
Journal of Artificial Intelligence Research 55 (2016) 799-833 Submitted 08/15; published 03/16

An Exact Algorithm Based on MaxSAT Reasoning for the Maximum

Weight Clique Problem

Zhiwen Fang ZHIWENF@GMAIL.COM

State Key Lab. of Software Development Environment

Beihang University, Beijing, 100083, P.R. China

Chu-Min Li CHU-MIN.LI@U-PICARDIE.FR

MIS, Université de Picardie Jules Verne

Amiens 80039, France

Ke Xu KEXU@NLSDE.BUAA.EDU.CN

State Key Lab. of Software Development Environment

Beihang University, Beijing, 100083, P.R. China

Abstract

Recently, MaxSAT reasoning is shown very effective in computing a tight upper bound for a

Maximum Clique (MC) of a (unweighted) graph. In this paper, we apply MaxSAT reasoning to

compute a tight upper bound for a Maximum Weight Clique (MWC) of a wighted graph. We first

study three usual encodings of MWC into weighted partial MaxSAT dealing with hard clauses,

which must be satisfied in all solutions, and soft clauses, which are weighted and can be falsified.

The drawbacks of these encodings motivate us to propose an encoding of MWC into a special

weighted partial MaxSAT formalism, called LW (Literal-Weighted) encoding and dedicated for

upper bounding an MWC, in which both soft clauses and literals in soft clauses are weighted. An

optimal solution of the LW MaxSAT instance gives an upper bound for an MWC, instead of an

optimal solution for MWC. We then introduce two notions called the Top-k literal failed clause and

the Top-k empty clause to extend classical MaxSAT reasoning techniques, as well as two sound

transformation rules to transform an LW MaxSAT instance. Successive transformations of an LW

MaxSAT instance driven by MaxSAT reasoning give a tight upper bound for the encoded MWC.

The approach is implemented in a branch-and-bound algorithm called MWCLQ. Experimental

evaluations on the broadly used DIMACS benchmark, BHOSLIB benchmark, random graphs and

the benchmark from the winner determination problem show that our approach allows MWCLQ

to reduce the search space significantly and to solve MWC instances effectively. Consequently,

MWCLQ outperforms state-of-the-art exact algorithms on the vast majority of instances. Moreover,

it is surprisingly effective in solving hard and dense instances.

1. Introduction

Consider an undirected graph G = (V ,E), where V is a set of n vertices {v1, v2, ..., vn} and E is a

set of m edges. The density of G is computed as 2m/(n(n− 1)). A clique of G is a subset C ⊆ V
in which every pair of vertices is adjacent. On the contrary, an independent set of G is a subset

I ⊆ V in which every pair of vertices is disconnected. A vertex cover of G is a subset S ⊆ V such

that every edge in G has at least one endpoint in S. The maximum clique (MC) problem asks to find

a clique with the largest cardinality. The MC problem is a prominent combinatorial optimization

problem and it is tightly related to two other well-known graph problems, namely the maximum

c©2016 AI Access Foundation. All rights reserved.

FANG, LI, & XU

independent set (MIS) problem and the minimum vertex cover (MVC) problem. Concretely, a

maximum clique C of G is a maximum independent set of the complement graph G of G, and V \C
is a minimum vertex cover of G. Therefore, algorithms for any of the three problems can directly

be applied to solve the others in practice. In addition, most exact MC solvers take advantage of the

following relation between the size of a maximum clique and the number of independent sets. If G
can be partitioned into k independent sets, then G cannot contain a clique larger than k, because an

independent set can contribute at most one vertex to a clique.

The MC problem is NP-hard and its decision problem is NP-complete (Karp, 1972), which ap-

pears in many applications such as social network analysis (e.g., Zhang, Nie, Jiang, Chen, & Liu,

2014b; Kibanov, Atzmueller, Scholz, & Stumme, 2014). It is fixed-parameter intractable (Downey

& Fellows, 1995). Moreover, it is proved that approximating MC within |V |1−ε for any given ε > 0
is NP-hard (Zuckerman, 2006). The best polynomial-time approximation algorithm achieves an

approximation ratio of O(n(log log n)2/(log n)3) (Feige, 2004). Because of the theoretical and

practical importance of the MC problem, a huge amount of effort has been devoted to solve it by

designing two types of algorithms (also called solvers). One type is heuristic algorithms mainly

including stochastic local search (e.g., Pullan & Hoos, 2006; Cai, Su, & Sattar, 2011; Cai, Su,

Luo, & Sattar, 2013; Fang, Chu, Qiao, Feng, & Xu, 2014a). Another is exact algorithms including

branch-and-bound (BnB) search (e.g., Östergård, 2002; Régin, 2003; Tomita & Seki, 2003; Konc &

Janezic, 2007; Li & Quan, 2010b; Tomita & Kameda, 2007; Li, Fang, & Xu, 2013). Heuristic algo-

rithms are able to solve large-scale instances but cannot guarantee the optimality of their solutions.

Exact algorithms guarantee the optimality of their solutions, but the worst-case time complexity is

exponential unless P = NP .

A tight upper bound of the size of a maximum clique in a graph is essential for a BnB algorithm

to solve the MC problem efficiently. However, it is very challenging to obtain such an upper bound

in reasonable time. Most state-of-the-art BnB algorithms apply approximation coloring and inde-

pendent set partition algorithms to compute an upper bound for MC. For instance, Fahle (2002) uses

the constructive heuristic DSATUR to color vertices one by one according to their degrees. Konc

and Janezic (2007), Tomita and Kameda (2007), Li and Quan (2010b) apply the greedy strategy pro-

posed by Tomita and Seki (2003) to partition the graph into independent sets, and use the number of

independent sets in the partition as an upper bound for MC. MaxCLQ (Li & Quan, 2010b, 2010a)

encodes an MC instance into a partial MaxSAT instance and improves the upper bound based on the

independent set partition by making use of MaxSAT reasoning. The excellent performance of Max-

CLQ shows that MaxSAT reasoning technologies allows to compute a tight upper bound for MC

within reasonable time. IncMaxCLQ (Li et al., 2013) combines an incremental upper bound and

MaxSAT reasoning to compute a tight upper bound more efficiently. In addition to the independent

set partition and MaxSAT reasoning, other approaches, such as the graph matching (Régin, 2003),

are also used in the upper bounding for MC.

One generalization of the MC problem is to associate each vertex with a positive weight. The

weight of a clique is defined as the total weight of vertices in it. The maximum weight clique

(MWC) problem consists in finding a clique with the largest weight. It is computationally equivalent

to problems like the weighted set packing problem. The MWC problem appears in a variety of real-

world applications, such as protein structure predictions (Mascia, Cilia, Brunato, & Passerini, 2010),

coding theory (Zhian, Sabaei, Javan, & Tavallaie, 2013), combinatorial auctions (Wu & Hao, 2015),

computer vision (Ma & Latecki, 2012; Zhang, Javed, & Shah, 2014a), etc. For example, in the

video object segmentation problem, a challenging task is to select a region having high objectness

800

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

score and sharing similar appearance, which can be solved by an MWC algorithm (Ma & Latecki,

2012).

Compared to the MC problem, less work has been done to solve the MWC problem. Cli-

quer (Östergård, 2002, 2001) is one of the few state-of-the-art exact solvers for both MC and MWC,

and it deals with MC and MWC using similar methods. In a preprocessing, Cliquer partitions the

graph into independent sets by determining one independent set at a time. As long as there are

vertices that can be added into the current independent set, the one with the largest degree is added.

The purpose of this preprocessing is to define a vertex ordering v1<v2<. . .<vn, where vi (1≤i≤n)

is the vertex inserted into an independent set at time i. Then Cliquer searches for an MC or MWC

in the subgraph induced by {vi, vi+1, . . ., vn} successively for i=n, n− 1, . . ., 1 (in this ordering).

The MC or the MWC in the subgraph induced by {vi, vi+1, . . ., vn} is associated with vi and is

used to prune subtrees in subsequent search. Kumlander (2004, 2008b) inherits the search strategy

from Cliquer. In addition to the MWC associated with vi, Kumlander also partitions the current

subgraph into independent sets and uses the sum of the maximum weight in each independent set

as an upper bound. VCTable (Shimizu, Yamaguchi, Saitoh, & Masuda, 2012) improves Kumlan-

der’s algorithm by a new initial vertex order and a better implementation using bitwise operations.

Yamaguchi and Masuda (2008) propose a new upper bound based on the longest path in a directed

acyclic graph constructed from the original graph, which improves the bound based on the indepen-

dent set partition. OTClique (Shimizu, Yamaguchi, Saitoh, & Masuda, 2013), which is also based

on Cliquer, uses a dynamic programming strategy to calculate upper bounds of some small sub-

problems in a preprocessing, and stores all the results in a table. The stored upper bounds are used

during search. MinSatz (Li, Zhu, Manyà, & Simon, 2012) is an exact solver for the MinSAT prob-

lem. An important application of MinSatz is to solve combinatorial optimization problems such as

MC and MWC. MinSatz constructs a weighted graph for the MinSAT instance and uses the clique

partition combined with MaxSAT reasoning to compute a tight bound for the MinSAT instance to

solve. In addition to exact algorithms, some heuristic algorithms are also proposed to solve the

MWC problem (Pullan, 2008; Wu, Hao, & Glover, 2012; Benlic & Hao, 2013).

In this paper, we apply MaxSAT reasoning to solve MWC. We first study three usual encod-

ings of MWC into MaxSAT. All these encodings have intrinsic difficulties in dealing with vertex

weights. This motivates us to propose a dedicated encoding of MWC into MaxSAT called LW

(Literal-Weighted) encoding, in which both soft clauses and literals in soft clauses are weighted.

While an optimal solution of a MaxSAT instance by usual encodings of MWC into MaxSAT gives

an MWC, an optimal solution of an LW MaxSAT instance by the LW encoding just gives an upper

bound for the MWC. So, it makes little sense to run a MaxSAT solver to find the optimal solution of

a LW MaxSAT instance. The interest of the LW encoding is that we can transform an LW MaxSAT

instance to reduce its optimal solution, so that a tighter upper bound for the encoded MWC can be

obtained.

In order to transform an LW MaxSAT instance, we introduce two notions called the Top-k literal

failed clause and the Top-k empty clause, and two sound transformation rules. Then, we implement

a BnB algorithm for MWC called MWCLQ. In every search tree node, MWCLQ first encodes the

current subgraph into an LW MaxSAT instance. Then, driven by MaxSAT reasoning, MWCLQ

repeatedly transforms the LW MaxSAT instance to obtain a tighter upper bound for the encoded

MWC. To the best of our knowledge, it is the first time that MaxSAT reasoning techniques are

used specifically to compute a tight upper bound in a BnB algorithm for MWC. Experimental re-

sults on the widely used DIMACS benchmark, BHOSLIB benchmark, random graphs and realistic

801

FANG, LI, & XU

benchmark from the winner determination problem show that MWCLQ reduces the search space

significantly and outperforms the state-of-the-art exact algorithms on the vast majority of instances

from those benchmarks.

This paper is extended from the work of Fang, Li, Qiao, Feng, and Xu (2014b) by:

• clearly motivating the LW encoding by illustrating the weakness of three classical encodings

of MWC into MaxSAT in dealing with vertex weights of a graph;

• introducing the notion Top-k empty clause and exploiting it in MWCLQ;

• formally proving the transformation rules;

• adding more experimental results to show the effectiveness of our approach. The algorithm

MWCLQ is now compared with the integer programming solver CPLEX, and the MinSAT

solver MinSatz, especially on realistic instances from the winner determination problem.

State-of-the-art MaxSAT solvers using different encodings of MWC into MaxSAT are also

compared with MWCLQ. In order to further evaluate the LW encoding, which the state-of-

the-art MaxSAT solvers cannot use, we compare different versions of MWCLQ, in which the

only difference is the encoding of MWC into MaxSAT used to compute the upper bound.

This paper is organized as follows. In the next section, we introduce some necessary notations

and background knowledge. In Section 3, we present MWCLQ and different encodings of MWC

into MaxSAT, before extending MaxSAT reasoning to weighted literals by introducing the notions

of Top-k literal failed clause and Top-k empty clause, and two transformation rules. Experimental

results are shown in Section 4. Section 5 concludes the paper.

2. Preliminaries

The subgraph of G induced by a subset V ′ ⊆ V is G′ = (V ′, E′), where E′ = {{vi,vj} | vi,vj∈V
′ ∧

{vi, vj} ∈ E}. For a vertex v, Γ(v) = {u| {u,v}∈E} is the set of neighbors of v and the cardinality

|Γ(v)| is called the degree of v. We use Gv to denote the subgraph induced by Γ(v) ∪ {v} and G\v
to denote the subgraph induced by V \{v}. A maximal clique is a clique that cannot be extended

any more. A maximum clique is a maximal clique of the largest possible size. The cardinality

of a maximum clique of G is usually denoted as ω(G) and is called the clique number of G. For

any vertex v in G, a maximum clique of G can be either in Gv or in G\v. The chromatic number

of G, denoted by χ(G), is the minimum number of colors needed to color the vertices of G such

that no two adjacent vertices share the same color. The vertices sharing the same color constitute

an independent set. Therefore, the graph coloring problem is equivalent to partitioning V into a

minimum number of independent sets. Note that χ(G) is greater than or equal to ω(G).

A graph can be edge-weighted or vertex-weighted. We focus on the vertex-weighted graph in

this paper. Formally, a vertex-weighted undirected graph G= (V, E, w) is an undirected graph G=
(V, E) combined with a weighting function w: V → R+ such that every vertex v is associated with

a positive weight w(v). In the sequel, we use the term weighted graph instead of vertex-weighted

graph for simplicity. The weight of a clique C in G is defined to be w(C) =
∑

v∈C w(v). Given a

weighted graph G, the maximum weight clique problem asks to find a clique with the largest weight

in G (Östergård, 2001; Pullan, 2008; Wu et al., 2012) and this largest weight is often denoted by

802

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

ωv(G) in the literature. Note that a maximum weight clique is not necessarily a clique containing

the maximum number of vertices, but it must be a maximal clique.

