
Journal of Artificial Intelligence Research 55 (2016) 603-652 Submitted 07/15; published 03/16

Large-Scale Election Campaigns:
Combinatorial Shift Bribery

Robert Bredereck robert.bredereck@tu-berlin.de
TU Berlin,
Berlin, Germany

Piotr Faliszewski faliszew@agh.edu.pl
AGH University of Science and Technology,
Kraków, Poland

Rolf Niedermeier rolf.niedermeier@tu-berlin.de

Nimrod Talmon nimrodtalmon77@gmail.com

TU Berlin,

Berlin, Germany

Abstract

We study the complexity of a combinatorial variant of the Shift Bribery problem
in elections. In the standard Shift Bribery problem, we are given an election where
each voter has a preference order over the set of candidates and where an outside agent,
the briber, can pay each voter to rank the briber’s favorite candidate a given number of
positions higher. The goal is to ensure the victory of the briber’s preferred candidate. The
combinatorial variant of the problem, introduced in this paper, models settings where it is
possible to affect the position of the preferred candidate in multiple votes, either positively
or negatively, with a single bribery action. This variant of the problem is particularly
interesting in the context of large-scale campaign management problems (which, from the
technical side, are modeled as bribery problems). We show that, in general, the com-
binatorial variant of the problem is highly intractable; specifically, NP-hard, hard in the
parameterized sense, and hard to approximate. Nevertheless, we provide parameterized
algorithms and approximation algorithms for natural restricted cases.

1. Introduction

We study the computational complexity of election campaign management for the case
where campaign actions (such as airing a TV advertisement, launching a web-based cam-
paign, or organizing meetings with voters) may have large-scale effects which affect multiple
voters. Further, we are interested in settings where these actions can have both positive ef-
fects (for example, some voters may choose to rank the promoted candidate higher because
they find arguments presented in a given advertisement appealing) as well as negative ones
(for example, because some other voters find the advertisement to be too aggressive). Thus,
in our setting, the two major issues faced by a campaign manager are (a) choosing actions

c©2016 AI Access Foundation. All rights reserved.

Bredereck, Faliszewski, Niedermeier, & Talmon

that positively affect as many voters as possible and (b) balancing the negative effects of
campaigning actions (for example, by concentrating these negative effects on voters who
disregard the promoted candidate anyway).

Our research falls within the field of computational social choice, a subarea of multiagent
systems. We use the standard election model, where we are given a set C of candidates
and a collection V of voters, each represented by her preference order (that is, a ranking of
the candidates from the most preferred one to the least preferred one). We assume that we
know the preferences of all the voters. While having such perfect knowledge is impossible
in practice, this assumption is a convenient simplification that models the fact that we may
have (approximate) information from preelection polls or some other sources.

We consider two voting rules, the Plurality rule (where we pick the candidate who
is ranked first by most voters) and the Borda rule (where each candidate c gets from
each voter v as many points as there are candidates that v prefers c to, and we pick the
candidate with the most points). These rules are chosen because the Plurality rule is the
most widespread rule in practice and because the Borda rule is very well-studied in the
context of campaign management.

Within computational social choice, the term campaign management (introduced in
Elkind, Faliszewski, & Slinko, 2009; Elkind & Faliszewski, 2010) is an alternative name for
the bribery family of problems (introduced in Faliszewski, Hemaspaandra, & Hemaspaan-
dra, 2009a) for the cases where one focuses on modeling actions available during election
campaigns: As a result of money spent by a campaign manager, some of the voters change
their votes. In this paper we study campaign management through the Shift Bribery
problem (Elkind et al., 2009; Elkind & Faliszewski, 2010; Bredereck, Chen, Faliszewski,
Nichterlein, & Niedermeier, 2014a; Bredereck, Faliszewski, Niedermeier, & Talmon, 2016).
In Shift Bribery we have a candidate p who we want to win, for each voter v we have a
price πv(i) for which this voter is willing to shift p forward by i positions in her preference
order1, and we ask for the lowest cost of ensuring that p is a winner (see Section 1.1 for
references to other campaign management problems).

The Shift Bribery problem has one major drawback as a model for campaign man-
agement. It is incapable of capturing large-scale effects of campaign actions. In particular,
if one puts forward a TV spot promoting a given candidate, then some voters will react
positively and rank the candidate higher, some will be oblivious to it, and some will react
negatively, by ranking the candidate lower. Shift Bribery cannot model such correlated
effects. In this paper we introduce and study the Combinatorial Shift Bribery prob-
lem, allowing campaign actions to have effects, positive or negative, on whole groups of
voters.

We are interested in understanding how a more realistic model of campaign management
affects the complexity of the problem. Indeed, Shift Bribery is, computationally, a very
well-behaved problem. For example, for the Plurality rule it is solvable in polynomial time
and for the Borda rule it is NP-complete (Elkind et al., 2009), but there is a polynomial-time
2-approximation algorithm (Elkind et al., 2009; Elkind & Faliszewski, 2010) and there are
fixed-parameter (FPT) algorithms, either exact or capable of finding solutions arbitrarily
close to the optimal ones (Bredereck et al., 2014a). In this work, we ask to what extent

1. Of course, this price does not necessarily reflect a direct money transfer to the voter, but rather the cost
of convincing the voter to change his or her mind.

604

Combinatorial Shift Bribery

do we retain these good computational properties when we allow large-scale effects. The
results are surprising both positively and negatively:

1. Combinatorial Shift Bribery becomes both NP-complete and W[1]-hard even for
the Plurality rule, even for very restrictive choice of parameters, even if the correlated
effects of particular campaign actions are limited to at most two voters. Moreover,
our hardness results imply that good, general approximation algorithms do not exist
when we allow negative effects of campaign actions.

2. In spite of the above, it is still possible to derive relatively good (approximation)
algorithms, both for the Plurality rule and for the Borda rule, provided that we
restrict the effects of the campaign actions to be only positive and to either only
involve few voters each, or to only involve groups of consecutive voters (with respect
to an ordering over the voters which might correspond, for example, to time).

Our results are summarized in Table 1 in Section 4. With the generality of our problem
and its combinatorial nature it is natural that we obtain many hardness results. Yet, their
extent and strength is surprising, and so is the fact that we also find a nontrivial landscape
of tractable cases.

1.1 Related Work

Our work builds on top of two main research ideas. First, on studying campaign man-
agement/bribery problems, and, second, on studying combinatorial variants of election
problems.

The study of the computational complexity of bribery in elections was initiated by
Faliszewski et al. (2009a), and continued by a number of researchers (Faliszewski, Hemas-
paandra, Hemaspaandra, & Rothe, 2009b; Hazon, Lin, & Kraus, 2013; Mattei, Goldsmith,
& Klapper, 2012a; Mattei, Pini, Rossi, & Venable, 2012b). Elkind et al. (2009) and Elkind
and Faliszewski (2010) realized that the formalism of election bribery problems is useful
from the point of view of planning election campaigns. In particular, they defined the
Swap Bribery problem and its restricted variant, Shift Bribery. In the former it is pos-
sible, at a given price, to swap any two adjacent candidates in a given vote. In the latter,
we are only allowed to shift the preferred candidate forward. Various problems, modeling
different flavors of campaign management, have been studied, including, for example, the
possibility to alter the number of approved/ranked candidates (Baumeister, Faliszewski,
Lang, & Rothe, 2012; Faliszewski, Reisch, Rothe, & Schend, 2014; Schlotter, Faliszewski,
& Elkind, 2011). Different (positive) applications of bribery problems include, for example,
the Margin of Victory problem, where the goal of the briber is to prevent some candi-
date from winning. If it is possible to do so at low cost, then this suggests that the election
could have been tampered with (Cary, 2011; Magrino, Rivest, Shen, & Wagner, 2011; Xia,
2012; Reisch, Rothe, & Schend, 2014).

From our point of view, the most related works are those of Elkind et al. (2009), Elkind
and Faliszewski (2010), Bredereck et al. (2014a, 2016), and Dorn and Schlotter (2012).
The former ones study Shift Bribery, which we generalize (parameterized complexity of
Shift Bribery is studied in Bredereck et al., 2014a, while Shift Bribery for multiwinner

605

Bredereck, Faliszewski, Niedermeier, & Talmon

elections are studied in Bredereck et al., 2016), whereas the work of Dorn and Schlotter
(2012) pioneers the use of parameterized complexity analysis for (swap) bribery problems.

Our work is largely inspired by that of Bulteau, Chen, Faliszewski, Niedermeier, and
Talmon (2015) and Chen, Faliszewski, Niedermeier, and Talmon (2015), who introduced and
studied combinatorial variants of election control. Election control is a very well-studied
topic in computational social choice, initiated by Bartholdi, Tovey, and Trick (1992) and
then studied by numerous researchers (we point the readers to Faliszewski, Hemaspaandra,
& Hemaspaandra, 2010; Faliszewski & Rothe, 2015, for a detailed account). Briefly put,
control problems model attempts at changing the election results by changing their struc-
ture. The standard types of control include adding, deleting, and partitioning candidates or
voters. Control problems, especially those related to adding and deleting voters, are quite
relevant to the issues of campaign management, and, indeed, in Section 5 we do show a con-
nection between Combinatorial Shift Bribery and (combinatorial) control by adding
voters (Bulteau et al., 2015).

The idea of combinatorial shift bribery is somewhat related to the problem of lobbying
in multiple referenda, as introduced by Christian, Fellows, Rosamond, and Slinko (2007)
(parameterized study was provided in Bredereck, Chen, Hartung, Kratsch, Niedermeier,
Suchý, & Woeginger, 2014b; probabilistic variant was studied, also in the parameterized
sense, in Binkele-Raible, Erdélyi, Fernau, Goldsmith, Mattei, & Rothe, 2014). There, we
have a number of yes/no elections and the goal is to ensure that for each of these election
a majority of the voters vote “yes.” Each single lobbying action can convince one voter to
vote “yes” in all the elections. In combinatorial shift bribery we have a single election and
a single action can affect multiple voters, whereas in the lobbying problem we have multiple
elections but each action affects only one voter.

We stress that our use of the term “combinatorial variants of election problems” is
different than the one used in the well-established line of work regarding combinatorial
candidate spaces (see Lang & Xia, 2015, and further works, for example, Boutilier, Brafman,
Hoos, & Poole, 2004; Conitzer, Lang, & Xia, 2009; Mattei et al., 2012b). In our work we use
the term “combinatorial” to refer to the “combinations” of voters affected by each bribery
action.

1.2 Organization of the Paper

After providing some preliminaries in Section 2, we give the formal definition of the Com-
binatorial Shift Bribery problem in Section 3. In Section 4 we give an overview of our
results. We shed light on some connections between Combinatorial Shift Bribery and
the problem of Combinatorial Control in Section 5. Then, in Section 6, we present
a series of strong hardness results covering all our classes of shift actions for very restric-
tive sets of parameters (for example, many of our results already apply to the case of two
candidates). In Section 7, we develop several exact algorithms for special cases of Combi-
natorial Shift Bribery, while in Section 8 we describe our approximation algorithms
for Combinatorial Shift Bribery. Some of our proofs are available in the appendices
(either when a given proof relies on ideas already presented in other proofs, or—as in the
case of Theorem 9—when the proof is particularly involved). We end with conclusions in
Section 9.

606

Combinatorial Shift Bribery

2. Preliminaries

In this section, we briefly describe our model of elections, define the two voting rules that
we study, and review basic concepts from parameterized complexity.

2.1 Elections

An election E = (C, V) consists of a set C = {c1, . . . , cm} of candidates and of a collection
V = (v1, . . . , vn) of voters. Each voter is represented through her preference order, that is,
a linear ranking of the candidates from the most preferred one to the least preferred one;
we use voters and preference orders interchangeably. For example, if C = {c1, c2, c3}, then
voter v1 may have preference order v1 : c1 � c2 � c3 to indicate that she likes c1 best, then
c2, and then c3 (for clarity, we treat the voters as females and the candidates as males).

We assume that there is an arbitrary (but fixed) canonical order over the set of candi-
dates (for example, one could order the candidates lexicographically by their names). For

a subset A ⊆ C of candidates, writing
−→
A within a preference order means listing the can-

didates from A in this canonical order, and writing
←−
A means listing them in the reverse of

this order.

2.2 Voting Rules

A voting rule R is a function that, given an election E = (C, V), outputs a set R(E) ⊆ C
of (tied) election winners. Each candidate c ∈ R(E) is said to be an R-winner of the
election E. We consider two election rules, the Plurality rule and the Borda rule. Both
assign points to candidates and output those with the highest score. Under the Plurality
rule, each candidate receives one point for each voter that ranks him first. Under the Borda
rule, each candidate receives i points for each voter that prefers this candidate to exactly i
other ones.

We use the nonunique-winner model. That is, all the candidates selected by a given
voting rule are viewed as equally successful winners (in practice, of course, one has to use
some sort of a tie-breaking rule to resolve the situation, but disregarding ties simplifies the
analysis; however, an interested reader should consult papers on the effects of tie-breaking
on the complexity of election problems, e.g. Obraztsova & Elkind, 2011; Obraztsova, Elkind,
& Hazon, 2011).

2.3 Parameterized Complexity

We assume familiarity with standard notions regarding algorithms and complexity theory,
but briefly review notions regarding parameterized complexity theory (Downey & Fellows,
2013; Flum & Grohe, 2006; Niedermeier, 2006).

In parameterized complexity theory we measure the complexity of a given problem
with respect to both the input size and a particular parameter of the problem. Typical
parameters for election problems include the number of candidates, the number of voters,
and the solution size (for example, the number of campaign actions one can perform; see
Betzler, Bredereck, Chen, & Niedermeier, 2012, for a survey of parameterized complexity
and voting). We say that a parameterized problem is fixed-parameter tractable (is in FPT) if
there is an algorithm that given an input instance I with parameter k solves the problem in

607

Bredereck, Faliszewski, Niedermeier, & Talmon

g(k)|I|O(1) time, where g is some computable function and |I| is the length of the encoding
of I. There is also a hierarchy of hardness classes for parameterized problems, of which the
two most important levels are formed by the classes W[1] and W[2]. The most convenient
way of defining these classes is through an appropriate reduction notion and their complete
problems. Specifically, we say that a parameterized problem A reduces to a parameterized
problem B if there are two computable functions, h and h′, with the following properties:
given an instance I of A with parameter k, h(I) outputs in FPT time (i.e., in time g(k)|I|O(1)

for some computable function g) an instance I ′ of B with parameter k′ ≤ h′(k), such that
I is a “yes”-instance of A if and only if I ′ is a “yes”-instance of B. In other words, h is a
many-one reduction from A to B that is allowed to run in FPT time, but that is required to
output an instance whose parameter is upper-bounded by a function of the input instance’s
parameter.

The class W[1] is defined as the class of problems that parameterically reduce to the
Clique problem, and W[2] as the class of problems that parameterically reduce to the Set
Cover problem, where both problems are parameterized by the solution size (that is, by
the value h from their definitions).

Clique
Input: An undirected graph G = (V (G), E(G)) and an integer h.
Question: Is there a set H of h vertices such that there is an edge between
each pair of vertices from H?

Set Cover
Input: A universe set X, a family S of subsets of X, and an integer h.
Question: Is there a subset S ′ ⊆ S of at most h subsets whose union gives X?

We sometimes consider special variants of these problems that we describe in detail
within relevant proofs.

A parameterized problem is contained in the class XP if there is an algorithm that, given
an instance I for it with parameter k, solves it in time |I|g(k), where g is some computable
function. It holds that FPT ⊆ W[1] ⊆ W[2] ⊆ XP. We point the readers interested in
further details regarding parameterized complexity theory (and the design of parameterized
algorithms) to the textbooks of Downey and Fellows (2013), Flum and Grohe (2006), and
Niedermeier (2006).

3. The Combinatorial Shift Bribery Problem

In this section we first define the Combinatorial Shift Bribery problem in its full
generality and, then, we describe why and how we simplify it for the remainder of our
study.

3.1 The Definition

Let R be some voting rule. The definition of R-Combinatorial Shift Bribery is some-
what involved, therefore we first define some necessary components. We are given an election
E = (C, V) and a preferred candidate p ∈ C. The goal is to ensure that p is an R-winner
of the election. To this end, we have a number of possible actions to choose from.

608

Combinatorial Shift Bribery

Let m := |C| be the number of candidates in E and let n := |V | be the number
of voters. A shift action f is an n-dimensional vector of (possibly negative) integers,
f = (f (1), . . . , f (n)). In R-Combinatorial Shift Bribery we are given a family F =
(f1, . . . , fζ) of shift actions. Each particular shift action models a possible campaigning
action, such as airing a TV spot or organizing a meeting with the voters. The components
of a given shift action measure the effects of this action on the particular voters. For a given
subset F ′ ⊆ F of available shift actions, we define the effect of F ′ on voter vi (1 ≤ i ≤ n) as

E(i)(F ′) =
∑

fj∈F ′ f
(i)
j . Further, each shift action fj (1 ≤ j ≤ ζ) comes with a nonnegative

integer cost w(fj) for its application.

Each voter vi (1 ≤ i ≤ n) has her individual threshold function πi : Z → Z describing
how shift actions affect this voter. We require that πi(0) = 0 and that πi is nondecreasing.
Let F ′ be a collection of shift actions. After applying the shift actions from F ′, each voter vi
(1 ≤ i ≤ n) shifts the preferred candidate p by t > 0 positions forward if (a) E(i)(F ′) > 0,
and (b) πi(t) ≤ E(i)(F ′) < πi(t+ 1). The shift is by t > 0 positions back if (a) E(i)(F ′) < 0,
and (b) πi(−t) ≥ E(i)(F ′) > πi(−t− 1).

Finally, we are given a nonnegative integer B, the budget. We ask for the existence of
a collection F ′ ⊆ F of available shift actions with total cost

∑
fj∈F ′ w(fj) at most B and

such that after applying them p is an R-winner of the given election. If this is the case,
then we say that F ′ is successful. Consider the following example.

Example 1. Consider the election below, where the set of candidates is C = {a, b, c, p},
the collection of voters is V = (v1, v2, v3), and p is the preferred candidate. There are three
available shift actions, each with the same unit cost (i.e., w(f1) = w(f2) = w(f3) = 1).

election shift actions

v1 : c � b � p � a
v2 : b � a � c � p
v3 : p � a � b � c

2

4

0

6

0

−3

0

2

0

f1 f2 f3

The threshold functions are such that:

1. π1(−1) = −4, π1(0) = 0, π1(1) = 6, π1(2) = 100.

2. π2(0) = 0, π2(1) = 2, π2(2) = π2(3) = 100.

3. π3(−3) = π3(−2) = −100, π3(−1) = −3, π3(0) = 0.

We use the Borda rule. Candidates a, b, c, and p have, respectively, 4, 6, 4, and 4 points.
It is easy to see that applying any single shift action does not ensure p’s victory. However,
applying shift actions F ′ = {f2, f3} results in p being a winner. The total effect of these
two shift actions is (6, 2,−3). According to the threshold functions, this means that p is
shifted forward by one position in v1 and v2, and is shifted back by one position in v3. After
these shifts, the modified election looks as follows:

609

Bredereck, Faliszewski, Niedermeier, & Talmon

election

v′1 : c � p � b � a
v′2 : b � a � p � c
v′3 : a � p � b � c

That is, after we apply the shift actions F ′ = {f2, f3}, we have that candidate c has
3 points, while all other candidates have 5 points each. Thus, a, b, and p are tied as winners
and F ′ is indeed a successful set of shift actions. 4

Formally, given a voting rule R, we define the R-Combinatorial Shift Bribery
problem as follows:

R-Combinatorial Shift Bribery
Input: An election E = (C, V), where C = {c1, . . . , cm} is the set of candidates
and V = (v1, . . . , vn) is the collection of voters, a set F = {f1, . . . , fζ} of shift
actions with costs w(f1), . . . , w(fζ), threshold functions π1, . . . , πn, and a non-
negative integer budget B. One of the candidates is designated as the preferred
candidate p.
Question: Is there a subset F ′ ⊆ F of shift actions with total cost at most B
such that after we apply the shift actions from F ′ candidate p is an R-winner
of the resulting election?

While this definition is quite complicated, it captures some important features of cam-
paigning. For example, the use of threshold functions allows us to model voters who are
unwilling to change the position of the preferred candidate beyond a certain range, irre-
spective of the strength of the campaign. The fact that different shift actions have different
costs models the fact that particular actions (for example, airing TV spots or organizing
meetings) may come at different costs.

3.2 Relation to Standard Shift Bribery

It is necessary to comment on the relation between our Combinatorial Shift Bribery
problem and its non-combinatorial variant, Shift Bribery (Elkind et al., 2009; Elkind &
Faliszewski, 2010).

The non-combinatorial variant of the Shift Bribery problem is defined very similarly
to the combinatorial one, but the voters have no threshold functions and instead of the
collection of shift actions and their costs, each voter vi has his or her shift-bribery price
function ρi. The cost of shifting the preferred candidate forward by t positions in vi’s
preference order is ρi(t) (only forward shifts are allowed). We require that ρi(0) = 0 and
that the functions are nondecreasing. Formally, we have the following definition (R is a
voting rule).

R-Shift Bribery
Input: An election E = (C, V), where C = {c1, . . . , cm} is the set of candi-
dates and V = (v1, . . . , vn) is the collection of voters, a collection (ρ1, . . . , ρn) of
shift-bribery price functions, and a nonnegative integer budget B. One of the

610

Combinatorial Shift Bribery

candidates is designated as the preferred candidate p.
Question: Is there a vector (s1, . . . , sn) of natural numbers such that (a)∑n

i=1 ρi(si) ≤ B and (b) if for each voter vi we shift p forward by si positions,
then p is an R-winner of the resulting election?

While intuitively it seems that R-Shift Bribery is simpler than its combinatorial
cousin, making this observation formal requires some care.

Proposition 1. Let R be a voting rule. It holds that R-Shift Bribery many-one reduces
to R-Combinatorial Shift Bribery in polynomial time.

Proof. Consider an instance of R-Shift Bribery with an election E = (C, V), where
C = {c1, . . . , cm} and V = (v1, . . . , vn), with a collection of shift-bribery price functions
(ρv1 , . . . , ρvn), and with budget B. Without loss of generality, we take c1 to be the preferred
candidate and denote him or her as p. We form an instance of R-Combinatorial Shift
Bribery with the same election, the same budget, and the same preferred candidate,
but where the shift actions, their costs, and voters’ threshold functions are constructed as
follows: for each voter vi, we set his or her threshold function to be πi(t) =

∑t
j=1 2m−j ,

and for each number t of positions by which it is possible to shift the preferred candidate
forward in vi’s preference order, we create a shift action fi,t that has a zero effect on all
voters but vi, on whom it has effect 2m−t; the cost of fi,t is w(fi,t) = ρ(t)− ρ(t− 1).

If there is a sequence (s1, . . . , sn) such that
∑n

i=1 ρi(si) ≤ B and p is an R-winner of
the election where for each voter vi we shift p forward by si positions, then there is also a
solution for our constructed instance of Combinatorial Shift Bribery: if for each vi,
we use shift actions fi,1, . . . , fi,si , then the total bribery cost is the same as in the Shift
Bribery instance and, after implementing the shifts, for each vi the preferred candidate is
shifted by exactly si positions.

Now assume that our constructed Combinatorial Shift Bribery instance is a “yes”-
instance. Consider some subset F ′ of shift actions whose total cost is at most B and which
ensure that p is the R-winner of the election (and recall that each shift action can be used
at most once). For each voter vi ∈ V , we define si to be the largest integer such that shift
actions fi,1, . . . , fi,si all belong to F ′. Let us fix some voter vi. We claim that after applying
the shift actions from F ′ (in the Combinatorial Shift Bribery instance), the preferred
candidate is shifted forward by exactly si positions. By the definition of si, it is immediate
that he or she is shifted forward by at least si positions. He or she is not shifted forward
by more positions for the following reason: the shift actions fi,1, . . . , fi,si have total effect
on vi equal to

∑si
j=1 2m−j , which is equal to πi(si). By definition, shift action fi,si+1 is not

in F ′. The sum of all the remaining shift actions that have an effect on vi is smaller than:

m∑
j=si+2

2m−j =

m−si−2∑
j=0

2j = 2m−si−1 − 1.

However, πi(si+1)−πi(si) = 2m−si−1. This means that even if we used all the shift actions
aside from fi,si+1, in vi’s preference order we still would shift p by exactly si positions.

In conclusion, this means that implementing the shift actions F ′ ensures that for each
voter vi we shift p forward by exactly si positions. Further, for each vi we have that

611

Bredereck, Faliszewski, Niedermeier, & Talmon

w(fi,1) + · · · + w(fi,si) = ρi(si). Therefore, the sequence (s1, . . . , sn) witnesses that the
input instance of Shift Bribery is a “yes”-instance because the total cost of the shifts is
at most B (as in the combinatorial instance) and they ensure that p is a winner (as in the
combinatorial instance).

Since the reduction clearly runs in polynomial time, the proof is complete.

The construction from the above proof is somewhat involved, especially if one takes into
account that it simply shows that our Combinatorial Shift Bribery problem indeed
generalizes the much simpler, non-combinatorial, one. Nonetheless, its somewhat contrived
use of threshold functions seems to be necessary. Indeed, if in the Combinatorial Shift
Bribery problem we restricted the shift actions to have positive entries for exactly one
voter each, and we used simple linear threshold functions, then we would obtain Shift
Bribery for the case of convex price functions (Bredereck et al., 2014a). This is a very
general variant of the Shift Bribery problem for which, for example, all the NP-hardness
results of Elkind et al. (2009) hold (as shown in Bredereck et al., 2014a), but nonetheless
not the most general one.

3.3 A General Hardness Result

It turns out that the Combinatorial Shift Bribery problem, as defined in Section 3.1
above, is so general that it allows for the following, sweeping, hardness result.2

Theorem 2. For both the Plurality rule and the Borda rule, Combinatorial Shift
Bribery is NP-hard even for five voters and two candidates and no budget constraints.
For the Borda rule, Combinatorial Shift Bribery is NP-hard also for three voters and
four candidates.

Proof. We reduce from the following (weakly NP-hard) variant of the Subset Sum problem
(it is a simple exercise to show its NP-hardness through a reduction from the classic Subset
Sum problem):

Subset Sum (Zero Variant)
Input: A set A := {a1, . . . , an} of integers.
Question: Is there a nonempty set A′ ⊆ A such that

∑
ai∈A′ ai = 0?

Given an instance A = {a1, . . . , an} of Subset Sum (Zero Variant), we construct
an instance of Plurality-Combinatorial Shift Bribery with two candidates. Since the
Plurality rule and the Borda rule coincide for elections with two candidates, our hardness
result transfers to Borda-Combinatorial Shift Bribery (and, in fact, to almost all
natural voting rules).

We construct the following election:

2. Note, however, that we prove weak NP-hardness. That is, our result may not hold if we assume that all
occurring numbers are encoded in unary. On the contrary, all other hardness proofs in this paper give
strong hardness results and are independent of such number encoding issues.

612

Combinatorial Shift Bribery

election shift actions

v1 : p � d
v2 : p � d
v3 : d � p
v4 : d � p
v5 : d � p

a1

−a1

1

0

0

. . .

an

−an
1

0

0

f1 . . . fn

That is, for each element ai ∈ A, the set F of shift actions contains one shift action fi
with effect ai on v1, effect −ai on v2, effect 1 on v3, and no effect on the other two voters.
The voter threshold functions are as follows. Candidate p is shifted to the last position
for v1 and v2 if the effect on these voters is negative (that is, π1(−1) = π2(−1) = −1).
Candidate p is shifted to the top position for the third voter if the effect is positive (that
is, π3(1) = 1). We set the cost of each shift action to be one and we set our budget to be
n. Thus the budget allows us to pick any combination of the shift actions.

For the “if” direction, let A′ ⊆ A be a non-empty subset whose element-wise sum equals
zero. After applying F ′ := {fi | ai ∈ A′}, p is a winner: Since A′ sums up to zero, there
is no effect on the first two voters. The effect on the third voter is positive, because A′ is
non-empty. Thus p is preferred by three of the five voters and wins the election.

For the “only if” direction, let F ′ ⊆ F be a subset of shift actions that makes p a winner.
Then, F ′ must be non-empty because p does not win the initial election. We claim that
the element-wise sum of A′ := {ai | fi ∈ F ′} is zero. For the sake of contradiction, assume
that

∑
ai∈A′ ai 6= 0. If the sum were negative, then there would be a negative effect on the

first voter, d would be preferred by three voters out of five, and d would win the election.
If the sum were positive, then we would have the same effect with the second voter taking
the role of the first one.

Using a very similar idea, we can show how to reduce Subset Sum (Zero Variant)
to Borda-Combinatorial Shift Bribery with three voters and four candidates. Given
the input as before, we construct the following instance:

election shift actions

v1 : p � d1 � d2 � d3

v2 : p � d1 � d2 � d3

v3 : d1 � d2 � d3 � p

3a1

−3a1

3

 . . .

3an

−3an

3

f1 . . . fn

That is, for each element ai ∈ A, F contains one shift action fi with effect 3ai on v1,
effect −3ai on v2, and effect 3 on v3. Each voter vi has the same threshold function
πi(t) = t. In effect, p is shifted to the last position of the first and of the second voter if the
effect on these voters is negative, and is shifted to the top position of the third vote if the
effect there is positive. Each shift action has the same unit cost, and we set the budget to
n (i.e., we can pick any combination of the shift actions).

613

Bredereck, Faliszewski, Niedermeier, & Talmon

Observe that d1 is the original winner of the election and obtains seven points whereas
p obtains only six points.

For the “if” direction, let A′ ⊆ A be a non-empty subset whose element-wise sum equals
zero. If we apply shift actions F ′ := {fi | ai ∈ A′} then p becomes a winner: Since A′ sums
up to zero, there is no effect on the first two voters. The effect on the third voter is positive
because A′ is non-empty. Thus, p is the most preferred candidate for all the voters and
wins the election.

For the “only if” direction, let F ′ ⊆ F be a subset of shift actions that makes p a winner.
Then, F ′ must be non-empty because p does not win the initial election. We show that
the element-wise sum of A′ := {ai | fi ∈ F ′} is zero. For the sake of contradiction assume
that

∑
ai∈A′ ai 6= 0. If the sum were negative, then there would be a negative effect on

the first voter and p would obtain six points, whereas d1 would obtain seven. If the sum
were positive, we would have the same effect with the roles of the first and the second voter
switched.

Effectively, Theorem 2 shows that studying large-scale effects of campaign actions
through the full-fledged R-Combinatorial Shift Bribery problem leads to a hopelessly
intractable problem: We have hardness even for elections with both a fixed number of
candidates and a fixed number of voters.

3.4 Restricted Variants of Combinatorial Shift Bribery

Given the hardness results from Theorem 2, throughout the remainder of the paper we
focus on restricted variants of the Combinatorial Shift Bribery problem. We assume
the individual threshold functions to be the identity functions (that is, for each voter i and
each integer t, it holds that πi(t) = t), we assume each shift action to have the same unit
cost, and we consider restricted types of shift actions. All these assumptions require some
additional discussion.

The restrictions on the threshold functions and on the costs of shift actions seem to
be very basic and, in fact, are even satisfied by the instances built in the proof of Theo-
rem 2. The reason for assuming them is that, on the one hand, it seems beyond point to
study instances more involved than those from Theorem 2, and, on the other hand, they
interact with other restrictions, leading to tractable cases. But, they do have important
consequences.

First, using identity threshold functions means that we model societies that are prone to
propaganda. With identity threshold functions we cannot differentiate between voters that
are more or less responsive to our actions. Second, assuming that every shift action has the
same unit cost models settings where the costs of particular campaign actions are similar
enough that small differences between them are irrelevant; the actual number of actions
we choose to perform is a sufficiently good approximation of the real cost. This is true,
for example, for the case of organizing meetings with voters, which often have comparable
prices. It is also likely to be the case when shift actions model actions such as airing TV
spots: Each spot has a similar cost to produce/broadcast. The greatest disadvantage of
assuming unit costs is that we no longer can model mixed campaigns that use actions of
several different types (meetings with voters, TV spots, web campaigns, etc.).

614

Combinatorial Shift Bribery

The restrictions on the types of allowed shift actions have even greater impact on the
nature of campaigns that we study. We study the following classes of shift actions:

Unrestricted Shift Actions. Here we put no restrictions on the allowed shift actions;
this models the most general (and, naturally, the least tractable) setting.

Bounded-Effect Shift Actions. Here we consider a parameter Γ and require that for
each shift action f = (f (1), . . . , f (n)) it holds that for each j (1 ≤ j ≤ n), we have
|f (j)| ≤ Γ. This is still a very general setting, where we assume that each campaigning
action has only a limited impact on each voter.

Unit-Effect Shift Actions. This is a class of bounded-effect shift actions for Γ = 1. For
each given voter, applying a given shift action can either leave the preferred candidate
p unaffected or it can shift p one position up or down.

Interval Shift Actions. This is a subclass of unit-effect shift actions that never affect
voters negatively, and where for each shift action there is an interval of voters that
are affected positively (the interval is with respect to the order of the voters in the
input collection V). This class of shift actions models campaigns associated with a
time window where certain voters can be reached, or campaigns that are local to given
neighborhoods3 (for example, that include putting up multiple posters, organizing
meetings, etc.). We speak of 1z-interval shift actions to mean interval shift actions
where each shift action affects at most z voters.

Unit-Effect on Two Voters Shift Actions. This is a subclass of unit-effect shift actions
that affect two voters at most. We focus on shift actions that affect both voters
positively, denoted as (+1,+1)-shift actions, and that affect one voter positively and
one voter negatively, denoted as (+1,−1)-shift actions. The reason for studying these
families is not because they model particularly natural types of election campaigns,
but rather to establish the limits of tractability for our problem. For example, we
consider (+1,−1)-shift actions to understand how intractable are shift actions that
have negative effects; (+1,−1)-shift actions are the simplest shift actions of this type
that may be useful in the campaign (one would never deliberately use a shift action
that only affects the preferred candidate negatively).

Figure 1 presents the difference between bounded-effect shift actions, unit-effect shift
actions, unit-effect on two voters shift actions, and interval shift actions graphically. As
we discuss in the next section, the type of allowed shift actions has a huge impact on the
computational complexity of our problem.

3. In the neighborhood scenario, we take the simplified view that a society of the voters lives on a line.
Of course, it would be more natural to take two-dimensional neighborhoods into account. We view this
as an interesting direction for future research, but for the time being we consider as simple settings as
possible. In the time window scenario, a natural ordering of the voters is the point of time when they
cast their votes or can be affected by the campaign.

615

Bredereck, Faliszewski, Niedermeier, & Talmon

2

1 1

1

2

11

2

Γ = 2;Λ = 5

1

1 1

1

1

11

2

Unit-Effect

1

1

1

1

(+1,−1)

1

1

1

1

(+1,+1)

1

z

1z

Figure 1: Restrictions on the shift actions. We visualize (from left to right, top to bottom):
a shift action with maximum effect Γ = 2 of a single shift action and maximum number
Λ = 5 of voters affected by a single shift action; a unit-effect shift action; a shift action with
effect of +1 on one voter and effect of −1 on another voter “(+1,−1)”; a shift action with
effect of +1 on two voters “(+1,+1)”; and a shift action with effect of +1 on an interval
of size z “1z”. The intended interpretation is that voters are listed vertically, from top to
bottom.

4. Overview of Results

We now provide a high-level overview of our results. It turns out that even with rather strong
restrictions in place (that is, the restrictions defined in Section 3.4), Combinatorial Shift
Bribery is computationally hard in most settings. What we present here is our quest for
understanding the border between tractability and intractability of Combinatorial Shift
Bribery. To this end, we employ the following techniques and ideas.

1. We seek both regular complexity results (NP-hardness results) and parameterized
complexity results (FPT algorithms, W[1]-hardness and W[2]-hardness results, and
XP algorithms).

2. We consider structural restrictions on the sets of available shift actions.

3. We seek approximation algorithms and inapproximability results (that is, approxima-
tion hardness results).

616

Combinatorial Shift Bribery

For our parameterized complexity results, we consider the following parameters: (a) the
number n of the voters, (b) the number m of the candidates, (c) the budget B, (d) the
maximum effect Γ of a single shift action, and (e) the maximum number Λ of voters affected
by a single shift action.

All our discussions of (in)approximability of Combinatorial Shift Bribery regard
the task of minimizing the cost of ensuring the preferred candidate’s victory. This means
that, for example, a 2-approximation algorithm has to decide if it is possible to ensure the
preferred candidate’s victory at all, and, if so, it has to output a successful set of shift
actions with total cost at most twice as high as the optimal one.

We summarize our results in Table 1. These results show that Combinatorial Shift
Bribery is highly intractable. Theorems 5, 6, and 7, show that the problem is computa-
tionally hard (in terms of NP-hardness, W[2]-hardness, and inapproximability even by FPT
algorithms) for both the Plurality rule and the Borda rule, even for various very restricted
forms of unit-effect shift actions, even for two candidates. This means that, in essence, the
problem is hard for all natural voting rules, since for two candidates all natural voting rules
boil down to the Plurality rule.

Further, Theorem 8 and Theorem 11 show that our problems are W[1]-hard even if we
take the number of candidates and the budget as a joint parameter, even for extremely
restricted shift actions. The problem remains hard (for the case of the Borda rule) when
parameterized by the number of voters (Theorem 9). On the contrary, for the case of
Plurality and parameterization by the number of voters we obtain tractability.

We obtain several approximability results. In essence, these results are possible only for
the cases where shift actions do not have negative results. An intuitive reason for this fact
is that when shift actions have negative effects, then it is computationally hard to check
whether the preferred candidate can win even without any restrictions on the budget.

All our approximation algorithms are based on the results for the non-combinatorial
variant of the problem, due to Elkind et al. (2009) and Elkind and Faliszewski (2010).
Either we use the non-combinatorial algorithms directly, as subroutines in our algorithms,
or we derive our results by plugging our Combinatorial Shift Bribery-specific blocks
into the framework developed by Elkind et al. (2009) and Elkind and Faliszewski (2010).

5. Connection to Combinatorial Control

The study of combinatorial variants of problems modeling ways of affecting election results
was initiated by Bulteau et al. (2015), who considered combinatorial control by adding voters
(Combinatorial-CCAV) for the Plurality rule and for the Condorcet rule. It turns out
that for the Plurality rule we can reduce the problem of (Combinatorial) CCAV to that of
(Combinatorial) Shift Bribery. For the non-combinatorial variants of these problems
this does not give much since both problems are easily seen to be polynomial-time solvable.
However, there are strong hardness results for Plurality-Combinatorial-CCAV which we
can transfer to the case of Plurality-Combinatorial Shift Bribery. Formally, Plurality-
Combinatorial-CCAV is defined as follows (Bulteau et al., 2015).

Plurality-Combinatorial-CCAV
Input: A set C of candidates with a preferred candidate p ∈ C, a collection V

617

Bredereck, Faliszewski, Niedermeier, & Talmon

Table 1: Overview of our results. We show exact algorithms and approximation al-
gorithms for Plurality-Combinatorial Shift Bribery and for Borda-Combinatorial
Shift Bribery, for different restrictions on the shift actions (see Figure 1). Results marked
by O follow from the work of Elkind et al. (2009), by ♦ follow from the work of Bredereck
et al. (2014a), by ♠ follow from the work of Elkind and Faliszewski (2010), and by ♥ follow
from the work of Bredereck et al. (2016). Note that all of the variants are in XP when
parameterized by the budget B (Observation 1).

shift actions rule exact complexity approximability

regular

Plurality poly.-time solvable (O) —

Shift Bribery
Borda

NP-complete(O),
2-approximable in

(convex prices) in FPT for B (♦),
poly. time (♠,O),

W[1]-hard for n (♥)
FPT-approximation

scheme for n (♦)

unit effect Both

W[2]-h for B even inapproximable even in

if m = 2 (Thm. 5), FPT-time for B even

XP for n (Prop. 12) if m = 2 (Thm. 6)

(+1,−1)

Plurality FPT for n (Thm. 13) —

Borda W[1]-hard for n (Thm. 9)
inapproximable even in

FPT-time for n (Cor. 10)

Both

NP-h even if m = 2 (Thm. 7),
inapproximable

W[1]-h for B and
even if m = 2 (Thm. 7)

m combined (Thm. 8)

(+1,+1)

Plurality FPT for n (Thm 13) —

Both
W[1]-h for B and 2-approximable

m combined (Thm. 8) in poly. time (Thm. 15)

1z-intervals

Plurality FPT for n (Thm. 13)
z-approximable in

poly. time (Thm. 14)

Borda —
2z-approximable in

poly. time (Thm. 14)

Both W[1]-h for B (Thm. 11)
2-approximable in

mz time (Thm. 16)

618

Combinatorial Shift Bribery

of registered voters (having preference orders over C), a collection W of unregis-
tered voters (having preference orders over C), a bundling function κ : W → 2W

(for each w ∈W it holds that w ∈ κ(w)), and a budget k.
Question: Is there a collection W ′ ⊆ W of at most k voters such that p is a
winner of the modified election (C, V ∪

⋃
w′∈W ′ κ(w′))?

Intuitively, for each unregistered voter w ∈W , we have her bundle, κ(w) (given explicitly
in the input), such that when we add w to the election (for example, by somehow convincing
her to vote), all the voters in her bundle also join the election (for example, people choose
to vote under an influence of a friend).

Theorem 3. Plurality-Combinatorial-CCAV is polynomial-time many-one reducible to
Plurality-Combinatorial Shift Bribery. For an instance of Plurality-Combinatorial-
CCAV with m candidates, the reduction outputs an instance of Plurality-Combinatorial
Shift Bribery with m+ 1 candidates.

Proof. Consider an input instance of Plurality-Combinatorial-CCAV with candidate set
C, collection of registered voters V , collection of unregistered voters W , bundling function
κ, preferred candidate p ∈ C, and limit k on the number of voters that we can add. We
form an instance of Plurality-Combinatorial Shift Bribery, as follows.

We form a candidate set C ′ = C ∪ {d}, where d is some new candidate. We form the
set of voters V ′ in the following way.

1. For each voter v ∈ V , we include v in V ′, with the preference orders extended to rank
d last.

2. For each voter w ∈ W that ranks p first, we include in V ′ two voters, xw, with
preference order of the form d � p � · · · , and x′w, with preference order of the form
p � d � · · · .

3. For each voter w ∈ W that ranks some candidate c ∈ C \ {p} first, we include in
V ′ voter xw with preference order p � c � · · · , and voter x′w with preference order
d � p � · · · .

4. We include 4|W ||C| voters in V ′ with preference orders such that we will achieve the
following effects: (a) for each c ∈ C with score s(c) in election (C, V), c is ranked first
by 4|W |+ s(c) voters in V ′, and (b) d is ranked first by exactly 2|W | voters in V ′. To
achieve these effects, for each c ∈ C \ {p} we include 4|W | voters that rank c first, we
include 3|W | voters that rank p first, and we include |W | voters that rank d first.

For each voter w ∈W , we introduce a shift action fw with the following effects: for each
w′ ∈ κ(w), if w′ ranks p first then fw has effect 1 on xw′ (but not on x′w′) and if w′ ranks
some candidate in C \{p} first, then fw has effect −1 on xw′ and effect +1 on x′w′ (all other
entries are zeros). This finishes the construction. We provide the proof of correctness after
the following example of the reduction.

Example 2. Consider the following input to Plurality-Combinatorial-CCAV, where the
preferred candidate is p and the budget k is 1.

619

Bredereck, Faliszewski, Niedermeier, & Talmon

registered voters unregistered voters bundling function

v1 : p � a
v2 : a � p
v3 : a � p

w1 : p � a
w2 : a � p
w3 : p � a

κ(w1) = {w1, w3}
κ(w2) = {w2}
κ(w3) = {w2, w3}

We construct the following input to Plurality-Combinatorial Shift Bribery; notice
that the number of entries in each shift action is 33.

election shift actions

v1 : p � a � d
v2 : a � p � d
v3 : a � p � d
xw1 : d � p � a
x′w1

: p � d � a
xw2 : p � a � d
x′w2

: d � p � a
xw3 : d � p � a
x′w3

: p � d � a
12 dummies : a � · · ·
9 dummies : p � · · ·
3 dummies : d � · · ·

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

−1

1

0

0

0

0

0

0

0

0

0

0

−1

1

1

0

0

0

0

fw1 fw2 fw3

Note that adding voter w1 to the input election for Plurality-Combinatorial-CCAV
results in p being a winner of the election. Correspondingly, applying shift action fw1 results
in p being a winner of the input election for Plurality-Combinatorial Shift Bribery. 4

To see the correctness of our construction, note that applying a shift action correspond-
ing to a bundle of a voter w ∈W has the same effect on the differences between the scores
of the candidates in C as adding the bundle κ(w) has in the original control instance.
More specifically, disregarding the score of d for now, we have the following. For each
w′ ∈ κ(w) which ranks p first, we have an increase of the score of p by one, while for each
w′ ∈ κ(w) which ranks some candidate c ∈ C \ {p} first, we have an increase of the score of
c by one. Further, the score of candidate d can never grow beyond 4|W | in our Plurality-
Combinatorial Shift Bribery instance and the score of p can never fall below 4|W |.
Therefore, d can never prevent p from being a winner.

Thus, the reduction is correct. Furthermore, the reduction can be computed in polyno-
mial time and it outputs a Plurality-Combinatorial Shift Bribery instance with one
candidate more than the input Plurality-Combinatorial-CCAV instance. We also ob-
serve that the output instance uses unit-effect shift actions that affect at most twice as
many voters as the largest bundle in the input instance.

620

Combinatorial Shift Bribery

Based on the proof of Theorem 3 and results of Bulteau et al. (2015), we obtain the
following result.

Corollary 4. Plurality-Combinatorial Shift Bribery is W [2]-hard with respect to the
budget B even if m = 3, it is W [1]-hard with respect to B even for shift actions with unit
effect on up to 6 voters, and it is NP-hard even for shift actions with unit effects on up to
4 voters.

Proof. The result follows by applying the reduction from the proof of Theorem 3 to the
Plurality-Combinatorial-CCAV instances produced in the reductions from Theorems 2, 1,
and 4 of Bulteau et al. (2015), respectively.

6. Hardness Results

The results from the previous section show that we are bound to hit hard instances for
Combinatorial Shift Bribery even in very restricted setting. In this section we explore
how restrictive these hard settings are. Our results are organized by the type of shift actions
allowed.

6.1 Results for General Unit-Effect Shift Actions

We start by considering unit-effect shift actions. If the allowed effects are positive only,
then we obtain NP-hardness and W[2]-hardness when parameterizing by the budget B. If
we allow also negative unit-effects, then the problem gets even harder and we go beyond any
hope for an approximation algorithm, even if the approximation algorithm were allowed to
run in FPT time when parameterizing by the budget B. Quite strikingly, these results hold
even if we only have two candidates.

Theorem 5. For both the Plurality rule and the Borda rule, Combinatorial Shift
Bribery is NP-hard and W[2]-hard for the parameter budget B, even for two candidates
and even if each shift action has effects of either +1 or 0 on each voter.

Proof. We provide a parameterized reduction from Set Cover (recall Section 2.3). Let
(S, X, h) be an instance of Set Cover, where S = {S1, . . . , Sm} is a family of subsets over
the universe X = {x1, . . . , xn}, and h is the number of sets that we can use to cover X.
We construct an instance of Plurality-Combinatorial Shift Bribery with two candi-
dates. Note that, since the Borda rule and the Plurality rule coincide on elections with two
candidates, our hardness result transfers to Borda-Combinatorial Shift Bribery.

The construction is as follows. We have p and d as the only candidates. For each
element xi ∈ X create an element voter vi with preference order d � p. Create another set
of n dummy voters all with preference order d � p. The set F of shift actions contains for
each set Sj ∈ S a function fj having an effect of +1 on the element voters corresponding
to the elements of the set (that is, fj [i] = 1 if xi ∈ Sj and fj [i] = 0 otherwise). Finally,
set B := h. This finishes the construction. Clearly, the reduction can be computed in
polynomial time. Consider the following example of applying the reduction.

Example 3. Let the input to Set Cover be such that X = {x1, x2, x3, x4, x5} and S =
{S1, S2, S3}, with S1 = {1, 2, 5}, S2 = {2, 3}, S3 = {3, 4}, and h = 2. We construct the
following input for Plurality-Combinatorial Shift Bribery.

621

Bredereck, Faliszewski, Niedermeier, & Talmon

election shift actions

v1 : d � p
v2 : d � p
v3 : d � p
v4 : d � p
v5 : d � p

5 dummies : d � p

1

1

0

0

1

0

0

1

1

0

0

0

0

0

1

1

0

0

f1 f2 f3

Note that {S1, S3} is a set cover, and, analogously, choosing f1 and f3 results in p being
a winner of the election. 4

It remains to show that there is a set cover of size h if and only if there is a successful
set of shift actions of size h.

For the “if” part, assume that there is a set cover S ′ of size at most h. Then, applying
F ′ = {fj | Sj ∈ S ′} makes p win the election: Since S ′ is a set cover, p will be the preferred
candidate of all n element voters and, hence, a winner of the election.

For the “only if” part, assume that there is a set of shift actions F ′ ⊆ F of size at most h
whose application makes p win the election. Then, p must be the preferred candidate of
all element voters in the bribed election because no shift action has effect on any dummy
voter. Since there are n element voters and n dummy voters, S ′ := {Sj | fj ∈ F ′} is a set
cover. Finally, since B = h, S′ is of size at most h.

Allowing also negative (but unit) effects on the voters, we can adapt our reduction from
Theorem 5 to show a strong inapproximability result. The inapproximability result follows
since in the corresponding reduction, for yes-instances, the only correct solutions use the
exact given budget.

Theorem 6. Unless W[2] = FPT, Combinatorial Shift Bribery is inapproximable (in
FPT time for the parameter B) for both the Plurality rule and the Borda rule, even for two
candidates and unit-effect shift actions.

Proof. We modify the reduction from Theorem 5 to show our inapproximability result.
Let (S, X, h) be a Set Cover instance where S = {S1, . . . , Sm} and X = {x1, . . . , xn}.
Without loss of generality, we assume that |S| > h. We construct an instance of Plurality-
Combinatorial Shift Bribery with two candidates as follows. (Since we have two
candidates only, the proof applies to the case of Borda-Combinatorial Shift Bribery
as well.)

For each element xi ∈ X, create |S| element voters v1
i , . . . , v

|S|
i , each with preference

order d � p, and for each set Sj ∈ S create a set voter v0
j with preference order p � d.

Create |S| · |X| + |S| − 2h dummy voters, each with preference order d � p. The set F
of shift actions contains, for each set Sj , a shift action fj having an effect of 1 on each
element voter corresponding to an element of the set and an effect of −1 on the set voter
corresponding to the set. Finally, set B := h. This completes the construction, which is
clearly computable in polynomial time.

622

Combinatorial Shift Bribery

Next, we show that there is a successful set of shift actions of size h if and only if there
is a set cover of size h.

For the “if” part, assume that there is a set cover S ′ of size at most h. Then, F ′ =
{fj | Sj ∈ S ′} is a successful set of shift actions: since S ′ is a set cover, p will be the
preferred candidate of all |S| · |X| element voters and also the preferred candidate for at
least |S| − h set voters (corresponding to the sets not from the set cover). Moreover, d will
be the preferred candidate for all |S| · |X|+ |S| − 2h dummy voters and also the preferred
candidate for at most h set voters (corresponding to the sets from the set cover). Hence,
either p wins or p and d tie as winners.

For the “only if” part, assume that there is a successful set of shift actions F ′ ⊆ F
of size at most h. Then, p must be the preferred candidate for all element voters in the
bribed election: If there were an element voter with d � p, then there would be at least
|S| − 1 further element voters with d � p (the element voters corresponding to the same
element). Thus there would be in total at most |S|(|X| − 1) element voters and |S| set
voters that prefer p, but at least |S| · |X|+ |S| − 2h dummy voters and |S| element voters
that prefer d. Since we assumed |S| > h, this would mean that p is not a winner. Thus,
it must be that S ′ := {Sj | fj ∈ F ′} is a set cover, and, due to the budget constraint, it
follows that |S ′| ≤ h.

Finally, we show that Plurality-Combinatorial Shift Bribery is inapproximable
even in FPT time when parameterized by the budget. Assume, for the sake of a contradic-
tion, that a successful set of shift actions F ′ ⊆ F with |F ′| > B exists. Then, in the bribed
election, at least |S| · |X|+ |S| − 2h dummy voters and also |F ′| ≥ h+ 1 set voters prefer d,
but at most |S| · |X| element voters and at most |S|− (h+ 1) set voters prefer p. Thus, d is
the unique winner. Hence, any successful bribery action must be optimal with respect to
the budget and any FPT-algorithm for Plurality-Combinatorial Shift Bribery (param-
eterized by the budget) would solve the W[2]-hard problem Set Cover (parameterized by
the solution size) in FPT time; a contradiction to the assumption that FPT 6= W[2].

6.2 Results for Shift Actions with Unit Effect on Two Voters

In the previous section we did not limit the number of voters affected by each shift action.
Now we focus on the case where each unit-effect shift action can affect at most two vot-
ers. First we show that Combinatorial Shift Bribery remains NP-hard and hard to
approximate for (+1,−1)-shift actions. Then we provide parameterized hardness results
for both (+1,−1) and (+1,+1)-shift actions. The proof is relatively similar to the one for
Theorem 6 and so we defer it to Appendix A.

Theorem 7. Unless P = NP, Combinatorial Shift Bribery is inapproximable (in
polynomial time) for both the Plurality rule and the Borda rule, even for two candidates and
(+1,−1)-shift actions.

As opposed to Theorem 6, the above result does not yield W[2]-hardness for the pa-
rameter budget B. This is because our proof uses a reduction from Set Cover in which
the value of the budget is the size of the universe set X. If we insist on parameterized
hardness for unit effects on two voters, then we have to accept larger sets of candidates.
However, this increase is not too large: below we show W[1]-hardness of Combinatorial
Shift Bribery jointly parameterized by the budget and the number of candidates.

623

Bredereck, Faliszewski, Niedermeier, & Talmon

Theorem 8. For both the Plurality rule and the Borda rule, Combinatorial Shift
Bribery is W[1]-hard for the combined parameter (m,B), even if we either only have
(+1,−1)-shift actions or only have (+1,+1)-shift actions.

Proof. We have four cases to consider. We begin with the Plurality rule and (+1,+1)-shift
actions.

The Plurality Rule with (+1,+1)-Shift Actions. We describe a parameterized reduc-
tion from the W[1]-hard Clique problem, parameterized by the solution size, to Plurality-
Combinatorial Shift Bribery with (+1,+1)-shift actions, parameterized by (m,B).

Let (G, h) be an instance of Clique with V (G) = {u1, . . . , un′} and E(G) = {e1, . . . , em′}.
We create the following instance of Plurality-Combinatorial Shift Bribery. The set
of candidates is {p} ∪ D, where D = {d1, . . . , dh−1}. For each vertex ui ∈ V (G), we cre-

ate a vertex voter vi with preference order
−→
D � p. Moreover, we create n′ − 2h dummy

voters with preference order p �
−→
D each. For each edge {ui, uj} ∈ E(G), we create a

shift action f{ui,uj} with effect 1 on the vertex voters vi and vj , and effect 0 on all other

voters. Finally, we set the budget to B :=
(
h
2

)
. This completes the construction, which is

computable in polynomial time. Consider the following example.

Example 4. We have the following graph, where we are looking for a clique of size h = 3.

u1

u2 u3

u4

u5 u6

u7

We construct the following input for Plurality-Combinatorial Shift Bribery.

election shift actions

v1 : d1 � d2 � p
v2 : d1 � d2 � p
v3 : d1 � d2 � p
v4 : d1 � d2 � p
v5 : d1 � d2 � p
v6 : d1 � d2 � p
v7 : d1 � d2 � p

1 dummy : p � d1 � d2

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

1

0

fu1,u2 fu1,u4 fu1,u5 fu1,u7 fu5,u6 fu5,u7

Note that (v1, v5, v7) form a clique of size 3 in the input graph for Clique, and, accord-
ingly, applying the set of shift actions {fu1,u5 , fu1,u7 , fu5,u7} results in p being the winner of
the election for Plurality-Combinatorial Shift Bribery. 4

624

Combinatorial Shift Bribery

Without loss of generality, assume that d1 is ranked first in the (arbitrary but fixed)

order
−→
D . Observe that we have n′ vertex voters and h dummy voters which rank d1 first.

We also have n′ − h dummy voters which rank p first. Hence, to make p win the election,
one needs h additional voters to rank p first (and, in effect, not rank d1 first).

It remains to show that our constructed instance contains a successful set of shift ac-
tions F ′ of size h if and only if (G, h) contains a clique of size h.

For the “if” part, let H ⊆ V (G) be a set of h vertices forming a clique and let E′ ⊆ E(G)
be the set of edges between the vertices from H. Then, observe that F ′ = {f{ui,uj} |
{ui, uj} ∈ E′} is a successful set of shift actions: For each vertex voter vi corresponding to
a clique vertex ui ∈ H, candidate p is shifted h− 1 positions forward. This means that, in
total, we have that h vertex voters rank p first and p ties as a winner of the election.

For the “only if” part, let F ′ be a successful set of shift actions. Since dummy voters are
not affected by any shift action, it follows that in order to make p a winner of the election,
p must be shifted to the top position in at least h vertex voters. That is, in total, p must
be shifted h · (h− 1) positions forward. Since F ′ is of size at most B =

(
h
2

)
= h · (h− 1)/2

and each shift action affects only two vertex voters, F ′ must be of size exactly
(
h
2

)
affecting

exactly h vertex voters. By construction, this implies that there are
(
h
2

)
edges in G incident

to exactly h different vertices which is only possible if these h vertices form a clique. This
finishes the proof for the Plurality rule with (+1,+1)-shift actions.

The remaining cases of the proof are quite similar (although, technically, more involved)
and we present them in Appendix B.

It is quite natural to consider Combinatorial Shift Bribery also from a different
perspective. Instead of asking what happens for a small number of candidates, we might
ask about the complexity of Combinatorial Shift Bribery for a small number of voters
(see, for example, Brandt, Harrenstein, Kardel, & Seedig, 2013; Chen et al., 2015, for
some motivation as to why looking at elections with few voters is interesting). In this case
we obtain hardness only for the Borda rule. Indeed, later we will show that Plurality-
Combinatorial Shift Bribery is in FPT for the parameter number of voters. The proof
of the next theorem is quite involved and is available in Appendix C.

Theorem 9. Borda-Combinatorial Shift Bribery is W[1]-hard with respect to the num-
ber n of voters, even for (+1,−1)-shift actions and no budget constraints.

In the proof of Theorem 9 we reduce from the Strongly Regular Multicolored
Clique problem, and, importantly, we do not impose any budget constraints. Thus, it fol-
lows that any approximation algorithm for Borda-Combinatorial Shift Bribery (run-
ning in FPT time when parameterized by the number of voters) would yield an FPT al-
gorithm for Strongly Regular Multicolored Clique when parameterized by the
solution size. In effect, we have the following corollary.

Corollary 10. Unless W[1] = FPT, Borda-Combinatorial Shift Bribery is inapprox-
imable even in FPT-time for the parameter n, even for (+1,−1)-shift actions.

The results from Theorem 9 and Corollary 10 compare very interestingly to those for the
non-combinatorial variant of Borda-Shift Bribery. Until very recently, the complexity of
Borda-Shift Bribery parameterized by the number of voters was unknown. Eventually

625

Bredereck, Faliszewski, Niedermeier, & Talmon

(in a different paper, and after submitting this one for journal publication) we have shown
that the problem is W[1]-hard (Bredereck et al., 2016), through a far simpler proof than
the one used here. Nonetheless, Theorem 9 and Corollary 10 still carry significant value.
Earlier, Bredereck et al. (2014a) have shown that there is an FPT approximation scheme
for Borda-Shift Bribery parameterized by the number of voters, and Corollary 10 shows
that this result does not generalize to the combinatorial setting.

6.3 Results for Interval Shift Actions

We conclude the discussion of hardness results by considering Combinatorial Shift
Bribery with interval shift actions. In the previous section we allowed shift actions to
have non-zero effects on two voters each, but these two voters could have been chosen arbi-
trarily. Now we show a hardness result for the case where we can positively affect multiple
voters, but these voters have to form a consecutive interval in the input election.

Theorem 11. For both the Plurality rule and the Borda rule, Combinatorial Shift
Bribery is NP-hard even for interval shift actions.

Proof. We consider the Plurality rule first and give a many-one reduction from the following
variant of the strongly NP-hard Numerical Matching with Target Sums problem.

Numerical Matching with Target Sums
Input: Three sets of integers A = {a1, . . . , at}, B = {b1, . . . , bt}, and X =
{x1, . . . , xt}, where (1) the numbers are encoded in unary, (2) all the 3t numbers
are distinct, and (3) no two numbers that are both from A or both from B sum
up to any number in X.
Question: Can the elements of A and B be paired so that for each i ∈ [t] the
sum of the ith pair is exactly xi?

The standard variant of the problem, as presented in the classic text of Garey and
Johnson (1979), does not have any restrictions on the integers in sets A, B, and X. We
can assume that the numbers are encoded in unary because the problem is strongly NP-
hard. Further, Hulett, Will, and Woeginger (2008) have shown that the problem remains
NP-hard for the case where all the 3t integers are distinct. Finally, to see that the third
restriction does not change the complexity of the problem it suffices to consider the following
transformation: Given an instance (A,B,X) of Numerical Matching with Target
Sums, we add 2 · max(A ∪ B ∪ X) + 1 to each integer in B and X. This produces an
equivalent instance where no two numbers, both from A or both from B, sum up to any
number in X.

The Plurality Rule. Let (A,B,X) be an instance of Numerical Matching with
Target Sums and let y denote the largest integer in A∪B ∪X. We create an instance of
Plurality-Combinatorial Shift Bribery as follows. The set of candidates is:

C := {p, d, ca1, . . . , cat , cb1, . . . , cbt , cx1 , . . . , cxt }.

We create the following voters.

626

Combinatorial Shift Bribery

1. For each pair of integers ai ∈ A and x` ∈ X, we introduce:

(a) One voter with preference order

cai � p �
−−−−−−−→
C \ {p, cai },

(b) ai voters each with preference order

cx` � p �
−−−−−−−→
C \ {p, cx` },

(c) 2y − (ai + 1) voters each with preference order

d � p �
−−−−−−→
C \ {p, d}.

These voters are called the (ai, x`)-voters and there are exactly 2y of them. For each
pair (ai, x`), we construct a shift action fx`ai with effect 1 on exactly the set of (ai, x`)
voters.

2. For each pair of integers bj ∈ B and x` ∈ X, we introduce:

(a) One voter with preference order

cbj � p �
−−−−−−−→
C \ {p, cbj},

(b) bj voters each with preference order

cx` � p �
−−−−−−−→
C \ {p, cx` },

(c) 2y − (bj + 1) voters each with preference order

d � p �
−−−−−−→
C \ {p, d}.

These voters are called the (bj , x`)-voters and there are exactly 2y of them. For each
pair (bj , x`), we construct a shift action fx`bj with effect 1 on exactly the set of (bj , x`)
voters.

3. Let q := 4ty. We create sufficiently many dummy voters to ensure that, altogether,
the candidates have the following scores:

(a) p has q points,

(b) for each i, cai and cbi have q + 4ty + 1 points each, and

(c) for each ` ∈ [t], cx` has q + 4ty + x` points.

No shift action affects any of the dummy voters.

627

Bredereck, Faliszewski, Niedermeier, & Talmon

Finally, we set the budget B := 2t. This completes the reduction. It is easy to see that it
is computable in polynomial time (because all the numbers are encoded in unary) and that
we can order the voters so that each shift action effects on a consecutive interval of z := 2y
voters.

It remains to show that our constructed instance of Plurality-Combinatorial Shift
Bribery contains a successful set F ′ of shift actions of size at most 2t if and only if (A,B,X)
is a “yes”-instance of Numerical Matching with Target Sums.

For the “if” part, let S := {(ai1 , bj1), . . . , (ait , bjt)} be a solution for Numerical Match-
ing with Target Sums, that is, a set of integer pairs such that each integer from A ∪B
occurs exactly once in S and such that ai` + bj` = x` holds for each ` ∈ [t]. Observe that
F ′ := {fx`ai` , f

x`
bj`
| (ai` , bj`) ∈ S} is a successful set of shift actions. Since each integer from

A ∪ B occurs exactly once in (some pair of) S, each candidate cai and each candidate cbj
loses one point. Since ai` + bj` = x` for each ` ∈ [t], each candidate cx` loses x` points.
By construction, p gains 4ty points by any set of shift actions of size 2t. Thus, p wins the
election.

For the “only if” part, let F ′ be a successful set of shift actions of size 2t (if there were a
successful action of smaller size we could extend it to size 2t because our shift actions do not
have negative effects). After applying shift actions from F ′, p gains 4ty points. If this is to
make p a winner of the election, each candidate cai and each candidate cbj needs to lose one
point, and each candidate cx` needs to lose x` points. Thus, for each ai ∈ A there is exactly

one f
x`i
ai ∈ F ′ and for each bj ∈ B there is exactly one f

x`i
bj
∈ F ′. Since all the integers in

A ∪ B ∪ X are distinct and no two integers both from A or both from B sum up to any
integer from X, for each x` ∈ X there is at least one shift action fx`ai`

with effect on ai`
voters who prefer cxl , and one shift action fx`bj`

with effect on bj` voters who prefer cx` . Since

there are t candidates cx` and |F ′| = 2t, it follows that there are exactly two shift actions
with effect on some voters preferring cx` . Since cx` has to lose at least x` points, it holds
that ai` + bj` ≥ x`. In fact, by the pigeonhole principle, it holds that ai` + bj` ≥ x`. Hence,
if there is a successful set of 2t shift actions, then there is a solution for our Numerical
Matching with Target Sums instance.

The Borda Rule. For the Borda rule, almost the same reduction works. Specifically,
there still exists some integer q for which the set of requirements which were required in
the proof for the Plurality rule will now hold for the Borda rule (with respect to a different
q). Importantly, since p is in the second position in the preference profiles of all of the
voters, it holds that the score differences, when applying some shift actions, are similar for
the Plurality rule and the Borda rule. Thus, the proof of correctness for the Plurality rule
transfers to the Borda rule.

Throughout this section we have shown a number of hardness results under more and
more restrictive assumptions regarding the available shift actions. In the following sections
we seek positive algorithmic results.

628

Combinatorial Shift Bribery

7. Exact Algorithms

In spite of the pessimism looming from the previous section, in this section we show two
exact FPT and XP algorithms for R-Combinatorial Shift Bribery. Then, in Section 8,
we present several efficient approximation algorithms.

We begin by observing that R-Combinatorial Shift Bribery can be solved in poly-
nomial time, provided that we assume the budget B to be a constant. The reason is that
we need to choose at most B shift actions out of all available ones, but the number of shift
actions available is upper-bounded by the input size.

Observation 1. Both Plurality-Combinatorial Shift Bribery and Borda-Combina-
torial Shift Bribery are in XP when parameterized by the budget B.

If we restrict the instances to contain only bounded-effect shift actions, then we can
show that R-Combinatorial Shift Bribery can be solved in polynomial time, provided
that the number n of the voters is treated as a constant.

Proposition 12. If the maximum effect of every shift action is upper-bounded by some uni-
versal constant, then both Plurality-Combinatorial Shift Bribery and Borda-Combina-
torial Shift Bribery are in XP when parameterized by the number n of the voters.

Proof. Let Γ be the value bounding, component-wise, the effect of each shift action. First,
observe that there are at most (2Γ + 1)n types of different shift actions. Second, observe
that once one knows the budget spent on each type of shift actions, one can easily check
whether a corresponding set of shift actions makes p a winner of the election. Thus we use
the following algorithm: We try all possibilities of distributing the budget B among the at
most (2Γ + 1)n types of shift actions and check whether one of them makes p a winner. If
so, we accept. Otherwise we reject.

Proposition 12 holds even if each shift action comes at an individual cost and if each
voter has an individual threshold function, because we can, given some budget, always
select the cheapest set of shift actions of a given type. Further, by expressing our problem
as an integer linear program (ILP) and by using a famous result of Lenstra (1983), for the
Plurality rule we can strengthen the above XP-membership to FPT-membership.

Theorem 13. For bounded-effect shift actions (where we treat the bound as a universal
constant), Plurality-Combinatorial Shift Bribery is in FPT when parameterized by the
number n of the voters.

Proof. Given an instance of Plurality-Combinatorial Shift Bribery with n voters, our
algorithm proceeds as follows. First, we guess a subset of the voters for whom we will
guarantee that p is ranked first (there are 2n guesses to try). For each guessed set of voters,
we test whether p would be a winner of the election if p were shifted to the top position
by the guessed voters and was not ranked first by the remaining voters. For each guessed
subset V ′ of voters for which this test is positive, we check whether it is possible to ensure
(by applying shift actions whose cost does not exceed the budget) that the voters from V ′

rank p first. We do so as follows.
Let Γ be the universal constant bounding, component-wise, the effect of each shift action.

Observe that there are at most (2Γ+1)n types of different shift actions. For each shift action

629

Bredereck, Faliszewski, Niedermeier, & Talmon

type z, we introduce a variable xz denoting the number of times a shift action of type z is
present in the solution. For each voter vi, denote by svi(p) the position of p in the original
preference order of vi. For each voter vi ∈ V ′, we add the following constraint:∑

γ∈[−Γ,Γ]

(
γ
∑
{z:fz has an effect of γ on vi} xz

)
≥ svi(p).

This ensures that p is indeed shifted to the top position in vi’s preference list. We add the
budget constraint: ∑

xz ≤ B,

ensuring that the solution respects the budget. Finally, for each shift action type z we add a
constraint ensuring that we use at most as many shift actions of type z as there are available
in the input. This finishes the description of the ILP. By a result of Lenstra (1983), we can
solve this ILP in FPT time, because we have at most (2Γ + 1)n integer variables.

Roughly speaking, Theorem 13 is the reason why Theorem 9 does not apply to the
Plurality rule. In this setting, Plurality-Combinatorial Shift Bribery is tractable.
Note that Theorem 13 applies to the case where each shift action has the same unit cost,
i.e., the case on which we focus in this paper. Nonetheless, we believe that it is possible
to lift Theorem 13 to the case where each shift action has its individual cost, by applying
ideas of Bredereck, Faliszewski, Niedermeier, Skowron, and Talmon (2015a).

8. Approximation Algorithms

We now explore the possibility of finding approximate solutions for Combinatorial Shift
Bribery. We focus on approximating the cost of shift actions necessary to ensure p’s
victory (for example, a 2-approximate algorithm finds a solution that ensures p’s victory
whenever it is possible, and uses at most twice as many shift actions as necessary). By
Theorems 6 and 7, we know that we cannot hope to find approximate algorithms for the
cases of Combinatorial Shift Bribery where the shift actions can have negative effects.
Thus, in this section, we focus on unit-effect shift actions with only positive effects. This
also simplifies our situation in that we can always check if it is possible to ensure p’s victory:
It suffices to apply all the available shift actions and check if p is a winner (indeed, not being
able to perform such a check is at the heart of our inapproximability results from Section 6).

All our approximation algorithms proceed either by directly invoking the algorithms for
the non-combinatorial variant of Shift Bribery of Elkind et al. (2009) and Elkind and
Faliszewski (2010), or by plugging our algorithms into their framework. We start with the
former approach and then describe the latter.

Theorem 14. If each shift action has effects of either 0 or 1 on each voter, then Plurality-
Combinatorial Shift Bribery can be Λ-approximated in polynomial-time and Borda-
Combinatorial Shift Bribery can be 2Λ-approximated in polynomial time, where Λ de-
notes the maximum number of voters affected by a shift action.

Proof. The general idea of these approximation algorithms is to split each shift action that
affects some Λ′ ≤ Λ voters into Λ′ shift actions, each affecting a single voter only. In effect

630

Combinatorial Shift Bribery

we construct a non-combinatorial instance of Shift Bribery that we solve exactly, for the
case of Plurality rule, or 2-approximately, for the case of the Borda rule.

Specifically, our construction goes as follows. Let λ(i) denote the number of shift actions
affecting voter i. Given an instance of Combinatorial Shift Bribery, we form an
instance of Shift Bribery that is identical, except that instead of having shift actions,
we have price functions for the voters: We set the price function for each voter i so that
for j ≤ λ(i), shifting p by j positions costs j, and for j > λ(i), shifting p by j positions
costs (2B + 1)j (where B is the total number of shift actions available; note that the
exponential function (2B+ 1)j ensures that the price functions are convex and that we can
easily identify situations where one shifts p by more than λ(i) positions).4

Below we describe how to use this construction for the case of the Plurality rule and for
the case of the Borda rule.

The Plurality Rule. We first translate the input instance into the non-combinatorial
Plurality-Shift Bribery instance as described above. Then, we apply the known, exact,
polynomial-time algorithm for the Plurality-Shift Bribery (Elkind et al., 2009) on this
instance. Let s be the cost of the solution found for the non-combinatorial instance. If
s > B, then it is impossible to ensure p’s victory in the combinatorial instance (because the
number of available shift actions is insufficient).

If s ≤ B, then to obtain a solution F for the Plurality-Combinatorial Shift Bribery
instance we do as follows. For each voter v that in the (non-combinatorial) bribed election
ranks p first, we select shift actions in the combinatorial instance so that v ranks p first.
Note that |F | ≤ s and that F is indeed a (combinatorial) solution.

For the sake of contradiction, assume that there is a successful set of shift actions F ′

with size smaller than |F |/Λ. However, it is easy to see that such a set of shift actions would
correspond to a bribery of cost smaller than s for the non-combinatorial instance. Since s is
the cost of the optimal solution for the non-combinatorial instance, this is a contradiction.

The Borda Rule. The case of Borda-Combinatorial Shift Bribery follows analo-
gously, but instead of using the polynomial-time exact algorithm for the non-combinatorial
instance, we use the 2-approximation algorithm for Borda-Shift Bribery (Elkind et al.,
2009; Elkind & Faliszewski, 2010). Let s be the cost of the solution found. If s > 2B, then
it is impossible to ensure p’s victory.

Otherwise, to obtain the solution F for the combinatorial instance, for each vote v where
the non-combinatorial solution shifts p by some t positions, we include t shift actions that
affect this voter. We have that |F | ≤ s, and F is a correct solution for the combinatorial
instance.

If there existed a solution F ′ for the combinatorial instance that used less than |F |/(2·Λ)
shift functions, then there would be a solution for the non-combinatorial instance with
cost smaller than |F |/2 ≤ s/2. Since we used a 2-approximate algorithm for the non-
combinatorial instance, this is impossible.

We mention that it might be possible to improve the approximation ratio given in The-
orem 14, at least for the Borda rule. The idea might be to cast the problem as a variant of

4. Strictly speaking, there is no need to ensure that the price functions are convex, but this is the variant
of Shift Bribery that we generalize in this paper, so we stick to it for consistency.

631

Bredereck, Faliszewski, Niedermeier, & Talmon

the Set Multicover problem, which is a generalization of the Set Cover problem where
each element has its own covering requirement. Then, one could use an approximation al-
gorithm for the Set Multicover problem (for example, the one suggested in Rajagopalan
& Vazirani, 1998) and plug it into the 2-approximation algorithm of Elkind and Faliszewski
(2010).

We can achieve better approximation guarantees for the Borda rule, when we further
restrict the allowed shift actions. To obtain these results we use the framework of Elkind
and Faliszewski (2010). In essence, they have shown the following: If for a given variant
of Shift Bribery, either for the Plurality rule or for the Borda rule, one can provide
a function that computes how to obtain the highest number of points for the preferred
candidate given some budget B, then there is a 2-approximation algorithm for this variant
of Shift Bribery.5 Note that such a get-most-points-for-p algorithm does not solve Shift
Bribery. While it maximizes the score of p, it does not ensure that no candidate receives
higher score. Indeed, an optimal solution might increase the score of p to a smaller extent,
but at the expense of more dangerous opponents.

Theorem 15. Borda-Combinatorial Shift Bribery is 2-approximable in polynomial
time for (+1,+1)-shift actions.

Proof. By the discussion preceding the theorem statement, it suffices to provide a function
that given an instance of Combinatorial Shift Bribery with budget B finds a set of
shift actions that obtain the highest possible number of points for the preferred candidate
p without exceeding the budget.

The general idea of achieving this is to compute a maximum b-matching in an auxiliary
multigraph (multigraphs allow multiple edges between the vertices). A b-matching of a
multigraph G with a function b : V (G)→ N (called a covering function) is an edge-induced
subgraph of G such that each vertex u has degree at most b(u). It is known that a b-matching
can be computed in polynomial time (Gabow, 1983).

We construct the auxiliary multigraph G as follows. For each voter vi we create a vertex
ui. For each shift action with effect 1 on voter ui and effect 1 on voter uj , we create an edge
{ui, uj}. Then, we define a covering function b such that b(ui) is the number of positions
that p can be shifted forward in the preference order of voter vi (that is, the position of p
in the preference order of voter vi).

If G has a b-matching of size at least B, then it corresponds to a set of shift actions that
increase the score of p by 2B, which is the highest gain possible. If G has a b-matching of
size k < B, then we take the shift actions corresponding to the edges of this b-matching
(these shift actions maximize the number of points that p can gain from shift actions that
move p within two votes) and greedily select more shift actions that each pushes p forward
in one vote, to use up the budget (at this point, every shift action can affect p in a single
vote only). Thus our function computes the highest point gain possible for p, for a given
budget.

Next, we consider interval shift actions. That is, we fix some order of the voters and
restrict each shift action to have effect only on voters which comprise intervals. (In fact, we

5. In fact, their result applies to all scoring rules, but in this paper we focus on the Plurality rule and on
the Borda rule only.

632

Combinatorial Shift Bribery

could also allow “holes” inside these intervals.) Unfortunately, the algorithm requires XP
time for the parameterization by the length of the longest interval.

Theorem 16. For both the Plurality rule and the Borda rule, Combinatorial Shift
Bribery can be 2-approximated in XP-time for interval shift actions, provided that we take
Λ, the upper bound on the number of voters affected by each shift action, as the parameter.

Proof. As per discussion preceding Theorem 15, it suffices to describe how to find a set
of shift actions which maximize the number of points that the preferred candidate p gains
under a given budget.

To this end, we use a dynamic programming algorithm. Consider an input for
Combinatorial Shift Bribery with election E = (C, V), preferred candidate p, and
budget B to spend on increasing p’s score. Let m := |C| and n := |V |. We have
V = (v1, . . . , vn). Our algorithm uses the following table for partial results. For num-
bers x, y, s0, . . . , sΛ−1 the table entry:

T [x, y, s0, s1, . . . , sΛ−1]

denotes the maximum number of additional points that candidate p can gain from vot-
ers v1, . . . , vx under the condition that (1) exactly y shift actions are used, each of them
affects at most the voters from the set {v1, . . . , vx}, and (2) for each i ∈ {0, ..., Λ − 1},
candidate p is shifted to position si in the preference order of voter vx−i. That is, we iterate
over the voters and store the effect that the applied shift actions had on the last Λ voters.
The size of the table is n ·B ·mΛ+1.

Our algorithm is almost the same for both the Plurality rule and the Borda rule. The
only difference is in computing the scores of the candidates. Let z, 0 ≤ z ≤ m− 1, denote
the position of p in the preference order of some voter (position 0 means that p is ranked
first). Then, by score(z) we mean the score that p gains from this voter. For the Plurality
rule we have score(z) = 1 for z = 0 and score(z) = 0 otherwise. For the Borda rule we have
score(zi) = m− zi − 1. For a set of voters and a vector z1, . . . , zt (for t ∈ [n] and each zi in
{0, . . . ,m− 1}) that denotes the positions of p in the preference orders of these voters, we
write score(z1, . . . , zt) to mean the score that p gains from these voters. That is:

score(z1, . . . , zt) =
∑
i∈[t]

score(zi).

Given this preparation, we are ready to describe our algorithm (jointly for the Plurality
rule and for the Borda rule).

Initialization. We initialize the entries T [Λ, y, s0, s1, . . . , sΛ−1] of the table as follows.
We check whether there is a set of y shift actions that have effects only on voters from
(v1, . . . , vΛ) and such that applying this set of y shift actions moves candidate p to po-
sitions s0, . . . , sΛ−1 in the preference orders of the voters v1, . . . , vΛ, respectively. If it
exists, then we set T [Λ, y, s0, s1, . . . , sΛ−1] to score(s0, s1, . . . , sΛ−1). Otherwise, we set
T [Λ, y, s0, s1, . . . , sΛ−1] to −∞. (We explain how to check if such a set of shift actions exists
at the end of the proof.)

633

Bredereck, Faliszewski, Niedermeier, & Talmon

Recursion Step. To compute the table entries T [x, y, s0, s1, . . . , sΛ−1] for x > Λ, one has
to compute subsets of i shift actions (for i ∈ [y]) whose last affected voter is vx, that ensure—
together with y−i shift actions whose last affected voter is from the set {v1, . . . , vx−1}—that
for each j, 0 ≤ j ≤ Λ− 1, p is shifted to position sj in the preference order of vx−j .

More specifically, in the update phase we compute for each x, Λ < x ≤ n, each y, 0 ≤ y ≤
B, and each vector (s0, . . . , sΛ−1) ∈ {0, . . . ,m− 1}Λ the table entry T [x, y, s0, s1, . . . , sΛ−1]
as follows. We say that a vector (ŝ0, ŝ1, . . . , ŝΛ−1) ∈ {0, . . . ,m}Λ is (x, i)-realizable for
some i (0 ≤ i ≤ y), if there is a set of i shift actions whose last affected voter is vx and
such that for each j, 0 ≤ j ≤ Λ − 1, it shifts candidate p by ŝj positions in the preference
order of voter vx−j . We write R(x, i) to denote the set of vectors from {0, . . . ,m − 1}Λ
that are (x, i)-realizable (we describe how to compute R(x, i) later). Then, we compute
T [x, y, s0, s1, . . . , sΛ−1] as follows:

T [x, y, s0, s1, . . . , sΛ−1] = max{T [x− 1, y − i, s∗, s0 − ŝ1, . . . , sΛ−1 − ŝΛ−1, s
∗]

+ score(s0, s1, . . . , sΛ−1)− score(s1 − ŝ1, . . . , sΛ−1 − ŝΛ−1) |
0 ≤ i ≤ y, 0 ≤ s∗ ≤ m− 1, (s0, ŝ1, . . . , ŝΛ−1) ∈ R(x, i)}

Informally, for each “realizable total effect” of i shift actions whose last affected voter
is vx, the number of points that candidate p gains is the number of additional points that
candidate p gains by shift actions for which the last affected voter is from (v1, . . . , vx−1)
plus the number of additional points that candidate p gains by shift actions for which the
last affected voter is vx (to avoid double counting, this is expressed as the difference in the
middle line of the above formula).

We next show how to compute R(x, i). We try every vector (ŝ0, . . . , ŝΛ−1) ∈ {0, . . . ,m−
1}Λ and for each we check if it is (x, i)-realizable. Perhaps the easiest way to do this is
to formulate this problem as an integer linear program (ILP) with a constant number of
variables.

Let (ŝ0, . . . , ŝΛ−1) be a vector for which we want to check if it is (x, i)-realizable. For
each subset Q ⊆ {0, . . . , Λ− 1}, we say that a shift action is of type Q if it affects exactly
the voters vx−i with i ∈ Q. For each such subset Q, we introduce an integer variable xQ,
denoting the number of shift actions of type Q used in the (x, i)-realization of our vector.
We solve the following ILP:

∑
Q⊆{0,...,Λ−1}

xQ = i (1)

∑
Q⊆{1,...,Λ−1}

xQ∪{0} = i (2)

∑
j∈Q

xQ = ŝj ∀j : 0 ≤ j ≤ Λ− 1 (3)

(Note that the middle constraint ensures that the last affected voter is vx.) Since the
number of variables in this ILP is 2Λ, it follows from the famous result of Lenstra (1983)
that this ILP can be solved in XP time with respect to the parameter Λ (indeed, even in
FPT time). Using the same ILP but without the middle constraint, we can check which
vectors (s0, . . . , sΛ−1) we can use in the initialization step.

634

Combinatorial Shift Bribery

Coming back to our dynamic program, it is clear that finding how to obtain the max-
imum score for p while respecting our budget can be found by taking the maximum over
the table entries T [n,B′, s0, s1, . . . , sΛ−1], for all possible values of B′, 0 ≤ B′ ≤ B, and
(s0, s1, . . . , sΛ−1) ∈ {0, . . . ,m− 1}Λ.

While in this section we showed that it is indeed possible to achieve some approximation
algorithms for some special cases of the Combinatorial Shift Bribery problem, the
settings for which our algorithms are efficient are quite restrictive. This means that in
practice one might want to seek good heuristics and use our algorithms as a guidance for
the initial search.

