for
the two object classes after cross-object-class normalization wheffe(b;) = 5, f (kp) = 12,
f(p2) =9, and f (p1) = 14.

event model . Note that Equation 8 involves the summation over multiple detection-score
componentsf , one for each of theL participants. The fact that raw detection scores are
incomparable across object class means that the detection scores for drent participants
contribute to di erent extents in the nal score. Figure 8 shows an example where di erences
in variance between detection scores fgperson and trash can result in a better score through
Equation 8 for a spurious set of detections. The value$; and p, indicate detections for
the person object class and the valuedy and by indicate detections for the backpackobject
class. Let us assume that both pairs of detections, s, b1) and (p2, ), match an event
model, such ascarry, equally well. In that case, the raw detections scores would yield
(p1, 1) as the best match becausd (py) + f (b)) > f (p2) + f (k). It is for this reason
that we employ normalization of detection scores as discussed in Seeti 2.1. Doing so
results in the selection of the correct pair of detections, §,, I»), since after normalization,

f(p2) + f(b) >f (p1) + f (bn).

Figure 9 illustrates the power of the event tracker. The objectiveis to track the person.
However, due to the poor performance of the state-of-the-art person dector, it produces
strong false-positive detections on the bench in the background. Evewhen overgenerating
detections, as shown in Figure 9(a), and selecting a track that optimies Equation 1, as
shown in Figure 9(b), this tracks the bench in the background for a porion of the video clip,
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Figure 9: Keyframes from a video clip that demonstrates the advantages ofhe event
tracker. (a) Overgenerated person detections. (b) Detections set¢éed by detection-based
tracking in Equation 1. Note that it selects a strong false-positive detction on a bench in
the background and is not able to rule out such detections as with the exeption of a single
large jump, the rest of the track happens to be temporally coherent. (§ Detections selected
by the event tracker from top-down information, in the form of a model for the transitive

verb carry, constraining such detections to Il the role of agent in the event, in the context

where a backpack, as patient, is carried by the person but not by the bech.

instead of a person. This happens because the track is largely temporglcoherent within
segments, and in combination with the strong false-positive detectins in the background,
overpowers the adverse e ect of a single large jump, thus yielding high score for Equation 1.
However, top-down information in the form of an event model for the transtive verb carry,
linked to two trackers, one for an agent and one for a patient, selects a tick for the agent,
comprising true-positive person detections, that accurately re ects the role played by the
person in the event, as shown in Figure 9(c), where a backpack, as patit is carried by
the person and not by the bench in the background.

2.4 The Sentence Tracker

The event tracker from the previous section, and more generally HMM-basd event recog-
nizers, can model events with varying numbers of participants (onetwo, and L participants
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for the event trackers in Equations 6, 7, 8 and one or two participants for tre HMM-based
event recognizers in Equations 2 and 3). Nominally, we can think of such ents as being
described by verbs: one-participant events as intransitive verb, two-participant events as
transitive verbs, and three-participant events as ditransitive verbs. Figures 25 through 28
in Appendix B gives examples of HMMs that represent the meanings of verh However,
nothing in the framework formally restricts us to doing so. The meanirgs of words in other
parts of speech can often also be represented as HMMs. For example, theeaming of a
noun that describes an object class can be represented as a single-staine-participant
HMM whose output model serves as a classi er for that object class. Figuwr 23 in Ap-
pendix B gives examples of HMMs that represent the meanings of nouns. ilarly, the
meaning of an adjective that describes object characteristics can beepresented as a single-
state one-participant HMM whose output model serves to select dete@ns that exhibit the
desired characteristics re ected by that adjective. For example,the meanings of adjectives
like big or tall could be represented with output models over the areas or aspect rais
of participant detections. Likewise, the meaning of a preposition thatdescribes a spatial
relation between two objects can be represented as a single-state awparticipant HMM
whose output model serves to select the collection of features thatneode that relation. For
example, the meaning of the prepositionto the left of could be represented with an output
model over the relative x-coordinates of the detections for the participants. Figure 24 in
Appendix B gives examples of HMMs that represent the meanings of spatialelation prepo-
sitions. More generally, any static property of either a single particpant, or a collection of
participants, can be encoded as a single-state HMM.

Multiple-state HMMs can encode the dynamic properties of either a ggle participant
or a collection of participants. Such can re ect the meanings of adverbs ath prepositions
in addition to verbs. For example, the meaning of an adverb such aguickly that describes
the changing characteristics of the motion of a single participant could e represented as a
three-state HMM describing the transition from no motion, to motion wi th high velocity,
back to no motion. Figure 29 in Appendix B gives examples of HMMs that reprsent the
meanings of adverbs. Similarly, the meaning of a preposition such aewards that describes
the changing relative motion between a pair of participants could be repesented as a three-
state HMM describing the transition from the agent being distant from t he goal, to a period
where the distance between the agent and the goal decreases while the gaalstationary,
ending with the agent being close to the goal. Figure 30 in Appendix B give examples of
HMMs that represent the meanings of motion prepositions.

We thus see that the distinction between di erent parts of speechis primarily syntactic,
not semantic, i.e., how word use is re ected by the grammar, not its potential meaning.
While there may be some coarse-grained trends, such as the canonicahstture realizations
(CSRs) proposed by Grimshaw (1979, 1981) and Pinker (1984), where nouns typidglde-
scribe object class, adjectives typically describe object propdies, verbs typically describe
event class, adverbs typically describe event properties, and ppositions typically describe
spatial relations, this is not universally the case. Some intransitie verbs like sleep de-
scribe a more static object property, some transitive verbs likehold describe a more static
spatial relation between pairs of objects, and some nouns likevedding describe an event.
While it might seem like overkill to represent static classi ers as single-state HMMs, there
are several advantages to adopting a single uniform meaning representati in the form of
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HMMs. First, the capacity for multiple states a ords the ability to en code a resilience to
temporal noise. Thus in practice, even static properties might be moe robustly encoded
with multiple states. Second, adopting a single uniform represerdtion simpli es the overall
framework and associated algorithms.

The event tracker from the previous section could in uence detecibn-based tracking with
top-down information from an event model. This event model could repesent the meaning
of an individual word. It could constrain a single track for single-participant words like
intransitive verbs (Equation 6), a pair of tracks for two-participant wor ds like transitive
verbs (Equation 7), or even a collection ofL tracks for L-participant words (Equation 8).
Just as it was possible to take cross products of multiple trackers vih a single event
model, one can further extend the framework to take cross products omultiple trackers
with multiple event models, thereby constraining the track collection to jointly satisfy a

collection of event models for the wordssy, :::,sw in a sentences.
" ! I#
Xx X X 1
max fE) + o) ©
=1 t=1 t=2 1 1#
XX X
+ hs, (ky, By, )+ as, (kb 1, kL)
w=1 t=1 ; t=2
In the above, K denotes a state-sequence collectioks, :::, kw which, in turn, comprises

state indicesk!,. This has L distinct trackers with distinct detection indices j| that select
the optimal detection for participant | in frame t.

We distinguish between words in the lexicon and occurrences of thesin sentences. We
refer to the former as lexical entriese and the latter as words w. A given lexical entry
may appear as more than one word in a sentence. A lexicon containE€ event models

1,1, e, one event model . for each lexical entry e. A sentences is formulated as a
sequencesy, :::,sw of W lexical entriess,,, one for each wordw. Equation 9 hasW distinct
event models s, , one for each wordw in the sentences, each taken as the event model for
the lexical entry sy, for that word w. Each event model s, has distinct numbers K, of
states, state-transition functions as,, and output models hg,. Note that while the state-
transition functions as, and output models hg, vary by word w, the detection scoref and
the temporal-coherence scorg do not vary by participant |.

As formulated in Equation 9, the output model hg, (k!,, blti’ S b}t) for each word w
depends on the detections for framé selected by the tracksj1,:::,jL foLr all L participants.
In practice, the meaning of each individual word only applies to a subst of the participants,
as illustrated in Figure 10. Here, the sentenceThe person to the left of the stool carried
the tra c cone towards the trash can describes an event that has four participants: an
agent, a referent, a patient, and a goal. The noungerson, stool, trac cone and trash
can refer to the agent, referent, patient, and goal respectively. The veb carried describes
a semantic relation only between the agent and the patient. The preposion to the left
of describes a semantic relation only between the agent and the referenThe preposition
towards describes a semantic relation only between the agent and the goal. We ey
a linking function | to indicate which participant lls argument i for the event model
for word w. Let Bhs,t,w, Ji denoteb}Il ,:::,bJ‘t , the collection of detections selected in

I'sw
w
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frame t by the track collection J as assigned to thels, arguments of the event model for
word w by the linking function . We incorporate the arity 1 in an event model , along
with the number K of states, the state-transition function a, and the output model h. This
allows reformulating Equation 9 as

! I#
X X X g1
I’\]J’]%X f (qtlt) + g( J-lt 1 qtlt) (10)
=1 t=1 t=2 ] 1#
XX X
+ hs, (ki,Bhs, t,w,Ji) + as, (k& 1,k¢)
w=1l t=1 t=2

We refer to Equation 10 as thesentence tracker For the remainder of this paper,ls, 2.

Equation 10 can also be optimized with the Viterbi algorithm by forming a cross-product
lattice. Since the width of this cross-product lattice is O(J-K W), where K is the maxi-
mum of Kg,,:::,Ksg, , applying the Viterbi algorithm to this cross-product lattice nds the
path that optimizes Equation 10, among the exponentially many potential paths, in time
O(T(ILKW)?). Note that this is exponential both in the number L of participants and the
sentence lengthW. In practice, however, natural-language sentences have bounded Igth
and are typically short. Moreover, the quadratic time complexity is mitigated somewhat

by the fact that KW is an approximation to Ks, - In practice, nouns, adjectives, and

spatial-relation prepositions describe static pvrvoé)erties of tracks ad thus have word mod-
els whereKs, = 1. Even longer sentences will be comprised predominantly of such wdr
models and will contain relatively few verbs, adverbs, and motion preositions.

Modeling the meaning of a sentence through a collection of words whoseeanings are
modeled by HMMs de nes afactorial HMM for that sentence, where the overall Markov
process for that sentence is factored into independent componentrpcesses (Brand, Oliver,
& Pentland, 1997; Zhong & Ghosh, 2001) for the individual words. In this view,K denotes
the state sequence for the combined factorial HMM andk,, denotes the factor of that state
sequence for wordwv. Figure 11 illustrates the formation of the cross product of two tracker
lattices (Equation 1) and three word lattices (Equation 2), linked together by an appropriate
linking function  to implement the sentence tracker (Equation 10) for the sentencelThe
person carried the backpack Figure 12 illustrates the resulting cross-product lattice whee
each node in the lattice consists of the combination of two detectionspne for each tracker
lattice, and three HMM states, one for each word lattice. The state thus epresented by
each node in this cross-product lattice can be factored into a colldion of states written
inside the node separated by commas.

Equation 10 constitutes S : (B,s, ) 7! ( ,J). It scores a video-sentence pair with a
measure of how well a given video cliB depicts a given sentencs, as interpreted by a given
lexicon . Alternatively, that score measures how well a given sentaces, as interpreted by
a given lexicon , describes a given video clipB. T and J%,:::,JT are determined fromB,
W is determined from s, the arities Is,, the numbers K, of states, the state-transition
functions as, and the output models hg, are taken from the words models s,, and the
number L of participants and the linking function are computed from the sentences by the
linking process : s 7! (L, ) described in Section 3. The result of Equation 10 constitutes
the video-sentence score. The track collection that yields that score constitutes J.
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The person to the left of the stool carried the trac cone  towards the trash can .

agent referent patient goal

detection 0 detection 1 detection 2 detection 3

Figure 10: An illustration of the linking function used by the sentence tracker. Each
word in the sentence has one or more arguments. (When words have two argumts,
the rst argument is indicated by a solid line and the second by a dashd line.) Each
argument of each word is lled by a participant in the event described by the sentence. A
given participant can Il arguments for one or more words. Each participant is tracked by
a tracker which selects detections from a pool of detections prodwel by multiple object
detectors. The upper mapping !, from argumentsi of wordsw to participants is determined
by parsing the sentence. The lower mapping| from participants | in framest to detections
is determined automatically by Equation 10. This gure shows a possible(but erroneous)
interpretation of the sentence where the lower mapping, indicatedby the darker lines, is:
agent 7! detection 3 , referent 7! detection O , patient 7! detection 1 , and goal 7!
detection 2 .
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:

agent-tracker patient-tracker

-

\

person carried backpack

Figure 11: Forming the cross product of two tracker lattices (Equation 1) and three word

lattices (Equation 2) to implement the sentence tracker (Equation 10)for the sentenceThe

person carried the backpack The connections between the tracker lattices and the word
lattices denote the linking function

t=T

j1=Ljz=1 o] 6]

Kup =1, ks =1, ki, =1 111
j1=3%ja=" BT bl
Kurp =1, ke =1, ku, =L 118"

j171,j2=1
Kurp =1, kwp =L, k=2

j2=3tj2=0"
Kunp= K s ke = K s k= K sy

Figure 12: The actual cross-product lattice produced for the examplen Figure 11. Note
that each node in the lattice consists of the combination of two detectbns, one for each
tracker lattice, and three HMM states, one for each word lattice.
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3. The Linking Process

The sentence tracker requires speci cation of the numbel. of participants and the linking
function | that indicates which participant lls argument i of word w for each argument
of each word in the sentence. Often, the same participanti(e., tracker) can |l multiple
arguments of multiple words. A sentence like

The erson to the{rlght of the chalr I)lcked uP the backpack (1)
z - z-
2

1

has 3 participants and requires a linking function like
=1 3=1 3=2 §=2 }=1 3=3 {=3 (12)

that assigns the argument of person and the rst argument of both to the right of and
picked upto the rst participant, the argument of chair and the second argument ofo the
right of to the second participant, and the argument ofbackpackand the second argument
of picked upto the third participant. The number L of participants for a sentences, and
the corresponding linking function , are produced by a linking process :s7! (L, ).

We use a particular linking process that is described in detailsn Appendix A. This pro-
cess makes use of techniques from mainstream linguistics, namely Xabtheory (Jackendo ,
1977) and government relations (Chomsky, 1982; Aoun & Sportiche, 1983; Haegeman, 1992;
Chomsky, 2002). As such, it is limited to a small hand-built grammar (Figure 11a) and a
small lexicon (Figure 11b). For our purposes, this is not restrictive. The state of the art in
computer vision limits the number of distinct object classes that an be reliably detected
and the number of distinct action classes that can be reliably detectd. This restricts the
number of nouns and verbs that can be supported by any method, such as osirthat at-
tempts to ground language in computer vision methods that detect objecs and actions.
This further restricts the class of utterances that can be construted from a small set of
nouns and verbs. For this, a small hand-constructed grammar su ces. Whle one could
conceivably use methods that support larger grammars and vocabularies #t process a
larger space of unrestricted text, it would not be possible to ground sah in the current
state-of-the art computer vision techniques. We discuss this indrther detail in Sections 6
and 7.

The linking process that we employ uses well-known technigue from mainstream lin-
guistics. It is not the central contribution of our work. Rather, the central contribution
is the sentence tracker (Section 2.4). All the sentence tracker regres is any linking pro-
cess :s7! (L, ) that maps a sentences to the number L of participants and a linking
function . This need not be restricted to the particular grammar and lexicon from Fig-
ure 11. Indeed, it can employany one of a plethora of well-known and well-understood
techniques that are common in the computational linguistics community It need not even
be restricted to any particular grammar or lexicon. It is possible to construct a linking
process with standard mechanisms, such as the dependency relat®produced by parsing
with a dependency grammar. For example, the Stanford Parser (Klein & Manning, 2003)
produces the dependencies on the right for the sentence in Equath 11, which can also be
used to determine the requisite number of participants and to congsuct the requisite linking
function. The output below correctly identi es three participan ts, person-2 chair-8, and
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det(person-2, The-1)
nsubj(picked-9, person-2)
det(right-5, the-4)
prep_to(person-2, right-5)
det(chair-8, the-7)
prep_of(right-5, chair-8)
root(ROOT-0, picked-9)
prt(picked-9, up-10)
det(backpack-12, the-11)
dobj(picked-9, backpack-12)

backpack-12 Note how the transitive verb picked-9 distinguishes between its two arguments,
identifying person-2 as its rst argument through the nsubj dependency andbackpack-12
as its second argument through thedobj dependency. Also note how the spatial relation
right-5 distinguishes between its two arguments, identifyingperson-2 as its rst argument
through the prep_to dependency andchair-8 as its second argument through theprep _of
dependency.

4. Language Acquisition with the Sentence Tracker

Children learn language through exposure to rich perceptual context. ey observe events
while hearing descriptions of such events. By correlating many eves with corresponding

descriptions, they learn to map words, phrases, and sentences to eing representations
that refer to the world. They come to know that the noun chair refers to an object class
which typically has a back and four legs. They also come to know that the erb approach

refers to a dynamic process in which one object moves towards anothe These learned
concepts are not purely symbolic; they can be used to decide pressm or absence of the
intended reference in perceptual input. Thus these concepts arperceptually grounded

When children learn language, they are not usually given information about vhich
words in a sentence correspond to which concepts they see. For exalapa child who hears
The dog chased a cawhile seeing a dog chase a cat, with no prior knowledge about the
meaning of any word in this sentence, might entertain at least two posdile correspondences
or mappings: (i) dog7! dog ” cat 7! cat or (ii) dog7! cat ~ cat 7! dog. With the rst,
the child might assume that chasedmeansran after while in the second the child might
assume that it meansran before . Thus a child who hears a description in the context of
an observed event will need to disambiguate among several possible @mpretations of the
meanings of the words in that description. Things get worse when this pocess exhibits
referential uncertainty (Siskind, 1996): multiple simultaneous descriptions in the contextof
multiple simultaneous events.