The MC problem can be encoded into a partial MaxSAT problem. In MaxSAT, a variable x may

take value 0 (false) or 1 (true). A literal ℓ is a variable x or its negation x. A clause c = ℓ1 ∨ ℓ2 ∨
... ∨ ℓl is a disjunction of literals, which can also be expressed as a set {ℓ1, ℓ2, . . . , ℓl}. A clause

is satisfied if and only if the clause has at least one literal assigned to true. The length of clause

c is the number of literals it contains, denoted by length(c). A unit clause is a clause containing

only one literal. An empty clause, denoted by , contains no literals and cannot be satisfied. A

conjunctive normal form (CNF) formula φ = c1 ∧ c2 ∧ ... ∧ cm is a conjunction of clauses. Given

a CNF formula φ on the set of variables {x1, x2, ..., xn}, the satisfiability (SAT) problem is to test

if there is an assignment satisfying all the clauses of φ, and the maximum satisfiability (MaxSAT)

problem is to find an assignment satisfying the maximum number of clauses (Li & Manya, 2009).

The minimum satisfiability (MinSAT) problem, on the contrary, is to find an assignment minimizing

the number of satisfied clauses (Li et al., 2012). In some cases, some clauses can be declared to be

hard and must be satisfied in all solutions, and other clauses are soft and can be falsified. The partial

MaxSAT problem asks to find an assignment to maximize the number of satisfied soft clauses while

satisfying all hard clauses. Note that the MaxSAT problem is a particular partial MaxSAT problem

without hard clauses. A weighted clause is a pair (c, w), where c is a soft clause and w, a positive

number, is its weight. A weighted partial MaxSAT problem is to find an assignment maximizing the

total weight of satisfied soft clauses while satisfying all hard clauses. A weighted MaxSAT problem

is a weighted partial MaxSAT problem without hard clauses. The optimal solution of a (weighted)

(partial) MaxSAT instance φ is denoted as opt(φ) in this paper.

Two main types of exact algorithms are developed for MaxSAT: SAT-based MaxSAT solvers (e.g.,

Morgado, Heras, Liffiton, Planes, & Marques-Silva, 2013; Ansótegui, Bonet, & Levy, 2013; Davies

& Bacchus, 2013a; Ansótegui & Gabas, 2013; Morgado, Dodaro, & Marques-Silva, 2014; Martins,

Joshi, Manquinho, & Lynce, 2014) that solve a MaxSAT instance by repeatedly calling a CDCL

(Conflict-Driven Clause Learning) based SAT solver to solve a sequence of SAT problems, and the

BnB MaxSAT solvers (e.g., Li, Manyà, & Planes, 2007; Kügel, 2010). The SAT-based MaxSAT

solvers are particularly efficient to solve industrial MaxSAT problems, while the BnB MaxSAT

solvers are particular efficient to solve the random MaxSAT problems. Some SAT-based solvers

such as MaxHS (Davies & Bacchus, 2013b) also exploit MIP (Mixed Integer Programming) for

solving MaxSAT.

To maximize the number of satisfied clauses equals to minimize the number of falsified clauses.

Many algorithms based on the BnB scheme for MaxSAT compute a lower bound of the number of

falsified clauses (Li, Manya, & Planes, 2006; Li et al., 2007; Larrosa, Heras, & de Givry, 2008;

Kügel, 2010) to prune the search space when solving a MaxSAT instance φ. Detecting disjoint in-

consistent subsets of soft clauses is proved to be very powerful in computing such a bound, where a

subset of soft clauses is said inconsistent if this subset together with hard clauses is unsatisfiable.

Unit propagation is an effective technique widely used in SAT and MaxSAT solvers (Li & Anbu-

lagan, 1997; Li, Manyà, & Planes, 2005). The pseudo-code allowing to find an inconsistent subset

of soft clauses based on unit propagation is given in Algorithm 1 (Li et al., 2005). The algorithm

works as follows. It uses a stack S to store all unit clauses of φ and performs unit propagation until

an empty clause is produced or S is empty. If an empty clause is produced, the set of all clauses

used in deriving the empty clause, excluding the hard clauses, is returned. The algorithm is called

iteratively to find as many disjoint inconsistent subsets of soft clauses as possible. Note that soft

803

FANG, LI, & XU

clauses involved in an inconsistent subset are removed before detecting other inconsistent subsets

to ensure that these subsets are disjoint. Also note that φ does not have any solution if an empty set

is returned, because the empty set means that the set of hard clauses is unsatisfiable.

Algorithm 1: ConflictDetectionByUP(φ, S), to detect an inconsistent subset of soft clauses.

Input: MaxSAT instance φ and a stack S storing all unit clauses of φ.

Output: Return an inconsistent subset of soft clauses if unit propagation results in an empty

clause, otherwise return false.

1 begin

2 while S is not empty do

3 pop a unit clause u from S;

4 ℓ← the only literal in u, record u as the reason of ℓ and ℓ;
5 foreach clause c in φ contains ℓ do

6 satisfy c;

7 foreach clause c in φ contains ℓ do

8 remove ℓ from c;
9 if c is a unit clause then

10 push c into S;

11 if c is empty then

12 push c into an empty queue Q, I = {c};
13 while Q is not empty do

14 pop a clause c′ from Q
15 foreach removed literal ℓ′ of c′ do

16 if the reason r of literal ℓ′ is not in I then

17 push r into Q, and insert r into I;

18 return the set of soft clauses in I;

19 return false;

Failed literal detection (Freeman, 1995) is used to enhance unit propagation in MaxSAT solv-

ing (Li et al., 2006). A literal ℓ of a CNF formula φ is called a failed literal of φ, if unit propagation

in φ∪{ℓ} results in an empty clause. Let IS(ℓ) be the set of soft clauses used in the unit propagation

to derive an empty clause after assigning true to ℓ. If all literals in a soft clause c = {ℓ1, ℓ2, . . ., ℓl}
are failed, then {c} ∪ IS(ℓ1) ∪ IS(ℓ2) ∪ · · · ∪ IS(ℓl) is an inconsistent subset of soft clauses (Li &

Quan, 2010b).

3. MWCLQ: An Exact Algorithm for MWC

In this section, we propose an exact algorithm based on the BnB scheme, namely MWCLQ, for

MWC. In Subsection 3.1, we describe a basic BnB algorithm. In Subsection 3.2, we introduce

a novel encoding called LW (Literal-Weighted) encoding of MWC into MaxSAT after discussing

three usual encodings. Given a weighted graph G, the LW MaxSAT encoding gives an LW MaxSAT

instance φlw that represents an upper bound of ωv(G). In Subsection 3.3, we propose two transfor-

804

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

mation rules for φlw. Successive transformations of φlw driven by MaxSAT reasoning give a tight

upper bound of ωv(G), which is presented in Subsection 3.4.

3.1 Branch-and-Bound Search for MWC

Algorithm 2 depicts the pseudocode of MWCLQ.

Algorithm 2: MWCLQ(G, C , LB), a branch-and-bound algorithm for MWC.

Input: A weighted graph G=(V , E, w), a clique C under construction, and a lower bound

LB.

Output: A clique with weight greater than LB, ∅ if no such clique is found.

1 begin

2 if |V | = 0 then

3 return C;

4 UB ← overestimate(G)+w(C);

5 if UB ≤ LB then

6 return ∅;

7 v← select(V);

8 C1 ← MWCLQ(Gv, C∪{v}, LB);

9 LB← max(LB, w(C1));

10 C2← MWCLQ(G\v, C , LB);

11 if w(C1) ≤ w(C2) then

12 return C2;

13 else

14 return C1;

MWCLQ searches for a clique, extended from C , with weight larger than LB in G = (V , E,

w). It first computes an upper bound UB by calling overestimate(G) and then compares UB with LB

to test whether further search is necessary in G. If it is possible to find a better solution, MWCLQ

selects a vertex by calling select(V). For any vertex v in G, a maximum weight clique of G is

either a clique in Gv containing v or a clique in G\v not containing v. Thus, MWCLQ searches for

a maximum weight clique in Gv and in G\v successively.

MWCLQ has a form similar to MaxCLQ, a BnB algorithm for MC (Li & Quan, 2010b), but the

overestimate function for computing an upper bound, and the select function for choosing a branch-

ing vertex, are significantly different. These two functions are essential for both MWCLQ and

MaxCLQ. A high-quality upper bound allows solvers to prune useless search, and a good vertex

ordering promises an efficient search process. MaxCLQ computes a base upper bound by parti-

tioning G into independent sets, and then improves the base upper bound by MaxSAT reasoning.

Meanwhile, MaxCLQ orders vertices by selecting first the vertex with minimum degree. In this

paper, we use a simple vertex ordering to select v with the largest weight, breaking ties in favor of

the vertex with higher degree, and focus on how to efficiently compute a tight upper bound using

MaxSAT reasoning.

805

FANG, LI, & XU

3.2 Encoding MWC into MaxSAT

An MC or MWC instance can be encoded into MaxSAT as follows.

Boolean variables: A boolean variable xi is added for each vertex vi, which is assigned the

value true if and only if vi is in the maximum clique under construction;

Hard clauses: A set of hard clauses is added to require that any pair of unconnected vertices

does not belong to the same clique. Concretely, a hard clause xi ∨ xj is added for each pair

of unconnected vertices vi and vj ;

Soft clauses: There exist different ways to define the set of soft clauses. Given a graph, all

encodings of MC or MWC into MaxSAT presented in this paper use the same set of hard

clauses. They differ only in the soft clauses used, and will be analyzed and discussed in this

subsection.

An MC instance can also be encoded into a MinSAT instance without hard clauses by adopting

the approach proposed by Ignatiev, Morgado, and Marques-Silva (2014). The obtained MinSAT

instance can be in turn encoded into a MaxSAT instance without hard clauses using the approaches

from the work of Kügel (2012), Zhu, Li, Manyà and, Argelich (2012). This encoding without hard

clauses provides a new angle of view for the MC or MWC solving, which awaits future research.

In this section, we focus on encodings of MWC into MaxSAT with the hard clauses and only dif-

ferent in the soft clauses used. Subsection 3.2.1 defines the direct encoding of MWC into MaxSAT.

Subsection 3.2.2 defines split encoding and iterative split encoding of MWC for MaxSAT. Subsec-

tion 3.2.3 proposes the novel literal-weighted encoding of MWC into MaxSAT and illustrates its

advantages compared with the direct encoding, the split encoding and the iterative split encoding in

computing the upper bound for MWC.

3.2.1 DIRECT ENCODING OF MWC INTO MAXSAT

v11 v2 2

v34 v4 5

Figure 1: A weighted graph with 4 vertices and 1 edge. Numbers indicate vertex weights.

A straightforward way to define soft clauses is to associate a unit soft clause xi with each vertex

vi, giving the direct encoding of MC or MWC into MaxSAT. For example, the MC instance for the

graph in Fig. 1 (without considering vertex weights) is encoded into the following partial MaxSAT

instance: (1) the set of variables is {x1, x2, x3, x4}; (2) the set of hard clauses is {x1 ∨ x3, x1 ∨ x4,

x2 ∨ x3, x2 ∨ x4, x3 ∨ x4}; and (3) the set of soft clauses is {x1, x2, x3, x4}.
Any assignment satisfying all hard clauses gives rise to a clique, since the variables assigned

the value true correspond to pairwise connected vertices. For the non-weighted case, an assign-

ment satisfying all hard clauses and maximizing the number of satisfied soft clauses gives rise to a

maximum clique.

806

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

For the weighted case, each unit soft clause is associated with the weight of the corresponding

vertex. For example, the MWC instance for the weighted graph in Fig. 1 can be encoded into a

weighted partial MaxSAT instance with the same boolean variables and the same hard clauses as in

the MC instance. The set of weighted soft clauses is: {(x1,1), (x2,2), (x3,4), (x4,5)}. An assignment

satisfying all hard clauses and maximizing the total weight of satisfied soft clauses gives rise to a

maximum weight clique.

Once encoded into MaxSAT, MaxSAT reasoning can be applied to solve the MC or MWC

problem. Many MaxSAT algorithms obtain an upper bound of satisfied soft clauses by computing

a lower bound of the number of falsified soft clauses. Inconsistent subsets of soft clauses are often

used for computing such a lower bound. Recall that a subset of soft clauses is said inconsistent if

the subset together with hard clauses is not satisfiable. For a non-weighted MaxSAT instance φ with

m soft clauses, if r disjoint inconsistent subsets of soft clauses are detected, then m−r is an upper

bound of opt(φ) (Li et al., 2005, 2006).

For the weighted case, we define the weight of a subset S of soft clauses to be the minimum

weight of clauses in S, namely,

w(S) = min
c∈S

w(c).

Similar to the non-weighted case, we have the following proposition.

Proposition 1. (Li et al., 2007) Given a weighted partial MaxSAT instance φ, if s disjoint inconsis-

tent subsets S1, S1, ..., Ss are detected, then opt(φ) ≤
∑

soft clause c∈φw(c)−
∑

1≤i≤sw(Si).

Observe that unit soft clauses of the direct encoding do not capture any connection between

vertices, because the same set of soft clauses is used for every graph with n vertices, no matter how

these vertices are connected between each other. For an MC instance, the number of soft clauses

is used as a base upper bound, and then MaxSAT reasoning is applied to improve the base upper

bound by detecting inconsistent soft clause subsets. Unfortunately, the direct encoding can only

give a trivial base upper bound, which is the number of vertices in the graph. Moreover, since all

soft clauses of the direct encoding are unit, an inconsistent subset contains exactly two soft clauses,

limiting the improvement of the upper bound to the half of the number of vertices in the graph.

The weighted case is similar. The base upper bound is the total weight of all vertices. We use the

following example to illustrate that the direct encoding cannot compute a tight upper bound even

for a very simple MWC instance.

Example 1. The total weight of soft clauses of the direct encoding for the graph in Fig. 1 is 12.

