
Journal of Artificial Intelligence Research 53 (2015) 375-438 Submitted 01/15; published 07/15

Approximate Value Iteration with
Temporally Extended Actions

Timothy A. Mann mann@ee.technion.ac.il

Shie Mannor shie@ee.technion.ac.il

Electrical Engineering

The Technion - Israel Institute of Technology,

Haifa, Israel

Doina Precup dprecup@cs.mcgill.ca

School of Computer Science

McGill University,

Montreal, QC, H3A2A7, Canada

Abstract

Temporally extended actions have proven useful for reinforcement learning, but their
duration also makes them valuable for efficient planning. The options framework provides
a concrete way to implement and reason about temporally extended actions. Existing
literature has demonstrated the value of planning with options empirically, but there is a
lack of theoretical analysis formalizing when planning with options is more efficient than
planning with primitive actions. We provide a general analysis of the convergence rate of a
popular Approximate Value Iteration (AVI) algorithm called Fitted Value Iteration (FVI)
with options. Our analysis reveals that longer duration options and a pessimistic estimate
of the value function both lead to faster convergence. Furthermore, options can improve
convergence even when they are suboptimal and sparsely distributed throughout the state-
space. Next we consider the problem of generating useful options for planning based on a
subset of landmark states. This suggests a new algorithm, Landmark-based AVI (LAVI),
that represents the value function only at the landmark states. We analyze both FVI and
LAVI using the proposed landmark-based options and compare the two algorithms. Our
experimental results in three different domains demonstrate the key properties from the
analysis. Our theoretical and experimental results demonstrate that options can play an
important role in AVI by decreasing approximation error and inducing fast convergence.

1. Introduction

We consider the problem of planning in Markov Decision Processes (MDPs; Puterman,
1994, see Section 2) with large or even infinite state-spaces. In this setting, traditional
planning algorithms, such as Value Iteration (VI) and Policy Iteration (PI), are intractable
because the computational and memory complexities at each iteration scale (polynomially
and linearly, respectively; Littman, Dean, & Kaelbling, 1995) with the number of states in
the target MDP. Approximate Value Iteration (AVI) algorithms are more scalable than VI,
because they compactly represent the value function (Bertsekas & Tsitsiklis, 1996). This
allows AVI algorithms to achieve per iteration computational and memory complexities
that are independent of the size of the state-space. However, there are many challenges to

c©2015 AI Access Foundation. All rights reserved.

Mann, Mannor, & Precup

using AVI algorithms in practice. AVI and VI often need many iterations to solve the MDP
(Munos & Szepesvári, 2008). It turns out that temporally extended actions can play an
important role in reducing the number of iterations.

The options framework defines a unified abstraction for representing both temporally
extended actions and primitive actions (Sutton, Precup, & Singh, 1999). When an option
is initialized, it immediately selects a primitive action (or lower-level option) to execute but
does not return control to the agent. Then, on each following timestep, the option tests
whether it should return control to the agent that called the option or continue by selecting
another primitive action (or lower-level option). Because they can represent temporally
extended actions, options provide a valuable tool for efficient planning (Sutton et al., 1999;
Silver & Ciosek, 2012). Under most analyses of AVI, one iteration corresponds to planning
one additional timestep into the future. On the other hand, by performing a single iteration
of AVI with temporally extended actions, one iteration could instead correspond to planning
several timesteps into the future. We derive bounds that help us reason about when AVI
with temporally extended actions converges faster than AVI with only primitive actions.

The options framework is appealing for investigating planning with temporally extended
actions. For one thing, the class of options includes both primitive actions as well as a wide
range of temporally extended actions, and many of the well-known properties of Markov
Decision Processes generalize when arbitrary options are added (e.g., Value Iteration and
Policy Iteration still converge, Precup & Sutton, 1997; Precup, Sutton, & Singh, 1998;
Sutton et al., 1999). In addition, much effort has gone into algorithms that learn “good”
options for exploration (Iba, 1989; Stolle & Precup, 2002; Mannor, Menache, Hoze, & Klein,
2004; Konidaris & Barto, 2007). These algorithms may produce options that are also useful
for planning. Lastly, options allow for greater flexibility when modeling problems where
actions do not have the same temporal resolution. For example, in inventory management
problems where placing orders may not occur at regular intervals (Minner, 2003) or in the
RoboCup Keepaway domain where agent’s only make decisions when they have control of a
soccer ball (Stone, Sutton, & Kuhlmann, 2005). Thus, options are an important candidate
for investigating planning with temporally extended actions.

1.1 Motivation

Ultimately we care about the time it takes to solve an MDP. However, we focus on ana-
lyzing the convergence rate of AVI with options, because a faster convergence rate implies
a solution with fewer iterations. Using the convergence rate we can determine the total
computational cost of planning by bounding the computational cost at each iteration. If
the total computational cost with options is smaller than with primitive actions, planning
with options is faster than planning with primitive actions.

We focus on the convergence rate because it can provide valuable insight about when
planning with options is faster than planning with primitive actions. However, we do not
present the full computational complexity of planning with options because the computa-
tional cost per iteration is highly domain dependent. Therefore, the convergence rate of
planning with options gives us insight about when planning with options may be faster than
planning with primitive actions but without getting bogged down in domain specific de-
tails. For example, the computational cost of an iteration depends on (1) the computational

376

Approximate Value Iteration with Temporally Extended Actions

complexity of simulating an option, (2) the computational complexity of the value function
approximation method, and (3) the number primitive actions and temporally extended
actions that can be initialized at each state.

For the sake of clarity, we discuss how each of these factors can impact the computational
complexity of AVI.

1.1.1 The Cost of Simulating Actions and Options

The computational cost of simulating an option depends on the simulator. We assume
for simplicity that all primitive actions can be simulated with approximately the same
computational cost. The main question is: What is the compuational cost of simulating
temporally extended actions compared to the cost of simulating a primitive actions?

In general, a simulator for primitive actions can be used to simulate options by executing
the sequence of primitive actions prescribed by the option. The computational cost of this
is equal to the cost of simulating the sequence of primitive actions. However, when the
simulator is inexpensive, the simulation costs may be outweighed by the cost of fitting the
data with a function approximator. This can be seen in our experiments in section 5.

In some cases, specialized simulators can be constructed so that temporally extended
actions have approximately the same cost as primitive actions. For discrete state MDPs,
this can be accomplished through a preprocessing step by composing options from primitive
actions (Silver & Ciosek, 2012). In large- or continuous-state MDPs, the linear options
framework enables the construction of option models by composing models for primitive
actions (Sorg & Singh, 2010). In addition, some existing simulators are carefully designed
for simulating actions at both long and short timescales (Chassin, Fuller, & Djilali, 2014).

1.1.2 The Cost of Value Function Approximation

The choice of function approximation architecture can have drastic implications on the
computational cost of each iteration. Ridge Regression, LASSO, SVR, Neural Networks,
etc. all have computational costs that scale with the number of features at varying rates.
In some cases, the cost of training a suitable function approximation architecture may
be significantly more expensive than the cost of querying the simulator. In these cases,
decreasing the number of iterations can result in significant overall computational savings
even if options require more queries to the simulator.

1.1.3 The Number of Actions and Options

At each iteration, AVI samples all actions from a collection of states. If there are a large (or
even infinite) number of primitive actions, planning can be made both more computationally
efficient and sample efficient by planning instead with a smaller number of options.

1.1.4 The Cost of Acquiring Options

One final consideration is the computational cost of acquiring options. If the options are
designed in advance by experts, then there is no additional cost. However, if the options
are discovered or generated, then this cost should be factored into the total cost of the
algorithm. The landmark-based option generation approach proposed in section 5.3.2 has

377

Mann, Mannor, & Precup

almost no overhead, given a set of “landmark” states. However, more computationally
expensive methods for acquiring options (Simsek & Barto, 2004; Mannor et al., 2004) could
be justified if the options are reused for planning in many tasks (Fernández & Veloso,
2006).

1.2 Contributions

The main contributions of this paper are the following:

• We propose the Options Fitted Value Iteration (OFVI) algorithm, which is a vari-
ant of the popular Fitted Value (or Q-) Iteration (FVI, Riedmiller, 2005; Munos &
Szepesvári, 2008; Shantia, Begue, & Wiering, 2011) algorithm with samples generated
by options.

• We analyze OFVI in Theorem 1, characterizing the asymptotic loss and the con-
vergence behavior of planning with a given set of options. We give two corollaries
specifying how the bound simplifies when: (1) all the options have a minimum dura-
tion d > 1 (Corollary 1) and (2) the option set contains some long duration options
and primitive actions (Corollary 2).

• We introduce a novel method for generating options, based on “landmark” states.
This suggests a new algorithm, Landmark-based Approximate Value Iteration (LAVI),
that only needs to model the value of a finite set of states rather than the whole value
function.

• We analyze the asymptotic loss and convergence behavior of LAVI in Theorem 2 and
OFVI with landmark options in Theorem 3. Comparing the bounds of LAVI and
OFVI suggests that LAVI may converge faster than OFVI. However, their asymptotic
losses are not directly comparable.

• We provide a detailed experimental comparison of FVI with primitive actions, OFVI
with hand-coded options, OFVI with landmark options, and LAVI. Our experiments
in a domain with realistic pinball-like physics and a complex inventory management
problem, demonstrate that LAVI achieves a favorable performance versus time trade-
off.

The rest of this paper is organized as follows. Section 2 introduces background on
Markov Decision Processes, Dynamic Programming, previous analysis of FVI, Semi-Markov
Decision Processes, and options. Section 3 defines the Options Fitted Value Iteration
(OFVI) algorithm and compares it to Primitive Actions Fitted Value Iteration (PFVI)
considered in previous work. Section 3.2 provides a detailed discussion of the convergence
properties of OFVI under different conditions. Section 4 introduces landmark options and
explains how landmarks can be used to generate useful options for planning. This sec-
tion also provides analyses the convergence rates of LAVI and OFVI with landmark-based
options. Section 5 provides experiments and results comparing PFVI to OFVI in three
different domains. Section 6 discusses the relationship between the results presented here
and previous work, as well as, extensions and directions for future work.

378

Approximate Value Iteration with Temporally Extended Actions

2. Background

Let X be a subset of d-dimensional Euclidean space, M(X) be the set of probability mea-
sures on X, and f : X → R be a function from vectors in X to the real numbers. The
max-norm ‖f‖∞ = supx∈X |f(x)|. For p ≥ 1 and µ ∈ M(X), the (p, µ)-norm is defined by

‖f‖p,µ =
(∫
µ(x)‖f(x)‖pdx

)1/p
.

An MDP is defined by a 5-tuple 〈X,A,P,R, γ〉 (Puterman, 1994) where X is a set
of states, A is a set of primitive actions, P maps from state-action pairs to probability
distributions over states, R is a mapping from state-action pairs to reward distributions
bound to the interval [−RMAX, RMAX], and γ ∈ [0, 1) is a discount factor. Let B(X;VMAX)
denote the set of functions with domain X and range bounded by [−VMAX, VMAX] where
VMAX ≤ RMAX

1−γ . Throughout this paper we will consider MDPs where X is a bounded subset
of a d-dimensional Euclidean space and A is a finite (non-empty) set of actions.

A policy π : X → A is a mapping from states to actions. We denote the set of deter-
ministic, stationary Markov policies by Π. The standard objective of planning in an MDP
is to derive a policy π ∈ Π that maximizes

V π(x) = E

[∞∑
t=0

γtRt(xt, π(xt))|x0 = x, π

]
, (1)

where x is the long-term value of following π starting in state x. The function V π is called
the value function with respect to policy π and it is well known that it can be written
recursively as the solution of

T πV π , E [R(x, π(x))] + γ

∫
P (y|x, π(x))V π(y)dy, (2)

where T π is the Bellman operator with respect to π and V π is its unique fixed point. Given
a vector V ∈ B(X;VMAX), the greedy policy π with respect to V is defined by

π(x) = arg max
a∈A

E [R(x, a)] + γ

∫
P (y|x, π(x))V (y)dy . (3)

We denote the optimal value function by V ∗ = maxπ∈Π V
π.

Definition 1. A policy π∗ is optimal if its corresponding value function is V ∗. A policy
π is α-optimal if V π(x) ≥ V ∗(x)− α for all x ∈ X.

The Bellman optimality operator T is defined by

(T V)(x) = max
a∈A

(
E [R(x, a)] + γ

∫
y
P (y|x, a)V (y)dy

)
, (4)

where V ∈ B(X;VMAX), which is known to have fixed point V ∗. Value Iteration (VI), a
popular planning algorithm for MDPs, is defined by repeatedly applying (4). The algorithm
produces a series of value function estimates V0, V1, V2, . . . , VK and the greedy policy πK is
constructed based on VK . Since VI converges only in the limit, the policy πK may not be
optimal. However, we would still like to measure the quality of πK compared to π∗.

To measure the quality of a policy we need to define a notion of loss. The following
defines loss of a policy with respect to a set of states and loss of a policy with respect to a
probability distribution.

379

Mann, Mannor, & Precup

Definition 2. Let x ∈ X. The subset-loss of a policy π with respect to a set of states
Y ⊆ X is defined by

LY (π) = max
x∈Y

(V ∗(x)− V π(x)) , (5)

and we denote the special case where Y ≡ X by L∞(π). Let p ≥ 1 and µ ∈ M(X). The
loss of a policy with respect to a distribution over states µ is defined by

Lp,µ(π) = ‖V ∗ − V π‖p,µ . (6)

VI operates on the entire state space. This is how it is able to decrease the L∞ error,
but VI is computationally intractable in MDPs with extremely large or continuous state
spaces. Thus approximate forms of VI generally seeks to decrease the loss with respect to
a probability distribution over the state space.

2.1 Approximate Value Iteration (AVI)

Approximate Value Iteration (AVI) is the family of algorithms that estimate the optimal
(action-)value function by iteratively applying an approximation of the Bellman optimality
operator. There are many possible relaxations of VI. Which states are “backed up” accord-
ing to T , the representation of value function estimates, the number of times to sample
from the simulator, etc. all impact the loss of the resulting policy.

One popular family of AVI algorithms are the Fitted Value Iteration (FVI) algorithms.
These algorithms use a function approximator to represent value function estimates at each
iteration. Primitive action Fitted Value Iteration (PFVI) is a generalization of VI to handle
large or continuous state spaces. PFVI runs iteratively producing a sequence of K ≥ 1
estimates {Vk}Kk=1 of the optimal value function and returns a policy πK that is greedy
with respect to the final estimate VK . During each iteration k, the algorithm computes a
set of empirical estimates V̂k of T Vk−1 for n states, and then fits a function approximator
to V̂k. To generate V̂k, n states {xi}ni=1 are sampled from a distribution µ ∈ M(X). For
each sampled state xi and each primitive action a ∈ A, m next states {yai,j}mj=1 and rewards

{rai,j}mj=1 are sampled from the MDP simulator S. For the kth iteration, the estimates of
the Bellman backups are computed by

V̂k(xi) = max
a∈A

1

m

m∑
j=1

(
rai,j + γVk−1(yai,j)

)
, (7)

where V0 is the initial estimate of the optimal value function given as an argument to PFVI.
The kth estimate of the optimal value function is obtained by applying a supervised learning
algorithm A, that produces

Vk = arg min
f∈F

n∑
i=1

∣∣∣f(xi)− V̂k(xi)
∣∣∣p , (8)

where p ≥ 1 and F ⊂ B(X;VMAX) is the hypothesis space of the supervised learning
algorithm.

The work of Munos and Szepesvári (2008) presented a full finite-sample, finite-iteration
analysis of PFVI with guarantees dependent on the Lp-norm rather than the much more

380

Approximate Value Iteration with Temporally Extended Actions

conservative infinity/max norm. This enabled analysis of instances of PFVI that use one
of the many supervised learning algorithms minimizing L1 or L2 norm. A key assumption
needed for their analysis is the notion of discounted-average concentrability of future state
distributions.

Assumption 1. [A1(ν, µ)] [Discounted-Average Concentrability of Future-State
Distributions] (Munos, 2005; Munos & Szepesvári, 2008) Given two distributions
ν and µ defined over the state space X, m ≥ 1, and m arbitrary policies π1, π2, . . . , πm, we
assume that νP π1P π2 . . . P πm is absolutely continuous with respect to µ implying that

c(m)
def
= sup

π1,π2,...,πm

∥∥∥∥d(νP π1P π2 . . . P πm)

dµ

∥∥∥∥
∞
< +∞ , (9)

and we assume that

Cν,µ
def
= (1− γ)2

∑
m≥1

mγm−1c(m) < +∞

is the discounted average concentrability coefficient, where P π denotes the transition kernel
induced by executing the action prescribed by the policy π.

Intuitively, this assumption prevents too much transition probability mass from landing
on a small number of states. The condition that Cν,µ is finite depends on c(m) growing
at most subexponentially. See the work of Munos (2005) for a more complete discussion
of Assumption 1. We note that the work of Farahmand, Munos, and Szepesvári (2010)
presents a refined analysis using the expectation in (9) rather than a supremum. This
results in tighter bounds but the bounds are more difficult to interpret due to a blowup in
notation.

The work of Munos and Szepesvári (2008) shows that given an MDP, if we select prob-
ability distributions µ, ν ∈ M(X), a positive integer p, a supervised learning algorithm
A over a bounded function space F that returns the function f ∈ F that minimizes the
empirical p-norm error, V0 ∈ F an initial estimate of the optimal value function, and ε > 0
and δ ∈ (0, 1]. Then for any K ≥ 1, with probability at least 1 − δ, there exist positive
integers n,m,K such that the policy πK returned by PFVI satisfies

Lp,ν(πK) ≤ 2γ

(1− γ)2
C1/p
ν,µ bp,µ(T F ,F) + ε+

(
γK+1

)1/p(2 ‖V ∗ − V0‖∞
(1− γ)2

)
, (10)

where bp,µ(T F ,F) = sup
f∈F

inf
g∈F
‖T f − g‖p,µ is the inherent Bellman error of F with respect

to Bellman operator T .1 The inherent Bellman error is a measure of how well the chosen
hypothesis space F can represent V̂k at each iteration. The first term in (10) is called
the approximation error and corresponds to the error introduced by the inability of the
supervised learning algorithm to exactly capture V̂k at each iteration, while the second
term, the estimation error, is due to using a finite number of samples to estimate V̂k. The
last term is controlled by the number of iterations K of the algorithm. By increasing K the

1. In this paper, we consider the multi-sample variant of PFVI that uses fresh samples at each iteration.
The bound for the single-sample variant of PFVI, which uses the same batch of samples at each iteration,
is almost identical to (10). See the work of Munos and Szepesvári (2008) for details.

381

Mann, Mannor, & Precup

last term shrinks exponentially fast. This last term characterizes the convergence rate of the
algorithm. The size of the discount factor γ controls the rate of convergence. Convergence
is faster when γ is smaller. Unfortunately, γ is part of the problem definition. However,
because options execute for multiple timesteps, an option can have an effective discount
factor that is smaller than γ.

2.2 Semi-Markov Decision Processes

Semi-Markov Decision Processes (SMDPs) are a generalization of the Markov Decision
Process (MDP) model that incorporates temporally extended actions. Temporally extended
actions have primarily been applied to direct exploration in reinforcement learning (Iba,
1989; Mannor et al., 2004; Konidaris & Barto, 2007; Jong & Stone, 2008). However, they
may also play an important role in planning (Precup & Sutton, 1997; Precup et al., 1998;
Sutton et al., 1999; Silver & Ciosek, 2012). For example, the popular dynamic programming
algorithms VI and PI still converge when applied to SMDPs (Puterman, 1994). The work of
Precup et al. (1998) shows that options and an MDP form an SMDP. The works of Sutton
et al. (1999) and Silver and Ciosek (2012) provide experimental results demonstrating that
options can speed up planning in finite state MDPs. However, these works did not apply
options to tasks with continuous state spaces and there is no theoretical analysis of the
convergence rate of planning with options compared to planning with primitive actions. We
will use the SMDP framework to investigate planning with temporally extended actions.

An MDP paired with a set of temporally extended actions called options, denoted by
O, forms an SMDP.

Definition 3. (Sutton et al., 1999) An option o is defined by a 3-tuple 〈Io, πo, βo〉 where
Io is the set of states that o can be initialized from, πo is the stationary policy defined
over primitive actions followed during the lifetime of o, and βo : X → [0, 1] determines the
probability that o will terminate while in a given state.

For each state x ∈ X, we denote the set of options that can be initialized from x by
Ox = {o ∈ O | x ∈ Io}. Options are a generalization of actions. In fact they encompass,
not only primitive actions and temporally extended actions, but also stationary policies and
other control structures. Here we take actions to be options that always terminate after
only a finite number of timesteps. Policies on the other hand never terminate. For example,
a stationary policy can be represented by an option by setting the termination probabilities
to β(x) = 0 for all states.