This situation faced by children motivates the formulation shown in Figure 13, where
video clips represent what children see and textual sentencegpresent what they hear. Note
that a given video clip can be paired with more than one sentence and a gén sentence can be
paired with more than one video clip. Siskind (1996, 2001) showed that eveniii referential
uncertainty and noise, a system based ooross-situational learning (Smith, Smith, Blythe, &
Vogt, 2006; Smith, Smith, & Blythe, 2011) can robustly acquire a lexicon, mappng words
to word-level meanings from sentences paired with sentence-ldveneanings. However, it
did so only for symbolic representations of word- and sentence-leveheanings that were not
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The person picked up the tra ¢ cone to the left of the stool.

The person picked up the tra c cone.

The person carried the chair.
The chair approached the backpack.
The chair approached tra c cone slowly.

The person carried the chair away from the backpack.

Figure 13: Video-sentence pairs in the language-acquisition problem. A d@eo clip can be
paired with multiple sentences and a sentence can be paired with ditiple video clips.

perceptually grounded. An ideal system would not require detailed wod-level labelings to
acquire word meanings from video but rather could learn language in a largelynsupervised
fashion, just as a child does, from video paired with sentences. Thalgorithm presented in
this section can resolve the ambiguity inherent with such referetial uncertainty to yield a
lexicon with the intended meaning for each word. While this algorithm can solve a problem
that is reminiscent to that faced by children, we make no psychologial or neurophysiological
claims.

One can view the language-acquisition task as a constraint-satisfaction pblem (CSP),
as depicted in Figure 14. Doing so treats words as variables, each with itiélly unknown
meaning. A video-sentence pair can be viewed as a constraint imposed ohe words in that
sentence: the words in a sentence are mutually constrained by theeguirement that the
collection of word meanings allow the sentence to describe the videdip. This constraint
will be formulated below using a variant of the sentence tracker fromSection 2. Since the
same word may appear in di erent sentences, a su cient number of video-sentence pairs
will form a connected network. We can do two types of inference on ths network. First, one
can perform inference across di erent words in the same sentence Suppose we know the
meanings of all the words in the sentence except for one. In this casehdé meaning of the
unknown word can be inferred by applying the video-sentence constint. For example, in
Figure 14, if we know the meaning ofbackpackand person the meaning ofpicked up could
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)

pigked up
The persop picked up the chair.
(b)
[:I
The chair apgroached the backpack.
The person pjcked up the backpack.
approached Q

Figure 14: Viewing language acquisition as a constraint-satisfaction problengCSP) which is

solved by propagating information about word meanings around a network. Word manings

in greenare used to learn word meanings inorange which are then used to learn further
word meanings inred. This performs inference both across di erent words in the same
sentence, and shown in (a), and the same word in di erent sentencess shown in (b).

be inferred from constraint (a), because that will be the only proces that occurred between
the person and the backpack Second, one can performnference across the same word in
di erent sentences. The meaning of a given word can be shared and exploited by multiple
sentences when inferring the meanings of other words in those seniges. For example, after
learning the meaning of picked up from constraint (b), the meaning of chair can also be
inferred. Thus, information about word meanings can propagate through the navork. As a
result, word meanings are mutually constrained as they are learned. Sitnd (1996) refers to
this learning mechanism as cross-situational learning. In practice, His process starts with
no information about any word meanings. But our formulation below using EM (Dempster,
Laird, & Rubin, 1977) can propagate partial information about word meanings. Thus by
starting with an initial guess at the meaning for each word and iterating this process, we
can converge to the intended lexicon.

As discussed earlier, the sentence tracker supports represengj word meanings as HMMs
or as FSMS, a special case of HMMs where the state-transition functions ahoutput mod-
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els are 0/1 (1 /O in log space). In Section 5.2, we formulate the output models for
manually-constructed FSMs as regular expressions over Boolean feats computed from
the detections using the predicates shown in Table 6. Our procede for learning word
meanings employs HMMs where the state-transition functions and outpti models are not
0/1. In this case, the output models are derived from the features show in Table 8. We
use to denote the computation that produces the feature vectors from detections andN

to denote the length of such feature vectors. Word models are extended to incorporateN

and .

We employ discrete distributions for our output models h. Further, we assume such
distributions are factorial in the features, i.e., the distributions over the features in the
feature vector are independent. To this end, we quantize each feate into bins. The
particular binning process is described in Section 5.5. This meanthat the output models
take the form

X
he(k,br,:::,b,) = ha(k, a(br,:::, b))
n=1
where
e(bizt b)) 2f 81,000, 8200
Zg indicates the number of bins for featuren for lexical entry e and ¢, indicates the
guantized value for bin z of feature n for lexical entry e.

Our learning procedure makes ve assumptions.

1. Our training set contains M samples, each pairing a short video clipB, with a
sentencesy, that describes that clip. The procedure is not able to determine he
alignment between multiple sentences and longer video segments. Nothat there is
no requirement that the clip depict only that sentence. Other objects may be present
and other events may occur. In fact, nothing precludes a training st with multiple
copies of the same clip, each paired with a di erent sentence desbing a di erent
aspect of that clip. Similarly, nothing precludes a training set with multiple copies
of the same sentence, each paired with a dierent clip that depictsthat sentence.
Moreover, our procedure potentially can handle a small amount of noise, tere a clip
is paired with an incorrect sentence that does not describe the gb.

2. We already have (pre-trained) low-level object detectors capablef detecting instances
of our target event participants in individual frames of the video. We allow such de-
tections to be unreliable; our method can handle a moderate amount of fak positives
and false negatives using techniques from Section 2. We do not need tmdéw the
mapping from these object-detection classes to nouns; our procedeiidetermines that.
In other words, while our detectors locate and classify objects with gmbolic labels like
chair, these labels are distinct from lexical entries likechair. Our procedure learns
the mapping from lexical entries to object-class labels. This mappig need not be
one-to-one and can be noisy. Learning such a mapping, however, requirésat not
all object classes be present at all times, as that would not provide theconstraint
required to learn such mapping|a lexical entry could correspond to any object class.
When such is not the case, we additionally need to identify which obgct classes are
present in the video clip. This is made possible by the fact that désction scores have
been rendered comparable, using the normalization process desceith in Section 2.1,
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and thus we can use these normalized scores as an indicator of object prase in the
video clip.

3. We know the part of speechce associated with each lexical entrye. The particular
mapping from lexical entry to part of speech used in the experimerg in Section 5.5
is given in Table 11(a).

4. The word models for all lexical entries of the same part of speech have the same
arity |, the same numberK of states, the same feature-vector lengthN, and the
same computation that produces the feature vectors, together with the associated
binning process for quantizing the features. These values are kam and not learned.
The particular values for these parameters used in the experiments Section 5.5 are
given in Table 8.

5. We know the linking process and the grammar and lexicon portion needed to
determine the number L of participants and the linking function  for each training
sentence. The particular linking process used in the experinmés in Section 5.5 is
described in Section 3 using the grammar and lexicon portion from Table 11We do
not know the track collection J chosen for each training sample. This is determined
automatically by the methods from Section 2.

The grammar, portions of the lexicon , namely the components |, K, N, and , and the
linking process are prespeci ed and not learned. Only the state-transition functions a and
the output models h" are learned. One can imagine learning some or all of the grammar,
some or all of the nonlearned portions of the lexicon, and perhaps even thiking process ,
such as done by Kwiatkowski, Goldwater, Zettlemoyer, and Steedman2012). We leave such
for future work.

4.1 The General Approach

We are given a grammar, portions of a lexicon , namely the componentsl, K, N, and ,
and a linking process . The lexicon contains E word models ¢ for lexical entriese. We are
given a training set of M samples, each a video cliB , paired with a sentencesy,. Let B
denoteB1,:::,By and S denotesy,:::,sv . We use the grammar, the nonlearned portions
of the lexicon , and the linking process to determine the numbe r L of participants and
the linking function  for each training sentence. If we had the state-transition functionsag
and the output models hg for the word models ¢ in the lexicon , we could instantiate
the sentence tracker from Equation 10 on each training sample to computa video-sentence
score for that sample. A side e ect of doing this would be to compute the track collection J
that yielded that video-sentence score. Moreover, we could computan aggregate score for
the entire training set by summing such per-sample scores. Howey, we don't know the
state-transition functions a. and the output models hg. These constitute the unknown
meanings of the words in our training set which we wish to learn. We joitly learn ag
and hg for all lexical entries e by searching for those that maximize the aggregate score.

4.2 The Learning Procedure

We perform that search by Baum-Welch. While Equation 10 constitutes ascore that po-
tentially could be maximized, it is easier to adapt a scoring functionthat is more like a
likelihood calculation, than Equation 10, which is more like a MAP estimate, to the EM
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framework. Jhus we convert Equation 10 from log space to linear space and péace the
max with a  to rede ne our scoring function as follows:

X ¥ ¥ Yoy 1 #
CARC AN (13)
=2 ! 1

- !
hs, (KL, Bbs,t,w, Ji) as, (K&, 1Kt
w=1l t=1 t=2

JK ml=1 t

=1
A

wheref , g, h, and a are in linear space. Recall that Equation 6 jointly maximizes the sum of
a measure of how well a video cliB depicts a trackj and a measure of how well the detection
sequenceB; selected from a video clipB by the track | depicts an event model . Similarly,
Equation 10 jointly maximizes the sum of a measure of how well a video i@ B depicts a
track collection J and a measure of how well the detection-sequence collectidd; selected
from a video clip B by the track collection J depicts a given sentences, as interpreted by
a given lexicon . One can maximize just the rst component of this latt er sum.

" ! I#
X X X 1
max fdo + ol .4 (14)
J | I |
=1 t=1 t=2
This is a variant of Equation 1 for a track collection. One can similarly corvert Equation 14
from log space to linear space and replace the max with a to yield:

" NI ! N I#
() o L) (15)
t=1

t=2

X
J 1=

By suitable normalization with a constant factor, Equation 15 can be used toobtain the
probability of a particular track collection J relative to a distribution over all possible
track collections where the probability of a given track collection was poportional to the
summand. Let us denote this probability of a given track collectionJ as P (JjB).

For a given track collection J, one can similarly maximize just the measure of how well
the detection-sequence collectiomB ; selected from a video clipB by the track collection J

depicts a sentences, as interpreted by a given lexicon .
" ! I#
XX X
max hs, (Kl Bhs,t,w,Ji) + as, (K&, 1 kL) (16)
w=1l t=1 t=2

This is a variant of Equation 2 for a factorial HMM for multiple words. One cap similarly
convert Equation 16 from log space to linear space and replace the max with a to yield:
" ! I#
X v oY Y
hs, (i, Bs, t,w, Ji) as, (ki 1, kL) (17)
K w=l t=1 t=2

The summand in Equation 17 is the joint probability of a state sequenceK and B ; depicting
a sentences, as interpreted by a given lexicon : P(K,B;js, )= P(Bj;jK,s, ) P(Kjs, ).
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Equation 17 is the (marginal) probability of B ; depicting a sentences, as interpreted by a
given lexicon : P(Bgjjs, ). If we divide Equation 13 by Equation 15 we obtain:
X
L(B;s, )= P(JjB)P(Byjs, )
J

This is the expected probability of B; depicting a sentences, as interpreted by a given
lexicon , over the track collection distribution underlying P (JjB). Equations 13 and 15
can both be computed e ciently by the forward algorithm (Baum & Petrie, 1966). This
allows us to takeL(B;s, ) as a sample score and adopt

Y
L(B;S, )= L(Bm;:Sm, )

m=1

as the training-set score. We seek the and h in that maximize L(B;S, ). Note that
both the sample and training-set scores are in [0, 1].

We can nd alocal maximum to this objective function using the same techniques as used
by Baum-Welch. The reestimation formulas can be derived with auxilary functions that are
analogous to those used for HMMs (Bilmes, 1998). Let us rstdened = Ji,:::,Jm and
K= Kaq,:::,Ky tobe track collections and state-sequence collections for the engrtraining
set. Then letus deneL(B,J ,K;S, ) as the product of the summand of Equation 13 over
the training set divided by the product of Equation 15 over the training set. Thus we have:

X
L(B;S, )= L(B,J .K;S,)
J K

We adopt the following auxiliary function:

X
F(, 9= L(B,J ,K;S, %logL(B,J ,K:;S,)
J K

where 9 is the current lexicon and is a potential new lexicon. One can show hat
F(, 9 F(°% 9impliesL(B;S,) L (B;S, 9.

X L(B,J,K:S, 9 L(B,J, K;S)
F(, 9 F(° 9=1L(B;S, 9 : log :
) K L(B;S, 9 L(B,J ,K:S, 9
X .
/ P(J,KjB,S, 9Ylog II__((BB:]]IP((SS )(b
J K T
X .
log P(J,KjB,S, %t((BB’j ESS )()
J K T
:IOgX L(B,J .K;S,)
. L(B;S, 9
_ L(B;S,)
=9 @S 9
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The second step above holds because the training-set scdrgB; S, 9 is nonnegative. The
third step holds due to Jensen's (1906) inequality. Thus given the ctrent lexicon ©, if we
nd a new lexicon suchthat F(, 9 F( © 9, one can iterate this process, increasing
the training-set score to a local maximum. This can be done by maximizig F(, 9 with
respect to . Since L(B,J ,K;S, ) is proportional to the product of the summands of
Equation 13 over the training set, which is the product of two terms, only the latter of
which depends on , the following holds:

L(B,J.K;S, 9 _
F(, 9/ . LES 9 logL(B,J ,K;S,)
! 0 1
X L(B,J,K:S, 9X XmpgXn . .
 “i@s ) Ioghsmvw(kmyw,%mmm,t,w,Jmle

m=1 w=1 t=1
0 h 1

Xm
@ l0gau,, (4,4 k)

t=2
a

where Ty, is the number of frames in the video clipB , for training sample m , Wy, is the
number of words in the sentencesy, for training sample m, sy,  is the lexical entry for
word w in the sentencesy, for training sample m, and kf, ,, is the state ki, in the state-
sequence collectiorK , for training sample m. In the above, B sy, t,w, Jni is extended

to denote b}: ,:::,b}t , the collection of detections selected in frama of the video
1

I'sm,w
clip By by the track collection Jm as assigned to thels, , arguments of the word model
for word w in sentencesy, by the linking function im,w produced onsy, that determines the
participant for argument i of word w for sentencesy,. Thus F(, 9 comprises two terms,
one of which, H, is a weighted sum of termsh and the other of which, A, is a weighted
sum of termsa. One can maximizeF (, 9 by maximizing H and A independently. These
lead to reestimation procedures for the output modelsh and state-transition functions a.

First consider A. Rewrite the term to explicitly sum over lexical entries e and pairs of
statesk®and k.

LBk, L =Kok ,, = kS, 9
A = : : | k% k
t 1 — 10t — - .
_ L(Bm1km,w = k.’ km,w = K; Sm, (?L(Bm%m,smosm, C)Iogae(ko, K) (18)
X L(Bm;sm, gL(BmOSm,Smoem1 ()
L(Bm, K, & = KOKE = Kism, 9 0
= : : lo k” k
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X

X Xe Xe X Rm Xm

where denotes and where
e=1 k%=1 k=1 m=1 w=1 t=2
Sm,w=€
X X
L(B, ki, & =Kok w=kS, 9 = L(B,J ,K;S, 9
J K
ki L=k
X K=
L(Bm,kﬁn,\}v:koyk;t-nlwzk,sm, (b = L(Bmy\]m,Kmysmy %
Jn  Km
ki L=k
K w=k
W
L(Bmo%smiSmoem, 9 = L (B mo; Smo, )
mO%=1
m% m

The second step in Equation 18 holds because of the assumption that thediming samples
are i.i.d. Taking the derivative of A with respect to eachag(k® k), we get the reestimation
formula for the state-transition function:

X Rm X | (B, kL= KOKE = K;Sm,
ae(k% k) = e(k9 Er LB 9 m )
m=1 w=1 t=2 | myzm: }

Smw=¢€ (m,w,kOK,t)

The coe cient  ¢(k9 is chosen to normalize the distribution so that it sums to one.

The reestimation formula for the output model can be derived similaty from H. We
make use of the fact that the output model is a factorial model where thefactors are discrete
distributions. In linear space:

Ve
he(k,br,:::,h,) = ha(k, 2(by,:::,b.))

n=1

Again, rewrite H to explicitly sum over lexical entries e, statesk, featuresn, and bins z.

L(B,kyw =k, 2(Bmhsm,t,W,dmi)= 1,;S, 9

H = d logh?(k, T
X L(B,S, 9 Og e( 1 e,z)
_ LBm.khw =K, 2(Bmhsm, t,W,Imi) = 2,:Sm, OL(Bmosm:Smosm. C)Iogh”(k )y
X L(Bm;sm, cM—(Bmoﬁm;sm%m1 % enes
L(Bmlk[t'nvwzku g(Bmmm:t:Wmei): gz;sml (b

— ) n n
(B loghl(k, 2,)
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X Ke e ¥e W Wm Xnm
where denotes and where
e=1 k=1 n=1 z=1 m=1 w=1 t=1

Sm,w=¢€

L(B, kY w = K, 2(BmMsm, t, W, Imi) = 2,;S, Q=
L(B,J,K;S, 9

J K
e(Bmbsm tw,JImi)= ¢, ki w=k

L(Bm khw =k eBmMdn,t,W,dmi)= 8;Sm )=
LBm,JIm,Km;ism, 9
Jm Km
g(Bml'Bm,t,W,\]mi): g’zklt-n’wzk

Taking the derivative of H with respect to eachhg(k, g,), we get the reestimation formula
for the output model:

XX X | (B, kb = Ko B(Bmbsm, t, W, Imi) = ;sm, 9

he(k, )= g(k)

m=1 w=1 t=1 | L(Bm{zsm’ ) }

Sm,w=¢€ (mw,nk, t)

The coe cient 3 (k) is chosen to normalize the distribution so that it sums to one.

