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Abstract

How do we parse the languages for which no treebanks are available? This contribution
addresses the cross-lingual viewpoint on statistical dependency parsing, in which we attempt
to make use of resource-rich source language treebanks to build and adapt models for the
under-resourced target languages. We outline the benefits, and indicate the drawbacks of
the current major approaches. We emphasize synthetic treebanking: the automatic creation
of target language treebanks by means of annotation projection and machine translation.
We present competitive results in cross-lingual dependency parsing using a combination
of various techniques that contribute to the overall success of the method. We further
include a detailed discussion about the impact of part-of-speech label accuracy on parsing
results that provide guidance in practical applications of cross-lingual methods for truly
under-resourced languages.

1. Introduction

“Languages are dialects with an army and a navy” is a famous saying popularized by the
sociolinguist Max Weinreich. In modern times, this quote could be rephrased—and languages
defined—as “dialects with a part-of-speech tagger, a treebank, and a machine translation
system.” Even though this proposition would disqualify most languages of the world, it is
true that the existence of many languages is threatened due to insufficient resources and
technical support. Natural language processing (NLP) becomes increasingly important in
people’s everyday life if we look, for example, at the success of word prediction, spelling
correction, and instant on-line translation. Building linguistic resources and tools, however,
is expensive and time-consuming, and one of the great challenges in computational linguistics
is to port existing models to new languages and domains.

Modern NLP requires data, often annotated with explicit linguistic information, and
tools that can learn from them. However, sufficient quantities of electronic data sources
are available only for a handful of languages whereas most other languages do not have
the privilege to draw from such resources (Bender, 2011; Uszkoreit & Rehm, 2012; Bender,
2013). Speakers of low-density languages and the countries they live in are not able to invest
in large data collection and time-consuming annotation efforts, and the goal of cross-lingual
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NLP is to share the rich linguistic information with poorly supported languages, making it
possible to build tools and resources without starting from scratch.

In this paper, we consider the task of statistical dependency parsing (Kiibler, McDonald,
& Nivre, 2009). Top-performing dependency parsers are typically trained on dependency
treebanks that include several thousands of manually annotated sentences. These statistical
parsing models are known to be robust and very efficient, yielding high accuracy on unseen
texts. However, even moderately-sized treebanks take a lot of time and resources to produce
(Abeillé, 2003), and at this point, they are unavailable or scarce even for major languages.

Thus, similar to other areas of NLP research, we face the challenge posed in our abstract:
How do we parse the languages for which no dependency treebanks are available? Without
annotated training data we basically have four options in data-driven NLP:

1. We can build parsing models that can learn from raw data using unsupervised machine
learning techniques.

2. If manually annotated data is scarcely available, we can resort to various approaches
to semi-supervised learning, leveraging the various sources of fortuitous data (Segaard,
2013).

3. We can transfer existing models and tools to new languages.

4. We can transfer data from resource-rich languages to resource-poor languages and
build tools on those data sets.

All four viewpoints are studied intensively not only in connection with dependency parsing
but in NLP in general. For parsing, the first option is especially difficult and unsupervised
approaches still fall far behind the rest of the field (Sggaard, 2012). Unsupervised models are
also difficult to evaluate and applications that build on labeled information have problems
in making use of the structures produced by those models. Semi-supervised learning either
augments well-resourced environments for improved cross-domain robustness, or largely
coincides with the cross-lingual approaches as it is very loosely defined (Sggaard, 2013).
Therefore, it is not surprising that the final two options have attracted quite some popularity
and gained a lot of merit in enabling parsing for low-resource languages. In this paper, we
exclusively look at those techniques.

The basic idea behind transfer approaches is that tools and resources that exist for
resource-rich source languages are used to build corresponding tools and resources in under-
resourced target languages by means of adaptation. For statistical dependency parsing such
a cross-lingual approach essentially means that we either take a parsing model and apply
it to another language or use treebanks to train parsers for the new language with target
language adaptation taking place in any of the workflow stages. We can, thus, divide the
main approaches in cross-lingual dependency parsing into two categories: model transfer
and data transfer.

Model transfer methods have the appealing property that they focus on language
universals and structures that can be identified in various languages without side-stepping
to the (semi-)automatic creation of annotated data in the target language. There is a strong
line of research looking at the identification of cross-lingual features that can be used to
port models and tools to new languages. One of their biggest drawbacks is the extreme
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abstraction to generic features that cannot cover all language-specific properties of natural
languages. Therefore, these methods are often restricted to closely related languages and
their performance is usually far below fully supervised target-specific parsing models.

Data transfer methods, on the other hand, emphasize the creation of artificial training
data that can be used with standard machine learning techniques to build models in the
target language. Most of the work is focused on annotation projection and the use of
parallel data, that is, documents that are translated to other languages. Statistical alignment
techniques make it possible to map linguistic annotation from one language to another.
Another recent approach proposes the translation of treebanks (Tiedemann, Agi¢, & Nivre,
2014) which enables the projection of annotation without parsing unrelated parallel corpora.
Both methods create synthetic data sets without manual intervention and, therefore, we
group these techniques under the general term synthetic treebanking, which is the main focus
of our paper.

The structure of our paper is as follows. After a brief outlook on the contributions
of our work, we first provide an overview of cross-lingual dependency parsing approaches.
After that, we discuss in depth our experiments with synthetic treebanks, where we inspect
annotation projection with parallel data sets and with translated treebanks. We also include
a thorough study on the impact of part-of-speech (PoS) tagging in cross-lingual parsing.
Before concluding with final remarks and prospects for future work, we discuss the impact of
our contribution in comparison with selected recent approaches, both in terms of empirical
assessment and the underlying requirements imposed on truly under-resourced languages.

1.1 Our Contributions

The paper addresses annotation projection and treebank translation with a detailed and
systematic investigation of various techniques and strategies. We build on our previous
work on cross-lingual parsing (Tiedemann et al., 2014; Tiedemann, 2014, 2015) but extend
our study with detailed discussions of advantages and drawbacks of each method. We also
include a new idea of back-projection that integrates machine translation in the parsing
workflow. Our main contributions are the following:

1. We provide an overview of the various approaches to cross-lingual dependency parsing
with detailed discussions about the properties of the utilized techniques.

2. We present new competitive cross-lingual parsing results using synthetic treebanks.
We ground our results through a discussion on related work and implications for truly
under-resourced languages.

3. We provide a thorough study on the impact of PoS tagging in cross-lingual dependency
parsing.

Before delving into more details let us first review the selected current approaches to
cross-lingual dependency parsing to connect the work presented in this paper with related
research.
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2. Current Approaches to Cross-Lingual Dependency Parsing

This section provides an overview of cross-lingual dependency parsing. We discuss the
previously outlined annotation projection and model transfer approaches in more depth
including recent developments in the field. Cross-lingual parsing combines many efforts in
dependency treebanking, and in creating standards for PoS and syntactic annotations. We
start off by outlining the current practices in empirical evaluation of cross-lingual parsers,
and the linguistic resources used for benchmarking.

2.1 Treebanks and Evaluation

In a supervised setting, cross-lingual dependency parsing amounts to training a parser on
a treebank, and applying it on the target text. However, the empirical quality assessment
for such a parser on the target data introduces certain additional constraints. To evaluate
supervised cross-lingual parsers, we require at least the following three components:

1. parser generators: trainable, language-independent dependency parsing systems,
2. dependency treebanks for the source languages, and

3. held-out evaluation sets for the target languages.

In the years following the venerable CoNLL 2006 and 2007 shared task campaigns in
dependency parsing (Buchholz & Marsi, 2006; Nivre, Hall, Kiibler, McDonald, Nilsson,
Riedel, & Yuret, 2007), many mature parsers were made publicly available across the different
parsing paradigms. This resolves the first point from our list, as choosing to apply—and
comparing between—different approaches to parsing in a cross-lingual setup is nowadays
made trivial by abundant parser availability. We can now easily benchmark a respectable
number of parsers for accuracy, processing speed, and memory requirements.

Experimental setup for cross-lingual parsing thus amounts to choosing the training and
testing data, and to defining the evaluation metrics.

2.1.1 INTRINSIC AND EXTRINSIC EVALUATION

We can perform intrinsic or extrinsic evaluation of dependency parsing. In intrinsic evaluation,
we typically apply evaluation metrics to gauge the various aspects of parsing accuracy on
held-out data, while in extrinsic evaluation, parsers are scored by the gains yielded in
subsequent—or downstream—tasks which make use of dependency parses as additional
input.

Dependency parsers are intrinsically evaluated for labeled (LAS) and unlabeled (UAS)
attachment scores: the portions of correctly paired heads and dependents in dependency
trees, with or without keeping track of the edge labels, respectively. Sometimes we also
evaluate for labeled (LEM) and unlabeled (UEM) exact match scores, to determine how often
the parsers correctly parse entire sentences. For a more detailed exposition of dependency
parser evaluation, see the work of Nivre (2006) and Kiibler et al. (2009), and also note that
Plank et al. (2015) provide detailed insight into the correlations between these and various
other dependency parsing metrics and human judgements on the quality of parses.
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In a monolingual intrinsic evaluation scenario, we either have predefined held-out test
data at our disposal, or we cross-validate by slicing the treebank into training and test
sets. In both cases, the treebank and the test sets belong to the same resource, and are
created using the same annotation scheme, which in turn typically stems from the same
underlying syntactic theory. However, given the heterogenous development of syntactic
theories, and subsequently of treebanks for different languages (Abeillé, 2003), this does not
necessarily hold in a cross-lingual setup. Moreover, excluding the very recent treebanking
developments—which we discuss a bit further in this section—vprior to 2013, the odds of
randomly sampling from a pool of all publicly available treebanks and drawing a source-target
pair annotated in the same (or even similar) scheme are virtually non-existent.

The syntactic annotation schemes generally differ in: (a) rules for attaching dependents
to heads, and (b) dependency relation labels, that is, the syntactic tagsets. Given two
treebanks with incompatible syntactic annotations, without performing any conversions, it
is more likely to expect similarities in head attachment rules, than in the syntactic tagsets.
This fact is present in all the initial cross-lingual parsing experiments (Zeman & Resnik,
2008; McDonald, Petrov, & Hall, 2011; Sggaard, 2011). Such initial efforts in charting
cross-lingual dependency parsing mainly used the CoNLL shared task datasets, and they
all evaluated for UAS. The rare exceptions are, for example, the generally under-resourced
Slavic languages (Agi¢, Merkler, & Berovié, 2012) subscribing to (slightly modified versions
of) the Prague Dependency Treebank scheme (Béhmova, Haji¢, Hajicova, & Hladka, 2003).

Very recently, a substantial effort was undertaken in bridging the annotation scheme gap
in dependency treebanking to facilitate uniform syntactic processing of world’s languages.
The effort resulted in two editions of Google Universal Treebanks (UDT) (McDonald et al.,
2013), which were in turn recently superseded by the Universal Dependencies project (UD)
(Nivre et al., 2015). In these projects, the Stanford typed dependencies (SD) (De Marneffe,
MacCartney, & Manning, 2006) were used as the adaptable basis for designing the underlying
annotation scheme, and for applying it by using human expert annotators on several languages.
These datasets made possible the first reliable cross-lingual dependency parsing experiments,
namely the ones by McDonald et al. (2013), and also enabled the use of LAS as the default
evaluation metric, just like in monolingual parsing. For these reasons, UDT and UD are the
de facto standard datasets for benchmarking cross-lingual parsers today, while the CoNLL
datasets are still used mainly for backward compatibility with previous research. In another
effort, the HamleDT dataset (Zeman et al., 2014), 30 treebanks were automatically converted
to the Prague scheme, and then to SD, and are also frequently used in evaluation campaigns.
We do currently note a preference for UDT and UD, since they were produced through
manual annotation.

Given our short exposition of dependency treebanking in relation with cross-lingual
parsing, in this paper, we opt for using UDT in our experiments. As for the choice of sources
and targets, we do a Cartesian product of the dataset: we treat all the available languages
as both sources and targets. This is the more common approach in cross-lingual parsing,
even if there is research that uses English as a source-only language, and treats the other
languages as targets.

The extrinsic evaluation of cross-lingual parsing is much less developed, although the
arguments to its favor are very convincing. Namely, the underlying goal of cross-lingual
parsing is enabling the processing of actual under-resourced languages. For these languages,
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even the parsing test sets may not be readily available. For conducting empirical evaluations
in such extreme cases, we might resort to downstream applications (Elming et al., 2013).
The choice of downstream tasks might pose a separate challenge in this case, and devising
feasible (and representative) tasks for extrinsic evaluation of cross-lingual dependency parsing
remains largely unaddressed. In this paper, we deal only with intrinsic evaluation.

2.1.2 PART-OF-SPEECH TAGGING

As noted in our brief introduction to model transfer, dependency parsers make heavy use of
PoS features. As with the syntactic annotations, sources and targets may or may not have
shared PoS annotation layers, and moreover, PoS taggers may or may not be available for
the target languages.

The issue of PoS compatibility is arguably less difficult to resolve than the structural
or labeling differences in dependency trees, as PoS tags are more or less straightforwardly
mapped to one another. At this point, we also note the recent approaches to learning
PoS tag conversions (Zhang, Reichart, Barzilay, & Globerson, 2012), which systematically
facilitate the conversions. Furthermore, efforts such as UDT/UD also build on a shared PoS
representation, the so-called Universal PoS (UPoS) (Petrov et al., 2012). UD extends the
UPoS specification by introducing additional PoS tags—17 instead of the initial 12—and
by providing the support for standardized morphological features such as noun gender and
case, or verb tense. That said, these added features are not yet readily available, and
the shared representation in UDT/UD amounts to a 12- or 17-tag-strong PoS tagset. As
for the treatment of source languages with respect to PoS tagging, most of the work in
cross-lingual parsing presumes the existence of taggers, or even tests on gold standard PoS
input. Recently, Petrov (2014) argued strongly for the use of predicted PoS in cross-lingual
parsing, which does make for a more realistic testing environment, especially with increased
availability of weakly supervised PoS taggers (Li et al., 2012; Garrette et al., 2013). In this
paper, we experiment both with gold standard and predicted PoS features in order to stress
the impact of tagging accuracy on parsing performance. We also discuss the implications of
these choices in enabling the processing of truly under-resourced languages.

2.2 Model Transfer

We now proceed to sketch the main approaches to cross-lingual dependency parsing: model
transfer, annotation projection, and treebank translation. We also reflect on the usage of
cross-lingual word representations in cross-lingual parsing, while we particularly emphasize
the annotation projection and treebank translation approaches.

Simplistic model transfer amounts to applying the source models to the targets with no
adaptation, which can still be rather successful for closely related languages (Agié et al.,
2014). However, the flavor of model transfer that has recently attracted a fair amount of
interest owes to the availability of cross-lingually harmonized annotation (Petrov et al., 2012)
that makes it possible to use shared PoS features across languages. The most straightforward
technique is to train delexicalized parsers that heavily rely on UPoS tags. Figure 1 illustrates
the basic idea behind these models. This simple technique has shown some success for
closely related languages (McDonald et al., 2013). Several improvements can be achieved by
using multiple source languages (McDonald et al., 2011; Naseem, Barzilay, & Globerson,
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Figure 1: An illustration of the delexicalized model transfer, with an implication of the
lexicalization option through self-training.

2012), and additional cross-lingual features that can be used to transfer models to a new
language, such as cross-lingual word clusters (Téackstrom, McDonald, & Uszkoreit, 2012)
or word-typology information (Téckstrom, McDonald, & Nivre, 2013b). There are ways to
re-lexicalize models as well. Figure 1 suggests a self-learning procedure that adds lexical
information from data sets that have automatically been annotated using delexicalized
models. Various data selection techniques can be used to focus on reliable cases to improve
the value of the induced lexical features.

The advantage of transferred models is that they do not require parallel data, at least
not in their most generic form. However, reasonable models require some kind of target
language adaptation and parallel or comparable data sets are usually necessary to perform
such adaptations. The largest drawback of model transfer is the strong abstraction from
language-specific features to the universal properties. For many fine-grained linguistic
differences, this kind of coarse-grained universal knowledge is often not informative enough
(Agié¢ et al., 2014). Consequently, a large majority of recent approaches aim at bridging this
representational deficiency.

2.3 Cross-Lingual Word Representations

Model transfer requires abstract features to capture the universal properties of languages.
The use of cross-lingual word clusters was already mentioned in the previous section,
and the benefits of monolingual clustering for dependency parsing are well-known (Koo,
Carreras, & Collins, 2008). Recently, distributed word representations have entered NLP
in various models (Collobert et al., 2011). The so-called word embeddings capture the
distributional properties of words in continuous vector representations that can be used to
measure syntactic and semantic relations even across languages (Mikolov, Le, & Sutskever,
2013). Their monolingual variety has found many applications in NLP. Distributed word
representations for cross-lingual dependency parsing were first applied just recently by Xiao
and Guo (2014). They explore word embeddings as another useful abstraction that enables
more robust model transfer across languages. However, they apply their techniques to the
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old CoNLL data sets and cannot provide labeled attachment scores and comparable results
to our settings.

Several recent publications show that bilingual word embeddings learned from aligned
bitexts improve semantic representations. Faruqui and Dyer (2014) use canonical correlation
analysis to find cross-lingual projections of monolingual vector space models. Zou, Socher,
Cer, and Manning (2013) learn bilingual word embeddings with fixed word alignments.
Klementiev, Titov, and Bhattarai (2012) treat cross-lingual representation learning as a
multitask learning problem in which cross-lingual interactions are based on word alignments
and word embeddings are shared across the various tasks. All of these techniques have
significant value in improved model transfer and may act as the necessary target language
adaptation to move beyond language universals as the only feature in transfer models.

In cross-lingual parsing, we can envision the word representations as a valuable addition
to model transfer in the direction of regularization. That said, their usage maintains the
previously listed advantages and drawbacks of model transfer, and adds another prerequisite:
the availability of parallel texts for inducing the embeddings. There have been some very
recent developments in creating cross-lingual embeddings without parallel text (Gouws &
Sggaard, 2015) but their applicability in dependency parsing is yet to be verified. Here,
we note a very recent contribution by Sggaard et al. (2015), who use inverted indexing on
cross-lingually overlapping Wikipedia articles to produce truly inter-lingual word embeddings.
As they show competitive scores in cross-lingual dependency parsing, we further address
their contribution in our related work discussion.

2.4 Annotation Projection

The use of parallel corpora and automatic word alignment for transferring linguistic anno-
tation from a source language to a new target language has quite a long tradition in NLP.
The pioneering work of Yarowsky, Ngai, and Wicentowski (2001) was followed by a number
of researchers, and for various tasks, the transfer of dependency annotation among others
(Hwa et al., 2005). The basic idea is to use existing tools and models to annotate the source
side of a parallel corpus and then to use alignment to guide the mapping of that annotation
to the target side of the corpus. Assuming that the source language annotation is sufficiently
correct and that the aligned target language reflects the same syntactic patterns, we can
train parsers on the projected data to bootstrap tools for languages without explicit linguistic
resources such as syntactically annotated treebanks. Figure 2 illustrates the general idea of
annotation projection for the case of syntactic dependencies and parser model induction.
Note that PoS labels are typically projected as well along with the dependency relations.

The first attempts to directly map dependency information coming from diverse treebanks
resulted in rather poor performance. In their work, Hwa et al. (2005) had to rely on additional
post-processing rules to transform the results into reasonable structures. As we argued in
the previous subsection, one of the main problems in the early work was the incompatibility
of treebanks that have individually been developed for various languages following different
guidelines and using different label sets. The latter is also the reason why no labeled
attachment scores could be reported in that work, which makes it difficult to place these
cross-lingual approaches in relation to standard models trained for the target language.
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Figure 2: An illustration of the syntactic annotation projection system for cross-lingual
dependency parsing.

Less frequent, but also possible, is the scenario where the source side of the parallel
corpus contains manual annotation (Agi¢ et al., 2012). This addresses the problem created
by projecting noisy annotations, but it presupposes parallel corpora with manual annotation,
which are rarely available. Additionally, the problem of incompatible annotation still remains.

The introduction of cross-lingually harmonized treebanks changed the situation signif-
icantly (McDonald et al., 2013). These data sets use identical labels and adhere similar
annotation guidelines that make it possible to directly compare structures when projected
from other languages. In the work of Tiedemann (2014), we explore projection strategies
and discuss the success of annotation projection in comparison to other cross-lingual ap-
proaches. Our work builds on the direct correspondence assumption (DCA) proposed by
Hwa et al. (2005). They define several projection heuristics that make it possible to project
any dependency structure through given word alignments to a target language sentence. The
basic procedures cover different types of word alignments. One-to-one alignments are the
most straightforward case in which dependency relations can simply be copied. Unaligned
source language tokens are covered by additional DUMMY nodes that capture all relations
that are connected to that token in the source language (see the left-most graph in Figure 3).
Many-to-one links are resolved by only keeping the link to the head of the aligned source
language tokens and deleting all other links (see the graph in the middle). One-to-many
alignments are handled by introducing additional DUMMY nodes that act as the immediate
parent in the target language, and which will capture the dependency relation of the source
side annotation (see the right-most graph in Figure 3). Many-to-many alignments are
treated in two steps. First we apply the rule for one-to-many alignments and after that the
many-to-one rule. Finally, unaligned target language tokens are simply dropped and will be
removed from the target sentence.

Some issues are not explicitly covered by the original publication of the algorithm. For
example, it is not entirely clear in what sequence these rules should be applied and how
labels should be projected. Some of the rules, for example, change the alignment structure
and may cause additional unaligned source tokens that need to be handled by other rules.
In our implementation, we first apply the one-to-many rule for all cases in the sentence
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Figure 3: Annotation projection heuristics for special alignment types: Unaligned source
words (left graph), many-to-one alignments (center), one-to-many alignments
(right graph).

before applying the many-to-one rule and, thereafter, resolving unaligned source tokens. The
final step includes the mapping of dependency relations through the remaining one-to-one
alignments. For one-to-many alignments, we transfer the PoS and dependency labels to the
newly created DUMMY node (following the rule for one-to-one alignments after resolving the
one-to-many link) and the previously aligned target language tokens will obtain DUMMY
PoS labels and their dependency relation to the governing DUMMY node will also be labeled
as DUMMY (see Figure 3).

Projecting syntactic dependency annotation creates several other problems as well. First
of all, crossing word alignments cause a large amount of non-projectivity in the projected
data. The percentage of non-projective structures goes up to over 50% for the UDT
data (Tiedemann et al., 2014). Furthermore, projection heuristics can lead to conflicting
annotation as it is shown in the authentic example illustrated in Figure 4. These issues put
an additional burden on the learning algorithms and many cross-lingual errors are caused by
such complex and ambiguous cases.

Nevertheless, Tiedemann (2014) demonstrates that annotation projection is competitive
to other cross-lingual methods and its merits are further explored by Tiedemann (2015).

cc

adpobj

Tous ses produits sont de qualité et d’'une fraicheur exemplaires .

OCNON

high- quality DUMMY and

added non-
projectivity
inconsistencies

Figure 4: Issues with annotation projection illustrated on a real-life example.
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Figure 5: An illustration of the synthetic treebanking approach through translation.

2.5 Translating Treebanks

The notion of translation in cross-lingual parsing was first introduced by Zhao, Song, Kit,
and Zhou (2009), who use a bilingual lexicon for lookup-based target adaptation. A similar
method is also adopted by Durrett et al. (2012). This simplistic lookup approach is used by
Agié et al. (2012), who exploit the availability of a parallel corpus for two closely related
languages, one side of the corpus being a dependency treebank. The former evaluates for
UAS on 9 languages from the CoNLL datasets, while the latter research deals only with
Croatian and Slovene and is of a smaller scale.

Tiedemann et al. (2014) are the first to use full-scale statistical machine translation (SMT)
to synthesize treebanks as SMT-facilitated target language adaptations for cross-lingual
parsing. They use UDT for LAS evaluation, while also performing a subset of experiments
with the CoNLL 2007 data for backward compatibility. In this paper, we often refer to,
and we build on that work. Figure 5 illustrates the general idea of this technique, and we
proceed to discuss its implications.

As sketched in the introduction, at the core of the synthetic treebanking idea is the
concept of automatic source-to-target treebank translation. Its workflow consists of the
following steps:

1. Take a source-target parallel corpus and a large monolingual target language corpus
to train an (ideally top-performing) SMT system, or—if available—apply an existing
source-target machine translation system.

2. Given a source language treebank, translate it into the target language. Word-align
the original sentence and its translation, or preserve the phrase alignments provided
by the SMT system.

3. Use the alignments to project the dependency annotations from the source treebank
to the target translation, in turn creating an artificial (or synthetic) treebank for the
target language.

4. Train a target language parser on the synthesized treebank, and apply (or evaluate) it
on target language data.
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This sketch of treebank translation opens up a large parameter tuning search space, and
also outlines the various properties of the approach. We discuss them briefly, and defer the
reader to the detailed expositions of the many intricacies in these papers (Tiedemann et al.,
2014; Tiedemann, 2014, 2015).

2.5.1 COMPONENTS

The prerequisites for building an SMT-supported cross-lingual parsing system are: (a) the
availability of parallel corpora, (b) a platform for building state-of-the-art SMT systems, (c)
algorithms for robust annotation projection, and (d) the previously listed resources needed
for cross-lingual parsing in general: treebanks and parsers.

Parallel corpora are now available for a very large number of language pairs, even outside
the benchmarking frameworks of CoNLL and UDT. The size and domains of the parallel
data influences the quality of SMT, and subsequently of the cross-lingual parsers. The
SMT community typically experiments with the Europarl dataset (Koehn, 2005), while
many other datasets are also freely available and cover many more languages, such as the
OPUS collection (Tiedemann, 2012). Ideally, the parallel corpora used in SMT are very
large, but for some source-target pairs, this may not necessarily be the case. Moreover, the
corpora might not be spread across the domains of interest, leading to decreased performance.
Domain dependence is thus inherent in the choice of parallel corpora for training SMT
systems. Here, we note a recent contribution by Agié¢ et al. (2015), who learn a hundred PoS
taggers for truly under-resourced languages by using label propagation on a multi-parallel
Bible corpus, indicating the possibility of bootstrapping NLP tools in even the most hostile
environments, and the subsequent applicability of such tools across domains.

In this paper, we opt for using Moses (Koehn et al., 2007) as the de facto standard
platform for conducting SMT research. In summary, since our approach to SMT goes
beyond the dictionary lookup of Durrett et al. (2012), we mainly experiment with phrase-
based models, gaining the target language adaptations in the form of both the lexical
features and the reordering. The projection algorithms for synthetic treebanking can in
whole be transferred from the annotation projection approaches. We do, however, consider
their various parametrizations, while Tiedemann et al. (2014) previously proposed a novel
algorithm, and Tiedemann (2014) thoroughly compared various approaches to annotation
projection.

2.5.2 ADVANTAGES AND DRAWBACKS

Automatic translation has the advantage that we can use the manually verified annotation of
the source language treebank and the given word alignment, which is an integral part of the
translation model. Recent advances in statistical machine translation (SMT) combined with
the ever-growing availability of parallel corpora are now making this a realistic alternative.
The relation to annotation projection is obvious as both involve parallel data with one side
being annotated. However, the use of direct translation brings two important advantages.
First of all, using SMT, we do not accumulate errors from two sources: the tool—tagger
or parser—used to annotate the source language of a bilingual corpus, and the noise coming
from alignment and projection. Instead, we use the gold standard annotation of the source
language which can safely be assumed to be of much higher quality than any automatic
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Input: source tree S, target sentence 7',
word alignment A, phrase segmentation P
Output: syntactic heads head[],

word attributes attr[]

1 treeSize = max_distance_to_root(S) ;
2 attr=1[];
: fortc T do use phrase
5 if is_unaligned_trg(z,A) then / segmentation
6 for 2’ € in_trg _phrase(z,P) do function: find_aligned:
7 [Sx,..,5y] = aligned_to(t’) ; -
8 § = find_highest([sz,..,5y1.S) 5 Input: node s, source tree S with root ROOT,
9 t= find_aligned(§,S, T,A) ; target sentence 7', word alignment A
10 attr[t] = DUMMY ; Output: node t*
11 head[t] =1; 1 if s == ROOT then Yvalk up the tree
12 end 2 | returnROOT; / if unaligned
3 end
ﬁ o [Sz,-.,sy] = aligned_to(t) ; — :FtaCh to 4 while is_unaligned _src(s,A) do
15 s = find_highest([z....5,1.S) : ighest node 5 s = head-of(s.S) ;
16 attr[t] = attr(s) ; 6 if s == ROOT then
17 3 = head of(s.S) ; 7 | L ROOT ;
18 i = find_aligned(s,S,T,A) ; : end en
19 if 7 == ¢ then I; p=0: o
20 [S25--»8y] = in_src_phrase(s,P) ; U t* = undef - heuristics for
21 s* = find-highest([sz,..,541.S) ; 12 for ' € aligned(s,A)do 4— multiple targets:
2 §= head,qt(S*,S) N 13 if position(#’,T) > p then take right-most
23 t = find_aligned(8,S,T,A) ; 14 =1t
2 head[t] =1 ; 15 p = position(t’,T) ;
25 end 16 end
26 end 17 end
27 end 18 return t* ;

Figure 6: Annotation projection without DUMMY nodes proposed by Tiedemann et al.
(2014).

annotation obtained by using a tool trained on that data, especially in light of cross-domain
accuracy drops. Moreover, using SMT may help in bypassing domain shift problems, which
are common when applying tools trained (and evaluated) on one resource to text from
another domain.

Secondly, we can assume that SMT will produce output that is much closer to the
input than manual translations in parallel texts usually are. Even if this may seem like a
shortcoming in general, in the case of annotation projection it should rather be an advantage,
because it makes it more straightforward and less error-prone to transfer annotation from
source to target. Furthermore, the alignment between words and phrases is inherently
provided as an output of all common SMT models. Hence, no additional procedures have to
be performed on top of the translated corpus. Recent research (Zhao et al., 2009; Durrett
et al., 2012) has attempted to address synthetic data creation for syntactic parsing via
bilingual lexica. Tiedemann et al. (2014) extend this idea by proposing three different models
for automatic translation based on induced bilingual lexica and phrase-based translation
models. In that work, the authors propose a new projection algorithm that avoids the
creation of DUMMY nodes in the target language that we have discussed in section 2.4.
The procedure is summarized in the pseudo-code shown in Figure 6.
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. .

PRON VERB ADP NOUN ADJ ADP DET NOUN .
[Ils tiraient} [a balles réelles] [sur la  foule }

[Thcy re ﬁring] [livc rounds} [on the crowd }
PRON PRON VERB ADP NOUN ADP DET NOUN .

)

nsubj

Figure 7: An example sentence translated from French to English with projections using
the algorithm shown in Figure 6. The boxes indicate the segmentation used by
the phrase-based translation model.

The key feature of this algorithm is that it makes use of the segmentation of sentences
into “phrases” together with their counterparts in the other language that are applied by
the underlying translation model. We can use this information to handle unaligned tokens
without creating additional DUMMY nodes as described in Figure 6. However, contrary
to our expectations, this algorithm does not work very well in practice and Tiedemann
et al. (2014) show empirically that a simple word-to-word translation model outperforms the
phrase-based systems with this projection algorithm in most cases. Part of the problem is the
ambiguous projection of PoS labels when handling one-to-many and many-to-one alignments.
An example is shown in Figure 7. Both They and ’re are assigned to be pronouns due to the
links to the French Ils which certainly confuses the model trained on such projected data.

The treebank translation approach using phrase-based SMT is further explored by
Tiedemann (2014). Tiedemann (2015) introduces the use of syntax-based SMT for cross-
lingual dependency parsing. In that work, the authors propose several improvements of
the DCA-based projection heuristics originally developed by Hwa et al. (2005). Simple
techniques that reduce the number of DUMMY elements in the projected data help to
significantly improve the results in cross-lingual parsing. We also realized that the placement
of DUMMY nodes is crucial. Strategies that choose positions where that minimize the risk
of additional non-projectivity are useful to improve parser model induction. We will mainly
use the techniques developed in that work in the experiments described in section 3.

The drawbacks of the synthetic treebanking approach are related to its hybrid nature:
a) it inherits the syntax projection risks from the annotation projection approach as its
success is bound by the projection quality, and b) it critically depends on the quality of
SMT, which in turn depends on the size and quality of the underlying parallel corpora.
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As for the latter point, the experiments by Tiedemann et al. (2014) reveal a compelling
robustness of cross-lingual parsing to SMT noise in this framework, and in that paper we
also argue that projection into synthetic texts is simpler than projection between actual
parallel text. Another important drawback is the need for large parallel data sets to train
reasonable translation models for the languages under consideration. Alternatively, any
handcrafted rule-based system could be applied as well. However, such systems and data
sets are rarely available for low-resource languages. On the other hand, there are techniques
that can improve machine translation via bridge languages. Tiedemann and Nakov (2013)
demonstrate how small amounts of parallel data can successfully been used for building
translation models for truly under-resourced languages. Their approach of creating synthetic
training data for statistical machine translation with low resource languages fits very well in
the spirit of synthetic treebanking.

2.6 What About Truly Under-Resourced Languages?

Up to this point, we have outlined the underlying concepts for the major approaches to
cross-lingual dependency parsing today. We have also discussed some intricacies of enabling
cross-lingual parser evaluation. Here, we proceed to discuss how these two outlooks—namely,
the way we implement cross-lingual parsers, and the way we evaluate them for parsing
accuracy—reflect on dependency parsing of truly under-resourced languages.

What makes a language under-resourced? Following Uszkoreit and Rehm (2012), we
acknowledge the many facets involved in attempting to address this question. Generally,
however, an under-resourced language is distinguished by lacking the basic NLP-enabling
linguistic resources, such as PoS-tagged corpora or treebanks. In this paper, we take depen-
dency parsing-oriented viewpoint, which allows for casting the issue of under-resourcedness in
the specific terms of dependency parsing enablement for a given language. Thus, a language
is under-resourced if we cannot build a dependency parser for it or, otherwise said, if no
dependency treebank exists for that language. Since statistical dependency parsing critically
depends on the availability of PoS tagging, we make this an additional requirement, which
in turn implies the following three levels of resource availability. Note that this list is a
parsing-oriented specialization of the general discussion on low-resource languages from the
introduction.

1. There is a PoS-tagged corpus and a treebank available for a given language, and by
virtue of those, we have at hands a PoS tagger and a dependency parser for that
language. We call such languages well-resourced or resource-rich languages from a
dependency parsing viewpoint, as we can use the dedicated native language resources
to parse texts written in that language.

2. For a given language, there are no PoS tagging or parsing resources available. This
includes both the annotated corpora and the NLP tools. We address such languages
as under-resourced or low-resource languages, as we cannot natively parse them for
syntactic dependencies, neither can we annotate them for PoS tags.

3. We have a PoS-tagged corpus or PoS tagger available for a given language, but no
treebanks or parsers exist for it. Even if there is some NLP support for such languages
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through PoS annotation, we still approach them as under-resourced from the viewpoint
of dependency parsing.

If we want to parse the languages from group 2 for syntactic dependencies, we must address
both issues—the unavailability of supporting resources for PoS tagging and dependency
parsing—and often even more basic processing facilities such as sentence splitters or tokenizers.
In NLP, we often call such languages truly under-resourced. Group 3 is somewhat easier, as
we presumably only address the dependency-syntactic processing layer.

In the recent years, the field has dealt extensively—and by and large, separately—with
providing low-resource languages with PoS taggers and dependency parsers. Taking two
examples into account, Das and Petrov (2011) show how to bootstrap accurate taggers
using parallel corpora, while Agié¢ et al. (2015) take under-resourcedness to the extreme by
presuming severe data sparsity and still manage to yield very reasonable PoS taggers for a
large number of low-resource languages. We are thus safe to conclude that even for the most
severely under-resourced languages, reasonable PoS taggers can be made available using one
of these techniques, if not already available off-the-shelf.

This reasoning underlies all current approaches to cross-lingual dependency parsing, in
that we presume the availability of PoS annotations, natively or through publicly available
related research. Since we are also required to at least intrinsically evaluate the resulting
parsers, we conduct our empirical assessments in an exclusive group of languages with at least
some syntactically annotated test data available. In effect, we are evaluating by proxy, as the
truly under-resourced languages do not enjoy even the basic test set availability. On top of all
that, the various top-performing approaches to cross-lingual parsing—such as the previously
discussed annotation projection, treebank translation, or word representation-supported
model transfer—introduce additional constraints or requirements. Most often, we presume
the availability of large source-target parallel corpora. One might argue accordingly that we
make a poor case for low-resource languages by amassing the prerequisites for our methods
to work, thus departing from the very definition of a low-resource language. In turn, and in
favor of the current approaches, we argue the following.

e The current research in enabling PoS tagging for under-resourced languages justifies
the separate handling of cross-lingual dependency parsing by presuming the availability
of PoS tagging. We refer the reader to the work by Téackstrom et al. (2013a) for a
detailed exposition and state-of-the-art results, together with the previously mentioned
work on bootstrapping taggers.

e McDonald et al. (2013) validate the evaluation by proxy by showing how a uniform
syntactic representation partially enables inferential reasoning about the performance of
ported parsers on truly under-resourced languages. Namely, they show that typological
similarity plays an important role in predicting the quality of transferred parsers.
This is built on by, for example, Rosa and Zabokrtsky (2015), who use a data-driven
language similarity metric to actually predict the best sources for the given targets in
cross-lingual parsing.

e The remaining prerequisites for top-level cross-lingual parsing, such as the treebank
translation approach we argue for in this paper, amount to source-target parallel
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corpora and possibly also monolingual target corpora. While this may at first seem
as a substantial added requirement, we note that text corpora are more readily
available than expert-annotated linguistic resources, and the collections such as OPUS
(Tiedemann, 2012) provide large quantities of cross-domain data for many languages.
To further the claim, Agi¢ et al. (2015) illustrate how annotation projection could be
applied to learn PoS taggers for hundreds, possibly even thousands of languages using
nothing but translations of (parts of) the Bible in a very simple setup.

Before concluding, we duly note the perceived disconnect between evaluating cross-lingual
parsers and actually enabling dependency parsing for languages that lack the respective
resources. We argue here that the former constitutes empirical research, while the latter
is primarily an engineering feat, and we are thus obliged to follow the field in adhering to
the former in this contribution. However, we do note that devising multiple systematic
downstream evaluation scenarios for truly under-resourced languages is sorely needed at this
point in the field’s development, and would resolve an important disconnect in cross-lingual
NLP research.

We now proceed to discuss the core of our paper: the empirical validation of the synthetic
treebanking approach to cross-lingual parsing. We reflect once more on the prerequisites and
truly under-resourced languages in the related work discussion that follows our exposition of
synthetic treebanking.

3. Synthetic Treebanking Experiments

In this section, we will discuss a series of experiments that systematically explore various
cross-lingual parsing models based on annotation projection and treebank translation. Here,
we only assess the properties of the specific approach, and we compare them intrinsically or
to the baseline. We provide a comparison to selected more recent work in section 4.

In our setup, we always use the test sets provided by the Universal Dependency Treebank
version 1 (UDT) (McDonald et al., 2013) with their cross-lingually harmonized annotation
that makes it possible to perform fair evaluations across languages including labeled attach-
ment scores (LAS), which we will use as our primary evaluation metric. Similar to previous
literature, we include punctuation in the calculation of LAS to ensure comparability to
related literature (Tiedemann, 2014). In all our experiments, we apply mate-tools (Bohnet,
2010) to train graph-based dependency parsers, which gives us very competitive performance
in all settings. We leave out Korean in our experiments due to the fact that we do not have
bitexts from the same domain as for the other languages, which we need for annotation
projection and SMT training. Thus, we experiment using five languages: English (EN),
French (FR), German (DE), Spanish (ES), and Swedish (sv).

3.1 Baseline

Our initial baseline is a delexicalized model which is straightforward to train on the provided
training data of the UDT. Table 1 lists the attachment scores achieved by applying these
models across languages. Our scores confirm the results of McDonald et al. (2013); minor
differences are due to the different choices of the training algorithms. Note that we always
use columns to represent the target languages that we test and rows refer to source languages
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used in training, projection or translation. We also always report the scores for all source-
target pairs, as reporting on averages or highest per-target scores might arguably make for a
biased insight into the methods.

target language

LAS DE EN ES FR sV
DE 70.84 4528 4890 49.09 52.24
EN 4860 82.44 56.25 5847 59.42
ES 47.16 4731 71.45 62.39 54.63
FR 46.77 47.94 62.66 73.71 54.89
sv  52.53 48.24 5295 55.02 74.55

mate-tools (coarse) 78.38 91.46 82.30 82.30 84.52
mate-tools (full) 80.34 92.11 83.65 82.17 85.97

Table 1: Results for the delexicalized models. For comparison there are also LAS’s of
lexicalized models at the bottom of the table. coarse uses coarse-grained PoS labels
only and full adds even fine-grained PoS information.

As we can see, the results are around 10 LAS points below the fully lexicalized models
and significant drops can be observed when training on other languages even though they are
all quite closely related. This is all but unexpected considering the naive approach of using
coarse-grained PoS label sequences without modification as the only type of information in
training these models. We do note, however, that the decrease in accuracy is not so drastic
for the typologically closest language pair (French-Spanish). In the following section, we
discuss various ways of adapting cross-lingual models to the target language, and we will
start with annotation projection in aligned parallel corpora.

3.2 Improved Annotation Projection

Annotation projection is used in connection with word-aligned bilingual parallel corpora
(bitexts). In our experiments, we use Europarl (Koehn, 2005) for each language pair
following the basic setup of Tiedemann (2014). The baseline model applies the DCA
projection heuristics as presented by Hwa et al. (2005) and the first 40,000 sentences of
each bitext in the corpus (repetitions of sentences included). Word alignments are produced
using IBM model 4 as implemented in GIZA++ (Och & Ney, 2003) trained in the typical
pipeline as it is common in statistical machine translation using the Moses toolbox (Koehn
et al., 2007). We use the entire Europarl corpus version 7 to train the alignment models to
obtain proper statistics and reliable parameter estimates. The asymmetric alignments are
symmetrized with the intersection and the grow-diag-final-and heuristics. The results of our
baseline projection model is given in Table 2.

The value of word-aligned bitext can clearly be seen in the performance of the cross-
lingual parser models. They outperform the naive delexicalized models by a large margin.
However, they are still pretty far away from the supervised monolingual models even for
these related language pairs. Tiedemann (2015) discusses various improvements of the
projection algorithm with significant effects on the performance of the trained models. One
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DE EN ES FR SV
DE - 93.27 57.69 60.49 65.25
EN 62.28 - 62.29 65.54 66.97
ES 60.46 49.34 - 68.10 64.67
FR 61.27 53.46 66.51

- 62.75
sV 6296 51.07 61.82 64.99 -

Table 2: Baseline performance in LAS of a DCA-based annotation projection with 40,000
parallel sentences tested on target language test sets.

problem of the DCA algorithm is the creation of DUMMY nodes and labels that disturb
the training procedures. Many of these nodes can easily be removed without loosing much
information. Figure 8 illustrates our approach that deletes DUMMY leaf nodes and collapses
dependency relations that run via internal DUMMY nodes with single out-going edges.

Adding this modification to the DCA projection heuristics we can achieve significant
improvements for various language pairs. Table 3 summarizes the LAS’s for all models with
the new treatment of DUMMY nodes.

Tiedemann (2015) also introduces a new procedure for treating one-to-many word
alignments. In the original algorithm, they cause additional DUMMY nodes that act as
parents for the other aligned target language tokens. The new approach takes advantage
of different alignment symmetrization algorithms and uses the high-precision links coming
from the intersection of asymmetric word alignments to find the head of a multi-word unit,
whereas links from the high-recall symmetrization are used to attach the words to that head
word. Figure 9 illustrates this procedure by means of a sentence pair from Europarl.

Finally, Tiedemann (2015) also proposes to discard all trees that have remaining DUMMY
nodes. This may remove up to 90% of the training examples but assuming the availability
of large bitexts makes it possible to project additional sentences to fill the training data.
Discarding projected trees with DUMMY nodes effectively removes sentence pairs with
non-literal translations and complex alignment structures that are in any case less suited for

label 2 label 2 label 2

label | m label 1 I% label | Tabel 3
srcl src2 src3  src4 srcl  src2 sre3  src4 srcl  src2 src3  src4
posl  pos2  pos3  pos4 posl  pos2  pos3  pos4 posl  pos2  pos3  pos4

\V/ — Ppas: x —

posl dummy pos2  pos4 po!

v

posl pos2  pos4

trgl trg2  trg3 DUMMY trgl trg2 trg3 MY trgl  trg2  trg3

label |

Figure 8: Removing DUMMY nodes from projected parse trees: (i) Delete DUMMY leaf
nodes. (ii) Collapse unary productions over DUMMY nodes.
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DE EN ES FR SV
DE 53.541027 **g0.,171248 *62.351186 *Fgg.99+1.74
EN 762.9710:69 “63.801T1°1  "Tg6.4710-93  67.1910:22
ES 59.8870-58  48.8570-49 68.5510-45  "*g5,33+0.66
FR 61.597032 5312034  67.001049 “64.521177
sV 62.16 080 51.311024  *g2 58076 g5 38+0-39

Table 3: Results for collapsing dependency relations over unary dummy nodes and removing
dummy leaves (difference to the annotation projection baseline in superscript).
Improvements marked with ™" are statistically significant according to McNemar’s
test with p < 0.01 and improvements marked with * are statistically significant
with p < 0.05.

root

det -

PRON VERB DET ADJ NOUN ADP NOUN
Wir wollen eine echte Wettbewerbskultur in Europa

We want a true culture h of cghlpetition in Europe .
PRON VERB DET ADJ NOUN DUMMY DUMMY ADP NOUN .

(g

root

Figure 9: Projecting from German to English using an alternative treatment for one-to-
many word alignments. Dotted lines are links from the grow-diag-final-and
symmetrization heuristics and solid lines refer to links in the intersection of word
alignments.

annotation projection. Table 4 summarizes the results of this method tested in our setup.
We can observe significant improvements for all language pairs compared to the baseline
approach and all but two cases are also better than the results of the previous setting shown
in Table 3.
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DE EN ES FR SV
DE *53.801053  TFG1,3413.65 *Fg 3at1.83 rgg 90+2.95
EN 63.5211.24 **63.1810-89 g7 qt150 gy mg+0.77
ES 60.6510-19  ****50,1010-76 “68.8110.71  ***gg 7gtl.12
FR ~762.491122 *"'53 ggt0.42 **gg 15+1.64 64.8312.08
sv  "63.8310-87 Yo 3g+1.29  **fg3 9g9+14T *fgg 12+113

Table 4: Discarding trees that include DUMMY nodes; results with 40,000 accepted trees.
Results marked with ** and * are significantly better than the projection baseline
(with p < 0.01 and p < 0.05, respectively) and results marked ™" and *" are
also significantly better than the ones in Table 3 (with p < 0.01 and p < 0.05,

respectively).

3.3 Phrase-Based Treebank Translation

Treebank translation is an interesting alternative to annotation projection. The main
advantage is that we can skip noisy source-side annotation of an out-of-domain bitext to be
able to project information from source to target language. Furthermore, word alignment
is tightly coupled with most statistical translation models which makes it straightforward
to use these links for projection. Finally, it is an advantage for projection that machine
translation prefers literal translations in similar syntactic structures. Unrestricted human
translations are much more varied and a proper alignment between translation equivalents
is not necessarily straightforward. In machine translation, the mapping between tokens
and token n-grams is essential which favors successful annotation projection. The largest
drawback is, of course, translation quality. Machine translation is a difficult task on its own
and its use in annotation projection requires at least some level of quality even though we
are not necessarily interested in semantically adequate translations.

Our first approach applies the model proposed by Tiedemann et al. (2014), using a
standard phrase-based SMT model to translate source language treebanks to a target
language. The projection is based on the DCA heuristics similar to the ones applied to
annotation projection described in the previous section. We also apply the modification of
DUMMY node handling as introduced before. However, we cannot apply the alternative
treatment of one-to-many alignments as we do not have different types of word alignment in
our translation model. We also do not filter out trees with remaining DUMMY nodes as
this would cause a serious reduction of the already small-sized treebanks. In contrast to
projection with bitexts we cannot add more data to fill up the training data.

In all the experiments, our MT setup is very generic and uses the Moses toolbox for
training, tuning and decoding (Koehn et al., 2007). The translation models are trained
on the entire Europarl corpus version 7 without language-pair-specific optimization. Word
alignments are essentially the same that we have used for our experiments with annotation
projection in section 3.2. For tuning we use MERT (Och, 2003) and the newstest2011 data
provided by the annual workshop on statistical machine translation (WMT).! For Swedish

1. http://www.statmt.org/wmt14.
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we use a sample from the OpenSubtitles2012 corpus (Tiedemann, 2012). The language
model is a standard 5-gram model and is based on a combination of Europarl and News data
provided from the same source. We apply modified Kneser-Ney smoothing without pruning,
applying KenLLM tools (Heafield, Pouzyrevsky, Clark, & Koehn, 2013) for estimating the
LM parameters.

DE EN ES FR SV
DE 56.241270 5765252 "'59.067329 *764.62 237
EN 759.413-56 - 63.76 0-04 *“g7.99+152 g7 521033
ES 753.947594 **50.6511-80 69.70T115  *g2.7372.60
FR 57.0545 ""55.697257 **68.6611-06 62.77 175

sv 5857359 53,0111 62.6970-11 64.760-62

Table 5: Results for phrase-based treebank translation (difference to the corresponding anno-
tation projection model with DUMMY node removal from Table 3 in superscript).
Results marked with = are significantly different from the projection results (with
p < 0.01).

The results of our experiments with phrase-based SMT is summarized in Table 5. To a
large extent, we can confirm the findings of Tiedemann (2014) that the translation approach
has some advantages over the projection of automatically annotated parallel corpora. For
some language pairs, the labeled attachment scores are significantly above the projection
results even though the parsers are trained on much smaller data sets (the treebanks are
typically much smaller than 40,000 sentences for most language pairs). Very striking is also
the outcome for German as a target language, which seems to be the hardest language to
translate to in this data set. This is not very surprising as German is in general considered
to be a difficult target language in the setup of languages that are, for example, supported by
WMT. This also applies to the use of German as a source language with a surprising exception
when translating to English. Overall, the good results for English may be influenced by the
strong impact of the language model that can draw from the large monolingual resources.

3.4 Syntax-Based Treebank Translation

Tiedemann (2015) introduces the use of syntax-based SMT as another alternative to treebank
translation. The standard syntax-based MT models supported by Moses are based on
synchronous phrase-structure grammars which are induced from word-aligned parallel data.
Several modes are available. In our case, we are mostly interested in the tree-to-string
models that use synchronous tree substitution grammars (STSGs). Our assumption is
that the structural relations that are induced from the parallel corpus with a fixed given
source-side analysis improve the projection of syntactic relations when used in combination
with syntax-based translation.

In order to make it possible to use dependency information in the framework of syn-
chronous STSGs we convert projective dependency trees to the bracketing structure that
can be used to train tree-to-string models with Moses. We use the yield of each word to
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PRON VERB PRON . PRON ADP DET NOUN PRT VERB

Ich  bitte Sie , sich zu einer Schweigeminute zu erheben
o

root

ROOT
nsubj VERB dobj p xcomp
o o |
PRON bitte PRON . dobj adpmod aux VERB
N |
Ich Sie , PRON ADP adpobj PRT erheben
sich zZu dt/\NOUN zZu

DET Schweigeminute

einer

Figure 10: A dependency tree taken from the automatically annotated parallel data and its
lossy conversion to a constituency representation.

define a span over the sentence which forms a constituent with the label taken from the
relation of that word to its head.

Dependency trees are certainly not optimal for this kind of constituency-based SMT
model as they are usually very flat and do not provide the deep hierarchical structures
that are common in phrase-structure trees. However, our previous research has shown
that valuable syntactic information can be pushed into the model in this way that can be
beneficial for projecting dependency relations. Note that we use PoS tags as additional
pre-terminal nodes to enrich the information given to the system.

For training the models we used the same data sets and word alignments as we have
used for phrase-based SMT. However, we require a number of additional steps listed below:

e We tag the source side of a parallel corpus with a PoS tagger trained on the UDT
training data using HunPos (Haldcsy, Kornai, & Oravecz, 2007).
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We parse the tagged corpus using a MaltParser model trained on the UDT with a
feature model optimized with MaltOptimizer (Ballesteros & Nivre, 2012).2

We projectivize all trees using MaltParser and convert to nested tree annotations as
explained above (Tiedemann, 2015).

We extract synchronous rule tables from the word aligned bitext with source side
syntax and score rules using Good Turing discounting. We do not use any size limit for
replacing sub-phrases with non-terminals at the source side and restrict the number
of non-terminals on the right-hand side of extracted rules to three. Furthermore, we
allow consecutive non-terminals on the source side to increase coverage, which is not
allowed in the default settings of the hierarchical rule extractor in Moses.

We tune the model using MERT and the same data sets as before.

Finally, we convert the training data of the UDT in the source language and translate
it to the target language using the tree-to-string model created above.

The results of our approach are listed in Table 6. We can see that syntax-based models

are superior to phrase-based models in almost all cases. For the majority of language
pairs we can also see an improvement over the annotation projection approach even though
the training data is much smaller. This confirms the findings of Tiedemann (2015) but
outperforms their results by a large margin due to the parsing model used in our experiments.

DE EN ES FR SV
DE 1158.60T506  **G1.0010-83 **ig3.45+110 g7 88+0-89
EN **62.670-30 164.5810-78  11g8.45T198 **itgg,1610:97
gs ft57.137275 **ft52 65380 169.37+0-82  **itg3,5571.78
FR  '61.41018 *"fi56.8313-71  fgg.97+1.97 1162.5671-96
sv.  61.73043  rifpg 131082 62.3470-24 164.5070-88

Table 6: Results for syntax-based treebank translation (difference to the corresponding

annotation projection model from Table 5 in superscript). Numbers in bold face
are better than the corresponding phrase-based SMT model. Results marked with
* are significantly different from the phrase-based translation results (p <0.01); T
and T are significantly different from the projection model (p < 0.01 and p < 0.05,
respectively).

3.5 Translation and Back-Projection

Another possibility for cross-lingual parsing is the integration of translation in the actual
parsing pipeline. The basic idea is to use tools in other languages, such as dependency
parsers, without modification by adjusting the input to match the expectations of the tool,

2. We use MaltParser here for efficiency reasons. The parsing performance is slightly below the baseline
models trained with mate-tools but parsing is very fast which we require for parsing all bitexts.
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Figure 11: Translation and back-projection: Input data is translated to a source language
with existing parsers (step 1), parsed in the source language (step 2) and, finally,
the parse tree is projected back to the original target language.

for example, by translating it to the language that a parser accepts. This is very much
in spirit of text normalization approaches that are frequently used in NLP for historical
documents and user-generated content in which the input is modified in such a way that
existing tools for standard language can be applied. Figure 11 illustrates the approach
applied to dependency parsing.

The advantage of this approach is that we can rely on optimized parsers that are trained
on manually corrected treebanks. However, there are several significant drawbacks. First
of all, we loose efficiency due to the additional translation step that is required at parsing
time. This is a crucial disadvantage that rules out this approach for many applications
which require parsed information of large scale data sets or real-time responses. Another
important drawback is the noise coming from translation leading to some kind of input,
which a parser is usually not trained for and, therefore, has a hard time to handle correctly.
Finally, there is also the problem of back-projection. Unfortunately, it is not straightforward
to reverse the projection heuristics discussed earlier. We cannot introduce DUMMY nodes
to fill gaps that are required for projecting the entire structure and DUMMY labels are not
useful either. The projection heuristics discussed in section 3.2 help to avoid DUMMY nodes
and, therefore, we apply these extensions in our experiments. Another problem is related to
unaligned target words. In the DCA algorithm (including all modified versions discussed so
far), these tokens are simply deleted and will not be attached to the dependency tree at all.
This method, however, is not possible for back-projection in which all tokens need to be
attached. For this reason, we implement a new rule that attaches each unaligned token to
either its preceding or consecutive word if they are attached to the tree themselves. If this
is not the case then we simply attach them to ROOT. Another problem is the label that
should be added to that dependency and due to the lack of further knowledge we set the
label to DUMMY. In this way, we do not get any credit in LAS but may at least improve
our UASs. We test this approach using syntax-based SMT as our translation model. The
results are listed in table 7.
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DE EN ES FR Sv
35.92717:35 329072479 36,68 2381 455671969
48.08714‘21 48.19717.35 51.74715_23
54,787 1332 43 9372144
42.39 20-36

DE —

EN 44.8671742 -
ES 36.6972377 4191743 —
FR 37.44°23-83 4200 1146 55 541097 -
SV 36.84726:12 359371584 37 952986 33 7473125

Table 7: Back-projection results in comparison to the annotation projection baseline from
section 3.2 (Table 3).

The scores are very low, as they even fall behind those of the baseline delexicalized
models. This extreme drop in performance is actually a bit surprising but considering the
strong disadvantages discussed above this may be expected as well. Another reason for the
extreme differences in performance is also the fact that we need to rely on predicted PoS
labels in the translated data before piping them into the source language parser. This is
certainly a strong disadvantage of the procedure and the comparison to evaluations based on
gold standard PoS annotation is not entirely fair. See also section 3.8 for more discussions
on the impact of PoS label accuracy on parsing performance.

3.6 Annotation Projection and Translation Quality

An interesting question is whether there is a correlation between translation quality and the
performance of the cross-lingual parsers based on translated treebanks. As an approximation
for treebank translation quality we computed BLEU scores over well-established MT test
sets from the WMT shared task, in our case the newstest from 2012.3

Figure 12 illustrates the correlation between BLEU scores obtained on newstest data
and LAS’s of the corresponding cross-lingual parsers. First of all, we can see that the
MT performance of phrase-based and syntax-based models is quite comparable with some
noticeable exceptions in which syntax-based SMT is significantly better (French-English and
French-Spanish, which is rather surprising). However, looking at most language pairs we
can see that the increased parsing performance does not seem to be due to improvements in
translation but rather due to the better fit of these models for syntactic annotation projection
(see German, for example). Nevertheless, we can observe a weak correlation between BLEU
scores and LAS within a class of models with one notable outlier, Spanish-English. This
correlation reflects the importance of the syntactic relation between languages for the success
of machine translation and annotation projection. Closely related languages like French and
Spanish are on the top level in both tasks whereas French and Spanish do not map well to
German. Translations to English are an exception in this evaluation. Translation models
often work well in this direction whereas annotation projection to English underperforms in
our experiments.

3. Note that we have to leave out Swedish for this test as there is no test set available for this language.
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Figure 12: Correlation between BLEU scores and cross-lingual parsing accuracy (using
Pearson’s correlation coefficient).

3.7 System Combination and Multi-Source Models

So far, we were interested in transferring syntactic information from one source language
to the target language using one specific model for cross-lingual parsing. However, the
approaches above can easily be combined as they all focus on the creation of synthetic
training data. There are at least two possibilities that can be explored.

1. We can combine data from several source languages to increase the amount of training
data and to obtain evidence from various languages projected to the target language.

2. Several models can be combined to benefit from the various strengths of each model
that may work as complementary information.

In this paper, we opt for a very simple approach to test these ideas. Here we concatenate
data sets to augment our training data and train standard parsing models as usual. First, we
will look at multi-source models within each paradigm. Table 8 lists the labeled attachment
scores that we obtain when combining all data sets for all source languages to train target
language parsers on the projected annotations.

From the table, we can see that we are able to achieve significant improvements for
all languages and models except for Spanish. Furthermore, for English and for French we
obtain the overall best result presented in this paper for the combined syntax-based SMT
projections. In our final system combination, we now merge all data sets for all languages
and models. The results of the parsers trained on these combined data sets are shown in
Table 9.

4. These results are multi-source and multi-model system combinations provided by Tiedemann (2015).
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LAS DE EN ES FR sv
best published result*  60.94 56.58 68.45 69.15  68.95
best individual model  63.83  58.60 68.97 69.70  68.20

annotation projection 66.76  55.30 67.37 69.48 71.95
phrase-based SMT 61.85 60.94 6808 7154 T71.69
syntax-based SMT 65.89 61.56 68.60 72.78 T72.14

Table 8: Results for combining projected data of all source languages to train target language
parsing models. Numbers in italics are worse than one of the models trained on
data for individual language pairs.

DE EN ES FR SV
LAS 67.60 57.05 69.36 72.03 73.40
UAS 7527 6454 76.85 79.21 81.28
ACC 81.99 72.75 8222 83.06 83.04

Table 9: Results for combining projected data of all source languages to train target language
parsing models. Additionally to LAS we also includes unlabeled attachment scores
(UAS) and label accuracy (ACC) here to make it easier to compare our results
with related work.

For German, French and Swedish this yields yet another significant improvement with
labeled attachment scores close to 70% or even above. These results represent the highest
scores that have been reported in this task so far and outperform previously published scores
by a large margin. We expect that more sophisticated system combinations would push
these results even further.

3.8 Gold vs. Predicted PoS Labels

It is common to evaluate results with gold PoS labels that are given in the test set of the
target language treebank. This disregard for the impact of PoS quality—often present in
related work—makes for a very unrealistic evaluation scenario. In the previous section, we
discussed results that use gold standard annotation in order to make it possible to compare
our results with the baselines and related work. In this section, we look into more details
when replacing PoS labels with predicted values. Here, we report only the results for the
treebank translation approach using syntax-based SMT as a test case. The other approaches
show similar trends.

The first experiment looks at the case where annotated data is available for the target
language for training PoS taggers. We use HunPos (Haldcsy et al., 2007) to train models on
the training data of each language and use them to replace the gold standard tags in all test
sets with PoS labels that our models predict. The results of these experiments applied to
the translated treebanks from section 3.4 are shown in Table 10.

236



SYNTHETIC TREEBANKING FOR CROSS-LINGUAL DEPENDENCY PARSING

DE EN ES FR SV
DE - 56.49 21 57527348 59.9973:46 2,68 520
EN  58.70 %97 61.25 %33 64.327%13  63.97 419

ES 53.37 376 50.8971.76 65.24 413 5878477

FR 57.18 423 54947189 432465

_ 58.2274.34
sV 57.637410 50.17°196 5936298 ¢(.8973-61 -
PoS tagger 95.24 97.56 95.37 95.08 95.86

Table 10: Results for cross-lingual parsing with predicted PoS labels coming from taggers
trained on target language treebanks. The numbers in superscript give the
difference to the result with gold standard labels (Table 6). The last row shows
the overall accuracy of the PoS tagger.

We can see that PoS labels have a strong impact on parsing performance. For all language
pairs, we can observe a significant drop in LAS even with quite accurate taggers, which
proves that one need to be careful with applying models in real-life scenarios. The next
experiment stresses this point even more. Here, we replace PoS labels with tags that are
predicted by taggers that are trained on the noisy translated treebanks and their projected
annotation. Note that we need to remove training examples with DUMMY labels to reduce
errors of the tagger.

DE EN ES FR SV
DE - 81.32 81.23 82.41 84.29
EN 85.33 - 84.41 85.56 86.32
ES 8239 81.05 - 89.37 83.26
FR 83.76 80.64 89.95 - 84.11

sV 84.79 81.66 86.05 84.81

Table 11: PoS tagging accuracy for models trained on translated treebanks.

Table 11 lists the accuracy of the taggers trained on noisy projected data. We can
observe a significant drop in tagger performance which is completely plausible considering
the substantial noise added through translation and projection and also considering the
limited size of the data we use for training. Treebanks are considerably smaller than
annotated corpora that are usually taken for training PoS classifiers. When applying these
taggers to our test sets we can observe a dramatic drop in parsing performance as expected.
Table 12 lists the results of these experiments.

From the above findings we can conclude that cross-lingual techniques still require a lot
of improvement to become practically useful in low-resource scenarios in the real world. We
have done the same experiment for the annotation projection approach and observed the
same behavior even though we can rely on larger data sets for training the taggers. The
performance drop of using predicted PoS labels trained on noisy data sets amounts to over
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DE EN ES FR SV
DE - 46.0471045 48617891 50.3679-63 52737995
EN 51.8976-81 59.377188 62377195 §(.4373-54

59.817543 52,1276.66
51.10 712

ES 44.597878  47.8173.08 -
FR 49.727746 49047590 ¢1.307302 —
SV 47.947969 449237594 5502434 5279810

Table 12: Results for cross-lingual parsing with predicted PoS labels coming from taggers
trained on projected treebanks. The difference to the results with predicted labels
from Table 10 are shown in superscript.

10 LAS points in most cases similar to what we see in the treebank translation approach.
We omit the results as they do not add any new information to our discussion.

Finally, we also need to check whether system combinations and multi-source models
help to improve the quality of cross-lingual parsers with predicted PoS labels. For this,
we use the same strategy as in section 3.7 and concatenate the various data files to train
parser models that combine all models and language pairs. In other words, we use the same
models trained in section 3.7 but evaluate them on test sets that are automatically tagged
with PoS labels. Again, we use two settings: 1) We apply PoS taggers trained on manually
verified data sets—the monolingual target language treebanks, and 2) we use PoS taggers
trained on projected and translated treebanks. For the latter we have now all data sets
at our disposal and, therefore, expect a better PoS model as well. Table 13 lists the final
results in comparison to the ones obtained with gold standard annotation.

DE EN ES FR sV
monolingual baseline with gold PoS  78.38 9146 82.30 82.30 84.52
delexicalized monolingual with gold PoS  70.84 82.44 7145 73.71  74.55
best delexicalized cross-lingual with gold PoS  52.53  48.24  62.66 62.39  59.42
best cross-lingual model with gold PoS 67.60 61.56 69.36 72.78 73.40

monolingual PoS tagger accuracy 95.24  97.56  95.37  95.08  95.86
combined projected PoS tagger accuracy 88.47 88.24 88.06 89.83  88.07

monolingual baseline with predicted PoS  73.03  88.38  76.59  76.79  77.83
delexicalized monolingual with predicted PoS 64.25 72.81 60.49 64.06 65.77

best delexicalized cross-lingual with predicted PoS  48.36  43.87 52.94 5247 49.84
combined cross-lingual with predicted PoS 63.14 55.16 64.99 67.91 67.93
combined cross-lingual with projected PoS model 57.84 51.66 61.40 63.86 61.58

Table 13: A comparison between models evaluated with gold standard PoS annotation (four
top-level systems) and models tested against automatically tagged data.

First of all, we can see that our best cross-lingual models outperform delexicalized
cross-lingual models by a large margin. They come very close to delexicalized models trained
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on target language data with the exception of English which works much better with the
original data set. In the lower part of the table, we observe that the scores drop significantly
when gold standard PoS labels are replaced with predicted tags. Note that the four systems
using predicted PoS labels apply the tagger trained on monolingual verified target language
data which gives quite high accuracy. The final system in the table is the only one that
applies the PoS model trained on projected and translated data. These tagger models are
much less accurate, as shown in the middle of Table 13, and the influence of this degradation
is visible in the attachment scores obtained by the systems. However, these models reflect a
real-world scenario where no annotated is available for the target language, not even for
training PoS taggers. The advantage of the projection and translation approaches is that
such model is possible at all, whereas delexicalized and other transfer models always require
existing tools that can produce the shared features used by the prediction system. Note also
that the cross-lingual models now outperform some of the delexicalized models trained on
verified target language data—with English as a striking exception—which is remarkable
given the noisy data they are trained on.

3.9 Impact of Dataset Sizes

By and large, the data-driven dependency parsers benefit from introducing additional
training data. In this subsection, we control for the amount of training data provided to our
method, and observe the impact it has on LAS cross-lingually. We experiment with improved
annotation projection (see Section 3.2), and we introduce up to 60 thousand sentences with
projected dependency trees. For each of the five target UDT languages in the experiment,
we provide four learning curves representing the four source languages. We plot the results
in Figure 13.

We observe that virtually all transferred parsers benefit from the introduction of additional
training data, albeit some of the improvements are only slight as some models level out
at around 20 thousand sentences. All the source languages follow the same LAS learning
curve patterns for all the targets, as we do not observe any trend violations for specific
source-target pairs. Other than that, we observe clear source-target preferences, as the
source orderings by LAS mostly remain the same for all training set sizes. Some of the
lower-ranked sources do not benefit or even degrade by introducing more training data,
for example, the Spanish parser induced from German data, or the English parser created
by projecting Swedish trees. That said, it is worth noting that in the best source-target
pairs, the targets always benefit from introducing more source data: German from English
and Swedish, English from German and French, Spanish from French and vice versa, and
Swedish from German and English. This is a very clear indicator for future improvements,
as the method apparently benefits from adding more data. At the same time, our learning
curves show benefits for truly under-resourced languages, as the largest relative gains are
already reached at relatively modest quantities of 20 thousand sentence pairs. Moreover,
the typological groupings in the former list of top-performing source-target pairs are quite
apparent, as is the case throughout our experiments.

239



TIEDEMANN & AGIC

< =
© — [%2]
S i >
() [
0] . i
o i e
5 1 2
S . o
= ] =
) N %)
5 53 1 1 1 1 1 5
0 10k 20k 30k 40k 50k 60k 0 10k 20k 30k 40k 50k 60k

nr of projected sentences nr of projected sentences

70 T T T T T

LAS (projected to Spanish)
LAS (projected to French)

54 1 1 1 1 1 56 1 1 1 1 1
0 10k 20k 30k 40k 50k 60k 0 10k 20k 30k 40k 50k 60k
nr of projected sentences nr of projected sentences
= 68
% 67
5 e
@]
3 ol
5 ;
S 61
%J 60 |

59 L
0 10k 20k 30k 40k 50k 60k

nr of projected sentences

Figure 13: The impact of training data: Different sizes of projected data for training cross-
lingual parsing models.

4. Comparison to Related Work

In this section—having thoroughly analyzed synthetic treebanking—we revert to a top-level
discussion of cross-lingual parsing. In it, we contrast our approach to several selected
alternatives from related work, and we sketch their properties from the viewpoint of enabling
dependency parsing for truly under-resourced languages. We proceed by outlining the
comparison.

We have already compared the various synthetic treebanking approaches to one another
and to the delexicalized transfer baseline of McDonald et al. (2013) in section 3. Here, we
aim at introducing a number of top-performing representatives of the methods discussed in
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the overview section: a more competitive model transfer approach, an approach dealing with
distributed word representations, and an annotation projection-motivated approach. As
replicating all the approaches would be very time-consuming, we constrain our search to the
approaches that also report their scores on UDT version 1 in their respective publication, as
we can then compare by referencing. We select the following approaches for our discussion.

e DELEX: This is the delexicalized model transfer baseline of McDonald et al. (2013).
We report the scores by Sggaard et al. (2015) who used the arc-factored adaptation of
the mate-tools parser, and not our replication or the original, as they conveniently
report multiple metrics. We discuss the metrics below, and we note that they used
gold PoS.

e MuLTI: A reimplementation of McDonald et al. (2011) multi-source projected system
(multi-proj. in the original paper) by Ma and Xia (2014). We provide it as a more
competitive baseline system. The original work predates UDT and only evaluates on
the heterogenous CoNLL treebanks, but Ma and Xia (2014) evaluate it on the UDT
treebanks so we report their scores. Note that the parsing model and preprocessing
is then inherent to their setup, differing from the original setup of McDonald et al.
(2011). The setup details are described further in the text, under XIa.

e PrOJ: The improved annotation projection approach we described in section 3.2.
It is the final approach of the subsection, in which the dependency relations over
unary dummy nodes are collapsed, dummy leaves removed, and all Europarl trees with
remaining dummy nodes discarded (see Table 4). These scores are given with gold
PoS tags.

e TrANS G & P: We report on our best syntax-based cross-lingual treebank translation
scores with gold and predicted PoS, respectively. Our PoS predictions come from
an HMM tagger (Halacsy et al., 2007). The taggers are trained on target language
treebanks, and they score at 95% on average (see Table 10).

e CoMB G & P: These are our multi-source syntax-based cross-lingual parsers. They
build on the TRANS G & P approaches: instead of just single sources, multiple
treebanks are translated into the target languages, providing combined synthetic
treebanks to train parsers on. As before, we also report scores with gold and HunPos-
predicted PoS.

e RoOsA: This is the multi-source delexicalized transfer approach of Rosa and Zabokrtsky
(2015), in its weighted variant. In their method, each target is parsed by multiple
sources, and each parse is assigned a weight based on an empirically established
language similarity metric. For each target sentence, the multiple parses constitute a
digraph, on top of which a (Sagae & Lavie, 2006)-style maximum spanning tree voting
scheme is implemented. They use gold PoS tags.

e SOGAARD: In this model, delexicalized model transfer is augmented by inter-lingual
word representations based on inverted indexing via Wikipedia concept links (Sggaard
et al., 2015). We choose it as a very recent and illustrative example of leveraging word
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Target Baselines Synthetic treebanking Recent approaches

language | DELEX MurtI | PrOJ \ TrRANSG TRANSP \ CoMBG CoMBP || RosA S@cGAARD  XIA
DE 56.80  69.21 || 72.65 70.62 67.59 75.27 71.79 56.80 56.56 74.01
EN - — 62.79 65.10 63.62 64.54 63.15 42.60 - -
ES 63.21 72.57 || 74.92 75.71 72.16 76.85 73.20 72.70 64.03 75.60
FR 66.00 74.60 | 76.13 76.33 72.95 79.21 76.06 - 66.22 76.93
SV 67.49 75.87 || 76.96 76.98 73.61 81.28 76.83 50.80 67.32 79.27

Table 14: Comparison of cross-lingual parsing methods. In contrast to the rest of our paper,
here we report UAS scores to attain maximum coverage of results reported in
related work.

embeddings for improving cross-lingual dependency parsing. They use an embeddings-
enabled version of Bohnet’s parser (Bohnet, 2010) and gold PoS tags. We report their
multi-source results.

e XIA: The approach by Ma and Xia (2014) is a novel method that leverages Europarl
to train probabilistic parsing models for resource-poor languages by maximizing a
combination of likelihood on parallel data and confidence on unlabeled data. We
report on their best approach (marked as +U in their paper), which makes use of
both parallel and unlabeled data. They use top-performing PoS taggers trained on the
target languages, each of them reaching at least a 95% accuracy.

Before discussing the results, we make a number of remarks on the comparison. First, for
each target language, we report the best obtained score for each method, rather than possibly
misleading averages or more complex source-target matrices. In most related work, English
is not used as a target language. Second, in contrast to the remainder of the paper—and
contrary to the guidelines for evaluating cross-lingual parsers following McDonald et al.
(2013)—we report on UAS only. This is targeted exclusively at facilitating the comparison
to related work, as these contributions for the most part still report UAS scores, even when
working with UDT. While we do see this as unfortunate, we also note that a LAS-enabled
replication study exceeds the scope and does not match the focus of our contribution. Third,
and also related to not being able to control for all the experiment parameters, we note the
issue of reporting scores on gold and predicted PoS, and the different ways of obtaining the
predicted annotations. We record the differences in the list above. Finally, we note that
some of the referenced contributions do not explicitly state whether their scoring included
punctuation or not, whereas we do include it in our experiments.

The results are given in Table 14 and we now proceed to discuss them in more detail,
reflecting on the methods’ intricacies and requirements in the process.

In the table, we visually group the methods into the baselines (DELEX, MULTI), our
proposed approaches (PROJ, TRANS, COMB), and selected recent contributions to cross-
lingual dependency parsing (ROSA, SGGAARD, XIA). By design, we do not highlight the
best scores, as not all the results are directly comparable, especially with respect to the lack
of control for sources of features facilitating the parsing, such as the PoS tags. We also note
that ROsA is evaluated on the HamleDT treebanks (Rosa, Masek, Marecek, Popel, Zeman,
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& Zabokrtsky, 2014) and not UDT, but we still provide it for reference, as it implements an
interesting addition to DELEX as a sort of an intermediate step towards MULTI.

We first observe that ROSA and S@GAARD rarely surpass our DELEX baseline. This
does not come as a surprise, as our baseline uses a more advanced graph-based dependency
parser (Bohnet, 2010): in contrast, ROSA uses an arc-factored parser (McDonald, Pereira,
Ribarov, & Haji¢, 2005), while SOGAARD implements a first-order version of the parser by
Bohnet (2010) that leverages cross-lingual word representations. That said, the discrepancy
between the first- and second-order graph-based parsers appears not to be the only factor
in explaining the slight (if any) gains provided by these two approaches. Namely, ROSA is
an approach to multi-source delexicalized parsing based on maximum spanning tree-style
voting, and it uses empirically obtained dataset similarity metrics for weighting the arcs in
the voting schemes. As such, even if it yields slight improvements over the respective fair
baselines—as provided in the paper describing the approach (Rosa & Zabokrtsky, 2015)—it
is still bound by the impoverished feature representation informing the parser, inherited from
the DELEX it builds on, preventing the method from reaching higher accuracies. SGGAARD
attempts to alleviate this by introducing cross-lingual word representations to the feature
space. In their report on the approach, Sggaard et al. (2015) observe slight improvements
over the baselines, but it is apparent that the word representations they utilize work much
better for NLP tasks that don’t involve syntactic representations, indicating they might not
be appropriate for facilitating cross-lingual parsing more substantially.

Having considered ROSA and S@GAARD—comparing the two approaches to the DELEX
baseline, and establishing their inferiority to the remaining approaches, including synthetic
trebanking—we turn to the more interesting part of the discussion, in which our contributions
are compared to one another, and to X1A. We also include the competitive MULTI baseline
of McDonald et al. (2011) to this discussion.

Our improved annotation projection PROJ appears to be a very competitive method,
as none of the other approaches surpass it by a large margin. It also consistently beats
Murri, albeit their PoS annotations are not comparable. Syntax-based treebank translation
(TRANS) surpasses it by a very narrow margin on four out of five targets, with German as
the exception, while the multi-source variant (CoMB) adds approximately 3-5 LAS points to
the difference, with English as the exception. Only the approaches using predicted PoS tags
are contrasted to XIA, but noting that on these datasets, our tagging approach (HunPos)
performs slightly under theirs (Stanford) on average. We observe that XIA exhibits a slight
advantage over out top approach (COMBP) across the targets, but we also note—on top of the
differences in taggers—that their approach also utilizes unlabeled data for semi-supervised
parser augmentation. That said, Ma and Xia (2014) document only minor decreases when
removing the unlabeled sources, and they implement an arc-factored dependency parser in
the pipeline. Thus, we note that i) our synthetic treebanking approaches and XIA currently
represent the most competitive approaches to cross-lingual dependency parsing, with a
slight empirical edge for the latter, and that ii) further research is needed—in the form of
an extensive replicative survey of cross-lingual parsing—to empirically gauge the various
intricacies of these two approaches, and other influential contributions to the field, such as
the work of McDonald et al. (2011) or Xiao and Guo (2014). We also note a very recent
contribution by Rasooli and Collins (2015), which also deals with parallel corpora and
projections, showing very promising results.
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At this point, from the viewpoint of enabling the processing of truly under-resourced
languages, it is interesting to mark the following observation. In Table 14, there is an apparent
disconnect in scores between the methods that exploit parallel data sources (MuULTI, PROJ,
TrANS, CoMB, XIA), and the methods that don’t (DELEX, ROSA, S@GAARD): the methods
that make use of the parallel resources all perform significantly better. This is a clear
indicator that for reaching top-level cross-lingual parsing performance, at least with the
current line-up of standard dependency parsers, we need the lexical features provided by
parallel corpora. The observation appears to us as a clear guideline for future work in
cross-lingual parsing, and in the enablement of NLP for under-resourced languages.

5. Conclusions and Future Work

In this paper we discussed the various approaches for cross-lingual dependency parsing,
reviewing and comparing a number of commonly used methods. Furthermore, we included
an extensive study of annotation projection and treebank translation, and presented very
competitive results in cross-lingual dependency parsing for the task of parsing data with
cross-lingually harmonized annotation as included in the Universal Dependency Treebank.

Our future work includes the incorporation of cross-lingual word embeddings in model
transfer as another component of the system combinations we discuss in the paper. We will
also look at a wider range of languages using the growing set of harmonized data sets in the
Universal Dependencies project. Especially interesting is the use of our techniques for truly
under-resourced languages. We will explore cross-lingual parsing as a means of bootstrapping
tools for those languages. We also aim at implementing a large-scale replicative survey of
cross-lingual dependency parsing, as we show in our contribution that such an empirical
assessment would be very timely and beneficial to this fast-developing field.
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