For an option o = 〈Io, πo, βo〉, we denote the probability that o is initialized from a state
x and terminates in a subset of states Y ⊆ X in exactly t timesteps by P ot (Y |x) and the
discounted termination state probability distribution of o by P̃ o(Y |x) =

∑∞
t=1 γ

tP ot (Y |x).
For a state-option pair (x, o), the discounted cumulative reward distribution during the
option’s execution is denoted by R̃(x, o).

The objective of planning with options is to derive a policy ϕ : X → O from states to
options that maximizes

V ϕ(x) = E
[
R̃(x, ϕ(x))

]
+

∫
P̃ϕ(x)(y|x)V ϕ(y)dy . (11)

382

Approximate Value Iteration with Temporally Extended Actions

The Bellman operator for an SMDP is defined by

(TV)(x) = max
o∈Ox

(
E
[
R̃(x, o)

]
+

∫
P̃ o(y|x)V (y)dy

)
, (12)

where T is defined over the set of options O instead of primitive actions A. The differences
between (4) and (12) could potentially lead to widely different results when embedded in
the FVI algorithm.

3. Options Fitted Value Iteration

Algorithm 1 Options Fitted Value Iteration (OFVI)

Require: Collection of options O, an SMDP simulator S, state distribution µ, function
space F , initial iterate V0 ∈ F , n the number of states to sample, m the number of
samples to obtain from each state-option pair, K the number of times to iterate before
returning

1: for k = 1, 2, . . . ,K do {Generate K iterates V1, V2, . . . VK .}
2: {Collect new batch of samples.}
3: for i = 1, 2, . . . , n do {Sample N states.}
4: x ∼ µ {Sample a state from distribution µ.}
5: for o ∈ Ox do
6: for j = 1, 2, . . . ,m do

7:

(
yoi,j , r

o
i,j , τ

o
i,j

)
∼ S(x, o) {Query the simulator for a terminal state, discounted

cumulative reward, and duration of executing (x, o).}
8: end for
9: end for

10: end for
11: {Estimate Bellman Backups.}
12: V̂ ← 1

m

∑m
j=1

[
roi,j + γτ

o
i,jVk−1(yoi,j)

]
13: {Find the best fitting approximation to V̂ .}
14: Vk = arg inff∈F ‖f − V̂ ‖n
15: end for
16: return ϕK {Return the greedy policy wrt VK .}

Algorithm 1 is a generalization of the multisample FVI algorithm to the case where
samples are generated by options (with primitive actions as a special case). The algorithm,
Options Fitted Value Iteration (OFVI), takes as arguments positive integers n,m,K, µ ∈
M(X), an initial value function estimate V0 ∈ F , and a simulator S. At each iteration
k = 1, 2, . . . ,K, states xi ∼ µ for i = 1, 2, . . . , n are sampled, and for each option o ∈ Oxi ,
m next states, rewards, and option execution times 〈yoi,j , roi,j , τ oi,j〉 ∼ S(xi, o) are sampled
for j = 1, 2, . . . ,m. Then the update resulting from applying the Bellman operator to the
previous iterate Vk−1 is estimated by

V̂k(xi)← max
o∈Oxi

1

m

m∑
j=1

[
roi,j + γτ

o
i,jVk−1(yoi,j)

]
, (13)

383

Mann, Mannor, & Precup

and we apply a supervised learning algorithm to obtain the best fit according to (8). The
given simulator S differs from the simulator for PFVI. It returns the state where the option
returned control to the agent, the total cumulative, discounted reward received during its
execution, and the duration or number of timesteps that the option executed. This addi-
tional information is needed to compute (13). Otherwise the differences between PFVI and
OFVI are minor and it is natural to ask if OFVI has similar finite-sample and convergence
behavior compared to PFVI.

3.1 Simple Analysis

Notice that PFVI is a special case of OFVI where the given options contain only the
primitive action set (i.e., O ≡ A). Therefore, we cannot expect OFVI to always outperform
PFVI. Instead, we aim to show that OFVI does not converge more slowly than PFVI and
identify cases where OFVI converges more quickly than PFVI. The following proposition
provides a general upper bound on the loss of the policy derived by OFVI when O contains
A. This bound can be compared to bounds on the loss of the policy derived by PFVI.

Proposition 1. For any εS , δ > 0 and K ≥ 1. Fix p ≥ 1. Let O be a set of options that
contains the set of primitive actions A. Given an initial state distribution ν ∈ M(X), a
sampling distribution µ ∈M(X), and V0 ∈ B(X,VMAX), if A1(ν, µ) (Assumption 1) holds,
then there exists positive integers n and m such that when OFVI is executed,

Lp,ν(πK) ≤ 2γ

(1− γ)2
C1/p
ν,µ bp,µ(TF ,F) + εS +

(
γK+1

)1/p(2 ‖V ∗ − V0‖∞
(1− γ)2

)
(14)

holds with probability at least 1− δ.

A proof of Proposition 1 as well as sufficient values for n and m are given in the ap-
pendix. Proposition 1 suggests that as long as O contains A, OFVI has performance at least
comparable to PFVI (if not better). There are two main differences between the bound in
Proposition 1 and in the work of Munos and Szepesvári (2008, Thm. 2). First, the inherent
Bellman error in Proposition 1 may be larger than the inherent Bellman error with only
primitive actions. Second, the convergence rate of OFVI tracks the convergence rate of the
SMDP Bellman operator T rather than the MDP Bellman operator T .

Proposition 1 implies that OFVI converges approximately as fast as PFVI when O
contains A. However, the two algorithms may converge to different value functions due to
the larger inherent Bellman error of OFVI.

Proposition 1 has two limitations. First it only considers the case where O contains
A. Second, it does not describe when OFVI converges more quickly than PFVI. In the
following section, we will investigate both of these possibilities.

3.2 General Analysis

There are two perspectives that explain how applying options to AVI can decrease the
number of iterations needed to find a near-optimal policy.

In the first perspective, options increase information flow between otherwise temporally
disparate states facilitating fast propagation of value throughout the state-space. For exam-
ple, if it takes many primitive actions to transition from a state x to a state y, then planning

384

Approximate Value Iteration with Temporally Extended Actions

with primitive actions will require many iterations before information can be propagated
from y back to x. However, given an option that when initialized in state x, terminates in
y, value from y is propagated back to x at every iteration.

In the second perspective, options with long duration can cause rapid contraction to-
ward the optimal or a near-optimal value function. For the discounted and average reward
objectives, the proof that VI converges is based on a contraction argument (for details,
see Puterman, 1994). It turns out that options with long duration can induce a faster
contraction than primitive actions (or faster than options with shorter durations).

How these options influence the convergence rate of AVI depends critically on the agent’s
objective. In this paper, we only analyze the discounted reward objective. However, to put
our results into context, in this section, we comment on the finite horizon and average
reward objectives as well.

• Undiscounted, Finite Horizon: The agent maximizes the sum of rewards received
over H ≥ 1 timesteps. Here options can short circuit the number of iterations needed
to propagate reward backH steps. This effect is more naturally described as increasing
the information flow between temporally disparate states.

• Discounted Reward (our analysis): Our analysis uses a contraction argument to
show faster convergence and an information flow argument to show that fast contrac-
tion can occur even when the temporally extended actions are sparsely distributed in
the state-space.

• Average Reward: The agent maximizes the average of an infinite sequence of re-
wards. While we only consider the discounted reward setting, similar contraction
arguments could provably be applied to show how options can produce a closer ap-
proximation of the optimal value function with fewer iterations.

Our approach is based on a contraction mapping argument. By applying the MDP
Bellman operator T to V ∈ B(X,VMAX), we obtain the following contraction mapping

‖V ∗ − T V ‖∞ ≤ γ‖V ∗ − V ‖∞ (15)

where γ (the discount factor) serves as the contraction coefficient. Since γ < 1, the left hand
side is strictly smaller than ‖V ∗−V ‖∞. Smaller values of γ imply a faster convergence rate,
but the discount factor γ is part of the problem description and cannot be changed. However,
if we apply the MDP Bellman operator T , τ > 1 times, then we obtain a contraction
mapping where the contraction coefficient is γτ < γ. Temporally extended options have a
similar effect. Options can speed up the convergence rate of the SMDP Bellman operator T
by inducing a smaller contraction coefficient that depends on the number of timesteps that
the option executes for.

Intuitively, options with a long duration are desirable for planning because options
that execute for many timesteps enable OFVI to look far into the future during a single
iteration. However, the duration depends on both an option and the state where the option
is initialized. The following definition makes the notion of an option’s duration precise.

385

Mann, Mannor, & Precup

Definition 4. Let x ∈ X be a state and o ∈ Ox be an option. The duration of executing
option o from state x is the number of timesteps that o executes before terminating (i.e.,
returning control to the option policy). We denote by Do

x,Y the random variable representing
the duration of initializing option o from state x and terminating in Y ⊆ X. For a set of

options O, we define the minimum duration to be dmin = min
x∈X,o×Ox

infY⊆X E
[
Do
x,Y

]
.

First notice that the duration of an option is a random variable that depends on the
state where the option was initialized. This complicates the analysis compared to assuming
that all temporally extended actions terminate after a fixed number of timesteps, but it
allows for much greater flexibility when selecting options to use for planning.

Similar to the analysis of PFVI, the analysis of OFVI depends on the concentrability
of future state distributions. We introduce the following assumption on the future state
distributions of MDPs with a set of options. The given set of options O may or may not
contain the entire set of primitive actions A from the underlying MDP.

Assumption 2. [A2(ν, µ)] [Option-Policy Discounted-Average Concentrability of
Future-State Distributions] Given two distributions ν and µ defined over the state
space X, m ≥ 1, t ≥ m, and m arbitrary option policies ϕ1, ϕ2, . . . , ϕm, we assume that
νPϕ1ϕ2...ϕm

t is absolutely continuous with respect to µ implying that

ĉt(m) = sup
ϕ1,ϕ2,...,ϕm

∥∥∥∥d (Pϕ1ϕ2...ϕm
t)

dµ

∥∥∥∥
∞
< +∞ , (16)

and we assume that

Cν,µ = (1− γ)2
∞∑
t=1

tγt−1 max
m∈{1,2,...,t}

ĉt(m) < +∞ (17)

is the option discounted average concentrability coefficient, where νPϕ1ϕ2...ϕm
t (y) assigns

probability mass according to the event that a sequence of m options will terminate in a
state y exactly t timesteps after an initial state is sampled from ν and a sequence of m
options are executed where the ith option in the sequence is chosen according to ϕi.

Assumption 2 is analogous to Assumption 1. Despite the fact that options are a more
general framework than the set of primitive actions, Assumption 2 results in a smaller
concentrability coefficient than Assumption 1.

Lemma 1. Let ν, µ ∈ M(X). Assumption A1(ν, µ) implies Assumption A2(ν, µ) (i.e.,
Cν,µ ≤ Cν,µ).

Proof. First notice that since any t timestep sequence of actions generated by a sequence
ϕ1, ϕ2, . . . , ϕm of m ≤ t option policies can be expressed by a sequence of t primitive policies
π1, π2, . . . , πt. Thus

ĉt(m) = supϕ1,ϕ2,...,ϕm

∥∥∥∥d(Pϕ1ϕ2...ϕm
t)
dµ

∥∥∥∥
∞

≤ supπ1,π2,...,πt

∥∥∥d(Pπ1Pπ2 ...Pπt)
dµ

∥∥∥
∞

= c(t) .

386

Approximate Value Iteration with Temporally Extended Actions

Since ĉt(m) ≤ c(t) for all m ≥ 1 and t ≥ m, then

Cν,µ = (1− γ)2
∑∞

t=1 tγ
t−1 maxm∈{1,2,...,t} ĉt(m)

≤ (1− γ)2
∑∞

t=1 tγ
t−1c(t)

= Cν,µ .

Lemma 1 implies that Assumption 2 holds for any set of options whenever Assumption
1 holds. The main reason is because a sequence of m options that executes for t timesteps
has fewer degrees of freedom than a sequence of t primitive policies. Furthermore, the proof
of Lemma 1 tells us that the important property of the discounted concentrability of future
states is not the number of options executed in a sequence but the number of timesteps
that the sequence of options executes for.

In our analysis of the convergence rates of OFVI, we will report bounds containing the
coefficient Cν,µ rather than Cν,µ. This is because, in cases where the option set contains
mostly temporally extended actions, Cν,µ may be smaller than Cν,µ. However, Lemma 1
tells us that we can replace Cν,µ in the bounds with Cν,µ for the purposes of comparing
with (10) and (14).

The important properties of temporally extended actions that cause faster convergence
are (1) the quality of the policy they follow, and (2) how long the action executes for (or its
duration). The following definition describes the set of states where there exists an option
that follows a near-optimal policy and has sufficient duration.

Definition 5. Let X be the set of states in an MDP with option set O, α ≥ 0, and d ≥ dmin.
The (α, d)-omega set defined by

ωα,d ≡
{
x ∈ X | ∃o∈Ox s.t. inf

Y⊆X
E
[
Do
x,Y

]
≥ d ∧QΦ∗(x, o) ≥ V Φ∗(x)− α

}
, (18)

is the set of states where there is an α-optimal temporally extended action with duration
longer than d and where Φ∗ is the optimal option policy.

The states in ωα,d have particularly long duration and follow an α-optimal policy. How-
ever, the states outside of ωα,d do not. At these other states, either the available options are
not sufficiently temporally extended or they follow a suboptimal policy. To obtain faster
convergence, we need a way of connecting the convergence rates of the states outside of ωα,d
with the convergence rates of the states in ωα,d.

Assumption 3. [A3(α, d, ψ, ν, j)] Let α,ψ, j ≥ 0, d ≥ dmin, and ν ∈M(X). For any m ≥ 0
option policies ϕ1, ϕ2, . . . , ϕm, let ρ = νPϕ1Pϕ2 . . . Pϕm. There exists an α-optimal option
policy ϕ̂ such that either (1) Prx∼ρ [x ∈ ωα,d] ≥ 1− ψ or (2) ∃i∈{1,2,...,j} Pry∼ηi [y ∈ ωα,d] ≥
1− ψ where ηi = νPϕ1Pϕ2 . . . Pϕm

(
P ϕ̂
)i

for i = 1, 2, . . . , j.

Assumption 3 points out three key features that impact planning performance with
options:

1. Quality of the option set controlled by α,

387

Mann, Mannor, & Precup

2. Duration of options specified by d, and

3. Sparsity of ωα,d in the state-space characterized by j and ψ.

We refer to the policy ϕ̂ as the “bridge” policy, because it bridges the gap between the
states in ωα,d and other states. Notice that we do not assume that the planner has any
knowledge of ϕ̂. It is enough that such a policy exists. Assumption 3 says that no matter
what policies are followed, either (1) the agent will end up in ωα,d with high probability or
(2) there exists a near-optimal option policy that will transport the agent to ωα,d in at most
j timesteps with high probability. This enables us to account for problems where only a few
states have temporally extended actions, but these states can be reached quickly without
following a policy that is too suboptimal.

The following theorem provides a comprehensive description of the convergence behavior
of OFVI (with PFVI as a special case where O = A).

Theorem 1. Let εS , δ > 0, α,ψ, j ≥ 0, K, p ≥ 1, d ≥ dmin, 0 ≤ Z ≤ K, and ν, µ ∈M(X).
Suppose that A2(ν, µ) (Assumption 2) and A3(α, d, ψ, ν, j) (Assumption 3) hold. Given
V0 ∈ B(X,VMAX), if the first Z iterates {Vk}Zk=0 produced by the algorithm are pessimistic
(i.e., Vk(x) ≤ V Φ∗(x) for all x ∈ X), then there exists positive integers n and m such that
when OFVI is executed,

Lp,ν(ϕK) ≤ Lp,ν(Φ∗) +
2γdmin

(1− γ)2
C1/p
ν,µ (bp,µ(TF ,F) + α) + εS

+
(
γdmin(K+1)+(1−ψ)(d−dmin)bZ/ĵc

)1/p
(

2
∥∥V Φ∗ − V0

∥∥
∞

(1− γ)2

)
(19)

holds with probability at least 1− δ where Φ∗ is the optimal option policy with respect to the
given options O and ĵ = j + 1.

Theorem 1 bounds the loss of the option policy ϕK returned after performing K ≥ 1
iterations of value iteration with respect to a (p, ν)-norm. The distribution ν can be thought
of as an initial state distribution. It places more probability mass on the regions of the
state space where we want the policy ϕK to have the best performance. The value of p ≥ 1
is generally determined by the function approximation procedure. For p = 1, the function
approximation procedure minimizes the L1-norm and for p = 2, the function approximation
procedure minimizes the L2-norm.

The right hand side of (19) contains four terms.

1. The first term bounds the abstraction loss, which is the loss between the optimal
policy over primitive actions and the optimal option policy.

2. The second term bounds the approximation error, which is the error caused by the
inability of the function approximation architecture to exactly fit V̂k(xi) during each
iteration and α which shows up in this term is due to bootstrapping off options that

follow α-optimal policies to gain faster convergence. Notice that γdmin

(1−γ)2 shrinks as

dmin grows. Thus option sets with longer minimum duration shrink the approximation
error.

388

Approximate Value Iteration with Temporally Extended Actions

3. The third term εS is the sample error, which is controlled by the number of samples
taken at each iteration.

4. The last term controls the convergence error. Notice that γ, the discount factor, is in
[0, 1) and therefore the last term shrinks rapidly as its exponent grows. While OFVI
does not actually converge in the sense that the loss may never go to zero, this last
term goes to zero as K →∞. In the worst case, the convergence rate is controlled by
γdmin(K+1), but the convergence rate can be significantly faster if Z and d are large
and j is small.

An iterate V̂ : X → R is pessimistic if

∀y∈X V̂ (y) ≤ V Φ∗(y) ,

where Φ∗ is the optimal policy defined over option set O. Whether iterates are pessimistic
(or not) has a critical impact on the convergence rate of OFVI. To understand why, suppose
that q ∈ Ox is an option that can be initialized from a state x ∈ X where q is α-optimal with
respect to Φ∗ (i.e., QΦ∗(x, q) ≥ V Φ∗(x)−α) and has a long duration (at least d timesteps).
If V̂ is pessimistic, then the Bellman optimality operator performs an update

(TV̂)(x) = max
o∈Ox

(
E
[
R̃(x, o)

]
+

∫
P̃ o(y|x)V̂ (y)dy

)
, By definition (12).

≥E
[
R̃(x, q)

]
+

∫
P̃ q(y|x)V̂ (y)dy . The update with option q.

Since T is known to be a monotone operator, V Φ∗(x) ≥ (TV̂)(x). Taken together, these
facts imply that even if an option other than q was selected for the update, (TV̂)(x) is at
least as close to V Φ∗(x) as if q was selected. This allows us to prove that when the iterates
are pessimistic, the convergence rate of OFVI is rapid (depending on d). Unfortunately,
when the iterates are not pessimistic, this reasoning no longer holds and convergence may
depend on options with duration dmin instead.

On each of the Z iterations where the estimate of the value function is pessimistic, OFVI
exploits the options with duration d rather than dmin. However, it can only get samples
of these options from states in ωα,d. The states outside of ωα,d can benefit from the rapid
convergence of the states in ωα,d but only after j additional iterations. The main reason is
because it can take j steps to propagate value from states in ωα,d back to the other states.

Using Theorem 1 it is possible to consider the convergence rates of OFVI on a wide range
of planning problems. In the following subsections, we examine special cases of Theorem
1. First, we consider what happens when dmin is greater than 1 ignoring the possibility of
exploiting options with longer duration. Second, we consider what happens when we mix
primitive actions with temporally extended actions.

3.2.1 Abstraction

An important case involves planning where only temporally extended actions are available.
The main advantage in this case is that we can guarantee an upper bound on the convergence

389

Mann, Mannor, & Precup

rate of the algorithm is strictly faster than the upper bound for PFVI. However, the solution
that OFVI converges to may be inferior to the solution converged to by PFVI if the best
policy with respect to the given set of options is poor.

Corollary 1. Let εS , δ > 0, K, p, dmin ≥ 1, and ν, µ ∈ M(X). Given V0 ∈ B(X,VMAX),
if A2(ν, µ) (Assumption 2) and A3(α = 0, d ≥ dmin, ψ = 0, ν, j = 0) (Assumption 3) hold,
then there exist positive integers n and m such that when OFVI is executed

Lp,ν(ϕK) ≤ Lp,ν(Φ∗) +
2γdmin

(1− γ)2
C1/p
ν,µ bp,µ(TF ,F) + εS

+
(
γdmin(K+1)

)1/p
(

2
∥∥V Φ∗ − V0

∥∥
∞

(1− γ)2

)
(20)

holds with probability at least 1 − δ, where Φ∗ is the optimal option policy with respect to
the given options O.