Using unit propagation, {(x3, 4), (x4, 5)} is found to be an inconsistent subset because of the hard

clause x3 ∨ x4, then the upper bound can be improved by 4. The left soft clauses are: (x1, 1),
(x2, 2), (x4, 1), then unit propagation detects that {(x1, 1), (x4, 1)} is also inconsistent, then we

can improve the upper bound by 1. Finally, the upper bound is improved to 6, larger than the

optimal solution 5.

Because of these drawbacks, the direct encoding does not perform well, as shown by the exper-

imental results presented in Section 4.3. One might want to add an at-most-one constraint for each

independent set to remedy the drawbacks of the direct encoding. That is, for each independent set

I = {v1, v2, . . . , vl}, add the at-most-one constraint x1+x2+. . .+xl ≤ 1. However, the at-most-one

constraint does not add anything new, because the subset of hard clauses {xi∨xj | 1≤i<j≤l} in the

encoding already enforces the at-most-one constraint (Chen, 2010). In addition, the encoding of the

807

FANG, LI, & XU

at-most-one constraint using hard binary clauses is efficient enough when the independent set is not

extremely large, which is usually the case when solving hard MC or MWC instances. Therefore,

the at-most-one constraint is presumably useless in the encoding from MC or MWC into MaxSAT.

3.2.2 SPLIT ENCODING AND ITERATIVE SPLIT ENCODING OF MWC INTO MAXSAT

Another encoding is introduced for MC in MaxCLQ (Li & Quan, 2010b) by defining the set of soft

clauses based on an independent set partition of G. Concretely, MaxCLQ first partitions G into a set

of independent sets, then creates a soft clause for each independent set, which is a disjunction of the

variables corresponding to the vertices in the independent set. The independent set based encoding

is shown substantially more efficient than the direct encoding to solve MC.

A natural way to extend the independent set based MaxSAT encoding to MWC is to split vertex

weights. For an independent set I = {v1, v2, . . . , vl}, where w(v1) ≥ w(v2) ≥ . . . ≥ w(vl), we

can split vertex weights in I by the minimum weight w(vl), thus we obtain a weighted soft clause

(x1 ∨ x2 ∨ . . . ∨ xl, w(vl)) and l′ unit soft clauses: (x1, w(v1)− w(vl)), (x2, w(v2)− w(vl)), . . .,
(xl′ , w(vl′)−w(vl)), where l′ is the largest integer such that w(vl′) > w(vl) in I . This encoding is

called the split encoding. The total weight of soft clauses in the split encoding should be less than

that of the direct encoding, giving a better base upper bound, but it may still be large.

Example 2. A possible independent set partition of the graph in Fig. 1 is {v4, v3, v1} and {v2}.
The soft clauses of split encoding based on the partition are (x4 ∨ x3 ∨ x1, 1), (x4, 4), (x3, 3) and

(x2, 2). The total weight of the soft clauses is 10, which is better than that of the direct encoding.

Using unit propagation, {(x4, 4), (x3, 3)} is found to be an inconsistent subset because of the hard

clause x3 ∨ x4, which allows us to improve the upper bound by 3. In the same way, {(x4, 1),
(x2, 2)} is found to be inconsistent, which improves the upper bound by 1. Finally, the remaining

soft clauses (x4 ∨ x3 ∨x1, 1) and (x2, 1) are consistent. Thus, the upper bound computed using the

split encoding is still 6.

The split encoding can be improved by the so-called the iterative split encoding, as used in

MinSatz (Li et al., 2012). The idea of the iterative split encoding is to split vertex weights repeatedly

until all vertices in the same independent set have the same weight. Concretely, for an independent

set I = {v1, v2, . . . , vl} such that w(v1) ≥ w(v2) ≥ . . . ≥ w(vl), we add a soft clause (x1 ∨ x2 ∨
. . . ∨ xl, w(xl)), and repeatedly find the largest l′ such that w(xl′) > w(xl) and add a soft clause

(x1 ∨ x2 ∨ . . . ∨ xl′ , w(xl′)− w(xl)), while l′≥1.

Example 3. A possible independent set partition of the graph in Fig. 1 is {v4, v3, v1}, {v2}. The

soft clauses of the iterative split encoding based on the partition are (x4 ∨ x3 ∨ x1, 1), (x4 ∨ x3, 3),
(x4, 1) and (x2, 2). The total weight of soft clauses is 7. Starting unit propagation by setting x4 = 1,

we find that {(x4, 1), (x2, 2)} is an inconsistent subset, so that we can improve the upper bound by

1 and get a new soft clause (x2, 1). Then, we find that {(x4 ∨ x3, 3), (x2, 1)} is inconsistent, so the

upper bound is improved to 5, which is the tightest upper bound.

The iterative split encoding gives a non-trivial base upper bound, which is better than those

obtained by the direct encoding and the split encoding. The key point of the iterative split encoding

is that the vertex weights are split in advance, generating numerous soft clauses, such that a variable

may appear in several soft clauses and that some clauses may differ only in one variable (e.g. clauses

(x4 ∨ x3 ∨ x1, 1) and (x4 ∨ x3, 3) in Example 3). Many splittings may not be useful in the upper

808

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

bound computation, and MaxSAT reasoning may be more complicated in such an instance with

numerous soft clauses.

3.2.3 LITERAL-WEIGHTED ENCODING OF MWC INTO MAXSAT

Recall that the MaxSAT encoding for MC in MaxCLQ guarantees that a variable appears only once

in soft clauses and the number of soft clauses equals to the number of independent sets. MaxSAT

reasoning in such an instance should be much simpler. In order to extend this advantage to MWC

and not to split vertex weights in advance, we introduce the Literal-Weighted encoding (LW encod-

ing) from MWC into LW MaxSAT, in which the literals in a soft clause are also weighted. Con-

cretely, a weighted literal is a pair(ℓ, w), where ℓ is a literal and w is its weight. A literal-weighted

soft clause (LW soft clause) is a disjunction of weighted literals. Formally, given an MWC instance

G = (V,E,w), we encode G into an LW MaxSAT instance φlw as follows:

• Associate each vertex vi with a weighted literal (xi, w(xi)), where w(xi) = w(vi);

• Add a hard clause xi ∨ xj for each pair of unconnected vertices vi and vj ;

• For an independent set I = {v1, v2, ..., vl}, add an LW soft clause c= (x1, w(v1))∨ (x2, w(v2))
∨. . .∨ (xl, w(vl)).

The LW soft clause c can also be presented as a set {(x1, w(x1)), (x2, w(x2)),. . ., (xl, w(xl))}.
The weight of c is defined to be

w(c) = max
1≤j≤l

(w(xj)).

An LW clause c is ordered if w(x1) ≥ w(x2) ≥ ... ≥ w(xl). In the sequel, LW soft clauses are

always ordered. Therefore, the weight of an LW soft clause is always w(x1), representing the cost

if none of vertices in the corresponding independent set is included in the clique under construction.

We now show that the optimal solution of an LW MaxSAT instance φlw, denoted by opt(φlw),
which maximizes the total weight of satisfied soft clauses and satisfies all hard clauses, gives an

upper bound of ωv(G), differently from the usual encodings by which the optimal solution of a

MaxSAT instance gives ωv(G).
An MWC is given by an assignment of φlw that satisfies all hard clauses and maximizes the

total weight of satisfied literals. Example 4 suggests that opt(φlw) and ωv(G) can be very different

for an MWC instance G.

v1

1

v2

7
v5

4

v32 v4 3

v6

6

Figure 2: A weighted graph with 6 vertices and 6 edges. Numbers indicate vertex weights.

809

FANG, LI, & XU

Example 4. A possible independent set partition of the graph in Fig. 2 is {{v1, v3, v6}, {v2, v4}
and {v5}}. The set of soft clauses of the LW MaxSAT instance φlw based on this partition is {{(x6,

6), (x3, 2), (x1, 1)}, {(x2, 7), (x4, 3)}, {(x5, 4)}}. The only MWC of the graph is {v5, v6} and

ωv(G)=10. On the other hand, {x1=1, x2=1} is an optimal solution of φlw and opt(φlw)=13.

Moreover, any optimal solution of φlw does not correspond to the maximum weight clique in the

graph.

The following proposition states a relationship between the optimal solution of an LW MaxSAT

instance and the MWC of the encoded graph.

Proposition 2. Consider a weighted graph G = (V,E,w), let φlw be the LW instance based on an

independent set partition of G, then ωv(G) ≤ opt(φlw).

Proof. Suppose that {vi1 , vi2 , . . . , vip} is a maximum weight clique of G. Let cij be the LW clause

containing xij . We have

ωv(G) =

p∑

j=1

w(xij) ≤

p∑

j=1

w(cij) ≤ opt(φlw).

Since opt(φlw) is just an upper bound of ωv(G), it makes little sense to apply a MaxSAT solver

to find opt(φlw). However, we can transform φlw, so that an optimal solution of the new instance

is a tighter upper bound of ωv(G), and the upper bound of the new optimal solution can also be

tightened. Example 5 illustrates how to do this.

Example 5. A possible independent set partition of the graph in Fig. 1 is {v4, v3, v1} and {v2}. The

LW soft clauses are {(x4, 5), (x3, 4), (x1, 1)} and {(x2, 2)}. The total weight of soft clauses is 7,

giving the base upper bound as in the iterative split encoding. Unit propagation by setting x2 = 1
makes x4 and x3 false through the hard clauses. Then we find that we can split the clause {(x4, 5),
(x3, 4), (x1, 1)} into {(x4, 2), (x3, 2)} and {(x4, 3), (x3, 2), (x1, 1)}, and keep the base upper

bound to be 7, but that the splitting allows to derive an inconsistent subset of soft clauses {{(x4, 2),
(x3, 2)}, {(x2, 2)}} and to improve the base upper bound to 5, the tightest possible upper bound.

Note that unit propagation does not need to derive any empty clause to improve the upper bound

in this example. Furthermore, in order to obtain the tightest upper bound, one unit propagation suf-

fices, while two inconsistent subsets need to be derived in the iterative split encoding in Example 3.

The key point in Example 5 is that the original LW MaxSAT instance is transformed into a new

one, of which the upper bound of the optimal solution is improved to 5 using MaxSAT reasoning.

This tightest upper bound of the new LW MaxSAT instance is also the tightest upper bound of

ωv(G).

In the next subsection, we will define two sound transformation rules to transform an LW

MaxSAT instance, allowing to derive a tight upper bound for MWC in general case. To be ef-

fective, the application of these two rules should be driven by MaxSAT reasoning, which will be

presented in Subsection 3.4.

810

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

3.3 Transformation Rules for Literal-Weighted MaxSAT

We propose two transformation rules to split an LW soft clause of an LW MaxSAT instance encoding

an MWC instance G. The soundness of these rules is based on Proposition 3, ensuring that after

splitting, an optimal solution of the new LW MaxSAT instance is a tighter upper bound of ωv(G).

Proposition 3. Let φlw be an LW MaxSAT instance encoding of an MWC instance G. For any

LW soft clause c = {(x1, w(x1)), (x2, w(x2)), . . ., (xl, w(xl))} of φlw and 0<δ≤w(x1), split c
into c′ = {(x1, δ), (x2,min(w(x2), δ)), . . ., (xl,min(w(xl), δ))} and c′′ = {(x1, w(x1)−δ), (x2,

max(w(x2) −δ, 0)), . . ., (xl, max(w(xl)−δ, 0))}, where literals with weight 0 are removed, we

get φ′
lw = (φlw\{c}) ∪ {c

′,c′′}, then ωv(G) ≤ opt(φ′
lw) ≤ opt(φlw).

Proof. First of all, note that both c′ and c′′ are ordered as c. To prove ωv(G) ≤ opt(φ′
lw), we first

show that min(w(xj), δ) + max(w(xj)−δ, 0) = w(xj) for any j such that 1<j≤l. In fact,

1. If w(xj) ≥ δ, min(w(xj), δ) + max(w(xj)−δ, 0) = δ + w(xj)− δ = w(xj);

2. if w(xj) < δ, min(w(xj), δ) + max(w(xj)−δ, 0) = w(xj) + 0 = w(xj).

In other words, the total weight of a literal is not changed by splitting c into c′ and c′′. Let C =
{vi1 , vi2 , . . . , vip} be a maximum weight clique of G. Then {xi1 = 1, xi2 = 1, . . ., xip = 1} with

other variables being 0, is an assignment of φ′
lw satisfying all hard clauses. Let S(xij) = {c | xij ∈

c} be the set of soft clauses containing xij of φ′
lw for 1≤j≤p. All clauses in S(xij) are satisfied by

xij . At the same time,

∑

c∈S(xij
)

w(c) =
∑

c∈S(xij
)

max
x∈c

w(x) ≥ w(xij).

Hence, we have,

opt(φ′
lw) ≥

p∑

j=1

∑

c∈S(xij
)

w(c) ≥

p∑

j=1

w(xij) =

p∑

j=1

w(vij) = ωv(G).

To prove opt(φ′
lw) ≤ opt(φlw), letA be any assignment and w(φlw,A) (w(φ′

lw ,A)) be the total

weight of satisfied soft clauses of φlw (φ′
lw).

1. If c is not satisfied in φlw by A, then c′ and c′′ also are not satisfied in φ′
lw by A;

2. If c is satisfied by A, c′ is also satisfied since c′ has the same literals as c, but c′′ may not be

satisfied because the satisfied literal of c may have weight 0 in c′′ and may thus be removed

from c′′.

We note that w(c) = w(c′)+w(c′′), so we have w(φlw,A) ≥ w(φ′
lw,A) for any assignment A,

implying opt(φ′
lw) ≤ opt(φlw).

Given a weighted graph G = (V,E,w), let φlw be an LW MaxSAT instance based on an

independent set partition of G, we propose the following two rules to transform φlw.

811

FANG, LI, & XU

1. δ-Rule Given an LW soft clause c = {(x1, w(x1)), (x2, w(x2)), . . ., (xl, w(xl))} of φlw and

a weight δ such that 0<δ≤w(x1), split c into c′ = {(x1, δ), (x2,min(w(x2), δ)), . . ., (xl,
min (w(xl), δ))} and c′′ = {(x1, w(x1)−δ), (x2,max(w(x2)−δ, 0)), . . ., (xl,max(w(xl)
−δ,0))}, i.e., φ′

lw = (φlw \ {c}) ∪ {c
′, c′′}.

