
Journal of Artificial Intelligence Research 54 (2015) 277-308 Submitted 12/14; published 10/15

Relations Between Spatial Calculi
About Directions and Orientations

Till Mossakowski till@iws.cs.uni-magdeburg.de
Otto-von-Guericke-University of Magdeburg,
Faculty of Computer Science
Universitätsplatz 2
39106 Magdeburg

Reinhard Moratz reinhard.moratz@maine.edu
University of Maine,
National Center for Geographic Information and Analysis,
School of Computing and Information Science,
348 Boardman Hall, Orono, 04469 Maine, USA.

Abstract

Qualitative spatial descriptions characterize essential properties of spatial objects or
configurations by relying on relative comparisons rather than measuring. Typically, in
qualitative approaches only relatively coarse distinctions between configurations are made.
Qualitative spatial knowledge can be used to represent incomplete and underdetermined
knowledge in a systematic way. This is especially useful if the task is to describe features
of classes of configurations rather than individual configurations.

Although reasoning with them is generally NP-hard (even ∃IR-complete), relative direc-
tions are important because they play a key role in human spatial descriptions and there are
several approaches how to represent them using qualitative methods. In these approaches
directions between spatial locations can be expressed as constraints over infinite domains,
e.g. the Euclidean plane. The theory of relation algebras has been successfully applied
to this field. Viewing relation algebras as universal algebras and applying and modifying
standard tools from universal algebra in this work, we (re)define notions of qualitative con-
straint calculus, of homomorphism between calculi, and of quotient of calculi.Based on this
method we derive important properties for spatial calculi from corresponding properties of
related calculi. From a conceptual point of view these formal mappings between calculi are
a means to translate between different granularities.

1. Introduction

A qualitative representation of space and/or time provides mechanisms which characterize
the essential properties of objects or configurations. The advantages over quantitative rep-
resentations can be: (1) a better match with human concepts related to natural language,
and (2) better efficiency for reasoning. The two main trends in qualitative spatial constraint
reasoning (Ligozat, 2011) are topological reasoning about regions (Randell & Cohn, 1989;
Randell, Cui, & Cohn, 1992; Egenhofer & Franzosa, 1991; Renz & Nebel, 1999; Worboys
& Clementini, 2001) and reasoning about directions between points and straight lines and
orientations of straight lines or configurations derived from points (Frank, 1991; Ligozat,
1998; Renz & Mitra, 2004; Freksa, 1992; Clementini, Felice, & Hernandez, 1997; Scivos &
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Nebel, 2004; Moratz, Lücke, & Mossakowski, 2011; Mossakowski & Moratz, 2012; Dubba,
Bhatt, Dylla, Cohn, & Hogg, 2015).

In constraint-based reasoning about spatial configurations, typically a partial initial
knowledge of a scene is represented in terms of qualitative constraints between spatial ob-
jects. Implicit knowledge about spatial relations is then derived by constraint propagation.
Previous research has found that the mathematical notion of a relation algebra and related
notions are well-suited for this kind of reasoning. In particular, in an arbitrary relation al-
gebra, the well-known path consistency algorithm (Montanari, 1974) computes an algebraic
closure of a given constraint network, and this approximates, and in many cases also decides,
consistency of the network in polynomial time. Intelligent backtracking techniques and the
study of maximal tractable subclasses also allow for efficiently deciding networks involving
disjunctions. Starting with Allen’s temporal interval algebra, this approach has been suc-
cessfully applied to several qualitative constraint calculi, and is now supported by freely
available toolboxes (Gantner, Westphal, & Wölfl, 2008; Wallgrün, Frommberger, Wolter,
Dylla, & Freksa, 2006). Moreover, people have started to develop benchmark problem li-
braries (Nebel & Wölfl, 2009) and have shown that this method performs quite well also
when compared to other constraint reasoning techniques (Westphal & Wölfl, 2009).

In this work, we apply universal algebraic tools to qualitative calculi. This connection has
been previous investigated in the literature (Li, Kowalski, Renz, & Li, 2008; Bodirsky, 2008;
Huang, 2012). However, in our paper we deviate from standard universal algebra by using lax
and oplax homomorphisms, which have weaker properties than standard homomorphisms
(and more an order-theoretic than algebraic flavor), but are better suited for transferof
algebraic structure between qualitative calculi such as DRAfp , OPRA∗1 and CYCb. In this
work, we focus on calculi of binary relations only.

2. Relation Algebras for Spatial Reasoning

Standard methods developed for finite domains generally do not apply to constraint rea-
soning over infinite domains. The theory of relation algebras (Ladkin & Maddux, 1994;
Maddux, 2006) allows for a purely symbolic treatment of constraint satisfaction problems
involving relations over infinite domains. The corresponding constraint reasoning techniques
were originally introduced by Montanari (1974), applied for temporal reasoning (Allen, 1983)
and later proved to be valuable for spatial reasoning (Renz & Nebel, 1999; Isli & Cohn, 2000).
The central data for a binary calculus is given by:

• a list of (symbolic names for) base-relations, which are interpreted as relations over
some domain, having the crucial “JEPD” properties of joint exhaustiveness and pair-
wise disjointness (a general relation is then simply a union of base-relations).

• a table for the computation of the converses of relations.

• a table for the computation of the compositions of relations.

Then, the path consistency algorithm (Montanari, 1974) and backtracking techniques (van
Beek & Manchak, 1996) are the tools used to tackle the problem of consistency of constraint
networks and related problems. These algorithms have been implemented in both generic
reasoning toolboxes GQR (Gantner, Westphal, & Wölfl, 2008) and SparQ (Wallgrün et al.,
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2006). To integrate a new calculus into these tools, only a list of base-relations and tables
for compositions and converses (plus a compositional identity, which however is not really
used) need to be provided. Thereby, the qualitative reasoning facilities of these tools become
available for this calculus.1 Since the compositions and converses of general relations can be
reduced to compositions and converses of base-relations, these tables only need to be given
for base-relations. Based on these tables, the tools provide a means to approximate the
consistency of constraint networks, list all their atomic refinements, and more (see Section 4
for some details).

Let b be a base-relation. The converse b` = {(x, y)|(y, x) ∈ b} is often itself a base-
relation. Since base-relations generally are not closed under composition, this operation is
approximated by a weak composition:

b1 � b2 =
⋃
{b base-relation | (b1 ◦ b2) ∩ b 6= ∅}

where b1 ◦ b2 is the usual set theoretic composition

b1 ◦ b2 = {(x, z)|∃y . (x, y) ∈ b1, (y, z) ∈ b2}

Composition is said to be strong if b1 � b2 = b1 ◦ b2 for all base-relations b1, b2. Generally,
b1 � b2 over-approximates the set-theoretic composition, while a strong composition captures
it exactly.

The mathematical background of composition in table-based reasoning is given by the
theory of relation algebras (Maddux, 2006; Renz & Nebel, 2007). For many calculi, including
the dipole calculus (see Ex. 9 below), a slightly weaker notion is needed, namely that of a
non-associative algebra (Maddux, 2006; Ligozat & Renz, 2004), where associativity has been
dropped. These algebras treat spatial relations as abstract entities (independently of any
domain) that can be combined by certain operations and governed by certain equations.

Definition 1 (Maddux 2006; Ligozat & Renz 2004). A non-associative algebra A is a tuple
A = (A,∨,−,∧, 0, 1, �,` ,∆) such that:

1. (A,∨,−,∧, 0, 1) is a Boolean algebra. ∨ is called join, ∧ meet, 0 bottom, 1 top, and
− relative complement. Note each Boolean algebra carries a partial order defined by
a ≤ b iff a ∨ b = b;

2. ∆ is a constant (called identity relation), ` a unary operation (called converse) and �
a binary operation (called weak composition) such that, for any a, b, c ∈ A:

(a) (a`)` = a (b) ∆ � a = a �∆ = a (c) a � (b ∨ c) = a � b ∨ a � c
(d) (a ∨ b)` = a` ∨ b` (e) (a− b)` = a` − b` (f) (a � b)` = b` � a`
(g) (a � b) ∧ c` = 0 if and only if (b � c) ∧ a` = 0

A non-associative algebra is called a relation algebra, if weak composition � is associative.2

1. With more information about a calculus, both of the tools can provide functionality that goes beyond
simple qualitative reasoning for constraint calculi.

2. This terminology is a bit misleading, since relation algebras are associative “non-associative algebras”.
A more precise name for non-associative algebras would be “relation algebras without associativity re-
quirement”. Nevertheless, we stick to the terminology established in the literature.
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The elements of such an algebra will be called (abstract) relations. We are mainly
interested in finite non-associative algebras that are complete and atomic, which means that
there is a set of pairwise disjoint minimal relations, the atoms, also called base-relations,
and all relations can be obtained as joins of these. Then, the following fact is well-known
and easy to prove:

Proposition 2 (Düntsch, 2005). A complete atomic non-associative algebra is uniquely
determined by its set of base-relations, together with the converses and compositions of base-
relations. (Note that the composition of two base-relations is in general not a base-relation.)

When providing examples, it is easier to start with partition schemes:

Definition 3 (Ligozat & Renz, 2004; Mossakowski et al., 2006). Let U be a non-empty set.
A partition scheme on U is defined by a finite (index) set I with a distinguished element
i0 ∈ I, a unary operation ` on I, and a family of binary relations (Ri)i∈I on U such that

1. (Ri)i∈I is a partition of U×U in the sense that the Ri are pairwise disjoint and jointly
exhaustive.

2. Ri0 is the diagonal relation {(x, x) | x ∈ U}.

3. R
i
` is the (set-theoretical) converse of relation Ri, for each i ∈ I.

The relations Ri are referred to as basic relations. In the following we often write

U × U =
⋃
i∈I

Ri

to denote partition schemes.

Proposition 4 (Ligozat & Renz, 2004; Mossakowski et al., 2006). Given a partition scheme

U × U =
⋃
i∈I

Ri

we obtain a non-associative algebra as follows: the Boolean algebra component is P(I),
the powerset of I. The converse is given by pointwise application of `; the diagonal is i0.
Composition is given by weak composition as defined above.

We now introduce several qualitative calculi by just giving its domain U and its set of
basic relations; the diagonal and the converse are clear.

Example 5. The most prominent temporal calculus is Allen’s interval algebra IA (Allen,
1983), which describes possible relations between intervals in linear flows of time3. An
interval is a pair (s, t) of real numbers such that s < t. The 13 basic relations between such
intervals are depicted in Fig. 1.

3. There is also a spatial interpretation of the Allen calculus in which the intervals are interpreted as
one-dimensional spatial entities
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Figure 1: Allen’s interval relations

Figure 2: CYCb relations. “A r B” means “B is to the right of A”.

Example 6. The CYCb calculus (Isli & Cohn, 2000) is based on the domain CYC = {φ |
−π < φ ≤ π} of cyclic orientations. Equivalently, these angles can be represented as
oriented straight lines containing the origin of the 2D Euclidian plane associated with a
reference system. Using this latter representation, Fig. 2 depicts the four base-relations r, l,
o, e (e.g. “right”, “left”, “opposite”, “equal”) of CYCb.

The converse and composition tables are as follows:

b b`

e e

l r

o o

r l

◦ e l o r

e e l o r

l l {l, o, r} r {e, l, r}
o o r e l

r r {e, l, r} l {l, o, r}
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Example 7. The OPRAn calculus (Moratz, 2006; Mossakowski & Moratz, 2012) is based
on the domain OP = {(p, φ) | p ∈ R2,−π < φ ≤ π} of oriented points in Euclidean plane.
An oriented point consists of a point and an angle serving as its orientation. The full angle
is divided using n axes, leading to 4n regions, see Fig. 3. If the points of A and B differ, the
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Figure 3: Two o-points in relation A 4∠3
13 B

relation A m∠ji B (i, j ∈ Z4m
4) reads like this: given a granularity m, the relative position

of B with respect to A is described by i and the relative position of A with respect to B is
described by j. If the points of A and B coincide, the relation A m∠i B expresses that the
difference between B’s and A’s orientations (angles) is in region i.

For the special case of the OPRAn calculus with n = 1 (e.g. OPRA1) we have a cog-
nitively motivated symbolic notation in addition to the general notation for OPRAn base-
relations introduced above. Fig. 4 depicts an oriented point and the corresponding division
of the plane into the regions Front, Left, Right and Back and Same (the latter stands for the
point itself). The naming schema for the OPRA1 base-relations concatenates the name for
the relative position of the second oriented point w.r.t. the first and then the relative position
of first oriented point w.r.t. the second. Using capitalization of the first part of the rela-
tion symbol, the cognitively motivated schema for the relation names leads to these names
for the 16 base-relations of OPRA1: FRONTfront, FRONTleft, FRONTright, FRONT-
back, LEFTfront, LEFTleft, LEFTright, LEFTback, RIGHTfront, RIGHTleft, RIGHTright,
RIGHTback, BACKfront, BACKleft, BACKright, and BACKback. Again, if both points
coincide, we compare their orientations. This leads to the relations SAMEfront, SAMEleft,
SAMEright and SAMEback.

SAMEfront is the identity relation. SAMEback is analogous to the opposite relation of
CYCb (see Fig. 2). Also SAMEleft and SAMEright are analogous to the corresponding CYCb
relations.

Example 8. The OPRA∗m calculus (Dylla, 2008) is similar to OPRAm. Here, we concen-
trate on OPRA∗1. The important extension is a refinement that is applied to the relations
RIGHTright, RIGHTleft, LEFTleft, and LEFTright. These relations are refined by marking
them with letters ’+’ or ’−’, ’P’ or ’A’, according to whether the two orientations of the
oriented points are positive, negative, parallel or anti-parallel, similar as in Fig. 6:

• LEFTleft is refined into LEFTleftA, LEFTleft+ and LEFTleft-.

4. Z4m is the residue ring; for simplicity, we set Z4m = {0, . . . , 4m− 1}.
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Figure 4: OPRA1 base frame

• LEFT right is refined into LEFTrightP, LEFTright+ and LEFTright-.

• RIGHTright is refined into RIGHTrightA, RIGHTright+ and RIGHTright-.

• RIGHT left is refined into RIGHTleftP, RIGHTleft+ and RIGHTleft-.

The remaining four options LEFTleftP, LEFTrightA, RIGHTrightP and RIGHTleftA are
geometrically impossible. Altogether, we obtain a set of 28 base-relations.

Example 9. A dipole is a pair of distinct points in the Euclidean plane. Before explaining
dipole-dipole relations, we first study dipole-point relations. We distinguish between whether
a point lies to the left, to the right, or at one of five qualitatively different locations on the
straight line that passes through the corresponding dipole (Ligozat, 1993; Scivos & Nebel,
2004). The corresponding regions are shown on the right side of Fig. 5.

Using these seven possible relations between a dipole and a point, the relations between
two dipoles may be specified according to the following conjunction of four relationships:

A R1 sB ∧A R2 eB ∧B R3 sA ∧B R4 eA,
5

where Ri ∈ {l, r, b, s, i, e, f} with 1 ≤ i ≤ 4. The formal combination gives us 2401 relations,
out of which 72 relations are geometrically possible. These constitute the DRAf calculus
(Moratz, Renz, & Wolter, 2000; Moratz, Lücke, & Mossakowski, 2011). For example, in
Fig. 5, the relation A lrrr B holds.

l Br rA r

s

e

e

s

e

b

f

A

A

B
s

B

i

l r

B

A

Figure 5: Orientation between two dipoles based on four dipole-point relations

Fig. 6 shows a refinement of DRAf , called DRAfp , with additional distinguishing fea-
tures due to parallelism. For the relations different from rrrr, llrr rrll and llll, a ’+’,
’−’, ’P’ or ’A’ is already determined by the original base-relation and does not have to be
mentioned explicitly. These base-relations then have the same relation symbol as in DRAf .

This leads to a set of 80 DRAfp base-relations. The relation sese is the identity relation.
We denote the resulting non-associative algebra by DRAfp .
5. Note that e.g. A r sB reads “sB is to the right of A”.
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rrllP

llllA

rrrrA

llrrP

A rrrr B

A rrll B

A llll B

A llrr B

rrrr− rrrr+

rrll− rrll+

llll− llll+

llrr− llrr+

Figure 6: Refined base-relations in DRAfp . The solid arrow denotes A, the dashed arrow
denotes B.

3. Homomorphisms and Weak Representations

The presented calculi offer the possibility to describe scenes on different levels of granularity.
The granularity of a description is the context-dependent selection of an adequate level of
detail in the description (Hobbs, 1985). Granularity plays a key role in human strategies
to deal with the complexity of the spatial features of the real world. This is demonstrated
nicely by an example from Hobbs (1985). In his example he points out that humans concep-
tualize streets as one-dimensional entities when they plan a trip, they use a two-dimensional
conception when they cross a street. And in contexts where the pavement has to be dug
up the street becomes a three-dimensional volume. The key importance of mechanisms to
flexibly switch and translate between granularities for successful reasoning about the world
is highlighted by the following quote from Hobbs (1985, p. 432):

Our ability to conceptualize the world at different granularities and to switch
among these granularities is fundamental to our intelligence and flexibility. It
enables us to map the complexities of the world around us into simple theories
that are computationally tractable to reason in.

Imagine a scenario involving ships and their relative positions in the open sea (see Fig. 7).
Ships can be modelled as elongated, directed entities neglecting their width or any other
shape property. The resulting DRAfp representation uses a single dipole for each ship to
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be represented (see left part of Fig. 7). In the OPRA∗1 representation in addition even the
lengths of the ships are neglected (see middle part of Fig. 7). The CYCb representation ab-
stracts away the different locations of the ships and only focuses on their relative orientation
(see right part of Fig. 7).

abstraction from locationabstraction from lengthabstraction from shape

Figure 7: Modelling relative ship directions on different levels of granularity with DRAfp ,
OPRA∗1, and CYCb.

In another example ships are represented with DRAfp in such a way that the start point
corresponds to the position of the ship and the end point represents its current speed. More
specifically, the end point denotes the future position after one minute travel (if speed and
heading were constant). Then longer arrows represent faster ships in a diagram. When we
have an alternative representation in OPRA∗1, in this representation we might only focus
on location and heading of the ships and abstract away from the their speed. Then several
DRAfp relations in one representation map onto a single OPRA∗1 relation in the alternative
representation. For example the three relations {flll, ells, illr} are mapped to FRONTleft
(see Fig. 8).

Figure 8: In a quotient homomorphism between DRAfp and OPRA∗1 the three relations
{flll, ells, illr} are mapped to FRONTleft.

If different spatial calculi can be used to represent a given spatial situation at different
levels of granularity, the relation between the calculi can typically be formalized as a quotient
homomorphism. Figure 8 exemplifies the action of a quotient homomorphism. Homomor-
phisms also arise in other contexts, e.g. as embeddings of a smaller calculus into a larger
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one (for example, Allen’s interval algebra can be embedded into DRAfp , see Proposition 25
below).

We now study homomorphisms in general. They are a means for the examination of
relationships among calculi. Often, conceptual relations between different calculi and their
domains can be formalised as homomorphism, and vice versa, if one has found a homomor-
phism, then often there is also some conceptual relation behind it.

Homomorphisms can also be used to transfer properties (like strength of composition, or
algebraic closure deciding consistency) from one calculus to another one, see Propositions
16, 19, 23, 39, 40, 44, 46, 47 and 48 below. Using homomorphisms, it is also possible to find
errors in composition tables (we discovered errors in 197 entries of the composition table of
OPRA∗1, see Example 38 below).

Homomorphisms have been studied by Ligozat and Renz (2004) and Ligozat (2005, 2011)
(mainly under the name of representations). We here introduce a more systematic treatment
of homomorphisms. For non-associative algebras, we recall and refine the weaker notion of
lax homomorphisms, which allow for both the embedding of a calculus into its domain, as
well as relating several calculi to each other.

Definition 10 (Lax homomorphism, Moratz et al., 2009; Lücke, 2012). Given non-associative
algebras A and B, a lax homomorphism is a homomorphism h : A−→B on the underlying
Boolean algebras such that:

• h(∆A) ≥ ∆B

• h(a`) = h(a)` for all a ∈ A

• h(a � b) ≥ h(a) � h(b) for all a, b ∈ A

A lax homomorphism between complete atomic non-associative algebras is called semi-
strong (Mossakowski, Schröder, & Wölfl, 2006) if for atoms a, b

a � b =
∨
{c | (h(a) � h(b)) ∧ h(c) 6= 0}

This notion has been inspired by the definition of weak composition and will be used for
representation homomorphisms of qualitative calculi.

Dually to lax homomorphisms, we can define oplax homomorphisms6, which enable us
to define projections from one calculus to another.

Definition 11 (Oplax homomorphism, Moratz et al., 2009; Lücke, 2012). Given non-
associative algebras A and B, an oplax homomorphism is a homomorphism h : A −→ B
on the underlying Boolean algebras such that:

• h(∆A) ≤ ∆B

• h(a`) = h(a)` for all a ∈ A

• h(a � b) ≤ h(a) � h(b) for all a, b ∈ A

6. The terminology is motivated by that for monoidal functors.
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For quotients, we now introduce a strengthening of the notion of oplax homomorphism.
A full7 homomorphism is an oplax homomorphism for which even

h(a) � h(b) =
∨

h(a)=h(c),h(b)=h(d)

h(c � d)

A proper homomorphism (sometimes just called a homomorphism) of non-associative
algebras is a homomorphism that is lax and oplax at the same time; the above inequalities
then turn into equations. Each proper homomorphism is also full. A proper injective
homomorphism is also semi-strong.

A homomorphism between complete atomic non-associative algebras can be given by its
action on base-relations; it is extended to general relations by

h(
∨
i∈I

bi) =
∨
i∈I

h(bi),

where
∨

is arbitrary (possibly infinite) join. In the sequel, we will always define homomor-
phisms in this way.

While semi-strong lax homomorphisms can be used to transfer the composition from the
target to the source algebra, surjective full oplax homomorphisms can be used for a transfer
in the opposite direction. We now study the latter, the former will be treated in Def. 20.

Definition 12. Given a complete atomic non-associative algebra A and an equivalence
relation ∼ on the atoms of A that is a congruence for _`, we define the quotient algebra
A/∼A to have equivalence classes of A-atoms as atoms. General relations are then sets of
such atoms. We further define for atoms a, b:

∆A/∼ = {[a] | a ∈ ∆A}
[a]` = [a`]
[a] � [b] = {[c] | c ∈ a′ � b′, a′ ∼ a, b′ ∼ b}

where as usual we treat general relations as sets of atoms; hence general relations in A/∼A
are sets of equivalence classes of A-atoms.

Unfortunately, in general, A/∼A will not be a non-associative algebra again:

Example 13. Consider the relation algebra of the CYCb calculus (Example 6) and the
equivalence relation generated by o ∼ e. The quotient algebra fails to satisfy the identity
laws (laws (b) in Def. 1). This can be seen from the quotient composition table:

◦ {e, o} {l} {r}
{e, o} {e, o} {{l}, {r}} {{l}, {r}}
{l} {{l}, {r}} {{e, o}, {l}, {r}} {{e, o}, {l}, {r}}
{r} {{l}, {r}} {{e, o}, {l}, {r}} {{e, o}, {l}, {r}}

7. This terminology is borrowed from the theory of partial algebras (Burmeister, 1986). Burmeister (2002,
p. 101) puts it as follows: “f is full iff f fully induces the structure on its direct image f(A).” — which
is exactly what he want here, too.
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We will study a method to prove that A/∼A is a non-associative algebra later under
additional conditions. For now, it is straightforward to prove:

Proposition 14. If the algebra A/∼A defined in Def. 12 is a non-associative algebra, the
homomorphism q : A→ A/∼A given by a 7→ [a] is surjective and full.

This naturally leads to:

Definition 15. An oplax homomorphism of non-associative algebras is said to be a quotient
homomorphism if it is full and surjective.

An easy standard result from universal algebra (Grätzer, 1979) gives us:

Proposition 16. Proper quotient homomorphisms preserve the holding of equations, in
particular, associativity.

However, non-proper quotient homomorphisms in general do not preserve the holding of
equations. See Example 35: DRAfp is associative, but its quotient DRAf is not.

This raises the question why we do not use the standard constructions and results of
universal algebra (Grätzer, 1979; Maddux, 2006), where homomorphisms are always proper
and hence quotients preserve equations (Prop. 16) and thus the quotient of a non-associative
algebra is a non-associative algebra again. The reason is the following:

Example 17. Consider the point algebra induced by the three base-relations <, = and >,
with converse and composition tables:

a a`

< >

= =

> <

◦ < = >

< < < {<,=, >}
= < = >

> {<,=, >} > >

Let ∼ be the standard algebraic congruence relation generated by <∼>. Then < is equal
to < � <, which is congruent to < � >, which is {<,=, >}. Similarly, > is congruent to
{<,=, >}. Since congruence respects meet, we obtain that < ∩ >, which is ∅, is congruent
to {<,=, >}. This means that the congruence is trivial and the standard algebraic quotient
is the trivial one-point relation algebra.

By contrast, with our notion of quotient, we obtain the following relation algebra, which
is the expected one (we denote the equivalence class {<,>} by 6=):

a a`

6= 6=
= =

◦ 6= =

6= {6=,=} 6=
= 6= =

The corresponding quotient homomorphism is not proper: q(<) � q(<) is 6= � 6=, which is
{6=,=}, but q(< � <) = q(<), which is 6=. However, by Prop. 14, it is surjective and full.

Proposition 18. In the context of Prop. 14, if q is proper, then A/∼A is a non-associative
algebra.
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Proof. By Prop. 16, we know that equations are preserved by q. The only axiom in Def. 1
not in equational form is (g). Now Tarski has shown (Maddux, 2006) that (g) is equivalent
to

(a` � (1− (a � b))) ∨ (1− b) = 1− b

An important application of quotients and quotient homomorphisms lies in the following
fact:

Proposition 19. Given a quotient homomorphism q : A → B, B’s converse and composi-
tion tables can be computed from those for A, using q.

Proof. Use the formulas for converse resp. composition from the definition of full homo-
morphism. Since q is surjective, the formulas work for all elements of B.

Another important application of homomorphisms is their use in the definition of a
qualitative calculus. Ligozat and Renz (2004) define a qualitative calculus in terms of a
so-called weak representation (Ligozat, 2005, 2011):

Definition 20 (Weak representation). A weak representation ϕ : A → P(U × U)8 is an
identity-preserving (i.e. ϕ(∆A) = ∆B) and converse-preserving lax homomorphism ϕ from
a complete atomic non-associative algebra A into the relation algebra of a domain U . The
latter is given by the canonical relation algebra on the powerset P(U × U), where identity,
converse and composition (as well as the Boolean algebra operations) are given by their
set-theoretic interpretations. A weak representation is semi-strong if ϕ is semi-strong. It is
strong, if ϕ is strong.

Example 21. Let D = {(s, e) | s, e ∈ R2, s 6= e} be the set of all dipoles in R2. Then the
weak representation of DRAfp is the lax homomorphism ϕf : DRAfp−→P(D×D) given by

ϕf (b) = b.

Here, the b on the left hand-side of the equation is an element of the abstract relation
algebra, while the b on the right hand-side is the set-theoretic extension as a relation. Since
we have chosen to use set-theoretic relations themselves as elements of the relation algebra,
here both are the same.

This can be generalized as follows:

Proposition 22. Semi-strong representations and partition schemes are in one-one corre-
spondence.

Proof. Given a partition scheme, by Prop. 4, we obtain a non-associative algebra. Let ϕ
map each general relation R ⊆ P(I) to

⋃
i∈RRi. The definition of weak composition ensures

that ϕ is a semi-strong lax homomorphism. Conversely, given a semi-strong representation
ϕ : A → P(U × U), define a partition scheme on the atoms of A by putting Ra := ϕ(a).

8. Note that the domain and codomain are part of the weak representation.
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Preservation of top, bottom and meet by ϕ ensure the JEPD property. Moreover, by semi-
strength, composition in A is just weak composition according to the partition scheme. It
is clear that these constructions are inverses of each other.

The following propositions are straightforward.

Proposition 23 (Moratz et al., 2009; Lücke, 2012). A calculus has strong composition if
and only if its weak representation is a proper homomorphism.

Proposition 24 (Ligozat, 2005). A weak representation ϕ is injective if and only if ϕ(b) 6= ∅
for each base-relation b.

A first sample use of homomorphism is the embedding of Allen’s interval relations (Allen,
1983) into DRAfp via a homomorphism.

Proposition 25 (Moratz et al., 2011). A proper homomorphism from Allen’s interval algebra
to DRAfp exists and is given by the following mapping of base-relations.

equals 7→ sese
before 7→ ffbb before ` 7→ bbff
meets 7→ efbs meets ` 7→ bsef

overlaps 7→ ifbi overlaps ` 7→ biif
during 7→ bfii during ` 7→ iibf
starts 7→ sfsi starts ` 7→ sisf

finishes 7→ beie finishes ` 7→ iebe

When studying quotients of calculi, it is natural to consider homomorphisms of weak
representations. We refine the notion by Moratz et al. (2009) and Lücke (2012) in order to
fit it better to the examples:

Definition 26. Given weak representations ϕ : A → P(U × U) and ψ : B → P(V × V),
a ∈ {lax, oplax, full, proper} and b ∈ {lax, oplax, proper}, an (a,b)-homomorphism of weak
representations (h, i) : ϕ→ ψ is given by

• an a-homomorphism of non-associative algebras h : A→ B, and

• a map i : U → V, such that the diagram

A P(U × U)

B P(V × V)

ϕ

h P(i× i)

ψ
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commutes according to b. Here, lax commutation means that for all R ∈ A, ψ(h(R)) ⊆
P(i×i)(ϕ(R)), oplax commutation means the same with⊇, and proper commutation with =.
Note that P(i×i) is the obvious extension of i to a function between relation algebras; further
note that (unless i is bijective) this is not even a homomorphism of Boolean algebras (it
may fail to preserve top, intersections and complements), although it satisfies the oplaxness
property (and the laxness property if i is injective)9.

Ligozat (2005) defines a more special notion of morphism between weak representations;
it corresponds to our notion of (proper,oplax) homomorphism of weak representations where
the component h is the identity.

Example 27. The homomorphism from Prop. 25 can be extended to a (proper, proper)
homomorphism of weak representations by letting i be the embedding of time intervals to
dipoles on the x-axis.

Definition 28. A quotient homomorphism of weak representations is a (full,oplax) homo-
morphism of weak representations that is surjective in both components.

We also refine the construction of a weak representation from an equivalence relation on
the domain introduced by Moratz et al. (2009) and Lücke (2012), whose constructions in
typical cases will produce a trivial one-point quotient, cf. Example 17.

Definition 29. Given a weak representation ϕ : A→ P(U ×U) and an equivalence relation
∼ on U that is a congruence for _`, we obtain the quotient representation ϕ/∼ as follows:

A P(U × U)

A/∼A P(U/∼× U/∼)

ϕ

qA P(q × q)

ϕ/∼

• Let q : U → U/∼ be the set-theoretic factorization of U by ∼;

• q extends to relations: P(q × q) : P(U × U)→ P(U/∼× U/∼);

• let ∼A be the equivalence relation on the atoms of A generated by

P(q × q)(ϕ(b1)) ∩ P(q × q)(ϕ(b2)) 6= ∅ ⇒ b1 ∼A b2

for base-relations b1, b2 ∈ A;

• let qA : A→ A/∼A be the quotient of A by ∼A in the sense of Def. 12;

9. The reader with background in category theory may notice that the categorically more natural formu-
lation would use the contravariant powerset functor, which yields homomorphisms of Boolean algebras
(Mossakowski et al., 2006). However, the present formulation fits better with the examples.
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• finally, the function ϕ/∼ is defined as

ϕ/∼(R) = P(q × q)(ϕ(q−1A (R))).

∼ is called regular w.r.t. ϕ if ∼A is the kernel of P(q × q) ◦ ϕ (i.e. the set of all pairs
made equal by P(q × q) ◦ ϕ). In this case, each base-relation b ∈ A already generates (via
P(q × q) ◦ ϕ) the full relation of the equivalence class [b] ∈ A/∼A.

Proposition 30. Let a strong representation ϕ : A→ P(U × U) of a complete atomic non-
associative algebra A and an equivalence relation ∼ on U be given, such that ∼

1. is identity-regular, that is (ϕ(a) ∩ ∼) 6= ∅ implies ϕ(a)⊆∼

2. is a congruence for converse, and

3. enjoys the following fill-in property: if uϕ(a)x and u ∼ y, then there exist a′ ∼ a and
z ∼ x with

u ϕ(a) x

∼ ∼
y ϕ(a′) z

Then A/∼A as defined in Def. 29 is a non-associative algebra, qA : A→ A/∼A is a quotient
homomorphism, and ϕ/∼ is a semi-strong lax homomorphism of non-associative algebras.

Proof. We use the atoms of A/∼A to define a partition scheme b ∈ At(A/∼A) 7→ ϕ/∼(b).
Note that we know that A/∼A is a Boolean algebra (although we do not know yet that it
is a non-associative algebra). It is straightforward to show that ϕ/∼ preserves bottom and
joins; since q is surjective, also top is preserved. Concerning meets, since general relations
in A/∼A can be considered to be sets of base-relations, it suffices to show that b1 ∧ b2 = 0
implies P(q×q)(ϕ(q−1A (b1)))∩P(q×q)(ϕ(q−1A (b2))) = ∅. Assume to the contrary that P(q×
q)(ϕ(q−1A (b1)))∩P(q×q)(ϕ(q−1A (b2))) 6= ∅. Then already P(q×q)(ϕ(b′1))∩P(q×q)(ϕ(b′2)) 6= ∅
for base-relations b′i ∈ q

−1
A (bi), i = 1, 2. But then b′1 ∼A b′2, hence qA(b′1) = qA(b′2) ≤ b1 ∧ b2,

contradicting b1 ∧ b2 = 0. From these preservation properties, the JEPD property follows.
By identity-regularity and converse being a congruence, the condition of a partition scheme
on identity and converse are fulfilled.

By Prop. 22, we obtain a semi-strong representation ϕ/∼ : B → P(U/∼ × U/∼). In
order to show that A/∼A is a non-associative algebra, we show that A/∼A = B. We already
know that they have the same atoms and thus agree as complete atomic Boolean algebras.
We show agreement on the remaining operations:

Identity: Since ϕ is identity-preserving, ∆A is atomic. By identity-regularity, ∆B = [∆A] =
∆A/∼A

.

Converse: Since ∼ is a congruence for converse, for an atomic relation a ∈ A, [a]`B =
[a`A ] = [a]`A/∼A .
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Composition: Given atomic relations a, b ∈ A, we have [c] ∈ [a] �B [b] iff (by definition of
weak composition) there exist x, y, z with [x]ϕ/∼(a) [y]ϕ/∼(b) [z] and [x]ϕ/∼(c) [z]
iff (by definition of ϕ/∼) there exist x1, x2, y1, x2, z1, z2 and a′ ∼ a, b′ ∼ b, c′ ∼ c with

x1 ϕ(a′) y1 ∼ y2 ϕ(b′) z1

∼ ∼
x2 ϕ(c′) z2

By the fill-in property, this is equivalent to (implicitly quantifying variables existen-
tially and omitting a′ ∼ a, b′ ∼ b, c′ ∼ c):

x1 ϕ(a′) y ϕ(b′) z1

∼ ∼
x2 ϕ(c′) z2

By strength of ϕ, this is equivalent to

x1 ϕ(a′ � b′) z1

∼ ∼
x2 ϕ(c′) z2

which in turn is equivalent to c′ ∼ c′′ ∈ (a′ � b′) (for some c′′ and a′ ∼ a, b′ ∼ b, c′ ∼ c).
Now this is equivalent to [c] ∈ [a] �A/∼A

[b].

This completes the proof that A/∼A is a non-associative algebra. By Prop. 14, qA : A →
A/∼A is a quotient homomorphism, and by Prop. 22, ϕ/∼ is a semi-strong lax homomor-
phism.

An interesting open question is whether Prop. 30 also holds for semi-strong representa-
tions. We conjecture that the answer is positive. Note that ϕ/∼ can fail to be strong even
if ϕ is (consider the quotient DRAf of DRAfp introduced in Example 35).

Example 31. CYCb is a quotient of OPRA∗1. At the level of domains, it acts as follows:
an oriented point (p, φ) is mapped to the orientation φ (the point p is forgotten). At the
level of non-associative algebras, the quotient is given by the table in Fig. 9.

Proposition 32. Under the conditions of Prop. 30, (qA, q) : ϕ → ϕ/∼ is a (full, oplax)
quotient homomorphism of semi-strong representations. If ∼ is regular w.r.t. ϕ, then (qA, q)
is (full,proper) and satisfies the following universal property: if (qB : A → B, i : U →
V) : ϕ→ ψ is another (full,proper) homomorphism of weak representations with ψ injective
and ∼ ⊆ ker(i), then there is a unique (full,proper) homomorphism of weak representations
(h, k) : ϕ/∼ → ψ with (qB, i) = (h, k) ◦ (qA, q).
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{LEFTleftA, FRONTfront, BACKback, RIGHTrightA, SAMEback} 7→ o

{LEFTleft+, LEFTback, LEFTright+, RIGHTright+, RIGHTleft+,

RIGHTfront, FRONTleft, BACKright, SAMEleft} 7→ l

{LEFTleft−, LEFTfront, LEFTright−, RIGHTright−, RIGHTleft−,
RIGHTback, FRONTright, BACKleft, SAMEright} 7→ r

{LEFTrightP, RIGHTleftP, FRONTback, BACKfront, SAMEfront} 7→ e

Figure 9: Mapping from OPRA∗1 to CYCb relations

Proof. The (full,_) property10 follows from Prop. 14. The (_,oplax) property for (qA, q)
is P(q × q) ◦ ϕ ⊆ ϕ/∼ ◦ qA, which by definition of ϕ/∼ amounts to

P(q × q) ◦ ϕ ⊆ P(q × q) ◦ ϕ ◦ q−1A ◦ qA,

which follows from surjectivity of q. Regularity of ∼ w.r.t. ϕ means that ∼A is the ker-
nel of P(q × q) ◦ ϕ, which turns the above inequation into an equality; hence we obtain
(_,properness). Concerning the universal property, let (qB, i) : ϕ → ψ with the mentioned
properties be given. Since ∼ ⊆ ker(i), there is a unique function k : U/∼ → V with i = k◦q.
The homomorphism h we are looking for is determined uniquely by h(qA(b)) = qB(b); this
also ensures the (full,proper) homomorphism property. All that remains to be shown is
well-definedness. Suppose that b1 ∼A b2. By regularity, P(q × q)(ϕ(b1)) = P(q × q)(ϕ(b2)).
Hence also P(i × i)(ϕ(b1)) = P(i × i)(ϕ(b2)) and ψ(qB(b1)) = ψ(qB(b2)). By injectivity of
ψ, we get qB(b1) = qB(b2).

Example 33. The equivalence relation of the quotient in Ex. 31 is regular, and consequently,
the quotient of weak representations is (full,proper), cf. Fig. 10 illustrating this for the
relation RIGHTright+.

So far, we have studied quotients arising from quotienting the domain. There are also
quotients leaving the domain intact and just identifying certain base-relations.

Proposition 34. Let ϕ : A→ P(U×U) be a semi-strong representation of a complete atomic
non-associative algebra A and ∼A11 be an equivalence relation on the atoms (base-relations)
of A that does not relate ∆ with any other relation and that is a congruence for _`. This
leads to a (full, oplax) quotient of the weak representation as follows:

10. We write _ as a placeholder for “don’t care”, i.e. (full,_) only refers to fullness of the first component.
11. Note that in contrast to Def. 29, where ∼A is constructed, here ∼A is a parameter that can be chosen.
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Figure 10: The OPRA∗1 relation RIGHTright+ generates all possible angles for the CYCb
relation r.

A P(U × U)

A/∼A P(U × U)

ϕ

qA P(id× id)

ϕ/∼

Proof. Let qA : A→ A/∼A be defined as in Def. 12. Then ϕ/∼ can be defined similarly
as in Def. 29 (where q = id). From this, we get a semi-strong representation ϕ/∼ : B →
P(U × U) as in Prop. 30. The proof of A/∼A = B parallels that in Prop. 30 for the
Boolean algebra structure and for converse. For identity, we use the assumption about ∆,
which implies that ∆A/∼A

= {∆A}. Concerning composition, we need semi-strength only:
[c] ∈ [a] �B [b] iff there exist x, y, z with xϕ/∼(a) y ϕ/∼(b) z and xϕ/∼(c)z iff there exist
x, y, z and a′ ∼ a, b′ ∼ b, c′ ∼ c with x a′ y b′ z and x c′ z iff (by semi-strength) there exist
a′ ∼ a, b′ ∼ b, c′ ∼ c with c′ ∈ a′ � b′ iff [c] ∈ [a] �A/∼A

[b].
The (full, oplax)-property follows from Prop. 14 and as in Prop. 32.

Example 35. DRAf (as a semi-strong representation) is a quotient of DRAfp . It is ob-
tained by forgetting the labels ’+’, ’-’, ’P’ and ’A’.

Example 36. OPRAn is a quotient of OPRAn·m, which is the identity at the domain
level. At the level of non-associative algebras, qA maps region i ·m in OPRAn·m to region
i in OPRAn (for even i), and regions (i − 1) · m + 1 to (i + 1) · m − 1 in OPRAn·m
to region i in OPRAn (for odd i), see Fig. 11. This is canonically extended the OPRA
relations. The equivalence relation ∼A is the kernel of qA, i.e. it relates i · m only to
itself, while all elements from (i − 1) · m + 1 to (i + 1) · m − 1 are related to each other.
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Note that this yields an oplax homomorphism of non-associative algebra that is not lax. A
counterexample to laxness of OPRA2 → OPRA1 is the following: h(2∠0

0 � 2∠1
2) = {1∠1

3},
but h(2∠0

0) � h(2∠1
2) = {1∠1

3, 1∠
2
3, 1∠

3
3}.

i

i+1

i-1

(i-1)m+1...(i+1)m-1

(i+1)m

(i-1)m

Figure 11: OPRAn is a quotient of OPRAm·n

In (Dylla, Mossakowski, Schneider, & Wolter, 2013), we show that OPRA1 to OPRA8

are not associative. By Prop. 16 and Ex. 36, this carries over to any OPRAn.

Example 37. OPRA1 is a quotient of OPRA∗1. It is the identity at the domain level. At
the level of non-associative algebras, it forgets the labels ’+’, ’-’, ’P’ and ’A’.
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{llllA} 7→ LEFTleftA

{llll+, lllr, lllb} 7→ LEFTleft+

{llll−, lrll, lbll} 7→ LEFTleft−
{ffff, eses, fefe, fifi, ibib, fbii, fsei, ebis, iifb, eifs, iseb} 7→ FRONTfront

{bbbb} 7→ BACKback

{llbr} 7→ LEFTback

{llfl, lril, lsel} 7→ LEFTfront

{llrrP} 7→ LEFTrightP

{llrr+} 7→ LEFTright+

{llrf, llrl, llrr−, lfrr, lrrr, lere, lirl, lrri, lrrl} 7→ LEFTright−
{rrrrA} 7→ RIGHTrightA

{rrrr+, rbrr, rlrr} 7→ RIGHTright+

{rrrr−, rrrl, rrrb} 7→ RIGHTright−
{rrllP} 7→ RIGHTleftP

{rrll+, rrlr, rrlf, rlll, rfll, rllr, rele, rlli, rilr} 7→ RIGHTleft+

{rrll−} 7→ RIGHTleft−
{rrbl} 7→ RIGHTback

{rrfr, rser, rlir} 7→ RIGHTfront

{ffbb, efbs, ifbi, iibf, iebe} 7→ FRONTback

{frrr, errs, irrl} 7→ FRONTright

{flll, ells, illr} 7→ FRONTleft

{blrr} 7→ BACKright

{brll} 7→ BACKleft

{bbff, bfii, beie, bsef, biif} 7→ BACKfront

{slsr} 7→ SAMEleft

{sese, sfsi, sisf} 7→ SAMEfront

{sbsb} 7→ SAMEback

{srsl} 7→ SAMEright

Figure 12: Mapping from DRAfp to OPRA∗1 relations

Example 38 (refined fromMoratz et al. 2009; Lücke 2012). OPRA∗1 is a quotient ofDRAfp .
At the level of non-associative algebras, the quotient is given by the table in Fig. 12. At
the level of domains, it acts as follows: Given dipoles d1, d2 ∈ D, the relation d1 ∼ d2
expresses that d1 and d2 have the same start point and point in the same direction. (This
is regular w.r.t. ϕf .) Then D/∼ is the domain OP of oriented points in R2. See Fig. 14.
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The equivalence relation of this quotient is indeed regular: given a base-relation b ∈ DRAfp ,
ϕ(b) already generates (via the quotient) the whole of ϕ/∼([b]): for any pair of oriented
points in ϕ/∼([b]), a suitable choice of dipole end points leads to a relation in ϕ(b) (also cf.
Fig. 8). Consequently, the quotient of weak representations is (full,proper).

By Prop. 19, the construction of OPRA∗1 as a quotient allows us the computation of
the converse and composition tables by applying the congruence relations to the tables for
DRAfp . Actually, we have compared the result of this procedure with the composition
table for OPRA∗1 published by Dylla (2008) and provided with the tool SparQ (Wallgrün,
Frommberger, Dylla, & Wolter, 2009). In the course of checking the full oplaxness property
of the quotient homomorphism from DRAfp to OPRA∗1, we discovered errors in 197 entries
of the composition table of OPRA∗1 as it was shipped with the qualitative reasoner SparQ.12

The table has been corrected accordingly in the meantime.13

For example, the composition of SAMEright= q(srsl) and RIGHTright+= q(rrrr+, rbrr,
rlrr) can be computed as q({blrr, lere, lfrr, lirl, llrf, llrl, llrr+, llrr-, llrrp, lrri,
lrrl, lrrr, rbrr, rlrr, rrrr+}) = {LEFTright-, LEFTright+, LEFTrightP, BACKright,
RIGHTright+}. Now the old table additionally contained RIGHTright-. However, the
configuration a SAMEright b, b RIGHTright+ c and a RIGHTright- c is geometrically
not possible. Consider three oriented points oA, oB and oC with oA SAMEright oB and

o

o

A

C

o
B

Figure 13: OPRA∗1 configuration

oB RIGHTright+ oC , as depicted in Fig. 13. In the picture, oA RIGHTright+ oC . For the
relation oA RIGHTright- oC to hold, oC would need to be turned counter-clockwise. But
turn would lead to first oB RIGHTrightA oC and then oB RIGHTright- oC , even before
oA RIGHTright- oC is reached.

The next result shows that we also can use quotients to transfer an important property
of calculi.

Proposition 39 (refined from Moratz et al. 2009; Lücke 2012). Quotient homomorphisms
of weak representations that are bijective in the second component preserve strength of com-
position.

12. This has already been reported (Moratz et al., 2009; Lücke, 2012). While the actual computation of the
table was done with the same congruence relation as here, the quotient construction was wrong, resulting
in a one-point algebra, as stated above.

13. See https://github.com/dwolter/SparQ/commit/89bebfc60a and https://github.com/dwolter/
SparQ/commit/dad260edd9.
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DRAfp P(D× D)

OPRA?1 P(OP×OP)

ϕfp

ϕopra1
∗

Figure 14: Quotient homomorphism of weak representations from DRAfp to OPRA∗1

Proof. Let (h, i) : ϕ → ψ with ϕ : A → P(U × U) and ψ : B → P(V × V) be a quotient
homomorphism of weak representations such that i is bijective. According to Prop. 23, the
strength of the composition is equivalent to ϕ (respectively ψ) being a proper homomor-
phism. We assume that ϕ is a proper homomorphism and need to show that ψ is proper
as well. We also know that h and P(i× i) are proper. Let R2, S2 be two abstract relations
in B. By surjectivity of h, there are abstract relations R1, S1 ∈ A with h(R1) = R2 and
h(S1) = S2. Now ψ(R2 � S2) = ψ(h(R1) � h(S1)) = ψ(h(R1 � S1)) = P(i× i)(ϕ(R1 � S1)) =
P(i × i)(ϕ(R1)) � P(i × i)(ϕ(S1)) = ψ(h(R1)) � ψ(h(S1)) = ψ(R2) � ψ(S2), hence ψ is
proper.

Corollary 40 (Moratz et al. 2009; Lücke 2012). Composition in OPRA∗1 is strong.

Proof. Composition in DRAfp is known to be strong (Moratz, Lücke, & Mossakowski,
2011). By Example 38 and Prop. 39, the strength of composition carries over toOPRA∗1.

Corollary 41. Composition in CYCb is strong.

Example 42. The quotient homomorphism of Example 31 has a one-sided inverse, namely
the embedding (i.e. a proper injective homomorphism) of CYCb into OPRA∗1 At the level
of non-associative algebras, the quotient is given by the table in Fig. 15. At the level of
domains, it acts as follows: An orientation is mapped to the oriented point at (0, 0) with
that orientation.

Altogether, we get the diagram of calculi (semi-strong representations) and homomor-
phisms in Fig. 16.

4. Constraint Reasoning

Let us now apply the relation-algebraic method to constraint reasoning. Given a non-
associative algebra A, a constraint network is a map ν : N × N → A, where N is a set of
nodes (or variables) (Ligozat & Renz, 2004). Individual constraints ν(X,Y ) = R are written
as X R Y , where X,Y are variables in N and R is a relation in A. A constraint network
ν : N ×N → A is atomic or a scenario, if each ν(X,Y ) is a base-relation.
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o 7→ SAMEback

l 7→ SAMEleft

r 7→ SAMEright

e 7→ SAMEfront

Figure 15: Mapping from CYCb to OPRA∗1 relations

IA DRAfp OPRA?1 CYCb

DRAf OPRA1

OPRAn·m

OPRAn

(proper,proper) (full,proper) (proper,proper)

(proper, oplax)

(full,oplax)

(full,proper)

(full,oplax)

(full,oplax)

(full,oplax)

Figure 16: Homomorphisms among various calculi.

A constraint network ν is consistent if there is an assignment of all variables of ν with
elements in the domain such that all constraints are satisfied (a solution). This problem is
a Constraint Satisfaction Problem (CSP) (Mackworth, 1977). We rely on relation algebraic
methods to check consistency, namely the above mentioned path consistency algorithm. For
non-associative algebras, the abstract composition of relations need not coincide with the
(associative) set-theoretic composition. Hence, in this case, the standard path-consistency
algorithm does not necessarily lead to path consistent networks, but only to algebraic closure
(Renz & Ligozat, 2005):

Definition 43 (Algebraic Closure). A constraint network over binary relations is called
algebraically closed if for all variables X1, X2, X3 and all relations R1, R2, R3 the constraint
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relations
X1 R1 X2, X2 R2 X3, X1 R3 X3

imply
R3 ≤ R1 � R2.

Algebraic closure can be enforced by successively applying

R3 := R3 ∧ (R1 � R2)

for X1 R1 X2, X2 R2 X3, X1 R3 X3 until a fixed point is reached. Note that this procedure
leaves the set of solutions of the constraint network invariant. This means that if the
algebraic closure contains the empty relation, the original network is inconsistent.14

However, in general, algebraic closure is only a one-sided approximation of consistency:
if algebraic closure detects an inconsistency, then we are sure that the constraint network
is inconsistent; however, algebraic closure may fail to detect some inconsistencies: an alge-
braically closed network is not necessarily consistent. For some calculi, like Allen’s interval
algebra, algebraic closure is known to exactly decide consistency of scenarios, for others it
does not (Renz & Ligozat, 2005). It is also shown that this question is completely orthogonal
to the question whether the composition is strong.

Constraint networks can be translated along homomorphisms of non-associative algebras
as follows: Given h : A−→B and ν : N × N −→A, let h(ν) be the composition h ◦ ν. It
turns out that oplax homomorphisms preserve algebraic closure.

Proposition 44 (refined from Moratz et al. 2009; Lücke 2012). Given non-associative alge-
bras A and B, an oplax homomorphism h : A−→B preserves algebraic closure. An injective
lax homomorphism reflects algebraic closure.

Proof. Since an oplax homomorphism is a homomorphism between Boolean algebras, it
preserves the order. So for any three relations for X1 R1 X2, X2 R2 X3, X1 R3 X3 in the
algebraically closed constraint network over A, with

R3 ≤ R1 �R2

preservation of the order implies:

h(R3) ≤ h(R1 �R2).

Applying the oplaxness property yields:

h(R3) ≤ h(R1) � h(R2).

and hence the image of the constraint network under h is also algebraically closed. If h is
injective and lax, it reflects equations and inequalities, and the converse implication follows
in a similar way.

14. For scenarios, it suffices to check whether the scenario is algebraically closed, because any proper refine-
ment must contain the empty relation.
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Given a scenario ν : N ×N → A, following Renz and Ligozat (2005), we can reorganize
it as a function ρ : A → P(N × N) by defining ρ(b) = {(X,Y ) ∈ N × N | ν(X,Y ) = b}
for base-relations b and extending this to all relations using joins as usual. Note that ρ is a
weak representation iff the scenario is algebraically closed and normalised. Here, a constraint
network is normalised if ν(X,X) = ∆ and ν(Y,X) = ν(X,Y )`.

For atomic homomorphisms (i.e. those mapping atoms to atoms), the translation of
constraint networks can be lifted to scenarios represented as ρ : A → P(N × N) using the
above correspondence, we then obtain h(ρ) : B → P(N ×N).

Definition 45. Given a scenario ρ : A→ P(N×N), a solution for ρ in a weak representation
ϕ : A→ P(U × U) is a function j : N → U such that for all R ∈ A, P(j × j)(ρ(R)) ⊆ ϕ(R),
or P(j × j) ◦ ρ ⊆ ϕ for short:

P(N ×N) P(U × U)

⊆

A

P(j × j)

ρ ϕ

Proposition 46 (refined from Moratz et al. 2009; Lücke 2012). (_,oplax) homomorphisms
of weak representations preserve solutions for scenarios.

Proof. Let weak representations ϕ : A → P(U × U) and ψ : B → P(V × V) and an
(_,oplax) homomorphism of weak representations (h, i) : ϕ→ ψ be given.

A given solution j : N → U for ρ in ϕ is defined by P(j × j) ◦ ρ ⊆ ϕ. From this and the
oplax commutation property P(i× i) ◦ ϕ ⊆ ψ ◦ h we infer P(i ◦ j × i ◦ j) ◦ ρ ⊆ ψ ◦ h, which
implies that i ◦ j is a solution for h(ρ).

An important question for a calculus (= weak representation) is whether algebraic closure
decides consistency of scenarios (Renz & Ligozat, 2005). (Note that in general, any consistent
scenario is algebraically closed, but not vice versa.) We will now prove that this property is
preserved under certain homomorphisms.

Proposition 47 (refined from Moratz et al. 2009; Lücke 2012). Atomic (lax,oplax) homo-
morphisms (h, i) of weak representations with injective h preserve the following property to
the image of h:

Algebraic closure decides scenario-consistency.

Proof. Let weak representations ϕ : A→ P(U ×U) and ψ : B → P(V ×V) and an atomic
oplax homomorphism of weak representations (h, i) : ϕ→ ψ be given. Further assume that
for ϕ, algebraic closure decides consistency of scenarios.
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Any scenario in the image of h can be written as h(ρ) : B → P(N × N). If h(ρ) is
algebraically closed, then by Prop. 44, so is ρ. Hence, by the assumption, ρ is consistent,
i.e. has a solution. By Prop. 46, h(ρ) is consistent as well.

The general scenario consistency problem for the DRAfp calculus is NP-hard and even
∃IR-complete (Wolter & Lee, 2010; Lee, 2014). However, for specific scenarios, we can do
better: We can apply Prop. 47 to the homomorphism from interval algebra to DRAfp (see
Example 27) and obtain:

Proposition 48 (Moratz et al. 2009; Lücke 2012). Algebraic closure decides consistency of
DRAfp scenarios that involve the interval algebra relations only.

Hence, consistency of such scenarios can be decided in polynomial time (in spite of the
NP-hardness of the general scenario consistency problem). A similar remark holds for the
CYCb relations embedded into OPRA∗1.

For calculi such as RCC8, the interval algebra etc., (maximal) tractable subsets have
been determined, i.e. sets of relations for which algebraic closure decides consistency also
of non-atomic constraint networks involving these relations. It follows then that algebraic
closure in DRAfp decides consistency of any constraint network involving (the homomorphic
image of) a maximal tractable subset of the interval algebra only.

5. Conclusion

Our study investigated calculi which on the application side represent the same modality
on different levels of granularity. This modality in our case is relative direction. We demon-
strated how to model relative directions on different levels of granularity with DRAfp ,
OPRA∗1, and CYCb. It turned out that in our case study of relative direction between
oriented objects the formal relation between the calculi could be expressed as quotient ho-
momorphisms.

This result is a step in the application of universal algebraic methods to qualitative
constraint reasoning. Since there has been an explosion of qualitative constraint calculi
in the recent years it becomes important to study the relations between those calculi and
to make automatic mappings between the calculi. This is where we contribute with the
presented work. We also have contributed a new notion of quotient (based on so-called
oplax homomorphisms) between relation algebras that captures existing natural quotients
between spatial calculi. We have published Haskell tools used for finding and checking
homomorphisms between calculi in a public repository.15

As concrete results of our study we demonstrated how to answer questions whether com-
position is strong or algebraic closure decides consistency for calculi in which this has not
been examined yet. With purely algebraic methods, we can lift the properties of strength of
composition and of algebraic closure deciding consistency along homomorphisms of qualita-
tive calculi. The latter is particularly important, because algebraic closure is a polynomial-
time method, whereas qualitative constraint problems in some cases turn out to be NP-hard,
even for scenarios of base-relations.

15. See https://github.com/spatial-reasoning/homer
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We derived a chain of calculi and homomorphisms between DRAfp , OPRA∗1, CYCb.
Thereby we combined the dipole and opra calculi with the cycord approach. Based on
this new approach we could automatically derive a composition table for OPRA∗1 based
on the formally verified composition table of DRAfp . We compared this table with the
composition table for OPRA∗1 described in previous work by other authors (Dylla, 2008).
It turned out that this old composition table as it was shipped with the qualitative reasoner
SparQ contained errors in 197 entries. This emphasizes our point how important it is to
develop a sound mathematical theory as a basis for the computation of composition tables
and to stay as close as possible with the implementation to the theory.
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