First notice that in Corollary 1, the upper bound is with respect to the loss of an optimal
policy π∗ (over primitive actions). The bound on the loss in Corollary 1 depends on four
terms,

1. the first term is controlled by the error between the optimal policy π∗ and the best
policy Φ∗ with respect to the given options O,

2. the second term is controlled by the option policy future state concentrability coeffi-
cient Cν,µ and inherent bellman error bp,µ(TF ,F),

3. the third term is simply the estimation error term ε (which is controlled by the amount
of sampling done by OFVI), and

4. the last term is the convergence error controlled by
(
γdmin(K+1)

)
.

When dmin > 1 the convergence rate of OFVI can be significantly faster than PFVI, but
the loss term Lp,ν(Φ∗) may be large if the given option set O cannot represent a sufficiently
good policy.

Although the abstraction setting has a fast convergence rate, the quality of the policies
produced depends on the best possible option policy derived from the given set of options.
If this policy is poor, then the policy produced by OFVI will also be poor. In the next
subsection, we try to overcome this limitation by augmenting the set of primitive actions
instead of discarding them.

3.2.2 Augmentation with Sparsely Scattered Temporally Extended Actions

Experimental results have demonstrated that a few well placed temporally extended ac-
tions often improve the convergence rate of planning (Precup et al., 1998). We would like
to describe conditions where sparsely scattered temporally extended actions cause faster
convergence.

The following theorem gives a bound for OFVI in environments with sparsely distributed
temporally extended actions.

390

Approximate Value Iteration with Temporally Extended Actions

Corollary 2. Let εS , δ > 0, α,ψ ≥ 0, K, p, d, j ≥ 1, 0 ≤ Z ≤ K, and ν, µ ∈ M(X).
Suppose that A2(ν, µ) (Assumption 2) and A3(α, d, ψ, ν, j) (Assumption 3) hold. Given
V0 ∈ B(X,VMAX), if the first Z iterates {Vk}Zk=0 produced by the algorithm are pessimistic
(i.e., Vk(x) ≤ V ∗(x) for all x ∈ X), then there exist positive integers n and m such that
when OFVI is executed,

Lp,ν(ϕK) ≤ 2γ

(1− γ)2
C1/p
ν,µ (bp,µ(TF ,F) + α) + εS

+
(
γK+1+(1−ψ)(d−1)bZ/ĵc

)1/p
(

2 ‖V ∗ − V0‖∞
(1− γ)2

)
(21)

holds with probability at least 1− δ and ĵ = j + 1.

Notice that the abstraction loss Lp,ν(Φ∗) disappears because in this special case V ∗M =
V Φ∗
M . The improvement in convergence rate is only on the first Z pessimistic iterates and

a small penalty α appears in the approximation error term due to our exploitation of α-
optimal temporally extended actions. The convergence rate of Corollary 2 is driven by
γK+1+(1−ψ)(d−1)bZ/jc ≤ γK+1, demonstrating that OFVI can converge faster than PFVI.
Notice that when j is large, meaning that it can take more timesteps to visit ωα,d, the
convergence rate is slower than when j is small. This means that convergence improvement
may be less dramatic when the temporally extended actions are too sparse. When ĵ = 1,
the convergence rate is controlled by γK+1+(1−ψ)(d−1)Z ≤ γK+1.

4. Generating Options via Landmarks

One limitation of planning with options is that options typically need to be designed by
an expert. In this section, we consider one approach to generating options automatically.
Our approach is similar in spirit to the successful FF-Replan algorithm (Yoon, Fern, &
Givan, 2007), which plans on a deterministic projection of the target MDP. The algorithm
replans whenever the agent enters a state that is not part of the current plan. However,
unlike FF-Replan, our approach is more scalable as it does not plan globally over the entire
system.

More specifically, we assume access to a simulator SM for the target MDP M =
〈X,A,P,R, γ〉 and a simulator S

M̂
for a “relaxed” MDP M̂ = 〈X,A, P̂ , R, γ〉 with de-

terministic transition dynamics. Given a state x and option o ∈ Ox, a simulator S returns
the discounted cumulative reward R̃ of executing the option, the duration of the option’s
execution τ , and the termination state y.

Since M̂ has deterministic transition probabilities, its dynamics are captured by a di-
rected graph G = 〈X, P̂ 〉. Furthermore, R specifies the reward associated with each edge.
If two or more actions transition from a state x to the same state y, the maximum reward
of these actions is associated with the edge (x, y) in G. We denote a maximum reward path
from x ∈ X to g ∈ X by p∗G(x, g) and the length of the maximum reward path by |p∗G(x, g)|.
Throughout this section we will assume that the rewards are all non-positive (i.e. bound to
[−RMAX, 0]). The reason for this is because stochastic shortest path problems are undefined
when the MDP contains positive reward cycles, however, in our experiments we relax this
assumption.

391

Mann, Mannor, & Precup

l1
l2 l3

l4 l5

l6
l7

l8

x

g

M̂
Optimal Trajectory
Optimal Landmark Trajectory
Landmark Trajectory
w/Local Planner

(a)

l1
l2 l3

l4 l5

l6
l7

l8

x

g

M
Optimal Trajectory
Noise-Free Landmark Trajectory
Landmark Trajectory
w/Local Planner

(b)

Figure 1: A trajectory from state x to state g. Error is introduced by planning a policy over
landmark options rather than following the optimal policy. (a) In the determin-

istic relaxation M̂ , errors are caused by the landmarks not being exactly on the
optimal trajectory and the local planner not taking the maximum reward path
from one landmark to another. (b) In the stochastic target problem M , errors
are introduced by noise, which causes the agent to only reach states “nearby” the
landmark states on its path to the goal.

392

Approximate Value Iteration with Temporally Extended Actions

The purpose of introducing M̂ is that computationally efficient planning algorithms
are known for minimum cost path problems (Dijkstra, 1959; Hart, Nilsson, & Raphael,
1968), which are equivalent to maximum reward path planning problems provided there

are no positive reward cycles. Thus, if M̂ is a reasonable approximation for M , then we
can dynamically generate options for M by planning on M̂ . We assume an efficient local
planner P exists for G.

However, in very large directed graphs, even so called “efficient” algorithms can be
computationally expensive. Thus, we assume that P has a given maximum planning horizon
d+ ≥ 1.

Recent work on finding minimum cost paths in very large graphs has shown that paths
can be found more efficiently by introducing “landmarks” (Sanders & Schultes, 2005), an
intuition that has been used in robotic control for a long time (Lazanas & Latombe, 1992).

Definition 6. A landmark set L is a finite, non-empty subset of the state-space.

Each landmark is a single state, and a landmark set induces a directed graph over the
state-space. Obtaining a provably good landmark set is generally a hard problem (Peleg
& Schäffer, 1989). Here we assume that the landmark states are given, but they could be

acquired through analyzing the dynamics of M̂ as in the work of Simsek and Barto (2004) or
from demonstrations as in the work of Konidaris, Kuindersma, Barto, and Grupen (2010).

Given a set of landmarks, we can define a corresponding set of options, as follows.

Definition 7. Let η ≥ 0 and σ be a metric over the state-space. For landmark set L
and local planner P, the set of landmark options, denoted by O, contains one option
ol = 〈Il, πl, βl〉 for each landmark state l ∈ L, where

1. Il = {x ∈ X||P(x, l)| ≤ d+} is the initialization set,

2. πl(x) = P(x, l) is the policy for x ∈ X, and

3. βl(x) =

{
1 if σ(x, l) ≤ η ∨ x /∈ Il
0 otherwise

defines termination probabilities for each state

x ∈ X.

In other words, landmark options result from planning on the deterministic MDP M̂ ,
and they terminate once the vicinity of the landmark has been reached. A landmark l’s
option can only be executed from states where reaching l in the graph would take less
than d+ timesteps. Once discovered, these options will be executed in the target MDP M .
We denote the number of valid landmark-option pairs by L. Note that in principle, some
landmarks might not be reachable within the given planning horizon.

The idea is to plan using only the set of landmark options. To achieve this, we require
that the local planner can derive a path to at least one landmark state from every state in
X:

Assumption 4. For all x ∈ X there exists l ∈ L such that |P(x, l)| ≤ d+.

In a deterministic MDP, starting in a landmark state, it is possible to avoid visiting
non-landmark states (Figure 1a). In this case, it is possible to ignore the other states and

393

Mann, Mannor, & Precup

plan entirely based on the landmark states. However, in stochastic MDPs, landmark options
will not always terminate in landmark states. We solve this problem by allowing landmark
options to terminate near landmark states (Figure 1b).

Landmark-based options can be used directly with OFVI or alternatively can be used
to create a new AVI algorithm that only maintains estimates of the value function at the
finite number of landmark states and therefore avoids explicit function approximation. In
this section, we discuss both of these approaches and analyze their convergence properties.

4.1 Landmark-Based Approximate Value Iteration

Landmark-based Approximate Value Iteration (LAVI), Algorithm 2, belongs to the family
of AVI algorithms. It takes as arguments: (1) K the number of iterations to perform, (2)
a landmark set L, (3) an initial guess V0 of the value function V Φ∗ for states in L, (4)
the number of times to sample each landmark-option pair during updates m, and (5) a
simulator S. As output, the algorithm produces value estimates for the landmark states L.

Algorithm 2 Landmark-based AVI

Require: K, L, V0, m, S
1: for k = 1, 2, . . . ,K do
2: for l ∈ L do
3: for ol ∈ Ol do
4: (R̃

(j)
l,o , τ

(j), y(j)) ∼ S(l, ol) for j = 1, 2, . . . ,m
5: end for
6: Vk(l)← max

o∈Ol
1
m

∑m
j=1 R̃

(j)
l,o + γτ

(j)
∆(Vk−1, y

(j))

7: end for
8: end for
9: return VK

Unlike basic VI, LAVI scales to large or infinite MDPs because it only estimates values
for the landmark states, while at the same time avoiding the use of complicated function
approximation algorithms.

If the target MDP M has deterministic dynamics, then we can ensure that options will
always terminate in landmark states. So we can construct backups directly with V (y) where
y ∈ L. However, when M has stochastic dynamics, it may be impossible to guarantee that
all options terminate in landmark states. A less restrictive requirement is to assume that
options terminate “near” a landmark state with high probability. This notion of closeness
requires that we have a metric σ : X ×X → [0,∞). For some small positive constant η and
a state x ∈ X, we define

Lη(x) = {l ∈ L | σ(x, l) < η} (22)

to be the set of landmark states that are closer than η to x ∈ X. The function

∆(V, x) =

{
maxl∈Lη(x) V (l) if Lη(x) 6= ∅ ,
0 otherwise

(23)

394

Approximate Value Iteration with Temporally Extended Actions

takes into consideration the fact that options do not necessarily terminate in landmark
states. If the distance between the termination state and some landmark l is less than η,
then we plug in V (l). Otherwise, we assume a value of 0.

After Algorithm 2 returns its Kth estimate of the landmark values VK , we define the
“greedy” policy for LAVI to be

ϕK(x) = arg max
o∈Ox

(
R̃ox +

∞∑
t=1

∫
γtP ot (y|x)∆(VK , y)dy

)
. (24)

4.1.1 Analysis

We provide a theoretical analysis of LAVI along two dimensions. (1) We bound the loss
associated with policies returned by LAVI compared to the optimal policy over primitive
actions, and (2) we analyze the convergence rate of LAVI. To save space, the proofs are
deferred to Appendix C.

For deterministic MDPs, M = M̂ . Thus, no error is introduced by stochasticity in the
environment. However, the selection of landmark states and the local planner can both
introduce error.

Definition 8. (Landmark Error) Given a landmark set L, the smallest εL such that for all
x ∈ X and some l ∈ {l′ ∈ L | d̂min ≤ |P(x, l′)| ≤ dmax}

V ∗
M̂

(x)−
(
R̃p∗G(x,l) + γ|p∗G(x,l)|V ∗

M̂
(l)
)
≤ εL , (25)

is called the landmark error where V ∗
M̂

is the optimal value function for M̂ and R̃p∗G(x,l)

is the discounted reward of the optimal path from x to l in M̂ .

The landmark error quantifies how well the chosen landmark states preserve maximum
reward paths. In Figure 1a, the landmark error is represented by the distance of the
landmarks from the optimal trajectory. This definition assumes that our local planner is
optimal, however, it may be convenient to use a suboptimal local planner.

Definition 9. (Local Planning Error) Given a local planner P and landmark set L, the
smallest εP such that for all x ∈ X and l ∈ L where P(x, l) < d+, the path P(x, l) generated
by P satisfies (

R̃p∗G(x,l) + γ|p∗G(x,l)|V ∗
M̂

(l)
)
−
(
R̃P(x,l) + γ|P(x,l)|V ∗

M̂
(l)
)
≤ εP , (26)

is called the local planning error.

The local planning error quantifies the loss due to using the local planner P instead
of a planner that returns the maximum reward path from x to a nearby landmark state.
In Figure 1a, the local planning error is represented by the trajectory (dashed line) that
transitions from landmark to landmark, but does not follow the shortest path between
landmarks.

So far, we have only considered factors that impact planning error when the environment
is deterministic. When M contains stochastic dynamics, we need a way to bound the error

395

Mann, Mannor, & Precup

V
a
lu
e

State-Space

V*

η
κ

Figure 2: Optimal value function over a one dimensional state space with landmarks de-
picted by black circles. The gray hourglass shapes around the landmarks depict
landmark error. Assumption 5 only requires V ∗M to change slowly around the
landmarks. The value function may change rapidly at regions with no landmarks.

of following a policy in M planned in M̂ . When M is stochastic, a landmark option may
have trouble reaching a particular state. Thus, we need to relax the condition that an
option always terminates at a landmark state.

Assumption 5. (Locally Lipschitz around Landmarks) We are given a metric σ over the
state-space X such that for all l ∈ L and x ∈ X, if σ(x, l) < η, then V ∗M (l) ≥ V ∗M (x)−κσ(x, l)
for some κ ≥ 0.

Assumption 5 says that the optimal value function V ∗M does not change too dramatically
for states that are close to landmark states. If this assumption is violated, options terminat-
ing arbitrarily close to a landmark state may have unboundedly lower value with respect to
V ∗M . This would lead to unboundedly suboptimal landmark policies. Thus, Assumption 5 is
critical to obtain meaningful bounds on the quality of landmark policies. Notice, however,
that Assumption 5 only applies near the landmarks. Figure 2 depicts a value function for a
one-dimensional state-space that illustrates the fact that V ∗M can change rapidly in regions
of the state-space that are not too close to a landmark.

Assumption 5 allows us to treat the hypersphere with radius η around a landmark state
all as one state. However, treating all of these states the same introduces the following
error.

Definition 10. (Local Lipschitz Error) We define the local Lipschitz error bound by
εH = κη.

The local Lipschitz error is the largest possible difference between the value at a land-
mark l and the value at a state within the η-radius hypersphere centered at l. This is
essentially the error introduced by allowing landmark options to terminate at any state
that is within a distance of η of l.

Now we need to define the error caused by following a policy whose options were planned
on M̂ in M .

396

Approximate Value Iteration with Temporally Extended Actions

Definition 11. (Stochastic Plan Failure) Let σ and η be as in Assumption 5. The stochas-
tic planning failure ψ is the smallest value such that

Pr
(R̂,τ̂ ,ŷ)∼SM (x,ol)

[σ(ŷ, l) > η] ≤ ψ

for all x ∈ X and ol ∈ Ox where l is the landmark associated with ol.

The stochastic plan failure bounds the probability that a path to a landmark state
planned on M̂ will terminate in a state that is far from the desired landmark state when
executed in M .

We also need a way of characterizing how good of an approximation M̂ is for M . It
turns out that we can characterize this relationship in a simple way.

Definition 12. (Relaxation Error) The relaxation error is

εR = max
(∥∥∥V ∗M − V Φ∗

M

∥∥∥
ν
−
∥∥∥V ∗

M̂
− V Φ̂∗

M̂

∥∥∥
ν
, 0
)
,

where Φ∗ is the optimal option policy in M and Φ̂∗ is the optimal option policy in M̂ .

Surprisingly, the relaxation error only depends on the difference between the optimal
policies over primitive actions and the optimal policies over options in M and M̂ . If these
policies have similar values then M̂ can be a good approximation for M , even if the dynamics
of M are very noisy.

Finally, the sampling error εS is controlled by m in Algorithm 2. Increasing m corre-
sponds to collecting more samples which consequently decreases εS .

Theorem 2. (LAVI Convergence) Let εS > 0, δ ∈ (0, 1]. There exists

m = O

(
1

(εS(1− γ)2(1− γdmin))2
ln

(
LK

δ

))
such that with probability greater than 1−δ, if Algorithm 2 is executed for K ≥ 1 iterations,
the greedy policy ϕK derived from VK satisfies

L1,ν(ϕK) ≤
(

2(εL + εP)

1− γd̂min

+ εR

)
+ ε̃+ εS + γ(K+1)dmin

(∥∥V Φ∗
M − V0

∥∥
L

1− γdmin

)
, (27)

where ε̃ =
(

γdmin

1−γdmin

)(
1 + (1−ψ)γdmin

1−γdmin

)
(ψVMAX + (1− ψ)εH) and d̂min and dmin are the min-

imum duration of any landmark-option pair in M̂ and M , respectively.

The proof of Theorem 2 appears in Appendix C. Surprisingly, Eq. (27) holds for the
initial state distribution even though LAVI only maintains value estimates for states in L.

Although this bound is not directly comparable to bounds derived for FVI, it has many
of the same characteristics as the bounds found in the works of Farahmand et al. (2010)
and Mann and Mannor (2014). For example, the first three terms on the right hand side
of Eq. (27) correspond to the approximation error, εS is the estimation error controlled
by the level of sampling, and the last term characterizes the convergence behavior of the

397

Mann, Mannor, & Precup

algorithm. For FVI the approximation error is caused by choosing a function approximation
architecture that is not rich enough to represent the estimates of the value function at each
iteration. For LAVI the approximation error is caused by choosing a landmark set that is
not sufficiently rich or using a planner that cannot reliably reach the vicinity of landmark
states.

The first four terms on the right hand side of (27) describe the worst case loss of the
policy derived by LAVI as K →∞. The first term corresponds to the error associated with
the choice of landmarks and using a suboptimal local planner. If LAVI uses an optimal
local planner, such as A∗, then εP = 0. The second term is the relaxation error (discussed
more below). ε̃ is controlled by the stochastic plan failure ψ and local Lipschitz error εH .
If both, ψ and εH are small then ε̃ will be small. In addition, longer duration options (i.e.,
larger dmin) decreases ε̃. The sample error εS is decreased by increasing m.

The last term corresponds to LAVI’s convergence rate and is one of the keys to LAVI’s
speed. The convergence rate γdmin is faster than γ, the convergence rate of FVI with
primitive actions (Munos & Szepesvári, 2008; Mann & Mannor, 2014). The minimum
duration dmin is controlled by the minimum time between landmark regions. So convergence
is faster when the landmarks provide greater mobility throughout the state-space. A closer
look at the last term in Eq. (27) shows that the convergence error depends on

∥∥V0 − V Φ∗
M

∥∥
L,

which is a max-norm only over the landmark states L. This last term represents the fact
that LAVI only needs to estimate the value function at the landmark states.

The relaxation error term εR in (27) determines how good of an approximation M̂ is
for M given the set of landmark options. One naive bound for εR is in terms of a bound
on the transition dynamics with respect to the primitive actions

εD = max
(s,a)∈S×A

∥∥∥P (·|s, a)− P̂ (·|s, a)
∥∥∥

1

where ‖ · ‖1 is the L1 norm, P are the transition probabilities for M , and P̂ are the state
transitions (degenerate probability distributions with all mass on a single next state) for

M̂ . It is not difficult to show that εR ≤ 2εD
1−γ . However, this bound is generally extremely

conservative. εR only depends on the loss of the best option policies in M and M̂ whereas
εD is influenced by primitive actions and states that may never be visited by these option
policies.

The total number of samples used by LAVI is LKm, where L is the number of valid
landmark-option pairs, K is the number of iterations, and m is the number of landmark-
option samples. On the other hand, the number of samples used in the analysis of Fit-
ted Value Iteration depends on the complexity of the function approximation architecture
(Munos & Szepesvári, 2008). In MDPs with complex value functions, such as the Pinball
domain (see Section 5.2), complex function approximation schemes are necessary to get
FVI to work. On the other hand, with an appropriate landmark set, LAVI can simply “skip
over” complex regions of the value function.

Notice that executing the policy derived from the output of LAVI requires sampling from
the simulator. The number of samples needed depends on the discount factor γ. When γ
is close to 1, more samples are needed to ensure that the policy behaves near-optimally.
However, this is an acceptable cost when the simulator is relatively inexpensive compared
to the overall cost of planning.

398

Approximate Value Iteration with Temporally Extended Actions

4.2 Landmark-based Options Fitted Value Iteration

It is also possible to consider using landmark-based options with OFVI. We refer to the
resulting case of the algorithm as Landmark-based Options Fitted Value Iteration (LOFVI).

Theorem 3. (LOFVI Convergence) Let εS > 0, δ ∈ (0, 1] and O be a set of landmark-based
options. If assumption A2(ν, µ) (Assumption 2) and A3(α = 0, d = dmin, ψ = 0, ν, j = 0)
(Assumption 3) hold, then there exists n and m, such that with probability greater than
1− δ, if Algorithm 1 is executed for K ≥ 1 iterations, the greedy policy ϕK derived from VK
satisfies

Lp,ν(ϕK) ≤
(

2(εL + εP)

1− γd̂min

+ εR

)
+

2γdmin

(1− γ)2
C1/p
ν,µ bp,µ(TF ,F) + εS

+
(
γdmin(K+1)

)1/p
(

2
∥∥V Φ∗

M − V0

∥∥
∞

(1− γ)2

)
, (28)

where d̂min and dmin are the minimum duration of any landmark-option pair in M̂ and M ,
respectively.

Theorem 3 is comparable to Theorem 2 but provides a (p, ν)-norm bound rather than
a (1, ν)-norm bound. If we consider the case where p = 1, then we can compare Theorem 3
to Theorem 2. Both theorems share the same abstraction loss. Although their convergence
rates are similar, LAVI’s convergence term (Theorem 2) is significantly smaller than the
convergence term for OFVI. However, LOFVI’s convergence depends on an explicit repre-
sentation over the state-space while LAVI’s convergence depends only on values maintained
at the landmark states.

The main advantage of LOFVI over LAVI is it’s potential for lower sample complexity
when querying the policy. Although not shown here, it is easy to extend the analysis
of OFVI to produce action-value functions rather than value functions. With an explicit
action-value function querying the policy does not require any additional samples. This
may be an important consideration if the simulator is computationally expensive.

4.3 Additional Considerations

One barrier to applying landmark-based options is that we need access to a deterministic
relaxation of the target MDP for local planning. In many domains, a deterministic model
may have already been created by domain experts. However, if this relaxation is unavailable,
we might wonder how one could be acquired.

One simple strategy for obtaining a deterministic MDP from the target MDP simulator
would be to use the most frequently sampled next state. Algorithm 3 demonstrates one
possible implementation for this strategy. The algorithm builds a deterministic model
H : X × O → R × X as new state-action pairs are requested. It takes as arguments
the target MDP simulator SM a state-action pair (x, a), the number of samples m ≥ 1,
and the partial deterministic model H and returns a 3-tuple containing a reward r and
terminal state y. Furthermore, Algorithm 3 can easily be extended to the continuous state
setting by matching states that are “close” together. The cost of Algorithm 3 depends on

399

Mann, Mannor, & Precup

Algorithm 3 DREX (Deterministic RElaXation)

Require: SM , x ∈ X, a ∈ A,m ∈ N, H : X ×O → R×X
1: if H(x, a) 6= ⊥ then {Model has no entry for (x, a).}
2: for i = 1, 2, . . . ,m do
3: (ri, ·, yi) ∼ SM (x, a)
4: end for
5: y ← arg maxi=1,2...,m

∑m
j=1 I{yi = yj} {Assign most frequent next state.}

6: r ← 1
m

∑m
i=1 I{y = yi}ri {Average reward for next state y.}

7: H(x, o)← (r, y)
8: end if
9: return H(x, o)

the cost of sampling a primitive action m times, where m can be chosen to ensure that
the highest probability terminal state is chosen with high probability. This approach only
makes sense when there exists a most probable next state (region) for each state-action
pair. Nevertheless, this may capture a wide range of real-world domains.

While we have used the example of a deterministic relaxation for local planning. Land-
mark options could be implemented using alternative local planning algorithms, for example,
UCT (Kocsis & Szepesvári, 2006), Episodic Natural Actor Critic (Peters & Schaal, 2008),
etc. These approaches have the advantage that they can be applied directly on the target
MDP simulator. The theoretical guarantees provided for deterministic planners can easily
be adapted to other black box planners whenever the local planning error can be bounded.
However, we focus our analysis on deterministic local planners for brevity and clarity.

5. Experiments and Results

We compared PFVI and OFVI in three different tasks: (1) the optimal replacement problem
(Munos & Szepesvári, 2008), (2) the pinball domain (Konidaris & Barto, 2009), and (3) an
eight commodity inventory management problem (Mann & Mannor, 2014).

Our theoretical analysis from the previous sections characterizes convergence rates.
However, we are also interested in the trade-off between the planning effort and perfor-
mance (i.e., cumulative reward) of the resulting policy. While it is possible to compare the
time-to-solution, this requires setting a potentially arbitrary performance threshold. Choos-
ing a performance threshold can unfairly bias our judgment about which algorithm achieves
the best overall performance-time trade-off. We measure this trade-off by introducing the
following statistic:

ζ(x, k) =
V ϕk(x)∑k

i=1 ti
, (29)

where x is the start state used for evaluation and k refers to the number of iterations
performed by the algorithm so far. For i = 1, 2, . . . , k the value ti is the time in seconds of
the ith iteration. Higher values are more desirable because they imply more performance
for less time spent planning.

In all of our experiments, we simulated options by simulating individual primitive ac-
tions, until the selected option terminates or a maximum number of timesteps (100 in our

400

Approximate Value Iteration with Temporally Extended Actions

4 3 2 1 0 1 2 3 4
Deviation from x̄

8

10

12

14

16

18

||V
∗
−
V
k
|| 1

k=1

k=2

k=3

Figure 3: Optimal Replacement: Expected loss of iterates V1, V2, and V3 of OFVI given
the primitive actions and a single option of varying quality. Error bars represent
±1 standard deviation. Results were averaged over 20 trials.

experiments) occurs. This potentially places options-based planning methods at a disad-
vantage. Nevertheless, our experiments provide strong evidence that options can speed up
the convergence rate of planning, which leads to a smaller time-to-solution.

All experiments were implemented in Java and executed using OpenJDK 1.7 on a desk-
top computer running Ubuntu 12.04 64-bit with an 8 core Intel Core i7-3370 CPU 3.40GHz
and 8 gigabytes of memory.

5.1 Optimal Replacement Task

In the optimal replacement problem, we only compare PFVI and OFVI with hand crafted
options. Due to the simplicity of the task, option generation is unnecessary and we include
this task for comparison with previous work. In this problem, the agent selects from one of
two actions K and R, whether to maintain a product (action K) at a maintenance cost c(x)
that depends on the product’s condition x or replace (action R) the product with a new one
for a fixed cost C. This problem is easy to visualize because it has only a single dimension,
and the optimal value function and optimal policy can be derived in closed form (Munos &
Szepesvári, 2008) so that we can compare PFVI and OFVI directly with the optimal policy.
We used parameter values γ = 0.6, β = 0.5, C = 30 and c(x) = 4x (identical to those
used in the work of Munos & Szepesvári, 2008) where β is the inverse of the mean of an
exponential distribution driving the transition dynamics of the task. Similar to the work
of Munos and Szepesvári (2008), we used polynomials to approximate the value function.
All results presented here used fourth degree polynomials. The optimal policy keeps the
product up to a point x̄ and replaces the product once the state equals or exceeds x̄.

For the OFVI condition, we introduced a single option that keeps the product up to
a point x̃ = x̄ + ∆ and terminates once the state equals or exceeds x̃. By modifying ∆,
we controlled the optimality of the given option. As predicted by our analysis, adjusting
∆ away from 0 (i.e., reducing the option quality), resulted in slower convergence when the

401

Mann, Mannor, & Precup

PFVI OFVI
0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ti
m

e
(s

)p
er

Ite
ra

tio
n

Figure 4: Optimal Replacement: Time in seconds per iteration for PFVI and OFVI on the
optimal replacement task averaged over 20 trials.

Optimal Replacement Task

0 2 4 6 8 100

10

20

30

40

50

||V
∗
−
V
k
|| 1

Convergence w/V0 =0

PFVI
OFVI

0 2 4 6 8 10
Iteration # (k)

0

10

20

30

40

50

||V
∗
−
V
k
|| ∞

0 2 4 6 8 100

10

20

30

40

50

||V
∗
−
V
k
|| 1

Convergence w/V0 =−75

PFVI
OFVI

0 2 4 6 8 10
Iteration # (k)

0

10

20

30

40

50

||V
∗
−
V
k
|| ∞

(a) Optimistic (V0 > V ∗) (b) Pessimistic (V0 ≤ V ∗)

Figure 5: Optimal Replacement: Convergence rates of PFVI and OFVI in the Optimal
Replacement Task. (a) When the initial value function estimate is optimistic,
there is no difference between the convergence rates of PFVI and OFVI. (b)
However, when the value function estimate is pessimistic, OFVI converges faster
than PFVI. Results were averaged over 20 trials.

initial value function was pessimistic (see Figure 3). For an optimistic initial value function,
the behavior of PFVI and OFVI was almost identical.

402

Approximate Value Iteration with Temporally Extended Actions

0 2 4 6 8 10

40

20

PF
VI

V ∗

0 2 4 6 8 10
k=2

40

20

OF
VI

V ∗

0 2 4 6 8 10

40

20

0 2 4 6 8 10
k=5

40

20

0 2 4 6 8 10

40

20

0 2 4 6 8 10
k=10

40

20

(a) Optimistic (V0 > V ∗)

0 2 4 6 8 10
60
50
40
30
20

PF
VI V ∗

0 2 4 6 8 10
k=2

60
50
40
30
20

OF
VI V ∗

0 2 4 6 8 10
60
50
40
30
20

0 2 4 6 8 10
k=5

60
50
40
30
20 0 2 4 6 8 10

60
50
40
30
20

0 2 4 6 8 10
k=10

60
50
40
30
20

(b) Pessimistic (V0 ≤ V ∗)

Figure 6: Optimal Replacement: Average iterates Vk (k = 2, 5, and 10) for PFVI and
OFVI for both (a) optimistic and (b) pessimistic initial value functions. With a
pessimistic value function OFVI converges significantly faster than PFVI.

Figure 4 shows that OFVI takes slightly longer per iteration than PFVI, because OFVI
considers both primitive and temporally extended actions. Figure 5a shows the average
convergence rates of PFVI and OFVI (with ∆ = 0), when the initial value function estimate
is optimistic for both max-norm and L1-norm error. In both cases the value functions
converge at almost identical rates as predicted by our analysis. Figure 5b shows the average
convergence rates of PFVI and OFVI, when the initial value function estimate is pessimistic.
With a pessimistic initial value function, OFVI converges significantly faster than PFVI as
predicted by our analysis.

Figure 6 compares the average iterates Vk of OFVI to PFVI for k = 2, 5, and 10 with
optimistic (Figure 6a) and pessimistic (Figure 6b) initial value function estimates. The solid
black line depicts the optimal value function V ∗. With an optimistic initial value function
the behavior of PFVI and OFVI is qualitatively identical. However, with a pessimistic
initial value function, OFVI’s second iterate is qualitatively similar to PFVI’s fifth iterate.

With a pessimistic initial value function estimate, even suboptimal options were able to
improve convergence rates, though to a lesser degree than when ∆ = 0.

403

Mann, Mannor, & Precup

Figure 7: Instance of the pinball domain used in our experiments. Black polygons are
obstacles. The large red circle is the target, and the smaller blue circle is the
controlled ball.

5.2 Pinball

In the Pinball domain (Konidaris & Barto, 2009) the agent applies forces to control a ball
on a 2-dimensional surface containing polygonal obstacles. The agent’s goal is to direct the
ball to a goal region. Figure 7 depicts the instance of the Pinball domain used in our exper-
iments. The state-space consists of four continuous dimensions (x, y, ẋ, ẏ) corresponding to
the coordinates (x, y) of the ball and its velocity (ẋ, ẏ). Similar to the work of Tamar, Cas-
tro, and Mannor (2013), we added zero-mean Gaussian noise to the velocities with standard
deviation 0.03. The discount factor was γ = 0.95.

The pinball domain contains five primitive actions: (1) accelerate along the X-axis, (2)
decelerate along the X-axis, (3) accelerate along the Y-axis, (4) decelerate along the Y-axis,
and (5) leave the velocities unchanged. Since it is unclear how to create useful hand-coded
options, we decided to only compare PFVI against the LOFVI and LAVI where the options
are generated. We experimented with randomly placed landmarks and landmarks placed
in a grid. In both cases, one landmark was manually placed at the goal state. Randomly
placed landmarks were uniformly sampled over the coordinates of the state-space. Grid
landmarks were placed in a two-dimensional grid over the X and Y coordinates the state-
space. All landmarks corresponded to states where the ball was at zero velocity. If a
sampled landmark fell inside of an obstacle, then a new landmark was sampled so that all
landmarks corresponded to valid states of the task.

The metric used to determine the distance between two states ~x = (x, y, ẋ, ẏ) and
~x′ = (x′, y′, ẋ′, ẏ′) is given by

µ(~x, ~x′) =
√

(x− x′)2 + (y − y′)2 + α
√

(ẋ− ẋ′))2 + (ẏ − ẏ′)2 , (30)

404

Approximate Value Iteration with Temporally Extended Actions

0 5 10 15 20 25 30 35

Iteration #

−15000

−10000

−5000

0

5000

10000

15000

Pe
rfo

rm
an

ce

LAVI(196)
LOFVI(196)
PFVI

PFVI

LO
FVI(1

96
)

LA
VI(1

96
)

0

10

20

30

40

50

60

70

80

90

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 8: Pinball: Comparison of planning with PFVI, LOFVI, and LAVI with 196 land-
marks (+1 at the goal) arranged in a grid in the Pinball domain. (a) Performance
over policies derived from each iteration of PFVI, LOFVI, and LAVI. Shaded re-
gions represent ±1 standard deviation. (b) Time in seconds to compute each
iteration of PFVI, LOFVI, and LAVI. Results were averaged over 20 trials.

where α, which places less emphasis on the differences in velocity than the differences in
coordinates. We chose α = 0.01 through experimentation.

For PFVI and LOFVI, we tried many different function approximation architectures
including Radial Basis Function Networks (RBF), Cerebellar Model Arithmetic Computer
(CMAC), linear regression with various features, but we found through experimentation
that nearest neighbor approximation was both fast and able to capture the complexity of
the value function. For LOFVI, we used one-nearest neighbor approximation and N = 1, 000
states were sampled at each iteration. For PFVI, we averaged the value of states within a 0.1
radius of the queried state and N = 30, 000 states were sampled at each iteration. Without
30, 000 samples, PFVI either failed to solve the task or produced a policy that solved the
task unreliably. Both PFVI and LOFVI used L = 5 samples for each state-option pair.
We chose these settings because they resulted in the strongest performance for PFVI and
LOFVI.

For the landmark options, we experimented with different numbers of landmarks. For
simplicity we selected landmarks that formed a uniform grid over the pinball domain’s X-
and Y -coordinates. By choosing grid sizes of 10× 10, 12× 12, and 14× 14, the number of
landmarks were 100, 144, 196, respectively. With fewer than 100 landmarks performance of
LOFVI and LAVI degraded significantly. The radius of the hypercube around landmarks
was set to η = 0.03, and the landmark options available at a state corresponded to the
landmarks that were at a distance less than 0.2 from the balls current state, which ap-
proximates a local planning horizon d+. For brevity, we consider the results for landmark
options arranged in a grid. Randomly selected landmarks gave qualitatively similar results
with slightly higher variance.

Figure 8a compares the performance of PFVI, LOFVI, and LAVI in the pinball domain
with 196 landmarks (+1 landmark at the goal). After about six iterations, LOFVI and

405

Mann, Mannor, & Precup

0 5 10 15 20 25 30

Iteration #

10−2

10−1

100

101

102

103

Pe
rf.

/C
um

ul
at

iv
e

Ti
m

e

LAVI(196)
LOFVI(196)
PFVI

Figure 9: Pinball: Performance over cumulative time in seconds received by policies from
each iteration. Higher is better. Results were averaged over 20 trials.

PFVI LOFVI LAVI
0

5

10

15

20

25

30

Ti
m

e-
to

-S
ol

ut
io

n
(in

M
in

ut
es

)

Figure 10: Pinball: Cumulative time-to-solution in minutes for PFVI, LOFVI, and LAVI
averaged over 20 trials. LAVI has the smallest time-to-solution.

406

Approximate Value Iteration with Temporally Extended Actions

LAVI are able to solve the task. However, PFVI takes about 25 iterations to solve the
task. Figure 8b compares the time per iteration of PFVI, LOFVI, and LAVI in the pinball
domain. PFVI has the highest time per iteration cost. This is because we needed to use a
lot more samples per iteration for PFVI to solve the task. Notice that LAVI is less expensive
than LOFVI. This is due to the fact that LAVI only needs to sample from landmark states,
whereas LOFVI samples from a larger number of states sampled at each iteration (although
less than PFVI).

Figure 9 compares the performance over cumulative time spent planning. PFVI has a
poor performance over time trade-off because each iteration is takes more time than LOFVI
and LAVI, and it takes many iterations to achieve high performance. LOFVI and LAVI
achieve similar performance, but LAVI has a higher score due to the fact that it spends less
time planning per iteration. Figure 10 compares the time in minutes before PFVI, LOFVI,
and LAVI produce a policy that achieves performance greater than 8,000. PFVI takes a
longer than LOFVI and LAVI, because it converges slowly and uses an expensive function
approximation step at each iteration. Despite the fact that LOFVI and LAVI both use the
same landmark options, LAVI is faster than LOFVI, because LAVI only approximates the
value function around landmark states.

5.3 Inventory Management Task

In a basic inventory management task, the objective is to maintain stock of one or more
commodities to meet customer demand while at the same time minimizing ordering costs
and storage costs (Scarf, 1959; Sethi & Cheng, 1997). At each time period, the agent is
given the opportunity to order shipments of commodities to resupply its warehouse.

We created an inventory management problem where the agent restocks a warehouse
with n = 8 different commodities (Mann, 2014). The warehouse has limited storage (500
units in our experiments). Demand for each commodity is stochastic and depends on the
time of year. Orders can be placed twice each month for a total of 24 order periods per
demand cycle.

The state 〈τ, x〉 of the inventory management problem is a vector specifying the time
of year τ and a vector x specifying the quantity of each commodity (denoted xi for the ith

commodity) stored in the warehouse. During each timestep, a demand vector ξ is drawn by
sampling the demand for each commodity independently from a normal distribution where
the mean depended on the time of year (see Table 1 for parameters used in our experiments).
The demand vector is then subtracted from the quantity of each commodity stored in the
warehouse. If any of the commodities were negative after subtracting the demand vector,
the agent receives an unmet demand penalty

pud(x− ξ) =

{
ub + us

∑n
i=1 [xi − ξi]− if

∑n
i=1 [xi − ξi]− < 0 ,

0 otherwise ,
(31)

where ub = 2 represents the base unmet demand cost, us = 10 represents the per unit

unmet demand cost, and [x]− =

{
x if x < 0
0 otherwise

.

Once the demand is subtracted, the agent is given the opportunity to either resupply its
warehouse or order nothing. The set of possible primitive actions is n501 = 8501. Searching
over this set would be intractable. Therefore, we designed a smaller set of primitive actions.

407

Mann, Mannor, & Precup

Table 1: Commodity Properties
Commodity Index 1 2 3 4 5 6 7 8

Unit Cost (os,i) 1 3 1 2 0.5 1 1 1

Demand Peak (Month) 1 3 7 10 8.5 12 1 5.5

Demand Std. Deviation 2 1 2 3 2 2 1 2

Max. Expected Demand 16 10 20 4 10 9 20 16

The primitive actions available to the agent were the ability to order nothing or to order
any single commodity in quantities of 25 up to the maximum size of the warehouse. This
resulted in (8× (500/25)) + 1 = 161 primitive actions. An action a = 〈i, q〉 is defined by a
commodity index i and a quantity q. The cost of an order is defined by

poc(i, q) =

{
0 if q = 0 ,
ob + os,iq otherwise ,

(32)

where ob = 8 is the base ordering cost and os,i (see Table 1) is the commodity dependent
unit cost. The new state steps forward half a month into the future and the quantities
in the inventory are updated to remove the purchased commodities and add the ordered
commodities (if any). If the agent orders more than will fit in the inventory, then only the
portion of the order that fits in the warehouse will be kept (but the agent will be charged
for the complete order). At the end of each decision step, the agent receives a negative
reward (i.e., cost)

R(x, a) = − (pud(x− ξ) + poc(i, q)) , (33)

which is the negative of the sum of the unmet demands and the order costs depending
on the inventory levels x, the demand ξ, and the action a = 〈i, q〉. There is no storage
cost, but the limit on the inventory forces the agent to make careful decision about which
commodities to order. The discount factor was γ = 0.9.

The high dimensionality of the state space (1 dimension for each commodity and 1 di-
mension for time) required a function approximation architecture with good generalizability.
We tried many different function approximation architectures before settling on Radial Ba-
sis Function networks (RBFs) with a grid of 1-dimensional radial bases. By limiting the
dimensionality of the radial bases we were able to achieve good generalization performance
with few samples. We divided the state space into 24 time periods, so that the value func-
tion approximation was implemented by 24 RBFs. The the number of bases per dimension
was 25 and the basis widths were controlled by σ = 0.1. Throughout the experiments we
sampled n = 1000 states each iteration and sampled each option m = 20 times.

5.3.1 Hand-crafted Options

It is difficult to design a good policy for this problem by hand. Inventory management
has received a lot of attention from the operations research community. One of the main
findings is that the optimal strategy for a large class of inventory management problems
belong to a simple family of policies called (s, S)-policies (Scarf, 1959). For a problem with
a stationary demand distribution and a single commodity, an (s, S)-policy orders enough
stock to bring the inventory level up to S whenever the inventory level falls below s and

408

Approximate Value Iteration with Temporally Extended Actions

Inventory Management Task

0 5 10 15 20

Iteration #

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

Va
lu

e

LOFVI(100)
OFVI
PFVI

0 5 10 15 20

Iteration #

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Va
lu

e

LOFVI(100)
OFVI
PFVI

(a) Optimistic (V0 > V ∗) (b) Pessimistic (V0 ≤ V ∗)

Figure 11: Inventory Management: Average value of iterates produced by LOFVI, OFVI
and PFVI. Results were averaged over 20 trials. Shaded regions represent ±1
standard deviation.

orders no new stock otherwise. In an inventory management task with Markov demand,
(s, S)-policies are optimal for each demand state (Sethi & Cheng, 1997).

While the problem described here does not cleanly fit into the Markov demand setting,
the notion of (s, S)-policies provides a potential idea for a temporally extended action.
Since there is a high base order cost (Eq. (32) and ob = 8) while storage is free, a reasonable
policy should prefer to make large orders whenever possible and maximize the number of
timesteps where nothing is ordered. One way to encode this prior knowledge is to provide
temporally extended actions that follow the policy “order nothing” until some threshold is
met. In addition to the primitive actions, we provided OFVI with 20 temporally extended
actions for each commodity. The policy followed by all of these temporally extended actions
was to order nothing and terminate once the inventory level for a particular commodity fell
below a constant level (one of 20 levels spanning from 0 to the maximum storage of the
warehouse).

Since we do not know the optimal value function for this problem, we cannot compare
the iterates of PFVI, OFVI, and LOFVI to a ground truth. However, we can still examine
their iterates. Figure 11a shows the average iterates produced by PFVI, OFVI, and LOFVI
with optimistic V0. In this case, we can see that PFVI, OFVI, and LOFVI appear to
decrease at similar rates. Figure 11b shows the average iterates produced by PFVI, OFVI,
and LOFVI with pessimistic V0. Here we see that OFVI and LOFVI increase their values
(toward V ∗) more quickly than PFVI. LOFVI appears to converge to a different solution
than PFVI and OFVI, which is probably due to the fact that the landmark options used in
this experiment may be more powerful than the actions available to PFVI and OFVI. Note
that a comparison to the value function produced by LAVI is not straightforward because
it does not produce an approximation for all states (only the landmark states).

409

Mann, Mannor, & Precup

Inventory Management Task

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

0 5 10 15 20

Iteration #

1000

2000

3000

4000

5000

6000

7000

D
is

co
un

te
d

C
um

ul
at

iv
e

R
ew

ar
d

LOFVI(100)
LAVI(100)
OFVI
PFVI
1-Step Greedy
Rand

(a) Optimistic (V0 > V ∗) (b) Pessimistic (V0 ≤ V ∗)

Figure 12: Inventory Management: Performance of policies at each iteration of LAVI,
LOFVI, OFVI and PFVI starting from a state with no inventory. LAVI set-
tles on a near-optimal policy after a single iteration. Results were averaged over
20 trials. Shaded regions represent ±1 standard deviation.

We considered the performance of the policies derived from iterates of PFVI and OFVI.
When V0 is initialized pessimistically, Figure 12b shows that OFVI quickly converges to a
better policy than PFVI. It takes PFVI several more iterations before an equally successful
policy is found. We compared these policies with a policy that selected uniformly at random
from the available primitive actions (denoted Random) and a policy that selects the action
that has the immediate lowest cost (denoted 1-Step Greedy). The initial state was set
to the beginning of the year with zero inventory. For the case where V0 is optimistically
initialized, Figure 12 shows that the performance of PFVI and OFVI quickly improve beyond
the Random and 1-Step Greedy policies, but their performance is similar at each iterate.

5.3.2 Landmark-Based Options

For LAVI, we set m = 20 (where m controls the number of samples per state-option pair)
after experimentation showed that this value works reasonably well. Since the state-space of
the problem was too large to use a generic graph-based planner, we constructed a heuristic
local planner that used a deterministic instance of the problem to transition as close as
possible to landmark states. Given the definition of the inventory management task, it is
easy to define a deterministic model by replacing samples from the Gaussian distributions
with the expectation of those distributions. Given a landmark l, if the current state was
lower than l for the ith commodity, then it would order the amount needed to reach the ith

commodity’s quantity in l plus the expected demand for the ith commodity. If the current
state was higher than l for the ith commodity, it would place no order for that commodity.
Notice that this local planner is efficient and is able to make use of the entire set of primitive
actions. We used Euclidean distance and set η = 0.05 × 500 where 500 was the maximum

410

Approximate Value Iteration with Temporally Extended Actions

Ran
d

PFVI 1

PFVI 20
OFVI 1

OFVI 20

LO
FVI(1

00
) 1

LO
FVI(1

00
) 20

LA
VI(1

00
) 1

LA
VI(1

00
) 20

0

1000

2000

3000

4000

5000

6000

7000

Pe
rfo

rm
an

ce

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 13: Inventory Management: (a) Comparison of performance of the first and last
policies derived by PFVI, OFVI, and LAVI. (b) Comparison of time per itera-
tion in seconds. Results were averaged over 20 trials. Error bars represent ±1
standard deviation.

0 5 10 15 20

Iteration #

101

102

103

104

Pe
rf.

/C
um

ul
at

iv
e

Ti
m

e

LAVI(100)
LOFVI(100)
OFVI
PFVI

Figure 14: Inventory Management: Comparison of performance over cumulative time in
seconds (higher is better). LAVI achieves higher performance for time invested
even compared to LOFVI which also uses landmark options. Results were aver-
aged over 20 trials.

inventory level and d+ =∞. The reason we set d+ =∞ was because successfully managing
inventory requires making large jumps in the state-space (e.g., going from 0 inventory to
maximum inventory levels) in a single timestep.

Figure 13a compares the performance of a policy that selects primitive actions uniformly
at random and policies derived from the first and last iterates of PFVI, OFVI, LOFVI, and

411

Mann, Mannor, & Precup

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

20

40

60

80

100

Ti
m

e-
to

-S
ol

ut
io

n
(s

)

Figure 15: Cumulative time-to-solution (with performance threshold 5,500) averaged over
10 independent trials for PFVI, OFVI, LOFVI with 100 landmarks, and LAVI
with 100 landmarks. LAVI has the smallest time-to-solution.

LAVI. In this task, LAVI outperforms PFVI and OFVI after on its first iteration, while
LOFVI ultimately has higher performance. Figure 13b compares the time per iteration in
seconds of PFVI, OFVI, LOFVI, and LAVI. In this task, LAVI is significantly faster than
PFVI, OFVI, and LOFVI. Figure 14 shows that LAVI achieves a better performance-time
trade-off on all iterations.

Figure 15 shows the cumulative time in seconds to derive a policy that achieves per-
formance above 5,500 averaged over 10 independent trials. OFVI, which uses a mixture
of options and primitive actions, has a slightly faster time-to-solution than PFVI, despite
having to evaluate both primitive and temporally extended actions at each iteration. Thus,
OFVI’s faster time-to-solution is due to its faster convergence rate. LOFVI and LAVI both
have a smaller time-to-solution than PFVI and OFVI. Although there are approximately
the same number of primitive actions and landmark options that can be initialized at each
state, LOFVI and LAVI are faster than PFVI because they converge faster. Finally, LAVI is
faster than LOFVI because it uses a computationally efficient estimate of the value function
based only at the landmark states, whereas LOFVI (1) uses a potentially more expensive
function approximation architecture and (2) does not make explicit use of the landmark
state locations.

5.4 Experimental Domains versus Theoretical Assumptions

It is a useful exercise to consider how our theoretical assumptions map onto our experimental
domains.

First, we consider the concentrability coefficient (Assumptions 1 and 2). Unfortunately,
we cannot estimate the concentrability coefficients for our domains because they depend
on a supremum norm over sequences of policies. However, the concentrability coefficients

412

Approximate Value Iteration with Temporally Extended Actions

are generally smaller in stochastic domains, where every policy has a broad future state
distribution (meaning that the long-term value of a state depends a little bit on lots of
states). Along this line of reasoning, we should expect that the optimal replacement and
inventory management problems might have smaller concentrability coefficients than the
pinball domain. Consistent with this hypothesis, we found that all of our algorithms were
much more sensitive to the sampling distribution in the pinball domain than the other two
domains.

In addition, Lemma 1 suggests that with options the concentrability coefficient is always
less than (or equal to) the concentrability coefficient for primitive actions. This is also sup-
ported by our experiments with the pinball domain, where PFVI was much more sensitive
to the sampling distribution than LOFVI or LAVI.

Second, let us consider Assumption 3 with respect to our experimental domains. As-
sumption 3 deals with the sparseness of options in the state-space. Informally, it says
that nearly-optimal temporally extended actions are abundant in the state-space. With
landmark options, this holds true for the pinball and inventory management domains by
definition, and as a result LAVI and LOFVI achieve fast convergence. Our hand-crafted
options in the optimal replacement and inventory management domains, on the other hand,
may terminate immediately in some states and have a long duration in others. This may
account for why landmark-based options resulted in faster convergence in our experiments.

Now we will consider the assumptions and definitions from the analysis of LAVI. The
locally Lipschitz assumption probably holds for the inventory management domain because
the high stochasticity generally smooths the value function. In the pinball domain, there
are regions of the state-space that are probably not Lipschitz due to the complex obstacles.
Two states on the opposite side of an obstacle can be relatively close but have extremely
different values. However, LAVI only needs the locally Lipschitz assumption to hold around
landmark states. Since the majority of the state-space in the pinball domain is probably
smooth, the local Lipschitz assumption likely holds for most landmark configurations from
our experiments.

Landmark error decreases when we add more landmark states. In the pinball and inven-
tory management domains the task could not be solved with too few landmarks. However,
we were surprised that in the pinball and inventory management domains only 100 land-
marks were needed to learn reasonable solutions. Furthermore, in the pinball domain, how
landmark states were chosen did not have a large effect on the performance. Thus a grid-
based layout of landmarks only produced slightly better policies than uniformly sampled
landmark states. This suggests that landmark error could be made small in our experimen-
tal domains with a small number of landmarks.

Local planning error is the error due to using an imperfect deterministic planner. For
the inventory management task, the local planning error was 0, because we were able to
use the deterministic model to specify what to order to get to a landmark state. In the
pinball domain, the local planning error may be large because we used a greedy algorithm
to select actions that move the agent in a straight line toward the landmark. This local
planner will fail when the ball needs to be pushed around a corner, but it worked well in our
experiments. This suggests that the local planning error may have been small on average.

Stochastic plan failure occurs when noise in the environment prevents a landmark option
from terminating sufficiently close to the designated landmark state. In our analysis of

413

Mann, Mannor, & Precup

LAVI, even a small probability ψ of a stochastic plan failure caused a large increase in the
approximation error. This is due to the possibility that failing to reach a landmark may leave
the agent in a non-recoverable state. However, in the pinball (Konidaris & Barto, 2009) and
inventory management (Mann & Mannor, 2014) domains, the agent can eventually recover
from any mistake. So stochastic plan failure generally has a much smaller consequence than
what is predicted by (27).

The relaxation error quantifies how much worse the best landmark option policy is in
the target MDP than in the deterministic relaxation. Despite the fact that the pinball
domain and the inventory management domain have significant stochasticity, LAVI and
LOFVI were able to derive good policies. Unfortunately, it is not clear how to measure the
relaxation error.

6. Discussion

We have proposed and analyzed Options Fitted Value Iteration and Landmark-based Ap-
proximate Value Iteration. For both algorithms longer temporally extended actions result
in faster convergence and smaller approximation error. For OFVI, our analysis shows that
when the value function estimate is pessimistic with respect to the optimal value function,
the convergence rate of OFVI can take advantage of temporally extended actions that have
a smaller effective discount factor than the options with minimum duration. Furthermore,
options can improve convergence even when they are suboptimal and spread throughout the
environment. In fact, LAVI and LOFVI both converge faster as landmark-based options
are spread out further in the environment.

Approximate Modified Policy Iteration (Scherrer, Ghavamzadeh, Gabillon, & Geist,
2012) is related to planning with options in the sense that modified policy iteration performs
backups from d-step rollouts (rather than 1-step rollouts) of the greedy policy. However,
planning with options is more flexible because the options can have termination conditions
that depend on state and time. Furthermore, the analysis from the work of Scherrer et al.
(2012) does not point to any improvement in convergence rates by increasing the length of
the rollouts used to perform backups.

Special representations such as factorization of a task’s state and action spaces can
be exploited to achieve faster planning (Hoey, St-Aubin, Hu, & Boutilier, 1999; Barry,
Kaelbling, & Lozano-Prez, 2011). However, for many problems a simulator already exists
or simulators are a more convenient way to represent the task. In fact, the work of Dietterich,
Taleghan, and Crowley (2013) presents an example where the simulator representing the
task is computationally efficient, but exact inference on the factored representation of the
task is computationally intractable. Therefore, the ability to plan on black box simulators
is more generally applicable than requiring a problem to be in some special representation.
This is why we focus on planning with a black box simulator.

Option discovery has been investigated extensively, and many approaches explore heuris-
tics related to finding useful subgoals (McGovern & Barto, 2001; Simsek & Barto, 2004;
Stolle & Precup, 2002; Wolfe & Barto, 2005), which is similar in spirit to finding landmarks.
In all of these approaches, however, the emphasis is on finding only useful subgoals. Our
analysis provides instead a way to use any arbitrary set of landmarks, and quantify the
quality of the obtained policy. Because of this less careful approach in selecting landmarks,

414

Approximate Value Iteration with Temporally Extended Actions

and because of the use of local planning on a deterministic problem, the scalability of LAVI
is significantly better, especially in high-dimensional problems.

Given a collection of policies, the works of Comanici and Precup (2010) and Mankowitz,
Mann, and Mannor (2014) have investigated creating useful options by applying option
interruption. Both of these methods rely on being given a collection of policies. Here
we make use of a deterministic local planner instead, which gives LAVI and LOFVI more
flexibility since they are not restricted to a few predefined policies.

For clarity, we have focused on learning a good approximation of the optimal value
function and then showed that the resulting greedy policy has bounded loss. However, in
practice we cannot directly obtain the greedy policy from a value function. It must be
approximated with samples. However, our results can easily be extended to handle this
by the same arguments used to prove Thm. 3 in the work of Munos & Szepesvári, 2008
or by approximating the action-value function (Farahmand, Ghavamzadeh, Szepesvári, &
Mannor, 2008).

For brevity and generality, we have presented an analysis of the convergence behavior
of AVI algorithms (not computational complexity). It is possible using the bounds in
Theorem 1 and Theorem 2 to obtain bounds on computational complexity. However, there
are two critical decisions needed to determine the computational complexity. The first is
the computational complexity of sampling options. For example, the smart grid simulator
Gridlab-d can efficiently simulate actions at multiple timescales (Chassin et al., 2014).
On the other hand, some simulators may require sampling the outcome of a sequence of
primitive actions. The second decision involves the choice of function approximation, which
can vary widely.

Planning with options is an important setting because options are a more natural model
for settings where decisions are made at irregular time intervals. Furthermore, algorithms
that plan with options can potentially make use of the many algorithms proposed for learn-
ing options from data (Iba, 1989; Mannor et al., 2004). However, which algorithms produce
good options for planning is an open question, since the majority of previous research
has considered generating options for exploration. Our analysis of landmark-based options
helps to address this question because landmark-options are similar in spirit to many exist-
ing techniques for option generation, such as skill chaining (Konidaris & Barto, 2009) and
bottleneck discovery (McGovern & Barto, 2001; Simsek & Barto, 2004).

Options may have other benefits for planning besides improving the convergence rate
(and thus the overall speed of planning). For example, options may enable a planning
algorithm to “skip over” regions of the state space with highly complex dynamics without
impacting the quality of the planned policy. In particular, LAVI only models the value
function around the landmark states, which allows it to perform well in tasks where the
value function is highly nonlinear (such as the Pinball domain in Section 5.2). In partially
observable environments, options may be exploited to decrease uncertainty about the hidden
state by “skipping over” regions of the state space where there is large observation variance,
or “testing” hypotheses about the hidden state. Options may also play an important role
in robust optimization, where the dynamics of temporally extended actions are known
with greater certainty than the dynamics of primitive actions. In fact, macro-actions have
already been used for planning in partially observable environments with some success (He,

415

Mann, Mannor, & Precup

Brunskill, & Roy, 2011). However, these results only consider a very narrow definition of
temporally extended actions that excludes closed loop policies such as options.

We have focused on generalizations of value iteration, but there are many other algo-
rithms where planning can benefit from options. For example, approximate policy iteration
(Lazaric, Ghavamzadeh, & Munos, 2010; Scherrer et al., 2012) may also exploit options to
speed up convergence. Another interesting family of planning algorithms is the sparse sam-
pling framework, which estimates the value at a single state using either breadth-first-like
search (Kearns, Mansour, & Ng, 2002) or rollouts (Kocsis & Szepesvári, 2006). Options
may enable sparse sampling algorithms to derive higher quality policies with a smaller
dependence on the horizon.

For option generation, we assumed the existence of an efficient local planner. For many
applications it may be much easier to create and/or learn an efficient local planner than a
global planner. This is especially true in domains where the local dynamics tend to remain
similar throughout large regions of the environment (Brunskill, Leffler, Li, Littman, & Roy,
2008).

Acknowledgments

This work was funded in part by the NSERC Discovery grant program and the European
Research Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement n.306638.

Appendix A. Proof of Proposition 1

Proof. (of Proposition 1) This proposition follows from Theorem 1. To see why, consider
any Z ≥ 0, there is at least one optimal policy π∗ defined over primitive actions that satisfies
Assumption 3 with values α = 0, d = 1, ψ = 0, arbitrary ν ∈ M(X), and j = 0. In this
case, Theorem 1 gives us the following high probability (> 1− δ) bound with α = 0:

||V ∗ − V πK ||p,ν ≤ 2γ
(1−γ)2C

1/p
ν,µ (bp,µ(TF ,F) + α) + ε

+
((
γ(1−ψ)d+ψ

)Z
+ γK−Z+1

)1/p (2‖V ∗−V0‖∞
(1−γ)2

)
≤ 2γ

(1−γ)2C
1/p
ν,µ bp,µ(TF ,F) + ε+

(
γK+1

)1/p (2‖V ∗−V0‖∞
(1−γ)2

)
,

where we replace Cν,µ with Cν,µ since Lemma 1 tells us that Cν,µ ≤ Cν,µ.

Appendix B. Proof of Theorem 1 and Supporting Lemmas

In this appendix, we prove Theorem 1 and provide sufficient values for the arguments n
and m, where n controls the number of states sampled at each iteration and m controls the
number of samples simulated at state-action pairs.

The proof of Theorem 1 is similar in structure to Thm. 2 in the work of Munos &
Szepesvári, 2008 with several changes due to the differences between options and primitive
actions. The proof of Theorem 1 has the following structure:

416

Approximate Value Iteration with Temporally Extended Actions

1. In Appendix B.1, we derive Lemma 2, which bounds the number of states n and
the number of samples m from each state-option pair that are necessary to achieve
a high-probability bound on the error of a single iteration of AVI. Lemma 2 is used
directly in the proof of Theorem 1 but not in any of the other supporting lemmas.

2. In Appendix B.2, we derive Lemma 6, which provides a pointwise bound on the loss
of the policy produced by OFVI after K ≥ 1 iterations. We start by deriving an
upper bound for the policy’s pointwise loss based on the value function’s pointwise
error (Lemma 3). To use Lemma 3, we need bounds on the value function estimate’s
pointwise error. So we derive upper and lower bounds on its pointwise error after K
iterations (Lemma 4). Lemma 6 puts Lemmas 3 and 4 together and exploits options
that follow a near-optimal policy to get a tighter bound when the estimate of the
value function is pessimistic. For technical reasons, it is important in the next part
of the proof (Appendix B.3) that the coefficients in the pointwise bound sum to 1.
Therefore, we introduce coefficients λk for k = 0, 1, 2, . . . ,K and show that they do
indeed sum to 1 (Lemma 5).

3. In Appendix B.3, we convert the pointwise bound derived in Appendix B.2 into an
Lp-norm bound, as well as, deriving the convergence behavior of OFVI (Lemma 8).
Lemma 7 shows how the concentrability assumption (Assumption 2) allows us to
replace the error according to the future state distribution with the error according
to our sampling distribution. We use Lemma 7, as well as, Assumption 3 to prove
Lemma 8.

4. Appendix B.4 proves Theorem 1. The proof uses Lemma 2 to select the number of
samples needed to ensure that the error at all K ≥ 1 iterations is low with high
probability. Then we apply Lemma 8 to bound the error after K iterations.

Before moving onto the proofs, we first introduce some additional notation. In contrast
to the discounted termination state probability density P̃ , we denote the undiscounted
probability that an option o executed from a state x ∈ X will terminate in a subset of
states Y ⊆ X by

P o(Y |x) =
∞∑

t=dmin

P ot (Y |x) . (34)

Notice that because (34) is undiscounted
∫
P̃ o(y|x)dy <

∫
P o(y|x)dy = 1. For an option

policy ϕ : X → O, we will denote by P̃ϕ discounted termination state probability distribu-
tion for executing ϕ once at each state (executing each option until termination) and the
undiscounted termination state probability distribution Pϕ analogously. Notice that for an
option policy, we also have

Pϕ(Y |x) =
∞∑

t=dmin

Pϕt (Y |x) (35)

for all Y ⊆ X and x ∈ X.

417

Mann, Mannor, & Precup

Notice that if f is an option, an option policy, or a policy over primitive actions we can
write the discounted termination state probability density by

P̃ f (Y |x) =
∞∑

t=dmin

γtP ft (Y |x) (36)

for all Y ⊆ X and x ∈ X. When we compose options o1, o2, . . . om, we write P̃ o1o2...om =
P̃ o1P̃ o2 . . . P̃ om , and we can write

P̃ o1o2...om(Y |x) =
∞∑

t=mdmin

γt (P o1P o2 . . . P om)t (Y |x) (37)

for all Y ⊆ X and x ∈ X.
We will assume throughout this supplementary material that when we refer to an optimal

policy π∗, it is a policy over primitive actions. When O contains the set of primitive actions
A, the fixed point of the SMDP Bellman operator T and the MDP Bellman operator T is
the optimal value function V ∗. Thus Tπ∗ is equivalent to T π∗ .

B.1 Bounding the Number of Samples

The following lemma is used in Theorem 1 to select sufficient values for parameters n and
m to ensure that the per iteration error is less than some ε > 0 with probability at least
1− δ.
Lemma 2. LetM be an SMDP with option set O, F ⊂ B(X;VMAX) be a bounded function
space with

(
1
8

(
ε
4

)p
, p
)
-covering number bounded by N , V ∈ F , p be a fixed positive integer,

and V ′ be the result of a single iteration of OFVI derived from (13) followed by (8). For
any ε, δ > 0, ∥∥V ′ − TV

∥∥
p,µ
≤ bp,µ (TV,F) + ε

holds with probability at least 1− δ provided that

n > 128

(
8VMAX

ε

)2p

(log(1/δ) + log(32N)) (38)

and

m >
8(RMAX + γVMAX)2

ε2
(log(1/δ) + log(8n|O|)) . (39)

The proof of Lemma 2 follows from the proof of Lemma 1 from the work of Munos &
Szepesvári, 2008 simply by replacing the MDP Bellman operator with the SMDP Bellman
operator T everywhere it occurs, and noting that we must sample from |O| options rather
than only |A| primitive actions. We omit the proof here for brevity.

B.2 Bounding the Pointwise Propagation Error

We are interested in bounding the loss due to following the policy ϕK derived by OFVI
rather than following the optimal policy π∗. We will use the fact that

‖V ∗ − V ϕK‖p,ν ≤
∥∥∥V ∗ − V Φ∗

∥∥∥
p,ν

+
∥∥∥V Φ∗ − V ϕK

∥∥∥
p,ν

(40)

418

Approximate Value Iteration with Temporally Extended Actions

by the triangle inequality and focus on bounding ‖V Φ∗ − V ϕK‖p,ν , which is the loss due to
following the policy ϕK produced by OFVI instead of the optimal option policy Φ∗.

Because OFVI is a value-based method, it does not directly improve the policy at each
iteration. Instead performing more iterations improves the estimate of the optimal option
policy’s value function V Φ∗ . Thus, we need to relate the loss

∥∥V Φ∗ − V ϕK
∥∥
p,ν

to the quality
of the final value function estimate VK produced by the OFVI algorithm. The following
lemma develops a pointwise relationship between the V Φ∗ − V ϕK and V Φ∗ − VK .

Lemma 3. Suppose OFVI is executed for K iterations with iterates Vk for k = 0, 1, 2, . . . ,K.
Let Φ∗ be the optimal policy with respect to the given options O and ϕK be the greedy option
policy with respect to the Kth and final iterate VK , then

V Φ∗ − V ϕK ≤ (I − P̃ϕK)−1
(
P̃Φ∗ − P̃ϕK

)(
V Φ∗ − VK

)
, (41)

where I is the identity matrix.

Proof. Since TV Φ∗ = V Φ∗ and TϕKV ϕK = V ϕK , we get

V Φ∗ − V ϕK = TV Φ∗ − TϕKV ϕK

= TV Φ∗ − TΦ∗VK + TΦ∗VK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ TΦ∗VK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ TΦ∗VK − TVK + TVK − TϕKV ϕK

≤ P̃Φ∗
(
V Φ∗ − VK

)
+ TVK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ TϕKVK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ P̃ϕK (VK − V ϕK)

= P̃Φ∗
(
V Φ∗ − VK

)
+ P̃ϕK

(
VK − V Φ∗ + V Φ∗ − V ϕK

)
,

where the initial equality is based on the fact that V Φ∗ is the fixed point for T and V ϕK is
the fixed point for TϕK . The first step is obtained by inserting (−TΦ∗VK+TΦ∗VK) = 0. The
second step pulls out the discounted transition probability kernel P̃Φ∗ by subtracting TΦ∗VK
from TV Φ∗ . Since the backups are performed by the same policy Φ∗, the immediate reward
terms are canceled, leaving only P̃Φ∗

(
V Φ∗ − V ϕK

)
. The third step inserts (−TVK+TVK) =

0. Since TΦ∗VK ≤ TVK , we obtain the fourth step by dropping the terms TΦ∗VK − TVK ,
which is a vector whose elements are less than zero. We obtain the fifth step by noticing
that since ϕK is the greedy policy with respect to VK , TVK = TϕKVK . The sixth step pulls
out P̃ϕK by subtracting TϕKV ϕK from TϕKVK . The seventh step inserts (−V Φ∗+V Φ∗) = 0.

We can manipulate the above inequality

V Φ∗ − V ϕK ≤ P̃Φ∗
(
V Φ∗ − VK

)
+ P̃ϕK

(
VK − V Φ∗ + V Φ∗ − V ϕK

)
V Φ∗ − V ϕK ≤

(
P̃Φ∗ − P̃ϕK

) (
V Φ∗ − VK

)
+ P̃ϕK

(
V Φ∗ − V ϕK

)(
V Φ∗ − V ϕK

)
− P̃ϕK

(
V Φ∗ − V ϕK

)
≤

(
P̃Φ∗ − P̃ϕK

) (
V Φ∗ − VK

)(
I − P̃ϕK

) (
V Φ∗ − V ϕK

)
≤

(
P̃Φ∗ − P̃ϕK

) (
V Φ∗ − VK

)
,

where I is the identity matrix, so that the
(
V Φ∗ − V ϕK

)
terms are all on the left hand side.

Since (I − P̃ϕK) is invertible and its inverse is a monotone operator, we get

V Φ∗ − V ϕK ≤ (I − P̃ϕK)−1
(
P̃Φ∗ − P̃ϕK

)(
V Φ∗ − VK

)
,

419

Mann, Mannor, & Precup

which relates (V Φ∗ − V ϕK) to (V Φ∗ − VK).

Now that Lemma 3 provides us with a relationship between the quality of estimates of
the value function and quality of the resulting policy, we need to bound the quality of value
function estimates. Each iteration k = 1, 2, . . . ,K of OFVI results in some error

εk = TVk−1 − Vk , (42)

which is induced by the fitting process. One of the main issues in the proof of Theorem 1
is to determine how these fitting errors propagate through the iterations.

The following lemma helps to bound the error between V Φ∗ and VK by developing
pointwise upper and lower bounds for V Φ∗−VK that show how error propagates recursively
with each iteration.

Lemma 4. Suppose Φ∗ is the optimal policy with respect to the options O, OFVI is executed
for K iterations with iterates Vk for k = 0, 1, 2, . . . ,K and iteration errors εk for k =
1, 2, . . . ,K as defined by (42), then we have the following upper bound

V Φ∗ − VK ≤
K∑
k=1

(
P̃Φ∗

)K−k
εk +

(
P̃Φ∗

)K
(V ∗ − V0) , (43)

and the following lower bound

V Φ∗ − VK ≥ εK +
K−1∑
k=1

(
P̃ϕK−1P̃ϕK−2 . . . P̃ϕk

)
εk +

(
P̃ϕK−1P̃ πK−2 . . . P̃ϕ0

)(
V Φ∗ − V0

)
.

(44)

Proof. First we derive an upper bound for V Φ∗ − VK . By equation (42), we have

V Φ∗ − Vk = TV Φ∗ − TVk−1 + εk
= TΦ∗V Φ∗ − TΦ∗Vk−1 + TΦ∗Vk−1 − TVk−1 + εk
≤ TV Φ∗ − TΦ∗Vk−1 + εk
= P̃Φ∗

(
V Φ∗ − Vk−1

)
+ εk .

By recursing on this inequality, we obtain an upper bound

V Φ∗ − VK ≤
K∑
k=1

(
P̃Φ∗

)K−k
εk +

(
P̃Φ∗

)K
(V ∗ − V0) .

Now we will derive a lower bound for V Φ∗ − VK . Let ϕk denote the greedy policy with
respect to Vk. By (42), we have

V Φ∗ − Vk = TV Φ∗ − TVk−1 + εk
= TV Φ∗ − Tϕk−1V Φ∗ + Tϕk−1V Φ∗ − TVk−1 + εk
≥ Tϕk−1V Φ∗ − TVk−1 + εk
= P̃ϕk−1

(
V Φ∗ − Vk−1

)
+ εk .

420

Approximate Value Iteration with Temporally Extended Actions

By recursing on this inequality, we obtain a lower bound

V Φ∗ − VK ≥ εK +

K−1∑
k=1

(
P̃ϕK−1P̃ϕK−2 . . . P̃ϕk

)
εk +

(
P̃ϕK−1P̃ πK−2 . . . P̃ϕ0

)(
V Φ∗ − V0

)
.

Lemma 3 gives a relationship between the quality of value function estimates and the
quality of the resulting greedy policy, while Lemma 4 gives upper and lower bounds on value
function estimates. The next step is to combine the results from these lemmas to derive a
pointwise error bound for V Φ∗ − V ϕK .

We will make use of the following definition in deriving the point-wise error bound. The
lambda values are used to simplify the notation, but we also use the fact that they are
carefully designed so that they sum to 1.

Definition 13. For t = 1, 2, . . . ,∞, let

λk =
1− γ

1− γK+1
γ(K−k) (45)

for k = 0, 1, . . . ,K.

The following lemma shows that the λk values sum to 1.

Lemma 5. The λ· values defined by (45) satisfy
∑K

k=0 λk = 1 .

Proof. We have ∑K
k=0 λk =

∑K
k=0

1−γ
1−γK+1γ

(K−k)

= 1−γ̄
1−γK+1

∑K
k=0 γ

k

= 1
1−γK+1

∑K
k=0(1− γ)γk

= 1
1−γK+1 (1− γK+1)

= 1 .

Now we are ready to derive the point-wise error bound for V Φ∗ − V ϕK .

Lemma 6. Let Z ∈ {0, 1, 2, . . . ,K}, ϕk be the greedy policy with respect to the kth iterate
Vk derived by OFVI, Φ be an option policy such that Q∗(x,Φ(x)) ≥ V ∗(x)−α for all x ∈ X,
and γ̄ = γdmin. If A3(α, d, ψ, ν, j) (Assumption 3) is true and the first Z iterates of OFVI
are pessimistic (i.e., for all x ∈ X and k ∈ {0, 1, 2, . . . , Z}, V Φ∗(x) ≥ Vk(x)), then the
difference between V Φ∗ and the value of the option policy ϕK returned by OFVI is bounded
by

V Φ∗ − V ϕK ≤ ∆

∞∑
t=1

K∑
k=0

λkPk,t|ξk| ,

where the λk’s are defined by (45),

∆ =

(
2γ̄(1− γK+1)

(1− γ)3

)
,

421

Mann, Mannor, & Precup

Pk,t =


[(
PΦ∗

)K−Z (
PΦ
)Z−k]

t
0 ≤ k ≤ Z

1
2

[(
PΦ∗

)K−k
t

+ (PϕK−1PϕK−2 . . . Pϕk)t

]
Z < k < K

1 k = K

for t ≥ 1, and

ξk =


V Φ∗ − V0 k = 0
εk + α 1 ≤ k ≤ Z
εk Z < k ≤ K

.

Proof. We can place an upper bound (43) and a lower bound (44) on the relationship
between VK and V Φ∗ . Then we can use this information to bound the difference between
V ϕK and V Φ∗ . However, in this lemma, we will exploit the pessimism of the first Z iterates
and the option policy Φ to achieve a more informative bound.

When an iterate Vk is pessimistic V Φ∗ −Vk is lower bounded by 0. For an upper bound,
we have

V Φ∗ − Vk = V Φ∗ − TΦV Φ∗ + TΦV Φ∗ − Vk
≤ α+ TΦV Φ∗ − Vk
= α+ TΦV Φ∗ − TVk−1 + εk
= α+ TΦV Φ∗ − TΦVk−1 + TΦVk−1 − TVk−1 + εk
≤ α+ TΦV Φ∗ − TΦVk−1 + εk
≤ P̃Φ (V ∗ − Vk−1) + (εk + α) ,

where the initial inequality inserts the term (−TΦV Φ∗ +TΦV Φ∗) = 0. The first step follows
from the fact that following Φ for a single decision and then following Φ∗ produces an
α-optimal policy, so V Φ∗ − TΦV Φ∗ ≤ α. The second step is due to the definition of εk
from (42). The third step inserts (−TΦVk−1 + TΦVk−1) = 0. The fourth step removes
TΦVk−1 − TVk−1 because the sum of those two terms is less than or equal to zero (since T
updates using the max operator, while TΦ updates using the policy Φ). The fifth and final
step pulls out the discounted transition probability kernel P̃Φ.

By recursing on this inequality Z ≥ 0 times we obtain

V Φ∗ − VZ ≤

 V Φ∗ − V0 Z = 0(∑Z
j=1

(
P̃Φ
)Z−j

(εj + α)

)
+
(
P̃Φ
)Z (

V Φ∗ − V0

)
1 ≤ Z ≤ K . (46)

By combining our upper bound recursion from (43) with (46), we obtain terms

ukξk =



[(
P̃Φ∗

)K−Z (
P̃Φ
)Z] (

V Φ∗ − V0

)
k = 0[(

P̃Φ∗
)K−Z (

P̃Φ
)Z−k]

(εk + α) k = 1, 2, . . . , Z[(
P̃Φ∗

)K−k]
εk k = Z + 1, Z + 2, . . . ,K

such that

V Φ∗ − VK ≤
K∑
k=0

ukξk

422

Approximate Value Iteration with Temporally Extended Actions

upper bounds the difference between V Φ∗ and the final iterate derived by OFVI, VK .
Now, since 0 lower bounds the difference between V Φ∗ and the first Z iterates of OFVI,

we can use 0 as our lower bound for the first Z iterations and fill in the rest of the iterates
with (44). This gives us the terms

lkξk =


0 0 ≤ k ≤ Z[
P̃ϕK−1P̃ϕK−2 . . . P̃ϕk

]
εk Z < k < K − 1

εK K

,

such that

V Φ∗ − VK ≥
K∑
k=0

lkξk

lower bounds the difference between V Φ∗ and the final iterate VK . This implies that |V Φ∗−
VK | ≤

∑K
k=0(uk − lk)ξk.

By Lemma 3, we have

V Φ∗ − V ϕK ≤ (I − P̃ϕK)−1
(
P̃Φ∗ − P̃ϕK

)(∑K
k=0(uk − lk)ξk

)
≤ (I − P̃ϕK)−1

∣∣∣P̃Φ∗ − P̃ϕK
∣∣∣ (∑K

k=0(uk + lk)|ξk|
)

≤ γ̄(I − P̃ϕK)−1
(∑K

k=0(uk + lk)|ξk|
)

= γ̄
(∑∞

i=0(P̃ϕK)i
)(∑K

k=0(uk + lk)|ξk|
)

≤ γ̄
(∑∞

i=0 γ̄
i
) (∑K

k=0(uk + lk)|ξk|
)

≤ γ̄
(∑∞

i=0 γ
i
) (∑K

k=0(uk + lk)|ξk|
)

≤ γ̄
1−γ

∑K
k=0(uk + lk)|ξk| ,

where for the first step we have taken the absolute value of both sides of the inequality, and

for the second step we used the fact that γdmin ≥
∣∣∣P̃Φ∗ − P̃ϕK

∣∣∣. In the remainder of the

proof we will denote γdmin by γ̄.
For k = 0, we have

γ̄

1− γ (u0 + l0)|ξ0|

=
(

2
2

) γ̄
1−γ (u0|ξ0|)

=
(

2γ̄
1−γ

)(
1
2

[(
P̃Φ∗

)K−Z (
P̃Φ
)Z])

|ξ0|

≤
(

2γ̄
1−γ

)[(
P̃Φ∗

)K−Z (
P̃Φ
)Z]
|ξ0|

≤
(

2γ̄
(1−γ)

)∑∞
t=1 γ

KP0,t|ξ0|
=

(
2γ̄(1−γK+1)

(1−γ)2

)∑∞
t=1

(
1−γ

1−γK+1γ
K
)
P0,t|ξ0|

≤ ∆
∞∑
t=1

λ0P0,t|ξ0| .

For k = 1, 2, . . . , Z, we have
γ̄

1− γ (uk + lk)|ξk|

423

Mann, Mannor, & Precup

=
(

2
2

) γ̄
1−γ (uk|ξk|)

=
(

2γ̄
1−γ

)(
1
2

[(
P̃Φ∗

)K−Z (
P̃Φ
)Z−k])

|ξk|

≤
(

2γ̄
1−γ

)[(
P̃Φ∗

)K−Z (
P̃Φ
)Z−k]

|ξk|

≤
(

2γ̄
(1−γ)

) ∞∑
t=1

γK−kPk,t|ξk|

=
(

2γ̄(1−γK+1)
(1−γ)2

) ∞∑
t=1

(
1−γ

1−γK+1γ
K−k

)
Pk,t|ξk|

≤ ∆
∞∑
t=1

λkPk,t|ξk| .

For k = Z + 1, Z + 2, . . . ,K, we have

γ̄

1− γ (uk + lk)|ξk|

=
(

2
2

) γ̄
1−γ (uk + lk) |ξk|

=
(

2γ̄
1−γ

)
1
2

((
P̃Φ∗

)K−k
+
[
P̃ϕK−1P̃ϕK−2 . . . P̃ϕk

])
|ξk|

≤
(

2γ̄
(1−γ)

) ∞∑
t=1

γK−kPk,t|ξk|

=
(

2γ̄(1−γK+1)
(1−γ)2

) ∞∑
t=1

(
1−γ

1−γK+1γ
K−k

)
Pk,t|ξk|

= ∆
∞∑
t=1

λkPk,t|ξk| .

By plugging in the results from these three inequalities, we obtain V Φ∗ − V ϕK ≤
∆
∑∞

t=1

∑K
k=0 λkPk,t|ξk|.

B.3 From Pointwise to Lp-norm Propagation Error

Lemma 6 gives us a pointwise bound on the loss of the policy ϕK derived by OFVI compared
to following the optimal option policy Φ∗, but the most common function approximation ar-
chitectures minimize an Lp-norm (not pointwise loss). In this subsection, we derive Lemma
8 that transforms our pointwise bound to an Lp-norm bound weighted by an arbitrary dis-
tribution ν ∈M(X). The key to this transformation is based on A2(ν, µ) (Assumption 2),
which allows us to bound the pointwise transition probability kernels Pk,t from Lemma 6 by
ĉ(·)µ from Assumption 2 at each iteration k ∈ {1, 2, . . . ,K}. The following lemma provides
the first step in this transformation.

Lemma 7. Suppose that A2(ν, µ) (Assumption 2) holds, then

νPk,t ≤ max
m∈{1,2,...,i+t}

ĉt(m)µ , (47)

where ν, µ ∈M(X).

Proof. We have two cases to consider (case 1) 1 ≤ k ≤ Z and (case 2) Z < k ≤ K.

424

Approximate Value Iteration with Temporally Extended Actions

For case 1, we have

νPk,t = ν
[(
PΦ∗

)K−Z
(Pϕ)Z−k

]
t

≤ ĉt(K − k)µ .

For case 2, we have

νPk,t = ν 1
2

[(
PΦ∗

)K−k
t

+ (PϕK−1PϕK−2 . . . Pϕk)t

]
= 1

2

[
ν
(
PΦ∗

)K−k
t

+ ν (PϕK−1PϕK−2 . . . Pϕk)t

]
≤ 1

2 [ĉt(K − k)µ+ ĉt(K − k)µ]
= ĉt(K − k)µ .

To derive the Lp-norm bound, we need the following additional notation to represent
the set of options that can be initialized from state x ∈ X and have duration longer than
some d ≥ 1.

Definition 14. Let d ≥ 1, x ∈ X be a state, and O be a set of options. The set Ox,d
denotes the subset of options o ∈ O that can be initialized from the state x, such that

infY⊆X E
[
Do
x,Y

]
≥ d.

Notice that by assumption Ox,dmin
≡ Ox.

Lemma 8. Let K ≥ 1, ε > 0, and Z ∈ {0, 1, 2, . . . ,K}. Suppose that Assumption 2 and
Assumption 3 are true and that the first Z iterates of OFVI are pessimistic, then

‖V ∗ − V πK‖p,ν ≤
2γ̄

(1− γ)2
C1/p
ν,µ (ε+α)+

(
γdmin(K+1)+(1−ψ)(d−dmin)bZ/ĵc

)1/p
(

2
∥∥V Φ∗ − V0

∥∥
∞

(1− γ)2

)
(48)

holds, provided that the approximation errors εk satisfy ‖εk‖p,µ ≤ ε for all k = 1, 2, . . . ,K.

Proof. First note that

Φ(x) =

{
arg maxo∈Ox,d Q

∗(x, o) if x ∈ ωα,d
Φ∗(x) otherwise

.

is a policy such that QΦ∗(x,Φ(x)) ≥ V Φ∗(x)−α for all x ∈ X. Therefore, by Lemma 6, we
have

V Φ∗ − V ϕK ≤ ∆

∞∑
t=1

K∑
k=0

λkPk,t|ξk| .

Now, we have∥∥V Φ∗ − V ϕK
∥∥p
p,ν

=
∫
ν(x)

∣∣V Φ∗(x)− V πK (x)
∣∣p dx

≤
∫
ν(x)

(
∆
∞∑
t=1

K∑
k=0

λkPk,t|ξk|(x)

)p
dx

≤ ∆p
∫
ν(x)

([∞∑
t=1

K∑
k=1

λkPk,t|εk + α|+ λ0P0,t|V Φ∗ − V0|
]

(x)

)p
dx ,

425

Mann, Mannor, & Precup

where the initial equality is due to the definition of ‖·‖p,ν . The first step replaces V Φ∗−V ϕK

with ∆
∑∞

t=1

∑K
k=0 λkPk,t|ξk|. The last step pulls k = 0 out of the sum and moves ∆ outside

of the integral.

Recall by Lemma 5 that
K∑
k=0

λk = 1. We apply Jensen’s inequality twice; once with

convex function | · |p and parameters λk for k = 0, 1, . . . ,K, and once with parameters
determined by the stochastic operators

∑∞
t=1 Pk,t, to obtain

∥∥∥V Φ∗ − V ϕK
∥∥∥p
p,ν
≤ ∆p

∫
ν

[∞∑
t=1

K∑
k=1

λkPk,t|εk + α|p + λ0P0,t|V Φ∗ − V0|p
]

(x)dx .

Noticing that |V Φ∗ − V0| is bounded by ‖V Φ∗ − V0‖∞, we obtain

∥∥V Φ∗ − V ϕK
∥∥p
p,ν
≤ ∆p

[∑∞
t=1

∑K
k=1 λkPk,t|εk + α|p+∫

ν(x)λ0P0,t‖V Φ∗ − V0‖p∞dx
]
.

By Assumption 2 and Lemma 7, we have that

νPk,t ≤ max
m∈{1,2,...,K−k+t′−1}

ĉK−k+t′−1(m)µ ,

where t′ = t− (K − k) + 1. Thus we have

K∑
k=1

∞∑
t=1

λkνPk,t|εk + α|p ≤
K∑
k=1

∞∑
t′=1

1−γ
1−γK+1γ

K−k·
max

m∈{1,2,...,K−k+t′−1}
ĉK−k+t′−1(m)‖εk + α‖pp,µ

≤
K∑
k=1

∞∑
t′=1

1−γ
γt
′−1(1−γK+1)

γK−kγt
′−1·

max
m∈{1,2,...,K−k+t′−1}

ĉK−k+t′−1(m)‖εk + α‖pp,µ

≤ (1−γ)2

1−γK+1

K∑
k=1

∞∑
t′=0

γk+t′ ·
max

m∈{1,2,...,k+t′}
ĉk+t′(m)‖εk + α‖pp,µ

≤ 1
1−γK+1 (1− γ)2

∞∑
t=1

tγt−1 maxm∈{1,2,...,t} ĉt(m)‖εk + α‖pp,µ
≤ 1

1−γK+1Cν,µ (ε+ α)p ,

where Cν,µ is the SMDP discounted average concentrability coefficient from Assumption 2.

By replacing
∑∞

t=1

∑K
k=1 λkPk,t|εk + α|p, we get

∥∥V Φ∗ − V ϕK
∥∥p
p,ν
≤

(
2γ̄(1−γK+1)

(1−γ)2

)p [
1

1−γK+1Cν,µ (ε+ α)p +∑∞
t=1

∫
ν(x)λ0P0,t‖V Φ∗ − V0‖p∞dx

]
.

(49)

426

Approximate Value Iteration with Temporally Extended Actions

Consider the second term in the last step of (49). By replacing P0,t with its definition,
we get

∫
ν(x)

∞∑
t=1

λ0P0,tdx =
∫
ν(x)

∞∑
t=1

(1−γ)
1−γK+1γ

K

[(
(PΦ∗)K−Z

(
PΦ
)Z)

K+t−1

]
dx

=
∫
ν(x)

∞∑
t=1

(1−γ)
γt−1(1−γK+1)

γKγt−1

[(
(PΦ∗)K−Z

(
PΦ
)Z)

K+t−1

]
dx

≤ (1−γ)2

1−γK+1

∫
ν(x)

[
(P̃Φ∗)K−Z

(
P̃Φ
)Z]

dx

≤ (1−γ)2

1−γK+1γ
dminK+(1−ψ)(d−dmin)bZ/ĵc ,

(50)
where the initial equality is due to expanding P0,t by its definition. The first step simplifies

and drops the dependence on (1− γ̄)(I − P̃ϕK)−1 ≤ 1. The final step replaces
(
P̃ϕK

)K−Z
with γdmin(K−Z) and

(
P̃Φ
)Z

with γ(1−ψ)dbZ/ĵc+ψdminZ . Under any case,
(
P̃Φ
)Z
≤ γdminK .

Under Assumption 3 with probability (1−ψ) either (a) the state transitioned to is in ωα,d,
in which case the effective discount factor is γd, or (b) following the bridge policy Φ from
the current state reaches a state in ωα,d in no more than ĵ timesteps. On the timesteps that
the agent is not in ωα,d the effective discount factor is γdmin , but with probability (1−ψ) this

can only happen Z − bZ/ĵc times during. Thus
(
P̃Φ
)Z
≤ γ(1+ψ)dminZ+(1−ψ)(d−dmin)bZ/ĵc ≤

γdminK+(1−ψ)(d−dmin)bZ/ĵc.
By replacing the second term from (49) with (50), we get

∥∥V Φ∗ − V ϕK
∥∥p
p,ν
≤

(
2γ̄(1−γK+1)

(1−γ)2

)p [
1

1−γK+1Cν,µ (ε+ α)p +

(1−γ)2

1−γK+1γ
dminK+(1−ψ)(d−dmin)bZ/ĵc‖V Φ∗ − V0‖p∞

]
.

Since
(
1− γK+1

)p (1
1−γK+1

)
≤ 1, then

∥∥V Φ∗ − V ϕK
∥∥p
p,ν
≤

(
2γ̄

(1−γ)2

)p [
Cν,µ (ε+ α)p + (1− γ)2γdminK+(1−ψ)(d−dmin)bZ/ĵc‖V Φ∗ − V0‖p∞

]
.

Thus, we have

∥∥V Φ∗ − V ϕK
∥∥
p,ν
≤ 2γ̄

(1−γ)2C
1/p
ν,µ (ε+ α) +

(
γdmin(K+1)+(1−ψ)(d−dmin)bZ/ĵc

)1/p (
2‖V Φ∗−V0‖∞

(1−γ)2

)
.

B.4 Proof of Theorem 1

Proof. (of Theorem 1) We use Lemma 2 to select appropriate values for n and m, when

ε′ = ε(1− γ)2/(2γ̄C1/p
ν,µ) and δ′ ← δ

K .

Since the iterates V1, V2, . . . , VK are random objects, we cannot directly apply Lemma
2 to bound the error at each iteration. However, this problem was resolved in the proof of

427

Mann, Mannor, & Precup

Thm. 2 from the work of Munos & Szepesvári, 2008 by using the fact that the algorithm
collects independent samples at each iteration.

The iterate Vk+1 depends on the random variable Vk and the random samples Sk con-
taining the n×m× |O| next states, rewards, and trajectory lengths. Let the function

f(Sk, Vk) = I
{
‖Vk+1(Vk, Sk)− TVk‖p,µ ≤ dp,µ(TVk,F) + ε′

}
− (1− δ′) ,

where we have written Vk+1(Vk, Sk) to emphasize Vk+1’s dependence on both random vari-
ables Vk and Sk. Notice that Vk and Sk are independent because Sk was not used to
generate Vk and the simulator S generates independent samples. Because Vk and Sk are in-
dependent random variables, we can apply Lemma 5 from the work of Munos & Szepesvári,
2008. This lemma tells us that E [f(Sk, Vk) | Vk] ≥ 0 provided that E [f(Sk, v)] ≥ 0 for
all v ∈ F . For any v ∈ F , by Lemma 2, and by our choice of n and m, we have that

P
(
‖Vk+1(v, Sk)− Tv‖p,µ ≤ dp,µ(Tv,F) + ε′

)
≥ 1 − δ′. This implies that E [f(Sk, v)] ≥ 0.

By Lemma 5 from the work of Munos & Szepesvári, 2008, we have that E [f(Sk, Vk) | Vk] ≥ 0.

Thus we have P
(
‖Vk+1(Vk, Sk)− TVk‖p,µ ≤ dp,µ(Tv,F) + ε′

)
≥ 1 − δ′. By the union

bound, this ensures that ‖ε‖p,µ ≤ ε for all K iterations with probability at least 1−Kδ′ =
1−K(δ/K) = 1− δ.

The result follows by applying Lemma 8 with ‖εk‖p,µ ≤ dp,µ(TVk,F) + ε′.

‖V ∗ − V ϕK‖p,ν ≤
∥∥V ∗ − V Φ∗

∥∥
p,ν

+
∥∥V Φ∗ − V ϕK

∥∥
p,ν

≤ Lp,ν(Φ∗) + 2γ̄
(1−γ)2C

1/p
ν,µ (bp,µ(TF ,F) + α+ ε′)

+
(
γdmin(K+1)+(1−ψ)(d−dmin)bZ/ĵc

)1/p (
2‖V Φ∗−V0‖∞

(1−γ)2

)
= Lp,ν(Φ∗) + 2γ̄

(1−γ)2C
1/p
ν,µ

(
bp,µ(TF ,F) + α+ ε(1− γ)2/(2γ̄C1/p

ν,µ)
)

+
(
γdmin(K+1)+(1−ψ)(d−dmin)bZ/ĵc

)1/p (
2‖V Φ∗−V0‖∞

(1−γ)2

)
= Lp,ν(Φ∗) + 2γ̄

(1−γ)2C
1/p
ν,µ (bp,µ(TF ,F) + α) + ε

+
(
γdmin(K+1)+(1−ψ)(d−dmin)bZ/ĵc

)1/p (
2‖V Φ∗−V0‖∞

(1−γ)2

)
.

Appendix C. Proof of Theorems 2, and 3

In this appendix, we prove Theorems 2, and 3. First we will analyze LAVI by proving
Theorem 2. Then we use one of the lemmas developed for analyzing LAVI to analyze OFVI
with landmark-based options and prove Theorem 3. Throughout this appendix we assume
that rewards are bound to [−RMAX, 0], so that stochastic shortest path problems are well
defined.

Each iteration Algorithm 2 performs the operator T̂m defined by

(
T̂mV

)
(x) = max

o∈Ox

1

m

m∑
j=0

(
R̃(j)
x,o + γτ

(j)
∆(V, y(j))

)
(51)

428

Approximate Value Iteration with Temporally Extended Actions

Table 2: Errors Impacting Landmark-based VI
Error Name Symbol Due to . . .

Landmark Error εL selected landmarks

Loc. Planning Error εP P’s sub-optimality in M̂

Loc. Lipschitz Error εH terminate in y where
σ(y, l) > 0

Stoc. Plan Failure ψ prob. terminating far from
L

Relaxation Error εR increased cost in M

Sampling Error εS finite # samples

at each state x ∈ X where

∆(V, y) =

{
maxl∈Lη(y) V (l) if Lη(y) 6= ∅
0 otherwise

. (52)

If we consider the limit of T̂m as m→∞, then we obtain T defined by

(TV) (x) = max
o∈Ox

R̃x,o +
∞∑
t=1

∫
y∈X

γtP ot (y|x)∆(V, y)dy

 (53)

for each state x ∈ X.
However, we would like to compare T to the Bellman optimality operator T defined by

(TV) (x) = max
o∈Ox

R̃x,o +
∞∑
t=1

∫
y∈X

γtP ot (y|x)V (y)dy

 , (54)

for which it is well known to converge to the optimal value function with respect to option
set O.

Throughout this analysis we will work with vectors with dimension |X| but we mostly
focus on |L| elements. For vectors V and V ′ in [−VMAX, 0]|X|, we define the max-norm with
respect to the subset of states in L ⊂ X by∥∥V − V ′∥∥L = max

l∈L

∣∣V (l)− V ′(l)
∣∣ , (55)

which measures the difference between V and V ′ only at the states in L.
Table 2 provides an overview of the errors that contribute to the sub-optimality of

policies derived from LAVI.

C.1 Proof of Theorem 2

We proceed by bounding the value estimation error, which we use to bound the loss of the
derived policy. Next we bound the error due to using a deterministic local planner. Finally,
we use these results to prove Theorem 2.

429

Mann, Mannor, & Precup

C.1.1 Bounding the Value Estimation Error

Lemma 9. (Bound Value Estimation Error with T̂m) Let ε1 > 0, δ ∈ (0, 1], K ≥ 1,
V ∈ [−VMAX, 0]|S|, L be the set of landmark states, O the set of landmark options, and Φ∗

be the optimal policy on M with respect to O. If

m >
1

2(ε1(1− γ))2
ln

(
2LK

δ

)
, (56)

all landmark-option pairs have a duration of at least dmin, and Assumption 5 holds, then
with probability at least 1− δ/K∥∥∥T̂mV − V Φ∗

M

∥∥∥
L
≤ γdmin

(
ψVMAX + (1− ψ)κη + (1− ψ)

∥∥∥V − V Φ∗
M

∥∥∥
L

)
+ ε1

where ψ is the stochastic plan failure, η is a distance threshold, and κ is the Lipschitz
coefficient from Assumption 5. By recursing on this inequality K times, we obtain∥∥∥VK − V Φ∗

M

∥∥∥
L
≤ γdmin (ψVMAX + (1− ψ)κη) + ε1

1− γdmin
+
(

(1− ψ)γdmin

)K ∥∥∥V Φ∗ − V0

∥∥∥
L

(57)

with probability at least 1− δ.

Proof. Notice that for all l ∈ L∣∣∣(T̂mV)(l)− V Φ∗
M (l)

∣∣∣ =
∣∣∣(T̂mV)(l)− (TV Φ∗

M)(l)
∣∣∣

=
∣∣∣(T̂mV)(l)− (TV Φ∗

M)(l) + (TV Φ∗
M)(l)− (TV Φ∗

M)(l)
∣∣∣

≤
∣∣∣(T̂mV)(l)− (TV Φ∗

M)(l)
∣∣∣+
∣∣(TV Φ∗

M)(l)− (TV Φ∗
M)(l)

∣∣ (58)

where the initial equality is due to the fact that V Φ∗
M (l) = (TV Φ∗

M)(l), the first step inserts(
−(TV Φ∗

M)(l) + (TV Φ∗
M)(l)

)
= 0, and the last step uses the triangle inequality.

Now let X denote the event that
∣∣∣(T̂mV) (l)− (TV) (l)

∣∣∣ ≤ ε1. If event X occurs, then

the first term in the last step of inequality (58) is

∣∣∣(T̂mV)(l)− (TV Φ∗
M)(l)

∣∣∣ =

∣∣∣∣max
o∈Ol

(
R̃l,o +

∞∑
t=1

∫
y∈X

γtP ot (y|x)∆(V, y)dy

)
−

max
o∈Ol

(
R̃l,o +

∞∑
t=1

∫
y∈X

γtP ot (y|x)∆(V Φ∗
M , y)dy

)∣∣∣∣+ ε1

≤ max
o∈Ol

∞∑
t=1

∫
y∈X

γtP ot (y|x)
∣∣∆(V, y)−∆(V Φ∗

M , y)
∣∣ dy + ε1

≤ γdmin max
o∈Ol

∞∑
t=dmin

∫
y∈X

P ot (y|x)
∣∣∆(V, y)−∆(V Φ∗

M , y)
∣∣ dy + ε1 ,

where the last step in the previous inequality is due to the fact that all landmark-option
pairs execute for at least dmin timesteps (meaning that they have effective discount factor
less than or equal to γdmin). By our choice of m and using Hoeffding’s inequality it can
easily be shown that event X occurs for a landmark-option pair with probability at least

430

Approximate Value Iteration with Temporally Extended Actions

1 − δ/LK. Since there are L =
∑
l∈L
|Ol| total landmark-option pairs, then using the union

bound we have that event X holds for all of these landmark-options pairs with probability
at least 1−∑L

i=1 δ/LK = 1− L (δ/LK) = 1− δ/K.
Now, if Lη(y) = ∅, then |∆(V, y) − ∆(V Φ∗

M , y)| = |0 − 0| = 0. On the other hand, if
Lη(y) 6= ∅, then we have∣∣∆(V, y)−∆(V Φ∗

M , y)
∣∣ =

∣∣∣∣ max
l′∈Lη(y)

V (l′)− max
l′∈Lη(y)

V Φ∗
M (l′)

∣∣∣∣
≤ max

l′∈Lη(y)

∣∣V (l′)− V Φ∗
M (l′)

∣∣
≤

∥∥V − V Φ∗
M

∥∥
L ,

which implies that
∣∣∣(T̂mV)(l)− (TV Φ∗

M)(l)
∣∣∣ ≤ γdmin(1 − ψ)

∥∥V − V Φ∗
M

∥∥
L + ε1 holds for all

landmarks with probability at least 1− δ/K.
The second term in the last step of inequality (58) is∣∣(TV Φ∗

M)(l)− (TV Φ∗
M)(l)

∣∣ =

∣∣∣∣max
o∈Ol

(
R̃l,o +

∞∑
t=1

∫
y∈X

γtP ot (y|x)∆(V Φ∗
M , y)dy

)
−

max
o∈Ol

(
R̃l,o +

∞∑
t=1

∫
y∈X

γtP ot (y|x)V Φ∗
M (y)dy

)∣∣∣∣
≤ max

o∈Ol

∞∑
t=1

∫
y∈X

γtP ot (y|x)
∣∣∆(V Φ∗

M , y)− V Φ∗
M (y)

∣∣ dy
≤ γdmin max

o∈Ol

∞∑
t=dmin

∫
y∈X

P ot (y|x)
∣∣∆(V Φ∗

M , y)− V Φ∗
M (y)

∣∣ dy
where the last step in the previous inequality is due to the fact that all landmark-option
pairs execute for at least dmin timesteps.