2. (k, δ)-Rule Given an LW clause c = {(x1, w(x1)), (x2, w(x2)), . . . , (xl, w(xl))} of φlw, an

integer 1≤k<l and a weight δ such that 0<δ≤w(x1)−w(xk+1), split c into c′ = {(x1, δ), (x2,
max(w(x2)+δ−w(x1), 0)), . . ., (xk,max(w(xk)+δ−w(x1), 0))}, and c′′ = {(x1, w(x1)−δ),
(x2, min(w(x2), w(x1)−δ)), . . ., (xk, min(w(xk), w(x1)−δ)), (xk+1, w(xk+1)), . . ., (xl,
w(xl))}, i.e., φ′

lw = (φlw \ {c}) ∪ {c
′, c′′}.

The purpose of the δ-Rule and the (k, δ)-Rule is to split c into a clause c′ with weight δ and

a clause c′′ with weight w(x1)−δ without changing the total weight of a literal. The constraint

δ≤w(x1)−w(xk+1) is to ensure that c′′ remains ordered (i.e., w(x1)−δ≥min(w(x2), w(x1)−δ)≥. . .
≥w(xk+1))≥. . .≥w(xl)). We use an example to illustrate the (k, δ)-Rule. Let c be an LW soft

clause c = {(x1, 5), (x2, 3), (x3, 2)}, (1) If k=1 and δ=2, then c′ = {(x1, 2)} and c′′ = {(x1, 3), (x2,

3), (x3, 2)}; (2) If k=2 and δ=3, then c′ = {(x1, 3), (x2, 1)} and c′′ = {(x1, 2), (x2, 2), (x2, 2)};
(3) If k=2 and δ=2, then c′ = {(x1, 2), (x2, 0)} = {(x1, 2)} and c′′ = {(x1, 3), (x2, 3), (x3, 2)}.

The soundness of the δ-Rule and the (k, δ)-Rule can be easily proved using Proposition 3. These

two rules can be applied in many possible ways to generate many possible clauses. For example,

as a special case, when δ=w(xl) in the δ-Rule, c′ = {(x1, δ)), (x2, δ)), . . . , (xl, δ))} and at least

xl is removed from c′′ since its weight is 0 in c′′. In other words, we can transform φlw into a

classical weighted MaxSAT instance by repeatedly applying the δ-Rule with δ=w(xl) to each clause

c containing literals with different weights. In this way, we can obtain a classical weighted partial

MaxSAT instance ϕ, in which all literals in any soft clause have the same weight and whose optimal

solution gives a maximum weight clique. Moreover, let φi be the MaxSAT instance obtained after i
applications of the δ-Rule, we have opt(φlw) ≥ opt(φ1) ≥ opt(φ2) ≥ . . . ≥ opt(ϕ) = ωv(G). In

fact, ϕ is an iterative split encoding of G.

Observe that each application of the δ-Rule or the (k, δ)-Rule gives a MaxSAT instance φi whose

optimal solution gives a tighter upper bound of ωv(G). Since unrestricted applications of the two

rules may not be effective, we restrict their applications to the cases where an inconsistent subset of

soft clauses with weight δ can be derived. Concretely, the (k, δ)-Rule is always applied to a clause

c in which the k most weighted literals are failed or falsified, allowing to obtain c′ from which an

inconsistent subset S of soft clauses can be derived, and the δ-Rule is always applied to a clause

c in an inconsistent subset of soft clauses. Each application allows to improve an upper bound of

ωv(G) by a positive weight δ. Note that δ in both rules is strictly greater than 0, because when

δ = 0, both rules only generate new empty clauses with weight 0, which cannot improve the upper

bound. We call extended MaxSAT reasoning the application of the δ-Rule and the (k, δ)-Rule driven

by MaxSAT reasoning in an LW MaxSAT instance. Details of our approach are given afterwards.

3.4 Upper Bound Based on MaxSAT Reasoning

In this section, we show the transformation of an LW MaxSAT instance driven by MaxSAT reason-

ing. In Subsection 3.4.1, we apply the δ-Rule to transform an inconsistent subset of soft clauses.

In Subsection 3.4.2 and Subsection 3.4.3, we introduce two notions, namely the Top-k failed lit-

eral clause and the Top-k empty clause, to deduce an inconsistent subset of soft clauses using the

812

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

(k, δ)-Rule, which is then transformed by applying the δ-Rule. In Subsection 3.4.4, we present the

overestimating algorithm that computes a tight upper bound for MWC by successively transforming

an LW MaxSAT instance.

3.4.1 TRANSFORMING AN INCONSISTENT SUBSET OF SOFT CLAUSES

First of all, we detect inconsistent subsets using unit propagation presented in Algorithm 1.

Example 6. A possible independent set partition of the graph in Fig. 2 is {{v1, v4, v6}, {v2,

v5}, {v3}}, LW soft clauses based on this partition are c1 = {(x6, 6), (x4, 3), (x1, 1)}, c2 =
{(x2, 7), (x5, 4)} and c3 = {(x3, 2)}. When we set x3=1 to satisfy the unit clause c3, x3 will

be removed from hard clauses x1 ∨ x3, x3 ∨ x5, x3 ∨ x6. Unit clauses x1, x5 and x6 imply that

x1=0, x5=0 and x6=0, respectively. So, both c1 and c2 become unit clauses. Accordingly, we have

to set x4=1 and x2=1 to satisfy them, falsifying the hard clause x2 ∨ x4.

Consequently, an inconsistent soft clause subset S = {c1, c2, c3} is detected and the weight of

the subset is 2. Proposition 1 allows to decrease the upper bound by 2, thus the improved upper

bound is 13. Since all soft clauses are involved in the inconsistent subset, we cannot improve the

upper bound any more. However, we can split the soft clauses in S using the δ-Rule based on the

following proposition.

Proposition 4. Let S = {c1, c2, . . ., ci} be an inconsistent subset of LW soft clauses, if the δ-Rule

is applied to split every cj ∈ S into c′j and c′′j with δ=w(S), then S′ = {c′1, c
′
2, ..., c

′
i} is still an

inconsistent soft clause subset with weight δ.

Proof. S′ is clearly inconsistent, because the clauses in S′ have the same literals as the clauses in

S. In addition, every clause in S′ has weight δ. Hence, S′ is an inconsistent subset of soft clauses

with weight δ.

The purpose of the splitting is to obtain S′′ = {c′′1 , c′′2, . . ., c′′i } to further improve the upper

bound.

Example 7. As presented in Example 6, {c1, c2, c3} is an inconsistent subset with weight 2. Apply-

ing δ-Rule with δ=2, we have c′1 = {(x6, 2), (x4, 2), (x1, 1)}, c
′′
1 = {(x6, 4), (x4, 1)}, c

′
2 = {(x2, 2),

(x5, 2)}, c
′′
2 = {(x2, 5), (x5, 2)}, c

′
3 = {(x3, 2)} and c′′3 = {(x3, 0)} (c′′3 is removed).

It is easy to see that {c′1, c′2, c′3} is an inconsistent subset of soft clauses with weight 2, and

that the remaining clauses {{(x6, 4), (x4, 1)}, {(x2, 5), (x5, 2)}} can be used to further improve

the upper bound. However, unit propagation cannot be used to improve the upper bound any more

because no unit clause exists. Moreover, failed literal detection does not work either because every

soft clause contains at least one literal that is not failed. We propose to apply the (k, δ)-Rule to split

the Top-k literal failed clause defined afterwards to improve the upper bound.

3.4.2 TOP-K FAILED LITERAL DETECTION

Definition 1. An LW soft clause c = {(x1, w(x1)), (x2, w(x2)), . . ., (xl, w(xl))} is Top-k literal

failed if x1, x2, . . ., xk are all failed literals, where 1≤k<l.

We define the Top-k weight of an LW soft clause c as wk(c) = w(x1)−w(xk+1), where 1 ≤
k < length(c).

813

FANG, LI, & XU

Proposition 5. Consider an LW soft clause c= {(x1, w(x1)), (x2, w(x2)), . . ., (xl, w(xl))}. If c is

Top-k literal failed with k<l, and IS(xj) (1≤j≤k) is the set of soft clauses making xj failed, split

c into c′ and c′′ using the (k, δ)-Rule with δ =min(wk(c), w(IS(x1)), w(IS(x2)), ..., w(IS(xk))),
then {c′} ∪ IS(x1) ∪ IS(x2) ∪ . . . ∪ IS(xk) is an inconsistent subset of soft clauses with weight δ.

Proof. The set is clearly inconsistent, because the satisfaction of each literal in c′ results in an empty

clause in the set. The minimum weight of the clause in the set is δ. So it is an inconsistent subset of

soft clauses with weight δ.

As soon as we determine that c is Top-k literal failed, we apply the (k, δ)-Rule to split c and use

the δ-Rule to split clauses in IS(x1) ∪ IS(x2) ∪ . . . ∪ IS(xk). An inconsistent subset with weight δ
is obtained in this way. Observe that when k=l, {c} ∪ IS(x1) ∪ IS(x2) ∪ . . . ∪ IS(xl) is a classical

inconsistent subset of soft clauses with weight min(w(c), w(IS(x1)), w(IS(x2)), ..., w(IS(xl)))
in which each clause is split only using the δ-Rule.

Example 8. Consider the soft clauses produced in Example 7, c1 = {(x6, 4), (x4, 1)} and c2 =
{(x2, 5), (x5, 2)}. We test x2 in c2 by setting x2=1. To satisfy hard clauses x2 ∨ x6 and x2 ∨ x4,

we need to set x6=0 and x4=0. Then, c1 = {(x6, 4), (x4, 1)} becomes falsified, making x2 failed.

However, x5 is not failed. Therefore c2 is Top-k literal failed with k=1. Applying the (k, δ)-Rule with

k=1 and δ=3 to c2, we have c′2 = {(x2, 3)} and c′′2 = {(x2, 2), (x5, 2)}. Applying the δ-Rule with

δ=3 to c1, we get c′1 = {(x6, 3), (x4, 1)} and c′′1 = {(x6, 1)}. Consequently, we get an inconsistent

subset {c′1, c′2} with weight 3.

As a result, the detection of a Top-k literal failed clause allows to improve the upper bound by

3, giving the tightest upper bound 10.

3.4.3 TOP-K EMPTY CLAUSE DETECTION

It is noteworthy that a literal can be declared to be failed, only if unit propagation of the literal fal-

sifies all literals of a clause. Sometimes, the propagation of a literal ℓ just makes the most weighted

literals in a soft clause c falsified, but not all literals in c. In this case, ℓ cannot be declared to be

failed, so we cannot improve the upper bound using approaches presented above. However, we can

split c using the (k, δ)-Rule to obtain a falsified clause, so that ℓ can be declared to be failed.

v1

1

v2

7
v5

4

v32 v4 3

v6

6

Figure 3: A weighted graph with 6 vertices and 9 edges. Numbers indicate vertex weight

Example 9. Consider the weighted graph G in Fig. 3, a possible independent set partition of G
is {{v6, v3}, {v2,v5}, {v4, v1}} and the LW soft clauses are c1={(x6, 6), (x3, 2)}, c2={(x2, 7),

814

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

(x5, 4)} and c3={(x4, 3), (x1, 1)}. The total weight of soft clauses of the LW MaxSAT instance

based on this partition is 16. On the one hand, the literals with the largest weight in each soft

clause are not failed. When we set x6=1, we need to set x2=0 to satisfy the hard clause x2 ∨ x6.

The literal x6 is not failed, because unit propagation does not falsify any clause. However, the most

weighted literal x2 in c2 is falsified. We can split c2 into c′2 = {(x2, 3)} and c′′2 = {(x2, 4), (x5, 4)}.
Then c′2 is falsified by propagating x6. So, x6 is a failed literal after splitting c2, and c1 is a Top-k

(k=1) literal failed clause that can be split into c′1 = {(x6, 3)} and c′′1 = {(x6, 3), (x3, 2)} using

the (k, δ)-Rule. We thus obtain an inconsistent subset {c′1, c′2} with weight δ=3. Consequently, the

upper bound is improved by 3.

Example 9 suggests us to define the Top-k empty clause notion.

Definition 2. An LW soft clause c = {(x1, w(x1)), (x2, w(x2)), . . ., (xl, w(xl))} is Top-k empty,

where 1≤k<l, if there is a literal ℓ such that when ℓ is assigned to true, unit propagation falsifies

the literals x1, x2, . . ., xk in c.

It is straightforward to show the following proposition.

Proposition 6. A literal can be declared to be failed after splitting a Top-k empty clause by using

the (k, δ)-Rule.

Proof. Splitting the Top-k empty clause gives a clause c = x1 ∨ x2 ∨ . . . ∨ xk, such that there is a

literal ℓ of which the satisfaction makes c empty via unit propagation.

3.4.4 OVERESTIMATING ALGORITHM IN MWCLQ

Algorithm 3 formally describes how to successively transform an LW MaxSAT instance by applying

the δ-Rule and/or (k, δ)-Rule to obtain disjoint inconsistent subsets of soft clauses in every search

tree node of MWCLQ. The upper bound computed by Algorithm 3 in this way is very tight, as

shown by our experimental results.

Given a weighted graph G, Algorithm 3 first encodes the MWC instance into an LW MaxSAT

instance based on an independent set partition of G. The partitioning procedure works as follows.

Vertices are sorted in the decreasing order of their weights (ties are broken in favor of the vertices

with higher degree) and are successively inserted into an independent set. Suppose that the current

independent sets are I1, I2, . . ., Ii (in this order, i is 0 at the beginning of the partitioning process).

The current first vertex v is inserted into the the first Ij such that v is unconnected to all vertices

already in Ij . If such a Ij does not exist, a new independent set Ii+1 is opened and v is inserted

into Ii+1. Each independent set is encoded into an LW soft clause. The total weights of soft clauses

is an initial upper bound for MWC of G that should be improved by detecting disjoint inconsistent

subsets of soft clauses using the extended MaxSAT reasoning.

