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Abstract

This paper tackles the problem of endogenous link prediction for knowledge base com-
pletion. Knowledge bases can be represented as directed graphs whose nodes correspond
to entities and edges to relationships. Previous attempts either consist of powerful systems
with high capacity to model complex connectivity patterns, which unfortunately usually
end up overfitting on rare relationships, or in approaches that trade capacity for simplic-
ity in order to fairly model all relationships, frequent or not. In this paper, we propose
Tatec, a happy medium obtained by complementing a high-capacity model with a sim-
pler one, both pre-trained separately and then combined. We present several variants of
this model with different kinds of regularization and combination strategies and show that
this approach outperforms existing methods on different types of relationships by achieving
state-of-the-art results on four benchmarks of the literature.

1. Introduction

Knowledge bases (KBs) are crucial tools to deal with the rise of data, since they provide
ways to organize, manage and retrieve all digital knowledge. These repositories can cover
any kind of area, from specific domains like biological processes, for example in GeneOn-
tology (Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig,
et al., 2000), to very generic purposes. Freebase (Bollacker, Evans, Paritosh, Sturge, &
Taylor, 2008), a huge collaborative KB which belongs to the Google Knowledge Graph, is an
example of the latter kind which provides expert/common-level knowledge and capabilities
to its users. An example of a knowledge engine is WolframAlpha (Wolfram Research,
2009), an engine which answers to any natural language question, like how far is Saturn

from the sun?, with human-readable answers (1,492 ×109 km) using an internal KB.
Such KBs can be used for question answering, but also for other natural language process-
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ing tasks like word-sense disambiguation (Navigli & Velardi, 2005), co-reference resolution
(Ponzetto & Strube, 2006) or even machine translation (Knight & Luk, 1994).

KBs can be formalized as directed multi-relational graphs, whose nodes correspond
to entities connected with edges encoding various kinds of relationship. Hence, one can
also refer to them as multi-relational data. In the following we denote connections among
entities via triples or facts (head, label, tail), where the entities head and tail are connected
by the relationship label. Any information of the KB can be represented via a triple or a
concatenation of several ones. Note that multi-relational data are not only present in KBs
but also in recommender systems, where the nodes would correspond to users and products
and edges to different relationships between them, or in social networks for instance.

A main issue with KBs is that they are far from being complete. Freebase currently
contains thousands of relationships and more than 80 millions of entities, leading to billions
of facts, but this remains only a very small portion out of all the human knowledge, obvi-
ously. And since question answering engines based on KBs like WolframAlpha are not
capable of generalizing over their acquired knowledge to fill in for missing facts, they are
de facto limited: they search for matches with a question/query in their internal KB and
if this information is missing they can not provide a correct answer, even if they correctly
interpreted the question. Consequently, huge efforts are nowadays being devoted towards
KB construction or completion (Lao, Mitchell, & Cohen, 2011; Bordes, Glorot, Weston, &
Bengio, 2013a; Dong, Gabrilovich, Heitz, Horn, Lao, Murphy, Strohmann, Sun, & Zhang,
2014), via manual or automatic processes, or a mix of both. This is mainly divided in two
tasks: entity creation or extraction, which consists in adding new entities to the KB and
link prediction, which attempts to add connections between entities. This paper focuses on
the latter case. Performing link prediction can be formalized as filling in incomplete triples
like (head, label, ?) or (?, label, tail), by predicting the missing argument of the triple when
such triple does not exist in the KB, yet. For instance, given the small example KB of
Figure 1, made of 6 entities and 2 different relationships, and containing facts like (Jared
Leto, influenced by, Bono) or (Michael Buble, profession, singer), we would like
to be able to predict new links such as (Frank Sinatra, profession, singer), by using
the fact that he influenced the singer Michael Buble for instance.

Link prediction in KBs is complex due to several issues. The entities are not homoge-
neously connected: some of them will have a lot of links with other entities, whereas others
will be rarely connected. To illustrate the diverse characteristics present in the relationships
we can take a look at FB15k, a subset of Freebase introduced by Bordes, Usunier, Garćıa-
Durán, Weston, and Yakhnenko (2013b). In this data set of ∼14k entities and 1k types of
relationships, entities have a mean number of triples of ∼400, but a median of 21 indicating
that a large number of them appear in very few triples. Besides, roughly 25% of the con-
nections are of type 1-to-1, that is, a head is connected to at most one tail, and around 25%
are of type Many-to-Many, that is, multiple heads can be linked to a tail and vice versa. As
a result, diverse problems coexist in the same database. Another property of relationships
that can have a big impact on the performance is the typing of their arguments. On FB15k,
some relationships are very strongly typed like /sports/sports team/location, where one
always expects a football team as head and a location as tail, and some are far less precise
such as /common/webpage/category where one expects only web page addresses as tail but
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Figure 1: Example of (incomplete) Knowledge Base with 6 entities, 2 relationships
and 7 facts.

pretty much everything else as head. A link prediction algorithm should be able to adapt
to these different settings.

Though there exists (pseudo-) symbolic approaches for link prediction based on Markov-
logic networks (Kok & Domingos, 2007) or random walks (Lao et al., 2011), learning latent
features representations of KB constituents - the so-called embedding methods - have recently
proved to be more efficient for performing link prediction in KBs, (e.g. Bordes et al., 2013b;
Wang, Zhang, Feng, & Chen, 2014b; Lin, Liu, Sun, Liu, & Zhu, 2015; Chang, Yih, Yang,
& Meek, 2014; Wang, Zhang, Feng, & Chen, 2014a; Zhang, Salwen, Glass, & Gliozzo,
2014; Yang, Duan, Zhou, & Rim, 2014b). In all these works, entities are represented by
low-dimensional vectors - the embeddings - and relationships act as operators on them:
both embeddings and operators define a scoring function that is learned so that triples
observed in the KBs have higher scores than unobserved ones. The embeddings are meant
to capture underlying features that should eventually allow to create new links successfully.
The scoring function is used to predict new links: the higher the score, the more likely a
triple is to be true. Representations of relationships are usually specific (except in LFM
(Jenatton, Le Roux, Bordes, & Obozinski, 2012) where there is a sharing of parameters
across relationships), but embeddings of entities are shared for all relationships and allow
to transfer information across them. The learning process can be considered as multi-task,
where one task concerns each relationship, and entities are shared across tasks.

Embedding models can be classified according to the interactions that they use to encode
the validity of a triple in their scoring function. If the joint interaction between the head,
the label and the tail is used then we are dealing with a 3-way model; but when the binary
interactions between the head and the tail, the head and the label, and the label and the
tail are the core of the model, then it is a 2-way model. Both kinds of models represent the
entities as vectors, but they differ in the way they model the relationships: 3-way models
generally use matrices, whereas 2-way models use vectors. This difference in the capacity
leads to a difference in the expressiveness of the models. The larger capacity of 3-way models
(due to the large number of free parameters in matrices) is beneficial for the relationships
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appearing in a lot of triples, but detrimental for rare ones even if regularization is applied.
Capacity is not the only difference between 2- and 3-way models, the information encoded
by these two models is also different: we show in Sections 3 and 5.3.2 that both kinds of
models assess the validity of the triple using different data patterns.

In this paper we introduce Tatec that encompass previous works by combining well-
controlled 2-way interactions with high-capacity 3-way ones. We aim at capturing data
patterns of both approaches by separately pre-training the embeddings of 2-way and 3-way
models and using different embedding spaces for each of the two of them. We demonstrate
in the following that otherwise – with no pre-training and/or no use of different embedding
spaces – some features cannot be conveniently captured by the embeddings. Eventually,
these pre-trained weights are combined in a second stage, leading to a combination model
which outperforms most previous works in all conditions on four benchmarks from the
literature, UMLS, Kinships, FB15k and SVO. Tatec is also carefully regularized since
we systematically compared two different regularization schemes: adding penalty terms to
the loss function or hard-normalizing the embedding vectors by constraining their norms.

This paper is an extension of our previous work (Garćıa-Durán, Bordes, & Usunier,
2014): we added a much more thorough study on regularization and on combination strate-
gies for Tatec. Besides we propose experiments on several new benchmarks and a more
complete comparison of our proposed method w.r.t. the state-of-the-art. We also give ex-
amples of predictions and projections in 2D of the obtained embeddings to provide some
insights into the behavior of Tatec. The paper is organized as follows. Section 2 discusses
previous works. Section 3 presents our model and justifies its choices. Detailed explana-
tions of both the training procedure and the regularization schemes are given in Section 4.
Finally, we present our experimental results on four benchmarks in Section 5.

2. Related Work

In this section, we discuss the state-of-the-art of modeling large multi-relational databases,
with a particular focus on embedding methods for knowledge base completion.

One of the simplest and most successful 2-way models is TransE (Bordes et al., 2013b).
In that model, relationships are represented as translations in the embedding space: if
(h, `, t) holds, then the embedding of the tail t should be close to the embedding of head
h plus some vector that depends on the label `. This is a natural approach to model
hierarchical and asymmetric relationships, which are common in knowledge bases such as
Freebase. Several modifications to TransE have been proposed recently, TransH (Wang
et al., 2014b) and TransR (Lin et al., 2015). In TransH, the embeddings of the entities
are projected onto a hyperplane that depends on ` before the translation. The second
algorithm, TransR, follows the same idea, except that the projection operator is a matrix
that is more general than an orthogonal projection to a hyperplane. As we shall see in the
next section, TransE corresponds to our Bigram model with additional constraints on
the parameters.

While 2-way models were shown to have very good performances on some KB datasets,
they have limited expressiveness and they can fail dramatically on harder datasets. In
contrast, 3-way models perform some form of low-rank tensor factorization, and in that
respect can have extremely high expressiveness depending on the rank constraints. In the
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context of link prediction for multi-relational data, RESCAL (Nickel, Tresp, & Kriegel,
2011) follows natural modeling assumptions. Similarly to TransE, RESCAL learns one
low-dimensional embedding for each entity. However, relationships are represented as a
bilinear operator in the embedding space in RESCAL, i.e. each relationship corresponds
to a matrix, whereas in TransE they are also represented by vectors. Besides the different
interactions across the arguments of a triple to explain its validity, these models also differ in
their training objective. The training objective of RESCAL is the Frobenius norm between
the original data tensor and its low-rank reconstruction, whereas Tatec uses the margin
ranking criterion of TransE. Another related 3-way model is SME(bilinear) (Bordes et al.,
2013a). The parameterization of SME(bilinear) is a constrained version of RESCAL, and
also uses a ranking criterion as training objective.

The Latent Factor Model (LFM) (Jenatton et al., 2012) and the Neural Tensor Networks
(NTN) (Socher, Chen, Manning, & Ng, 2013) use combinations of a 3-way model with a more
constrained 2-way model, and in that sense are closer to our algorithm Tatec. There are
important differences between these algorithms and Tatec, though. First, both LFM and
NTN share the entity embeddings in the 2-way and the 3-way models, while we learn different
entity embeddings. The use of different embeddings for the 2-way and the 3-way models
does not increase the model expressiveness, because it is equivalent to a combination with
shared embeddings in a higher dimensional embedding space, with additional constrains
on the relation parameters. As we show in the experiments however, these additional
constraints lead to very significant improvements. The second main difference between our
approach and LFM is that some parameters of the relationships between the 2-way and the
3-way interaction terms are also shared, which is not the case in Tatec. Indeed, such joint
parameterization might reduce the expressiveness of the 2-way interaction terms which, as
we argue in Section 3.3, should be left with maximum degrees of freedom. Lastly, LFM seeks
to maximize the likelihood function given a set of positive and negative facts. The NTN has
a more general parameterization than LFM, but still uses the same entity embeddings for
the 2-way and 3-way interaction terms. Also, NTN has two layers and a non-linearity after
the first layer, while our model does not add any nonlinearity after the embedding step. In
order to have a more precise overview of the differences between the approaches, we give in
Section 3 (Table 1) the formulas of the scoring functions of these related works.

While these works ignore the type-constraints present in the relationships (i.e. some
entities are not legitimate arguments of a given relationship), other approaches present
extensions making use of this side information. Hence, Chang et al. (2014) propose a
modification of RESCAL to avoid incompatible entity-relation triples to participate in the
loss function and Krompass, Baier, and Tresp (2015) propose a similar framework for the
models optimized by iterating through small batches. Krompass et al. (2015) also propose a
local closed-world assumption that approximates type-information only from the available
triples without requiring any kind of side information from the KB. Though we did not
consider to use that side information, these type-constraints could be easily introduced in
our model by either taking them from the KB (when available), or using the approach of
Krompass et al. (2015).

While there has been a lot of focus recently on algorithms purely based on learning
embeddings for entities and/or relationships, many earlier alternatives had been proposed.
We discuss works carried out in the Bayesian clustering framework, as well as approaches
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Figure 2: Example of RDF file of Freebase

that explicitly use the graph structure of the data. The Infinite Relational Model (Kemp,
Tenenbaum, Griffiths, Yamada, & Ueda, 2006), which is a nonparametric extension of the
Stochastic Block Model (Wang & Wong, 1987), is a Bayesian clustering approach that learns
clusters of entities of the same kind, i.e. groups of entities that can have similar relationships
with other entities. This work was followed by Sutskever, Salakhutdinov, and Tenenbaum
(2009), who propose a 3-way tensor factorization model based on Bayesian clustering in
which entities within a cluster share the same distribution of embeddings.

Symbolic approaches, as the aforementioned that of Kok and Domingos (2007), are
also worth mentioning in this context. Though their rule-based inference of new links may
lead to great expressiveness, they are usually limited by the quality and coverage of their
handcrafted rules. Still, the Path Ranking Algorithm (PRA) (Lao et al., 2011) presented
a model able to discover rules automatically by performing random walks from training
data, with the own limitation of the connectivity between nodes; i.e. if there is no short-
enough path connecting two nodes, then the model is not able to infer a relation between
them. Recently, Gardner, Talukdar, Krishnamurthy, and Mitchell (2014) cover this gap by
combining that model with pre-trained embeddings. The PRA is used in the Knowledge
Vault project (Dong et al., 2014) in conjunction with an embedding approach. Thus, even
though we do not consider these symbolic approaches here, they could also be combined
with our embedding model.

Even though we present and evaluate our algorithms in the context of knowledge bases,
this work also applies in the broader context of RDF data. RDF is a standard model for
data interchange on the Web. It is at the core of the Linked Data initiative (Bizer, Heath,
Idehen, & Berners-Lee, 2008) that aims to extend the linking structure of the Web to use
URIs to name the relationship between things as well as the two ends of the link. This
linking structure forms a directed, labeled graph, where the edges represent the named link
between two objects. Thus such data is essentially made of triples. In RDF-terminology a
triple is defined as (subject, predicate, object). The Freebase dump is available in this
format. Figure 2 shows an example of a RDF file of Freebase, where m.02mjmr is an iden-
tifier for the resource representing Barack Obama. This identifier has several predicates as
ns:influence.influence node.influenced by or ns:people.person.religion, whose
objects are ns:m.01d1n (Reinhold Niebuhr) and ns:m.01lp8 (Christianity), respectively.

3. TATEC

We now describe our model and the motivations underlying our parameterization. The data
S is a set of relations between entities in a fixed set of entities in E = {e1, ..., eE}. Relations
are represented as triples (h, `, t) where the head h and the tail t are indexes of entities (i.e.
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h, t ∈ [[E]] = {1, ..., E}), and the label ` is the index of a relationship in L = {l1, ..., lL},
which defines the type of the relation between the entities eh and et.

3.1 Scoring Function

Our goal is to learn a discriminant scoring function on the set of all possible triples E×L×E
so that the triples which represent likely relations receive higher scores than triples that
represent unlikely ones. Our proposed model, Tatec, learns embeddings of entities in a
low dimensional vector space, say Rd, and parameters of operators on Rd × Rd, most of
these operators being associated to a single relationship. More precisely, the score given by
Tatec to a triple (h, `, t), denoted by s(h, `, t), is defined as:

s(h, `, t) = s1(h, `, t) + s2(h, `, t) (1)

where s1 and s2 have the following form:

(B) Bigram or the 2-way interaction term:

s1(h, `, t) =
〈
r`1
∣∣eh1〉+

〈
r`2
∣∣et1〉+

〈
eh1
∣∣D∣∣et1〉 , (2)

where eh1 , e
t
1 are embeddings in Rd1 of the head and tail entities of (h, `, t) respectively,

r`1 and r`2 are vectors in Rd1 that depend on the relationship `, and D is a diagonal
matrix that does not depend on the input triple.

As a general notation throughout this section,
〈
.
∣∣.〉 is the canonical dot product, and〈

x
∣∣A∣∣y〉 =

〈
x
∣∣Ay

〉
where x and y are two vectors in the same space and A is a

square matrix of appropriate dimensions.

We use two different relation vectors for the subject and the object in order to model
asymmetric relationships; for instance, if r`1 = r`2, then (Paris, capital of, France)
would have the same score as (France, capital of, Paris).

(T) Trigram or the 3-way interaction term:

s2(h, `, t) =
〈
eh2
∣∣R`
∣∣et2〉 , (3)

where R` is a matrix of dimensions (d2, d2), and eh2 and et2 are embeddings in Rd2 of
the head and tail entities respectively. The embeddings of the entities for this term
are not the same as for the 2-way term; they can even have different dimensions.

The embedding dimensions d1 and d2 are hyperparameters of our model. All other vectors
and matrices are learned without any additional parameter sharing.

The 2-way interaction term of the model is similar to that of Bordes et al. (2013a), but
slightly more general because it does not contain any constraint of the relation-dependent
vectors r`1 and r`2. It can also be seen as a relaxation of the translation model of Bordes
et al. (2013b), which is the special case where r`1 = −r`2, D is the identity matrix, and the
entity embeddings are constrained to lie on the unit sphere.

The 3-way term corresponds exactly to the model used by the collective factorization
method RESCAL (Nickel et al., 2011), and we chose it for its high expressiveness on
complex relationships. Indeed, as we said earlier in the introduction, 3-way models can
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basically represent any kind of interaction among entities. The combination of 2- and 3-
way terms has already been used by Jenatton et al. (2012), Socher et al. (2013), but, besides
a different parameterization, Tatec contrasts with them by the additional freedom brought
by using different embeddings in the two interaction terms. In LFM (Jenatton et al., 2012),
constraints were imposed on the relation-dependent matrix of the 3-way terms (low rank
in a limited basis of rank-one matrices), the relation vectors r`1 and r`2 were constrained to
be in the image of the matrix (D = 0 in their work). These global constraints severely
limited the expressiveness of the 3-way model, and act as a stringent regularization that
reduces the expressiveness of the 2-way model, which, as we explain in Section 3.3, should
be left with maximum degrees of freedom. We are similar to NTN (Socher et al., 2013)
in the respect that we do not share any parameter between relations. Our overall scoring
function is similar to this model with a single layer, with the fundamental difference that
we use different embedding spaces and do not use any non-linear transfer function, which
results in a facilitated training (for instance, the gradients have a larger magnitude). Table
1 details the scoring function of some of the aforementioned models.

3.2 Term Combination

We study two strategies for combining the bigram and trigram scores as indicated in Equa-
tion (1). In both cases, both s1 and s2 are first trained separately as we detail in Section 4
and then combined. The difference between our two strategies depends on whether we
jointly update (or fine-tune) the parameters of s1 and s2 in a second phase or not.

3.2.1 Fine Tuning

This first strategy, denoted Tatec-ft, simply consists in summing both scores following
Equation (1).

sFT (h, `, t) =
〈
r`1
∣∣eh1〉+

〈
r`2
∣∣et1〉+

〈
eh1
∣∣D∣∣et1〉+

〈
eh2
∣∣R`
∣∣et2〉

All parameters of s1 and s2 (and hence of s) are then fine-tuned in a second training phase
to accommodate for their combination. This version could be trained directly without
pre-training s1 and s2 separately but we show in our experiments that this is detrimental.

3.2.2 Linear Combination

The second strategy combines the bigram and trigram terms using a linear combination,
without jointly fine-tuning their parameters that remain unchanged after their pre-training.
The score s is hence defined as follows:

sLC(h, `, t) = δ`1
〈
r`1
∣∣eh1〉+ δ`2

〈
r`2
∣∣et1〉+ δ`3

〈
eh1
∣∣D∣∣et1〉+ δ`4

〈
eh2
∣∣R`
∣∣et2〉

The combination weights δ`i depend on the relationship and are learned by optimizing the
ranking loss (defined later in (6)) using L-BFGS, with an additional quadratic penalization

term,
∑

`
||δ`||22
σ`+ε

, where δ` contains the combination weights for relation `, and σ are con-
strained to

∑
` σ` = α (α is a hyperparameter). This version of Tatec is denoted Tatec-lc

in the following.
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h-th relation

l-th entity

t-th entity

Figure 3: The entry (h,l,t) of the tensor indicates if the relation l holds between the entities
h and t.

3.3 Interpretation and Motivation of the Model

This section discusses the motivations underlying the parameterization of Tatec, and in
particular our choice of 2-way model to complement the 3-way term.

3.3.1 2-Way Interactions as Fiber Biases

As a first motivation for having both a 2-way and a 3-way model, we use an analogy with
matrix factorization. It is common in matrix factorization techniques for collaborative
filtering to add biases (also called offsets or intercepts) to the model. For instance, a critical
step of the best-performing techniques of the Netflix prize was to add user and item biases,
i.e. to approximate a user-rating Rui according to (see e.g. Koren, Bell, & Volinsky, 2009):

Rui ≈
〈
Pu

∣∣Qi

〉
+ αu + βi + µ (4)

where P ∈ RU×k, with each row Pu containing the k-dimensional embedding of the user
(U is the number of users), Q ∈ RI×k containing the embeddings of the I items, αu ∈ R a
bias only depending on a user and βi ∈ R a bias only depending on an item (µ is a constant
that we do not consider further on).

The 2-way + 3-way interaction model we propose can be seen as the 3-mode tensor ver-
sion of this “biased” version of matrix factorization: the trigram term (T) is the collective
matrix factorization parameterization of the RESCAL algorithm (Nickel et al., 2011) and
plays a role analogous to the term

〈
Pu

∣∣Qi

〉
of the matrix factorization model for collabo-

rative filtering (4).
The bigram term (B) then plays the role of biases for each fiber of the tensor,1 i.e.

s1(h, `, t) ≈ B1
l,h +B2

l,t +B3
h,t (5)

and thus is the analogue for tensors to the term αu + βi in the matrix factorization model
(4). The exact form of s1(h, `, t) given in (B) corresponds to a specific form of collective

1. Fibers are the higher order analogue of matrix rows and columns for tensors and are defined by fixing
every index but one.
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factorization of the fiber-wise bias matrices B1 =
[
B1
l,h

]
l∈[[L]],h∈[[E]]

, B2 and B3 of Equation

(5). We do not exactly learn one bias by fiber because many such fibers have very little
data, while, as we argue in the following, the specific form of collective factorization we
propose in (B) should allow to share relevant information between different biases. Note
that whereas a tensor of dimensions n×m× n (in general, in this problem the same set of
entities is considered for both the head and the tail) has 2mn+n2 biases, Tatec computes
such biases by means of linear combinations of n+ 2m embeddings, which allows a learning
transfer across them.

3.3.2 The Need for Multiple Embeddings

A key feature of Tatec is to use different embedding spaces for the 2-way and 3-way terms,
while existing approaches that have both types of interactions use the same embedding
space (Jenatton et al., 2012; Socher et al., 2013). We motivate this choice in this section.

It is important to notice that biases in the matrix factorization model (4), or the bi-
gram term in the overall scoring function (1) do not affect the model expressiveness, and
in particular do not affect the main modeling assumption that embeddings should have low
rank. The user/item-biases in (4) only boil down to adding two rank-1 matrices α1T and
1βT to the factorization model. Since the rank of the matrix is a hyperparameter, one may
simply add 2 to this hyperparameter and get a slightly larger expressiveness than before,
with reasonably little impact since the increase in rank would remain small compared to
its original value (which is usually 50 or 100 for large collaborative filtering data sets). The
critical feature of these biases in collaborative filtering is how they interfere with capacity
control terms other than the rank, namely the 2-norm regularization: for instance, Koren
et al. (2009) adjust all terms of (4) using squared error as a measure of fit with a regular-

ization term λ
(
‖Pu‖22 + ‖Qi‖22 + α2

u + β2
i

)
, where λ > 0 is the regularization parameter.

This kind of regularization is a weighted trace norm regularization on PQT (Salakhutdinov
& Srebro, 2010). Leaving aside the “weighted” part, the idea is that at convergence, the

quantity λ
(∑

u ‖Pu‖22 +
∑

i ‖Qi‖22
)

is equal to 2λ times the sum of the singular values of

the matrix PQT . However, λ‖α‖22, which is the regularization applied to user biases, is not
2λ times the singular value of the rank-one matrix α1T , which is equal to

√
I‖α‖2, and can

be much larger than ‖α‖22. Thus, if the pattern user+item biases exists in the data, but
very weakly because it is hidden by stronger factors, it will be less regularized than others
and the model should be able to capture it. Biases, which are allowed to fit the data more
than other factors, offer the opportunity of relaxing the control of capacity on some parts of
the model but this translates into gains if the patterns that they capture are indeed useful
patterns for generalization. Otherwise, this ends up relaxing the capacity to lead to more
overfitting.

Our bigram terms are closely related to the trigram term: the terms
〈
r`1
∣∣eh1〉 and

〈
r`2
∣∣et1〉

can be added to the trigram term by adding constant features in the entities’ embeddings,
and

〈
eh1
∣∣D∣∣et1〉 is directly in an appropriate quadratic form. Thus, the only way to gain

from the addition of bigram terms is to ensure that they can capture useful patterns, but
also that capacity control on these terms is less strict than on the trigram terms. In tensor
factorization models, and especially 3-way interaction models with parameterizations such
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as (T), capacity control through the regularization of individual parameters is still not well
understood, and sometimes turns out to be more detrimental than effective in experiments.
The only effective parameter is the admissible rank of the embeddings, which leads to the
conclusion that the bigram term can be really useful in addition to the trigram term if
higher-dimensional embeddings are used. Hence, in absence of clear and concrete way of
effectively controlling the capacity of the trigram term, we believe that different embedding
spaces should be used.

3.3.3 2-Way Interactions as Entity Types+Similarity

Having a part of the model that is more expressive, but less regularized (see Subsection
4.2) than the other part is only useful if the patterns it can learn are meaningful for the
prediction task at hand. In this section, we give the motivation for our 2-way interaction
term for the task of modeling multi-relational data.

Most relationships in multi-relational data, and in knowledge bases like FB15k in par-
ticular, are strongly typed, in the sense that only well-defined and specific subsets of enti-
ties can be either heads or tails of selected relationships. For instance, a relationship like
capital of expects a (big) city as head and a country as tail for any valid relation. Large
knowledge bases have huge amounts of entities, but those belong to many different types.
Identifying the expected types of head and tail entities of relationships, with an appropriate
granularity of types (e.g. person or artist or writer), is likely to filter out 95% of the
entity set during prediction. The exact form of the first two terms

〈
r`1
∣∣eh1〉 +

〈
r`2
∣∣et1〉 of

the 2-way interaction model (B), which corresponds to a low-rank factorization of the per
bias matrices (head, label) and (tail, label) in which head and tail entities have the same
embeddings, is based on the assumption that the types of entities can be predicted based
on few (learned) features, and these features are the same for predicting head-types as for
predicting tail-types. As such, it is natural to share the entities embeddings in the first two
terms of (B).

The last term,
〈
eh1
∣∣D∣∣et1〉, is intended to account for a global similarity between entities.

For instance, the capital of France can easily be predicted by looking for the city with
strongest overall connections with France in the knowledge base. A country and a city may
be strongly linked through their geographical positions, independent of their respective
types. The diagonal matrix D allows to re-weight features of the embedding space to
account for the fact that the features used to describe types may not be the same as those
that can describe the similarity between objects of different types. The use of a diagonal
matrix is strictly equivalent to using a general symmetric matrix in place of D.2 The
reason for using a symmetric matrix comes from the intuition that the direction of many
relationships is arbitrary (i.e. the choice between having triples “Paris is capital of France”
rather than “France has capital Paris”), and the model should be invariant under arbitrary
inversions of the directions of the relationships (in the case of an inversion of direction,
the relations vectors r`1 and r`2 are swapped, but all other parameters are unaffected). For

2. We can see the equivalence by taking the eigenvalue decomposition of a symmetric D: apply the change
of basis to the embeddings to keep only the diagonal part of D in the term

〈
eh
1

∣∣D∣∣et
1

〉
, and apply the

reverse transformation to the vectors r`1 and r`2. Note that since rotations preserve Euclidean distances,
the equivalence still holds under 2-norm regularization of the embeddings.
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Table 1: Scoring function for several models of the literature. Capitalized letters
denote matrices and lower cased ones, vectors.

Model Score (s(h, `, t))
TransE ||eh + r` − et||2
TransH ||(eh −

〈
w`
∣∣ehw`

〉
) + r` − (et −

〈
w`
∣∣etw`

〉
)||22

TransR ||
〈
eh
∣∣M`

〉
+ r` −

〈
et
∣∣M`

〉
||2

RESCAL
〈
eh
∣∣R`
∣∣et
〉

LFM
〈
y
∣∣R`
∣∣y′〉+

〈
eh
∣∣R`
∣∣z〉+

〈
z
∣∣R`
∣∣et
〉

+
〈
eh
∣∣R`
∣∣et
〉

tasks in which such invariance is not desirable, the diagonal matrix could be replaced by an
arbitrary matrix.

4. Training

Training Tatec is carried out using stochastic gradient descent on an objective function
comprising a data-fitting term and a regularization term. These two terms are decribed in
details in this section.

4.1 Ranking Objective

We use a ranking objective function, which is designed to give higher scores to positive
triples (facts that express true and verified information from the KB) than to negative
ones (facts that are supposed to express false information). These negative triples can be
provided by the KB, but often they are not, so we need a process to turn positive triples
into corrupted ones to carry out our discriminative training. A simple approach consists
in creating negative examples by replacing one argument of a positive triple by a random
element. This way is simple and efficient in practice but may introduce noise by creating
wrong negatives.

Let S be the set of positive triples provided by the KB, we optimize the following ranking
loss function: ∑

(h,`,t)∈S

∑
(h′,`′,t′)∈C(h,`,t)

[
γ − s(h, `, t) + s(h′, `′, t′)

]
+

(6)

where [z]+ = max(z, 0) and C(h, `, t) is the set of corrupted triples. Depending on the
application, this set can be defined in 3 different ways:

1. C(h, `, t) = {(h′, `′, t′) ∈ [[E]]× L× [[E]]|h′ 6= h and `′ 6= ` and t′ 6= t}

2. C(h, `, t) = {(h′, `, t′) ∈ [[E]]× L× [[E]]|h′ 6= h or t′ 6= t}

3. C(h, `, t) = {(h, `′, t) ∈ [[E]]× L× [[E]]|`′ 6= `}

The margin γ is an hyperparameter that defines the minimum gap between the score of
a positive triple and its negative one’s. The stochastic gradient descent is performed in a
minibatch setting. At each epoch the data set is shuffled and split into disjoint minibatches
of m triples and 1 or 2 (see next section) negative triples are created for every positive one.
We use two different learning rates λ1 and λ2, one for the Bigram and one the Trigram
model; they are kept fixed during the whole training.
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Algorithm 1 Learning unregularized Tatec.

input Training set S = {(h, l, t)}, margin γ, learning rates λ1 and λ2
1: initialization
2: - for Bigram: e1 ← uniform(− 6√

d1
, 6√

d1
) for each entity e

3: r1, r2 ← uniform(− 6√
d1
, 6√

d1
) for each `

4: D← uniform(− 6√
d1
, 6√

d1
)

5: - for Trigram: e2 ← uniform(− 6√
d2
, 6√

d2
) for each entity e

6: R← uniform(− 6√
d2
, 6√

d2
) for each `

7: - for Tatec-ft: pre-trained weights of Bigram and Trigram
8: All the embeddings are normalized to have a 2- or Frobenius-norm equal to 1.
9: loop

10: Sbatch ← sample(S,m) // sample a training minibatch of size m
11: Tbatch ← ∅ // initialize a set of pairs of examples
12: for (h, `, t) ∈ Sbatch do
13: (h′, `′, t′)← sample a negative triple according to the selected strategy C(h, `, t)
14: Tbatch ← Tbatch ∪

{(
(h, `, t), (h′, `′, t′)

)}
// record the pairs of examples

15: end for
16: Update parameters using gradients

∑(
(h,`,t),(h′,`′,t′)

)
∈Tbatch

∇
[
γ − s(h, `, t) + s(h′, `′, t′)

]
+

:

17: - for Bigram (Eq. 2): s = s1
18: - for Trigram (Eq. 3): s = s2
19: - for Tatec-ft (Eq. 1): s = s1 + s2
20: end loop

We are interested in both Bigram and Trigram terms of Tatec to capture different
data patterns, and using a random initialization of all weights may lead to bad local minima
and thus to a poor solution. Hence, we first pre-train separately s1(h, `, t) and s2(h, `, t),
and then we use these learned weights to initialize that of the full model. Training of Tatec
is hence carried out in two phases: a (disjoint) pre-training and either a (joint) fine-tuning
for Tatec-ft or a learning of the combination weights for Tatec-lc. Both pre-training
and fine-tuning are stopped using early stopping on a validation set, and follow the training
procedure that is summarized in Algorithm 1, for the unregularized case. Training of the
linear combination weights of Tatec-lc is stopped at convergence of L-BFGS.

4.2 Regularization

Previous work on embedding models have used two different regularization strategies: either
by constraining the entity embeddings to have, at most, a 2-norm of value ρe (Garćıa-Durán
et al., 2014) or by adding a 2-norm penalty on the weights (Wang et al., 2014b; Lin et al.,
2015) to the objective function (6). In the former, which we denote as hard regularization,
regularization is performed by projecting the entity embeddings after each minibatch onto
the 2-norm ball of radius ρe. In the latter, which we denote as soft regularization, a penal-
ization term of the form [||e||22−ρ2

e]+ for the entity embeddings e is added. The soft scheme
allows the 2-norm of the embeddings to grow further than ρe, with a penalty.

To control the large capacity of the relation matrices in the Trigram model, we have
adapted the two regularization schemes: in the hard scheme, we force the relation matrices
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Table 2: Statistics of the data sets used in this paper and extracted from four knowledge
bases: FB15k, SVO, Kinships and UMLS.

Data set FB15k SVO Kinships UMLS
Entities 14,951 30,605 104 135
Relationships 1,345 4,547 26 49
Training examples 483,142 1,000,000 224,973 102,612
Validation examples 50,000 50,000 28,122 89,302
Test examples 59,071 250,000 28,121 89,302

to have, at most, a Frobenius norm of value ρl, and in the soft one, we include a penalization
term of the form [||R||2F − ρ2

l ]+ to the loss function (6) . As a result, in the soft scheme the
following regularization term is added to the loss function (6): C1[||e1||22−ρ2

e]++C2

(
[||e2||22−

ρ2
e]+ +[||R||2F −ρ2

l ]+
)
, where C1 and C2 are hyperparameters that weight the importance of

each soft constraint. In terms of practicality, the bigger flexibility of the soft version comes
with one more hyperparameter. In the following, the suffixes soft and hard are used to refer
to either of those regularization scheme. Tatec has also an other implicit regularization
factor since it is using the same entity representation for an entity regardless of its role as
head or tail.

To sum up, in the hard regularization case, the optimization problem for Tatec-ft is:

min
∑

(h,`,t)∈S

∑
(h′,`′,t′)∈C(h,`,t)

[
γ − s(h, `, t) + s(h′, `′, t′)

]
+

s.t. ||ei1||2 ≤ ρe ∀i ∈ [[E]]

||ei2||2 ≤ ρe ∀i ∈ [[E]]

||R`||F ≤ ρl ∀` ∈ [[L]]

And in the soft regularization case it is:

min
∑

(h,`,t)∈S

∑
(h′,`′,t′)∈C(h,`,t)

[γ − s(h, `, t) + s(h′, `′, t′)]+ + C1

∑
i∈[[E]]

[||ei1||22 − ρ2
e]+

+ C2

( ∑
i∈[[E]]

[||ei2||22 − ρ2
e]+ +

∑
`∈[[L]]

[||R`||2F − ρ2
l ]+
)

where s(h, `, t) =
〈
r`1
∣∣eh1〉+

〈
r`2
∣∣et1〉+

〈
eh1
∣∣D∣∣et1〉+

〈
eh2
∣∣R`
∣∣et2〉 in both cases.

5. Experiments

This section presents various experiments to illustrate how competitive Tatec is with re-
spect to several state-of-the-art models on 4 benchmarks from the literature: UMLS, Kin-
ships, FB15k and SVO. The statistics of these data sets are given in Table 2. All versions
of Tatec and of its components Bigram and Trigram are compared with the state-of-
the-art models for each database.

5.1 Experimental Setting

This section details the protocols used in our various experiments.
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5.1.1 Datasets and Metrics

Our experimental settings and evaluation metrics are borrowed from previous works, so as
to allow for result comparisons.

UMLS/Kinships Kinships (Denham, 1973) is a KB expressing the relational structure
of the kinship system of the Australian tribe Alyawarra, and UMLS (McCray, 2003) is
a KB of biomedical high-level concepts like diseases or symptoms connected by verbs like
complicates, affects or causes. For these data sets, the whole set of possible triples,
positive or negative, is observed. We used the area under the precision-recall curve as metric.
The dataset was split in 10-folds for cross-validation: 8 for training, 1 for validation and
the last one for test. Since the number of available negative triples is much bigger than the
number of positive triples, the positive ones of each fold are replicated to match the number
of negative ones.3 These negative triples correspond to the first setting of negative examples
of Section 4.1. The number of training epochs was fixed to 100. Bigram, Trigram and
Tatec models were validated every 10 epochs using the AUC under the precision-recall
curve as validation criterion over 1,000 randomly chosen validation triples - keeping the
same proportion of negative and positive triples. For TransE, which we ran as baseline,
we validated every 10 epochs as well.

FB15k Introduced by Bordes et al. (2013b), this data set is a subset of Freebase, a very
large database of generic facts gathering more than 1.2 billion triples and 80 million entities.
For evaluation on it, we used a ranking metric. The head of each test triple is replaced by
each of the entities of the dictionary in turn, and the score is computed for each of them.
These scores are sorted in descending order and the rank of the correct entity is stored. The
same procedure is repeated when removing the tail instead of the head. The mean of these
ranks is the mean rank, and the proportion of correct entities ranked in the top 10 is the
hits@10. This is called the raw setting. In this setting correct positive triples can be ranked
higher than the target one and hence be counted as errors. In order to reduce this noise in
the measure, and thus granting a clearer view on ranking performance, we remove all the
positive triples that can be found in either the training, validation or testing set, except the
target one, from the ranking. This setting is called filtered (Garćıa-Durán et al., 2014).

Since FB15k is made up only of positive triples, the negative ones have to be generated.
To do that, in each epoch we generate two negative triples per positive by replacing a single
unit of the positive triple by a random entity (once the head and once the tail). This
corruption approach implements the prior knowledge that unobserved triples are likely to be
invalid, and has been widely used in previous work when learning embeddings of knowledge
bases or words in the context of language models. These negative triples correspond to
the second setting of negative examples of Section 4.1. We ran 500 training epochs for
both TransE, Bigram, Trigram and Tatec, and using the final filtered mean rank as
validation criterion. If several models statistically have similar filtered mean ranks, we take
the hits@10 as secondary validation criterion.4 Since for this dataset, training, validation

3. This replication process is carried out only in training.
4. Garćıa-Durán et al. (2014) previously reported results on both FB15k and SVO with TransE and

Tatec. However, in this preliminary work, the hyperparameters were validated on a smaller validation
set and a not wide enough grid search, which led to suboptimal results. We hence decided to re-run the
algorithms and got major improvements.
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and test sets are fixed, to give a confidence interval to our results, we randomly split the
test set into 4 subsets before computing the evaluation metrics. We do this 5 times, and
finally we compute the mean and the standard deviation over these 20 values for mean rank
and hits@10.

SVO SVO is a database of nouns connected by verbs through subject-verb-direct object
relations and extracted from Wikipedia articles. It has been introduced by Jenatton et al.
(2012). For this database we perform a verb prediction task, where one has to assign
the correct verb given two nouns acting as subject and direct object; in other words, we
present results of ranking label given head and tail. As for FB15k, two ranking metrics
are computed, the mean rank and the hits@5%, which is the proportion of predictions for
which the correct verb is ranked in the top 5% of the total number of verbs, that is within
the top 5% of 4,547 ≈ 227. We use the raw setting for SVO. Due to the different kind
of task (predicting label instead of predicting head/tail), the negative triples have been
generated by replacing the label by a random verb. These negative triples correspond to
the third setting of negative examples of Section 4.1. For TransE, Bigram and Trigram
the number of epochs has been fixed to 500 and they were validated every 10 epochs. For
Tatec we ran only 10 epochs, and validated for each. The mean rank has been chosen as
validation criterion over 1,000 random validation triples.

5.1.2 Implementation

To pre-train our Bigram and Trigram models we validated the learning rate for the
stochastic gradient descent among {0.1, 0.01, 0.001, 0.0001} and the margin among {0.1, 0.25,
0.5, 1}. The radius ρe determining the value from which the L2-norm of the entity embed-
dings are penalized has been fixed to 1, but the radius ρl of the Trigram model has
been validated among {0, 1, 5, 10, 20}. Due to the different size of these KBs, the embed-
ding dimension d has been validated in different ranges. For SVO it has been selected
among {25, 50}, among {50, 75, 100} for FB15k and among {10, 20, 40} for UMLS and
Kinships. When the soft regularization is applied, the regularization parameter has been
validated among {0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100}. For fine-tuning Tatec, the learning
rates were selected among the same values for learning the Bigram and Trigram models
in isolation, independent of the values chosen for pre-training, and so are the margin and
for the penalization terms C1 and C2 if the soft regularization is used. The configurations of
the model selected using their performance on the validation set are given in Appendix A.

Training of the combination weights of Tatec-lc is carried out in an iterative way, by
alternating optimization of δ parameters via L-BFGS, and update of σ parameters using

σ∗` = α||δ`||2∑
k ||δ

k||2
, until some stopping criterion is reached. The δ parameters are initialized to

1 and the α value is validated among {0.1, 1, 10, 50, 100, 200, 500, 1000}.

5.1.3 Baselines

Variants We performed breakdown experiments with 2 different versions of Tatec to
assess the impact of its various aspects. These variants are:

• Tatec-ft-no-pretrain: Tatec-ft without pre-training s1(h, l, t) and s2(h, l, t).
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Table 3: Test AUC under the precision-recall curve on UMLS and Kinships for

models from the literature (top) and Tatec (bottom). Best performing methods are in bold.

Model UMLS Kinships

SME(linear) 0.983 ± 0.003 0.907 ± 0.008
RESCAL 0.98 0.95
LFM 0.990 ± 0.003 0.946 ± 0.005
TransE-soft 0.734 ± 0.033 0.135 ± 0.005
TransE-hard 0.706 ± 0.034 0.134 ± 0.005

Bigram-hard 0.936 ± 0.020 0.140 ± 0.004
Trigram-hard 0.980 ± 0.006 0.943 ± 0.009
Tatec-ft-hard 0.984 ± 0.004 0.876 ± 0.012
Bigram-soft 0.936 ± 0.018 0.141 ± 0.003
Trigram-soft 0.983 ± 0.004 0.948 ± 0.008
Tatec-ft-soft 0.985 ± 0.004 0.919 ± 0.008
Tatec-lc-soft 0.985 ± 0.004 0.941 ± 0.009

• Tatec-ft-shared: Tatec-ft but sharing the entities embeddings between s1(h, l, t)
and s2(h, l, t) and without pre-training.

The experiments with these 3 versions of Tatec have been performed in the soft regu-
larization setting. Their hyperparameters were chosen using the same grid as above.

Previous Models We retrained TransE ourselves with the same hyperparameter grid
as for Tatec and used it as a running baseline on all datasets, using either soft or hard
regularization. In addition, we display the results of the best performing methods of the
literature on each dataset, with values extracted from the original papers.

On UMLS and Kinships, we also report the performance of the 3-way models RESCAL,
LFM and the 2-way SME(linear). On FB15k, recent variants of TransE, such as TransH,
TransR and cTransR (Lin et al., 2015) have been chosen as main baselines. Both in
TransH and TransR/cTransR, the optimal values of the hyperparameters as the di-
mension, the margin or the learning rate have been selected within similar ranges as those
for Tatec. On SVO, we compare Tatec with three different approaches: Counts, the
2-way model SME(linear) and the 3-way LFM. Counts is based on the direct estimation of
probabilities of triples (head, label, tail) by using the number of occurrences of pairs (head,
label) and (label, tail) in the training set. The results for these models have been extracted
from (Jenatton et al., 2012), and we followed their experimental setting. Since the results
in this paper are only available in the raw setting, we restricted our experiments to this
configuration on SVO as well.

5.2 Results

We recall that the suffixes soft or hard refer to the regularization scheme used, and the suffixes
ft and lc to the combination strategy of Tatec.
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Table 4: Test results on FB15k and SVO for models from the literature (top), Tatec

(middle) and variants (bottom). Best performing methods are in bold. The filtered setting is used

for FB15k and the raw setting for SVO.

FB15k SVO
Model Mean Rank Hits@10 Mean Rank Hits@5%

Counts - - 517.4 72
SME(linear) - - 199.6 77
LFM - - 195 78
TransH 87 64.4 - -
TransR 77 68.7 - -
cTransR 75 70.2 - -
TransE-soft 50.7 ± 2.0 71.5 ± 0.3 282.5 ± 1.7 70.6 ± 0.2
TransE-hard 50.6 ± 2.0 71.5 ± 0.3 282.8 ± 2.3 70.6 ± 0.2

Tatec-no-pretrain 97.1 ± 3.9 65.7 ± 0.2 - -
Tatec-shared 94.8 ± 3.2 63.4 ± 0.3 - -
Bigram-hard 94.5 ± 2.9 67.5 ± 0.4 219.2 ± 1.9 77.6 ± 0.1
Trigram-hard 137.7 ± 7.1 56.1 ± 0.4 187.9 ± 1.2 79.5 ± 0.1
Tatec-ft-hard 59.8 ± 2.6 77.3 ± 0.3 188.5 ± 1.9 79.8 ± 0.1
Bigram-soft 87.7 ± 4.1 70.0 ± 0.2 211.9 ± 1.8 77.8 ± 0.1
Trigram-soft 121.0 ± 7.2 58.0 ± 0.3 189.2 ± 2.1 79.5 ± 0.2
Tatec-ft-soft 57.8 ± 2.3 76.7 ± 0.3 185.4 ± 1.5 80.0 ± 0.1
Tatec-lc-soft 68.5 ± 3.2 72.8 ± 0.2 182.6 ± 1.2 80.1 ± 0.1

5.2.1 UMLS and Kinships

The results for these two knowledge bases are provided in Table 3. In UMLS, most models
are performing well. The combination of the Bigram and Trigram models is slightly
better than the Trigram alone but it is not significant. It seems that the constituents
of Tatec, Bigram and Trigram, do not encode very complementary information and
their combination does not bring much improvement. Basically, on this dataset, many
methods are somewhat as efficient as the best one, LFM. The difference between TransE
and Bigram on this dataset illustrates the potential impact of the diagonal matrix D,
which does not constrain embeddings of both head and tail entities of a triple to be similar.

Regarding Kinships, there is a big gap between 2-way models like TransE and 3-
way models like RESCAL. The cause of this deterioration comes from a peculiarity of the
positive triples of this KB: each entity appears 104 times – the number of entities in this
KB – as head and it is connected to the 104 entities – even itself – only once. In other
words, the conditional probabilities P (head|tail) and P (tail|head) are totally uninformative.
This has a very important consequence for the 2-way models since they highly rely on such
information: for Kinships, the interaction head-tail is, at best, irrelevant, though in practice
this interaction may even introduce noise.

Due to the poor performance of the Bigram model, when it is combined with the
Trigram model this combination can turn out to be detrimental w.r.t. the performance
of Trigram in isolation: 2-way models are quite noisy for this KB and we cannot take
advantage of them. On the other side the Trigram model logically reaches a very similar
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Table 5: Test results on FB15k. Proportion of entities ranked in the Top 1.

Model Hits@1
TransE-soft 28.1
Bigram-soft 27.2
Trigram-soft 24.9
Tatec-ft-soft 37.8

performance to RESCAL, and similar to LFM as well. Performance of Tatec versions
based on fine-tuning of the parameters (Tatec-ft) are worse than that of Trigram because
Bigram degrades the model. Tatec-lc, using a – potentially sparse – linear combination
of the models, does not have this drawback since it can completely cancel out the influence
of bigram model. As a conclusion from the experiments in this KB, when one of the
components of Tatec is quite noisy, we should directly remove it and Tatec-lc can do it
automatically. The soft regularization setting seems to be slightly better also.

5.2.2 FB15k

Table 4 (left) displays results on FB15k. Unlike for Kinships, here the 2-way models
outperform the 3-way models in both mean rank and hits@10. The simplicity of the 2-way
models seems to be an advantage in FB15k: this is something that was already observed
by Yang, Yih, He, Gao, and Deng (2014a). The combination of the Bigram and Trigram
models into Tatec leads to an impressive improvement of the performance, which means
that for this KB the information encoded by these 2 models are complementary. Tatec
outperforms all the existing methods – except TransE in mean rank – with a wide margin
in hits@10. Bigram-soft performs roughly like cTransR, and better than its counterpart
Bigram-hard. Though Trigram-soft is better than Trigram-hard as well, Tatec-ft-soft

and Tatec-ft-hard converge to very similar performances. Fine-tuning the parameters is
there better than simply using a linear combination even if Tatec-lc still performs well.

Tatec-ft outperforms both variants Tatec-shared and Tatec-no-pretrain by a
wide margin, which confirms that both pre-training and the use of different embeddings
spaces are essential to properly collect the different data patterns of the Bigram and Tri-
gram models: by sharing the embeddings we constrain too much the model, and without
pre-training Tatec is not able to encode the complementary information of its constituents.
The performance of Tatec in these cases is in-between the performances of the soft version
of the Bigram and Trigram models, which indicates that they converge to a solution
that is not even able to reach the best performance of their constituent models. Table 5
displays the Hits@1 for several of these models. Whereas the differences in the performance
of Bigram and Trigram are not so large as the ones shown in hits@10, Tatec is still the
best model by a wide margin.

We also broke down the results by type of relation, classifying each relationship according
to the cardinality of their head and tail arguments. A relationship is considered as 1-to-1,
1-to-M, M-to-1 or M-M regarding the variety of arguments head given a tail and vice versa.
If the average number of different heads for the whole set of unique pairs (label, tail) given a
relationship is below 1.5 we have considered it as 1, and the same in the other way around.
The number of relations classified as 1-to-1, 1-to-M, M-to-1 and M-M is 353, 305, 380 and
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Table 6: Detailed results by category of relationship. We compare our Bigrams,
Trigram and Tatec models in terms of Hits@10 (in %) on FB15k in the filtered setting
against other models of the literature. (M. stands for Many).

Task Predicting head Predicting tail
Rel. category 1-to-1 1-to-M. M.-to-1 M.-to-M. 1-to-1 1-to-M. M.-to-1 M.-to-M.
TransE-soft 76.2 93.6 47.5 70.2 76.7 50.9 93.1 72.9
TransH 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
cTransR 81.5 89 34.7 71.2 80.8 38.6 90.1 73.8
Bigram-soft 76.2 90.3 37.4 70.1 75.9 44.4 89.8 72.8
Trigram-soft 56.4 79.6 30.2 57 53.1 28.8 81.6 60.8
Tatec-ft-soft 79.3 93.2 42.3 77.2 78.5 51.5 92.7 80.7

307, respectively. The results are displayed in the Table 6. Bigram and Trigram models
cooperate in a constructive way for all the types of relationship when predicting both the
head and tail. Tatec-ft is remarkably better for M-to-M relationships.

5.2.3 SVO

Tatec achieves also a very good performance on this task since it outperforms all previous
methods on both metrics. As before, both regularization strategies lead to very similar
performances, but the soft setting is slightly better. In terms of hits@5%, Tatec outper-
forms its constituents, however in terms of mean rank the Bigram model is considerably
worse than Trigram and Tatec. The performance of LFM is in between the Trigram
and Bigram models, which confirms the fact that sharing the embeddings in the 2- and
3-way terms can actually prevent to make the best use of both types of interaction.

As for Kinships, since here the performance of Bigram is much worse than that of
Trigram, Tatec-lc is very competitive. It seems that when Bigram and Trigram
perform well for different types of relationships (such as in FB15k), then combining them
via fine-tuning (i.e. Tatec-ft) allows to get the best of both; however, if one of them is
consistently performing worse on most relationships as it seems to happen for Kinships
and SVO, then Tatec-lc is a good choice since it can cancel out any influence of the bad
model. Table 7 depicts training times of various models on FB15k, presenting the relative
time w.r.t. TransE for one training epoch. To speedup training, we could follow one or
several of the following strategies:

• use adaptive learning rates in order to make convergence faster;

• train the model on GPUs, which is quite usual in the deep learning community when
working with large datasets;

• parallellize training with Hogwild (Recht, Re, Wright, & Niu, 2011).

We could also speed up the validation. For example, since the entities and relationships are
usually strongly typed (i.e. given a relationship, only a subset of entities are real candidates
for both the subject and object), we might consider only entities of the suitable type for a
given relationship and role. Nevertheless, given that scalability is not a major issue on the
datasets used in this paper we did not look for any speed optimization here.
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Table 7: Relative training times with respect to TransE on FB15k for running one
epoch on a single core.

Model Relative train. time
Bigram-soft × 1.4
Trigram-soft × 3.6
Tatec-ft-soft × 4.0

5.3 Illustrative Experiments

This last experimental section provides some illustrations and insights on the performance
of Tatec and TransE.

5.3.1 TransE and Symmetrical Relationships

TransE has a peculiar behavior: it performs very well on FB15k but quite poorly on
all the other datasets. Looking in detail at FB15k, we noticed that this database is
made up of a lot of pairs of symmetrical relationships such as /film/film/subjects and
/film/film subject/films, or /music/album/genre and /music/genre/albums. The
simplicity of the translation model of TransE works well when, for predicting the validity
of an unknown triple, the model can make use of its symmetrical counterpart if it was
present in the training set. Specifically, 45,817 out of 59,071 test triples of FB15k have
a symmetrical triple in the training set. If we split the test triples into two subsets, one
containing the test triples for which a symmetrical triple has been used in the learning
stage and the other containing those ones for which a symmetrical triple does not exist
in the training set, the overall mean rank of TransE of 50.7 is decomposed into a mean
rank of 17.5 and 165.7, and the overall hits@10 of 71.5 is decomposed into 76.6 and 53.7,
respectively. TransE makes a very adequate use of this particular feature. In the original
TransE paper (Bordes et al., 2013b), the algorithm is shown to perform well on FB15k
and on a dataset extracted from the KB WordNet (Miller, 1995): we suspect that the
WordNet dataset also contains symmetrical counterparts of test triples in the training set
(such as hyperonym vs hyponym, meronym vs holonym).

Tatec can also make use of this information and is, as expected, much better on relations
with symmetrical counterparts in train: on FB15k, the mean rank of Tatec-ft-soft is of
17.5 for relations with symmetrical counterparts 197.4 instead and hits@10 is of 84.4%
instead of 50%. Yet, as results on other datasets show, Tatec is also able to generalize
when more complex information needs to be taken into account.

5.3.2 Anecdotal Examples

Some examples of predictions by Tatec on FB15k are displayed in Table 8. In the first
row, we want to know the answer to the question What is the location of the polish

national football team?; among the possible answers we find not only locations, but
more specifically countries, which makes sense for a national team. For the question What is

the topic of the film ’Remember the titans’? the top-10 candidates may be poten-
tial film topics. Same for the answers to the question Which religion does Noam Chomsky

belong to? that can all be typed as religions. In these examples, both sides of the re-
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Table 8: Examples of predictions on FB15k. Given an entity and a relation type from a

test triple, Tatec fills in the missing slot. In bold is the expected correct answer.

Triple Top-10 predictions

(poland national football team, /sports team/location, ?)

Mexico, South Africa, Republic of Poland
Belgium, Puerto Rico, Austria, Georgia

Uruguay, Colombia, Hong Kong

(?, /film/film subject/films , remember the titans)

racism, vietnam war, aviation, capital punishment

television, filmmaking, Christmas

female, english language, korean war

(noam chomsky, /people/person/religion, ?)

atheism, agnosticism, catholicism, ashkenazi jews

buddhism, islam, protestantism

baptist, episcopal church, Hinduism

(?, /webpage/category, official website)

supreme court of canada, butch hartman, robyn hitchcoc, mercer university

clancy brown, dana delany, hornets

grambling state university, dnipropetrovsk, juanes
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Figure 4: Embeddings obtained by Trigram and Bigram models and projected in
2-D using t-SNE. MPNS stands for Main Profession is Not Singer.

lationship are clearly typed: a certain type of entity is expected in head or tail (country,
religion, person, movie, etc.). The operators of Tatec may then operate on specific regions
of the embedding space. On the contrary, the relationship /webpage/category is an exam-
ple of non-typed relationship. This one, which could actually be seen as an attribute rather
than a relationship, indicates if the entity head has a topic website or an official website.
Since many types of entities can have a webpage and there is little to no correlation among
relationships, predicting the left-hand side argument is nearly impossible.

Figures 4a and 4b show 2D projections of embeddings of selected entities for the Tri-
gram and Bigram models trained on FB15k, respectively, obtained by projecting them
using t-SNE (Van der Maaten & Hinton, 2008). This projection has been carried out only
for Freebase entities whose profession is either singer or attorney in the USA. We can
observe in Figure 4a that all attorneys are clustered and separated from the singers, except
one, which corresponds to the multifaceted Fred Thompson5. However, embeddings of the
singers are not clearly clustered: since singers can appear in a multitude of triples, their
layout is the result of a compendium of (sometimes heterogeneous) categories. To illustrate
graphically the different data patterns to which Bigram and Trigram respond, we focus
on the small cluster made up of Japanese singers that can be seen in Figure 4a (Trigram).
In Figure 4b (Bigram) however, these same entities are more diluted in the whole set of

5. Apart from being an attorney, he is an actor, a radio personality, a lawyer and a politician
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Table 9: Examples of predictions on SVO. Given two nouns acting as subject and direct

object from a test triple, Tatec predicts the best fitting verb. In bold is the expected correct answer.

Triple Top-10 predictions

(bus, ? , service)
use, provide, run, have, include

carry, offer, enter, make, take

(emigrant, ? , country)
flee, become, enter, leave, form

dominate, establish, make, move, join

(minister, ?, protest)
lead, organize, join, involve, make

participate, conduct, stag, begin, attend

(vessel, ?, coal)
use, transport, carry, convert, send

make, provide, supply, sell, contain

(tv channel, ?, video)
feature, make, release, use, produce

have, include, call, base, show

(great britain, ?, north america)
include, become, found, establish, dominate

name, have, enter, form, run

singers. Looking at the neighboring embeddings of these Japanese singers entities in Figure
4b, we find entities highly connected to japan like yoko ono – born in Japan, vic mignogna,
greg ayres, chris patton or laura bailey – all of them worked in the dubbing industry
of Japanese anime movies and television series. This shows the impact of the interaction
between heads and tails in the Bigram model: it tends to push together entities connected
in triples whatever the relation. In this case, this forms a Japanese cluster.

Table 9 shows examples of predictions on SVO. In the first example, though run is
the target verb for the pair (bus, service), other verbs like provide or offer are good
matches as well. Similarly, non-target verbs like establish or join, and lead, participate
or attend are good matches for the second and third examples ((emigrant, country) and
(minister, protest)) respectively. The fourth and fifth instances show an example of
very heterogeneous performance for a same relationship (the target verb is transport in
both cases) which can be easily explained from a semantic point of view: transport is a
very good fit given the pair (vessel, coal), whereas a TV channel transports video is
not a very natural way to express that one can watch videos in a TV channel, and hence
this leads to a very poor performance – the target verb is ranked #696. The sixth example
is particularly interesting, since even if the target verb, colonize, is ranked very far in the
list (#344), good candidates for the pair (Great Britain, North America) can be found
in the top-10. Some of them have a similar representation as colonize, because they are
almost synonyms, but they are ranked much higher. This is an effect of the verb frequency.

As illustrated in Figure 5a, the more frequent a relationship is, the higher its Frobenius
norm is; hence, verbs with similar meanings but unbalanced frequencies can be ranked
differently, which explains that a rare verb, such as colonize, can be ranked much worse
than other semantically similar words. A consequence of this relation between the Frobenius
norm and the appearance frequency is that usual verbs tend to be highly ranked even though
sometimes they are not good matches, due to the influence of the norm in the score. In
that figure, we can see that the Frobenius norm of the relation matrices are larger in the
regularized (soft) case than in the unregularized case. This happens because we fixed a
very large value for both C2 and ρl in the regularized case (ρe is fixed to 1). It imposes
a strong constraint on the norm of the entities but not on the relationship matrices and
makes the Frobenius norm of these matrices absorb the whole impact of the norm of the
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Figure 5: Indicators of the behavior of Tatec-ft on FB15k according to to the number
of training triples of each relationship.

Table 10: Examples of predictions on SVO for a regularized and an unregularized
Trigram. In bold is the expected correct answer.

Triple
Top-10 predictions

Unregularized Regularized (soft)

(bus, ? , service)
use, operate, offer, call, build, provide, use, have, include, make,

include, have, know, make, create offer, take, carry, serve, run

(emigrant, ? , country)
use, represent, save, flee, visit, flee, become, come, enter, found,

come, make, leave, create, know include, form, make, leave, join

(minister, ? , protest)
bring, lead, reach, have, become, lead, organize, conduct, participate, join
say, include, help, leave, appoint make, involve, support, suppress, raise

(vessel, ? , coal)
take, use, have, carry, make, use, transport, make, carry, deliver,

hold, move, become, fill, serve send, contain, supply, leave, provide

(tv channel, ?, video)
make, include, write, know, have, release, make, feature, produce, have,

produce, use, play, give, become include, use, take, show, base

(great britain, ?, north america)
have, use, include, make, leave, include, found, become, run,name,

become, know, take, call, build move, annex, form, establish, dominate

score, and, thus, the impact of the verb frequency. We could down-weight the importance
of the verb frequency by tuning the parameters ρl and C2 to enforce a stronger constraint.
Figure 10 shows the effect of the verb frequency in these two models when predicting the
same missing verb as in Table 9.

Breaking down the performance by relationship, this is translated into a strong relation
between the performance of a relationship and its frequency (see Figure 5b). However, the
same relation between the 2-norm of the entities embeddings and their frequency is not
observed, which can be explained given that an entity can appear in the left and right
argument in an unbalanced way.

6. Conclusion

This paper presents Tatec, a tensor factorization method that satisfactorily combines 2-
and 3-way interaction terms to obtain a performance better than the best of either con-
stituent. Different data patterns are properly encoded thanks to the use of different embed-
ding spaces and of a two-phase training (pre-training and fine-tuning/linear-combination).
Experiments on four benchmarks for different tasks and with different quality measures
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prove the strength and versatility of this model, whose scoring function, as we argue in Sec-
tion 3.1, is tightly connected to other energy-based model of the literature such as TransE,
RESCAL or LFM. Our experiments also allow us to draw some conclusions about the
two usual regularization schemes used so far in these embedding-based models: they both
achieve similar performances, even if soft regularization appears slightly more efficient but
with one extra-hyperparameter.

Our work uses FB15k as its main testbed but our model is not tied to any KB schema;
as long as data is formatted as triples, Tatec can be applied. Hence, it could be directly
applied to many Linked Data settings especially if they are in RDF format.
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Appendix A. Optimal Hyperparameters

The optimal configurations for UMLS are:
- TransE-soft: d = 40, λ = 0.01, γ = 0.5, C = 0;
- Bigram-soft: d1 = 40, λ1 = 0.01, γ = 0.5, C = 0.1;
- Trigram-soft: d2 = 40, λ2 = 0.01, γ = 1, C = 0.1, ρl = 5;
- Tatec-soft: d1 = 40, d2 = 40, λ1 = λ2 = 0.001, γ = 1, C1 = C2 = 0.01, ρl = 5;
- TransE-hard: d = 40, λ = 0.01, γ = 0.1;
- Bigram-hard: d1 = 40, λ1 = 0.01, γ = 0.5;
- Trigram-hard: d2 = 40, λ2 = 0.01, γ = 1, ρl = 10;
- Tatec-hard: d1 = 40, d2 = 40, λ1 = λ2 = 0.001, γ = 1, ρl = 10.
- Tatec-linear-comb: d1 = 40, d2 = 40, γ = 0.5, α = 50.

The optimal configurations for Kinships are:
- TransE-soft: d = 40, λ = 0.01, γ = 1, C = 0;
- Bigram-soft: d1 = 40, λ1 = 0.01, γ = 1, C = 1;
- Trigram-soft: d2 = 40, λ2 = 0.01, γ = 0.5, C = 0.1, ρl = 5;
- Tatec-soft: d1 = 40, d2 = 40, λ1 = λ2 = 0.001, γ = 1, C1 = 100, C2 = 0.0001, ρl = 10;
- TransE-hard: d = 40, λ = 0.01, γ = 1;
- Bigram-hard: d1 = 40, λ1 = 0.01, γ = 1;
- Trigram-hard: d2 = 40, λ2 = 0.01, γ = 0.5, ρl = 10;
- Tatec-hard d1 = 40, d2 = 40, λ1 = λ2 = 0.001, γ = 1, ρl = 10.
- Tatec-linear-comb: d1 = 40, d2 = 40, γ = 1, α = 10.

The optimal configurations for FB15k are:
- TransE-soft: d = 100, λ = 0.01, γ = 0.25, C = 0.1;
- Bigram-soft: d1 = 100, λ1 = 0.01, γ = 1, C = 0;
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- Trigram-soft: d2 = 50, λ2 = 0.01, γ = 0.25, C = 0.001, ρl = 1;
- Tatec-soft: d1 = 100, d2 = 50, λ1 = λ2 = 0.001, γ = 0.5, C1 = C2 = 0;
- TransE-hard: d = 100, λ = 0.01, γ = 0.25;
- Bigram-hard: d1 = 100, λ1 = 0.01, γ = 0.25;
- Trigram-hard: d2 = 50, λ2 = 0.01, γ = 0.25, ρl = 5;
- Tatec-hard: d1 = 100, d2 = 50, λ1 = λ2 = 0.001, γ = 0.25, ρl = 5;
- Tatec-no-pret: d1 = 100, d2 = 50, λ1 = λ2 = 0.01, γ = 0.25, C1 = 0, C2 = 0.001, ρl = 1;
- Tatec-shared: d1 = d2 = 75, λ1 = λ2 = 0.01, γ = 0.25, C1 = C2 = 0.001, ρl = 5;
- Tatec-linear-comb: d1 = 100, d2 = 50, γ = 0.25, α = 200.

The optimal configurations for SVO are:
- TransE-soft: d = 50, λ = 0.01, γ = 0.5, C = 1;
- Bigram-soft: d1 = 50, λ1 = 0.01, γ = 1, C = 0.1;
- Trigram-soft: d2 = 50, λ2 = 0.01, γ = 1, , C = 10, ρl = 20;
- Tatec-soft: d1 = 50, d2 = 50, λ1 = λ2 = 0.0001, γ = 1, C1 = 0.1, C2 = 1, ρl = 20;
- TransE-hard: d = 50, λ = 0.01, γ = 0.5;
- Bigram-hard: d1 = 50, λ1 = 0.01, γ = 1;
- Trigram-hard: d2 = 50, λ2 = 0.01, γ = 1, ρl = 20;
- Tatec-hard: d1 = 50, d2 = 50, λ1 = λ2 = 0.0001, γ = 1, ρl = 20.
- Tatec-linear-comb: d1 = 50, d2 = 50, γ = 1, α = 50.
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