9. Conclusion

We have defined a combinatorial variant of the Shift Bribery problem (Elkind et al., 2009;
Elkind & Faliszewski, 2010; Bredereck et al., 2014a) and we have studied its computational
complexity. The motivation for our research was the desire to understand the computational
difficulty imposed by correlated, large-scale effects of campaign actions. In this respect, this
work is motivated by the combinatorial study of election control, as studied by Bulteau et al.
(2015) and Chen et al. (2015). We have found that even for various very restricted special
cases and numerous parameterizations, the Combinatorial Shift Bribery problem is
highly intractable in the worst case. Nonetheless, we have found some initial positive results,
mainly in the form of approximation algorithms. Interestingly, our approximation results
quite strongly rely on the results for non-combinatorial Shift Bribery.

There is a number of research directions that are motivated by our work. For ex-
ample, can Plurality-Combinatorial Shift Bribery or Borda-Combinatorial Shift
Bribery be solved in polynomial-time for (+1,+1) shift actions or interval actions under
the assumption that the number of candidates is a constant?

More generally, our results suggest studying further restrictions of the problem. As an
example, since parameterizing by the number of available shift actions immediately gives
fixed-parameter tractability results, a natural question is whether other natural parameter-
izations exist which could also lead to positive results.

Naturally, one might consider other voting rules as well. Most interesting are Condorcet-
consistent rules, such as the Copeland rule, since these rules tend to behave rather differently
than scoring rules. We mention that some of our results do hold for other voting rules:
specifically, Theorem 2, Theorem 5, Theorem 6, and Theorem 7 hold for most voting rules
because these theorems hold for elections with only two candidates, and most voting rules
behave the same for elections with only two candidates; Observation 1 and Theorem 12 are
basically brute-force algorithms and the results hold for most voting rules as well; and the
statements regarding the Borda rule in Theorem 14, Theorem 15, and Theorem 16 hold for
all scoring rules, since the underlying 2-approximation algorithm of Elkind and Faliszewski
(2010) works for all scoring rules.

Further, it might also be interesting to consider domain restrictions regarding voters’
preferences (for example, single-crossing seems particularly natural in the context of interval
shift actions, since it means that each shift action affects voters with somewhat similar
preferences), as it is well-demonstrated that restricting the domain of the voters can lead

635

Bredereck, Faliszewski, Niedermeier, & Talmon

to tractability (see Theorem 10 in Bulteau et al., 2015, for an example in the combinatorial
control setting). However, pursuing this direction would require a careful discussion of what
shift actions can be applied. For example, should we allow a single-crossing election to cease
being single-crossing after the bribery?

Acknowledgments

Robert Bredereck was supported by the DFG project PAWS (NI 369/10). Nimrod Tal-
mon was supported by the DFG Research Training Group “Methods for Discrete Struc-
tures” (GRK 1408) and is currently at Weizmann Institute of Science. Piotr Faliszewski
was supported by the DFG project PAWS (NI 369/10) and by AGH University grant
11.11.230.124 (statutory research).

A preliminary short version of this work has been presented at the 2015 International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’15) (Bredereck,
Faliszewski, Niedermeier, & Talmon, 2015b).

Appendix A. Proof of Theorem 7

Theorem 7. Unless P = NP, Combinatorial Shift Bribery is inapproximable (in
polynomial time) for both the Plurality rule and the Borda rule, even for two candidates and
(+1,−1)-shift actions.

Proof. We give a many-one reduction from Set Cover. Let (S, X, h) be a Set Cover
instance, with S = {S1, . . . , Sm} and X = {x1, . . . , xn} (we assume that every element
belongs to at least one set). We construct an instance of Plurality-Combinatorial Shift
Bribery. We set the budget B := |X|. The candidate set is {p, d}, where p is the
preferred candidate. We have an element voter vi for each element xi, with preference
order d � p. We have a set voter vSj for each set Sj , with preference order p � d. We also
have |X|+ |S| − 2h− 1 dummy voters, each with preference order d � p. For each element
xi and each set Sj , if xi ∈ Sj then we construct a shift action f ij with effect of +1 on vi and

effect of −1 on vSj . This completes the construction. It is easy to see that it is computable
in polynomial time.

Next, we show that there is a successful set of shift actions (note that the size of this
set is not important, that is, we allow infinite budget) if and only if there is a set cover of
size h.

For the “if” part, assume that there is a set cover S ′ of size at most h. We show how
to build a successful set of shift actions. We start with F ′ = ∅ and for each element xi,
we choose an arbitrary set Sj ∈ S ′ which contains xi and add the corresponding function
f ij to F ′. After applying F ′, observe that p becomes a winner: All |X| element voters and
|S|−h set voters prefer p but only |X|+ |S|−2h−1 dummy voters and h set voters prefer d.

For the “only if” part, assume that there is a successful set of shift actions F ′ ⊆ F .
Let h′ be the number such that after applying the shift actions from F ′, p is preferred by
exactly |S|−h′ set voters (that is, shift actions in F ′ correspond to h′ sets from S). For p to
be a winner, a majority of the voters (i.e., at least |X|+ |S|−h voters) must prefer p. Thus,
after applying F ′, at least X − (h− h′) element voters prefer p. This means that there is a
collection of h′ sets from S that jointly cover at least |X| − (h− h′) elements. Since every

636

Combinatorial Shift Bribery

element belongs to some set, we can extend this collection to a set cover by adding at most
h− h′ sets (in the worst case, one set for each uncovered element). This proves that there
is a set cover for (S, X, h) and completes the “only if” part.

Note that in the above argumentation we made no assumptions regarding the size of F ′.
Hence, finding any solution for our Plurality-Combinatorial Shift Bribery instance,
including approximate solutions for any approximation factor, implies finding a set cover of
size at most h. This means that unless P = NP, Plurality-Combinatorial Shift Bribery
is inapproximable in polynomial time.

Appendix B. Remaining Cases of the Proof of Theorem 8

Theorem 7. Unless P = NP, Combinatorial Shift Bribery is inapproximable (in
polynomial time) for both the Plurality rule and the Borda rule, even for two candidates and
(+1,−1)-shift actions.

The Borda Rule with (+1,+1)-Shift Actions. We can slightly modify the reduc-
tion used for the Plurality rule with (+1,+1)-shift actions. Specifically, we describe a pa-
rameterized reduction from the W[1]-hard Clique problem, parameterized by the solution
size, to Borda-Combinatorial Shift Bribery with (+1,+1)-shift actions, parameterized
by (m,B).

Let (G, h) be an instance of Clique with V (G) = {u1, . . . , un′} and E(G) = {e1, . . . , em′}.
We create an instance of Borda-Combinatorial Shift Bribery as follows. The set of
candidates is {p} ∪D, where D = {d1, . . . , dh−1}. We create the following voters.

1. For each vertex ui ∈ V (G), we create a corresponding vertex voter vi with preference
order:

d1 � · · · � dh−1 � p.

2. We create n′ − 2h dummy voters, each with preference order:

p � d2 � · · · � dh−1 � d1.

3. We create h dummy voters, each with preference order:

dh−1 � p � d2 � · · · � dh−2 � d1.

4. We create n′ − h dummy voters, each with preference order:

p � d1 � · · · � dh−1.

5. We create n′ − h dummy voters, each with preference order:

d1 � p � d2 � · · · � dh−1.

For each edge {ui, uj} ∈ E(G), we create a shift action f{ui,uj} with effect 1 on the vertex

voters vi and vj and effect 0 on all other voters. Finally, we set the budget to B :=
(
h
2

)
.

This completes the construction, which is computable in polynomial time.

637

Bredereck, Faliszewski, Niedermeier, & Talmon

The proof of correctness follows the same lines as the proof for the Plurality rule with
(+1,+1)-shift actions, but instead of counting the number of approvals, we need to compute
the Borda scores of the candidates. Indeed, this is the reason for our additional dummy
voters.

In particular, the construction ensures that d1 is the original winner of the election and
that the difference between the Borda score of p and the Borda score of d1 is exactly h2.
Furthermore, each shift action can increase the score of p by at most two. Hence, to make
p a co-winner one must increase the score of p by h(h−1) and decrease the score of d1 by h.
This is possible if and only if the shift actions correspond to edges of some clique of size h.

The Plurality Rule with (+1,−1)-Shift Actions. We still reduce from the W[1]-
hard Clique problem, parameterized by the solution size, but the reduction is a bit more
involved.

Let (G, h) be a Clique instance where the graph G has n′ := |V (G)| vertices and
m′ := |E(G)| edges. We construct a Plurality-Combinatorial Shift Bribery instance
as follows. Let the set of candidates be {p, d} ∪D, where D := {d1, . . . , dh−1}, and create
the following voters:

1. For each vertex vi, create
(
h
3

)
vertex voters v1

i , . . . , v
(h3)
i corresponding to vi, each with

preference order:

d1 � · · · � dh−1 � p.

2. For each edge ej = {vi1 , vi2}, create a corresponding edge voter wj with preference
order:

p � d1 � · · · � dh−1.

3. Create 2
(
h
2

)
+ (n′ − 2h)

(
h
3

)
−m′ dummy voters, each with preference order:

p � d1 � · · · � dh−1.

For each edge ej = {vi1 , vi2}, construct 2
(
h
3

)
shift actions, denoted by

f1
ej ,vi1

, . . . , f
(h3)
ej ,vi1

and f1
ej ,vi2

, . . . , f
(h3)
ej ,vi2

,

where for each z ∈ [
(
h
3

)
], (a) fzej ,vi1

has effect of +1 on vzi1 and effect of −1 on wj , and (b)

fzej ,vi2
has effect of +1 on vzi2 and effect of −1 on wj . Finally, we set the budget B := 2

(
h
2

)(
h
3

)
.

This completes the construction. It is easy to see that it is computable in polynomial time
and that it is a parameterized reduction.

Observe that, initially, the edge voters and the dummy voters prefer p, while the vertex
voters prefer d1. Therefore, the initial score of p is 2

(
h
2

)
+(n′−2h)

(
h
3

)
, while the initial score

of d1 is n′
(
h
3

)
. We can assume, without loss of generality, that this means that d1 is the

winner of the election (instances not satisfying this assumption can be solved in constant
time).

It remains to show that our constructed instance contains a successful set of shift ac-
tions F ′ of size at most h if and only if (G, h) contains a clique of size at most B. The general

638

Combinatorial Shift Bribery

idea is that if we choose the shift actions corresponding to the edges connecting the nodes
of an h-size clique, then we will ensure that p becomes the preferred candidate for h

(
h
3

)
additional vertex voters, while making d1 the preferred candidate for only

(
h
2

)
additional

edge voters.
Formally, for the “if” part, let H ⊆ V (G) be a set of h vertices forming a clique and let

E′ ⊆ E(G) be the set of edges connecting vertices from H. We choose the following set of
shift actions:

F ′ = {fzej ,vi1 , f
z
ej ,vi2

| ej = {vi1 , vi2} ∈ E′, z ∈ [

(
h

3

)
]}.

We show that F ′ is a successful set of shift actions. To this end, observe that for each vertex
voter vzi with vi ∈ V ′ and z ∈ [

(
h
3

)
], candidate p is shifted h− 1 positions forward, therefore

p becomes the preferred candidate for these voters. This means that h
(
h
3

)
additional vertex

voters prefer p (and, thus, do not prefer d1 anymore). Furthermore, p is shifted backwards
only for the voters in {wj | ej ∈ E′}, that is, d1 becomes the most preferred candidate for(
h
2

)
edge voters and p remains the most preferred candidate for m′−

(
h
2

)
edge voters. Thus,

p and d tie as winners.
For the “only if” part, let F ′ be a successful set of shift actions. To make p a winner of

the election, p must be shifted to the top position for at least h
(
h
3

)
−
(
h
2

)
vertex voters (no

other type of voters can be affected positively). By the pigeonhole principle, these vertex
voters correspond to at least h different vertices (there are

(
h
3

)
voters corresponding to each

vertex). In effect, at least
(
h
2

)
edge voters must be effected negatively so that d1 becomes

their most preferred candidate. Thus, to make p win the election p must be shifted to the top
position for at least h

(
h
3

)
vertex voters. This implies that |F ′| ≥ (h−1)·h·

(
h
3

)
= 2
(
h
2

)(
h
3

)
= B

and, hence, |F ′| = B. It follows that p is shifted backwards making d1 the most preferred
candidate for exactly

(
h
2

)
edge voters and that p must be shifted to the top position for

exactly h
(
h
3

)
vertex voters corresponding to exactly h different vertices. By construction,

this implies that these h vertices form a clique, and we are done.

The Borda Rule with (+1,−1)-Shift Actions. For the Borda rule, the reduction is,
once again, a bit more involved, but the main idea is the same as for the Plurality rule.

Let (G, h) be an instance of Clique where graph G has n′ := |V (G)| vertices and
m′ := |E(G)| edges. We construct a Borda-Combinatorial Shift Bribery instance as
follows. The set of candidates is {p, d} ∪D, where D := {d1, . . . , dh−1}, and we create the
following voters:

1. For each vertex vi, create
(
h
3

)
vertex voters v1

i , . . . , v
(h3)
i corresponding to vi, each with

preference order: −→
D � p.

2. For each edge ej = {vi1 , vi2}, create a corresponding edge voter wj with preference
order:

d1 � · · · � dh−2 � p � dh−1.

3. Let L :=

(
h
2

)
+ (n′

(
h
3

)
+m′)(h− 1)− (

(
h
3

)
h2)−m′

h− 1
. Without loss of generality, we

can assume that L is an integer (this requires simple modifications of the input clique

639

Bredereck, Faliszewski, Niedermeier, & Talmon

instance only). We create L dummy voters, each with preference order:

p � dh−1 � · · · � d1.

For each edge ej = {vi1 , vi2}, construct 2
(
h
3

)
shift actions, denoted by

f1
ej ,vi1

, . . . , f
(h3)
ej ,vi1

and f1
ej ,vi2

, . . . , f
(h3)
ej ,vi2

,

where for each z ∈ [
(
h
3

)
], (a) fzej ,vi1

has effect of +1 on vzi1 and effect of −1 on wj , and (b)

fzej ,vi2
has effect of +1 on vzi2 and effect of −1 on wj . Finally, we set the budget B := 2

(
h
2

)(
h
3

)
.

This completes the construction. It is easy to see that it is computable in polynomial time.
The proof of correctness follows the same lines as the proof of correctness for the Plurality
rule and, thus, is omitted.

Appendix C. Proof of Theorem 9

Theorem 9. Borda-Combinatorial Shift Bribery is W[1]-hard with respect to the num-
ber n of voters, even for (+1,−1)-shift actions and no budget constraints.

Proof. We reduce from the following W[1]-hard problem (Mathieson & Szeider, 2012, Lemma
3.2).

Strongly Regular Multicolored Clique
Input: Two integers, d and h, and an undirected graph G = (V,E), where each
vertex has one of h colors in [h], and where each vertex is adjacent to exactly
d vertices of each color different from its own.
Question: Does there exist a clique of size h containing one vertex from each
color class?

Given an instance of Strongly Regular Multicolored Clique, we construct an
instance of Combinatorial Shift Bribery, for the Borda rule. The general idea of
the reduction is as follows. The set of “important” candidates consists of our preferred
candidate p and the candidates that correspond to the edges. For technical reasons, for
each edge e = {v, v′}, we introduce two candidates, e1 and e2; one of them is associated
with “touching” vertex v and the other is associated with “touching” vertex v′. (In fact, we
will introduce more edge candidates and some vertex candidates, but we will use them only
to ensure correct structure of the election and appropriate bribery behavior.) We build two
groups of voters, the vertex-selecting voters and the edge-electing voters. The first group
implements picking vertices for the clique (one vertex from each color), and the second
group implements picking edges (one edge for each pair of colors). We ensure that if a given
set of shift actions has any chance of being successful, then it must hold that h vertices and(
h
2

)
edges are picked. Importantly, this holds even in the unbribed election.

We make sure that p wins the election if and only if the picked voters and edges cor-
respond to a clique (with vertices of each color). To this end, we define the voters so that
there are two numbers, α and β, such that:

640

Combinatorial Shift Bribery

1. There are h vertices picked by the vertex-selecting voters, each of a different color.
The vertex-selecting voters give α points to each edge candidate that is associated with
touching one of the selected vertices, and α + 1 points to all other edge candidates.
This means that by picking a vertex we decrease the score of the edge candidates for
the edges that touch this vertex.

2. There are
(
h
2

)
edges picked by the edge-selecting voters, one edge for each pair of colors.

The edge-selecting voters give β + 1 points to each edge candidate that corresponds
to a picked edge, and β points to all the remaining edge candidates. This means that,
by picking an edge, we increase the score of the candidates corresponding to it.

3. Candidate p gets α+ β + 1 points, irrespective what shift actions we apply.

Note that in the unbribed election every candidate gets at most α + β + 2 points and p
always gets α + β + 1 points. Thus the challenge is to ensure that every candidate gets
α+ β + 1 points. By the above description, this is possible only if we pick the vertices and
the edges that correspond to a size h clique (of vertices with different colors). Indeed, if we
selected an edge e that did not touch two selected vertices, then e1 and e2 would receive
β + 1 points from edge-selecting candidates and at least one of them would receive α + 1
points from vertex-selecting voters. In effect, p would not be a winner.

Without loss of generality, we assume that the edges and vertices selected in the unbribed
election do not form a clique (otherwise there would be a trivial solution for the input
problem and we could output a fixed “yes”-instances of Borda-Combinatorial Shift
Bribery).

Construction. We now formally describe the reduction, then we give an example of
applying it to a simple instance, and finally we show correctness of the reduction. We
illustrate some aspects of the correctness proof using our example.

Candidates. Our set of candidates is somewhat involved. Our important candidates are
the preferred candidate p and the sets of edge candidates, E1 and E2, defined below.

Let E(G) = {e1, . . . , eµ} be the set of edges of graph G. We create two edge-candidate
sets: E1 = {e1

1, . . . , e
1
µ} and E2 = {e2

1, . . . , e
2
µ}. For each i ∈ [h], let ni be the number of

vertices in G with color i and let V i = {vi1, . . . , vini
} be the set of these vertices. For each

color i and each vertex vij ∈ V i, we define the neighborhood of vij as follows:

N(vij) := {e1
` | e` = {vij , vi

′
j′} ∈ E ∧ i < i′}

∪ {e2
` | e` = {vij , vi

′
j′} ∈ E ∧ i > i′}.

(This, perhaps a bit strange way of using color numbers to pick edge candidates either from
E1 or E2, is implementing the fact that for each edge e ∈ E(G) we have two candidates, e1

and e2, associated with touching different endpoints of e.)

For technical reasons we need further candidates as follows. To adjust the scores of
all other candidates, we introduce a single dummy candidate d. We create two further
candidate sets E0 = {e0

1, . . . , e
0
µ} and E3 = {e3

1, . . . , e
3
µ} which will act as “guards” for the

edge-selecting voters. For each V i we create two candidate sets U i := {uij | vij ∈ V i} and

641

Bredereck, Faliszewski, Niedermeier, & Talmon

U ′i = {u′ij | vij ∈ V i} with U :=
⋃

1≤i≤h U
i and U ′ :=

⋃
1≤i≤h U

′i which will act as “guards”
for the vertex-selecting voters.

Our final set of candidates is C := U ∪ U ′ ∪ E0 ∪ E1 ∪ E2 ∪ E3 ∪ {p, d}.

Vertex-Selecting Voters. We now describe the vertex-selecting voters. For each color i
and each vertex vij , we define the following parts of preference orders (for j = 1, we assume

that uij−1 and u′ij−1 are uini
and u′ini

respectively):

A(vij) : uij �
−−−→
N(vij) � u′ij ,

B(vij) : uij−1 �
−−−→
N(vij) � u′ij−1.

For each color i we create three pairs of voters. The voters in the first pair, wi and w′i, have
the following preference orders:

wi : p � A(vi1) � A(vi2) � A(vi3) � · · · � A(vini
) �
−→
Ri,

w′i :
−→
Ri � B(vi1) � B(vini

) � B(vini−1) � · · · � B(vi2) � p,

where Ri is the set of the remaining candidates, that is, Ri := C \ ({p}∪U i ∪U ′i ∪N(vi1)∪
· · · ∪N(vini

)). The voters in the second pair, qi and q′i, have preference orders that are the
reverse of wi and the reverse of w′i, respectively. Finally, the voters in the last pair, q̄i and
q̄′i, have preference orders:

q̄i :
−−−−−−−−−−−−−→
C \ ({d} ∪N(vi1)) � d �

−−−→
N(vi1),

q̄′i :
←−−−
N(vi1) �

←−−−−−−−−−−−−−
C \ ({d} ∪N(vi1)) � d.

In effect, the first two pairs of voters jointly give 2(|C|−1) points to each of the candidates.
The last pair gives |C| − 1 points to the candidates in N(vi1) and |C| points to all other
candidates (except d, who receives less than |C| − 1 points).

Let α := h(2(|C|−1)+|C|)−1. Altogether, the vertex-selecting voters give the following
scores to the candidates: The candidates in N(v1

1)∪N(v2
1)∪· · ·∪N(vh1) receive α points and

all other candidates, except d, receive α+ 1 points (d receives less than α points). Thus, in
the unbribed election v1

1, . . . , v
h
1 are the selected vertices.

For each color i, we introduce (ni − 1) · ((h − 1) · d + 2) shift actions with effect −1
on voter wi and effect +1 on voter w′i. To understand where the number of these shift
actions comes from, we note that: (1) For each vertex vij , we have |N(vij)| = (h−1) ·d (each

vertex is connected with d vertices of each color different than its own), (2) in A(vij) and in

B(vij) the candidates from N(vij) are surrounded by two vertex candidates, and (3) if t is
an integer, 1 ≤ t ≤ ni−1, then applying t((h−1) ·d+2) of these shift actions has the effect
that the candidates in N(vi1) gain one point (i.e., vi1 ceases to be selected), the candidates
in N(vit+1) lose one point (i.e., vit+1 becomes selected), and no other candidate changes his
score (later we will argue that applying other numbers of such shift actions than multiples
of ((h− 1) · d+ 2) cannot ensure p’s victory).

642

Combinatorial Shift Bribery

Edge-Selecting Voters. For the edge-selecting voters, we need the following additional
notation. Let Ex,y denote the set of candidates representing edges between vertices of
color x and color y, that is,

Ex,y := {eq∈{0,1,2,3}` | e` = {vxj , v
y
j′} ∈ E}.

We write nx,y to denote the number of edges between vertices of color x and color y. By
idx,yz we refer to the index of the z-th edge between vertices of color x and y. For example,
if e3, e7 and e57 are the only three edges between vertices of colors 1 and 2, then n1,2 = 3,

id1,2
1 = 3, id1,2

2 = 7, id1,2
3 = 57.

For each pair {x, y} of distinct colors and each edge eidx,y
j

, we introduce the following

parts of preference orders (for j = nx,y, we assume that idx,yj+1 = idx,y1):

R(eidx,y
j

) : e0
idx,y

j
� e1

idx,y
j
� e2

idx,y
j
� e3

idx,y
j
,

S(eidx,y
j

) : e0
idx,y

j+1
� e1

idx,y
j
� e2

idx,y
j
� e3

idx,y
j+1
.

For each pair {x, y} of distinct colors we introduce three pairs of voters. The voters in the
first pair, wx,y and w′x,y, have the following preference orders:

wx,y : R(eidx,y
1

) � p � R(eidx,y
2

) � R(eidx,y
3

) � · · · � R(eidx,y
nx,y

) �
−−→
Rx,y,

w′x,y :
−−→
Rx,y � S(eidx,y

nx,y
) � S(eidx,y

nx,y−1
) � · · · � S(eidx,y

2
) � S(eidx,y

1
) � p,

where Rx,y is the set of the remaining candidates, that is, Rx,y := C \ ({p} ∪ Ex,y). The
voters in the second pair, qx,y and q′x,y, have preference orders that are the reverse of wx,y
and the reverse of w′x,y, respectively. Finally, the voters in the last pair, q̄x,y and q̄′x,y, have
the following preference orders:

q̄x,y : e1
idx,y

1
� e2

idx,y
1
� d �

−−−−−−−−−−−−−−−→
C \ ({d, e1

idx,y
1
, e2

idx,y
1
}),

q̄′x,y :
←−−−−−−−−−−−−−−−
C \ ({d, e1

idx,y
1
, e2

idx,y
1
}) � e2

idx,y
1
� e1

idx,y
1
� d.

The first two pairs of voters jointly give 2(|C| − 1) points to each of the candidates. The
last pair gives |C| points to both e1

idx,y
1

and e2
idx,y

1
, and |C| − 1 points to all other candidates

(except d, who receives less than |C| − 1 points).
Let β := 3

(
h
2

)
(|C| − 1). Altogether, for each pair of distinct colors {x, y}, the edge-

selecting voters give β+1 points to candidates e1
idx,y

1
and e2

idx,y
1

. All other candidates receive

β points (except for d, who receives less than β points). Thus in the unbribed election the
selected edges are exactly “the first edges between each pair of colors” (that is, edges of the
form eidx,y

1
, for each pair of distinct colors {x, y}).

For each pair {x, y} of distinct colors, we create 4(nx,y − 1) shift actions with effect −1
on voter wx,y and effect +1 on voter w′x,y. The intuition behind these shift actions is similar
as in the case of vertex-selecting voters. We make the following observations: (1) For each
edge eidx,y

`
there are four candidates listed in R(eidx,y

`
) and four candidates listed in S(eidx,y

`
),

and (2) if t is an integer, 1 ≤ t ≤ nx,y−1, and we apply 4t such shift actions, then candidates

643

Bredereck, Faliszewski, Niedermeier, & Talmon

v1
1

v1
2

v2
1

v2
2

v3
1 v3

2

e 1

e
2

e
3

e
4

e
5 e 6

V 1 = {v1
1, v

1
2}, V 2 = {v2

1, v
2
2}, V 3 = {v3

1, v
3
2}, h = 3, d = 1

Figure 2: A 3-colored graph with six vertices where each vertex is adjacent to one vertex
from each of the color classes V 1, V 2 and V 3, other than its own.

e1
idx,y

1
and e2

idx,y
1

lose one point (edge eidx,y
1

ceases to be selected), candidates e1
idx,y

t+1
and e2

idx,y
t+1

gain one point (edge eidx,y
t+1

becomes selected), and the scores of all other candidates remain

unchanged (we will later argue that if we apply a number of shift actions that is not a
multiple of 4, then p certainly is not a winner of the resulting election).

To conclude the construction, we set the budget B := ∞ (that is, we can use as many
shift actions as we like). It is easy to verify that the reduction is computable in polynomial
time and that we introduce a number of voters that is a function of h only (thus, it is a
parameterized reduction). Before proving the correctness of this construction, we consider
the following example (we will refer to it during the correctness proof as well).

Example 5. Consider the Strongly Regular Multicolored Clique instance (d, h,G)
with d = 1, h = 3, and graph G from Figure 2. Our construction produces the following set
of candidates:

C := U ∪ U ′ ∪ E0 ∪ E1 ∪ E2 ∪ E3 ∪ {p, d},

with

U = {u1
1, u

1
2, u

2
1, u

2
2, u

3
1, u

3
2}, U ′ = {u′11 , u′12 , u′21 , u′22 , u′31 , u′32 }

and

Ei = {ei1, ei2, . . . , ei6}, 0 ≤ i ≤ 3.

Furthermore, we have:

N(v1
1) := {e1

1, e
1
2}, N(v1

2) := {e1
3, e

1
6},

N(v2
1) := {e2

3, e
1
4}, N(v2

2) := {e2
1, e

1
5},

N(v3
1) := {e2

2, e
2
5}, N(v3

2) := {e2
4, e

2
6}.

644

Combinatorial Shift Bribery

For the vertex-selecting group of voters, we create the following voters. For each color
i, we create two voters wi and w′i:

w1 : p � u1
1 � e1

1 � e1
2 � u′11 � u1

2 � e1
3 � e1

6 � u′12 �
−→
R1,

w′1 :
−→
R1 � u1

2 � e1
1 � e1

2 � u′12 � u1
1 � e1

3 � e1
6 � u′11 � p,

w2 : p � u2
1 � e2

3 � e1
4 � u′21 � u2

2 � e2
1 � e1

5 � u′22 �
−→
R2,

w′2 :
−→
R2 � u2

2 � e2
3 � e1

4 � u′22 � u2
1 � e2

1 � e1
5 � u′21 � p,

w3 : p � u3
1 � e2

2 � e2
5 � u′31 � u3

2 � e2
4 � e2

6 � u′32 �
−→
R3,

w′3 :
−→
R3 � u3

2 � e2
2 � e2

5 � u′32 � u3
1 � e2

4 � e2
6 � u′31 � p,

with Ri := C \ ({p} ∪ U i ∪ U ′i ∪N(vi1) ∪ · · · ∪N(vini
)), 1 ≤ i ≤ 3. For each of these voters

we add a voter with reversed preferences. (This means that, so far, all candidates obtain
the same total score.) We finish this group of voters by creating for each color i two voters,
q̄i and q̄′i, with preference orders:

q̄i :
−−−−−−−−−−−−−→
C \ ({d} ∪N(vi1)) � d �

−−−→
N(vi1),

q̄′i :
←−−−
N(vi1) �

←−−−−−−−−−−−−−
C \ ({d} ∪N(vi1)) � d.

This ensures that for each color i, all the candidates in N(vi1) get α points, and all other
candidates get α+ 1 points (except d who gets few points). We create 4 shift actions with
effect −1 on voter wi and effect +1 on voter w′i.

For the edge-selecting second group of voters, recall that Ex,y denotes the set of candi-
dates representing edges between vertices of color x and color y. Specifically, we have:

E1,2 :={e0
1, e

1
1, e

2
1, e

3
1 e

0
3, e

1
3, e

2
3, e

3
3},

E1,3 :={e0
2, e

1
2, e

2
2, e

3
2 e

0
6, e

1
6, e

2
6, e

3
6}, and

E2,3 :={e0
4, e

1
4, e

2
4, e

3
4 e

0
5, e

1
5, e

2
5, e

3
5}.

For each pair {x, y} of distinct colors we create two voters, wx,y and w′x,y, as follows:

w1,2 : e0
1 � e1

1 � e2
1 � e3

1 � p � e0
3 � e1

3 � e2
3 � e3

3 �
−−→
R1,2,

w′1,2 :
−−→
R1,2 � e0

1 � e1
3 � e2

3 � e3
1 � e0

3 � e1
1 � e2

1 � e3
3 � p,

w1,3 : e0
2 � e1

2 � e2
2 � e3

2 � p � e0
6 � e1

6 � e2
6 � e3

6 �
−−→
R1,3,

w′1,3 :
−−→
R1,3 � e0

2 � e1
6 � e2

6 � e3
2 � e0

6 � e1
2 � e2

2 � e3
6 � p,

w2,3 : e0
4 � e1

4 � e2
4 � e3

4 � p � e0
5 � e1

5 � e2
5 � e3

5 �
−−→
R2,3,

w′2,3 :
−−→
R2,3 � e0

4 � e1
5 � e2

5 � e3
4 � e0

5 � e1
4 � e2

4 � e3
5 � p,

where Rx,y := C \ ({p} ∪ E[x, y]). For each of these voters we add a voter with reversed
preferences. Further, for each pair {x, y} of distinct colors, we add two voters q̄x,y and q̄′x,y

645

Bredereck, Faliszewski, Niedermeier, & Talmon

as follows:

q̄x,y : e1
idx,y

1
� e2

idx,y
1
� d �

−−−−−−−−−−−−−−−→
C \ ({d, e1

idx,y
1
, e2

idx,y
1
}),

q̄′x,y :
←−−−−−−−−−−−−−−−
C \ ({d, e1

idx,y
1
, e2

idx,y
1
}) � e2

idx,y
1
� e1

idx,y
1
� d.

Altogether, for each pair {x, y} of distinct colors, candidates e1
idx,y

1
and e2

idx,y
1

get β+1 points

and all other candidates get β points (except d, which gets less points). For each pair {x, y}
of distinct colors, we create 4 shift actions with effect −1 on voter wx,y and effect +1 on
voter w′x,y. 4

Properties of the Construction. We now discuss several properties of our construction.
These properties will play a significant rule in showing the correctness of the reduction. To
illustrate our arguments, we come back to our example from time to time. We begin by
looking at the scores of the candidates.

Lemma 1. The following claims hold:

1. In the unbribed election, every candidate receives at most α+ β + 2 points and every
candidate from {p} ∪ U ∪ U ′ ∪ E0 ∪ E3 receives exactly α+ β + 1.

2. In every bribed election, the score of p is exactly α+ β + 1.

3. After applying a successful set of shift actions, the score of p is α + β + 1 and the
scores of all other candidates are at most α+ β + 1.

Proof. It is easy to see that the first claim holds based on the discussion that we give
throughout the construction. The second claim holds because (a) applying every shift
action decreases by one the score of p in one vote and increases it by one in another vote
(there are sufficiently few shift actions in the whole instance such that applying each shift
action always moves p within the two votes on which the shift action acts). The last claim
follows directly from the second one. (Lemma) �

Let us now consider the process of selecting vertices. In the description of vertex-
selecting voters we said that, initially, for each color i vertex vi1 is selected, and if for some
integer t, 1 ≤ i ≤ ni−1, we apply t((h−1) ·d+2) shift actions that affect voters wi and w′i,
then vi1 ceases to be selected and vit+1 becomes selected. We now argue that if we apply a
number of these shift actions that is not divisible by ((h− 1) · d+ 2), then p is not a winner
of the resulting election.

To see that this is the case, recall that in the preference orders of voter wi and w′i there
are exactly (h − 1) · d candidates from E1 ∪ E2 between each pair of candidates {uij , u′ij }.
Furthermore, if p passes some candidate uij in the preference order of voter wi (increasing

uij ’s score by one), then it must also pass candidate uij in the preference order of voter w′i
(decreasing uij ’s score by one). Otherwise, uij would end up with score α + β + 2 and,

by 1, p would not be a winner (there are no possibilities to influence the score of uij other

than shifting p in the preference lists of wi and w′i). Hence, p also passes candidate u′ij
and all candidates between uij and u′ij in the preference lists of wi and w′i. This, however,
means that if p is to be a winner of the election, then the number of applied shift actions

646

Combinatorial Shift Bribery

Unbribed voters w2 and w′2:

w2 : p � u2
1 � e2

3 � e1
4 � u′21 � u2

2 � e2
1 � e1

5 � u′22 �
−→
R2

w′2 :
−→
R2 � u2

2 � e2
3 � e1

4 � u′22 � u2
1 � e2

1 � e1
5 � u′21 � p

Applying two shift actions with effect -1 on w2 and +1 on w′2:

w2 :u2
1 � e2

3 � p � e1
4 � u′21 � u2

2 � e2
1 � e1

5 � u′22 �
−→
R2

w′2 :
−→
R2 � u2

2 � e2
3 � e1

4 � u′22 � u2
1 � e2

1 � p � e1
5 � u′21

−2

+1 +1

+2

-1 -1

Applying (h− 1) · d+ 2 = 4 shift actions with effect -1 on w2 and +1 on w′2:

w2 :u2
1 � e2

3 � e1
4 � u′21 � p � u2

2 � e2
1 � e1

5 � u′22 �
−→
R2

w′2 :
−→
R2 � u2

2 � e2
3 � e1

4 � u′22 � p � u2
1 � e2

1 � e1
5 � u′21

−4

+1 +1 +1 +1

+4

-1 -1 -1 -1

Figure 3: Illustration of bribery actions affecting the first voter group of our running example
(Example 5). Note that, in the unbribed election, every candidate from U ∪ U ′ obtains
α + β + 1 points in total. For each color i there is only one type of shift actions which
affects voter wi and w′i: those shift actions with effect −1 on voter wi and effect +1 on
voter w′i. No other shift action can affect some voter from the first group. Applying a
multiple of ((h−1) ·d+2) shift actions with effect −1 on voter wi and effect +1 on voter w′i
ensures that the candidates from U i ∪U ′i receive at most α+β+ 1 points in total, whereas
applying any other number of these shift actions implies that some candidate from U i

receives α + β + 2 points and, hence, p cannot win. We illustrate this with color 2 in our
running example.

with effects on voters wi and w′i is a multiple of ((h − 1) · d + 2) (p passes candidate uij ,

candidate u′ij , and h · d candidates in between). Figure 3 provides an illustration of the
above reasoning.

We next discuss selecting edges. As for the case of vertex-selecting voters, in the de-
scription of our construction we have argued that (a) initially for each pair {x, y} of distinct
colors, edge eidx,y

1
is selected and that (b) after applying 4t, 1 ≤ t ≤ nx,y − 1, shift actions

that affect voters wx,y and w′x,y, eidx,y
1

ceases to be selected and eidx,y
t+1

becomes selected. We

now argue that if we used a number of such shift actions that is not a multiple of four, then
p certainly would not be a winner of the election.

To see that this is the case, note that we designed the preference orders of wx,y and w′x,y
so that the candidates e0

idx,y
j

and e3
idx,y

j
, for j ∈ {2, . . . , nx,y}, follow p in vote wx,y in the

same order in which they precede p in w′x,y. In effect, if we apply a shift action that affects

647

Bredereck, Faliszewski, Niedermeier, & Talmon

Unbribed voters w2,3 and w′2,3:

w2,3 : e0
4 � e1

4 � e2
4 � e3

4 � p � e0
5 � e1

5 � e2
5 � e3

5 �
−−→
R2,3

w′2,3 :
−−→
R2,3 � e0

4 � e1
5 � e2

5 � e3
4 � e0

5 � e1
4 � e2

4 � e3
5 � p

Applying two shift actions with effect -1 on w2,3 and +1 on w′2,3:

w2,3 : e0
4 � e1

4 � e2
4 � e3

4 � e0
5 � e1

5 � p � e2
5 � e3

5 �
−−→
R2,3

w′2,3 :
−−→
R2,3 � e0

4 � e1
5 � e2

5 � e3
4 � e0

5 � e1
4 � p � e2

4 � e3
5

−2

+1 +1

+2

-1 -1

Applying four shift actions with effect -1 on w2,3 and +1 on w′2,3:

w2,3 : e0
4 � e1

4 � e2
4 � e3

4 � e0
5 � e1

5 � e2
5 � e3

5 � p �
−−→
R2,3

w′2,3 :
−−→
R2,3 � e0

4 � e1
5 � e2

5 � e3
4 � p � e0

5 � e1
4 � e2

4 � e3
5

−4

+1 +1 +1 +1

+4

-1 -1 -1 -1

Figure 4: Illustration of bribery actions affecting the second voter group of our running
example. Note that in the unbribed election, every candidate from E0 ∪ E4 obtains α +
β + 1 points in total. For each pair of colors x and y there is only one type of shift
actions which affects voter wx,y and w′x,y: those shift actions with effect −1 on voter wx,y
and effect +1 on voter w′x,y. No other shift action can affect some voter from the second
group. Applying a multiple of 4 shift actions with effect −1 on voter wx,y and effect +1 on
voter w′x,y ensures that the candidates from E0 ∪E4 receive at most α+ β + 1 points from
these voters, whereas applying any other number of these shift actions implies that some
candidate from E0 receives α + β + 2 points and, hence, p cannot win. We illustrate this
with color pair 2 and 3 in our running example.

voters wx,y and w′x,y a number of times that is not a multiple of four, then one of these
candidates obtains α+ β+ 2 points. Since there is no other way to affect the score of these
candidates, by Lemma 1, in this case p cannot be a winner. We illustrate this effect in
Figure 4.

Solution for Example 5. Before we complete the correctness proof, let us illustrate the
solution for our example.

The unbribed election selects vertex v1
1, v2

1, and v3
1 and the edges e1, e2 and e4. Hence,

for example, candidate e2
4 receives α+β+2 points and p (who receives only α+β+1 points)

is not a winner.

By applying four shift actions with effect −1 on w2 and effect +1 on w′2, we select v2
2

instead of v2
1 to be the vertex of color 2 in our clique (as depicted in the bottom of Figure 3).

648

Combinatorial Shift Bribery

By applying four shift actions with effect −1 on w2,3 and effect +1 on w′2,3, we select e5

instead of e4 to be the edge between color 2 and color 3 in our clique (as depicted in the
bottom of Figure 4). Now, each candidate from {e1

1, e
1
2, e

2
1, e

2
2, e

1
5, e

2
5} receives β + 1 points

from the edge-selecting voters, but only α points from the vertex-selecting voters. Every
other candidate receives at most α+ 1 points from the vertex-selecting voters and at most
β points from the edge-selecting voters. Hence, p (with α+ β + 1 points) is a winner. This
solution corresponds to the left 3-colored triangle in Figure 2.

Correctness. It remains to show that there is a successful set of shift actions for the
constructed Borda-Combinatorial Shift Bribery instance if and only if there is an
h-colored clique in graph G.

For the “if” part, assume that there is an h-colored clique H ⊆ V (G). Without loss of
generality, let H = {v1

z1 , . . . , v
h
zh
} and let EH := {{v, v′} | v, v′ ∈ H}. Furthermore, let zx,y

denote the index of the edge in Ex,y representing the edge from EH between the vertex of
color x and the vertex of color y. That is, zx,y = j if and only if eidx,y

j
∈ EH . Then it is

easy to verify that the following set of shift actions is successful:

1. For each color i ∈ [h], include (zi − 1)((h − 1) · d + 2) shift actions with effects on
voters wi and w′i.

2. For each pair {x, y} of distinct colors, include 4(zx,y − 1) shift actions with effects on
voters wx,y and w′x,y.

In other words, we select the vertices and the edges corresponding to the clique. In effect,
the scores of all the candidates is α + β + 1 (except for d, who receives lower score). So p
is among the tied winners.

For the “only if” part, assume that there is a successful set of shift actions and consider
the election after applying these shift actions. By construction, we know that edge-selecting
voters pick exactly one edge for each pair of distinct colors. Hence the graph induced
by these edges contains vertices with h different colors. If this graph contains only h
vertices, then this graph must be an h-colored clique (this graph cannot contain fewer than
h vertices). For the sake of contradiction, let us assume that this graph contains more than
h vertices. Thus there are two selected edges, ej and ej′ , incident to two different vertices,
vi ∈ ej and vi′ ∈ ej′ , of the same color. By our construction (and the way vertex-selecting
voters work), for at least one of the sets N(vi) and N(vi′) all candidates in the set receive
α + 1 points from the vertex-selecting voters. However, since both ej and ej′ are selected
by the edge-selecting voters, these voters give β + 1 points to each of the candidates e1

j , e
2
j ,

e1
j′ , and e2

j′ . Hence, at least one of these candidates receives α+ β + 2 points in total and,
by Lemma 1, p is not a winner. This is a contradiction, and so the graph induced by the
selected edges must be an h-colored clique.

References

Bartholdi, III, J. J., Tovey, C. A., & Trick, M. A. (1992). How hard is it to control an
election. Mathematical and Computer Modelling, 16 (8–9), 27–40.

649

Bredereck, Faliszewski, Niedermeier, & Talmon

Baumeister, D., Faliszewski, P., Lang, J., & Rothe, J. (2012). Campaigns for lazy voters:
Truncated ballots. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’12), pp. 577–584. IFAAMAS.

Betzler, N., Bredereck, R., Chen, J., & Niedermeier, R. (2012). Studies in computational
aspects of voting—a parameterized complexity perspective. In The Multivariate Al-
gorithmic Revolution and Beyond, Vol. 7370 of LNCS, pp. 318–363. Springer.

Binkele-Raible, D., Erdélyi, G., Fernau, H., Goldsmith, J., Mattei, N., & Rothe, J. (2014).
The complexity of probabilistic lobbying. Discrete Optimization, 11, 1–21.

Boutilier, C., Brafman, R. I., Hoos, C. D. H. H., & Poole, D. (2004). CP-nets: A tool
for representing and reasoning with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research, 21, 135–191.

Brandt, F., Harrenstein, P., Kardel, K., & Seedig, H. G. (2013). It only takes a few: On the
hardness of voting with a constant number of agents. In Proceedings of the 12th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS ’13),
pp. 375–382. IFAAMAS.

Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., & Niedermeier, R. (2014a). Prices
matter for the parameterized complexity of shift bribery. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI ’14), pp. 1398–1404. AAAI Press.

Bredereck, R., Chen, J., Hartung, S., Kratsch, S., Niedermeier, R., Suchý, O., & Woeginger,
G. (2014b). A multivariate complexity analysis of lobbying in multiple referenda.
Journal of Artificial Intelligence Research, 50, 409–446.

Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., & Talmon, N. (2015a). Elec-
tions with few candidates: Prices, weights, and covering problems. In the Fourth
International Conference on Algorithmic Decision Theory (ADT 2015), Vol. 9346 of
LNCS, pp. 414–431. Springer.

Bredereck, R., Faliszewski, P., Niedermeier, R., & Talmon, N. (2015b). Large-scale elec-
tion campaigns: Combinatorial shift bribery. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’15), pp. 67–75.

Bredereck, R., Faliszewski, P., Niedermeier, R., & Talmon, N. (2016). Complexity of shift
bribery in committee elections. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI ’16).

Bulteau, L., Chen, J., Faliszewski, P., Niedermeier, R., & Talmon, N. (2015). Combinatorial
voter control in elections. Theoretical Computer Science, 589, 99–120.

Cary, D. (2011). Estimating the margin of victory for instant-runoff voting. Presented at the
2011 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections.

Chen, J., Faliszewski, P., Niedermeier, R., & Talmon, N. (2015). Elections with few vot-
ers: Candidate control can be easy. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI ’15), pp. 2045–2051.

Christian, R., Fellows, M. R., Rosamond, F. A., & Slinko, A. (2007). On complexity of
lobbying in multiple referenda. Review of Economic Design, 11 (3), 217–224.

650

Combinatorial Shift Bribery

Conitzer, V., Lang, J., & Xia, L. (2009). How hard is it to control sequential elections via
the agenda?. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI ’10), pp. 103–108. AAAI Press.

Dorn, B., & Schlotter, I. (2012). Multivariate complexity analysis of swap bribery. Algo-
rithmica, 64 (1), 126–151.

Downey, R. G., & Fellows, M. R. (2013). Fundamentals of Parameterized Complexity.
Springer.

Elkind, E., & Faliszewski, P. (2010). Approximation algorithms for campaign management.
In Proceedings of the 6th International Workshop on Internet and Network Economics
(WINE ’10), Vol. 6484 of LNCS, pp. 473–482. Springer.

Elkind, E., Faliszewski, P., & Slinko, A. (2009). Swap bribery. In Proceedings of the 2nd
International Symposium on Algorithmic Game Theory (SAGT ’09), Vol. 5814 of
LNCS, pp. 299–310. Springer.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. (2010). Using complexity to protect
elections. Communications of the ACM, 53 (11), 74–82.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. A. (2009a). How hard is bribery
in elections?. Journal of Artificial Intelligence Research, 35, 485–532.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L. A., & Rothe, J. (2009b). Llull and
Copeland voting computationally resist bribery and constructive control. Journal of
Artificial Intelligence Research, 35, 275–341.

Faliszewski, P., Reisch, Y., Rothe, J., & Schend, L. (2014). Complexity of manipulation,
bribery, and campaign management in Bucklin and Fallback voting. In Proceedings
of the 13th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’14), pp. 1357–1358. IFAAMAS.

Faliszewski, P., & Rothe, J. (2015). Control and bribery in voting. In Brandt, F., Conitzer,
V., Endriss, U., Lang, J., & Procaccia, A. D. (Eds.), Handbook of Computational
Social Choice, chap. 7. Cambridge University Press.

Flum, J., & Grohe, M. (2006). Parameterized Complexity Theory. Springer.

Gabow, H. N. (1983). An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the 15th Annual ACM Symposium
on Theory of Computing (STOC ’83), pp. 448–456. ACM.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman.

Hazon, N., Lin, R., & Kraus, S. (2013). How to change a group’s collective decision?.
In Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI ’13), pp. 198–205. AAAI Press.

Hulett, H., Will, T. G., & Woeginger, G. J. (2008). Multigraph realizations of degree
sequences: Maximization is easy, minimization is hard. Operations Research Letters,
36 (5), 594–596.

651

Bredereck, Faliszewski, Niedermeier, & Talmon

Lang, J., & Xia, L. (2015). Voting in combinatorial domains. In Brandt, F., Conitzer, V.,
Endriss, U., Lang, J., & Procaccia, A. D. (Eds.), Handbook of Computational Social
Choice, chap. 9. Cambridge University Press.

Lenstra, H. W. (1983). Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8 (4), 538–548.

Magrino, T., Rivest, R., Shen, E., & Wagner, D. (2011). Computing the margin of vic-
tory in IRV elections. Presented at the 2011 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections.

Mathieson, L., & Szeider, S. (2012). Editing graphs to satisfy degree constraints: A param-
eterized approach. Journal of Computer and System Sciences, 78 (1), 179–191.

Mattei, N., Goldsmith, J., & Klapper, A. (2012a). On the complexity of bribery and ma-
nipulation in tournaments with uncertain information. In Proceedings of the 25th In-
ternational Florida Artificial Intelligence Research Society Conference (FLAIRS ’12),
pp. 549–554. AAAI Press.

Mattei, N., Pini, M., Rossi, F., & Venable, K. (2012b). Bribery in voting over combinatorial
domains is easy. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’12), pp. 1407–1408. IFAAMAS.

Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms. Oxford University Press.

Obraztsova, S., & Elkind, E. (2011). On the complexity of voting manipulation under
randomized tie-breaking. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI ’11), pp. 319–324. AAAI Press.

Obraztsova, S., Elkind, E., & Hazon, N. (2011). Ties matter: Complexity of voting manipu-
lation revisited. In Proceedings of the 10th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’11), pp. 71–78.

Rajagopalan, S., & Vazirani, V. V. (1998). Primal-dual RNC approximation algorithms
for set cover and covering integer programs. SIAM Journal on Computing, 28 (2),
525–540.

Reisch, Y., Rothe, J., & Schend, L. (2014). The margin of victory in Schulze, Cup, and
Copeland elections: Complexity of the regular and exact variants. In Proceedings of the
Seventh European Starting AI Researcher Symposium (STAIRS-2014), pp. 250–259.
IOS Press.

Schlotter, I., Faliszewski, P., & Elkind, E. (2011). Campaign management under approval-
driven voting rules. In Proceedings of the 25th AAAI Conference on Artificial Intelli-
gence (AAAI ’11), pp. 726–731. AAAI Press.

Xia, L. (2012). Computing the margin of victory for various voting rules. In Proceedings
of the 13th ACM Conference on Electronic Commerce (EC ’12), pp. 982–999. ACM
Press.

652

	Introduction
	Related Work
	Organization of the Paper

	Preliminaries
	Elections
	Voting Rules
	Parameterized Complexity

	The Combinatorial Shift Bribery Problem
	The Definition
	Relation to Standard Shift Bribery
	A General Hardness Result
	Restricted Variants of Combinatorial Shift Bribery

	Overview of Results
	Connection to Combinatorial Control
	Hardness Results
	Results for General Unit-Effect Shift Actions
	Results for Shift Actions with Unit Effect on Two Voters
	Results for Interval Shift Actions

	Exact Algorithms
	Approximation Algorithms
	Conclusion
	Proof of Theorem 7
	Remaining Cases of the Proof of Theorem 8
	Proof of Theorem 9
	References