The detection of an inconsistent subset of soft clauses is performed by detecting failed literals

in the shortest available soft clause c. A literal is failed either because unit propagation falsifies

all literals of another clause or just the most weighted literals of another soft clause. In the case

all literals of c are failed because unit propagation falsifies all literals of another clause, a usual

inconsistent subset of soft clauses is obtained. In the case only the k most weighted literals of c are

falsified and/or unit propagation of a literal of c just falsifies the most weighted literals of another

soft clause t, the (k, δ)-Rule should be applied to split c and/or t to obtain an inconsistent subset

of soft clauses. That is the reason why the Top-k empty clauses and Top-k literal failed clauses are

815

FANG, LI, & XU

Algorithm 3: overestimate(G), computing an upper bound for MWC by MaxSAT reasoning

Input: A weighted graph G=(V , E, w).

Output: An upper bound for a maximum weight clique in G.

1 begin

2 partition G into independent sets I1, I2,...,Ii;
3 encode G into an LW MaxSAT instance φlw and mark all soft clauses available;

4 UB←
∑

c∈φlw
w(c); /* the base upper bound */

5 while φlw contains an available soft clause do

6 c← the shortest available soft clause of φlw;

7 mark c unavailable;

/* Let S be a set of soft clauses involved in an inconsistent

subset and Stopk be a set of top-k literal failed and top-k

empty clauses */

8 S ← ∅, Stopk ← ∅, k ← 0;

9 while k < length(c) do

10 if ℓk+1 is failed because of an empty clause then

11 S ← S ∪ IS(ℓk+1);

12 else if ℓk+1 is failed because of a Top-kt empty clause t and wkt(t) > 0 then

13 S ← S ∪ (IS(ℓk+1) \ {t});
14 Stopk ← Stopk ∪ {t};

15 else break;

16 k ← k + 1;

17 if k > 0 then

18 if k = length(c) then

19 S ← S ∪ {c}; /* all literals in c are failed */

20 else if wk(c) > 0 then

21 Stopk ← Stopk∪{c}; /* c is top-k literal failed */

22 else continue;

23 δ←min(w(S),mint∈Stopk
(wkt(t)));

24 UB← UB−δ; /* improve the upper bound by δ > 0 */

25 S′′ ← ∅, S′′
topk ← ∅;

26 foreach clause cl ∈ S do

27 apply δ-Rule to cl;
28 S′′ = S′′ ∪ {cl′′};

29 foreach Top-k literal failed clause or Top-k empty clause t ∈ Stopk do

30 apply (δ, kt)-Rule to t;
31 S′′

topk = S′′
topk ∪ {t

′′};

32 φlw ← (φlw \ (S ∪ Stopk)) ∪ S′′ ∪ S′′
topk; /* update soft clauses */

33 mark all clauses of φlw available;

34 return UB; /* the improved upper bound by MaxSAT reasoning */

816

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

collected in Stopk. Meanwhile, the soft clauses involved in the inconsistent subset are collected in

S. In any case, δ is computed as δ = min(w(S),mint∈Stopk
(wkt(t))) (Line 23), where w(S) is the

minimum clause weight in S. Note that Stopk is empty when S is a usual inconsistent subset. The

δ-Rule and (k, δ)-Rule are applied to split the clauses in the subset and the upper bound is improved

by the weight of this subset.

Observe that Algorithm 3 is called at every search tree node from scratch because the graph

at different search tree node is different. Also observe that the detected inconsistent subsets of soft

clauses are disjoint, because a soft clause in one subset is not used to detect any other subset. In fact,

an inconsistent subset of soft clauses is removed in Line 32 before detecting another inconsistent

set. The initial upper bound is improved by the total weight of these inconsistent subsets. This

approach might be further improved using MaxSAT resolution defined in the work of Bonet, Levy

and, Manya (2006) and Larrosa, Heras, and Givry (2008), by adapting the approach of Abramé and

Habet (2014) that transforms an inconsistent subset of clauses into a weighted empty clause and

a set of new clauses that can be used in the detection of other inconsistent subsets of soft clauses.

Nevertheless, the application of MaxSAT resolution has to be carefully driven for the approach to

be competitive (Abramé & Habet, 2015), because MaxSAT resolution produces many intermediate

clauses.

We note that clauses produced using the δ-Rule and the (k, δ)-Rule cannot be obtained by simply

applying MaxSAT resolution, because MaxSAT resolution transforms a MaxSAT instance into an

equivalent one, while the δ-Rule and the (k, δ)-Rule may change the optimal solution of an LW

MaxSAT instance by Proposition 3.

4. Empirical Evaluation

In this section, we empirically evaluate MWCLQ and its extended MaxSAT reasoning using stan-

dard benchmarks, namely the DIMACS benchmark, the BHOSLIB benchmark, random graphs, and

the benchmark from the winner determination problem (WDP). We conducted four experiments in

this study. The first experiment is to evaluate the performance of MWCLQ by comparing it with

other state-of-the-art exact algorithms. The second experiment is to compare different encodings

from MWC into MaxSAT. The third experiment is to investigate the impact of splitting soft clauses

in the extended MaxSAT reasoning. In the forth experiment, we applied MWC algorithms to solve

WDP instances and compare their performances.

We first introduce the benchmarks used in our experiments and describe the experimental envi-

ronment. Then we present and discuss the experimental results in detail.

4.1 Benchmarks and Experimental Environment

Three types of benchmarks are used in our first three experiments.

1. DIMACS The DIMACS benchmark is taken from the Second DIMACS Implementation

Challenge, which has been used widely for benchmarking purposes in the literature of al-

gorithms for MC, MWC, MVC, MIS and so on. The 80 DIMACS instances are generated

from real-world applications such as coding theory, fault diagnosis, Keller’s conjecture and

the Steiner Triple Problem, as well as random graphs generated with different properties, such

as the DSJC, brock and p hat families. The size of these instances ranges from less than 50

817

FANG, LI, & XU

vertices and 1,000 edges to more than 4,000 vertices and 5,000,000 edges. We downloaded

all instances from a website (ThanhVu & Thang, 2014).

2. BHOSLIB BHOSLIB (Xu, 2004)(Benchmarks with Hidden Optimum Solutions for Graph

Problems) instances are based on a CSP model named RB (Xu & Li, 2000; Xu, Boussemart,

Hemery, & Lecoutre, 2007). Phase transitions exist for model RB and the transition points

can be located exactly. BHOSLIB instances are generated in the phase transition region of

model RB and appear to be extremely hard to solve for various algorithms, even when the

graph size is small (Liu, Lin, Wang, Su, & Xu, 2011; Xu & Li, 2006). They were firstly used

in the SAT competition 2004, and then have been widely used to evaluate algorithms for MC,

MVC and MIS.

3. Random A random graph of n vertices and density p is generated by randomly selecting

each edge with probability p from the complete graph of n vertices. In our experiments, n
ranges from 150 to 700 and p from 0.5 to 0.95. Random graphs allow to show the asymptotic

behavior of an algorithm.

We convert a non-weighted graph into a weighted graph by associating a weight w(vi) = i mod
200+1 to each vertex vi. This method was initially proposed by Pullan (2008) and has been used

as a standard converting approach to generate weighted graphs from non-weighted instances (Wu

et al., 2012; Benlic & Hao, 2013).

All solvers used in our experiments are implemented in C/C++. We compile them using

gcc/g++ 4.7.2 with option ”-O3”. All experiments are running on a machine with Intel(R) Xeon(R)

CPU E5-2680 @ 2.70GHz, 8 cores and 16G RAM under Debian GNU/Linux 7.4. The cut-off time

for a solver to solve an instance is one hour (3600 seconds).

4.2 Comparison of MWCLQ with Other Algorithms

We compare MWCLQ with two state-of-the-art exact solvers specific for MWC, a MinSAT solver

and CPLEX.

1. Cliquer is a state-of-the-art solver for both MC problem and MWC problem. To our best

knowledge, almost all recent exact algorithms for MWC (e.g., Kumlander, 2004; Shimizu

et al., 2013, 2012) are based on Cliquer. We used the latest version of Cliquer released in

2010, available at its homepage (Östergård, 2010).

2. DKum (Kumlander, 2004, 2008b) is implemented in VB. The source code can be found at the

author’s homepage (Kumlander, 2008a). To execute it in our experimental environment, we

translated it into C.

3. MinSatz (Li et al., 2012) is an exact weighted partial MinSAT solver, which achieves the

state-of-the-art performance on solving clique problems and combinatorial auction problems.

4. CPLEX is a high-performance mathematical programming solver for linear programming,

mixed integer programming, quadratic programming, and quadratically constrained program-

ming problems. Let G = (V,E,w) be a weighted graph, where V = {v1, v2, . . . , vn}, the

818

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

integer programming formulation of the MWC instance G is usually defined as follows.

max
n∑

i=1

xi ∗ w(vi)

subject to

xi + xj ≤ 1, ∀{vi, vj} /∈ E

xi ∈ {0, 1}, i = 1, 2, . . . , n.

Observe that the at-most-one constraint is enforced for every independent set of G. A solution

of the integer programming problem corresponds to a maximum weight clique of G. CPLEX

12.6 was used in our experiments to solve MWC after encoding it as an integer programming

problem in this way.

Table 1 shows runtimes of different solvers on DIMACS and BHOSLIB benchmarks. All 80
instances from the DIMACS benchmark are used in this experiment. MWCLQ solves 61 instances

within the cut-off time, while Cliquer, DKum, MinSatz and CPLEX solves 52, 48, 58 and 44 in-

stances, respectively. For simplicity, we exclude the instances solved within 100 seconds by all

solvers or not solved by any solver within 3600 seconds. For the 39 instances displayed in Table 1,

MWCLQ outperforms Cliquer on 32 instances and is comparable with Cliquer on other instances.

MWCLQ significantly outperforms DKum on all instances except hamming10-2, which can be

solved by both within 20 seconds. MWCLQ dominates MinSatz on 32 instances. In particular,

for the 8 instances from the brock family, MWCLQ is about 20X faster than MinSatz for the in-

stances with 400 vertices and solves all four instances with 800 vertices, which cannot be solved

by MinSatz. MWCLQ outperforms CPLEX on 28 instances. Particularly, CPLEX cannot solve

any instance from the brock and p hat families, while MWCLQ can solve all of them efficiently. It

is interesting that both MinSatz and CPLEX solve MANN a27 and MANN a45 within the cut-off

time, which cannot be solved by any specific MWC solver. Note that MANN a27 and MANN a45

are also hard for heuristic algorithms. For instance, BLS (Benlic & Hao, 2013) can only find an

approximating solution of 12281 with the success rate 16% within 396.58 seconds for MANN a27,

while PLS (Pullan, 2008) can only find an approximating solution of 12264.

We also used all 40 instances from the BHOSLIB benchmark. These instances are extremely

hard for exact MWC solvers. All evaluated solvers can solve at most the 5 smallest instances with

450 vertices. Both MWCLQ and DKum solve 5 instances, CPLEX, Cliquer and MinSatz solves 3,

1 and 0 instances, respectively. Moreover, MWCLQ achieves the best performance on 4 out of the

5 instances.

Table 2 shows mean runtimes on random graphs. We generate 50 graphs at each point. MW-

CLQ is the only algorithm which solves all 700 graphs in this experiment within the cutoff time,

while Cliquer, Dkum, MinSatz and CPLEX solves 595, 548, 548 and 387 instances, respectively.

MWCLQ significantly outperforms Dkum and MinSatz on all instances and dominates CPLEX at

all points except (200, 0.95) where both algorithms solve all instances within 30 seconds. MWCLQ

dominates Cliquer completely on random graphs with density D≥0.7, and is comparable with Cli-

quer when D<0.7. MWCLQ is the only solver which can solve all instances at the point (700, 0.7).

The experimental results suggest in particular that MWCLQ is very effective in solving graphs with

819

FANG, LI, & XU

Table 1: Runtimes (in seconds) on DIMACS and BHOSLIB benchmarks. The cut-off time is 3600
seconds. |V | stands for the number of vertices, D for the density of the graph and ωv

for the optimal solution of MWC. When a solver cannot solve an instance within 3600
seconds, its runtime is marked by ’-’. Instances solved within 100 seconds by all solvers

or not solved by any solver within the cut-off time are omitted.

Graph |V | D ωv Cliquer DKum MinSatz CPLEX MWCLQ

brock400 1 400 74 3422 260.2 607.2 2046 - 129.3

brock400 2 400 75 3350 366.1 524.5 2737 - 127.7

brock400 3 400 74 3471 290.7 573.6 2363 - 107.2

brock400 4 400 75 3626 287.4 606.3 1609 - 81.81

brock800 1 800 65 3121 1548 - - - 1427

brock800 2 800 65 3043 1603 - - - 2002

brock800 3 800 65 3076 1702 - - - 1545

brock800 4 800 65 2971 1990 - - - 2039

C250.9 250 89 5092 - 2215 640.6 30.41 39.99

DSJC1000.5 1000 50 2186 32.50 91.88 3527 - 81.30

DSJC500.5 500 50 1725 0.97 0.97 32.80 - 0.92

gen200 p0.9 44 200 89 5043 678.6 119.8 72.40 2.44 7.00

gen200 p0.9 55 200 89 5416 1718 362.2 35.19 1.81 2.76

gen400 p0.9 75 400 90 8006 - - - 238.7 -

hamming10-2 1024 99 50512 1469 7.47 - 0.06 15.46

johnson32-2-4 496 88 2033 - - - 0.43 -

MANN a27 378 98 12283 - - 4.45 2.07 -

MANN a45 1035 99 34265 - - 3487 32.61 -

p hat1000-1 1000 24 1514 0.12 0.35 21.75 - 0.53

p hat1000-2 1000 49 5777 - - 1628 - 2501

p hat1500-1 1500 25 1619 1.03 2.72 252.3 - 4.12

p hat500-1 500 25 1231 0.02 0.02 1.52 - 0.01

p hat500-2 500 50 3920 5.59 3.86 10.41 - 2.34

p hat500-3 500 75 5375 - - 1009 - 916.7

p hat700-1 700 25 1441 1.03 0.17 4.42 - 0.13

p hat700-2 700 50 5290 169.5 213.4 39.93 - 47.88

san1000 1000 50 1716 - - 46.90 - 183.8

san200 0.7 2 200 69 2422 403.9 23.28 0.11 0.70 0

san200 0.9 1 200 89 6825 - 166.9 0.10 0.31 0.24

san200 0.9 2 200 89 6082 223.3 15.11 16.37 0.83 1.64

san200 0.9 3 200 89 4748 2329 470.3 118.2 3.54 16.19

san400 0.7 1 400 70 3941 - - 12.62 24.45 3.44

san400 0.7 2 400 70 3110 - - 34.74 87.75 4.98

san400 0.7 3 400 70 2771 - - 96.12 43.53 6.37

san400 0.9 1 400 90 9776 - - 1849 13.30 1257

sanr200 0.7 200 69 2325 0.20 - 2.73 10.81 0.13

sanr200 0.9 200 89 5126 1150 215.3 68.97 11.01 6.40

sanr400 0.5 400 50 1835 0.15 - 9.44 - 0.31

sanr400 0.7 400 70 2992 29.98 74.48 429.0 - 25.57

Total: 80 52 48 58 44 61

rb30-15-1 450 82 2990 - 177.7 - - 244.9

frb30-15-2 450 82 3006 1065 44.98 - - 30.14

frb30-15-3 450 82 2995 - 423.4 - 193.5 131.7

frb30-15-4 450 82 3032 - 287.5 - 258.2 181.8

frb30-15-5 450 82 3011 - 154.0 - 118.3 57.31

Total: 40 1 5 0 3 5

820

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

Table 2: Mean runtimes in seconds on random graphs, obtained by solving 50 graphs at each point.

The cut-off time is 3600 seconds. |V | stands for the number of vertices, D for the density

of the graph and ωv for the weight of an optimal solution, averaged over the solved in-

stances. The mean runtime is marked by ’-’ if no instance is solved at the point within the

cut-off time. # stands for the number of instances solved by the solver within the cut-off

time

Benchmark Cliquer DKum MinSatz CPLEX MWCLQ

|V | D ωv Time # Time # Time # Time # Time #

150 0.90 3394 21.06 50 7.92 50 3.57 50 2.58 50 0.58 50

150 0.95 4766 1006 50 35.42 50 2.21 50 1.99 50 0.42 50

200 0.80 3249 4.02 50 5.05 50 12.65 50 54.83 50 0.99 50

200 0.90 5095 974.9 50 373.0 50 94.63 50 23.45 50 14.30 50

200 0.95 7372 - 0 2464 19 111.1 50 3.91 50 28.77 50

300 0.70 2441 1.76 50 3.01 50 32.36 50 353.5 50 1.13 50

300 0.80 3334 81.45 50 107.1 50 379.6 50 303.7 47 14.87 50

300 0.90 5351 - 0 - 0 - 0 263.5 40 845.4 50

500 0.60 2285 3.94 50 9.45 50 208.5 50 - 0 6.03 50

500 0.70 2969 119.9 50 302.1 50 2994 48 - 0 93.36 50

600 0.60 2496 23.51 50 62.46 50 1006 50 - 0 34.79 50

600 0.70 3293 1256 50 2884 29 - 0 - 0 869.9 50

700 0.60 2510 46.01 50 132.8 50 2757 50 - 0 78.24 50

700 0.70 3283 3006 45 - 0 - 0 - 0 2434 50

Total 700 595 548 548 387 700

Table 3: Lower bounds given by different solvers for DIMACS instances which cannot be solved

by any solver within the cut-off time.

Instance |V | D Cliquer DKum MinSatz CPLEX MWCLQ

C1000.9 1000 90 1181 1846 6385 8066 8471

C2000.5 2000 50 2466 1186 2198 1358 2466

C2000.9 2000 90 534 782 6747 7362 10034

C4000.5 4000 50 1284 863 2263 1854 2698

C500.9 500 90 1868 2070 5594 6520 6672

MANN a81 3321 100 195 1201 100970 111386 111033

gen400 p0.9 55 400 90 2501 3037 5988 6611 6676

gen400 p0.9 65 400 90 2855 3179 6180 6720 6832

hamming10-4 1024 83 738 1798 4062 5042 4614

keller5 776 75 2860 2139 3317 3317 3317

keller6 3361 82 511 1637 5595 6937 6316

p hat1000-3 1000 74 2417 2893 6779 7258 7588

p hat1500-2 1500 51 2897 3127 6100 5954 7104

p hat1500-3 1500 75 1521 2067 7050 9058 8449

p hat700-3 700 75 2822 5156 7340 7400 7565

821

FANG, LI, & XU

sa
n
2
0
0
_0
.9
_2

g
e
n
2
0
0
_p
0
.9
_4
4

sa
n
4
0
0
_0
.7
_3

sa
n
4
0
0
_0
.7
_2

sa
n
2
0
0
_0
.9
_3

sa
n
4
0
0
_0
.7
_1

b
ro
ck
4
0
0
_3

p
_h
a
t7
0
0
-2

c2
5
0
.9

h
a
m
m
in
g
1
0
-2

sa
n
1
0
0
0

b
ro
ck
8
0
0
_3

b
ro
ck
4
0
0
_4

p
_h
a
t5
0
0
-3

b
ro
ck
4
0
0
_1

b
ro
ck
8
0
0
_1

b
ro
ck
8
0
0
_2

p
_h
a
t1
0
0
0
-2

b
ro
ck
8
0
0
_4

sa
n
4
0
0
_0
.9
_1

100

101

102

103

104
Ti
m
e

MWCLQ
Cliquer
DKum

Figure 4: Runtimes to find an optimal solution. Instances for which all solvers find an optimal

solution within 100 seconds or MWCLQ finds an optimal solution in less than one second

are omitted

high density. CPLEX is also effective for dense graphs, but it cannot solve any random instance

with more than 500 vertices.

For the 15 DIMACS instances that cannot be solved by any algorithm within the cut-off time,

we report the largest weight clique found by each solver before the algorithm terminates, which is

a lower bound of the optimal solution. Table 3 shows MWCLQ computes the best lower bounds

for 11 instances, while CPLEX gives the best lower bounds for 5 instances. MWCLQ can give a

significantly better lower bound than other MWC solvers on all instances except C2000.5, where

MWCLQ and Cliquer share the same bound. This result suggests that MWCLQ can often compute

a better approximate solution than other exact solvers within a given time.

An exact algorithm for MC or MWC usually solves an instance in two phases. In the first phase,

the algorithm finds an optimal solution. Then in the second phase, the algorithm proves that the

solution is indeed optimal by showing that no better solution exists. In Fig. 4, we compare the

runtimes that Cliquer, Dkum and MWCLQ need to find an optimal solution of a DIMACS instance.

822

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

For simplicity, the instances for which all solvers find an optimal solution within 100 seconds or

MWCLQ finds an optimal solution in less than one second are omitted. MWCLQ always finds

an optimal solution much faster than other solvers on all instances except hamming10-2. For few

instances such as brock800 2 and brock800 4, although MWCLQ spends more time than Cliquer

for exactly solving them (see Table 1), it finds an optimal solution 10 times faster than Cliquer.

In summary, both Table 3 and Fig. 4 show that MWCLQ generally finds an optimal solution

much faster than other solvers, although sometimes it may spend more time to prove the optimality.

4.3 Comparison of Different Encodings of MWC into MaxSAT

We presented four encodings from MWC into MaxSAT, namely the direct encoding, the split en-

coding, the iterative split encoding and the LW encoding. When an MWC instance is encoded into

a MaxSAT instance using the first three encodings, a MaxSAT solver can be used to search for an

optimal solution of the MWC instance. However, if the MWC instance is encoded into a MaxSAT

instance using the LW encoding, the optimal solution of the MaxSAT instance is not an MWC, but

an upper bound for the MWC. Therefore, when a MaxSAT solver is used to solve an MWC instance,

only the first three encodings can be used.

Different from MaxSAT solvers, MWCLQ uses MaxSAT reasoning just in the upper bound-

ing procedure at each search tree node, where the current subgraph is dynamically encoded into

a MaxSAT instance. So, all the four encodings could be used in MWCLQ to encode the current

subgraph.

Recall that MWCLQ is based on the LW encoding. We implemented three other versions of

MWCLQ, i.e., MWCLQdir, MWCLQsp and MWCLQit, which are identical to MWCLQ, but are

based on the direct encoding, the split encoding and the iterative split encoding, respectively. In a

MaxSAT instance obtained using the direct encoding, all inconsistent subsets only contain two soft

clauses, because all soft clauses are unit. When MWCLQdir detects an inconsistent subset such

as {(x1, w(x1)), (x2, w(x2))}, the most weighted clause in the subset, say, (x2, w(x2)), is split

into (x2, w(x1)) and (x2, w(x2)−w(x1)). Then the upper bound is improved by w(x1), and the

clause (x2, w(x2)−w(x1)) can be used for further detection. In a MaxSAT instance obtained using

the split and the iterative split encoding, all vertices in the same soft clause have the same weight.

Observe that the Top-k literal failed clause and the Top-k empty clause do not make sense, and the

(k, δ)-Rule is not needed in the three encoding.

In this experiment, we ran the following four different kinds of state-of-the-art MaxSAT solvers

to solve the MWC instances encoded into MaxSAT using the direct encoding, the split encoding

and the iterative split encoding.

1. akMaxSat (Kügel, 2010) is a branch-and-bound MaxSAT solver that computes the lower

bound with a combination of MaxSAT resolution and detection of disjoint inconsistent sub-

sets. One of its authors sent us the source code submitted to the MaxSAT evaluation 2012.

2. MaxSatz (Li et al., 2007) is a branch-and-bound MaxSAT solver that incorporates some SAT

technologies. We used the latest version MaxSatz2013, which is one of the best solvers in the

MaxSAT evaluation 2013.

3. WPM1-2013 (Ansótegui, Bonet, & Levy, 2009) is a MaxSAT solver based on successive calls

to a SAT solvers. One of its authors provided us an executable file of WPM which is used in

the MaxSAT evaluation 2013.

823

FANG, LI, & XU

4. MaxHS (Davies & Bacchus, 2013b) is a hybrid Maxsat solver that exploits both SAT and

integer programming technologies.

We report the number of instances solved by MWCLQdir, MWCLQsp, MWCLQit, MWCLQ,

akMaxSat, MaxSatz and MaxHS within 3600 seconds. The results of WPM are not reported, be-

cause it solves only 3 DIMACS instances and does not solve any BHOSLIB instance. In addition,

it always runs out of memory when solving random instances.

Table 4: Number of instances solved within 3600 seconds by MaxSAT solvers using three different

encodings and four versions of MWCLQ. Direct stands for the direct encoding, Split is for

the split encoding and Iter is for the iterative split encoding.

Instance akMaxSat MaxSatz MaxHS MWC- MWC- MWC- MWC-

Benchmark # Direct Split Iter Direct Split Iter Direct Split Iter LQdir LQsp LQit LQ

brock 12 4 4 4 4 4 4 4 0 0 4 8 8 12

c-fat 7 7 7 7 7 7 7 7 7 7 7 7 7 7

C 7 2 2 2 2 2 2 2 1 1 1 2 2 2

DSJC 2 0 0 0 1 1 1 0 0 0 2 2 2 2

gen 5 2 2 2 2 2 2 3 0 0 0 2 2 2

hamming 6 5 5 5 5 5 5 5 4 3 3 4 4 5

johnson 4 3 3 3 3 3 3 4 3 2 3 3 3 3

keller 3 1 1 1 1 1 1 1 0 0 1 1 1 1

MANN 4 1 1 1 2 2 2 3 2 2 1 1 1 1

p hat 15 5 4 5 7 5 7 4 1 0 8 8 9 11

san 15 7 9 9 8 8 8 13 4 3 6 10 14 15

DIMACS: 80 37 38 39 42 40 42 46 22 18 36 48 53 61

BHOSLIB: 40 0 0 1 0 0 5 3 0 0 0 0 5 5

(150,0.9) 50 43 50 50 50 50 50 50 7 7 50 50 50 50

(150,0.95) 50 46 50 50 49 50 50 50 50 50 0 50 50 50

(200,0.8) 50 38 50 50 49 50 50 50 0 0 50 50 50 50

(200,0.9) 50 44 50 50 49 50 50 50 0 0 0 41 50 50

(200,0.95) 50 44 50 50 49 50 50 50 14 14 0 25 50 50

(300,0.7) 50 30 48 50 50 50 50 50 0 0 50 50 50 50

(300,0.8) 50 14 7 9 47 19 18 41 0 0 50 50 50 50

(300,0.9) 50 8 8 8 2 0 0 35 0 0 0 0 29 50

(500,0.6) 50 0 0 0 0 0 0 0 0 0 50 50 50 50

(500,0.7) 50 0 0 0 0 0 0 0 0 0 49 41 50 50

(600,0.6) 50 0 0 0 0 0 0 0 0 0 50 50 50 50

(600,0.7) 50 0 0 0 0 0 0 0 0 0 0 0 39 50

(700,0.6) 50 0 0 0 0 0 0 0 0 0 50 50 50 50

(700,0.7) 50 0 0 0 1 0 0 0 0 0 0 0 0 50

RAND: 700 267 313 317 346 319 318 376 71 71 399 507 618 700

Experimental results in Table 4 suggest that encoding approaches do affect the performances of

MaxSAT solvers to solve an MWC instance. However, the effectiveness of the direct encoding, the

split encoding and the iterative encoding for different MaxSAT solvers are not clear. Concretely, the

iterative split encoding makes akMaxSat a little faster than other encodings do. MaxHS using the

direct encoding dominates MaxHS using other encodings. The iterative split encoding is a better

choice for MaxSatz to solve BHOSLIB instances, but the direct encoding is better to solve random

graphs. These results also show that MWCLQ significantly outperforms MaxSAT solvers to solve

an MWC instance. We observe that although MaxSAT reasoning is powerful in improving the upper

bound in a BnB algorithm for MC or MWC, using a MaxSAT solver to solve an MWC instance is

not effective.

824

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

Thanks to the extended MaxSAT reasoning, MWCLQ significantly outperforms MWCLQdir,

MWCLQsp and MWCLQit. MWCLQdir and MWCLQsp are slow in solving the MWC instances

because they cannot capture the graph structure well. Although the iterative split encoding in

MWCLQit can capture the graph structure, MWCLQit does not exploit the power of MaxSAT

reasoning efficiently, because the clause splittings in MWCLQit are not driven by MaxSAT reason-

ing.

The advantages of MWCLQ can be described as follows: (1) it is a BnB algorithm for MWC that

is able to exploit the graph structure, especially by ordering vertices and by partitioning the graph

into independent sets at each search tree node, that a MaxSAT solver does not do; (2) it exploits

the power of MaxSAT reasoning in the upper bounding procedure to derive a tight upper bound,

that a classical BnB algorithm for MWC does not do. Nevertheless, to make MaxSAT reasoning

beneficial, a relevant encoding from MWC into MaxSAT is necessary, as shown in Table 4. The

encoding has an obvious impact on the performance of MWCLQ.

4.4 Effectiveness of the Upper Bound Based on Extended MaxSAT Reasoning

To study the impact of extended MaxSAT reasoning with soft clause splitting, we implemented

two derived versions of MWCLQ, namely, MWCLQ-- and MWCLQ-. MWCLQ-- is identical to

MWCLQ except that it only uses the trivial bound based on the independent partition of the graph,

which is equal to the sum of the largest weight in each independent set. MWCLQ- is identical to

MWCLQ except it only detects the inconsistent subsets of soft clauses, but does not use the δ-Rule

and the (k, δ)-Rule to split clauses in the subset.

Table 5 shows runtimes (in seconds) and search tree sizes (in thousands) of MWCLQ--, MWCLQ-

and MWCLQ for solving the DIMACS and BHOSLIB instances, as well as the gain ratio of

MWCLQ- and MWCLQ compared with MWCLQ-- in terms of runtime and search tree size com-

puted as MWCLQ--/MWCLQ- and MWCLQ--/MWCLQ, respectively. MaxSAT reasoning without

soft clause splitting in MWCLQ- makes MWCLQ- better than MWCLQ-- in terms of search tree

size. But the reduction of search tree size is not enough in general to compensate the overhead of

MaxSAT reasoning, so that the gain of MWCLQ- compared with MWCLQ-- in terms of runtime is

not clear. However, the soft clause splitting using the δ-Rule and the (k, δ)-Rule allows MaxSAT rea-

soning to prune much more search space, making MWCLQ substantially (from 1.08 to 4.05 times)

faster than MWCLQ--. In fact, MWCLQ solves 3 instances more than MWCLQ-- and MWCLQ-,

and significantly outperforms them on all instances except san1000. Observe that MWCLQ-- and

MWCLQ- solve the same number of instances as Minsatz (58) on the DIMACS benchmark, and

solve more instances than Cliquer (52), Dkum (48) and CPLEX (44).

Table 6 shows mean runtimes (in seconds) and mean search tree sizes (in thousands) of different

versions of MWCLQ for the random instances, averaged over the solved instances at each point, as

well as the gain ratio of MWCLQ and MWCLQ- compared with MWCLQ--. MWCLQ solves all

instances. However, neither MWCLQ-- nor MWCLQ- can solve all graphs at the points (300, 0.90)
and (700, 0.7). MaxSAT reasoning allows MWCLQ- to prune more search space than MWCLQ--

on all instances, but the overhead makes MWCLQ- slower on instances with more than 300 ver-

tices. However, similarly as in DIMACS and BHOSLIB cases, MWCLQ is from 1.2 to 14.3 times

faster than MWCLQ--, because the soft clause splittings using the δ-Rule and the (k, δ)-Rule allow

MWCLQ to substantially reduce the search space on all instances. Furthermore, the gain in terms

of both runtime and search tree size increases with the density of graph.

825

FANG, LI, & XU

Table 5: Runtimes (in seconds) and search tree sizes (in thousands) of different versions of MW-

CLQ for solving the DIMACS and BHOSLIB instances, as well as the gain ratio of MW-

CLQ and MWCLQ- compared with MWCLQ--. The cut-off time is 3600 seconds. ’-’

means that the solver cannot solve the instance within the cut-off time. Instances solved

within 10 seconds by all solvers or not solved by any within the cut-off time are omitted.

Benchmark MWCLQ-- MWCLQ- MWCLQ

Graph Time Size Time Gain Size Gain Time Gain Size Gain

brock400 1 209.0 63153 234.3 0.89 54505 1.16 129.3 1.62 25367 2.49

brock400 2 203.5 58770 227.7 0.89 51244 1.15 127.7 1.59 23788 2.47

brock400 3 173.4 50079 194.2 0.89 43616 1.15 107.2 1.62 19830 2.53

brock400 4 131.5 37420 146.3 0.90 32853 1.14 81.81 1.61 15133 2.47

brock800 1 1813 421259 1990 0.91 396425 1.06 1427 1.27 223715 1.88

brock800 2 2563 648486 2695 0.95 605433 1.07 2002 1.28 339910 1.91

brock800 3 1968 470594 2201 0.89 442518 1.06 1545 1.27 248218 1.90

brock800 4 2623 675790 2931 0.89 633367 1.07 2039 1.29 352700 1.92

C250.9 159.4 31542 160.5 0.99 20114 1.57 39.99 3.99 4472 7.05

DSJC1000.5 87.73 26154 91.87 0.95 25207 1.04 81.30 1.08 17032 1.54

gen200 p0.9 44 27.83 7560 23.12 1.20 3692 2.05 7.00 3.98 979 7.72

gen200 p0.9 55 10.41 2530 8.70 1.20 1310 1.93 2.76 3.77 344 7.34

hamming10-2 - - - - - - 15.46 - 41758 -

p hat1000-2 - - - - - - 2501 - 176892 -

p hat500-3 3009 457787 2813 1.07 238949 1.92 916.7 3.28 77115 5.94

p hat700-2 113.4 17715 117.5 0.97 10571 1.68 47.88 2.37 4186 4.23

san1000 135.9 31173 137.2 0.99 30680 1.02 183.8 0.74 21694 1.44

san200 0.9 3 56.31 15955 48.47 1.16 7946 2.01 16.19 3.48 2180 7.32

san400 0.7 3 9.79 2936 10.53 0.93 2403 1.22 6.37 1.54 1213 2.42

san400 0.9 1 - - - - - - 1257 - 63106 -

sanr200 0.9 25.90 6690 20.10 1.29 3001 2.23 6.40 4.05 850 7.87

sanr400 0.7 35.71 12228 39.60 0.90 10797 1.13 25.57 1.40 5705 2.14

frb30-15-1 411.3 156311 394.8 1.04 108476 1.44 244.9 1.68 27928 5.60

frb30-15-2 42.28 13416 39.17 1.08 9287 1.44 30.14 1.40 2597 5.17

frb30-15-3 171.8 67246 167.0 1.03 48401 1.39 131.7 1.30 14589 4.61

frb30-15-4 267.9 83139 257.3 1.04 63411 1.31 181.8 1.47 16336 5.09

frb30-15-5 85.27 22362 82.23 1.04 17705 1.26 57.31 1.49 5575 4.01

Table 6: Runtimes (in seconds) and search tree sizes (in thousands) of different versions of MW-

CLQ for the random instances, averaged over the solved instances at each point, as well as

the gain ratio of MWCLQ and MWCLQ- compared with MWCLQ--. The cut-off time is

3600 seconds for a solver to solve one instance.

Graph MWCLQ-- MWCLQ- MWCLQ

|V | D # Time Size # Time Gain Size Gain # Time Gain Size Gain

150 0.90 50 1.85 715 50 1.34 1.38 255 2.81 50 0.58 3.19 108 6.58

150 0.95 50 5.23 1440 50 1.28 4.09 123 11.69 50 0.42 12.45 46 30.69

200 0.80 50 1.71 725 50 1.89 0.90 539 1.34 50 0.99 1.73 245 2.96

200 0.90 50 49.41 14030 50 40.13 1.23 6109 2.30 50 14.30 3.46 2031 6.91

200 0.95 50 405.8 81772 50 117.1 3.47 8583 9.53 50 28.77 14.10 2454 33.32

300 0.70 50 1.58 552 50 1.80 0.88 493 1.12 50 1.13 1.40 263 2.10

300 0.80 50 27.09 7655 50 30.98 0.87 6265 1.22 50 14.87 1.82 2611 2.93

300 0.90 31 2261 399832 33 2261 1.00 245004 1.63 50 845.4 2.67 85676 4.67

500 0.60 50 7.53 2310 50 8.12 0.93 2176 1.06 50 6.03 1.25 1314 1.76

500 0.70 50 133.8 34848 50 149.5 0.89 31905 1.09 50 93.36 1.43 16326 2.13

600 0.60 50 42.85 13483 50 46.40 0.92 12661 1.06 50 34.79 1.23 7667 1.76

600 0.70 50 1229 320607 50 1390 0.88 292627 1.10 50 869.9 1.41 149522 2.14

700 0.60 50 94.10 24897 50 104.8 0.90 23624 1.05 50 78.24 1.20 14219 1.75

700 0.70 31 3177 682683 15 3343 0.95 575774 1.19 50 2434 1.31 351894 1.94

826

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

4.5 Application of MWCLQ for the Winner Determination Problem

An important application of MWC is to solve the winner determination problem (WDP) in combi-

natorial auctions. The auctioneer has a set of m items, M = {1, 2, . . . ,m}, to sell, and the buyers

submit a set of n bids, B = {B1, B2, . . . , Bn}. A bid is a pair Bi = (Si, Pi), where Si ⊂ M is

a subset of items and Pi ≥ 0 is a price for all items in Si. The WDP problem is to determine the

bids as winning or losing so as to maximum the auctioneer’s revenue, such that each item can be

allocated to at most one bidder. We define an MWC instance G = (V,E,w) for the WDP instance

as follows.

• For each bid Bi ∈ B, define a vertex vi with weight w(vi) = Pi, i.e., V = {v1, v2, . . . , vn}
and w(vi) = Pi;

• Add an edge {vi, vj} to G if and only if Bi and Bj do not share common items, i.e., E =
{{vi, vj} | Si ∩ Sj = ∅, 1 ≤ i < j ≤ n}.

A maximum weight clique of G corresponds to a feasible subset of bids with a maximum revenue.

In this experiment, we compared MWCLQ with Cliquer, Dkum, MinSatz and CPLEX on re-

alistic WDP instances. We also selected MaxHS using the direct encoding, which is the most

effective MaxSAT solver to solve an MWC instance, in this comparison. We used the benchmark

provided by Lau and Goh (2002), which has been widely used as benchmark purpose to test WDP

algorithms (Guo, Lim, Rodrigues, & Zhu, 2006; Sghir, Hao, Jaafar, & Ghédira, 2014; Wu & Hao,

2015). Instances in this benchmark are generated by incorporating the following factors, i.e., a pric-

ing factor which models a bidder’s acceptable price range for each bid, a preference factor which

takes into account bidder’s preferences among bids, and a fairness factor which measures the fair-

ness in distributing items among bidders. The benchmark contains 500 instances with up to 1500
items and 1500 bids, which can be divided into 5 groups by the item number and the bid number.

Each group contains 100 instances labeled as REL-m-n, where m is the number of items and n is

the number of bids.

Table 7: Mean runtimes in seconds on WDP instances, obtained by solving 100 graphs of each

group. The cut-off time is 3600 seconds. The mean runtime is marked by ’-’ if no instance

is solved in the group within the cut-off time. # stands for the number of instances solved

by the solver.

Benchmark Cliquer DKum MinSatz MaxHS CPLEX MWCLQ

Group # Time # Time # Time # Time # Time # Time #

REL-500-1000 100 809.9 100 628.3 100 552.5 100 - 0 - 0 55.61 100

REL-1000-1000 100 3.73 100 4.52 100 25.39 100 - 0 - 0 1.45 100

REL-1000-500 100 0.03 100 0.03 100 0.81 100 1003.7 100 266.7 100 0.05 100

REL-1000-1500 100 2.84 100 3.55 100 67.90 100 - 0 - 0 1.56 100

REL-1500-1500 100 3.38 100 5.30 100 78.19 100 - 0 - 0 2.42 100

Table 7 summarizes the mean runtimes and numbers of instances solved within the cut-off time

by group. Results show that MWCLQ outperforms other solvers on all groups except REL-1000-

500, where Cliquer, Dkum, MinSatz and MWCLQ are comparable. MWCLQ achieves at least

10X speedup for the instances in the hardest group REL-500-1000. MaxHS and CPLEX are not

effective in solving these instances. In our experiment, we transformed WDP to MWC first and

827

FANG, LI, & XU

then formulated it with integer programming. Another method is used by Wu and Hao (2015)

to formulate WDP directly into integer programming. The method appears to be slightly more

effective than the transformation in our experiment, but it does not affect our comparison, because

the only instances CPLEX is able to solve within 3600 seconds are also from REL-1000-500 with

this transformation.

Table 8 reports the detailed comparative results on the first 10 instances from each group. MW-

CLQ outperforms other solvers on all instances except the 10 instances from the easiest group

(in401, in402, ..., in410), which can be solved by Cliquer, DKum, MinSatz and MWCLQ within

less than one second. These results suggest that MWCLQ is more effective in solving MWC in-

stances from WDP than other specific MWC algorithms, MinSatz, MaxHS and CPLEX. Moreover,

MWCLQ is even more efficient than some state-of-the-art heuristic algorithms on some relatively

hard instances. For example, MWCLQ solves in108 in 101.04 seconds, while the heuristic algo-

rithm (Wu & Hao, 2015), based on tabu search takes, 113.53 seconds to find the solution with

probability 0.73. Ignoring the difference of running environments, MWCLQ is faster than the tabu

search algorithm on in108. Note that heuristic algorithms can only give a feasible solution, but

cannot guarantee the optimality.

5. Conclusion

MaxSAT reasoning has been proved to be very effective for the MC problem, based on a partition of

the graph into independent sets. However, MaxSAT reasoning cannot be naturally extended to solve

the MWC problem because of the literal weights, as shown by the relatively poor performance of

MWCLQ- , MWCLQdir, MWCLQsp and MWCLQit. MWCLQ- exploits MaxSAT reasoning but

does not deal with literal weights. The encodings from MWC into MaxSAT used in MWCLQdir

and MWCLQsp do not capture well the graph structure. Although MWCLQit can exploit the graph

structure, it does too many useless splits and has difficulties to take advantage of MaxSAT reasoning

efficiently. We thus propose to encode an MWC instance into a literal-weighted MaxSAT instance,

in which both soft clauses and literals in soft clauses are weighted. The optimal solution of an

LW MaxSAT instance is not an MWC, but an upper bound for the MWC. The interest of the LW

encoding is that we can transform an LW MaxSAT instance so that the optimal solution of the new

instance is a tighter upper bound for the MWC.

Concretely, at every search tree node of a BnB algorithm for MWC, we partition the current

subgraph into independent sets and obtain an LW MaxSAT instance, in which each soft clause

corresponds to an independent set. Then we successively transform the LW MaxSAT instance

by identifying the Top-k literal failed clause and the Top-k empty clause and by using the δ-Rule

and the (k, δ)-Rule. Consequently, we obtain a tight upper bound for MWC to prune the search

space. This approach is implemented in MWCLQ, which is substantially better than MWCLQ-,

MWCLQdir, MWCLQsp and MWCLQit, confirming the effectiveness of the approach. MWCLQ

is also favorably compared with the state-of-the-art MWC solvers as Cliquer, DKum, MinSatz and

CPLEX, as well as several state-of-the-art MaxSAT solvers using different encodings, on standard

benchmarks and instances from realistic applications.

In the future, we plan to study the impact of vertex ordering and unit clause ordering in MW-

CLQ. It is also interesting to use MaxSAT reasoning to solve other combinatorial optimization

problems, especially the weighted version, using a dedicated encoding.

828

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

Table 8: Runtimes in seconds on the first 10 instances of each group in the benchmark in Table 7.

The cut-off time is 3600 seconds. |V | stands for the number of vertices, D for the density

of the graph after transforming WDP into MWC and ωv for the optimal solution of MWC.

When a solver cannot solve an instance within 3600 seconds, its runtime is marked by ’-’

Graph |V | D ωv Cliquer DKum MinSatz MaxHS CPLEX MWCLQ

in101 1000 0.31 72724.617 819.6 616.1 610.8 - - 53.87

in102 1000 0.30 72518.222 414.9 289.0 308.8 - - 34.40

in103 1000 0.31 72129.500 551.4 455.5 479.6 - - 44.94

in104 1000 0.30 72709.646 330.8 218.1 353.5 - - 37.00

in105 1000 0.30 75646.127 840.3 547.3 367.7 - - 37.33

in106 1000 0.30 71258.613 272.7 346.4 270.7 - - 23.56

in107 1000 0.30 69713.403 595.9 460.1 736.9 - - 68.07

in108 1000 0.31 75813.205 1321 1121 924.9 - - 101.04

in109 1000 0.30 69475.895 247.3 238.8 305.0 - - 29.10

in110 1000 0.30 68295.289 308.5 307.7 411.7 - - 43.16

in201 1000 0.15 81557.742 1.80 2.47 22.09 - - 1.01

in202 1000 0.16 90708.127 3.73 4.98 25.90 - - 1.37

in203 1000 0.16 86239.214 3.63 6.65 26.66 - - 1.57

in204 1000 0.17 87075.428 6.13 7.20 30.47 - - 2.01

in205 1000 0.16 86515.951 3.11 4.85 27.42 - - 1.64

in206 1000 0.16 91518.964 2.37 3.37 22.85 - - 1.11

in207 1000 0.17 93129.248 3.95 5.69 28.18 - - 1.69

in208 1000 0.16 94904.679 4.07 5.18 22.09 - - 1.05

in209 1000 0.16 87268.965 2.13 3.38 26.66 - - 1.54

in210 1000 0.16 89962.396 3.54 4.78 22.09 - - 1.21

in401 500 0.15 77417.482 0.02 0.03 0.69 923.01 181.70 0.04

in402 500 0.15 76273.336 0.02 0.02 0.72 1107.2 198.12 0.04

in403 500 0.16 74843.957 0.03 0.04 0.76 891.23 229.0 0.04

in404 500 0.17 78761.690 0.05 0.08 0.89 1082.9 208.97 0.06

in405 500 0.17 75915.900 0.05 0.08 0.88 1300.6 224.98 0.06

in406 500 0.14 72863.324 0.02 0.02 0.75 992.34 175.15 0.05

in407 500 0.17 76365.717 0.05 0.07 0.79 1569.1 364.58 0.06

in408 500 0.16 77018.833 0.04 0.04 0.82 1187.2 199.39 0.06

in409 500 0.14 73188.619 0.01 0.02 0.71 846.56 217.31 0.04

in410 500 0.17 73791.658 0.04 0.06 0.85 1132.1 243.42 0.06

in501 1500 0.09 88656.958 4.64 5.68 81.25 - - 2.30

in502 1500 0.08 86236.911 1.69 2.30 65.16 - - 1.45

in503 1500 0.08 87812.377 3.44 4.42 72.06 - - 1.72

in504 1500 0.08 85600.001 2.37 3.80 61.32 - - 1.56

in505 1500 0.08 84860.165 2.16 2.82 62.09 - - 1.56

in506 1500 0.08 84623.414 1.41 2.32 65.92 - - 1.34

in507 1500 0.08 90288.472 2.82 3.73 68.99 - - 1.32

in508 1500 0.07 86853.500 1.24 1.60 58.26 - - 1.11

in509 1500 0.08 88316.087 3.59 4.37 64.39 - - 1.80

in510 1500 0.08 89014.137 1.29 2.19 64.39 - - 1.15

in601 1500 0.09 108800.445 4.52 5.51 76.04 - - 2.39

in602 1500 0.09 105611.476 2.01 2.98 70.61 - - 1.75

in603 1500 0.09 105121.021 1.84 2.56 65.96 - - 1.35

in604 1500 0.10 107733.805 3.86 5.71 84.58 - - 3.09

in605 1500 0.10 109840.984 3.72 5.75 75.27 - - 2.22

in606 1500 0.10 107113.067 2.72 4.37 77.60 - - 2.13

in607 1500 0.10 113180.284 4.20 6.65 78.37 - - 2.38

in608 1500 0.10 105266.107 2.21 3.72 77.60 - - 2.17

in609 1500 0.10 109472.332 2.77 3.78 69.84 - - 1.86

in610 1500 0.11 113716.965 6.14 10.03 94.67 - - 3.70

829

FANG, LI, & XU

6. Acknowledgments

We would like to thank anonymous reviewers for their helpful comments and suggestions. We also

thank Jichang Zhao, Qiao Kan, Xu Feng and Shaowei Cai for their proofreads and suggestions. Part

of this work was done while the first author was a joint Ph.D. student at Université de Picardie Jules

Verne. This research was partly supported by NSFC (Grant No. 61421003), the fund of the State

Key Lab of Software Development Environment (Grant No. SKLSDE-2015ZX-05), the Chinese

State Key Laboratory of Software Development Environment Open Fund (Grant No. SKLSDE-

2012KF-07), and the MeCS platform of Université de Picardie Jules Verne.

References

Abramé, A., & Habet, D. (2014). Efficient application of max-sat resolution on inconsistent subsets.

In Proc. of CP-2014, pp. 92–107. Springer.

Abramé, A., & Habet, D. (2015). On the resiliency of unit propagation to max-resolution. In Proc.

of AAAI-2015, pp. 268–274. AAAI Press.

Ansótegui, C., Bonet, M. L., & Levy, J. (2009). Solving (weighted) partial maxsat through satisfia-

bility testing. In Theory and Applications of Satisfiability Testing-SAT 2009, pp. 427–440.

Ansótegui, C., Bonet, M. L., & Levy, J. (2013). Sat-based maxsat algorithms. Artificial Intelligence,

196, 77–105.

Ansótegui, C., & Gabas, J. (2013). Solving (weighted) partial maxsat with ILP. In Proc. of CPAIOR-

2013, pp. 403–409.

Benlic, U., & Hao, J. K. (2013). Breakout local search for maximum clique problems. Computers

& Operations Research, 40, 192–206.

Bonet, M. L., Levy, J., & Manyà, F. (2006). A complete calculus for max-sat. In Theory and

Applications of Satisfiability Testing-SAT 2006, pp. 240–251. Springer.

Cai, S., Su, K., Luo, C., & Sattar, A. (2013). NuMVC: An efficient local search algorithm for

minimum vertex cover. Journal of Artificial Intelligence Research, 46, 687–716.

Cai, S., Su, K., & Sattar, A. (2011). Local search with edge weighting and configuration checking

heuristics for minimum vertex cover. Artificial Intelligence, 175(9), 1672–1696.

Chen, J. (2010). A new SAT encoding of the at-most-one constraint. In International Workshop on

Modelling and Reformulating Constraint Satisfaction Problems.

Davies, J., & Bacchus, F. (2013a). Exploiting the power of mip solvers in maxsat. In Theory and

Applications of Satisfiability Testing–SAT 2013, pp. 166–181. Springer.

Davies, J., & Bacchus, F. (2013b). Postponing optimization to speed up MAXSAT solving. In Proc.

of CP-2013, pp. 247–262. Springer.

Downey, R. G., & Fellows, M. R. (1995). Fixed-parameter tractability and completeness I: Basic

results. SIAM Journal on Computing, 24(4), 873–921.

Fahle, T. (2002). Simple and fast: Improving a branch-and-bound algorithm for maximum clique.

In Proc. of ESA-2002, pp. 485–498.

Fang, Z., Chu, Y., Qiao, K., Feng, X., & Xu, K. (2014a). Combining edge weight and vertex weight

for minimum vertex cover problem. In Frontiers in Algorithmics, pp. 71–81. Springer.

830

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

Fang, Z., Li, C. M., Qiao, K., Feng, X., & Xu, K. (2014b). Solving maximum weight clique using

maximum satisfiability reasoning. In Proc. of ECAI-2014, Vol. 263, pp. 303 – 308.

Feige, U. (2004). Approximating maximum clique by removing subgraphs. SIAM Journal on

Discrete Mathematics, 18(2), 219–225.

Freeman, J. W. (1995). Improvements to propositional satisfiability search algorithms. Ph.D. thesis.

Guo, Y., Lim, A., Rodrigues, B., & Zhu, Y. (2006). Heuristics for a bidding problem. Computers &

operations research, 33(8), 2179–2188.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2014). On reducing maximum independent set to

minimum satisfiability. In Theory and Applications of Satisfiability Testing–SAT 2014, pp.

103–120. Springer.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer

Computations, pp. pp 85–103. Springer.

Kibanov, M., Atzmueller, M., Scholz, C., & Stumme, G. (2014). Temporal evolution of contacts

and communities in networks of face-to-face human interactions. Science China Information

Sciences, 57(3), 1–17.

Konc, J., & Janezic, D. (2007). An improved branch and bound algorithm for the maximum clique

problem. Communications in Mathematical and in Computer Chemistry, 58, 569–590.

Kügel, A. (2010). Improved exact solver for the weighted Max-SAT problem. In Workshop Prag-

matics of SAT, Vol. 436.

Kügel, A. (2012). Natural Max-SAT encoding of Min-SAT. In Learning and Intelligent Optimiza-

tion, pp. 431–436. Springer.

Kumlander, D. (2004). A new exact algorithm for the maximum-weight clique problem based on a

heuristic vertex-coloring and a backtrack search. In Proc. of MOC-2004, pp. 202–208.

Kumlander, D. (2008a) http://www.kumlander.eu/graph/index.html.

Kumlander, D. (2008b). On importance of a special sorting in the maximum-weight clique algorithm

based on colour classes. In Modelling, computation and optimization in information systems

and management sciences, pp. 165–174. Springer.

Larrosa, J., Heras, F., & de Givry, S. (2008). A logical approach to efficient max-sat solving.

Artificial Intelligence, 172(2), 204–233.

Lau, H. C., & Goh, Y. G. (2002). An intelligent brokering system to support multi-agent web-based

4 th-party logistics. In Proc. of ICTAI-2002, pp. 154–161. IEEE.

Li, C. M., & Anbulagan, A. (1997). Heuristics based on unit propagation for satisfiability problems.

In Proc. of the IJCAI-1997, pp. 366–371. Morgan Kaufmann Publishers Inc.

Li, C. M., Fang, Z., & Xu, K. (2013). Combining MaxSAT reasoning and incremental upper bound

for the maximum clique problem. In Proc. of ICTAI-2013, pp. 939–946. IEEE.

Li, C. M., Manyà, F., & Planes, J. (2005). Exploiting unit propagation to compute lower bounds in

branch and bound max-sat solvers. In Proc. of CP-2005, Vol. 3709, pp. 403–414. Springer.

Li, C. M., Manyà, F., & Planes, J. (2007). New inference rules for Max-SAT. Journal of Artificial

Intelligence Research, 30, 321–359.

831

FANG, LI, & XU

Li, C. M., & Manya, F. (2009). Maxsat, hard and soft constraints.. Handbook of satisfiability, 185,

613–631.

Li, C. M., Manya, F., & Planes, J. (2006). Detecting disjoint inconsistent subformulas for computing

lower bounds for max-sat. In Proc. of AAAI-2006, Vol. 6, pp. 86–91.

Li, C. M., & Quan, Z. (2010a). Combining graph structure exploitation and propositional reasoning

for the maximum clique problem. In Proc. of ICTAI-2010, Vol. 1, pp. 344–351. IEEE.

Li, C. M., & Quan, Z. (2010b). An efficient branch-and-bound algorithm based on MaxSAT for the

maximum clique problem. In Proc. of AAAI-2010, pp. 128–133.

Li, C. M., