
Journal of Artificial Intelligence Research 54 (2015) 233–275 Submitted 06/15; published 10/15

Decision Making with Dynamic Uncertain Events

Meir Kalech KALECH@BGU.AC.IL
Department of Information Systems Engineering,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Shulamit Reches SHULAMIT.RECHES@GMAIL.COM

Department of Applied Mathematics,
Jerusalem College of Technology, Israel

Abstract
When to make a decision is a key question in decision making problems characterized by

uncertainty. In this paper we deal with decision making in environments where information ar-
rives dynamically. We address the tradeoff between waiting and stopping strategies. On the one
hand, waiting to obtain more information reduces uncertainty, but it comes with a cost. Stopping
and making a decision based on an expected utility reduces the cost of waiting, but the decision
is based on uncertain information. We propose an optimal algorithm and two approximation al-
gorithms. We prove that one approximation is optimistic - waits at least as long as the optimal
algorithm, while the other is pessimistic - stops not later than the optimal algorithm. We evaluate
our algorithms theoretically and empirically and show that the quality of the decision in both ap-
proximations is near-optimal and much faster than the optimal algorithm. Also, we can conclude
from the experiments that the cost function is a key factor to chose the most effective algorithm.

1. Introduction

There are many real-world domains in which an agent has to choose an alternative among multiple
candidates, based on their utility. The problem becomes more complicated when the utility depends
on events that occur dynamically and therefore the decision itself is based on dynamically changing
and uncertain information. In such domains, the question is whether to stop at a particular point
and make the best decision given the information available, or wait until more information arrives
to enable making a better decision. This problem is not trivial when there is a cost associated with
waiting.

For example, consider the problem of finding the best stock to buy in the stock market. The
values of the stocks may change over time due to future events, such as publication of the company’s
sales report or a change in the interest rate, etc. The longer we wait, the more information becomes
available and, as a result, a decision can be made with more certainty. In many real-world domains,
there is a cost to waiting. For instance, in the above example, the cost of the stock reflects the loss
caused by not investing money in one of the candidate stocks. Thus, there is a tradeoff between a
waiting strategy that enables one to acquire more information and decreases the uncertainty and a
stopping strategy, which reduces the cost.

Another example relates to scheduling systems for meetings. Determining the best time for
a meeting could depend on many factors, such as the times of other meetings, location, and the
schedule of the attendees. Typically, these factors may change dynamically and influence a decision
on the best time for the meeting; obviously, the longer one waits, the more information becomes

c⃝2015 AI Access Foundation. All rights reserved.

KALECH & RECHES

available and the probability of choosing the best time for the meeting is higher. However, waiting
incurs a cost of the possibility that the chosen time slot might no longer be available. The goal of
this paper is to determine the best time to make a decision which maximizes the expected gain and
considers the cost of waiting.

This question, of whether to wait to get more information or not, is also raised in the context of
real estate investment. There are many unknown factors that may influence the decision of which
real estate property to buy. For example, an infrastructure development in the area (like a railway
station), raising/reducting municipal taxes in the area, construction of a polluting factory in the area,
etc. There is a question whether to choose a real estate property based on the expected gain or to
wait and get the information about the next factor but taking the risk that the properties’ prices may
increase.

The tradeoff between uncertainty and cost is related to the optimal stopping problem (Ferguson,
1989; Peskir & Shiryaev, 2006), the problem of decision making under bounded-resource (Horvitz,
2001, 2013), the problem of decision making with multiple informative but expensive observations
(Krause & Guestrin, 2009; Tolpin & Shimoni, 2010), the Max K-Armed Bandit problem (Cicirello
& Smith, 2005) and the ranking and selection problem (Powell & Ryzhov, 2012). Our work copes
with the challenge of the stopping problem where multiple alternatives are affected by uncertain
information that arrives dynamically. The decision whether to stop or wait, in our problem, depends
on the utility affected by the result of certain events that will occur in the next time stamps. Since
each alternative is affected by different events we should consider the combination of all possible
events, which makes our problem hard and different from others.

In this paper, we:

1. Develop a model for representing the arrival of dynamic information and its influence on the
utilities of the candidates.

2. Present an optimal exponential algorithm (OPTIMAL) that guarantees the best decision
tradeoff between certainty and waiting costs.

3. Propose two polynomial approximation algorithms to solve the problem and provide bounds
on their error. We prove that both algorithms evaluate the expected utility from stop-
ping optimally. However, one approximation algorithm is optimistic (OPTIMISTIC) in
the sense that its waiting evaluation is overestimated. The other algorithm is pessimistic
(PESSIMISTIC), namely its waiting evaluation is underestimated.

4. Empirically evaluate the optimal and the two approximation algorithms and illustrate the
advantages of each one of them.

We empirically evaluate the three algorithms by simulating a stock market scenario. We com-
pare the optimal and approximation algorithms to four other baseline algorithms; one algorithm
makes the decision at the beginning of the decision process, the second algorithm decides after all
the information is obtained, the third algorithm makes the decision at a random time and the fourth
one makes the decision after half of the time steps. We examine the algorithms in terms of the
quality of the decision (utility) and runtime.

Our empirical evaluation shows that the cost function much influences on the quality of the
decision. As the cost function increases more moderately (i.e. a root function), the pessimistic
algorithm becomes less effective and the optimistic algorithm improves the quality decision and it

234

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

is even slightly better than the pessimistic one. However, for cost functions that grow linearly or
polynomially with the time the pessimistic approach is much better than the optimistic one, and in
most cases there is even no significant difference between the quality of the decision made by the
pessimistic approximation algorithm and the optimal algorithm. The quality of both approxima-
tions is much better than the baseline algorithms. The runtime of the approximation algorithms is
polynomial rather than an exponential runtime of the optimal algorithm.

This work is an extension of our previous work (Kalech & Pfeffer, 2010; Reches, Kalech, &
Stern, 2011). In this work we expand both the theoretical and empirical parts of the research.
In particular, in the theoretical aspect we find and prove the approximation error of the expected
gain and the expected wait of the algorithms, and prove the complexity and other properties of
the pessimistic and optimistic algorithms. We greatly expanded the evaluation by presenting the
influence of different parameters, such as the cost of waiting, and the distribution on the variables.
Furthermore, we empirically show the pessimistic and optimistic behaviour of the algorithms.

The paper is organized as follows. In the next section we present the basic fundamentals of the
problem and formally define it. In Section 3 we present the optimal algorithm. The optimistic ap-
proach is illustrated in Section 4 and the pessimistic approach in Section 5. An empirical evaluation
of the algorithms is provided in Section 6. In Section 7 we discuss related work and our conclusion
is presented in Section 8.

2. Model Description

To describe the model clearly we use an example inspired by the stock market. Assume a decision
maker wishes to choose one stock to purchase among three stocks (c1, c2, c3). The value of the
stocks is influenced by future events, such as the consumer price index (CPI), interest rates, etc.
The decision maker cannot evaluate the influence of the future events on the stocks with certainty
but only with some degree of probability. Obviously, the sooner the decision is taken, the lesser
the loss from not investing the money. On the other hand, the longer the waiting time, the more
information that can be gathered by knowing the outcome of the expected events and consequently
a decision with a greater degree of certainty can be made.

In our model, each decision will be designated by a candidate; throughout the paper we refer
to the candidate set C = {c1, c2, ..., cm}. An agent desires to choose an alternative from the set
C. A candidate’s utility is influenced by information that arrives dynamically. We represent the
dynamic information by random variables. A random variable is an event that occurs at a specific
time. The different outcomes of the event may influence the utility of the candidate in different
ways. As described extensively later, a candidate may be influenced by multiple events. Let us
define formally the timed variable.

Definition 1 (timed variable) A timed variable is a pair ⟨Xi, t⟩, where Xi is a discrete, finite ran-
dom variable taking values xi1 , ..., xik and t ∈ T represents its time stamp, where T is a discrete
time horizon T = {0, ..., h} with horizon h.

Given a timed variable ⟨Xi, t⟩, t is the time stamp in which the random variable Xi is assigned
one of its possible values xi1 , ..., xik .

For example, the timed variables in the stock market are future events that influence the utility of
the stocks. ⟨X1, 1⟩ may represent an expected decrease in the percentage of the interest rate at time
1, where time 1 represents one month from now. X1 takes the discrete values {x11 = −0.1, x12 =

235

KALECH & RECHES

0}. Another timed variable, ⟨X2, 2⟩, represents the expected prospectus of a specific company in
two months from now, which takes the values {x21 = positive, x22 = negative}. One more timed
variable ⟨X3, 3⟩, represents the expected change in the percentage of CPI in three months. X3 takes
the values {x31 = 0.1, x32 = 0.2}. In our example, ⟨X1, 1⟩ and ⟨X3, 3⟩ influence candidate c1 and
⟨X2, 2⟩ influences candidate c2. A timed variable may affect two or more candidates.

Definition 2 (assignment) An assignment to the timed variable ⟨X, t⟩ is an outcome xi of X . A
global assignment at time t, denoted σt, is an assignment of values to all timed variables whose
time stamp is less than or equal to t.

For example, the global assignment at time 3 (σ3) may be X1 = 0, X2 = positive, and
X3 = 0.1, i.e., at time 1 (after a month) the interest did not change, at time 2 (after two months)
the prospectus of the company was positive, and at time 3 (after three months) the CPI increased by
0.1%.

Each candidate’s utility depends on a set of timed variables, where different sets lead to different
utilities. We use a tree to represent the effect of the timed variables on the utility.

Definition 3 (candidate tree) A candidate tree cti for candidate ci is a tree. nj,i is a node in cti,
where i stands for the index of the candidate and j for its index in the tree. The internal nodes are
associated with timed variables. The random variable corresponding to node n is denoted X(n)
and its time is denoted Γ(n). If nj,i is a descendant of nk,i then Γ(nk,i) < Γ(nj,i). The edges going
out of node n represent the possible assignments of X(n). Each edge X = x is labeled by the
probability outcome denoted by p(X = x). A leaf n is labeled by its utility U(n), representing the
utility of the candidate affected by the assignments from the root to the leaf. CT represents the set
of candidate trees.

We call the assignments on the path that starts at the root of candidate tree cti and ends at
node nj,i at time t = Γ(ni,j) “the local assignment of candidate ci” denoted by σti . Note that
the candidate tree represents an estimate of the effect of the timed variables on the utility of the
candidates. Obviously, this estimate may change over time, due to the addition or removal of times
variables or re-estimation of the probabilities or the utilities. In this case the candidate trees should
be updated.

X3,t=3 X5,t=4

80

0.6 0.4

X1,t=1

55

n0,1

n4,1 n1,1

0.2 0.8 0.9

60

0.1

65

n2,1 n3,1
n5,1 n6,1

Figure 1: Candidate tree ct1.

X4,t=3 X6,t=4

75

0.7 0.3

X2,t=2

40

n0,2

n4,2 n1,2

0.2 0.8 0.4

70

0.6

45

n2,2 n3,2
n5,2 n6,2

Figure 2: Candidate tree ct2.

Figures 1 and 2 present two candidate trees built at time stamp t = 0. These are an extension of
the three timed variables demonstrated above. n0,1 is the root of candidate tree ct1. Its time stamp
is t = 1, which represents the fact that the random variable X1 will obtain its outcomes at time 1.

236

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

The node n1,1 in ct1 represents the timed variable ⟨X3, t = 3⟩. One possible outcome of the change
in the CPI (X3) is 0.1% (left edge). The probability of this outcome is 0.8. An alternative outcome
of the change in the CPI is 0.2% (right edge) and the probability of this outcome is 0.2. The value
80 in the left leaf of ct1 represents the utility of candidate c1 when the local assignment at time 3
(σ31) is: the interest decreased by 0.1% (X1 = −0.1) and the CPI increased by 0.1% (X3 = 0.1).
The probability of this utility is 0.4 · 0.8 = 0.32.

The utility of a candidate is known certainly at the leaves. However, the expected utility of a
candidate can be calculated beforehand at any time (depth in the candidate tree) and will consider
the subtree from that depth. The expected utility can be trivially computed by a recursive function.
The expected utility of a leaf is its utility and for an internal node it is the expected utilities of its
children. Formally:

Definition 4 (expected utility) Given a node n ∈ cti, the function EU(cti, n) returns the expected
utility of n:

EU(cti, n) =

{
U(n) n is a leaf∑

j p(X(n) = xj)EU(cti, nj) otherwise

where nj represents the successor node of n via assignment X(n) = xj .

For instance, the expected utility of the root in Figure 1 is: EU(ct1, n0,1) = 0.4 · (0.8 · 80 +
0.2 · 55) + 0.6 · (0.9 · 60 + 0.1 · 65) = 66.3.

The expected utility is an estimate of the real utility based on the information known at the
current time. Waiting for the next time reduces the uncertainty about the candidates’ utilities and
hence increases the probability of making a good decision. However, waiting incurs a cost. The cost
can be either a function of the assignments or a function of the time. For the sake of simplicity, in
this paper we represent the cost as a function of the time. In reality, the cost of waiting for a specific
time stamp is usually not higher than the utility gained at that time. Thus, to enforce a realistic cost,
we bound the cost by the maximum utility.

Definition 5 (cost) Given a time stamp t ∈ T , CST (t) is an increasing function that returns the
approximated cost of waiting until time t.

The expected gain of a node is the difference between the expected utility of the node and the
cost of waiting until that node.

Definition 6 (expected gain) Given node n ∈ cti, GN (cti, n) = EU(cti, n) −
CST (Γ(parent(n))).1 If n is the root of the candidate tree then: GN (cti, n) = EU(cti, n).

The reason we reduce the cost of the parent of n, rather than of n is that EU(cti, n) represents
the expected gain of the subtree rooted in n without waiting for the outcomes of X(n).

There is a tradeoff between the first component of GN , the expected utility, and the second
component, the waiting cost. The objective of this paper is to present an algorithm that will find the

1. Since the utility and cost are not necessarily given in the same scale they should be normalized before reduction. The
normalization is domain dependent.

237

KALECH & RECHES

time which maximizes the gain2. Unfortunately, we are unable to separate the computation of the
optimal time to make the decision and the selection of the best candidate, since the utilities of the
candidates depend on future events. Therefore, we define a policy to determine what to do in all
situations that the decision maker might face.

Beside the outcomes of the timed variables, the cost function also influences the decision of
whether to stop or to wait. A cost function that returns much smaller values than the difference
between the expected utilities through time will eventually lead to a ’wait’ decision. On the other
hand, a cost function that returns values which are too high will eventually lead to a ’stop’ deci-
sion. For the examples in this paper we use the cost function CST (t) = t. This function ensures
proportional cost values (0,1,2,3,4) in relation to the utility values (45–80). For instance, according
to the estimate at time stamp t = 0, given the global assignment: X1 = −0.1, X2 = positive,
the expected gain of candidate c1 is GN (ct1, n1,1) = 75 − 1 = 74 and the expected gain of c2 is
GN (c2, n1,2) = 68 − 2 = 66. As a result, if the decision maker decides to stop it will choose c1,
otherwise it will wait for the next time stamp. The policy dictates the decision on whether to stop
or wait.

Definition 7 (policy) A policy is a function π : σ → {stop, wait}, where σ is the set of all global
assignments.

If the policy specifies to stop, the decision maker chooses the candidate with the current highest
expected gain.

Finally, we define the expected gain for the decision maker by using policy π, referred as “global
expected gain”. To understand this definition we first introduce another definition of the nodes
corresponding to a certain time.

Definition 8 (NODESjt) The set NODESjt represents the following nodes of ctj: (1) leaves
whose parents’ time is less than or equal to t: {n ∈ ctj |Γ(parent(n)) ≤ t, n is a leaf}. (2)
internal nodes whose parents’ time is less or equal to t and their time is greater than t {n ∈
ctj |Γ(parent(n)) ≤ t ∧ Γ(n) > t, n is an internal node}.

For example, in Figure 1 NODES1
3 = {n2,1, n3,1, n4,1}, NODES1

4 =
{n2,1, n3,1, n5,1, n6,1}.

The global expected gain function obtains the candidate trees, the global assignment, and a
policy. If the policy specifies to stop, then the global expected gain is the maximum expected gain
among the candidates. Otherwise, it recursively computes the expectation of the global expected
gain of the different combinations of the roots’ children in the next time stamp. Formally:

Definition 9 (global expected gain) A global expected gain is a function that returns the expected
gain from choosing policy π:

GEG(CT, σt, π) =
max
j

GN (ctj , nj) if π(σt) = stop∑
y∈{NODES1

t+1×,...,×NODESm
t+1}

GEG(CT y, σty , π)Pr(y) if π(σt) = wait

where

2. Although in the decision making theory it is common to maximize the expected utility, here we use the term expected
gain, which incorporates the cost in order to distinguish it from the expected utility.

238

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

1. nj is the root of ctj .

2. CT y is the set of candidate trees rooted by the nodes in y.

3. Pr(y) is the probability of the nodes in y given the assignment σt.

4. σty represents the union of σt and the assignments of X(nj) which are represented by y.

In the running example, for the global assignment σt=2 and a policy π(σt=2) = stop and
y = (n1,1, n1,2), GEG(CT y, σt, π) = max(73, 66) = 73. In case of a policy π(σt) = wait,
we sum GEG for all possible assignments of the next time. The set of NODES rooted by the
nodes n1,1 and n1,2 at time t = 3 are NODES1

3 = {n2,1, n3,1} and NODES2
3 = {n2,2, n3,2},

correspondingly, and y ∈ {n2,1, n3,1} × {n2,2, n3,2}. Therefore:

GEG(CT {n1,1,n1,2}, σt, π) =

GEG(CT {n2,1,n2,2}, σt, π) · 0.8 · 0.8+
GEG(CT {n2,1,n3,2}, σt, π) · 0.8 · 0.2+
GEG(CT {n3,1,n2,2}, σt, π) · 0.2 · 0.8+
GEG(CT {n3,1,n3,2}, σt, π) · 0.2 · 0.2

Based on the above definitions, we can define the timed decision making problem (TDM):

Definition 10 (Timed Decision Making (TDM) problem) Given a set of candidate trees CT , the
TDM problem is to find a policy that maximizes GEG(CT, σ0, π).

Table 1 summarizes the notation we use in describing the model.
The hardness of the TDM problem is due to the computation of the expected gain from wait-

ing for the next time stamp. This computation needs to take into consideration the utility of each
candidate for each possible assignment and for each time stamp. Specifically, at time t0, the de-
cision maker should decide whether to stop and choose the best candidate or to wait for the next
time stamp by comparing the expected gain from stopping and the expected gain from waiting. The
expected gain from stopping at time stamp t0 can be computed immediately by taking the maximum
of the expected gain of the candidate trees (max

j
GN (ctj , nj), where n1, ..., nm are the roots of the

candidate trees). On the other hand, the computation of the expected gain from waiting for the next
time stamp is hard. The expected wait considers the combination of the possible assignments of
the candidate trees at time t1. For each such combination, we need to take into consideration the
utility of stopping at time t1 and the utility of waiting for time stamp t2 which include additional
combinations of assignments and so on. The problem is hard because the number of combinations
is exponential in the number of candidates. Specifically, at a certain time stamp, for k possible
assignments of different variables inm different candidate trees, the number of combinations is km.

In order to prove that TDM is NP-hard, we present the timed decision making problem as a
decision problem . Given CT, σ0 and a non-negative integer K. Answer “yes” if there exist a
policy π such that the global expected gain GEG(CT, σ0, π) ≥ K.
Theorem 1: TDM problem is NP-hard. (The proof appears in Appendix A).

One option for representing our problem would be to use Markov Decision Processes (MDP). In
such a model, the states at time t would be global assignments at time t (σt) and the actions would
be either to select the best candidate at that time (stop) or wait one more time step. The transition

239

KALECH & RECHES

Parameter Description
C = {c1, ..., cm} A set of m candidates.

⟨Xi, t⟩ A timed variable, where Xi is a discrete, finite random variable and t is its
time stamp.

cti A candidate tree of ci.
CT A set of candidate trees.
σt An assignment of values to all timed variables whose time stamp is less

than or equal to t.
σti A local assignment. The assignments on the path that stats at the root of

candidate cti and end at node whose time is t t.
nj,i A node in the candidate tree cti of candidate ci.
X(n) The random variable corresponding to node n.
Γ(n) The time of the random variable corresponding to node n.

T = (0, ..., h) The time horizon.
U(nij) The utility of candidate cti affected by the assignments from its root to the

leaf nij .
EU(cti, n) The expected utility of candidate tree cti from node n.
CST (t) The approximated cost of waiting until time t.

GN (cti, n) The expected gain of node n in candidate tree cti is the difference between
the expected utility of the node and the cost of waiting until that node.

A policy A function π : σ → {stop, wait}.
NODESjt A set of nodes whose parents’ time is less than or equal to t and they are

leaves, or their time is greater then t.
GEG Global expected gain.

EW(σt, π) The expected gain from waiting for the next time stamp (t+1), using policy
π.

ES(σt, π) The expected gain from stopping at time stamp t, using policy π.
PT H(cti, n) A path, set of local assignments from the root of cti to node n.
PrPT H(cti, n) The probability of a path.

πi Local policy of candidate ci.

Table 1: The notation used for the description of the model.

240

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

function from a time t state to a time t+ 1 state for a wait action would be given by the product of
the probabilities of time t+1 assignments. A stop action leads to a terminal state in which a reward
is received equal to the gain of the winning candidate.

The usual advantage of an MDP formulation is the possibility of using dynamic programming
methods, such as value and policy iteration. However, in our problem, dynamic programming
provides no benefits because the same state cannot be reached by different paths and the number of
states is exponential in the total number of timed variables in all the trees.

One of the methods which addresses large MDPs is by means of factored MDPs (Boutilier,
Dearden, & Goldszmidt, 2000; Guestrin, Koller, Parr, & Venkataraman, 2003). This approach is
not viable in our domain because the utility of stopping is a maximization over the utilities in all the
trees which depends on all the timed variables. As we show in Section 4, there is a special structure
in our problem that is not readily apparent in the MDP or a factored MDP formulation.

3. Optimal Algorithm

The optimal gain can be calculated straightforwardly by a decision tree approach. The optimal
decision tree merges the candidate trees into a single decision tree whose depth is the maximal time
of the timed variables in the candidate trees. In the decision tree, we define three kinds of nodes:

Decision nodes, in which the decision maker must decide whether to stop or to wait; if the decision
is to stop, then which candidate to choose.

Stop nodes, where the decision maker has stopped and chosen one of the candidates.

Wait nodes, where the decision maker has decided to wait.

Each node is marked with a time stamp. Edges leading out of the wait nodes are labeled by con-
junctions of assignments. Every node in the tree is marked by a set of assignments, which are the
assignments on the path leading to the node.

The tree is constructed at offline time as follows:

Procedure 1 Optimal:

1. The root is a decision node with time stamp 0.

2. For each time stamp, the children of decision nodes with time stamp t are the wait nodes with
time stamp t; for each candidate there is a stop node child. If t is the final time stamp, no wait
node child is included.

3. Stop nodes are leaves of the tree. If the stop node corresponds to node n ∈ cti at time t, the
value of the node is GN (cti, n) (Definition 6).

4. The children of a wait node with time stamp t given a global assignment σt are determined
as follows:

(a) The local assignment σti passes through a path of assignments ending at a node. Let us
denote this node by ni for candidate tree cti.

(b) Let Xn =
∪
iX(ni).

241

KALECH & RECHES

40.2

4

66.84

66.3 66.84

0.4 0.6

73.8 62.2

73.8

8

59.3 62.2473.26

0.3 0.7

74.6

65.6

6

74.6

0.16

71.4 51.4

1

0.3 0.7

68.5 59.5

58.1 68.5

0.8 0.2

71.4 56.9

58.1 59.5

59.5

52.4

4

59.571.4

4

70.2

2

1

51.4

4

70.2

2

70.2

1

51.4

4

50.2

2

50.2

0.1

70.270.2

0.9

56.9 55.7

60.255.2

0.9 0.1

55.265.2

0.36 0.54

60.265.2

0.04
0.06

72.6

6

72.36

66

0.8 0.2

76.4 56.2

76.4

4

75.2

2

75.2

51.4

4

56.2

2

65.275.2

0.4 0.6

50.2

0.4 0.6

50.2 70.2 50.2 35.2 75.2 65.2 75.2 40.2 50.2 65.2 50.2 40.2 55.2 70.2 60.2 70.2 55.2 35.2 60.2 35.2 55.2 65.2 55.2 40.2 60.2 65.2
60.2

72.6

1

2

3

Decision Time Horizon

0

0.04

58.9

57.7 57.7

72.6

6

52.6

6

65.6

6

52.6

6

57.936.4

4

56.951.4

4

51.4

4

36.4

4

71.4

4

76.4 76.4

1

76.4

4

75.2

2

75.2

1

76.4

4

75.2

2

75.2

75.2 70.2 75.2 35.2

36.4

4

71.4

4

0.64
0.16

Figure 3: Optimal decision tree for ct1 and ct2 candidate trees.

(c) For each possible joint outcome of the timed variables in Xn, the wait node has a child,
labeled by the joint probability. The child is a decision node with time stamp t+ 1.

Once the tree has been constructed, it can be evaluated using a simple bottom-up process. The
gains at the leaves, i.e., the stop nodes, have already been calculated. The gain of a wait node is
the expectation of the utilities of its children. The gain of a decision node is the maximum gain
of its children and the optimal decision is the one that leads to a maximal gain. The decision tree
is generated and evaluated in advance before any assignments have been undertaken. Its solution
represents a policy (Definition 7).

Figure 3 presents the optimal decision tree for a decision problem with candidate trees ct1
(Figure 1) and ct2 (Figure 2). The time line on the right of the graph represents the time horizon
of the decision. The rectangular nodes represent decision nodes; the shaded ellipse nodes represent
wait nodes and the empty ellipse nodes represent stop nodes3. The stop nodes come in pairs, one
for each candidate; the node for c1 is on the left. The numbers in the nodes represent the expected
gains and are computed using the bottom-up algorithm. In the example, we used a cost function
that linearly grows in time: CST (t) = 1.2ṫ, so the cost of reaching a leaf is 4.8 (since there are four
time stamps).

For example, consider the dashed triangle on the right-hand side of the figure. The root of the
subtree shown in this triangle is a wait node with time stamp 3. In determining the children of this
node, we consider all timed variables in the candidate trees with a time stamp of 4. There are two
such timed variables, ⟨X5, 4⟩ for candidate c1 and ⟨X6, 4⟩ for candidate c2. We need to split all
the joint outcomes of these two candidates so that the wait node has four children. Each of these
children is a decision node with time stamp 4. Since this is the last time stamp, these decision nodes
only have stop nodes as their children.

One particular course of events is shown in bold in the figure. Since the expected gain of waiting
(66.84) is higher than the expected gain from stopping, which is the expected utility from choosing

3. The stop nodes at the final time do not have ellipses for readability. We have also omitted assignment labels on the
edges.

242

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

the best stop node (66.3), the agent will wait. Accordingly, the assignment X1 = 0 (left) will then
occur. At the next decision node child, the expected gain from stopping and choosing candidate
c1 (73.88) is higher than the expected gain of waiting (73.26), so the agent may stop at t = 1 and
choose c1. Assume the sequence of assignments occurred as depicted in bold in the figure. This
eventually will lead to a leaf node with a gain of 75.2 as shown. Note, however, that this gain
incorporates the cost of waiting 4 time stamps. Thus, if the agent had been omniscient and known
the outcomes of the timed variables in advance, it would have obtained a gain of 80, since it would
not have had to wait at all. For a rational agent which stops at time 1, the gain for choosing c1 is
80− 1.2 = 78.8.

Denote π∗ as the optimal policy. Given a global assignment σt, we use EW(σt, π∗) to represent
the expected gain from waiting for the next time stamp by executing the optimal algorithm. It equals
the wait node given σt. Similarly, we use ES(σt, π∗) to represent the expected gain from stopping
at time stamp t by executing the optimal algorithm; this equals the maximal stop node given σt. For
example, in Figure 3, EW(σ0, π∗) = 66.84 and ES(σ0, π∗) = 66.3.

The optimal decision tree explicitly represents the state space in an MDP model, as described
in Section 2. Since the state space is represented in a tree (rather than a graph), an intelligent value
iteration process is equivalent to the backward induction algorithm we use for the optimal decision
tree.

3.1 Analysis

The time complexity of the optimal algorithm is affected by the fact that the optimal decision tree
considers the different combinations of paths of the candidate trees. Let the maximum size of a
candidate tree be M and the number of candidates be m. Notice that the size M of a candidate tree
is exponential in the depth of the local candidate tree. Specifically, given the depth of the candidate
tree, h (the horizon), and the number of outcomes for each timed variable, k (the branching factor)
then M = kh. The total number of timed variables is Mm and the size of the depth of the optimal
decision tree is bounded by m log(M). The worst-case time complexity of computing the optimal
tree is O(Mm).

As mentioned above, the backward induction on the optimal decision tree is equivalent to the
value iteration for MDPs. Since the state space is represented in a tree, the value iteration simply
scans the state space. Thus, the complexity of a value iteration is the size of the state space. The
complexity of a state space, as described in Section 2, is the sum of the global assignment alterna-
tives at each time. In the worst case, where every candidate depends on different timed variables at
each time, there are km alternatives at time 1, (k2)m alternatives at time 2, and (kh)

m alternatives
at time h. This complexity is identical to the complexity of optimal decision tree O(Mm) (since
M ∈ O(kh)).

The best-case complexity is archived when all candidates are affected by the same timed vari-
able, since we should not consider the combinations between the same timed variables. In this case
the trees of the candidates are identical except for the utilities in the leaves and the complexity is
thus mM .

Beyond the exponential complexity of the optimal algorithm, another disadvantage of this algo-
rithm stems from the fact that every change in the candidate trees demands rebuilding the decision
tree. Unfortunately, due to its exponential complexity rebuilding is not feasible. To cope with the
exponential complexity of the optimal algorithm and the fact that it is not feasible to rebuild the de-

243

KALECH & RECHES

cision tree when timed variables change, we propose two approximation algorithms in the following
sections.

Beyond the exponential complexity of the optimal algorithm, another disadvantage of this algo-
rithm stems from the fact that every change in the candidate trees demands rebuilding the decision
tree. The optimal algorithm computes the whole combinations of the future events in advance and
as a result, it makes an optimal solution as long as the initial evaluation about the probabilities and
utilities of each event is valid. Since the complexity of the optimal algorithm is exponential, it may
be infeasible to rebuild a new decision tree for each time stamp. However, in realistic scenarios the
evaluation about the events and the utilities may change over time. To cope with the exponential
complexity of the optimal algorithm and the fact that it is not feasible to rebuild the decision tree
when timed variables change, in the following sections we propose two approximation polynomial
algorithms.

4. An Optimistic Approach

The optimal algorithm presented in Section 3 considers all candidates simultaneously and thus
grows exponentially in the number of candidates. In this section, we present an alternative algorith-
mic framework that considers the candidates separately and dynamically. This alternative viewpoint
will lead to a more efficient approximation algorithm.

4.1 OPTIMISTIC Algorithm

The main idea behind the alternative framework is calculating the utility of each candidate tree
separately and then combining the utilities together to obtain an evaluation of the global gain. In
this way we avoid the complexity of comparing each assignment to all the assignments of the other
candidates; each candidate contributes separately to the overall utility. Specifically, a candidate
contributes to the overall utility only when it actually prevails over all the other candidates. Thus
we can estimate the utility from a node in a candidate tree by the product of its expected gain and
the probability that the candidate will win, given that the node is reached. Then, in order to estimate
the overall gain, we sum over this utility for all the candidates. To formally describe the algorithm
we present the following definitions:

Definition 11 (path) Given a node n ∈ cti, the function PT H(cti, n) returns a set of local assign-
ments from the root to n {Xi1 = xi1 , Xi2 = xi2 , ...} in candidate tree cti.

Definition 12 (probability of path) Given a node n ∈ cti, PrPT H(cti, n) =∏
j∈PT H(cti,n)

Pr(j).

The probability that ci will prevail over a specific candidate cj at time t is the sum of its prob-
abilities to prevail over cj for each possible assignment, i.e., for each node in NODESjt . The
probability that a candidate ci will prevail over the other candidates, given a specific node nx,i ∈ cti
and at a specific time stamp, t = Γ(nx,i), is the sum of the probabilities that it will prevail over each
candidate in the current time t. Formally4 :

4. For the mathematical calculations of the probabilities in the approximation algorithms, we assume that the candidates
have disjointed sets of timed variables that are probabilistically independent; which means that two candidates are not
affected by the same time variable. Nevertheless, as will be shown by the results of the experiments, the algorithms
perform well even when there are common variables.

244

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

Definition 13 (probability of winning) Given a node nx,i ∈ cti, the probability of ci to win is5:

Pr(ci wins|nx,i) =∏
j∈{1,...,m},i ̸=j

∑
ny,j∈NODESj

t

IsWin(EU(cti, nx,i), EU(ctj , ny,j))PrPT H(ctj , ny,j)

where

1. t = Γ(parent(nx,i)).

2. IsWin(EU(cti, nx,i), EU(ctj , ny,j)) ={
1 if EU(cti, nx,i) > EU(ctj , ny,j)
0 else

For example, using Figures 1 and 2 above, recall NODES1
3 = {n2,1, n3,1, n4,1}.

Pr(c2 wins|n2,2) =
IsWin(EU(ct2, n2,2), EU(ct1, n2,1)) · 0.4 · 0.8+
IsWin(EU(ct2, n2,2), EU(ct1, n3,1)) · 0.4 · 0.2+
IsWin(EU(ct2, n2,2), EU(ct1, n4,1)) · 0.6 =
0 · 0.32 + 1 · 0.08 + 1 · 0.6 = 0.68

We define the “relative expected gain” of each candidate as its contribution to the global ex-
pected gain given a specific node.

Definition 14 (relative expected gain) Given a node nx,i ∈ cti, the relative expected gain of can-
didate ci is GN (cti, nx,i) · Pr(ci wins|nx,i).

Notice that the probability of candidate ci to win at a time stamp t is:

Pr(ci wins) =
∑

nx,i∈NODESi
t

Pr(ci wins|nx,i) · Pr(nx,i)

and thus according to the law of total probability:∑
i

∑
nx,i∈NODESi

t

Pr(ci wins|nx,i) · Pr(nx,i) = 1

The computation of the relative expected gain of nx,i is presented in Algorithm 1. In line 3
we go over the candidate trees except for candidate tree cti. In line 5 we go over the candidate
tree’s nodes that have the time as the same as nx,i’s time. We then sum over the probabilities of
those nodes whose expected utility is less than that of nx,i (lines 6–8). This sum represents the
probability of ci to win cj , given the node nx,i. Finally, in line 10 we multiply the probability that ci
will prevail over all the candidates (given the node nx,i), since a winning candidate should prevail
over all the candidates. We return the product of this probability and the expected gain of the node

5. Ties between candidates are broken in a consistent manner.

245

KALECH & RECHES

Algorithm 1 RELATIVE EXPECTED GAIN
(input: candidate trees CT = {ct1, ..., ctm}
input: node nx,i

output: relative expected gain of nx,i)

1: t← Γ(nx,i)
2: prob← 1
3: for all ctj ∈ CT (i ̸= j) do
4: temp← 0
5: for all ny,j ∈ NODESj

t do
6: if EU(cti, nx,i) > EU(ctj , ny,j) then
7: temp← temp+ PrPT H(ctj , ny,j)
8: end if
9: end for

10: prob← prob · temp
11: end for
12: return prob · GN (cti, nx,i)

nx,i. For instance, the relative expected gain from choosing candidate c2 given the node n2,2 in time
3 (with a cost function CST (t) = 1.2ṫ) is (75− 3.6) · 0.68 = 48.552.

The optimistic approach determines the policy (Definition 7) by constructing a separate decision
tree for each candidate. The policy then is determined based on the local assignment for each time.
As mentioned earlier the local assignment for a certain candidate tree is derived from the global
assignment. The estimate of the global expected gain from stopping and from waiting depends on
the policy and the expected gain of each candidate separately. We call such a policy “local policy”.
Obviously, it may be possible that at a certain time the local policies over the candidates will be
different.

Definition 15 (local policy) A local policyπi for candidate ci is a rule that dictates either stopping
or waiting for a local assignment σti .

For each assignment at time t, the optimistic decision maker decides on its policy by building
individual decision trees based on the relative expected gain for each candidate. The expected gain
from stopping at each time is the sum of the relative expected gain of the candidates. The optimistic
procedure is invoked first with time 0:

Procedure 2 Optimistic:

1. Generate an individual candidate decision tree for each candidate ci based on cti in a manner
similar to the optimal decision tree except that the relative expected gain is used instead of
the expected gain.

2. Denote the stop node of the current time stamp t for each candidate tree cti by ESi(σt, πi)
and the wait node of the current time stamp t for each candidate tree cti by EW i(σt, πi).
Denote also:
ES(σt, π) =

∑
i∈{1,...,m}

ESi(σt, πi) and

EW(σt, π) =
∑

i∈{1,...,m}
EW i(σt, πi).

246

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

3. If ES(σt, π) ≥ EW(σt, π)
then π = stop, return argmax

i∈{1,...,m}
ESi(σt, πi)

else π = wait.

4. Prune each candidate tree according to the global assignment such that the tree will be rooted
by the node reached by the local assignment. Invoke Procedure 2 in the next time stamp t+1.

If we consider the stop values at the root, exactly one candidate will have a probability of win-
ning of 1 and all others will have a probability of 0. Therefore, the expected gain of the winning
candidate equals the sum of the values of the stop nodes in the root of all the decision trees. In-
tuitively, the value of a wait node for a candidate is an estimate of the candidate’s contribution to
the benefit of waiting. Therefore, the algorithm evaluates the expected utility from waiting by sum-
ming up the expected wait of the candidates. If the summation value is greater than the maximum
immediate expected gain, then the total expected gain of waiting is greater than the expected gain
of stopping. In this case the decision will be to wait. Otherwise, the decision will be to stop and to
choose the candidate with the highest expected gain.

If the agent decides to wait then the decision trees must be updated according to the new as-
signments obtained after waiting. The new assignments prune some parts of the candidate trees.
For instance, consider candidate tree ct1 in Figure 1. Assume that the agent decided to wait for the
outcome of the variables at time 1. Assume the assignment of the timed variable X1 at time 1 is
the left, then the right subtree of ct1 can be pruned since it no longer influences the utility of ct1.
The NODES1

t set, which is associated with a specific time, changes as a result of this pruning
as well as the computation of the relative expected gain. Therefore rebuilding the decision trees is
necessary.

Figures 4 and 5 present the decision tree of ct1 and ct2, respectively (Figures 1 and 2). The leaves
contain two numbers; the first represents the expected utility while the second (in bold) represents
the relative expected gain.

For example, let us compute the relative expected gain of the rightmost bottom-level node n6,1
in Figure 1. The cost function is CST (t) = 1.2 · t. This node, with a utility of 65, is greater than
the two nodes in ct2 n3,2 with a utility of 40 and n6,2 with a utility of 45. The total probability of
the two nodes in ct2 to be defeated by n6,1 is 0.3 · 0.2 + 0.7 · 0.6 = 0.48. This is the probability
that c1 will defeat c2 given its utility of 65. To compute the relative expected gain of this node
(see Definition 14), we multiply the gain, which is 65− 4.8 = 60.2, by the probability of winning,
resulting in 28.9 (see the rightmost bottom-level node in Figure 4).

Based on the decision trees in Figures 4 and 5 we find that the Optimistic algorithm decision
at time 0 is to wait, since the sum of the wait nodes in t = 0 (89.3) is greater than the sum of the
stop nodes (66). Suppose that timed variables ⟨X1, 1⟩ have been assigned by the left outcome.(as
in the example of the optimal algorithm). The decision trees are now updated. Candidate c1’s tree
is pruned so that it only includes the subtree rooted at n1,1 and as a result the relatives expected
gain of candidate trees c1 and c2 being updated. Figures 6 and 7 present the obtained trees by the
Optimistic algorithm at this case. According to this trees, the algorithm at time stamp t = 0, decides
again to wait, since the sum of the wait nodes (84), is higher than the sum of the stop nodes(73.8).
At the next decision node child, the expected gain from stopping and choosing candidate c1 (73.88)
is higher than the expected gain of waiting (73.2), so the agent may stop at t = 1 and choose c1.

247

KALECH & RECHES

Figure 4: Candidate decision tree for ct1 (built at
t = 0).

1

1

24.2

24.2

0.7

17.7

17.7

17.7

17.7

0.6

044.3

0.4

38.8

0.8 0.2

1

2

3

4

Decision Time Horizon

0

48.5

47.7

47.7

(75) 47.7

1

0

0

0

39.4

0.3

(40) 0 (70) 44.3 (45) 0

(75) 48.5 (40) 0 (55) 4.1

(68) 39.4 (55) 0

(58.9) 0

1

24.2

24.2

(58.9) 0

Figure 5: Candidate decision tree for ct2 (built at
t = 0).

Figure 6: Candidate decision tree for ct1 (rebuilt
at t = 1).

1

1

11.4

0.7

10.5

10.5

10.5

5.3

0.6

013.3

0.4

11.6

0.8 0.2

1

2

3

4

14.5

14.3

14.3

(75) 57.1

1

0

0

0

13.4

0.3

(40) 0 (70) 13.3 (45) 0

(75) 14.5 (40) 0 (55) 10.5

(68) 13.4 (55) 0

11.4

(58.9) 0

Decision Time Horizon

Figure 7: Candidate decision tree for ct2 (rebuilt
at t = 1).

4.2 Analysis

The time complexity of the optimistic approximation is only polynomial in the number of candidates
since we build a decision tree for every candidate separately.

248

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

Theorem 1 The time complexity of building the decision trees in the optimistic approximation is
O(M2m2), where m is the number of candidates and M is the maximal size among the candidate
trees.

Proof: When evaluating each candidate tree, we must compute the probability of winning at
O(M) nodes. For each such node, we perform a summation over O(M) nodes in each of the other
candidate trees and its cost O(M2m). We should perform this for all m candidate trees. Thus, the
total cost of the algorithm is O(M2m2). 2

This result compares favorably toO(Mm) for the optimal algorithm if the number of candidates
is large. In addition, due to its polynomial complexity and due to the fact that the optimistic algo-
rithm rebuilds the decision trees to update the probabilities, it can easily update the decision tree
by new dynamic events or by updated probabilities and utilities. For instance, assume that at time
t = 0 the prediction is that the interest rate will increase at time t = 2 in 0.1% with a probability of
0.8 and in 0.2% with a probability of 0.2. At time t = 1 this prediction may change, for instance, to
0.15% with a probability of 0.6 and 0.2% with a probability of 0.4. Since the optimistic algorithm
rebuilds in polynomial time the decision trees it can easily consider the updated probabilities and
values.

We will show now that if Procedure 2 returns a stopping policy, an optimal algorithm would
decide the same. When the algorithm waits, it implies that the expected gain from waiting is greater
than the expected gain from stopping. In this case, the optimal waiting expectation could be lower.

Theorem 2 Given a global assignment σt, if π is a policy obtained by Procedure 2 and π∗ is an
optimal policy, then ES(σt, π) = ES(σt, π∗) and EW(σt, π) ≥ EW(σt, π∗).

Proof: First we prove that ES(σt, π) = ES(σt, π∗). Procedure 2 calculates ES(σt, π) at time
stamp t by summing the stop nodes nx,i of all the candidate trees cti at this time: ES(σt, π) =∑
i∈{1,...,m}

ESi(σt, πi). These nodes are the relative expected gain from stopping at this time and,

according to definition 14, are GN (cti, nx,i)Pr(ci wins|nx,i). Since the global assignment of this
time is known, exactly one candidate ci (the candidate with the highest expected gain at time t)
confirms Pr(ci wins|nx,i) = 1 and all others confirm Pr(cj wins|nx,j ∈ ctj) = 0. As a result,
ES(σt, π) = GN (cti, nx,i), where ci is the candidate with the highest expected gain at time t. Thus,
ES(σt, π) = ES(σt, π∗).

We now prove that EW(σt, π) ≥ EW(σt, π∗). The optimistic approach estimates the expected
waiting EW(σt, π) by the sum

∑
i EW

i(σt, πi). Since for every decision tree of cti and for any
global assignment σt the optimistic approach chooses the policy πi that maximizes EW i(σt, πi)
(looks for the optimal time to stop for each local assignment and takes the combination of the util-
ities) independently of the other candidate trees, there is a possibility that the sum

∑
i EW

i(σt, πi)
includes a relative expected gain of one candidate from stopping at a specific time stamp i and a
relative expected gain of another candidate from waiting till time stamp i + 1 for the same global
assignment. Since each relative expected gain is optimal, then EW(σt, π) ≥ EW(σt, π∗).2

Corollary 1 Based on the last theorem, given a policy obtained by Procedure 2, if π(σt) = stop,
an optimal policy would decide the same. This is because when an optimistic policy π decides to
stop, ES(σt, π) > EW(σt, π). Then, based on the last theorem, EW(σt, π) ≥ EW(σt, π∗) and
ES(σt, π) = ES(σt, π∗), thus ES(σt, π∗) > EW(σt, π∗), namely an optimal policy will declare a

249

KALECH & RECHES

stopping policy too. Therefore, the optimistic approach guarantees the optimal expected gain from
stopping.

We now prove the approximation error of the expected wait. Notice that the following theorem
does not discuss the error of the optimistic algorithm but focuses on the worst case error when
estimating the waiting gain by the optimistic algorithm.

Theorem 3 Given a time horizon T = (0, ..., h), if π is a policy obtained by Procedure 2 and π∗

is a policy obtained by the optimal algorithm, EW(σ0, π) − EW(σ0, π∗) ≤
∑f−1

i=1 EU(cti, ni) +
CST (h), where ni is the root of candidate tree cti, EU(cti, ni) is the expected utility of the node
nij in candidate tree cti and f =Min(m,h) (m is the number of candidates).

Proof: According to the optimistic approach, EW(σt, π) =
∑

i EW
i(σt, πi). Since the expected

wait of each candidate EW i(σt, πi) is computed independently, the global expected wait EW(σt, π)
may include, for a specific assignment, the stopping gain of one candidate and the waiting gain of
another candidate simultaneously (even though this combination is impossible).

The worst case scenario, whereby EW(σt, π) has the highest value occurs when for each time
stamp, exactly one local policy πi is πi(σt) = stop. In this situation, the expected wait is the sum
of the expected stop in different time stamps of f candidates, where f = Min(m,h). Thus, (1)
EW(σt, π) ≤

∑f
i=1 EU(cti, ni), where ni is the root of candidate tree cti. Now, EW(σt, π∗) ≥

EU(ctj , nj) − CST (h) when EU(ctj , nj) is the highest expected utility among the roots of the
candidate trees. Thus, (2) −EW(σt, π∗) ≤ −EU(cti, nj) + CST (h) and as a result, by summing
(1) and (2), EW(σt, π) − EW(σt, π∗) ≤

∑f−1
i=1 EU(cti, ni) + CST (h). In particular, for t = 0:

EW(σ0, π)− EW(σ0, π∗) ≤
∑f−1

i=1 EU(cti, ni) + CST (h). 2
Finally, we prove the approximation error of the global expected gain. It is actually the cost of

waiting till level lh−1, when lh is the last level.

Theorem 4 Given time horizon T = (0, ..., h), a policy π obtained by Procedure 2,a cost function
CST (t), a set of candidate trees CT , a global assignment σt and an optimal policy π∗, the global
expected gain GEG holds: GEG(CT, σ0, π∗)− GEG(CT, σ0, π) ≤ CST (h− 1).

Proof: According to Corollary 1, Procedure 2 guarantees an optimal policy for π(σt) = stop.
As a result, an error can be obtained only when π(σt) = wait and π∗(σt) = stop. Since
waiting for the next time stamp decreases uncertainty, the error is only the cost of waiting. In
the worst case scenario, Procedure 2 may wait until the last time stamp while an optimal policy
would stop immediately. However, the policy obtained by Procedure 2 at time h− 1 is optimal,
GEG(CT, σh−1, π) = GEG(CT, σh−1, π∗). The reason behind this is that because the value of
EW(σh−1, π) considers only local policies πi(σh−1) = wait, the estimated expected wait from
this policy, which is the sum of the local expected wait, is optimal, since it does not include the
relative gain of waiting and stopping for the same assignment.

As a result, the absolute approximation error is GEG(CT, σ0, π∗) − GEG(CTs, σ0, π) <
CST (h− 1).2

5. A Pessimistic Approach

In this section we present an alternative approximation algorithm which, in contrast to the former,
presents a pessimistic approach. This algorithm considers the expected utility of each time stamp

250

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

separately. As a result, we avoid an exponential complexity of the optimal algorithm which consid-
ers all the possible combinations between waiting and stopping for each time stamp.

5.1 PESSIMISTIC Algorithm

The approximation gain can be calculated by a united decision tree. In this approach we merge
candidate utility functions into a single decision tree, where each level in the tree represents a time
stamp associated with a timed variable, i.e., level li in the tree represents a time point ti where we
decide whether to stop or wait. In the decision tree there are two nodes on each level:

Stop node, where the decision maker stops and chooses one of the candidates. A stop node, ESi,
is the expected utility of stopping at level li.

Wait node, where the decision maker decides to wait. The wait node, EW i, is the expected utility
of waiting for the next time level. This is the maximum between the stop node and the wait
node of level li+1.

In our approximate solution for each time stamp we compute the expected utility of stopping
(ESi) at that level. When stopping, the optimal choice is the candidate with the highest expected
utility. To compute the expected utility of stopping (ESi) optimally, we should compute the expected
utility of the winning candidate in each possible assignment and multiply it by the probability of
that assignment. A brute force approach will consider all the combinations between the assignments
of the timed variables and for each one return the product of the winner’s expected utility and the
probability of the assignment. This approach is obviously exponential in the number of candidates
since the size of the assignment combinations is exponentially affected by the number of candidates.

Alternatively, we can relax the time complexity by sorting the expected utilities of each candi-
date. In this way we can easily find the winner and multiply its expected utility by the probabilities
of the assignments of the other candidates with a lower expected utility. Since the expected utilities
are sorted, this computation is linear in the number of candidates. In Theorem 5 we analyze the
time complexity in detail.

To describe this calculation in Algorithm 2, we use the definition of NODES (see Definition
8). The algorithm obtains time t and a set of candidate trees CT and returns the expected utility
of stopping at that time. For each one of the candidate trees, lines 8–11 sort the nodes with times
less or equal to t (NODESjt) according to their expected utility. The sorting is done in an inverse
order and the ordered nodes are inserted into array sj []. All the arrays are added to set S. In order
to iterate over the arrays, we initiate pointers to the arrays; indx[] contains m pointers to m arrays,
where indx[j] contains a pointer to array sj []. All the pointers are initiated to point at the first node
in the corresponding array (lines 12–14). In the main loop (lines 15–19), we find the node with the
highest expected utility among the nodes that are pointed at. To compute its probability of winning,
we multiply its own probability with the lower probabilities of the nodes of the other candidates.
Namely, for each one of the candidate trees, we sum over the probabilities of the nodes that have
a lower expected utility than the winner (line 17) and multiply this summation with the probability
of the node that currently wins. The sum of the probabilities in the array of candidate ci (si[]) that
are lower than that of cj is actually the probability that cj is greater than ci and thus its probability
to beat it. Since the arrays are sorted, this summation is actually done from the current pointer to
the end of the arrays. This follows the law of total probability. Finally, in line 18, we increment the

251

KALECH & RECHES

Algorithm 2 EXPECTED STOPPING
(input: time t)
(input: candidate trees CT = {ct1, ..., ctm})
output: expected stopping ES(σt, π)

1: Internal variables:
2: S ← ∅
3: indx[m]
4: i← 1
5: j ← 1
6: exp← 0
7: best
8: for all ctj ∈ CT do
9: sj []← sort NODESj

t in inverse order
10: S ← S

∪
sj []

11: end for
12: for all j ≤ m do
13: indx[j]← 1
14: end for
15: while ∀j ≤ m, indx[j] did not reach the end of sj [] do
16: best← k,where k confirmssk[indx[k]] ≥ si[indx[i]] ∀i ∈ {1, ...,m}
17: exp ← exp + EU(ctbest, sbest[indx[best]]) · PrPT H(ctbest, sbest[indx[best]]) ·∏

i ̸=best

∑|si[]|
k=indx[i]

PrPT H(cti, si[k])

18: indx[best]← indx[best] + 1
19: end while
20: return exp− CST (t)

εs1=65.1

εs0=66.3 εw1=65.904

εw1=65.904

εs2=65.255 εw2=65.904

εs3=65.17 εw3=65.904

εs4=65.904

Figure 8: Pessimistic approach: decision tree based on ct1 and ct2.

pointer of the local winner to the next node to find the winner in the next iteration. We continue this
loop until one of the candidate nodes has been scanned. In this case, all the unscanned utilities of
the other arrays are less than the last utility in the array that has been completely scanned. In line
20 the function subtracts the cost of waiting from exp. This algorithm will be demonstrated in the
net page.

The next procedure describes the pessimistic decision tree for time stamp t. Such a tree is rebuilt
for each time stamp. It is invoked first with time 0:

Procedure 3 Pessimistic:

252

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

1. Generate a decision tree in a bottom-up manner:ESi for i ∈ {0, ..., h} is computed based on
Algorithm 2. Then, EWh−1 is equal to ESh and EW i for i ∈ {0, ..., h − 2} is the maximum
between ESi+1 and EW i+1. This building iterates up to the root at time stamp t. Denote ESt
and EWt by ES(σt, π) and EW(σt, π) respectively.

2. If ES(σt, π) ≥ EW(σt, π)
then, π = stop, return argmax

i∈{1,...,m}
ESi(σt, πi)

else π = wait.

3. Prune each candidate tree according to the global assignment such that the tree will be rooted
by the node reached by the local assignment and invoke Procedure 3 with time stamp t+ 1.

Let us demonstrate the approximate decision tree (Figure 8). Figure 1 and Figure 2 represent
two candidate trees and CST (t) = 1.2 · t. We generate the decision tree in a bottom-up manner
since each waiting node is actually the maximum of the nodes in the next level. In the last level l4,
there is only one node, ES4. In order to calculate the expected utility of stopping, we use Algorithm
2. NODES1

4 = {n2,1, n3,1, n5,1, n6,1}, NODES2
4 = {n2,2, n3,2, n5,2, n6,2}. Algorithm 2 sorts

these sets into s1 and s2: s1 = [80, 65, 60, 55], s2 = [75, 70, 45, 40]. In the first iteration (lines
15–19), the pointer to the winner is best = 1 since s1[1] = 80 > s2[1] = 75. Thus,

exp = s1[1] · PrPT H(ct1, n2,1)·
(PrPT H(ct2, n2,2) + PrPT H(ct2, n3,2)+
PrPT H(ct2, n5,2) + PrPT H(ct2, n6,2)) =
80 · (0.4 · 0.8) · (0.3 · 0.8 + 0.7 · 0.4 + 0.7 · 0.6 + 0.3 · 0.2) = 25.6

Then the pointer of s1 is incremented to point to s1[2]. In the next iteration, best = 2 since s2[1] =
75 > s1[2] = 65. Thus,

exp = exp+ s2[1] · PrPT H(ct2, n2,2)·
(PrPT H(ct1, n6,1) + PrPT H(ct1, n5,1) + PrPT H(ct1, n3,1)) =
exp+ 75 · (0.8 · 0.3) · (0.6 · 0.1 + 0.6 · 0.9 + 0.4 · 0.2) =
exp+ 12.24 = 37.84

Lastly, exp = 70.704 and the expected utility of stopping is ES4 = 70.704 − 4.8 = 65.904.
EW3 = ES4, since there is no wait node in time t4. Similarly, according to Algorithm 2, we
calculate ES3 based on NODES1

3 = {n2,1, n3,1, n4,1}, NODES2
3 = {n2,2, n3,2, n4,2}: ES3 =

65.172. EW2 = max(ES3, EW3) = 65.904. The complete decision tree is presented in Figure 8.
At runtime, the decision maker decides to wait or stop according to ES0 and EW0 (in the first

iteration when t = 0). The agent decides to stop if ES0 > EW0 and then it chooses the candidate
with the highest expected utility. If the agent decides to wait, several assignments will occur. At
this point the decision tree needs to be recomputed as several nodes have become irrelevant. In the
presented example the agent decide to stop at time stamp t = 0 since the expected stop, ES0 (66.3)
is higher than the expected wait EW0 (65.904).

5.2 Analysis

First, we show the time complexity of the pessimistic approach.

253

KALECH & RECHES

Theorem 5 Given time horizon T = (0, ..., h), the time complexity of building the decision tree in
the pessimistic approximation isO(h ·(m2M+mM logM)), wherem is the number of candidates
and M is the maximal size among the candidate trees.

Proof: At time stamp ti, the algorithm sorts the nodes in the set NODESjti for each candidate tree
ctj . Since the maximum number of nodes inNODESjti isM , the worst case complexity of this sort
is M logM . Since we perform this sort for each candidate tree, the complexity is O(mM logM).
To compare sorted sets in set S, the algorithm goes over the candidates and finds the maximum
among the pointed nodes of the candidates. This computation is m2. The algorithm stops once it
reaches the end of one candidate’s array (line 15). The worst case is M . Finding PrPT H of each
node can be calculated once before the loop with a complexity of mM logM . Thus, the worst case
time complexity of Algorithm 2 is O(m2M +mM logM). We perform Algorithm 2 for each time
stamp and as a result the time complexity is O(h · (m2M +mM logM)).2

Similar to the optimistic algorithm, the pessimistic algorithm rebuilds the decision tree in each
time stamp in polynomial time and thus can address changed and additional timed variables.

We now show that if Procedure 3 decides to wait an optimal algorithm would operate similarly.
If the expected gain from stopping is greater than the expected gain from waiting, Procedure 3
returns a stopping policy. In this case an optimal policy could return a waiting policy.

Theorem 6 Given a cost function CST (t), a set of candidate trees CT , a global assignment σt and
an optimal policy π∗, a policy π taken by Procedure 3 and an optimal policy π∗, the global expected
gain GEG holds: ES(σt, π) = ES(σt, π∗) and EW(σt, π) ≤ EW(σt, π∗).

Proof: For each time t, Algorithm 2 calculates the expected gain from stopping, ES(σt, π), by
summing for each possible assignment the expected utility of the candidate with the highest value
(the winner candidate) times the probability of the assignment. Since for each time stamp the sum of
the probabilities of all the possible assignments is 1, according to the law of total probability (Beaver
& Mendenhall, 1983), ES(σt, π) = ES(σt, π∗). The waiting node is the maximum between the
wait node and the stop node at the next time level. Therefore, the algorithm does not take into
consideration the combination of waiting and stopping for different assignments. In contrast, with
an optimal policy the algorithm considers such combinations and takes the maximal value for each
assignment. Thus, the value of its expected wait may be higher and as a result the wait node’s value
is less than or equal to the optimal expected gain from waiting, EW(σt, π) ≤ EW(σt, π∗).2

Corollary 2 Based on the last theorem, if π(σt) = wait, an optimal policy would result in the
same decision. This is due to the fact that if π is a policy obtained by Procedure 3 and π(σt) =
wait, then EW(σt, π) > ES(σt, π). Based on the last theorem EW(σt, π) ≤ EW(σt, π∗) and
ES(σt, π) = ES(σt, π∗), and thus EW(σt, π∗) > ES(σt, π∗) therefore, policy π∗ decides to wait.
Consequently, the pessimistic approach guarantees the optimal expected gain from waiting.

We now prove the approximation error of the expected wait.

Theorem 7 Given a time horizon T = (0, ..., h), a cost function CST (t), a set of candidate trees
CT , a global assignment σt and a global assignment σt, if π is a policy obtained by Procedure
3 and π∗ is a policy obtained by the optimal algorithm, EW(σt, π∗) − EW(σt, π) ≤ CST (h) −
CST (t+ 1).

254

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

Proof: The optimal expected gain that can be obtained from stopping or waiting at a specific time
stamp t is the expected gain from waiting until the last time stamp h (where there is no uncer-
tainty) without considering the cost of this waiting, ES(σh, π) + [CST (h) − CST (t)]. Thus, the
expected gain from waiting at time t holds, (1) EW(σt, π∗) ≤ ES(σh, π)+[CST (h)−CST (t+1)]
(since the expected wait EW(σt, π∗) already includes the cost of waiting from time t to time stamp
t + 1). On the other hand, because the wait nodes are calculated as the maximum among their
children and since in the last level lh there is only a stop node, ES(σh, π) ≤ EW(σt, π) and thus,
(2) −EW(σt, π) ≤ −ES(σh, π). As a result, (by summing the two inequalities (1) and (2)),
EW(σt, π∗)− EW(σt, π) ≤ CST (h)− CST (t+ 1). 2

Finally, we prove the approximation error of the global expected gain.

Theorem 8 Given time horizon T = (0, ..., h), a policy π taken by Procedure 3 and an optimal
policy π∗, a cost function CST (t), a set of candidate trees CT , a global assignment σt holds:
GEG(CT, σ0, π∗)− GEG(CT, σ0, π) < CST (h)− CST (1).

Proof: According to Corollary 2 , the pessimistic policy π is not optimal except for as-
signment σt, π(σt) = stop and an optimal policy π∗ holds π∗(σt) = wait. In this case,
GEG(CT, σt, π∗) = EW(σt, π∗) and GEG(CT, σt, π) = ES(σt, π). If π(σt) = stop at time
stamp t, then ES(σt, π) > EW(σt, π) and according to Theorem 7, EW(σt, π∗) − EW(σt, π) ≤
CST (h) − CST (t + 1). Thus, EW(σt, π∗) − ES(σt, π) ≤ CST (h) − CST (t + 1). As a
result, GEG(CT, σt, π∗) − GEG(CT, σt, π) < CST (h) − CST (t + 1). In particular, for t=0,
GEG(CT, σ0, π∗)− GEG(CTs, σ0, π) < CST (h)− CST (1).2

6. Evaluation

Before presenting an empirical evaluation, we summarize the theoretical analysis of our algorithms
in Table 2.

Policy #trees Complexity Approximation Expected wait Approximation error of EW
m-#candidates, error of GEG
M-size of the candidate
tree

(h-max time hori-
zon)

OPTIMAL 1 O(Mm) 0 optimal 0
OPTIMISTIC m O(M2m2) CST (h− 1) overestimate

∑f
i=1 EU(cti, ni) + CST (h)

PESSIMISTIC 1 O(m2M +mM logM) CST (h)−CST (1) underestimate CST (h)− CST (t+ 1)

Table 2: Summary of the theoretical evaluation of the algorithms.

The three algorithms, OPTIMAL, OPTIMISTIC, and PESSIMISTIC, are based on a decision
tree approach. However, while the optimal and the pessimistic algorithms use a single decision
tree that merges all the candidates, the optimistic algorithm implements m decision trees, one for
each candidate tree. The time complexity and the approximation error of the global expected gain
are presented in columns three and four, respectively. The fifth column presents an evaluation of
the expected wait. Obviously, the optimal algorithm computes the expected wait optimally. The
optimistic algorithm overestimates the expected wait and thus a waiting decision is not optimal
since the real expected wait may be less than the stop. The pessimistic algorithm underestimates
the expected wait and although a waiting decision is optimal, a stopping decision is not since the
real expected wait may be higher and consequently the optimal decision would be to wait. The last
column presents the approximation error of the expected wait.

255

KALECH & RECHES

As shown in table 2, the error of the expected wait estimated by the optimistic algorithm is
much higher than that of the pessimistic algorithm. As a result we estimate that the pessimistic
performances will be closer to the optimal algorithm in most of the situations. However, since
the expected wait of the optimistic algorithm is overestimated, it may frequently choose to wait
and obtain information and thus in case that the cost function increases moderately in time, the
performance of the optimistic algorithm will increase.

6.1 Experimental Settings

We experimentally validated our algorithm within a systematic artificial framework inspired by
the stock market. We varied the number of candidate stocks (2–30) and the time horizon of the
economic events (1–5) (i.e., the timed variables). We ran each combination 25 times. In each test,
the possible profits from the stocks (the utility) were randomly selected from a uniform distribution
over the range [$10K . . . $100K]. Later we present experiments with additional distributions. We
ran each scenario (of 25 tests) with 25 random assignments for the timed variables. Each data point
in the graphs is an average of 625 tests (25 random utilities × 25 random assignments).

We compared the three algorithms (OPTIMAL, OPTIMISTIC and PESSIMISTIC) to four base-
line algorithms:

1. A trivial stopping strategy; determining the winning candidate at the beginning based only on
the expected utility (STOP).

2. A trivial waiting strategy; determining the winning candidate at the end based on full infor-
mation (WAIT).

3. An algorithm that stops in the middle (horizon/2) and chooses the best candidate based on
the expected gain (MIDDLE).

4. An algorithm that stops at a random time (RANDOM).

We compared the above algorithms using two metrics: (1) runtime, and (2) the outcome utility.
The runtime of OPTIMAL is the runtime of building the decision tree; the runtime of the approxi-
mations is the average runtime of building the decision trees in each level. To normalize the utility,
we divided it by the utility gained by an omniscient decision maker with no cost. All the following
experiments presented in the next sections apart from those presented in Section 6.4 deal with dis-
joint timed variables, namely, two candidate trees do not share the same timed variable. Notice that,
using disjoint time variables, is the worst case scenario for OPTIMAL since finding the optimal
time to stop requires taking into consideration all the combinations between the timed variables of
the candidate trees. When the timed variables are disjoint the number of comparisons is exponential
in the number of candidates (see Table 2).

6.2 The Effect of the Cost

The cost function is a key factor in selecting the most affective algorithm. To examine this factor, we
set a simple cost function that grows linearly with the time CST (t) = a · t and varied the coefficient
of the time stamp (a) from 0.01K to 2.91K, with jumps of 0.15K. We fixed both the number of
candidates and the horizon at 5. STOP strategy, as presented in Figure 9, is not affected by the cost
since it stops at time t = 0 in any case. On the other hand, the utility of WAIT, MIDDLE and

256

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

0.75

0.8

0.85

0.9

0.95

1

0
.0
1

0
.1
6

0
.3
1

0
.4
6

0
.6
1

0
.7
6

0
.9
1

1
.0
4

1
.1
6

1
.3
1

1
.4
6

1
.6
1

1
.7
6

1
.9
1

2
.0
4

2
.1
6

2
.3
1

2
.4
6

2
.6
1

2
.7
6

2
.9
1

N
o

rm
a

li
ze

d
 u

ti
li

ty

Cost per time stamp (in thousands)

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 9: Normalized utility over the cost of
each time step, where CST (t) = x ·
K · t. Time horizon is 5 levels and the
number of candidates is 5.

0

0.2

0.4

0.6

0.8

1

0
.0
1

0
.1
6

0
.3
1

0
.4
6

0
.6
1

0
.7
6

0
.9
1

1
.0
4

1
.1
6

1
.3
1

1
.4
6

1
.6
1

1
.7
6

1
.9
1

2
.0
4

2
.1
6

2
.3
1

2
.4
6

2
.6
1

2
.7
6

2
.9
1

D
e

p
th

 i
n

 p
e

rc
e

n
ts

Cost per time stamp (in thousands)

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 10: Depth of decision over the cost of
each time step, where CST (t) = x ·
K · t. Time horizon is 5 levels and
the number of candidates is 5.

RANDOM, linearly decreases while the cost increases. Figure 10 shows that OPTIMAL and both
approximations make the decision earlier as the cost increases since it becomes less worthwhile to
wait. However, the depth of the decision decreases faster in OPTIMAL and PESSIMISTIC than in
OPTIMISTIC. The depth of the decision influences the utility of the algorithms. It is interesting to
see that the gap between the utility of OPTIMISTIC and PESSIMISTIC grows as the cost increases,
similarly to the gap in the depth. This can be explained by the fact that OPTIMISTIC overestimates
the expected wait and thus it makes the decision later and the loss from the cost is more significant.
Nevertheless, from cost = 2 both approximations and the optimal algorithm stop at time stamp 0
and achieve the same utility.

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 11: Normalized utility over the
number of candidates, where
CST (t) = 0.28K · 3

√
t for time

horizon of 5 levels.

0.92

0.93

0.94

0.95

0.96

2 3 4 5 6

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 12: Normalized utility over the num-
ber of candidates, where CST (t) =
0.28K · 3

√
t for time horizon of 5 lev-

els: zoom in the utility range of 0.92–
0.96.

We further ran experiments with additional cost functions. Figures 11 and 13 present non-
linear cost functions. The cost in Figure 11 increases moderately (CST (t) = 0.28K · 3

√
t) and the

cost in Figure 13 increases fast (CST (t) = 0.28K · t2). We show that, for the cost function that

257

KALECH & RECHES

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 13: Normalized utility over the num-
ber of candidates, where CST (t) =
0.28K · t2 for time horizon of 5 lev-
els.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

1/7 1/6 1/5 1/4 1/3 1/2 1 2

N
o

rm
a

li
ze

d
 u

ti
li

ty

cost function: cost(t)=0.28k*t^x

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 14: Normalized utility over the cost func-
tion: cost(t) = 0.28K · tx, where
time horizon is 5 levels and number
of candidates is 5.

increases more moderately (a root function), the pessimistic algorithm becomes less effective and
OPTIMISTIC becomes better than PESSIMISTIC. As shown in Figure 11 and in a zoom-in view
in Figure 12, in such functions OPTIMAL is significantly better than PESSIMISTIC and in most
situations it is better than OPTIMISTIC (tested with a 95% confidence value).

To further examine the influence of the cost function on the algorithms, we varied consistently
the cost function. We choose the cost function cost(t) = 0.28K ·tx while changing x in the range of
{1
7 ,

1
6 ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2}. Obviously, by decreasing x the function increases more moderately. Figure

14 presents the results. It is clear shown that OPTIMISTIC is better than PESSIMISTIC for root
functions smaller than square root. Then, as the cost function increases faster the gap between
OPTIMISTIC and PESSIMISTIC increases in a favor of PESSIMISTIC.

7

7.5

8

8.5

9

9.5

0 1 2 3 4 5

A
ve

ra
g

e
d

 e
xp

e
ct

e
d

 u
ti

li
ty

Time

expected utility 0.28K*t 0.28K*t^(1/3)

Figure 15: Averaged expected utility over time, where time horizon is 5 levels and number of can-
didates is 5.

258

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

To examine the reason for the behavior of the approximations as dependent in the cost function,
we observed the growth of the averaged expected utility as a function of the time (Figure 15). The
x-axis is the time horizon and the y-axis is the averaged expected utility. Obviously, the expected
utility increase as the time increases since the more events are discovered the uncertainty decreases.
It seems that the averaged expected utility grows moderately, approximately logarithmically, as a
function of the time. In addition to the averaged expected utility, we present in Figure 15 two
cost functions. The first is the linear cost function CST (t) = 0.28K · t, where the pessimistic
approximation is better, and the second is the root cost function CST (t) = 0.28K · 3

√
t, where

the optimistic approximation is better. We set both cost functions to start at the same value of
the expected utility on the y-axis. Figure 15 compares between the growth behavior of the two
cost functions and the expected utility. This comparison may explain the fact that when the cost
function grows linearly the pessimistic algorithm, which usually stops earlier, is better than the
optimistic algorithm, since the cost function grows faster than the utility function. However, when
the cost function grows more moderately (a root function), meaning, the cost function and the utility
function has a similar trend, the optimistic algorithm, which usually stops later, becomes better.

In the rest of the experiments we will examine other factors that influence the performance of
the algorithms. As we showed, the difference between the algorithms for a root cost function is
small and thus it might be hard to examine the impact of the other factors. Therefore, in the rest of
the experiments we use a linear cost function by fixing the waiting cost of all the events to a constant
value of $2.8K for each time stamp (CST (t) = 2.8K · t).

6.3 The Effect of Number of Candidates

We present a subset of the results with a time horizon of 5 levels. Figure 16 presents the utility for a
test setting of up to six candidates. Due to memory limitations, the optimal algorithm failed to deal
with larger candidate sets. The utility gained by PESSIMISTIC is very close to OPTIMAL and the
difference between them is not significant. This result is much better than the results of the baseline
algorithms and even better than OPTIMISTIC.

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 16: Normalized utility over 6 candidates
with a time horizon of 5 levels.

0.001

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6

R
u

n
ti

m
e

 (
m

s)

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 17: Runtime over 6 candidates with a
time horizon of 5 levels.

The runtime is presented in a logarithmic scale in Figure 17. The runtime of all the algorithms
is polynomial, except for OPTIMAL, which is exponential. For instance, the average runtime of
OPTIMAL for six candidates is 5836 milliseconds, while that of the other algorithms is less than
two milliseconds.

259

KALECH & RECHES

We further compared the algorithms, excluding the optimal algorithm, for larger sets of up to 30
candidates. The utility of PESSIMISTIC is always significantly better than the others, as shown in
Figure 18. This may be explained by the approximation error of the expected wait. By comparing
the approximation error of the two algorithms (see Table 2), it is clear that the approximation error
of the expected wait of OPTIMISTIC is much greater than that of PESSIMISTIC and thus OPTI-
MISTIC is expected to make its decision later than PESSIMISTIC. Note that there is no statistically
significant difference between OPTIMISTIC and MIDDLE. Later we will present experiments with
larger cost values and horizon where OPTIMISTIC is much better than MIDDLE.

Although the complexity of both PESSIMISTIC and OPTIMISTIC is polynomial, PES-
SIMISTIC is better than OPTIMISTIC in terms of runtime, as shown in Figure 19. This can be
justified by the complexity analysis of the algorithms, as shown in Table 2. While OPTIMISTIC is
square in both M and m, PESSIMISTIC is square only in m but not in M .

To illustrate the significance of these results, consider for instance a stock market with five
candidate stocks. Based on our experiments, the average utility of the optimal algorithm is $92.8K,
which is 97.6% of the utility obtained by an omniscient decision maker. PESSIMISTIC’s utility is,
on average, less than the optimal by an amount of only $300, while OPTIMISTIC reduces the utility
by an amount of $2, 800. Obviously, the baseline algorithms reduce the utility drastically. The wait
strategy, for instance, produces a profit of only $80.5K.

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 18: Normalized utility over 30 candi-
dates with a time horizon of 5 levels.

0.001

0.01

0.1

1

10

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
u

n
ti

m
e

 (
m

s)

#candidates

OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 19: Runtime over 30 candidates with a
time horizon of 5 levels.

6.4 Shared Timed Variables

The previous experiments were run on settings where different candidates are not affected by the
same timed variable. In the next experiment we show that, even if different candidates are affected
by the same timed variables, both approximations achieve a similar utility as previously. We gener-
ated candidate trees with a horizon of 5 time stamps. We set 50% of the variables to affect multiple
candidates. In Figures 20 and 21 we present the normalized utility for 6 to 30 candidates. By
comparing these results to the results without shared variables (Figures 16 and 18) we can see that
the baseline algorithms MIDDLE and RANDOM significantly improve their utility. There is no
statistically significant difference between each one of the other algorithms with and without shared
variables (tested with a 95% confidence value). The reason for the improvement of MIDDLE and
RANDOM is that the more shared variables the less uncertainty and thus the expected utilities of
the candidates is more accurate. On the other hand the computation of the expected stopping of the

260

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 20: 50% Shared timed variables: Nor-
malized utility over 6 candidates with
a time horizon of 5 levels.

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 21: 50% Shared timed variables: Nor-
malized utility over 30 candidates
with a time horizon of 5 levels.

approximation algorithms relies on the independence between the variables and thus the decrease
in the uncertainty does not improve their results.

We also checked the difference between the algorithms and found that there is no statistically
significant difference between OPTIMAL and PESSIMISTIC. Both algorithms are better than OP-
TIMISTIC but there is no statistically significant difference between OPTIMISTIC and MIDDLE.
The results of the approximation algorithms are significantly better than the other baseline algo-
rithms (tested with a 95% confidence value).

As analyzed in Section 3, the optimal algorithm addresses shared timed variables very efficiently
and in fact it reduces its computational complexity. In Figure 22 we show the runtime with 50%
shared timed variables. Compared to Figure 17 we can see that OPTIMAL runs in two orders of a
magnitude faster than experiments with no shared timed variables.

0.001

0.01

0.1

1

10

2 3 4 5 6

R
u

n
ti

m
e

 (
m

s)

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 22: 50% Shared timed variables: runtime
over 6 candidates with a time horizon
of 5 levels.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

D
e
p
th

 i
n
 p

e
rc

e
n
ts

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 23: Normalized depth over 6 candidates
with a time horizon of 5 levels.

6.5 The Depth of the Decision

Figure 23 illustrates the attributes of the PESSIMISTIC and OPTIMISTIC algorithms when run
on candidate trees with a time horizon of 5 levels. The y-axis represents the depth (in percentage

261

KALECH & RECHES

relative to the maximal horizon) in which the algorithms stop and decide. Figure 23 presents the
results for candidate trees with a time horizon of 5 levels. As analyzed, PESSIMISTIC always stops
before the optimal algorithm, since its expected wait is underestimated. OPTIMISTIC always stops
after the optimal algorithm since by overestimating the expected wait it continues to wait, although
an optimal algorithm decides to stop.

6.6 The Effect of the Horizon

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

N
o
rm

a
li
ze

d
 U

ti
li
ty

Horizon

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 24: Normalized utility over horizon (1-
10) where number of candidates is 5.

0.75

0.8

0.85

0.9

0.95

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
o

rm
a

li
ze

d
 u

ti
li

ty
Horizon

OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 25: Normalized utility over horizon (1-
30) where number of candidates is 5.

Next we examine the influence of the horizon of the candidate trees on the utility. To grow
candidate trees with a large horizon, we generated a chain; a tree such that every left branch leads
to a leaf while every right branch leads to another internal node. Thus, the size of the candidate tree
grows linearly with the horizon. The experimental setting for these experiments includes 5 candi-
dates. Figures 24, 26, and 28 present the results for horizon 1–10 by comparing all the algorithms.
Since it was not feasible to run OPTIMAL for a larger horizon, we ran the rest of the algorithms for
horizon 1–30 (see Figures 25, 27 and 29). As shown in Figures 24 and 25, the utility is not dramat-
ically affected by the horizon for the optimal, approximations and stop algorithms. This is different
for WAIT, MIDDLE and RANDOM, which lose a constant cost every time stamp since they do
not intelligently compute where to stop. The stop strategy is not affected by the horizon since it
always makes the decision at the first time, thus we see that for low horizon levels a wait strategy
is better, but for high levels the stop strategy outperforms the wait strategy as well as MIDDLE and
RANDOM.

Although the chain topology of the candidate trees grows linearly with the horizon, the runtime
of OPTIMAL increases exponentially in the horizon, since at each level it splits the possible assign-
ments of the candidates’ timed variables (Figure 26, the runtime is presented in a logarithmic scale).
As shown in Figure 27, OPTIMISTIC and PESSIMISTIC grow polynomially but OPTIMISTIC
grows faster. Naturally, the relative depth of the decision of OPTIMAL and both approximations
decrease in the horizon, since the cost function grows in the horizon and thus it is less worthwhile
to wait for more information (Figure 28 and 29). Nevertheless, the decision time does not converge
to 0 since once the cost is not very high, the cost of waiting a few time stamps may be less than
the expected utility. Obviously, as discussed above, the higher the cost the less the wait. Note that

262

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

0.001

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

 (
m

s)

Horizon

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 26: Runtime over horizon (1-10) where
number of candidates is 5.

0.001

0.01

0.1

1

10

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

R
u

n
ti

m
e

 (
m

s)

Horizon

OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 27: Runtime over horizon (1-30) where
number of candidates is 5.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

D
e

p
th

 i
n

 p
e

rc
e

n
ts

Horizon

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 28: Depth of decision over horizon (1-
10) where number of candidates is 5.

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

D
e

p
th

 i
n

 p
e

rc
e

n
ts

Horizon

OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 29: Depth of decision over horizon (1-
30) where number of candidates is 5.

the decrease of the OPTIMISTIC compared to the PESSIMISTIC is moderate (Figure 29) since the
approximation error of the expected wait of OPTIMISTIC is greater than that of PESSIMISTIC.

6.7 The Effect of the Utility Distribution

In the above experiments, we simulated the utilities by taking them from a uniform distribution. To
simulate a varied range of domains we present additional results where the utilities are taken from a
Beta distribution with symmetric and asymmetric cases. A Beta distribution with α = β provides a
symmetric distribution. For α = β ≥ 2 a Beta distribution is similar to a normal distribution defined
in an interval of [0, 1] and thus reflects the distribution of many real-world domains. The larger the
value of α = β the lower the variance. Running experiments with a Beta distribution allows us to
examine: (1) the influence of the variance - by controlling the value of α = β, and (2) the influence
of the skewness - by setting α to a fixed value and varying β.

In the first experiment we set α = β = 2 and the number of candidates and the horizon at 5. By
comparing the results (Figure 31) to the results of the experiments with uniform distribution (Figure
16), we can see that all the algorithms except for WAIT, improve the utility. This can be explained
by the fact that the variance between the candidates’ utilities in a Beta distribution is smaller than
the variance in a uniform distribution, and thus by choosing a non-optimal candidate, the utility is

263

KALECH & RECHES

Figure 30: A Beta distribution with α = 2 and
β = 2.

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 31: Utilities were taken from a Beta dis-
tribution with α = 2 and β = 2
skewness=0. Normalized utility over
candidates with a time horizon of 5
levels and 5 candidates.

closer to that of the optimal candidate. Therefore, if an algorithm stops and selects a non-optimal
candidate, the utility by such a selection is closer to the optimal (and higher) in a Beta distribution
than in uniform distribution. This also explains why in a Beta distribution the utility of STOP is
higher than that of OPTIMISTIC, while in a uniform distribution it is lower. This is also supported
by the depth of the decision. The decision is made earlier in a Beta distribution than in a uniform
distribution. The utility of the WAIT strategy is the same in both distributions because once the
decision is made at the end it is optimal and thus only the cost is reduced, which is the same in both
distributions.

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6

N
o

rm
a

li
ze

d
 u

ti
li

ty

The value of =β

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 32: Utilities were taken from a Beta distribution with varied α = β. Normalized utility over
candidates with a time horizon of 5 levels and 5 candidates.

To further examine this insight we run experiments with a varied range of α = β of 2 to
6. By increasing α and β the variance is decreased. Figure 32 presents the average utility for

264

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

this experiment. It seems that the utility of most algorithms is not significantly influenced by the
variance. A possible explanation is the tradeoff between two trends. On the one hand, the smaller the
variance between the utilities of the candidates, the less difference between the utilities of the chosen
candidate and the best candidate. On the other hand, the difference between the expected utility of
the candidates, decreases with the variance, and thus the possibility of selecting a wrong candidate
increases. Consequently, the probability for an error in choosing the best candidate increases but the
payoff for an error is decreased and thus the utility is not significantly influenced by the variance.
An exception is the WAIT algorithm which decreases with the variance. The reason is that it makes
the decision only at the end and thus always chooses the best candidate. However, since a Beta
distribution with α = β is a symmetric distribution then as the variance increases the best utility
decreases (close to the middle), and on the other hand, it pays a full cost for waiting to the last time
stamp.

Figure 33: A Beta distribution with α = 2 and
β = 6.

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5

N
o

rm
a

li
ze

d
 u

ti
li

ty

#candidates

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 34: Utilities were taken from a Beta dis-
tribution with α = 2 and β = 6
skewness=0.69. Normalized utility
over candidates with a time horizon
of 5 levels and 5 candidates.

We repeated the experiments with a Beta distribution while changing the parameters of the
distribution only for the first candidate to α = 6 and β = 2. This difference influences the skewness
of the distribution (-0.69) and gives a high probability of gaining higher values (Figure 33). Since
α and β parameters of the other candidates remain the same (α = 2 and β = 2), their skewness is 0
and thus the first candidate is likely to be chosen. As shown in Figure 34, low skewness of the first
candidate significantly increases the utility of all the algorithms. The reason is that independently
of the stopping time, in most cases, the expected utility of the first candidate is the highest and thus
it is selected by the algorithms. Then only the cost of waiting reduces the utility. This insight is
significantly shown in the high utility of the STOP algorithm.

We further experimented with the influence of the skewness on the algorithms. Figure 35
presents the normalized utility by changing the skewness of the first candidate. The lower the
skewness, the more likely the first candidate will be chosen. The increase in the utility of all algo-
rithms is clear since the more likely the first candidate will be chosen, the fewer errors there will be
in choosing the best candidate.

265

KALECH & RECHES

0.75

0.8

0.85

0.9

0.95

1

0.00 -0.29 -0.47 -0.60 -0.69

N
o

rm
a

li
ze

d
 u

ti
li

ty

Skewness

OPTIMAL OPTIMISTIC PESSIMISTIC STOP

WAIT MIDDLE RANDOM

Figure 35: Utilities were taken from a Beta distribution with α = 2 and varied β and skewness.
Normalized utility over candidates with a time horizon of 5 levels and 5 candidates.

6.8 Conclusions

To summarize, the conclusions from the experiments are:

1. As the cost function increases more moderately (a root function), the PESSIMISTIC algo-
rithm becomes less effective and the OPTIMISTIC becomes better than the PESSIMISTIC.

2. The utility of PESSIMISTIC is very close to OPTIMAL and in most cases (for functions that
grow polynomially) there is no statistically significant difference between them.

3. The runtime of OPTIMAL is exponential and actually feasible only for a few candidates with
small candidate trees.

4. The runtime of the approximations is polynomial but PESSIMISTIC runs much faster than
OPTIMISTIC.

5. There is no statistically significant difference between the experiments that include shared
timed variable and experiments that include only disjoint timed variables (except for MID-
DLE and RANDOM).

6. OPTIMAL runs much faster in experiments which include candidates with shared timed vari-
able.

7. PESSIMISTIC strategy makes the decision slightly earlier than OPTIMAL.

8. OPTIMISTIC strategy makes the decision much later than OPTIMAL. The gap is increased
by increasing the horizon of the candidate trees and the cost of waiting. For a very large
horizon and cost the depth is very close to time=0.

9. There are cases (low horizon, high number of agents, cost functions that grow polynomially
and shared timed variables) where MIDDLE is better than the OPTIMISTIC algorithm.

266

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

10. The greater the expected utility of one candidate is higher than the others, the greater the
utility achieved by the different algorithms.

11. The normalized utilities achieved by the algorithms is almost not affected by the variance of
the candidates’ utilities. However, a significant improvement is achieved with a Beta distri-
bution (α = β ≥ 2) in relation to uniform distribution.

7. Related Work

In this section we discuss the relation between this work and other research related to the optimal
stoping problem and exploration—exploitation problems.

7.1 Optimal Stopping Problem

Our problem is related to the Optimal Stopping Problem (OSP). In OSP the goal is to choose a
time to take a particular action in order to maximize the expected reward (Ferguson, 1989; Gilboa
& Schmeidler, 1989; Peskir & Shiryaev, 2006). The classical stopping problem is defined by two
objects: (i) a sequence of independent random variables, X1, X2, ... , with a known joint distri-
bution, and (ii) a sequence of real-valued reward functions, y0, y1(x1), y2(x1, x2), ...,. For each
n = 1, 2, ..., after observing X1 = x1, X2 = x2, ..., Xn = xn, an agent may stop and receive the
known reward, yn(x1, ..., xn), or it may continue and observe Xn+1. If the agent chooses not to
make any observation, it will receive the constant amount, y0. Take for example the “house-selling
problem” where an agent wishes to sell a house. Each day it receives an offer Xi. The agent should
decide either to accept the offer or to wait for the next offer. Waiting is associated with a cost of
living. Offers are assumed to be independent. The goal is to get the highest offer (Lippman &
McCall, 1976).

This class of problems seems to be similar to our problem, since they both address the prob-
lem of finding the best time to stop. However, in a deeper perspective, there are three significant
differences between these problems:

(1) Stopping reward: In OSP, an agent has to decide whether to stop and obtain a known
reward, based on the prior random variables or to wait until the next time stamp and observe the
next random variable. If the agent chooses to stop, and not to make any observation, it will receive
a constant reward that is not dependent on further random variables. In contrast to OSP, in our
model, the utility (which is not considering the waiting cost) of each candidate does not depend
on the decision to stop or wait, but on future events. Even the gain is not solely dependent on the
stopping time, since different future events influence the gain differently. A waiting decision enables
the decision maker to acquire more information about the reward of each candidate, although this
reward is not affected by the waiting decision. For example in the house-selling problem, an agent
wishes to sell a house. Each day it receives an offer Xi. The agent should decide either to accept
the offer or to wait for the next offer. If he decides to stop and accept the offer he obtains the reward
of the offer. This reward is not affected by the future offers. In our model, on the other hand, the
reward from stopping depends on future random variables. This difference in the reward obviously
affects the way each approach maximizes the reward. For example, assume an omniscient agent
that knows the outcomes of all the variables in advance; it will certainly stop at the time stamp with
the highest value in the OSP. Contrastingly, in our problem, the best time to stop is at the first time

267

KALECH & RECHES

stamp since at that time the agent knows the exact utility of the candidates rather than the expected
utility.

The second aspect is related to the independency of the stopping rewards. In OSP, the stopping
rewards of each time stamp are assumed to be independent. For example, in the house-selling
problem, the offers are independent. In our problem, although the variables are independent, the
rewards from stopping are dependent. This difference is significant since, with the independency
assumption, the stopping rule of OSP depends on the probability that the agent did not stop until
the current time stamp multiplied by the probability that it will stop now. In our model, on the other
hand, the rewards from stopping depend on future random variables and are calculated by taking
the expected rewards of the candidates and are therefore dependent. As a result, we are not able to
use the OSP model to solve our problem and vice versa.

(2) Multiple candidates: In OSP there is one reward from observing X1, X2, ..., Xn. Our
problem, on the other hand, considers multiple candidates. As a result, each candidate has a different
reward from observing the variables. There are two different challenges that we face: (1) finding
the best time to stop, and (2) choosing the candidate with the highest expected utility at that time.
Although these are two different challenges, they cannot be treated in two steps: finding the best
time to stop in advance, and when that time is reached choosing the candidate with the highest
expected utility at that time. Such an approach would have made the challenge much simpler and
thus the fact that there are multiple candidates would be insignificant. Nevertheless, the problem
cannot be solved in two separate steps since the decision of whether to stop or wait depends on
the assignments that will occur the next time. Since each candidate may be affected by different
assignments, we should consider the combination of all assignments which makes this problem
hard.

(3) Joint distribution: In the classical stopping problem the random variables have a known
joint distribution. In the previous example, all the offers are assumed to have the same known
distribution and thus in case of infinity there is convergence. Our problem is different since it
considers random variables with different distributions.

In the last few years several researchers have generalized the classical stopping problem in order
to deal with cases of multiple distributions, i.e., multiple optimal stopping problems. Riedel (2009)
presents a unified and general theory of optimal stopping under multiple priors in discrete time
and extends the theory to continuous time (da Rocha & Riedel, 2010; Cheng & Riedel, 2010). He
developed a theory of optimal stopping with more than one joint distribution and with unknown dis-
tribution of the variables using and extending suitable results from the martingale theory (Williams,
1991). Still the two differences (Stopping reward, Multiple candidates) specified above, are main-
tain. In addition, Riedel presents specific constraints on the random variables such as considering
the Martingale theory and assuming that the set of stopping rewards are time-consistent (Cheridito
& Stadje, 2009). In contrast, in our work the distribution of the variables is known in advance and
we do not require any specific constraints on the random variables.

These three differences demonstrate that in spite of the similarity between our problem and OSP,
these two models are not comparable and cannot be reduced to each other.

7.2 Exploration—Exploitation Problems

In addition to the classical stopping problem, we also consider a subset of the family of
exploration—exploitation problems as a kind of stopping problem. In these problems an agent

268

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

has to decide when to stop acquiring information (exploration) about a specific issue and make a
decision (exploitation). Sequential hypothesis testing is a method which is based on statistical
tests. This method enables a stopping rule to be defined as soon as significant results are observed.
This method is based mainly on uncertain information, using multiple observations and samples.
For instance, Wald and Woldforwitz (1948) present a problem where a chance variable, X’s dis-
tribution, only can be either p0(X) or p1(X). The required decision is to choose between the two
options based on acquired observations of this variable. The research goal obviously, is to make a
decision with a minimal number of observations.

In the multi-armed bandit problem (Katehakis & Veinott, 1987) an agent allocates trials over
slot machines where each machine provides a random reward from a distribution specific to that
machine. The objective is to allocate trials over the slot machines in order to maximize the expected
reward from using the machines. One version of the multi armed bandit which is the most relevant
to our research is the Max K-Armed Bandit. In the Max K-Armed Bandit problem (Cicirello &
Smith, 2005; Streeter & Smith, 2006) the objective is to allocate trials over the K arms in order to
identify the best arm. Cicirello and Smith (2005) extend the problem where the agent runs trials
repeatedly, where in each trial it tries to improve the reward it has achieved thus far.

Similarly, in the ranking and selection problem an agent is supposed to select an alternative
among several options. To demonstrate the problem, Powell and Ryzhov present the following ex-
ample (Powell & Ryzhov, 2012): a physician should choose a type of drug among several medicines
which reduces the cholesterol of a patient,. In order to decide about the best drug he might require
making some physical experiments or he might need to run a number of medical laboratory sim-
ulations. Testing an alternative might involve running a time-consuming computer simulation, or
require a physical experiment. Obviously, the experimental process is costly and thus the challenge
is to allocate the experiments that most efficiently and accurately make the selection. Usually there
is a limited budget for evaluating the alternatives and when the budget is exhausted, the agent has
to choose the alternative that appears to be the best, according to the obtained knowledge (Swisher,
Jacobson, & Yücesan, 2003). Frazier and Powell (2008) present a version of this problem where the
prior information units and the new obtained information units about each alternative are sampled
from a specific distribution with unknown mean and variance. The model provides a new heuristic
sampling and stopping rule that relies on the distribution of the samples.

An additional problem in statistical analysis is change detection which tries to identify a change
in the parameters of a stochastic system. The changes can be in the probability distribution of a
stochastic process or time series (Basseville & Nikiforov, 1993). In general, the problem concerns
both detecting whether or not a change has occurred (several changes also might occur), and iden-
tifying the time of any such change. The model has to decide when to stop obtaining observations
and find the closest time stamp that the distribution has changed. The problem in some works is to
detect the disorder time as quickly as possible after it happens and minimize the rate of false alarms
at the same time (Dayanik, Poor, & Sezer, 2007).

Another problem is decision making concerning multiple observations that are informative
but expensive. The challenge with decision making problems is to decide which variables to ob-
serve in order to maximize the expected utility. Krause and Guestrin studied this problem in the
domain of sensor placement and consider a sensor network where the utility of a sensor is deter-
mined by the certainty about the measured quantity. The task is to efficiently select the most infor-
mative subsets of observations. Specifically, they propose optimal nonmyopic value of information
in chain graphical models (Krause & Guestrin, 2009). Bilgic and Getoor (2011) address a similar

269

KALECH & RECHES

problem for efficiently acquiring classification features in domains in which costs are associated
with acquisition. The objective is to minimize the sum of the information acquisition cost. They
propose a data structure known as the “value of information lattice” (VOILA). VOILA exploits de-
pendencies between missing features, making it possible to share information value computations
between different feature subsets.

Similarly, another work (Tolpin & Shimoni, 2010; Radovilsky & Shimoni, 2010) deals with
selection under uncertainty and develops algorithms based on the value of information (VOI) with a
semi-myopic approximation scheme for problems with real-valued utilities. In particular, Tolpin and
Shimoni (2010) interpret VOI as the expected difference between the expected utility of a meta-level
action and the expected utility of the current base-level action. Radovilsky and Shimoni (2010) deal
with optimizing the selection of a set of observations. Their aim is to bring an objective function to
optimum while taking into consideration the cost of observation and the remaining uncertainty after
executing the observation.

Recently, Chen et al. (2014) proposed to use the computation of the Same-decision Probability
(SDP) in order to compute whether additional information should be gathered. In particular, they
compute a stopping criterion by computing SDP, the SDP is the probability that the same decision
will be made even with further observations. If more information should be gathered they propose
which pieces of information to gather next.

Our work is also related, in some aspects, to Horvitz’s work (2001, 2013) on decision making
under bounded resources. The execution of a task is associated with a utility and a cost, depending
on resources. When the resources are bounded, the question is which stopping point is the best that
will, for the most part, satisfy the task. Horvitz presents the use of an expected value of computation
to determine the best time to stop. Similarly, monitoring anytime algorithms (Boddy & Dean,
1994; Zilberstein, 1996; Zhang, 2001) search for the best possible answer under the constraint of
limited time and/or resources. A major question that arises in utilizing this class of algorithms is
how to optimally decide when to stop. For instance, Finkelstein and Markovitch (2001) developed
algorithms that design an optimal query schedule to detect when a given goal has been fulfilled.
Their aim was to minimize the number of queries (which are time consuming) to reach the goal.

The joint objective of the above works is to maximize a goal function while considering the cost
of the observations/acquisition/actions and their extent of uncertainty. We also attempt to maximize
the utility by choosing the best candidate and we consider the cost and uncertainty of the timed
variables. However, our work differs from the above works in two significant aspects:

1. Time and variables: some of the previous studies such as “change detection problem” and
“K-Armed bandit problem” consider a set of observations without considering their order. Most
works do not consider the time of the observations. In our work the variables are associated with
time and their selection is dynamically determined according to the time progress and the outcomes
of the previous variables. This point is important due to the fact that the candidates may be influ-
enced by disjoint variables. We cannot order the variables according to the time and select a subset
of variables since the available variables at time t depend on the assignment at time t− 1. Thus, the
decision of whether to stop or wait depends on assignments that will occur at the next time period.
Since each candidate may be affected by different assignments we should consider the combination
of all assignments which complicates our problem and makes it dissimilar to previous work.

2. Finite and small horizon: in our model the utility of a candidate is affected by a finite and
small set of discrete random variables. As a result, the decision maker can actually achieve absolute
information about the optimal choice by waiting until the last time stamp. At the last time stamp,

270

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

there is complete knowledge about the assignments of all the random variables which explore the
exact value of the utility. Due to the cost of the information the research problem in our model is
to determine the optimal time to make the decision before reaching the end. In the related research,
on the other hand, the basic assumption is that only partial information can be obtained and thus
it is impossible to compute the exact utility of each candidate. The obtained information contains
some observations or samples about the different alternatives that can help the decision maker to
statistically approximate the utility distribution of the different alternatives. The potential population
of the observations may be infinite or very large and thus it is impossible in practice to obtain all
the information necessary to compute the exact utility. The research problem of the above models
is thus to use statistical methods to decide on the required information of the different alternatives.

8. Summary and Future Work

In this paper we presented the problem of decision making among multiple candidates where the
information arrives dynamically. We focused on the question of when to stop and make a decision
that maximizes the utility while taking into consideration the cost of waiting. We presented three
algorithms; an optimal algorithm that is exponential in the number of candidates and two alternative
polynomial approximation algorithms. We proved that one approximation algorithm is optimistic.
Namely its computation of the expected utility from waiting is equal to, or higher than, the expected
utility computed by an optimal algorithm, while the other algorithm is pessimistic and thus stops
earlier. An empirical evaluation of our algorithms showed that the cost function much influences
on the results. As the cost function increases more moderately (a root function), the PESSIMISTIC
algorithm becomes less effective and the OPTIMISTIC becomes better than the PESSIMISTIC.
For polynomial cost functions there is no significant difference between the outcome utility of the
optimal algorithm and the pessimistic algorithm. We also illustrated the exponential growth of the
optimal algorithm and the polynomial growth of the optimistic and the pessimistic algorithms.

In the future we plan to continue in two directions: 1) In this work we assumed discrete vari-
ables, however in practice, these variables may be continuous. One option for solving this problem
is to discretize the variables, however, by doing so we lose optimality. We plan to find an opti-
mal way to address this question, and 2) we plan to further investigate the problem presented in
this paper in domains involving multi-agent decision making. In these domains multiple agents
should share the same decision based on different variables and utilities. A multi-agent version of
our approximation grows exponentially in the number of agents and thus we plan to reduce this
complexity.

Appendix A. TDM problem is NP-hard

Proof: We present a reduction from the 3-SAT problem (Cook, 1971). An instance of 3-SAT is
given by a propositional logic formula Φ(z1, ..., zn) = ψ1

∧
...

∧
ψk, where each ψi is a clause with a

disjunction of exactly three literals. The aim being to answer “yes” if there is some assignment to
the Boolean variables z1, ..., zn that satisfies the formula. We construct an instance of TDM as
follows.

1. For each Boolean variable zi we create a timed variable Xi.

271

KALECH & RECHES

Figure 36: Structure of the candidate trees as accordance with the next 3-SAT formula:
Φ(z1, z2, z3, z4) = (z1 ∨ z2 ∨ ¬z3) ∧ (¬z1 ∨ ¬z3 ∨ z4) ∧ (z1 ∨ z2 ∨ ¬z4).

2. For every clause ψj j ∈ {1, ..., k} we create a candidate tree ctj with three timed
variables:Xj1 , Xj2 and Xj3 , corresponding to the variables in that clause. For example, for
the clause ψj = (z1 ∨ ¬z4 ∨ z5) we create a candidate tree ctj with variables: X1, X4 and
X5.

3. The root of each candidate tree ctj includes additional timed variable Yj , where its time stamp
is Γ(Yj) = 1 with three possible assignments. The probability of each assignment is 1

3 and
each one of the assignments leads to one of the above timed variables:Xj1 , Xj2 and Xj3 .

4. Every timed variable Xi that corresponds to a literal zi has only two possible assignments
Xi = 1 with utility a > 0 and Xi = 0 with utility 2a, each of them with probability 0.5 and
Γ(Xi) = 2. Each timed variable which is corresponding to a literal ¬zi has also two possible
assignments Xi = 1 with utility 2a > 0 and Xi = 0 with utility a, each one of them with
probability of 0.5 and Γ(Xi) = 2.

Figure 36 presents an example to the structure of the candidate trees as accordance with 3-
SAT formula. A left outgoing edge of a random variableXi represents the assignmentXi = 1
and a right outgoing edge represents the assignment Xi = 0.

5. We set the time horizon T = [0, 2].

6. We set the cost function to be: CST (t) = 0.1 · a · t.

7. We set a constant C such that C = 1.8a.

We now prove that there exists a policy π such that the global expected gain GEG(CT, σ0, π) ≥
C, if and only if Φ(x1, ..., xn) is not satisfiable.

The expected utility from stopping at time t = 0 as well as at t = 1 is exactly 3a
2 which is less

than C. But the highest expected utility of 2a can be obtained by waiting to time stamp 2. The
expected gain is then less than or equal to 1.8a (after considering the cost of waiting). Therefore, in
the rest of the proof we will consider the waiting policy that waits to time stamp 2.

1. To guarantee GEG(CT, σ0, π) ≥ C at time stamp 2, we must confirm that for each assignment
and for each combination between the trees branches, at least one candidate tree has a utility
of 2a.

272

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

2. By construction, this may happens if and only if for all assignments there is at least one
candidate tree in which all its utilities are 2a.

3. By construction, in all candidate trees an assignment that guarantees a utility of 2a entails at
least one false clause, meaning all literals in the clause obtain 0 and as a result Φ(z1, ..., zn)
is not satisfiable.

As a result we obtain that Timed Decision Making (TDM) is NP-hard.2

References

Basseville, M., & Nikiforov, I. V. (1993). Detection of abrupt changes: theory and application.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Beaver, B. M., & Mendenhall, W. (1983). Introduction to probability and statistics, sixth edition,
William Mendenhall, study guide. Statistics Series. Duxbury Press.

Bilgic, M., & Getoor, L. (2011). Value of information lattice: Exploiting probabilistic independence
for effective feature subset acquisition. Journal of Artificial Intelligence Research (JAIR), 41,
69–95.

Boddy, M., & Dean, T. L. (1994). Deliberation scheduling for problem solving in time-constrained
environments. Artificial Intelligence, 67(2), 245–285.

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic dynamic programming with fac-
tored representations. Artificial Intelligence, 121, 49–107.

Chen, S. J., Choi, A., & Darwiche, A. (2014). Algorithms and applications for the same-decision
probability. Journal of Artificial Intelligence Research (JAIR), 49, 601–633.

Cheng, X., & Riedel, F. (2010). Optimal stopping under ambiguity in continuous time. Working
papers 429, Bielefeld University, Institute of Mathematical Economics.

Cheridito, P., & Stadje, M. (2009). Time-inconsistency of var and time-consistent alternatives.
Finance Research Letters, 6(1), 40–46.

Cicirello, V. A., & Smith, S. F. (2005). The max k-armed bandit: A new model of exploration
applied to search heuristic selection. In Veloso, M. M., & Kambhampati, S. (Eds.), AAAI, pp.
1355–1361.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In STOC ’71: Proceedings
of the third annual ACM symposium on Theory of computing, pp. 151–158, New York, NY,
USA. ACM.

da Rocha, V. F. M., & Riedel, F. (2010). On equilibrium prices in continuous time. Journal of
Economic Theory, 145(3), 1086–1112.

Dayanik, S., Poor, H. V., & Sezer, S. O. (2007). Multisource bayesian sequential change detection.
CoRR, abs/0708.0224.

Ferguson, T. S. (1989). Who solved the secretary problem?. Statistical Science, 4(3), 282–289.

Finkelstein, L., & Markovitch, S. (2001). Optimal schedules for monitoring anytime algorithms.
Artificial Intelligence, 126, 63–108.

273

KALECH & RECHES

Frazier, P., & Powell, W. (2008). The knowledge-gradient stopping rule for ranking and selection.
In Simulation Conference, 2008. WSC 2008. Winter, pp. 305–312.

Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of
Mathematical Economics, 18(2), 141–153.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence Research (JAIR), 19, 399–468.

Horvitz, E. (2001). Principles and applications of continual computation. Artificial Intelligence,
126, 126–1.

Horvitz, E. (2013). Reasoning about beliefs and actions under computational resource constraints.
CoRR, abs/1304.2759.

Kalech, M., & Pfeffer, A. (2010). Decision making with dynamically arriving information. In
van der Hoek, W., Kaminka, G. A., Lespérance, Y., Luck, M., & Sen, S. (Eds.), AAMAS, pp.
267–274.

Katehakis, M., & Veinott, J. A. (1987). The multi-armed bandit problem: decomposition and com-
putation. Mathematics of Operations Research, 12(2), 262–268.

Krause, A., & Guestrin, C. (2009). Optimal value of information in graphical models. Journal of
Artificial Intelligence Research (JAIR), 35, 557–591.

Lippman, S. A., & McCall, J. J. (1976). The economics of job search: A survey. Economic Inquiry,
14(3), 155–189.

Peskir, G., & Shiryaev, A. (2006). Optimal Stopping and Free-Boundary Problems. Birkhäuser
Basel.

Powell, W., & Ryzhov, I. (2012). Optimal Learning. Wiley Series in Probability and Statistics.
Wiley.

Radovilsky, Y., & Shimoni, S. E. (2010). Observation subset selection for optimization under un-
certainty. Tech. rep., Lynne and William Frankel Center for Computer Science at Ben Gurion
University of the Negev.

Reches, S., Kalech, M., & Stern, R. (2011). When to stop? that is the question. In Burgard, W., &
Roth, D. (Eds.), AAAI. AAAI Press.

Riedel, F. (2009). Optimal stopping with multiple priors. Econometrica, 77(3), 857–908.

Streeter, M. J., & Smith, S. F. (2006). An asymptotically optimal algorithm for the max k-armed
bandit problem. In AAAI, pp. 135–142. AAAI Press.

Swisher, J. R., Jacobson, S. H., & Yücesan, E. (2003). Discrete-event simulation optimization
using ranking, selection, and multiple comparison procedures: A survey. ACM Trans. Model.
Comput. Simul., 13(2), 134–154.

Tolpin, D., & Shimoni, S. E. (2010). Semi-myopic observation selection for optimization under
uncertainty. Tech. rep. 10-01, Lynne and William Frankel Center for Computer Science at
Ben Gurion University of the Negev.

Wald, A., & Wolfowitz, J. (1948). Optimum Character of the Sequential Probability Ratio Test.
Annals of Mathematical Statistics, 19(3), 326–339.

274

DECISION MAKING WITH DYNAMIC UNCERTAIN EVENTS

Williams, D. (1991). Probability with Martingales. Cambridge mathematical textbooks. Cambridge
University Press.

Zhang, W. (2001). Iterative state-space reduction for flexible computation. Artificial Intelligence,
126(1-2), 109–138.

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine, 17(3), 73–83.

275