With probability at most ψ, we have |∆(V Φ∗
M , y)− V Φ∗

M (y)| ≤ |0− V Φ∗
M (y)| ≤ VMAX and

with probability 1−ψ we have |∆(V Φ∗
M , y)−V Φ∗

M (y)| ≤ |maxl′∈Lη(y) V
Φ∗(l′)−V Φ∗(y)| ≤ κη.

Thus,
∣∣(TV Φ∗)(l)− (TV Φ∗)(l)

∣∣ ≤ γdmin (ψVMAX + (1− ψ)κη).
By replacing the two terms in the last step of inequality (58) we obtain our result∥∥TV − V Φ∗

M

∥∥
L ≤ γdmin

(
ψVMAX + (1− ψ)

(
κη +

∥∥V − V Φ∗
∥∥
L
))

+ε1 with probability at least
1− δ/K.

C.1.2 Bounding the Policy Error

Lemma 10. (Bound Policy Error) Let ε2 > 0, O be a set of landmark options and dmin ≥ 1
be the minimum duration of all state-options pairs, V ∈ [−VMAX, 0]|L|, ξ ≥ 0, and Φ∗ be
the optimal policy with respect to O. Suppose that

∥∥V − V Φ∗
M

∥∥
L ≤ ξ and

ϕ(x) = arg max
o∈Ox

R̃x,o +

∞∑
t=1

∫
y∈X

γP ot (y|x) max
l∈L

∆(V, y)dy


is the greedy policy with respect to V . If Assumption 5 holds, then∥∥∥V Φ∗

M − V ϕ
M

∥∥∥
∞
≤ γdmin ((1− ψ) (ξ + κη) + ψVMAX)

1− γdmin
(59)

431

Mann, Mannor, & Precup

holds.

Proof. Let x ∈ X, o = ϕ(x), and o∗ = Φ∗(x). Since ϕ(x) = o, then

R̃x,o∗ +
∞∑
t=1

∫
y∈X

γtP o
∗

t (y|x)∆(V, y)dy ≤ R̃x,o +
∞∑
t=1

∫
y∈X

γtP ot (y|x)∆(V, y)dy . (60)

Let G = {y ∈ X | Lη(y) 6= ∅} and Ḡ = X\G. The set G contains all states that are closer
than η to at least one landmark state. By rearranging we obtain

R̃x,o∗ − R̃x,o ≤
∞∑
t=1

∫
y∈X

γt
[
P ot (y|x)− P o∗t (y|x)

]
∆(V, y)dy

R̃x,o∗ − R̃x,o ≤
∞∑
t=1

∫
y∈G

γt
[
P ot (y|x)− P o∗t (y|x)

]
∆(V, y)dy

+
∫

y∈Ḡ
γt
[
P ot (y|x)− P o∗t (y|x)

]
∆(V, y)dy

R̃x,o∗ − R̃x,o ≤
∞∑
t=1

∫
y∈G

γt
[
P ot (y|x)− P o∗t (y|x)

]
max

l′∈Lη(y)
V (l′)dy

R̃x,o∗ − R̃x,o ≤
∞∑
t=1

(∫
y∈G

γt
[
P ot (y|x)− P o∗t (y|x)

](
max

l′∈Lη(y)
V Φ∗
M (l′) + ξ

)
dy

)

R̃x,o∗ − R̃x,o ≤
∞∑
t=1

(∫
y∈G

γt
[
P ot (y|x)− P o∗t (y|x)

] (
V Φ∗
M (y) + κη + ξ

)
dy

)
,

where the initial inequality rearranges (60) to isolate the reward terms. The first step is
obtained by dividing the sum over states into states where Lη(y) 6= ∅ and states where
Lη(y) = ∅. The third step replaces ∆(V, y) by its definition. Since ∆(V, y) = 0 for all
y where Lη(y) = ∅, the second term on the right hand side disappears. The fourth step
replaces V (l′) ≤ V Φ∗

M (l′) + ξ, and the final step uses Assumption 5 to replace V Φ∗
M (l′) with

V Φ∗
M (y) + κη.

432

Approximate Value Iteration with Temporally Extended Actions

Now we have

V Φ∗
M (x)− V ϕ

M (x) = R̃x,o∗ − R̃x,o +
∞∑
t=1

∫
y∈X

γt
[
P o
∗

t (y|x)V Φ∗
M (y)− P ot (y|x)V ϕ

M (y)
]
dy

= R̃x,o∗ − R̃x,o
+

∞∑
t=1

∫
y∈Ḡ

γt
[
P o
∗

t (y|x)V Φ∗
M (y)− P ot (y|x)V ϕ

M (y)
]
dy

+
∞∑
t=1

∫
y∈G

γt
[
P o
∗

t (y|x)V Φ∗
M (y)− P ot (y|x)V ϕ

M (y)
]
dy

≤ R̃x,o∗ − R̃x,o
+

∞∑
t=1

∫
y∈G

γt
[
P o
∗

t (y|x)V Φ∗
M (y)− P ot (y|x)V ϕ

M (y)
]
dy

+ γdminψVMAX

≤
(
∞∑
t=1

∫
y∈G

γt
[
P ot (y|x)− P o∗t (y|x)

] (
V Φ∗
M (y) + ξ + ηκ

)
dy

)

+

(
∞∑
t=1

∫
y∈G

γt
[
P o
∗

t (y|x)V Φ∗
M (y)− P ot (y|x)V ϕ

M (y)
]
dy

)
+ γdminψVMAX

=

(∞∑
t=1

∫
y∈G

γt
[
P o
∗

t (y|x)V Φ∗
M (y)− P o∗t (y|x)

(
V Φ∗
M (y) + ξ + ηκ

)
+ P ot (y|x)

(
V Φ∗
M (y) + ξ + ηκ

)
− P ot (y|x)V ϕ

M (y)
]
dy

)
+ γdminψVMAX

≤ γdmin

(
∞∑
t=1

∫
y∈G

[
P ot (y|x)

(
V Φ∗
M (y)− V ϕ

M (y) + ξ + ηκ
)]
dy

)
+ γdminψVMAX

≤ γdmin(1− ψ)
(∥∥V Φ∗

M − V ϕ
M

∥∥
∞ + ξ + ηκ

)
+ γdminψVMAX .

By recursing on this inequality, we obtain∥∥∥V Φ∗
M − V ϕ

M

∥∥∥
∞
≤ γdmin ((1− ψ)(ξ + ηκ) + ψVMAX)

1− γd .

C.1.3 Bounding Error in the Deterministic Relaxation

Lemma 11. Let Φ̂∗ be the optimal policy over options in M̂ , then∥∥∥V ∗
M̂
− V Φ̂∗

M̂

∥∥∥
∞
≤ 2(εL + εP)

1− γd−

holds.

Proof. For any l ∈ L, we have

V ∗
M̂

(l)− V Φ̂∗

M̂
(l) ≤ V ∗

M̂
(l)−max

l′∈Ll

(
R̃P(l,l′) + γP(l,l′)V Φ̂∗

M̂
(l′)
)
.

433

Mann, Mannor, & Precup

By the definition of landmark error, we have

V ∗
M̂

(l)−V Φ̂∗

M̂
(l) ≤ max

l′∈Ls

(
R̃p∗G(l,l′) + γ|p∗G(l,l′)|V ∗

M̂
(l′)
)
−max
l′∈Ll

(
R̃P(l,l′) + γ|P(l,l′)|V Φ̂∗

M̂
(l′)
)

+εL ,

and by the definition of planning error, we have

V ∗
M̂

(l)−V Φ̂∗

M̂
(l) ≤ max

l′∈Ll

(
R̃P(l,l′) + γ|P(l,l′)|V Φ̂∗

M̂
(l′)
)
−max
l′∈Ll

(
R̃P(l,l′) + γ|P(l,l′)|V ∗

M̂
(l′)
)

+εL+εP .

Now if we take the max over the set of valid landmark destinations from l, we get

V ∗
M̂

(l)− V Φ̂∗

M̂
(l) ≤ max

l′∈Ll

(
R̃P(l,l′) + γ|P(l,l′)|V Φ̂∗

M̂
(l′)− R̃P(l,l′) − γ|P(l,l′)|V ∗

M̂
(l′)
)

+ εL + εP

≤ max
l′∈Ll

γ|P(l,l′)|
(
V ∗
M̂

(l′)− V Φ̂∗

M̂
(l′)
)

+ εL + εP .

Since all landmarks are separated by paths of length at least d− while planning with P, we

obtain
∥∥∥V ∗

M̂
− V Φ̂∗

M̂

∥∥∥
L
≤ εL+εP

1−γd− .

Therefore by similar reasoning as above, we can see that for any state x ∈ X

V ∗
M̂

(x)− V Φ̂∗

M̂
(x) ≤ εL + εP +

γ (εL + εP)

1− γd− ≤ 2 (εL + εP)

1− γd− .

C.1.4 Proof of Theorem 2

Proof. (of Theorem 2)

We apply Lemma 9 with ε1 = εS(1−γdmin)2

(1−ψ)γdmin
and δ ∈ (0, 1] and Lemma 10 to obtain

∥∥∥V Φ∗
M − V ϕK

M

∥∥∥
1,ν
≤ γdmin

1− γdmin

(
ψVMAX + (1− ψ)

(
κη+((

γdmin

1− γdmin

)
[ψVMAX + (1− ψ)κη] +

ε1
1− γdmin

+ (1− ψ)γdminK
∥∥∥V Φ∗

M − V0

∥∥∥
L

)))
.

(61)

By replacing κη with εH and ε1, we get∥∥∥V Φ∗
M − V ϕK

M

∥∥∥
1,ν
≤ γdmin

1− γdmin

(
1 +

(1− ψ)γdmin

1− γdmin

)
(ψVMAX + (1− ψ)εH) +

εS + (1− ψ)2γ(K+1)dmin

(∥∥V Φ∗
M − V0

∥∥
L

1− γdmin

)
(62)

after rearranging terms.
Due to the definition of relaxation error (Definition 12),∥∥V ∗M − V Φ∗

M

∥∥
1,ν
≤

∥∥∥V ∗
M̂
− V Φ̂∗

M̂

∥∥∥
1,ν

+ εR

≤ 2(εL+εP)

1−γd̂min
+ εR

(63)

434

Approximate Value Iteration with Temporally Extended Actions

where the last step is due to Lemma 11.
By combining (62) and (63), we obtain

‖V ∗ − V ϕK‖1,ν ≤ 2(εL+εP)

1−γd̂min
+ εR + ε̃+ εS + (1− ψ)2γ(K+1)dmin

(∥∥∥V Φ∗
M −V0

∥∥∥
L

1−γdmin

)

≤ 2(εL+εP)

1−γd̂min
+ εR + ε̃+ εS + γ(K+1)dmin

(∥∥∥V Φ∗
M −V0

∥∥∥
L

1−γdmin

)

where ε̃ =
(

γdmin

1−γdmin

)(
1 + (1−ψ)γdmin

1−γdmin

)
(ψVMAX + (1− ψ)εH).

C.2 Proof of Theorem 3

Proof. (of Theorem 3)
By Corollary 1, we have that

Lp,ν(ϕK) ≤ Lp,ν(Φ∗) +
2γdmin

(1− γ)2
C1/p
ν,µ bp,µ(TF ,F) + εS +

(
γdmin(K+1)

)1/p
(

2 ‖V ∗ − V0‖∞
(1− γ)2

)
.

(64)
By (63), we have that

Lp,ν(Φ∗) ≤ 2(εL + εP)

1− γd̂min

+ εR .

The result follows by replacing Lp,ν(Φ∗) in (64) with the right hand side from the previous
inequality.

References

Barry, J. L., Kaelbling, L. P., & Lozano-Prez, T. (2011). DetH*: Approximate Hierarchical
Solution of Large Markov Decision Processes. In International Joint Conference on
Artificial Intelligence.

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Athena Scientific.

Brunskill, E., Leffler, B. R., Li, L., Littman, M. L., & Roy, N. (2008). CORL: A Continuous-
State Offset-Dynamics Reinforcement Learner. In Proceedings of the 24 th Conference
on Uncertainty in Artificial Intelligence (UAI-08).

Chassin, D. P., Fuller, J. C., & Djilali, N. (2014). GridLAB-D: An agent-based simulation
framework for smart grids. Journal of Applied Mathematics, 2014.

Comanici, G., & Precup, D. (2010). Optimal policy switching algorithms for reinforcement
learning. In Proceedings of the 9 th International Conference on Autonomous Agents
and Multiagent Systems, pp. 709–714.

Dietterich, T. G., Taleghan, M. A., & Crowley, M. (2013). PAC optimal planning for invasive
species management: Improved exploration for reinforcement learning from simulator-
defined MDPs. In Proceedings of the National Conference on Artificial Intelligence.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische Math-
ematik, 1 (1), 269–271.

435

Mann, Mannor, & Precup

Farahmand, A., Ghavamzadeh, M., Szepesvári, C., & Mannor, S. (2008). Regularized fitted
Q-iteration: Application to planning. In Recent Advances in Reinforcement Learning,
pp. 55–68. Springer.

Farahmand, A., Munos, R., & Szepesvári, C. (2010). Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems.

Fernández, F., & Veloso, M. (2006). Probabilistic policy reuse in a reinforcement learning
agent. In Proceedings of the 5th International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 720–727.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on,
4 (2), 100–107.

He, R., Brunskill, E., & Roy, N. (2011). Efficient planning under uncertainty with macro-
actions. Journal of Artificial Intelligence Research, 40, 523–570.

Hoey, J., St-Aubin, R., Hu, A. J., & Boutilier, C. (1999). SPUDD: Stochastic Planning
Using Decision Diagrams. In Proceedings of Uncertainty in Artificial Intelligence,
Stockholm, Sweden.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning, 3, 285–317.

Jong, N. K., & Stone, P. (2008). Hierarchical model-based reinforcement learning: Rmax +
MAXQ. In Proceedings of the 25th International Conference on Machine Learning.

Kearns, M., Mansour, Y., & Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learning, 49 (2-3), 193–208.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo Planning. In Machine
Learning: ECML–2006, pp. 282–293. Springer.

Konidaris, G., & Barto, A. (2009). Skill discovery in continuous reinforcement learning
domains using skill chaining. In Advances in Neural Information Processing Systems
22, pp. 1015–1023.

Konidaris, G., & Barto, A. G. (2007). Building portable options: Skill transfer in reinforce-
ment learning.. In Proceedings of the International Joint Conference on Artificial
Intelligence, Vol. 7, pp. 895–900.

Konidaris, G., Kuindersma, S., Barto, A., & Grupen, R. (2010). Constructing skill trees for
reinforcement learning agents from demonstration trajectories. In Advances in Neural
Information Processing Systems, pp. 1162–1170.

Lazanas, A., & Latombe, J.-C. (1992). Landmark-based robot navigation. Tech. rep.,
Stanford University.

Lazaric, A., Ghavamzadeh, M., & Munos, R. (2010). Analysis of a classification-based policy
iteration algorithm. In Proceedings of the 27th International Conference on Machine
Learning.

Littman, M. L., Dean, T. L., & Kaelbling, L. P. (1995). On the complexity of solving
Markov decision problems. In Proceedings of the 11th conference on Uncertainty in
artificial intelligence, pp. 394–402.

436

Approximate Value Iteration with Temporally Extended Actions

Mankowitz, D. J., Mann, T. A., & Mannor, S. (2014). Time-regularized interrupting options.
In Proceedings of the 31st International Conference on Machine Learning.

Mann, T. A. (2014). Cyclic Inventory Management (CIM).
https://code.google.com/p/rddlsim/source/browse/trunk/files/
rddl2/examples/cim.rddl2. Accessed: 2015-06-29.

Mann, T. A., & Mannor, S. (2014). Scaling up approximate value iteration with options:
Better policies with fewer iterations. In Proceedings of the 31 st International Confer-
ence on Machine Learning.

Mannor, S., Menache, I., Hoze, A., & Klein, U. (2004). Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the 21st International Conference on Machine
learning, ICML ’04, pp. 71–, New York, NY, USA. ACM.

McGovern, A., & Barto, A. G. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proceedings of the 18th International Conference on
Machine Learning, pp. 361 – 368, San Fransisco, USA.

Minner, S. (2003). Multiple-supplier inventory models in supply chain management: A
review. International Journal of Production Economics, 81–82, 265–279. Proceedings
of the 11th International Symposium on Inventories.

Munos, R. (2005). Error bounds for approximate value iteration. In Proceedings of the
National Conference on Artificial Intelligence.

Munos, R., & Szepesvári, C. (2008). Finite-time bounds for fitted value iteration. Journal
of Machine Learning Research, 9, 815–857.

Peleg, D., & Schäffer, A. A. (1989). Graph spanners. Journal of Graph Theory, 13 (1),
99–116.

Peters, J., & Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients.
Neural Networks, 21, 682–691.

Precup, D., & Sutton, R. S. (1997). Multi-time models for temporally abstract planning.
In Advances in Neural Information Processing Systems 10.

Precup, D., Sutton, R. S., & Singh, S. (1998). Theoretical results on reinforcement learning
with temporally abstract options. In Machine Learning: ECML–1998, pp. 382–393.
Springer.

Puterman, M. L. (1994). Markov Decision Processes - Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc.

Riedmiller, M. (2005). Neural fitted Q iteration–first experiences with a data efficient
neural reinforcement learning method. In Machine Learning: ECML–2005, pp. 317–
328. Springer.

Sanders, P., & Schultes, D. (2005). Highway hierarchies hasten exact shortest path queries.
In Brodal, G., & Leonardi, S. (Eds.), Algorithms: ESA–2005, Vol. 3669 of Lecture
Notes in Computer Science, pp. 568–579. Springer Berlin Heidelberg.

Scarf, H. (1959). The optimality of (s,S) policies in the dynamic inventory problem. Tech.
rep. NR-047-019, Office of Naval Research.

437

Mann, Mannor, & Precup

Scherrer, B., Ghavamzadeh, M., Gabillon, V., & Geist, M. (2012). Approximate Modified
Policy Iteration. In Proceedings of the 29th International Conference on Machine
Learning, Edinburgh, United Kingdom.

Sethi, S. P., & Cheng, F. (1997). Optimality of (s,S) policies in inventory models with
markovian demand. Operations Research, 45 (6), 931–939.

Shantia, A., Begue, E., & Wiering, M. (2011). Connectionist reinforcement learning for
intelligent unit micro management in starcraft. In Proceedings of the International
Joint Conference on Neural Networks, pp. 1794–1801. IEEE.

Silver, D., & Ciosek, K. (2012). Compositional planning using optimal option models. In
Proceedings of the 29th International Conference on Machine Learning, Edinburgh.

Simsek, O., & Barto, A. G. (2004). Using relative novelty to identify useful temporal abstrac-
tions in reinforcement learning. In Proceedings of the 21st International Conference
on Machine Learning, pp. 95–102, New York, NY, USA. ACM.

Sorg, J., & Singh, S. (2010). Linear options. In Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems, pp. 31–38.

Stolle, M., & Precup, D. (2002). Learning options in reinforcement learning. In Abstraction,
Reformulation, and Approximation, pp. 212–223. Springer.

Stone, P., Sutton, R. S., & Kuhlmann, G. (2005). Reinforcement learning for robocup soccer
keepaway. Adaptive Behavior, 13 (3), 165–188.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112 (1), 181–
211.

Tamar, A., Castro, D. D., & Mannor, S. (2013). TD methods for the variance of the reward-
to-go. In Proceedings of the 30 th International Conference on Machine Learning.

Wolfe, A. P., & Barto, A. G. (2005). Identifying useful subgoals in reinforcement learning
by local graph partitioning. In Proceedings of the 22nd International Conference on
Machine Learning, pp. 816–823.

Yoon, S. W., Fern, A., & Givan, R. (2007). FF-Replan: A Baseline for Probabilistic Plan-
ning. In Proceedings of the International Conference on Automated Planning and
Scheduling, Vol. 7, pp. 352–359.

438