The reestimation formulas involve occurrence counting Since we use factorial HMMs
that involve a cross-product lattice and use a scoring function dened from Equation 13 that
incorporates both tracking (Equation 1) and word models (Equation 2), we ned to count oc-
currences in the whole cross-product lattice. As an example of suchlr@ss-product occurrence
counting, when counting the transitions from state k°to k for word w from framet 1totin
samplem, i.e., (m,w, kO k, t), we need to count all the possible paths through the adjacent
factorial states, i.e., from ji 3,100, bk doiin kg 10 Gh g gl K i K
such that k}m}v = k%and ktm,W = k. Similarly, when counting the frequency of being at
state k while observing the value as the featuren in frame t of samplem for the word w,
i.e,, (m,w,n,k, ,t), we need to count all the possible paths through the factorial state
Jma i Ko Ky W such that ki, = kand  §(Bmbhsm, t,w, Imi) =

The reestimation of one word model can depend on the previous estimateif other word
models. This dependence happens because the linking functiomam assign the same partic-
ipant to arguments of di erent words in a sentence and the same lexicakntry can appear
in di erent training sentences. It is precisely this dependence that leads to cross-situational
learning: the former performs inference across di erent words in thesame sentence and the
latter performs inference across the same word in di erent sentences.

5. Experiments

The sentence tracker implements a functionS : (B,s, ) 7! ( ,J) that takes a video clip B
as input, along with a sentences and a lexicon , and produces, as output, a video-sentence
score , together with a track collection J that depicts the sentences as interpreted by the
lexicon . The ability to produce both a score and a track collection allows the sentence
tracker to be used in a variety of ways, among them:
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language inference Using the track collection that it produces, it can take a sentence
as input and focus its attention on the event described in the sentece. This allows
processing a video clip that depicts many participants, various sbsets of whom are
engaged is di erent events, to track those particular participants that are engaged in
a particular event as speci ed by a sentence.

language generation Using the score that it produces, it can generate sentential descrip
tions of video clips by e ciently searching through the space of posdile sentences to
nd one that best describes a given clip.

language acquisition  Using the score that it produces, it can learn word meanings from a
training set of video clips paired with sentences that describehose clips, by searching
the space of potential word meanings to nd those that collectively allows the sentences
to best describe the associated clips.

We evaluate the rst use in Section 5.3, the second use in Section 5.4, artie third use in
Section 5.5.

5.1 The Corpora

To conduct our evaluation, we Imed two di erent corpora, each containing 94 video clips.
One corpus was used for the experiments in Sections 5.3 and 5.4 whileet other was used for
the experiments in Section 5.5. Both corpora were Imed at 640 480 resolution and 30 fps.
Each contained clips that varied in length between 3 and 5 seconds. Botlwere Imed in
a variety of outdoor environments, the rst varying between three di erent environments
and the second varying between four. The camera was moved betweenmling each clip so
that the varying background precluded unanticipated confounds.

The video clips were Imed with a variety of actors and objects. The dips in the rst
corpus each contain one or two people from a collection of three actors whilie clips in the
second corpus each contain a single person from a collection of four actorshé& rst corpus
was Imed with three objects, a backpack, a chair, and a trash can, each ofvhich were
present in the eld of view for all clips. The second corpus was Imedwith ve objects, a
backpack, a chair, a tra c cone, a trash can, and a stool, with either two or three present
in the eld of view of any given clip. The whole dataset was counterbalancd to avoid
artifactual correlation. Each object class and combination of object classeappears in clips
with nearly equal frequency.

The four di erent environments for the second corpus were used to enstruct three dif-
ferent cross-validation folds. The 29 video clips Imed in one envionment always contain
exactly two objects while the 23, 22, and 20 clips Imed in each of the otherthree envi-
ronments respectively always contain exactly three objects. The dst set for a given fold
comprised all of the clips Imed in one of the latter three environmerts. Thus the test sets
for the three folds contained 23, 22, and 20 clips respectively. The traing set for a given
fold comprised all clips except for the test set for that fold. Thus the training sets for the
three folds contained 71, 72, and 74 clips respectively.

All video clips depict multiple simultaneous events. The depidion, from clip to clip,
varied in scene layout and the actor(s) performing the event. The dps in the rst corpus
each depicted one or more of the 21 sentences from Table 1. The clips indtsecond corpus
each depicted one or more of the 187 sentences from Tables 2 and 3. Thesetseces
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la. The backpackapproached the trash can.
b. The chair approached the trash can.
2a. The red object approached the trash can.
b. The blue object approached the trash can.
3a. The person to theleft of the trash can put down an object.
b. The person to theright of the trash can put down an object.
4a. The person put down thetrash can.
b. The person put down thebackpack
5a. The person carried thered object.
b. The person carried theblue object.
6a. The person picked up an object to théeft of the trash can.
b. The person picked up an object to theight of the trash can.
7a. The personpicked upan object.
b. The personput down an object.
8a. The person picked up an objectjuickly.
b. The person picked up an objectlowly.
9a. The person carried an objecttowards the trash can.
b. The person carried an objectaway from the trash can.
10. The backpack approached the chair.
11. The red object approached the chair.
12. The person put down the chair.

Table 1: A selection of sentences drawn from the grammar in Table 11(a) baseon which
we collected multiple video clips for the rst corpus. Note that sentence pairs 1 through 9
constitute minimal pairs, where a single constituent varies betwen two lexical entries in each
pair. The varying constituent ranges over all parts of speech and all seantial positions.

were constrained to conform to the grammar in Table 11(a). The 187 sentencefor the

second corpus were divided into two groups, one consisting of 175 sentes that were used
exclusively for training and one consisting of 12 sentences that werased exclusively for
test. This delineation is indicated by the horizontal line in Table 3.

The corpora were carefully constructed in a number of ways. First,many video clips
depict more than one sentence. In particular, many clips depict siraltaneous distinct events.
Second, each sentence describes multiple clips. Third, the st corpus was constructed with
minimal pairs: clips described by a pair of sentences which di elin exactly one lexical item.
These minimal pairs help evaluate language inference and are indicated dse ‘a’ and b’
variants of sentences 1{9 in Table 1. That varying lexical item was carefdly chosen to span
all parts of speech and all sentential positions: sentence 1 varies sjgtt noun, sentence 2
varies subject adjective, sentence 3 varies subject prepositipsentence 4 varies object noun,
sentence 5 varies object adjective, sentence 6 varies object p@gition, sentence 7 varies
verb, sentence 8 varies adverb, and sentence 9 varies motion prepto@n. Fourth, each clip
in the second corpus contains only a subset of the objects used in thatogpus. Without
such asymmetry it would be di cult (but not impossible) to determ ine the correspondence
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The chair approached the stool.

The chair to the right of the backpack approached the stool.
The chair to the left of the stool approached the stool.

The person picked up the stool.

The person picked up the stool to the left of the backpack.
The person carried the trash can.

The person carried the trash can to the left of the backpack.
The person put down the trash can.

The person put down the trash can quickly.

The person put down the trash can to the left of the stool.
The person to the left of the backpack put down the trash can.
The person picked up the chair.

The person picked up the chair quickly.

The person picked up the chair to the left of the tra c cone.
The person picked up the chair to the left of the backpack.
The person put down the chair.

The person put down the chair quickly.

The person to the left of the tra ¢ cone put down the chair.
The person carried the tra c cone.

The person to the left of the backpack carried the tra c cone.
The person carried the tra c cone away from the trash can.
The backpack approached the tra c cone.

The backpack to the right of the chair approached the tra c cone.

The backpack to the left of the tra ¢ cone approached the tra c cone.

The person put down the tra ¢ cone.

The person put down the tra ¢ cone to the left of the stool.
The person to the left of the chair put down the tra ¢ cone.
The person carried the backpack.

The person to the left of the chair carried the backpack.
The person carried the backpack away from the stool.

The person put down the stool to the left of the trash can.
The person approached the trash can.

The stool approached the trash can.

The person carried the stool.

The person carried the stool towards the trash can.

The stool approached the trash can to the left of the tra ¢ cone.

The backpack to the left of the tra ¢ cone approached the trash can.
The backpack to the right of the trash can approached the trash can.

The tra ¢ cone approached the stool to the left of the trash can.
The trash can approached the chair.

The trash can to the left of the chair approached the chair.
The trash can approached the chair to the left of the backpack.
The person approached the chair.

The person picked up the trash can to the left of the stool.

The person approached the tra c cone.

The chair approached the tra c cone.

The person to the left of the backpack approached the tra c cone.
The person carried the chair towards the tra c cone.

The person put down the chair to the right of the backpack.
The person to the right of the tra ¢ cone put down the chair.
The person to the right of the trash can put down the tra c cone.
The person to the left of the backpack put down the tra ¢ cone.
The person put down the tra ¢ cone slowly.

The person picked up the chair to the right of the backpack.
The person to the right of the trash can picked up the chair.
The stool approached the tra c cone to the right of the chair.
The stool approached the tra c cone to the left of the person.
The person picked up the tra c cone quickly.

The person picked up the tra c cone to the left of the stool.
The person to the left of the chair picked up the tra c cone.

The person picked up the backpack.

The person to the left of the chair picked up the backpack.

The person put down the backpack.

The person put down the backpack slowly.

The person to the right of the chair put down the backpack.
The person put down the backpack to the right of the trash can.
The tra ¢ cone approached the stool.

The tra c cone to the left of the trash can approached the stool.
The tra ¢ cone to the right of the stool approached the stool.
The backpack approached the trash can.

The backpack approached the trash can to the right of the stool.
The backpack to the right of the stool approached the trash can.
The person carried the chair.

The person to the left of the stool carried the chair.

The person carried the chair to the left of the tra c cone.

The person picked up the trash can.

The person picked up the trash can quickly.

The person picked up the trash can to the right of the stool.
The person picked up the tra ¢ cone.

The person picked up the tra ¢ cone slowly.

The person to the left of the stool picked up the tra c cone.

The person picked up the tra ¢ cone to the right of the trash can.
The stool approached the tra c cone.

The stool to the left of the tra ¢ cone approached the tra c cone.
The stool to the right of the chair approached the tra c cone.
The chair approached the trash can.

The chair to the left of the tra c cone approached the trash can.
The chair to the left of the trash can approached the trash can.
The person put down the stool.

The person to the left of the tra ¢ cone put down the stool.

The tra ¢ cone approached the chair to the left of the stool.

The tra ¢ cone approached the chair.

The person carried the tra c cone towards the chair.

The person to the left of the stool carried the tra c cone.

The person carried the tra c cone away from the chair.

The person to the left of the stool put down the backpack.

The person put down the backpack to the right of the chair.
The person picked up the stool slowly.

The person to the right of the trash can put down the stool.
The tra ¢ cone approached the trash can.

The tra ¢ cone to the right of the stool approached the trash can
The chair approached the stool to the left of the tra c cone.

The chair to the right of the stool approached the stool.

The person to the left of the stool put down the trash can.

The person put down the trash can to the left of the tra ¢ cone.
The person approached the stool.

The backpack approached the stool.

The person carried the backpack towards the stool.

The backpack approached the chair.

The backpack to the right of the chair approached the chair.
The backpack to the right of the tra ¢ cone approached the chair.
The person carried the stool away from the tra c cone.

The person to the left of the tra ¢ cone picked up the backpack.
The stool approached the backpack.

The stool approached the backpack to the right of the trash can.
The stool to the left of the backpack approached the backpack.
The person to the left of the chair approached the stool.

The person carried the stool towards the chair.

The person to the left of the chair put down the stool.

The person put down the stool slowly.

Table 2: A selection of sentences ( rst part) drawn from the grammar in Table 11(a) that
were used to annotate the clips for the second corpus.
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The person to the right of the trash can approached the chair.
The person to the right of the trash can carried the chair.

The person to the right of the trash can put down the chair.
The person put down the chair slowly.

The person to the right of the trash can approached the stool.
The person picked up the stool to the right of the trash can.
The person put down the stool to the right of the trash can.
The person to the left of the stool approached the chair.

The person picked up the chair to the left of the stool.

The person carried the chair towards the stool.

The person to the left of the stool put down the chair.

The person to the right of the chair approached the trash can.
The person picked up the trash can to the right of the chair.
The person carried the trash can away from the chair.

The person put down the trash can to the right of the chair.
The person picked up the stool quickly.

The person put down the stool quickly.

The person approached the chair to the left of the stool.

The person put down the chair to the left of the stool.

The trash can approached the tra c cone.

The trash can to the right of the backpack approached the tra ¢ cone.
The trash can approached the tra ¢ cone to the right of the backpack.
The person to the right of the chair put down the trash can.
The person carried the chair towards the backpack.

The chair approached the backpack.

The chair approached the backpack to the left of the stool.
The person carried the trash can towards the tra c cone.

n in Video

The person to the right of the backpack picked up the stool.
The person to the right of the backpack picked up the tra c cone.
The person to the left of the trash can picked up the tra c cone.
The trash can approached the stool.

The trash can to the left of the stool approached the stool.

The trash can to the right of the chair approached the stool.
The person picked up the trash can to the left of the chair.

The person carried the backpack away from the chair.

The person to the left of the tra ¢ cone carried the backpack.
The person carried the stool away from the chair.

The person to the right of the chair picked up the backpack.
The person to the left of the trash can picked up the backpack.
The person picked up the backpack quickly.

The tra ¢ cone approached the backpack.

The tra c cone to the left of the backpack approached the backpack.
The tra ¢ cone approached the backpack to the left of the stool.
The person to the left of the tra c cone picked up the chair.
The person to the left of the trash can put down the tra c cone.
The person put down the tra ¢ cone to the right of the stool.
The person carried the tra ¢ cone towards the trash can.

The person carried the tra c cone away from the stool.

The stool approached the chair.

The stool approached the chair to the right of the tra c cone.
The stool to the right of the tra ¢ cone approached the chair.
The person to the left of the tra ¢ cone put down the backpack.
The person to the right of the trash can put down the backpack.
The chair to the left of the backpack approached the backpack.
The chair approached the backpack to the left of the trash can.

The person picked up the stool to the right of the tra c cone.
The person to the left of the stool picked up the trash can.
The person put down the stool to the left of the chair.

The person to the left of the trash can carried the stool.

The person put down the backpack quickly.

The person to the left of the backpack put down the chair.

The trash can to the left of the backpack approached the chair.
The person carried the trash can towards the chair.

The person picked up the chair slowly.

The person picked up the stool to the left of the chair.

The person picked up the backpack to the right of the trash can.
The person carried the trash can away from the backpack.

Table 3: A selection of sentences (second part) drawn from the grammar iffable 11(a).
The sentences above the horizontal line were used to annotate the ph for the second corpus
and those below it were used for test.

between nouns and object classes. Note, however, that since the trang clips each contain
more than one object, the task of learning noun meanings is still challengg. We Imed our
own corpora as we are unaware of any existing corpora that exhibit the aba properties?
We annotated each of the 94 video clips in each corpus with human judgmest The
rst corpus was annotated against each of the 21 sentences from Table 1, inditing whether
the given clip depicted the given sentence. Table 4 provides statics on this annotation.
The resulting set of 94 21 = 1974 judgments and the associated statistics were used
to compare and contrast our machine-generated results against human judgmes in the
analyses in Sections 5.3 and 5.4. Each clip in the second corpus was usetthei for training
or test, depending on the cross-validation fold, as described earlienWhen it was included
in the training set, it was paired with between 1 and 5 sentences $ected from the 175

2. The video clips, sentential annotation described below, and all code needed to replicate the ex-
periments in this section are available at http://upplysingaoflun.ecn.purdue.edu/~qgobi/cccp
/grounding-language-in-video.html
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#Clips that depict a given sentence 12.33 6.48
#Sentences that describe a given clip 2.76 1.22

Table 4: Annotation statistics for the rst corpus.

#Clips that depict a given sentence 2.00 0.58
#Sentences that describe a given clip 0.37 0.61

Table 5: Annotation statistics for the second corpus.

training sentences from Tables 2 and 3 that were deemed to descrilibe associated training
clip by a human judge. On average, each training clip was paired with 2.94sentences.
Collectively, the corpus contains 276 video-sentence pairs used foraining. The three
training folds contained 213, 208, and 204 video-sentence pairs respectiyeMhen a given
clip was included in the test set, it was paired with all 12 test senences from Table 3. Thus
the 94 29 = 65 potential test clips in the second corpus were annotated against eachf
the 12 test sentences from Table 3, indicating whether the given gbi depicted the given
sentence. Table 5 provides statistics on this annotation. The resting set of 65 12 =780
judgments and the associated statistics were used to compare and coafst our machine-
generated results against human judgments in the analyses in Section 5.5.

All of our experiments use an o -the-shelf object detector (Felzengwalb et al., 2010a,
2010b) which outputs detections in the form of scored axis-aligned rectangk. In particu-
lar, we used the implementation described by Song, Zickler, Altho , Girshick, Fritz, Geyer,
Felzenszwalb, and Darrell (2012). Using o -the-shelf software, we traied six object detec-
tors, one for each of the six object classes in our corpora: person, backpaathair, tra c
cone, trash can, and stool. To compensate for false negatives, as descdhie Section 2.1,
we lowered the acceptance threshold on the models produced by autatic training. The
per-part thresholds were uniformly reduced by 1.2, the model threholds were uniformly
reduced by 2.0, and non-maxima suppression was set to 0.6 for the rst cpus and 0.55
for the second. We applied the person, backpack, chair, and trash can dettors uniformly
to all frames of all video clips in the rst corpus and all six detectors to all frames of all
clips in the second corpus. For the rst corpus, we selected the e highest-scoring de-
tections produced by each object detector in each frame and pooled theesults yielding
twenty detections per frame. For the second corpus, we selected ¢htwo highest-scoring
detections produced by each object detector in each frame and pooledhe results yielding
twelve detections per frame. While having a larger pool of detectioa per frame can better
compensate for false negatives in object detection and potentially yiel smoother tracks,
it increases the size of the lattice and the concomitant running timebut does not lead to
appreciably better performance on our corpora.

5.2 The Manually-Constructed Lexicons

The experiments in Sections 5.3 and 5.4 use manually-constructed R& to represent word
meanings when evaluating language inference and language generation. Thesmt-written
representations of word meaning clearly encode pretheoretic humamiuition and make such
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intuition perspicuous. For these experiments, we formulate the wrd models for the lexical
entries in Table 11(a) that appear in the sentences in Table 1. The expéments in Section 5.5
learn word models represented as HMMs. We evaluated these learned vébmodels, in part,
by comparison with manually-constructed HMMs. These manually-constucted HMMs will

be discussed in Section 5.5.

We formulate the FSMs as regular expressions over predicates computérom detections.
The particular set of regular expressions and associated predicates dh are used in the
experiments in Sections 5.3 and 5.4 are given in Table 6. The predicatesre formulated
around a number of primitive functions. The function avgFlow(b) computes a vector that
represents the average optical ow inside the detectiorb. The function model(b) returns the
object class ofb. The function x(b) returns the x-coordinate of the center ofb. The function
hue(b) returns the average hue of the pixels insidéy. The function angleSepdetermines the
angular distance between two angular arguments. The functiorfiwdProj(b) displacesb by the
average optical ow inside b. The function 6 determines the angular component of a given
vector. The function ? computes a normal unit vector for a given vector. The argumentv
to noJitter  denotes a speci ed direction represented as a 2D unit vector in thatirection.
Predicates that take a single detectionb as their sole argument can serve as 0/1 output
models h(k,b) (1 /0 in log space) for single-participant word models. Predicates that
take a pair of detectionsb; and b, as their sole arguments can serve as 0/1 output models
h(k,b;,b) (1 /0 in log space) for two-participant word models. Regular expressions are
formulated around predicates as atoms. A given regular expression must biermed solely
from output models of the same arity and denotes a word model with a 0/1 stag-transition
function (1 /0 in log space) where the output models are associated with the appropate
states.

5.3 Experiment 1: Language Inference

Tracking is traditionally performed using cues from motion, object detection, and/or manual

initialization on an object of interest (Yilmaz, Javed, & Shah, 2006). Howeve, in the

case of a cluttered scene involving multiple events occurringisiultaneously, there can be
many moving objects, many instances of the same object class, and perhagven multiple
simultaneously occurring instances of the same event class. Here Wistrate how one can
use a sentential description to guide the tracking of objects based owhich ones participate
in the target event.

The sentence tracker can focus its attention on just those objects tht participate in
an event speci ed by a sentential description. Such a descriptin can di erentiate between
di erent simultaneous events taking place between many moving obgcts in the scene using
descriptions constructed out of a variety of parts of speech. Using nounto specify object
class, one could di erentiate between

The person picked up thebackpackand
The person picked up thechair.

Using adjectives to specify object properties, one could di ereniate between
The person picked up thered object and
The person picked up theblue object
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Constants
4 4 . 4 . 4 . 4
xBoundary = 300px nextTo =50px static = 6px jump = 30px quick =80px
slow 2 30px closing £ 10px angle 230 hue 2 30

Simple Predicates

noditter (b, v) 2 kavgFlow(b) vk jump alike (b, byp) £ modelb;) = modelb,)
close (by,by) 2 jx(by)  x(b2)j < xBoundary far (b, b) = jx(br)  x(bp)j  xBoundary
left (by, bp) 20<x (p) x(b) nextTo right (b, by) 20<x (m) x(bp) nextTo
hasColor (b, hue)4: angleSephue(b), hue) hue stationary  (b) 2 kavgFlowb)k static
quick (b) £ kavgFlowbk  quick slow (b) £ kavgFlowbk  slow
person (b) 2 modelb) = person backpack (b) 2 modelb) = backpack
chair (b) £ modelb) = chair trashcan (b) 2 modelb) = trashcan
blue (b) 2 hasColor (b, 225) red (b) 2 hasColor (b,0)

Complex Predicates

stationaryClose  (by, by) £ stationary  (bp)  stationary (kp) ~: alike (b, )~ close (by, by)
stationaryFar  (by, bp) 2 stationary  (bp)  stationary (kp) ~: alike (by,bp) » far (b, bp)
closer (by,by) £ jx(b)  x(b2)j > jx(fwdProj(by))  x(bp)j+ closing
farther (b, by) £ jx(b)  x(b»)j < jx(fwdProj(by))  x(bp)j + closing
moveCloser (b, bp) 2 noditter (b, (0, 1)) ~ noditter  (by, (0,1)) ~ closer (by, by)
moveFarther  (by, bp) 2 noditter (b, (0, 1)) » naditter (b, (0,1)) » farther  (by, bp)
inDirection (b, v) 2 noditter (b,?(v)) ~: stationary (b) ~ angleSegé avgFlow(b), 6v) < angle
approaching (by, bp) 2. alike (b, bp) ~ stationary (k) » moveCloser (b, by)
departing (by, ) 2. alike (b, bp) ~ stationary (b)) » moveFarther  (by, by)
carry (b, bp,v) 2 person (by) ~: alike (b, bp) ~ inDirection (b, v) ~ inDirection (b, V)
carrying (by,by) £ carry (by, by, (0,1) _cary (b, b, (0, 1))
pickingUp (b, bp) 2 person (by) ~: alike (by,bp) ~ stationary (bp) ~ inDirection  (by, (0, 1))
puttingDown  (by, bp) 2 person (by) ~: alike (b, bp) ~ stationary (bp) ~ inDirection  (bp, (0, 1))

Regular Expressions

person 2 person * backpacké backpack * chair 2 chair *
trash can 2 trashcan * object é(backpack j chair jtrashcan )*
bie = blue * e = red * quickly = true * quick B true *
to the left of 2 left * to the right of 2 right * slowly 2 true * slow Bl true *
approached 2 stationaryFar  * approaching [3] stationaryClose ~ *
carried = StationaryClose  * carrying 3] stationaryClose ~ *
picked up 2 stationaryClose  * pickingUp 1) stationaryClose ~ *
put down 2 stationaryClose  * puttingDown B stationaryClose ~ *
owards = StationaryFar  * approaching [3] stationaryClose ~ *
away from 2 stationaryClose  * departing [1 stationaryFar  *

Table 6: The FSMs representing the meanings of the lexical entriesni Table 11(a) that
appear in the sentences in Table 1 used for the experiments in Seghs 5.3 and 5.4.
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Using verbs to specify events, one could di erentiate between

The person picked upthe red objectand
The person put down the red object

Using adverbs to specify motion properties, one could di erentiate ketween

The person quickly picked up the red objectand
The personslowly picked up the red object

Using prepositions to specify (changing) spatial relations between olgcts, one could di er-
entiate between

The personto the right of the chair picked up an objectand
The personto the left of the chair picked up an object

Furthermore, such a sentential description can even di erentiaie which objects to track
based on the role that they play in an event: agent, patient, source, goal, oreferent. For
example, the sentencél'he person picked up thébackpackto the left of the chair di ers from
The person picked up thechair to the left of the backpackin that the roles of the backpack
and the chair are exchanged. Although the same objects are involved in the adcribed
events, their roles in the events di er, and can be distinguishedby the tracker. Figure 15
demonstrates this ability: di erent tracks are produced for the same video that depicts
multiple simultaneous events when focused with di erent senences. In this gure, as well
as Figure 16 and Figures 21 and 22 in Appendix B, the boxes around the partipants are
color coded to indicate semantic role: agent in red, patient in blue, surce in violet, goal in
turquoise, and referent in green. This particularly illustrates that our system understands
the image regions that correspond to the participants and the particular mapping of such to
argument positions of predicates that denote the meanings of lexical itesiin the sentential
description. This further illustrates deep semantic understarding.

Figure 15 evaluates this ability for each sentential position. Figure 21 m Appendix B
evaluates this ability on all 9 minimal pairs, as indicated by the & and "b' variants of
sentences 1{9 in Table 1, collectively applied to all 25 suitable videalips in the rst corpus.
We discard two clips from the original set of 9 3 =27 video clips due to the fact that they
involve an adjective (grey), corresponding to the chair, that cannot be reliably extracted
from the video. For 18 out of the 25, both sentences in the minimal pair yiedled track
collections deemed to be correct depictions. We determine errordm subjective human
judgment of whether the track collection that our system produces mathes the desired
description. All of the errors encountered in this task fall into one oftwo categories. One
category deals with the use of a color adjective along with the generic worabject in the
presence of some other entity in the video other than the intended oject that incidentally
has a similar color. The sole error in this category involves the tracker alecting detections
on a person's red shirt instead of the red backpack, for one of three inahces of minimal
pair 2 in Table 1: The red object approached the chairand The blue object approached
the chair. The correct result is obtained for the other instance of this minimal pair when
associated with di erent video clips. The other category is largely due to the de ciencies
of the detectors, particularly that for the trash can. In at least four instances, the paucity
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Di erentiate
on

verb

The person picked upan object. The personput down an object.

subject
noun

The backpackapproached the trash can. Thechair approached the trash can.

adjective
in subject
NP

The red object approached the chair. Thedlue object approached the chair.

preposition
in subject
NP

The person to theleft of the trash can put down an object. The person to theght of the trash can put down an object.

object
noun

The person put down thetrash can. The person put down thebackpack

adjective
in object
NP

The person carried thered object. The person carried theblue object.

preposition
in object
NP

The person picked up an object to théeft of the trash can. The person picked up an object to theght of the trash can.

preposition
in an
adjunct
The person carried an objecttowards the trash can. The person carried an objectiway from the trash can.

Figure 15: Language inference: two di erent track collections for the samevideo clip pro-
duced under guidance of two di erent sentences. Each clip is pragssed by a minimal pair, a
sentence that varies in a single lexical item highlighted inred vs. green The varying lexical
item itself varies among all sentential positions across the eight exanips. Results for all
video clips processed by the minimal pairs in sentences 1{9 from Tdé 1 are included in
Figure 21 in Appendix B. In this gure, as well as in Figures 16, 21, and 22, we idicate
thematic role of the participants by the color of the bounding box: the red box denotes the
agent, the blue box denotes the patient, the violet box denotes the @urce, the turquoise
box denotes the goal, and the green box denotes the referent. These eslare determined
automatically using the techniques in Appendix A.
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Contraction Threshold Accuracy

0.95 67.02%
0.90 71.27%
0.85 64.89%

Table 7: Accuracy as a function of contraction threshold.

of detections from the trash can detector results either in poor tracks or a complete failure
to satisfy the FSMs corresponding to other word models. This is futher exacerbated in
the case of adverbs. Since adverbs modify verbs, and verbs vary in éhmanner of their
execution, tight bounds on what would constitute quickly or slowly are di cult to obtain.
Any bounds we are able to impose are su ciently noisy that sometimes thedistinction
between an action happeningquickly or slowly is lost. Two such errors occur here, namely
on two instances of minimal pair 8 in Table 1: The person picked up an objectuickly and
The person picked up an objectslowly. The correct result is obtained for the remaining
instance of this minimal pair when associated with a di erent video clip.

5.4 Experiment 2: Language Generation

We can use the ability of the sentence tracker to score a video-seniee pair to generate a
sentence that describes a given video clip by searching for the difiest-scoring sentence for
that clip. However, this has a problem. Recall thatf, g, h, and a are all values in log
space that range in (1 , 0] where increasing value denotes higher scoreg., better t to
the model. Since the sentence-tracker scoring function (Equatin 10) sums these, scores
decrease with longer word strings and greater numbers of participants tat result from
longer word strings. So we don't actually search for the highest-scoringentence, which
would bias the process towards short sentences. Instead we seek quex sentences that
describe the clip as they are more informative.

Nominally, this search process would be intractable since the space pbssible sentences
can be huge and even in nite. However, we can use beam search to get an apgimate
answer. This is possible because the sentence tracker can score angrev sequence, not
just complete sentences, as long one can construct a linking funaih . We can select
the top-scoring single-word sequences and then repeatedly exteride top-scoring W -word
sequences, by one word, to select the top-scoring/ + 1-word sequences, subject to the
constraint that a linking function  exists for theseW + 1 words and these W + 1-word
sequences can be extended to grammatical sentences by insertion ofdétnal words. We
terminate the search process when theontraction threshold, the ratio between the score
of a sequence and the score of the sequence expanding from it, dropsldve a specied
value and the sequence being expanded is a complete sentence. §bbntraction threshold
controls complexity of the generated sentence.

When restricted to FSMs, h and a will be 0/1 which become 1 /0 in log space. Thus
increase in the number of words can only decrease a score tb , meaning that a sequence
of words no-longer describes a video clip. Since we seek sententest do, we terminate
the above beam-search process before the score goes 1o . In this case, there is no
approximation: a beam search maintaining allW-word sequences with nite score yields
the highest-scoring sentence before the contraction threshold is et.
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To evaluate this approach, we searched the space of sentences generatgdhe grammar
in Table 11(a) to nd the top-scoring sentence for each of the 94 video cfis in the rst corpus.
Note that the grammar generates an in nite number of sentences due to raarsion in NP.
Even restricting the grammar to eliminate NP recursion yields a spae of 147,123,874,800
sentences. Despite not restricting the grammar in this fashion, weare able to e ectively
nd good descriptions of the video clips.

We evaluated the accuracy of the sentence tracker in generating desptions for all 94
video clips in the rst corpus for multiple contraction thresholds. Accuracy was computed
as the percentage of the 94 clips for which the sentence tracker proded descriptions
that were deemed to describe the video by human judges. The redilg accuracy for
di erent contraction thresholds is shown in Table 7. Figure 16 shows he highest-scoring
sentence generated by this approach for several clips in the rst conps for the contraction
threshold 0.90. Figure 22 in Appendix B shows the highest-scoring seaehce generated
by this approach on each of the 94 clips in the rst corpus. To illustrate the e ect of
the contraction threshold, we show below, the generated sentenceif the corresponding
contraction thresholds for the rst video clip in Figure 16.

0.95 The backpack approached the trash can.
0.90 The backpack to the left of the chair approached the trash can.
0.85 The backpack to the left of the chair approached the trash can.

An important distinction between this approach and the state of the art for generating
sentential video description is the generativity of the labeling cdomain. In existing work
(Kulkarni et al., 2011; Gupta, Verma, & Jawahar, 2012), the process of labelingevents in
video involves searching for phrases or sentences that best matchehvideo using a trained
set of classi ers. This process usually involves extracting corrgpondences between labels
and video features in a training corpus. The training corpus labels ach video with a word
or phrase and the sentence-generation process on an unseen video labiglat video either
with an existing label from the training corpus or a simple concatenaton of such labels. In
contrast, our approach can label an unseen video with any grammatical utterace admitted
by the grammar and lexicon, from a potentially unbounded set, even oneshat have never
appeared, in whole or in part, in the training set.

The sentence-tracker framework can also generate sentential videoedcription from a
xed set of sentential labels, simply by scoring each potential labelagainst an unseen video
clip and selecting the top-scoring label. We evaluate this ability ty labeling each of the 94
video clips in the rst corpus from the xed label set of 21 sentences shown in Table 1 and
comparing such with human judgments. We performed three analyses. iFst, we measured
the percentage of clips that depict their top-scoring sentence as dermined by human judges.
This was determined to be 94.68%. Chance performance is 13.12%, since onrage, 2.76
sentences are deemed to describe a given clip, as shown in Table 4c8nd, if we relax our
selection criterion slightly, to consider the percentage of clips dscribed by at least one of the
top-three sentences, we obtain 100% accuracy. Chance performance is 11  0.1312§
34.42%. Finally, we can threshold the video-sentence score, yielding binary machine
judgment as to whether a given sentence describes a given clip, ortatnatively whether
a given clip depicts a given sentence. We can then ask how well suchachine judgments
match human judgment over all 94 21 = 1974 video-sentence pairs in the rst corpus.

646



Grounding Language Inference, Generation, and Acquisitio n in Video

The backpack to the left of the chair approached the trash can.
The person to the right of the backpack carried the chair.
The person to the right of the trash can approached the trash can.

The chair to the right of the person approached the trash can.

The backpack to the left of the trash can approached the trash can.

Figure 16: Sentential descriptions generated for several video clipa the rst corpus subject
to the contraction threshold 0.90. The highest-scoring sentence for e&cclip is generated,
among all sentences that are generated by the grammar in Table 11(a), by means afbeam
search. The sentences deemed by human judges to describe the asated clips are indicated
in green while ones that do not are indicated inred. Sentential descriptions generated for
each of the 94 video clips in the rst corpus are shown in Figure 22 in Apendix B.
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Searching for the threshold that maximizes this accuracy yields an aacacy of 86.88%.
Chance performance is 13.12%, since 259 out of the 1974 human judgments are pasiti
Thus the sentence tracker performs signi cantly above chance on allliree analyses.

5.5 Experiment 3: Language Acquisition

The sentence tracker, when wrapped in EM, can learn a lexicon that mag words to their
meanings from a training set of video clips paired with sentences. Arucial distinction
between this approach and the prior state of the art in learning object andevent recognizers
from video is that, in this approach, the training videos are paired with entire sentences, not
individual class labels. These sentential labels are generative; ¢hset of possible labels is
in nite as they are generated by a context-free grammar that contains reairsion. Thus the
vast majority of the potential labels never appear in the training set. Yet our method can
learn to describe previously unseen videos with previously unea sentential labels that are
composed of words that likely do not occur in a single training sample btiinstead require
composing words that are each learned by exposure to distinct trainingsamples.

To evaluate the use of the sentence tracker to perform language acquigin, we employ
the second corpus described in Section 5.1, in particular Tables 2 and 8gether with the
grammar and lexicon from Table 11. This language fragment contains 17 lexical enis
over 6 parts of speech (1 determiner, 6 nouns, 2 spatial-relation ppmositions, 4 verbs,
2 adverbs, and 2 motion prepositions). We model and learn the meanings oflahe content
words in this lexicon. Table 8 speci es the arity |, the numberK of states, the feature-vector
length N, the number Z of bins fore each feature, and the feature computation for the
word models of each part of speech. While we specify a di erent subset of features for each
part of speech, we presume that, in principle, with enough trainingdata, we could include
all features in all parts of speech and automatically learn which ones are nonformative
and lead to uniform distributions.

We compute continuous features, such as velocity, distance, sizetio, and x-position
from the detections and quantize the features into bins as follows:

velocity To reduce noise, we compute the velocity of a participant by averagig the optical
ow in the detection. The velocity magnitude is quantized into 5 | evels. For expos-
itory clarity, we refer to these levels mnemonically asabsolutely stationary, mostly
stationary, moving slowly, moving quickly, and moving very quickly. The velocity ori-
entation is quantized into 4 directions: leftward, upward, rightward, and downward.

distance We compute the Euclidean distance between the detection centersf two partic-
ipants, which is quantized into 3 levels: near, moderate distance, and far.

size ratio We compute the ratio of the detection area of the rst participant to th e detec-
tion area of the second participant, quantized into 2 levels:larger than and smaller
than.

x-position We compute the di erence between thex-coordinates of the participants, quan-
tized into 2 levels: to the left of and to the right of.

The binning process was determined by a preprocessing stepdhclustered a subset of the
training data. In addition to the above continuous features that need gquantization, we also
incorporate the index of the detector that produced the detection as adiscrete feature.
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c I K N Z
N 1 1 1 6 detectorindex
5 velocity magnitude for the rst argument
4 velocity orientation for the rst argument
5 velocity magnitude for the second argument
\Y, 2 3 6 . ) :
4 velocity orientation for the second argument
3 distance between the rst and second arguments
2 size of the rst argument =size of the second argument
P 2 1 1 2 dierence between thex-positions of the rst and second arguments
Adv 1 3 1 5 velocity magnitude
p 5 3 9 5 velocity magnitude for rst argument
M 3 distance between the rst and second arguments

Table 8: Characteristics of the HMMs used to model word meanings for varios parts of
speeche. | denotes arity, K denotes the number of statesN denotes the number of features
in the output model, Z denotes number of bins for a particular feature, and denotes the
feature computation.

The detector index is mainly used for identifying a detection when learning nouns. The
particular features computed for each part of speech are given in Table 8.

Note that while we use English phrases, liketo the left of, to refer to particular bins of
particular features, and we have object detectors which we train on saiples of a particular
object class such adackpack, such phrases are only mnemonic of the clustering and object-
detector training process. We do not have a xed correspondence ween the lexical entries
and any particular feature value. Moreover, that correspondence needat be one-to-one: a
given lexical entry may correspond to a (time variant) constellation of feature values and
any given feature value may participate in the meaning of multiple lexcal entries.

We performed three-fold cross validation using the partitioning desribed in Section 5.1.
It is important to stress that for each fold, the test set was disjoint from the training set, both
in video clips and in sentential labels This crucially allowed us to evaluate the generative
nature of the sentential labels: the ability to learn to generate prevously unseen labels for
previously unseen video.

For each fold, we trained a lexicon on the training set for that fold usingthe procedure
from Section 4. We then evaluated the trained lexicon on the test set forthat fold by
performing three distinct analyses:

1. comparing F1 score on the test set with a variety of baselines

2. comparing an ROC curve on the test set with a variety of baselines

3. inspection of the learned models and comparison with hand-construed models
The rst two analyses require scoring unseen video-sentence par These could be scored
with Equation 10. However, this score depend on the sentence lengtW, the length T of
the video clip, the number L of participants, and the collective numbers of statesK and
feature-vector lengthsN for the word models for words in that sentence. One can remove
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Fold Baselines Our method
Chance Blind Hand
1 0.06 0.10 0.73 0.56
2 0.07 0.12 0.65 0.50
3 0.04 0.08 0.50 0.31
average  0.06 0.10 0.62 0.46

Table 9: A comparison of the F1 scores on the test sets between our methahd a variety
of baselines.

the dependence on the numbeL of participants by using L(B;s, ) as the score. However,
this does not remove dependence on the other factors.

To render the scores comparable across such variation, we apply a sentaxlength prior
(s) to the average per-frame score computed from the whole-video scotg(B; s, ):

[L(B;s )] T ()

where

2 3

X Now
(s)=exp 41 (Kg,)+ 1(zg,)®

w=1 n=1

X 1 1
| = — — =
1(2) . > IogZ log Z

In the above, ! (Z) is the entropy of a uniform distribution over Z bins. This prior prefers
longer sentences which are more descriptive of the video.

The resulting scores are thresholded to decide hits, which toge#tr with the manual
annotation, can generate True Positive (TP), True Negative (TN), False Postive (FP), and
False Negative (FN) counts. To conduct our rst analysis, for each fold, we glected the
threshold that led to the maximal F1 score on the training set, and usedthis threshold to
compute the F1 score on the test set. Table 9 reports the per-fold Flc®res along with the
average across folds.

For comparison, we also report F1 scores for three baselinesChance, Blind , and
Hand . The Chance baseline randomly classi es a video-sentence pair as a hit with prob-
ability 0.5. The Blind baseline determines hits by potentially looking at the sentence ot
never looking at the video. This strategy will make the same decision orvideo-sentence
pairs if these pairs contain the same sentence. We can nd an upper bouhof the F1
score that a blind method could have on each of our test sets by solving &/1 fractional-
programming problem as follows. An optimal blind baseline will try to n d a decisiondy,
for each of the M test sentencess;, that maximizes the F1 score. Suppose, comparison
with ground-truth yields FP , false positives and TR, true positives on the test set when
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dm = 1. Also suppose that setting dm = 0 yields FN, false negatives. The F1 score is then:

1
b
dmFPm +(1 dn)FNp
1+ m=1
hd
2dm TP m
| "z }

Thus to maximize F1 we seek to minimize the term . This is an inst ance of 0/1 fractional-
programming problem which can be solved by binary search or Dinkelbaclk' (1967) algo-
rithm. This yields the best possible F1 score that any blind algorithm can produce. The
Hand baseline determines hits with the hand-crafted HMMs described blow. These were
carefully designed to yield what we believe is near-optimal perforrance. As can be seen
from Table 9, our trained word models perform substantially better than the Chance and
Blind baselines and approach the performance of theland baseline. Because the corpus
was counterbalanced, theChance and Blind baselines exhibit similar poor performance.

To conduct our second analysis, we varied the threshold used to deadhits to produce
ROC curves. Figure 17 shows curves for each of the folds along with an aege across
folds, comparing our trained word models against the various baselines. Agaj our trained
word models signi cantly outperform the baselines and essentially match the performance
of the hand-crafted word models.

Good F1 scores and ROC curves are necessary but not su cient to dematrate suc-
cessful learning. It is possible that the trained word models re et artifactual properties
of the corpus and don't encode the natural pretheoretic intended meaimg. For example, if
the dataset has spurious unintended correlations, such as whenevapproach happens, the
agent is always larger than the goal, the learned word model may re ect thatcorrelation
and this correlation may be the primary factor leading to good performane on the test set.
If such an artifactual correlation is overly strong, it could even overpower the correlations
between the relevant features and allow learning meanings that do notely on those fea-
tures and which would fail to generalize to corpora that did not exhibit the same artifactual
properties.

To evaluate whether this occurs in our experiments, we conductea third analysis that
compared our trained word models (for fold 2) with the hand-crafted onesliustrated in Fig-
ures 23 through 30 in Appendix B. For qualitative comparison, we render tle hand-crafted
and trained word models side by side for each lexical entry, graphicafl illustrating the
output distributions and textually illustrating the initial-stat e and state-transition-function
distributions. Qualitative inspection indicates that the corresponding word models are in-
deed quite similar except for noise in the learned word models. Therucial qualitative
observation is that to a large extent the initial-state and state-transition-function distri-
butions place the bulk of the probability mass in the same state and the elevant output
distributions exhibit peaks at the same bins. For example, for the wod person the two
word models have a peak for the rst bin which denotes the object-d&ector class person.
Similarly, both word models for the verb approacheddescribe the qualitative motion pro le.
Both depict an initial state in which:
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(@) (b)

(©) (d)

Figure 17: ROC curves comparing the performance of the trained models agast the various
baselines for the three folds (a-c) and averaged across fold (d).

1. the agent and the goal are both stationary and

2. the agent is far from the goal
followed by an intermediate state in which:

1. the agent is moving horizontally,

2. the goal is stationary, and

3. the distance between the participants is decreasing
followed by a nal state in which:

1. the agent and the goal are both stationary and

2. the agent is close to the goal.
There are two primary qualitative di erences between the learnedand hand-crafted distri-
butions. The rst is noise. The second is that the hand-crafted distibutions for irrelevant
features are intentionally uniform while the learned distributions for these features some-
times encode the artifactual properties of the corpus to a small extet. For example, the
second state of the trained word model forpicked up indicates that the rst argument is
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trained word models random word models

1 2 3 average 1 2 3 average
person 0.00 0.00 0.00 0.00 1.11 109 345 1.88
backpack 0.00 0.00 0.00 0.00 543 172 1.14 2.76
chair 0.00 0.00 0.00 0.00 417 144 164 2.42
tra c cone 0.00 0.00 0.00 0.00 209 147 1.78 1.78
trash can 0.00 0.00 0.00 0.00 082 135 1.09 1.09
stool 0.00 0.00 0.00 0.00 1.12 133 4.10 2.18
to the left of 0.00 0.00 0.00 0.00 1.19 0.26 0.59 0.68
to the right of 0.00 0.00 0.00 0.00 050 0.09 0.53 0.37
approached 12.63 15.43 12.44 13.50 11.32 1892 18.10 16.11
carried 15.89 10.60 11.74 12.74 1442 1197 15.10 13.83
picked up 9.40 9.44 10.97 9.94 12.86 8.49 1444 11.93
put down 8.73 13.09 10.05 10.62 16.59 11.87 14.02 14.16
towards 1.71 469 3.14 3.18 3.97 388 4.65 4.17
away from 3.21 6.72 2.86 4.27 1091 532 981 8.68

Table 10: An upper bound on the KL-divergence between the hand-crafted agh trained
word models for each fold and averaged across folds. (left) KL-divergendeetween trained
word models and hand-crafted word models. (right) KL-divergence beween random word
models and hand-crafted word models.

moving upward while the hand-crafted word model contains a uniform dstribution for the
velocity orientation of the rst argument. Similarly, the second and t hird states for the
trained word model for carried appear, at rst glance, to be quite di erent from the hand-
written one. However, closer inspection reveals that they encodeimilar information. The
second state in the hand-written word model actually corresponds to le last two states
in the trained word model, which collectively encode a mixture dstribution. The mix-
ture distribution encodes that fact that carried is bidirectional and can involve leftward
or rightward motion. The hand-written word model encodes this with a single stag and
a bimodal output distribution while the trained word model encodes this with two states
each with unimodal output distributions. The lack of an additional state forces the trained
word model to merge the output distributions for the velocity features from the last state
in the hand-crafted word model into the two states that code the mixure distribution. We
expect such di erences to be eliminated with a larger training sé or more accurate feature
extraction.

We augmented this qualitative analysis of the similarity between the hand-crafted and
trained word models with a quantitative analysis. We computed the KL-divergence between
the output distributions of corresponding word models. This is not the true KL-divergence
between two word models, as it ignores the initial-state distributions and state-transition
functions, but provides a loose lower bound on the actual KL-divergene. Table 10 reports
these for each word in our lexicon. Across the board, the trained word mode are much
closer to the hand-trained ones than the random word models.
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6. Related Work

The language-inference task discussed in Section 5.3 requires a rhanism to focus attention
on a particular activity in a video that depicts multiple simultane ous activities. Obtaining
such a capability by extension of other state-of-the-art methods thatcan identify activity
in video is not trivial. A large portion of such work, such as recently dore by Kuehne et al.
(2011) and Sadanand and Corso (2012), identify either a single activity in a give video or a
rank ordering of possible activities. If such videos depicted mulple simultaneous identical
activities, then these methods would identify only a single insance of such activity. This is
partly due to the fact that matching features, say from STIP (Laptev, 2005), only provides a
score, but no means of localization. Our method, on the other hand, can dso. If there exist
two instances of an activity, say pick up, occurring simultaneously, we can specify which
one to focus attention on by means of other elements in the video, such aharacteristics
of the participants (adjectives), manner of the action (adverbs), or rdations between the
participants and other unrelated objects in the scene (prepositions). As discussed previously
in Section 5.4, much of the prior work on generating sentences to desbe images (Jie,
Caputo, & Ferrari, 2009; Farhadi, Hejrati, Sadeghi, Young, Rashtchian, Hockennaier, &
Forsyth, 2010; Kulkarni et al., 2011; Li & Ma, 2011; Yang, Teo, Daune lIll, & Aloimonos,
2011; Gupta et al., 2012; Mitchell, Dodge, Goyal, Yamaguchi, Stratos, Han, Menst Berg,
Berg, & 111, 2012) and video (Kojima, Tamura, & Fukunaga, 2002; Ferrandez Tena, Baiget,
Roca, & Gonalez, 2007; Barbu et al., 2012a; Hanckmann et al., 2012; Khan & Gotoh, 2012;
Krishnamoorthy et al., 2013; Wang, Guan, Qiu, Zhuo, & Feng, 2013) uses specialyppose
natural-language-generation methods. Our method, in contrast, systemtically searches for
the highest-scoring sentence generated by a grammar using the samealgb-sentence scoring
function as used for language inference and language acquisition. The genekadtly of our
labeling domain allows us to label an unseen video with any sentencdérom a potentially
unbounded set, including those that have never appeared, in whole an part, in any form
of training.

There has been active research on grounded language learning in the comptibnal
linguistics community. Some of this research employs approaches thatirectly map words
to perceptual features extracted from the external world. Roy (2002) paied training sen-
tences with vectors of real-valued features extracted from synthézed images which depict
2D blocks-world scenes, to learn a specic set of features for adjeges, nouns, and ad-
juncts. Roy and Pentland (2002) presented a computational model which aguires word
meanings directly from multimodal sensory input. Yu and Ballard (2004) paired training
images containing multiple objects with spoken name candidates for theobjects to nd
the correspondence between lexical items and visual features. Maroo, Cangelosi, Fischer,
and Belpaeme (2010) grounded the meanings of action words in the link betweemrobot's
action e ects and the behavior observed on the manipulated objects befre and after the
action. Because these approaches directly learn word meanings from asgied features,
they can only robustly understand a limited set of sentential fragmerts and lack the ca-
pability to deal with complex syntactic structures, since the resulting word meanings are
neither generative nor compositional.

Other work within the computational linguistics community has focused on learning
symbolic representations of word meanings from corpora of sentences peatt with sym-
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bolic representations of sentential meaning, as illustrated in Figurel8(a). Thompson and
Mooney (2003) described a system calledolfie that acquires a semantic lexicon of phrase-
meaning pairs from a corpus of sentences paired with semantic represtations. Zettle-
moyer and Collins (2005) presented a method for learning sentence meiags in the form of
lambda-calculus encodings. Dominey and Boucher (2005) paired narrated simces with
symbolic representations of their meanings, automatically extracted fom video, to learn
object names, spatial-relation terms, and event hames as mappings from ¢hgrammatical
structure of sentential fragments to the semantic structure of theassociated meaning repre-
sentation. Piantadosi, Goodman, Ellis, and Tenenbaum (2008) employed annsupervised,
cross-situational Bayesian learning model for the acquisition of compadtsonal semantics, to
solve the problem of referential uncertainty. Chen and Mooney (2008) and kn and Mooney
(2010) learned the language of sportscasting by determining the alignment étween game
commentaries and the meaning representations output by a rule-basedimulation of the
game. This was later reduced to the task of learning a Probabilistic Conext-Free Gram-
mar (PCFG) by Berschinger, Jones, and Johnson (2011). Their subsequentvork (Chen
& Mooney, 2011; Kim & Mooney, 2012, 2013) proposed techniques for learning to follo
navigation instructions from observation given weak, ambiguous supervisn. Kwiatkowski,
Zettlemoyer, Goldwater, and Steedman (2010) and Kwiatkowski et al. (2012) pesented an
approach that learns Montague-grammar representations of word meanings togetheavith
a combinatory categorial grammar (CCG) from child-directed sentences pired with rst-
order formulas that represent their meaning. Although these methods gcceed in learning
word meanings from sentential descriptions, they do so only for symbat representations
that might be extracted from simple or synthesized visual input; they fail to bridge the gap
between language and computer visionj.e., they do not extract meaning representations
from complex visual scenes.

More recent work in the computational linguistics and robotics communities has at-
tempted to learn grounded word meanings from richer perceptual inputpaired with multi-
word phrases. Krishnamurthy and Kollar (2013) introduced the Logical Semanics with
Perception (LSP) framework for grounded language acquisition that learns tomap natural
language statements to their referents in a physical environment. Haever, they did this
only for nouns and spatial-relation prepositions on a small set of static image Tellex,
Thaker, Joseph, and Roy (2013) learned the mapping between speci ¢ plses and aspects
of the external world for a robotic system, but they assumed an ideal saw: perfect ob-
ject classi cation, a 3D coordinate system, and unambiguous demonstratin of the robot
correctly executing the action in the environment.

There has also been research on training object and event models frorarfje corpora
of complex images and video in the computer vision community (Feng, Manratha, &
Lavrenko, 2004; Yao, Yang, Lin, Lee, & Zhu, 2010; Kulkarni et al., 2011; Ordonez, Kulka-
rni, & Berg, 2011; Kuznetsova, Ordonez, Berg, Berg, & Choi, 2012; Sadanand & Corso,
2012; Chen & Grauman, 2013; Everts, van Gemert, & Gevers, 2013; Song, Morency, &
Davis, 2013; Tian, Sukthankar, & Shah, 2013a), as illustrated in Figure 18(b). These can
be viewed as learning meanings for nouns and verbs. However, most suclonk requires
training data that labels individual concepts with individual words (i.e., objects delineated
via bounding boxes in images as nouns and events that occur in short v clips as verbs).
In other words, they have to specify the correspondence betweerhé concepts in the data
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training sentence The person picked up the chair.
training meaning cause (person , go (chair ,up))
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Figure 18: An illustration of the dominant paradigms in prior work. (a) Most work in
the computational linguistics community learns symbolic represenations of word meanings
from sentences paired with symbolic representations of sententiaheanings. (b) Most work
in the computer vision community learns each word independently, fom training data that
annotates which image or video portion corresponds to an object or event lalhewith distinct
representations for each part of speech.

and the words to be trained. There is no attempt to model phrasal or setential meaning,
let alone acquire the object or event models from training data labeledwith phrasal or
sentential annotation. As a result, the learned word meanings are neithegenerative nor
compositional. Descriptions of new images and video are produced by mosdaig together
previously learned sentence fragments. Moreover, unlike the mbbds presented here, these
approaches use distinct representations for di erent parts of spedtg i.e., object and event
recognizers use di erent representations.

Our method di ers from prior work in three ways. First, our input ¢ onsists of realistic
video Imed in an outdoor environment. Second, we learn the entire éxicon, including
nouns, verbs, adverbs, and prepositions, simultaneously from videdescribed with whole
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sentences. Third, we adopt a uniform representation for the meaning®f words in all
parts of speech, namely hidden Markov models (HMMs) whose states andigstributions
allow multiple possible interpretations of a word or a sentence in an arbiguous perceptual
context.

The work presented here is most similar to three very recent paper (Das, Xu, Doell, &
Corso, 2013; Rohrbach, Qin, Titov, Thater, Pinkal, & Schiele, 2013; Guadarrama Krish-
namoorthy, Malkarnenkar, Venugopalan, Mooney, Darrell, & Saenko, 2013) whiclgenerate
text descriptions of video. On the surface, these papers appear to deribe approaches that
handle unrestricted text and video. However, deeper analysis rewds that this is not the
case. Indeed, such analysis demonstrates that the space of text supped by these systems
is far more restrictive than what we present here. We discuss thigrior work in depth below
along with such analysis.

Das et al. (2013) generate text descriptions of cooking videos garnered fromoviTube.
They do so by using shallow vision features on an unseen video to ied into a training
corpus of videos paired with text annotations to nd similar videos and stitching together
fragments of the text associated with the indexed videos to obtain a n& text annotation
of the unseen video.

1. It does not have a model of word or sentence meanings. It doesn't kmowhat the
words or the sentences in the annotations refer to in the video. One cénpoint to
any component in the system and say this is its de nition for this particular word.
This is precisely what we do in Table 6 and Figures 5, 6, and 23{30 (in Appendi B).
Moreover, one can't analyze what portions of the meanings are correct and whadre
wrong, as we do on page 651. When the system generates an incorrect annotation,
there is nothing much one can say about it other than it did so.

2. Because of (1) it can't do what we call inference. It can't process a ideo with
simultaneous actions taking place with di erent subsets of actors and olects in the
video with two di erent sentences and highlight the di erent se ts of participants for the
di erent sentences. This is precisely what we demonstrate in Fgure 15 and Figure 21
in Appendix B. This demonstrates deep understanding. The fact that we do so for
minimal pairs, pairs of sentences that di er in a single word, and vary that word over
all lexical entries and all sentential positions demonstrates that our smantic model
re ects deep understanding of every word.

3. The work of Das et al. (2013) lacks such. This causes their method to gerete a
huge number of erroneous descriptions. Das et al. (2013, Figure 6) show veample
sentences generated for each of ve sample videos. For all sample videdsgtween
three and four of the generated sentences are false of the video. Most lmeompletely
incorrect objects and actions. These are the examples picked to shoase their system.
Presumably, it performs worse on other examples. In contrast, we cond and present
results of a thorough evaluation: Figure 21 in Appendix B presents resu$ on all
examples, without exception.

4. Most of the nouns and adjectives generated in sentences in the work ofdd et al. (2013,
Figure 6) describe objects that are far beyond the ability of state-of-the-art object-
detection systems to detect (e.g.,knob, pliers pieces of metal glass bow] porcelain
bowl| sponge old food, dish towel hand held brushvacuum panel health care reform
.:1), particularly at the size they are in the eld of view. Ditto for ver bs denoting
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actions (e.g.,clean, speak sit, stand, open, renovate install, bend cook mix, :::). The
system is not really grounding the meanings of these words in video. Ra#r it is
just indexing based on surface features. This is what we mean when vgay that our
system usedinguistics. While this system may use techniques that are prevalent in the
natural-language-processing community, and one might even call themsomputational
linguistics, one would not call them linguistics. This is not to denigrate such a system.
It is simply incomparable to our work.

5. Das et al. (2013) do not report measured alignment between the words in théext
and the portions of the video. Thus one is unable to determine whetheisentence
generation really is based on video features that convey the meanings of ¢hwords
and sentences generated or whether it is more based on accidental coatbn with
features in the background that are not re ective of the true meanings.

Rohrbach et al. (2013) generate text annotations for videos with a two-step proess.
They rst translate a video x into an intermediate representation (SR)y and then translate
the SRy into a sentencez. The SR is ve discrete random variables (activity, tool, object,
source, and target). There are 66 possible activities, 43 possible t09l09 possible objects,
51 possible sources, and 35 possible targets. The mapping from video t® $ mediated by
a joint probability model implemented as a conditional random eld (CR F) that mutually
constrains these ve random variables. This CRF is trained in a supevised fashion. The
training data contains videos paired with human annotated SRs. The mappig process
from video to SR yields a quantized SR by returning the SR from thetraining set with the
lowest Hamming (1950) distance to the SR estimated by the CRF.

The text-generation process involves a second step which maps an SR & sentence.
However, this process does not use any information from the video thats not already
abstracted in the SR. For purposes of comparing with our work, this proess is not relevant.
The discrete quantized SR is the component of the work of Rohrbach et al(2013) that
is most analogous to the individual words that we generate. In our case, the apping
from words to sentences is done by a deterministic grammar and neitlientroduces errors
nor contains any other joint-distribution information to lter out error s. Their mapping
from SR to sentences can introduce errors but also constitutes an adibnal level of joint-
constrained-distribution information that can Iter out errors. Thus we compare our system
to only the rst step of their work.

Due to Hamming-distance post processing, Rohrbach et al. (2013) can output owl
one of 5,609 possible SRs out of a total of 6643 109 51 35=552,175,470 ones that are
nominally possible. Thus it can only generate 5,609 possible sentence$n contrast, our
system can generate 235,575 possible sentences with no more than three aattg for the
rst corpus, 406,296 possible sentences with no more than three objector the second
corpus, 6,614,325 possible sentences with no more than four objects for thest corpus,
and 13,633,272 possible sentences with ho more than four objects for the sedotorpus.
Thus while on the surface, it appears that the system of Rohrbach et al. Z013) handles
unrestricted text, in reality it handles a space of sentences thatis four to ve orders of
magnitude smaller than we do. Thus they are solving an immensely easigroblem with a
much smaller space of possible outputs. Yet, Rohrbach et al. (2013, Table 1jdicate that
they obtain the correct SR only 21.6% of the time. We obtain a true sentene more than
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64% of the time. Moreover, our system learns solely from videos paired Wi sentences.
Their system requires additional human annotation of the SRs associate@ith each video.

Points 1{5 from our comparison with the work of Das et al. (2013) also apply to the
work of Rohrbach et al. (2013). In particular, the vast majority of the object classes are well
beyond the state-of-the-art ability to support recognition if it were not for the CRF (e.g.,
avocadq egg cucumber, bag of chilies cutting board, loaf of bread lime, knife, plate, butter,
carrot, (half) kiwi, package of beansorange saucer, :::), particularly at the size they are
in the eld of view. Similarly, the vast majority of the verbs are wel | beyond the state of
the art to support in action recognition, if it were not for the CRF (e.g., slice, crack, take
out, rinses, put away, select split, :::). Rohrbach et al. (2013) derive most of their success
from the highly constrained set of possible SRs and the distribution acoded in the CRF.
That means it cannot describe videos that exhibit a person taking a kiw out of the fridge if
that never occurred in the training corpus, even though it might be aperfectly reasonable
video. Surely vastly more than 5,609 of the 552,175,470 possible SRs are plausilaled
perhaps even likely. Yet even with this constraint, Rohrbach et al. (2013, Table 2) report
that when human judges evaluated the truth of the generated sentenceshe average report
was 3.1 on a scale from 1 to 5, 3 being \70{80% good." Moreover, they are limitedat
the particular representation employed for SRs. They can only encoé sentence meanings
that are formulated in terms of the particular ve random variables (activ ity, tool, object,
source, and target). In contrast, our approach can formulate sentence meangs in terms of
arbitrary conjunctions of any predicates applied to any subset of evenparticipants so long
as those predicates can be formulated as HMMs over arbitrary output distibutions over
features that can be extracted from the video.

Guadarrama et al. (2013) describe a method that outputs three-word senteces to sum-
marize video activity. Like Rohrbach et al. (2013), such are encoded as tlee variables: an
actor (subject), an action (verb), and an object (object). There are 45 posible subjects,
218 possible verbs, and 241 possible objects. Given a training corpus cprising video
clips paired with annotated SVO triples, the method rst builds t hree semantic hierarchies,
represented as trees, one for each of subject, verb, and object, thatdicate the similarity
relationships among the meanings of the words that occur in the trainingcorpus. Each word
that appears in the training corpus constitutes a leaf node in one of thehierarchy trees.
The internal nodes represent sets of dominated leaf nodes, a genera#d concept having less
speci city than the leaf nodes.

A visual classi er is associated with the leaf nodes for each individal subject, verb, and
object. The leaf classi er uses

1. Dense Trajectories (Wang, Klaser, Schmid, & Liu, 2011, 2013; Wang & Schmigd2013),

encoded using a pre-trained codebook,

2. a vector of object-detector scores, each entry denoting the maximalcsre for each

object class, and
3. a multi-channel approach that combines the above two features and clases them
with a non-linear SVM.

Once the classi ers are trained, probability estimates for the nods in the hierarchy trees
are obtained for an unseen video clip. Then nodes from the three hiarchies representing
words to be generated for the unseen video clip are predicted by optiizing a cost function
that trades o speci city for accuracy. When an internal node is predicted, the represen-
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tative leaf word is selected from the set of leaves dominated by that nde as the leaf that
has the highest cumulative WUP in WordNet (Miller, 1995; Fellbaum, 1998). Guadarrama
et al. (2013) also introduce a zero-shot approach to generate verbs that do nappear in
the training corpus and thus are absent from the verb hierarchy. To dothat, the verb is
determined with text-mined likelihoods that t the detected subject and object. While they
paint this as a virtue, we view it as a de cit. Essentially, it is guessing the verb. While there
are some celebrated cases where objects predict verbs and vice wefg.g., hammer), we
believe that this accounts for far less in actual video. When one seesdog and a cat, there
are still a plethora of possible verbs: approach leave run away from, ght with, ignore,
chase ee from ,bite, lick, ::: It is easy to pick examples that showcase where this works
but that says little about how well the approach works in general.

The approach taken by Guadarrama et al. (2013) is very similar to that taken by
Rohrbach et al. (2013), in that both construct joint probability models of a collection of
random variables, ve in the case of the latter but three in the case of the former. Rohrbach
et al. add quantization by Hamming distance that is absent in the work of Guadarrama
et al., and Guadarrama et al. add the zero-shot approach along with the hieradties that
balance between accuracy and speci city that is absent in the work of Rotbach et al.. With-
out the above zero-shot extension, Guadarrama et al. output one of 45218 241=2,364,210
possible sentences. This number is roughly equivalent to the nubrer of sentences that our
method can produce.

The work of Guadarrama et al. exhibits the same shortcomings as in the work of
Rohrbach et al. and Das et al. (2013). Points 1{5 from our comparison with the work of
Das et al. also apply to the work of Guadarrama et al.. As is the case with the wrk of
Rohrbach et al., the vast majority of the object classes are well beyondhe state-of-the-
art ability to support recognition (e.g., chef, cook microphone, ute, our, music, pasta
spaghettj :::), particularly at the size they are in the eld of view. Similarly, t he vast
mayjority of the verbs are well beyond the state of the art to support in adion recognition
(e.g., slice, cut, chop prepare, make :::). It is almost certain that the visual-feature space
would not separate verbs such axhop and cut, and nouns such aspasta and spaghetti
These words are also so similar in their semantic meanings that it is en quite di cult for
humans to distinguish in short video clips. Thus while the numbe of words that can appear
in the generated sentences is increased by considering similaxieal items, the di cult of
the generation task does not increase as much as expected if the evaluati is lax (e.g.,
consideringchop to be correct even thoughslice actually happens in the video).

On the other hand, because of the speci city-accuracy tradeo , the gemrated sentences
sometimes are uninformative, e.g.An animal plays somethingand An animal does some-
thing with the instrument (Guadarrama et al., 2013, Table 4). Also the zero-shot approach
seems to override the actual activity recognition quite easily, as carbe seen in the fourth
row (Guadarrama et al., 2013, Table 4): A car rides the vehicle Finally, Guadarrama et al.
do not evaluate the truth of the sentences generated. Instead, they dn calculate the WUP
similarity between generated and annotated subjects, verbs, and obgs, independently.
By our estimates, seven out of the eleven generated sentences in aadske of the correspond-
ing video clip. These are the examples picked to showcase theiystem. Presumably, it
performs worse on other examples. It is unclear what the actual truth acaracy of the
generated sentences is over the entire corpus.
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There is also something deeply unsettling about the general approachaken by both
Rohrbach et al. and Guadarrama et al. of using a joint probability model detived by text
mining to in uence activity recognition. Suppose that a corpus of text had much higher
frequency of occurrence oflog chases cathan dog is-bigger-than cator dog eats-with cat
That says nothing about the actual prior truth probability of the underl ying propositions,
let alone the actual posterior truth probability conditioned on a particu lar video. In some
sense, Rohrbach et al. and Guadarrama et al. are actually not grounding languageni
video but rather generating natural-language utterances using informaibn obtained from
ungrounded language.

7. Discussion

The computational linguistics community has become accustomed to emplying large lex-
icons and grammars trained on large text corpora to process unrestrictedext. Similarly,
the computer vision community has become accustomed to employing ntteods that can be
trained on large image and video corpora to process unrestricted images drvideo. One
may wonder what it would take to extend the methods explored here sahat they too
can apply to large-scale unrestricted text and video corpora. One mightassume that it
is simply a matter of employing better state-of-the-art methods fom both computational
linguistics and computer vision. This, however, is not the case. WHe we do not use
state-of-the-art methods from computational linguistics, our computer vision methods are
state of the art. We use the deformable part model (DPM) object detecor (Felzenszwalb
et al., 2010a, 2010b) and an action detector that exhibits state-of-the-art perfomance. Our
approach is limited by computer vision, not computational linguistics. The state of the
art in object detection is re ected by the ongoing Pascal Visual Object Category (VOC)
Challenge (Everingham et al., 2010). It currently has 20 classes and curréstate-of-the-art
performance is about 40-50% on the best classes, and far worse for other classElse state
of the art in action recognition is re ected by the standard corpora used nh that commu-
nity, e.g., Weizmann (9 classes; Blank, Gorelick, Shechtman, Irani& Basri, 2005), KTH
(6 classes; Schuldt, Laptev, & Caputo, 2004a), UCF Sports (10 classes; Rodtiez, Ahmed,
& Shah, 2008), UCF YouTube (11 classes; Liu, Luo, & Shah, 2009), and Olympic Sportsl
classes; Niebles, Chen, & Fei-Fei, 2010). The best reported performea on these corpora
(Weizmann 100%: Tian, Sukthankar, & Shah, 2013b; KTH 95.49%: Yuan, Li, Hu, Ling, &
Maybank, 2013; UCF Sports 95%: Sadanand & Corso, 2012; UCF YouTube 89.4%: Zhu,
Wang, Yang, Zhang, & Tu, 2013; and Olympic Sports 85%: Gaidon, Harchaoui, & Schmid,
2014) might lead one to the mistaken conclusion that action classi cation is saled for small
numbers of classes. However, Barbu, Barrett, Chen, Siddharth, XiongCorso, Fellbaum,
Hanson, Hanson, Helie, Malaia, Pearlmutter, Siskind, Talavage, and Wilbu (2014) illus-
trate that this is false, a 6-class corpus for which state-of-the-art méhods get no more than
52.34%. Moreover, the largest corpora actively used for action recognition céain about 50
classes (UCF50, Reddy & Shah, 2013 and HMDB51, Kuehne et al., 2011). The best reped
performance on UCF50 is 91.2% and on HMDB51 is 57.2%, (Wang & Schmid, 2013). Thus
an approach, such as ours, which grounds the meaning of each individual wond state-
of-the-art computer vision object detectors, trackers, and action reognizers is inherently
limited to a very small number of concepts. The space of natural-languagetterances that
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one can erect around such is thus limited and can e ectively be captued by a small xed
unambiguous context-free grammar. Thus employing state-of-the-art nethods from com-
putational linguistics would not improve the generality of our approach given the limited
state of the art in computer vision.

In this paper we, thus, do not employ such state-of-the-art metho@ from computational
linguistics. We employ a small xed lexicon and grammar. We make no clain that this
lexicon and grammar is general. The particular lexicon and grammar is not the dcus of
this work. They serve to illustrate our framework and the capability of that framework for
supporting the concerns outlined at the end of Section 1. One can changéé lexicon or
grammar and still use our framework. Indeed, we have done so and report s@mof this.
Table 11(a) reports two slightly di erent grammars. The experiments employ two di er-
ent video corpora with two di erent sets of sentential annotations that use these di erent
grammars as reported in Tables 1{3. These video corpora use di erent setsf objects and
associated object-detector models. Barbu, Siddharth, and Sisking2014) employ yet an-
other corpus, with a di erent set of objects and object-detector mockls, a di erent lexicon, a
di erent grammar, and a di erent set of word-meaning representations. This demonstrates
that our framework can be adapted to a variety of such. But beyond this, Babu et al.
(2014) demonstrate yet another whole di erent application of the same framewrk, namely
video retrieval. And they do so on a corpus of ten full-length Hollywoal movies. This
corpus is far from \toy." Our framework can support such large-scale reaworld video \in
the wild." Yet the concept vocabulary is still small so the natural-language fragment is still
restricted. While one could employ state-of-the-art methods fromcomputational linguistics,
the supported concept set and thus the supported language fragment wouldtill be small.
Thus one would not be using these state-of-the-art methods to the pantial that they were
designed for.

There are two general approaches towards action recognition in computer gion. One
employs methods to detect and track people and objects that participte in the action,
classifying action by properties derived from the detected objed and tracks. The other
extracts and classi es features from video without detecting and tiacking people and ob-
jects. The latter methods generally employ a bag of spatio-temporal \§ual-words approach
(BOW). They generally extract feature vectors, such as spatio-tempoal interest points
(STIP; Schuldt, Laptev, & Caputo, 2004b), at a subset of space-time points build a code-
book by pooling such, vector quantize such feature vectors on this aebook, compute a
histogram of codebook-entry occurrences on the pooled frames of a violeand classify these
histograms with temporally invariant models. Early approaches to action recognition gen-
erally employed the former method (e.qg., Siskind & Morris, 1996; MannJepson, & Siskind,
1996, 1997; Siskind, 1999, 2000, 2001; Fern, Givan, & Siskind, 2002a; Fern, Siskind, & Gi-
van, 2002c; Fern, Givan, & Siskind, 2002b; Siskind, 2003). This approach was esahed in
more recent work, in favor of the latter method, because of the di culty of detecting and
tracking people and objects reliably (e.g., Schuldt et al., 2004b; Liu et al 2009; Ikizler-
Cinbis & Sclaro, 2010; Kuehne et al., 2011; Reddy & Shah, 2013). However, the BOW
approach su ers from a severe limitation: it does not localize the evst participants. While
it may be able to generate verbs to describe classi ed actions, it camt generate nouns
to describe the object class of event participants, adjectives to éscribe the properties of
event participants, spatial-relation prepositions to describe therelative position of event
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participants, adverbs to describe event properties, or motion prepsitions to describe the
path taken by event participants. This is a distinguishing, novel, and unique aspect of our
approach. Moreover, while some systems, such as the one proposed by Gaa@ma et al.

(2013), employ an object detector in addition to a STIP-based event detetor, they do not

link the objects as arguments to the event predicates. Any system LBg a similar approach
like this would

1. fail to distinguish the dog approached the persofrom the cat approached the person

when both a dog and a cat were present in the eld of view and

2. fail to distinguish the dog approached the persofrom the person approached the dog
Our approach correctly makes such distinctions. One of the design pniciples behind our
corpus was that multiple people appear in most, if not all, videos, and mostif not all, objects
appear in every video. Beyond this, most videos depict simultaneousierent actions by
di erent subsets of the participants. This is what renders the minimal-pairs experiment
(Section 5.3) and the acquisition experiment (Section 5.5) far from trival.

We make no claim that the particular features that we employ in Tables 6and 8 are
su cient to represent the semantics of all possible words and uttelances. These serve just
to support the experimental evaluation conducted in Section 5. One cold employ the same
sentence-tracker approach discussed here with a di erent set okhtures. Indeed, we have
done so (Barbu et al., 2014). Moreover, we make no claim that one can employ HMM
that form the core of the sentence tracker to represent the semanti of all possible words
and utterances. This is not just a limitation of an HMM-based approach that requires
object detectors and trackers; BOW approaches su er from this as well. A BOW approach
cannot represent the verbapproach And neither a BOW or HMM approach can represent
the verbs liberate, contemplate discuss help, nish, ::: Representing the semantics of the
entire space of verbs, let alone all of natural language, even in a non-grounddashion, and
even more so, grounded in video, is the central unsolved problem of all ofomputational
linguistics, Al, and cognitive science.

On the surface, it may appear that BOW approaches can be more robust at recogring
certain action classes likeplay an instrument than approaches that involve detecting and
tracking objects. However, none of the standard datasets (Weizmann, KH, UCF Sports,
UCF YouTube, Olympic Sports, UCF50, or HMDB51) have a classplaying an instrument
(in general). Only one, UCF50, has classes for playing a small number of epi c instru-
ments: drumming, playing guitar, playing piano, and playing violin. We are unaware of any
published action-recognition systems that perform well on this datase One of the best
performing methods on this dataset is Action Bank (Sadanand & Corso, 2012), butt does
not use BOW. The performance of this method is enlightening as to thecurrent state of
the art. It gets only roughly 80% accuracy on these classes. Moreover the cfusion ma-
trix is enlightening: drumming is confused with biking and yoyo, playing piano is confused
with basketball drumming, golf swing tennis swing soccer, and juggling, and playing violin
is confused with drumming, rope-climbing, taichi, tennis, yoyo, and rock climbing. These
confusions indicate that it lacks any deep understanding of the charadristic of the actions
in question and appears to be triggering o of spurious correlations with the particular
dataset. In particular, the dataset does not contain people sitting nex to a drum set or
piano, or holding a guitar or violin without playing it. So there is no way to know whether
it is actually recognizing the playing activity or simply recognizing gross image statistics
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that indicate that such instruments are present in the eld of view. That is before one gets
to motions such asair guitar, banging the piano keys with your elbowor simply waving
a violin in the air that constitute activity with the instrument in question but don' t con-
stitute playing said instrument. Beyond this, we see little ability for it to generalize from
playing a speci ¢ instrument to playing an instrument in general.

BOW-based systems often do not encode the true semantics of the aotis in question.
They often trigger o of spurious correlations in the dataset. This has bea acknowledged
by authors of such systems themselves.

\For instance, v_spiking normally happens in a crowd of people, anddiving
happens in a pool. This is common for professional sport actions which take
place in highly structured environments (Liu et al., 2009, p. 2002)"

\Basketball shooting and volleyball actions are also confused in some casethis
is largely because most of the time, the basketball and volleyball sportase very
similar courts (Ikizler-Cinbis & Sclarof, 2010, p. 505)"

One may desire, or even expect, some form of characterization of the spaof possible
words or videos that our approach can support. Unfortunately, we know of no wg to pro-
vide such. We know of no way, in general, of formally characterizing tle space of words,
images, or video that can be supported by any action-recognition system, ofor that mat-
ter any object-recognition system or, more generally, any computer vigin, computational
linguistics, or Al system.

Our current corpus lacks camera motion. But this is not a restriction of our approach.
This restriction does not appear in any of the mathematical or algorithmic formulations in
Section 2 and 4, or even in the implementation. The sentence trackersian extension of
prior work on detection-based tracking (Barbu et al., 2012b) which was empbyed to perform
action recognition and sentence generation on videos that do involve cameraotion (Barbu
et al., 2012a). Barbu et al. (2014) apply the sentence tracker to perform videoetrieval on
a corpus of ten full-length Hollywood movies, the vast majority of which involve camera
motion.

Our framework is expressly not restricted to using only verbs to epresent events. Our
current linking process and the particular grammar used to support hat process is restricted
to such. But nothing turns on that. As discussed above, the sentene tracker can useany
linking process to construct any factorial utterance-level HMM out of constituent word-
level HMMs. For expedience, we limit the set of features entertaied during learning on a
part-of-speech basis. This restriction could be lifted with no clange to the algorithm or its
implementation. It was introduced to allow convergence with a smalér training set. We
know of no reason why the method from Section 4 would not work without suh a restriction.
It would require a larger corpus that would be unwieldy to perform experiments with.

Our method represents word meanings in all parts of speech simply asrgdicates over
one or more tracks and sentential meanings as conjunctions of such. Presainly, a di er-
ent linking process could construct the same logical fornrman(x) * pause(x) from both
sentences likeThe man made a pauseas well as it could from The man paused This is
the beauty of our approach, employing a uni ed representation for the neanings of all
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words in all parts of speech, a common cost function, a common algorithm, and eommon
implementation.

State-of-the-art object-recognition systems are highly unreliable.For most image datasets,
a trained object model, for sayperson or chair, may succeed on one image and fail on an-
other, even if it is of the same chair or same person in the same pose weajgithe same
clothing in the same background. For most video, this even happens bewen adjacent
frames of the same video. State-of-the-art object detection su ers fsm immense false pos-
itives and negatives. Moreover, not only does reliable object deteain not imply reliable
action recognition, state-of-the-art action recognizers are similarly hghly unreliable. State-
of-the-art recognizers forbend and wave trained on one dataset yield chance performance
on a dierent datasets. Even on the same dataset, action recognizers can rateriously
both succeed and fail on very similar samples, with the same backgroundsame actors,
same manner of performance of actiongetc. The central novel contribution of this work
is the sentence tracker in Equation 10, a method for overcoming the sere limitations of
both object detectors and action detectors by formulating a joint modelof object detection,
tracking (temporal coherence), and sentential semantics.

While our video corpora may appear to be simpler than those typically sed for current
action-recognition work in the computer vision community (e.g., Weizmann, KTH, UCF
Sports, UCF YouTube, Olympic Sports, UCF50, or HMDB51) this apparent simplicity is
misleading. Several aspects of our video corpora are far more complex thahdse used in
the vast majority of related work.

1. Most videos contain many, if not all, of the objects in our repertoire. This makes
language acquisition di cult. One needs to determine which objectsare being referred
to by the training sentences and ignore the extraneous ones in the el of view. This
is all done automatically without any human annotation.

2. Most videos contain at least two simultaneous actions, often performed o di erent
people on di erent objects. One needs to determine which action idbeing referred to
by the training sentence associated with that video, pay attention to the particular
subset of people and objects that participate in that action, and ignore theextraneous
activity that occurs in the eld of view. This is all done automatically without any
human annotation.

3. Our system can process complex natural-language sentences that comianany par-
ticipants, e.g., something as complex asThe person to the left of the chair carried
the backpack to the right of the tra ¢ cone towards the stool to theleft of the per-
son. It can even support multiple instances of the same noun in a sentercthat refer
to distinct instances of that object class in the video (as inperson above). It can
determine the semantic-role assignment, which nouns and which arguemts of which
words correspond to which regions in the video frames. Such assignntes determined
automatically without any human annotation and can change with small and subtle
changes to the sentence. Moreover, we can learn solely from such comyplsenten-
tial annotation, without any human annotation of which words correspond to which
regions in the video frames.

Our novel and central technical contribution is the formulation of the sentence tracker
in Equation 10 and the observation that it can be optimized using standard vell-known
techniques adapted from HMMs, namely the Viterbi algorithm (1967) and Baum-Welch
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(1970, 1972). The key to understanding Equation 10 is that it jointly optimizes a cost func-
tion that incorporates multiple detection-based trackers, one for eachevent participant, and
multiple factorial event models, one for each lexical item in a sentece, judiciously linking
the detection-based trackers to the factors of the sentential modein a way consistent with
the predicate-argument structure of a sentence, to model the trth-conditional semantics of
a sentence and how it is derived from its constituent words. Formuating truth-conditional
sentential semantics in this way allows exiting algorithms like Viterbi and Baum-Welch to
ground the semantics of natural language in video and perform novel applic&ns such as
language inference (Section 5.3), language generation (Section 5.4, and languageasition
(Section 5.5), particularly the minimal-pair experiment in Figure 15 and acquisition from
videos labeled with whole sentences and no further human annotation.

There has been signi cant prior work on multi-object tracking (e.g., Berclaz, Fleuret,
Turetken, & Fua, 2011; Pirsiavash, Ramanan, & Fowlkes, 2011). A novel aspeatf the event
tracker is that the particular formulation of detection-based tracking as a cost function that
can be optimized by the Viterbi algorithm allows forming a joint model with an HMM-based
event detector that can also be optimized by the Viterbi algorithm with a cross-product
lattice. This might not be possible with other trackers and other evert models. Beyond
this, the sentence tracker forms a joint model of multiple trackers and a factorial HMM,
linking particular factors to particular trackers, in a way that can again , also be optimized
by the Viterbi algorithm with a cross-product lattice. This also migh t not be possible with
other multi-object trackers and other event models.

Our video corpora were Imed by giving actors instructions about what actions to per-
form. As such, they were “staged.' The computational linguistics commaity has attempted
to use unsolicited samples of natural language for fear that solicited samps might intro-
duce bias. One might wonder whether it is desirable, and even posdd to do so for video
corpora as well. However, it appears infeasible to gather unsolicitedigleo corpora except
in surveillance situations. Surveillance video tends to be highl uniform and sparse: only a
few event classes occur and most occur very infrequently. Thisenders it ill suited to action
recognition. Almost all other situations where video is recorded, everwhen not recorded
explicitly for computer vision use, is solicited. Most amateur video of the form uploaded to
YouTube is similarly staged at some level as it usually records activityelicited speci cally
for Iming. Indeed, most prominent video corpora used in the compute vision community
to evaluate action recognition were Imed speci cally for the purpose of constructing the
corpus: Weizmann, KTH, the Activities of Daily Living corpus (Messing, Pal, & Kautz,
2009), the DARPA Mind's Eye corpus (both year 1 and year 2), and the TaCOS corps
used by Rohrbach et al. (2013), just to name a few. While the YouCook corpusised by
Das et al. (2013) was culled from YouTube, the videos themselves appear tcebstaged, just
as all of the above.

Some related work on generating sentences that describe video evaleatthe generated
sentences by comparison with human-elicited sentences for the sanvideo. Such is often
done by computing BLEU scores (Rohrbach et al.,, 2013) or measuring the fraabin of
words in common between the machine-generated and human-elicited geriptions (Khan,
Zhang, & Gotoh, 2011). While such might evaluate the degree to which machingenerated
sentences are hatural sounding, it fails to evaluate the truth of the mahine-generated
sentences, the central objective of our work. Indeed, machine-gerated sentences with
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high BLEU scores or high commonality with human-elicited descriptionsare often false of
the video even when the human-elicited descriptions are true.

Our current linking process would fail with an ambiguous sentence prse. The linking
process might also fail to yield an unambiguous role assignment and unigulinking func-
tion. Further, our current lexicon contains no lexical ambiguity and our current linking
process would not support such. Any of the myriad approaches to parsing ahconstructing
logical form in the presence of ambiguity could be brought to bear on this poblem. But
beyond this, the current approach o ers a novel possibility that no existing approach can
support. One can imagine using video to disambiguate parsing and the catruction of
logical form. One could imagine evaluating the truth of various word sensessentence frag-
ments, attachment alternatives, and alternate logical forms against videaising the sentence
tracker.

The sentence tracker is a general-purpose inference mechanism foombining infor-
mation from multiple frames of a video using both language and vision. Whi¢ we have
presented a particular instantiation of the sentence tracker, with particular detectors, par-
ticular temporal-coherence scores, and particular event models opating in 2D, the general
approach could be instantiated in numerous other ways. We have empl&d object detec-
tors as detection sources, but any method that selects image regions caube used in the
approach presented. These need not be rectangular: one can imagine varianvf the sen-
tence tracker that employ general-purpose foreground-background segmition instead of
object detection. They also need not be two-dimensional: one can imagineariants of the
sentence tracker that employ projection models to reconstruct €mporally-coherent tracks
in 3D from 2D images that also satisfy 3D event models. We could even pool thdetections
from a variety of sources and scale their scores to prefer more reliabnes when possible.
Moreover, our temporal-coherence score uses only optical ow, but it culd employ an ap-
pearance model in order to alleviate situations where tracks convergeotthe same image
location and are swapped between the two tracked objects as they again divge from that
location. If one were to employ a human-pose detector, one could incograte coherence
of human-pose variation into the temporal-coherence model. One couldirsilarly incorpo-
rate changing human pose into the event model. Doing so with the evdnracker would
allow such an event model to in uence and improve the recovered liman pose estimated
in a top-down fashion, much in the same way that the event model can inuence and im-
prove the recovered tracks. Finally, while our event models aredrmulated as HMMs, more
general frameworks are possible. Even nongenerative frameworks, likeaximum-entropy
Markov models, could be accommodated as long as inference could be periied using a
lattice and dynamic programming. One can even imagine forgoing the lattice ad dynamic
programming to integrate more complex models of object detection, tempral coherence,
and events using message-passing inference.

The sentence tracker can also learn word meanings from video paired vhitsentences.
Unlike prior work, our method deals with video labeled with whole seriences, instead of
individual words. Moreover, our method successfully learns witlout any prior delineation of
the correspondence between words in the sentence labels to visdahtures in the associated
video used for object and/or event recognition. The experiments showthat it can correctly
learn the meaning representations in terms of HMM parameters for our leical entries,
from highly ambiguous training data, where each training video clip depcts more than one
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sentence and each sentence describes more than one clip. It doesbsoperforming both

inter- and intra-sentential inference: determining the meanirg of a word cross-situationally
from the collection of training samples in which it appears and well as byspreading the
sentential meaning across the words in that sentence in a way that isansistent across a
training set.

Our method is amenable to further extension. First, due to the naure of Markov
models, each state depends only on its immediate predecessor. Asalissed in Section 2.2,
this property implies that the output model can only employ features computed on single
frames or two adjacent frames. Such features may prove inadequate foarger lexicons. For
example, our models often exhibit di culty in di erentiating be tween picked up and put
down, since the only di erence encoded is in the second-argument vedity orientation in
the second state. Our current implementation computes this orienation using optical ow
which can be noisy. One could more reliably di erentiate between trese two event classes if
one could encode in the model the overall displacement of the secordgument, along with
the direction of that displacement, as the event proceedspicked up involves a signi cant
upward displacement while put down involves a signi cant downward displacement While
it is not possible to encode such a multiple-frame feature in an HMM,iit is possible to do
so in more complex graphical models such as conditional random elds (CR$). One can
imagine employing CRFs as the event model, together with object detction and temporal
coherence, in a variant of the sentence tracker.

Another possible extension is employing state-duration models inhe HMMs. With-
out explicit state-duration models, the implicit state-duration m odel is exponential: the
probability of staying in a state k for t frames isa(k, k)!. While such an exponential state-
duration model can encode a minimum duration for an event, to lter out short-term noise
in the signal, as discussed in Section 2.2, it cannot bias an event detemttowards a typical
duration for performing an event. In our experiments, this can manifest itself in di culty in
distinguishing between picked up and put down because they have similar initial and nal
states but di er only in a short transition period. Employing expl icit state-duration models,
such as hidden semi-Markov models (HSMMs; Yu, 2010) as the event modelvithin the
sentence-tracker framework could potentially improve alleviate ths di culty.

A third possible extension is to employ discriminative training instead of maximum-
likelihood training. Maximum-likelihood training makes use of only positive sentential labels
on training data. Discriminative training can also make use of negative satential labels.
This could reduce the amount of training data required and also could y&ld better results as
it trains the models competitively. Doing so would require a metlod for obtaining negative
sentence labels. One could do so with manual annotation, just as for posite sentence
labels. However, discriminative training works well when the nunber of negative labels far
exceeds the number of positive ones. Thus rather than manual annotatiomne can imagine
some form of sentential inference to automatically generate negative stamtial labels that
could not possibly be true for a video with an associated positive semntial label. This may
allow learning larger lexicons from more complex video without exce$g training data.
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8. Conclusion

We have presented a novel framework that utilizes the compositionaktructure of events
and the compositional structure of language to drive a semantically meanigful and targeted
approach towards event recognition. This multimodal framework integrates low-level visual
components, such as object detectors, with high-level semantic infmation, in the form of
sentential descriptions in natural language. Such integration is facilated by the shared
structure of detection-based tracking, which encodes the low-leel visual features, and of
the event models, in the form of HMMs, which encode the sententiasemantics.

We demonstrated the utility and expressiveness of our framework by prforming three
separate tasks on our video corpora, simply by leveraging our framework inigrent man-
ners. The rst, language inference , showcases the ability to focus the attention of a
tracker on the event described by a sentence, demonstrating theapability to correctly
identify such subtle distinctions as betweenThe person picked up the chair to the left of
the trash can and The person picked up the chair to the right of the trash canThe second,
language generation , showcases the ability to produce a complex sentential descripin
of a video clip, involving multiple parts of speech, by performingan e cient search for
the best description though the space of all possible descriptions. fe third, language
acquisition , showcases the ability learn a lexicon from a corpus of video clips amtated
with sentential descriptions by searching among all possible lexiins to nd one that allows
the sentences to best collectively describe their associateddeo clips.
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Appendix A. Our Linking Process

We use a linking process that is mediated by a grammar and portions of théexicon . The
lexicon portion speci es the arity | and permissible roles of individual lexical entries. The
grammar used for the experiments in Section 5 is shown in Table 11(a). Té portion of
the lexicon that speci es arity and permissible roles used in thoseexperiments is shown in
Table 11(b). With this grammar and lexicon portion, the linking process to be described
below can determine that the sentence in Equation 11 has 3 participarg and can produce
the linking function in Equation 12.

The linking process operates by rst constructing a parse tree of the sentences
given the grammar. We do so by means of a recursive-descent parser. &lexical-category
heads in this parse tree map to words used by the sentence tracker. Nonally, the lexical
categories, e.g., noun (N), adjective (A), verb (V), adverb (Adv), and preposition (P),
serve asheads of the corresponding phrasal categories NP, AP, VP, AdvP, and PP. The
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(@) S! NP VP
NP ! D [A] N [PP]

D! anjthe

Al bluejred

N ! personj backpackj chair jtrash can j tra c cone | stool j object
PP! P NP

P! to the left of j to the right of
VP ! V NP [Adv] [PP m]
V | approachedj carried j picked upj put down
Adv ! quickly j slowly
PPm ! Pm NP
Pm ! towardsj away from

(b) to the left of:: f agent, patient, source, goal, referery, f referentg
to the right of : f agent, patient, source, goal, referery, f referentg
approached f agentg, f goalg
carried : f agentg, f patientg
picked up fagentg, f patientg
put down: f agentg, f patientg
towards: f agent, patientg, f goalg
away from: f agent, patientg, f sourcey
other: f agent, patient, source, goal, refereny

Table 11: (a) The grammar used for the experiments in Section 5. Terminal&nd nonter-
minals in red are used only for the experiments in Sections 5.3 and 5.4 on the rst comns.
Terminals and nonterminals in greenare used only for the experiments in Section 5.5 on
the second corpus. Terminals and nonterminals in black are used for allxperiments on
all corpora. The rst corpus uses 19 lexical entries over 7 parts of speh (2 determin-
ers, 2 adjectives, 5 nouns, 2 spatial-relation prepositions, 4 verb® adverbs, and 2 motion
prepositions). The second corpus uses 17 lexical entries over 6 parmf speech (1 determiner,
6 nouns, 2 spatial-relation prepositions, 4 verbs, 2 adverbs, and 2 math prepositions). Note
that the grammar allows for in nite recursion in the noun phrase. (b) Th e portion of the
lexicon that speci es arity and permissible roles for the experimats in Section 5.

structure of the parse tree encodes the linking function betwee di erent words in the
form of government relations (Chomsky, 1982; Aoun & Sportiche, 1983; Haegeman, 1992;
Chomsky, 2002). This government relation can be de ned formally as in Figue 19. For
example, we determine that in Figure 20, the Nperson governs the Pto the right of but
not the N chair, and that the P to the right of governs the Nchair.

The government relation, coupled with the lexicon portion, determines the numberL
of participants and the linking function . We construct a word w for each head. The
lexicon portion speci es the arity of each lexical entry, namely the fact that person chair,
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The lexical categories N, A, V, Adv, and P areheads
Parse-tree nodes labeled with heads aregovernors
A parse-tree node dominates a parse-tree node i is a subtree of .
From X-bar theory (Jackendo, 1977), a parse-tree node is the maximal projection
of a parse-tree node i
is labeled with a lexical category X,
is labeled with the corresponding phrasal category XP,
dominates , and
no other parse-tree node exists where
is labeled with XP,
dominates , and

dominates
A parse-tree node m-commandsa parse-tree node i and do not dominate
each other and the maximal projection of dominates
A parse-tree node c-commandsa parse-tree node | and do not dominate

each other and 's immediate parent dominates .
A parse-tree node governsa parse-tree node i
is a governor,
m-commands , and
no other parse-tree node exists where
is a governor,
m-commands
c-commands , and
does not c-command .

Figure 19: The government relation underlying the linking process.

and backpackare unary and to the right of and picked up are binary. The sole argument
for the word associated with each head noun is lled with a distinct participant. 3 The sole
argument of the word associated with each unary non-noun head is lled with the sole
argument of the word associated with the head noun that governs . The rst argument of
the word associated with each binary non-noun head is also lled with the sole argument
of the word associated with the head noun that governs . The second argument of the word
associated with each binary non-noun head is lled with the sole argument of the word
associated with the head noun that is governed by . In the example in Figure 20, the sole
arguments of the words associated with the noungerson, chair, and backpackare assigned
the distinct participants 1, 2, and 3 respectively. The arguments of he word associated
with the preposition to the right of are assigned to participants 1 and 2, since the Nberson
governs the Pto the right of which in turn governs the N chair. Similarly, the arguments
of the word associated with the verbpicked up are assigned to participants 1 and 3, since
the N person governs the V picked up which in turn governs the N backpack

3. This document does not concern itself with anaphora, thus we omit discussion of how to support potential
coreference. Our implementation, in fact, does support such and mediates such by analysis of the
determiners.
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picked up D N

the backpack

Figure 20: A parse tree for the example sentenc&he person to the right of the chair picked
up the backpack The highlighted portion indicates the government relations for the P to
the right of that are used to determine its arguments. The Nperson governs the Pto the
right of, but not the N chair, and the P to the right of governs the Nchair.

We further determine a consistent assignment of roles, one of agent, paint, source,
goal, and referent, to participants. The allowed roles for each argument otach word are
speci ed in the lexicon portion. A speci cation of the arity and permi ssible roles used for the
experiments in Section 5 is given in Table 11(b). The speci catione: fri,:::g,::: ,fr'le, g
means that the arity for lexical entry eis I and ri,::: constitute the permissible roles for
argument i. Each participant is constrained to be assigned a role in the intersdémon of the
sets of permissible roles for each argument of each word where that parigant appears.
We further constrain the role assignment to assign each role to at most onegsticipant. For
the example sentence in Equation 11, the role assignment is computed aglibws:

role(1) 2 f agent, patient, source, goal, refererg \ f agent, patientg\ f agentg
role(2) 2 f agent, patient, source, goal, refererg \ f referentg
role(3) 2 f agent, patient, source, goal, refererg \ f patientg
leading to:
role(1) = agent role(2) = referent role(3) = patient
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Appendix B. Complete Experimental Results

The backpackapproached the trash can.

The chair approached the trash can.

The person to theleft of the trash can put down an object.

The person to theright of the trash can put down an object.

Figure 21: Language inference: two di erent track collections for the samevideo clip pro-
duced under guidance of two di erent sentences. The minimal pair©f sentences correspond
to sentences 1{9 from Table 1 with the di erences between thega) and (b) variants high-
lighted. The track collections deemed by human judges to depict thegiven sentences are
indicated in green while ones that do not are indicated inred.
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The person put down thetrash can.

The person put down thebackpack

The person carried thered object.

The person carried the blue object.

The person picked up an object to thdeft of the trash can.

The person picked up an object to theight of the trash can.

Figure 21: Language-inference examples continued.
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The person picked upan obiject.

The person put down an object.

The person picked up an objectjuickly.

The person picked up an objecslowly.

The person carried an objecttowards the trash can.

The person carried an objectaway from the trash can.

Figure 21: Language-inference examples continued.
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The backpackapproached the trash can.

The chair approached the trash can.

The red object approached the chair.

The blue object approached the chair.

The person to theleft of the trash can put down an object.

The person to theright of the trash can put down an object.

Figure 21: Language-inference examples continued.
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The person put down thetrash can.

The person put down thebackpack

The person picked up an object to théeft of the trash can.

The person picked up an object to theight of the trash can.

The person picked up an object to thdeft of the trash can.

The person picked up an object to theight of the trash can.

Figure 21: Language-inference examples continued.
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The person picked upan obiject.

The person put down an object.

The person picked up an objectjuickly.

The person picked up an objecslowly.

The person carried an objecttowards the trash can.

The person carried an objectaway from the trash can.

Figure 21: Language-inference examples continued.
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The backpackapproached the trash can.

The chair approached the trash can.

The red object approached the chair.

The blue object approached the chair.

The person put down thechair.

The person put down thebackpack

Figure 21: Language-inference examples continued.
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The person carried thered object.

The person carried theblue object.

The person picked up an object to théeft of the trash can.

The person picked up an object to theight of the trash can.

The person picked upan obiject.

The person put down an object.

Figure 21: Language-inference examples continued.
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The person picked up an objectjuickly.

The person picked up an objectlowly.

The person carried an objecttowards the trash can.

The person carried an objectaway from the trash can.

Figure 21: Language-inference examples continued.
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The backpack to the left of the chair approached the trash can.
The person to the right of the backpack carried the chair.
The person to the right of the trash can approached the trash can.

The chair to the right of the person approached the trash can.

The backpack to the left of the trash can approached the trash can.

Figure 22: Sentential descriptions generated for each of the 94 video ph in the rst
corpus subject to the contraction threshold 0.90. The highest-scoringentence for each clip
is generated, among all sentences that are generated by the grammar in TablEl(a), by
means of a beam search. The sentences deemed by human judges to déscthe associated
clips are indicated in green while ones that do not are indicated inred.
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The chair to the left of the trash can approached the trash can.

The backpack to the right of the trash can approached the trash can.

The backpack to the right of the trash can approached the trash can.

The person to the left of the trash can put down the chair.

The backpack to the right of the person approached the trash can.

The person to the right of the chair put down the backpack.

Figure 22: Sentential-description examples continued.
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The chair to the left of the trash can approached the backpack.

The trash can to the right of the person approached the chair.

The person to the right of the chair put down the trash can.

The person to the right of the chair put down the trash can.

The person to the right of the chair approached the trash can.

The trash can to the right of the chair approached the chair.

Figure 22: Sentential-description examples continued.
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The backpack to the right of the chair approached the chair.

The person to the left of the trash can picked up the chair.

The person to the right of the chair picked up the backpack.

The person to the right of the trash can picked up the backpack.

The person to the left of the chair picked up the backpack.

The trash can to the right of the person approached the chair.

Figure 22: Sentential-description examples continued.
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The backpack to the left of the trash can approached the trash can.

The person to the right of the chair put down the chair.

The trash can to the right of the chair approached the person.

The person to the right of the chair picked up the trash can.

The person to the left of the trash can picked up the chair.

The backpack to the right of the chair approached the trash can.

Figure 22: Sentential-description examples continued.
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The person to the right of the chair carried the backpack.

The chair to the left of the trash can approached the trash can.

The person to the right of the chair approached the chair.

The backpack to the right of the person approached the trash can.

The person to the left of the trash can approached the trash can.

The backpack to the right of the trash can approached the trash can.

Figure 22: Sentential-description examples continued.
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The backpack to the left of the chair approached the chair.

The trash can to the right of the backpack approached the chair.

The trash can to the right of the chair approached the chair.

The person to the right of the trash can put down the chair.

The person to the left of the chair put down the backpack.

The chair to the right of the trash can approached the trash can.

Figure 22: Sentential-description examples continued.
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The trash can to the left of the person approached the backpack.

The trash can to the left of the chair approached the backpack.

The person to the left of the chair put down the backpack.

The person to the left of the chair put down the backpack.

The person to the left of the chair put down the backpack.

The chair to the right of the backpack approached the trash can.

Figure 22: Sentential-description examples continued.
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The trash can to the left of the chair approached the backpack.

The trash can to the left of the backpack approached the backpack.

The backpack to the left of the chair approached the trash can.

The person to the right of the trash can picked up the chair.

The person to the left of the trash can picked up the trash can.

The person to the left of the trash can picked up the backpack.

Figure 22: Sentential-description examples continued.
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The person to the right of the chair picked up the backpack.

The person to the right of the trash can put down the backpack.

The person to the left of the chair approached the chair.

The person to the right of the chair picked up the backpack.

The person to the right of the chair picked up the backpack.

The person to the right of the trash can picked up the backpack.

Figure 22: Sentential-description examples continued.
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The person to the left of the backpack picked up the chair.

The trash can to the right of the chair approached the chair.

The person to the right of the trash can carried the backpack.

The chair to the left of the trash can approached the trash can.

The person to the left of the backpack approached the trash can.

The chair to the left of the backpack approached the trash can.

Figure 22: Sentential-description examples continued.
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The trash can to the right of the person approached the chair.

The backpack to the right of the trash can approached the trash can.

The backpack to the left of the chair approached the chair.

The trash can to the right of the backpack approached the chair.

The backpack to the left of the chair approached the chair.

The person to the right of the trash can put down the chair.

Figure 22: Sentential-description examples continued.

693



Yu, Siddharth, Barbu, & Siskind

The person to the left of the chair put down the backpack.

The person to the left of the trash can put down the backpack.

The person to the right of the chair put down the backpack.

The person to the right of the chair put down the chair.

The person to the right of the trash can put down the chair.

The backpack to the right of the trash can approached the chair.

Figure 22: Sentential-description examples continued.

694



Grounding Language Inference, Generation, and Acquisitio n in Video

The person to the left of the backpack carried the trash can.

The backpack to the right of the chair approached the chair.

The person to the right of the chair approached the trash can.

The person to the right of the chair picked up the backpack.

The person to the right of the trash can picked up the backpack.

The person to the left of the backpack picked up the backpack.

Figure 22: Sentential-description examples continued.
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The trash can to the right of the chair approached the person.

The person to the right of the chair put down the backpack.

The trash can to the left of the person approached the person.

The person to the right of the chair picked up the backpack.

The person to the left of the chair put down the trash can.

The person to the left of the trash can picked up the trash can.

Figure 22: Sentential-description examples continued.
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The person to the left of the trash can picked up the backpack.

The person to the left of the trash can picked up the trash can.

The backpack to the right of the chair approached the trash can.

The person to the right of the trash can carried the backpack.

The chair to the left of the trash can approached the trash can.

Figure 22: Sentential-description examples continued.
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Figure 23: Comparison between hand-crafted and trained models for nouns.
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Figure 24
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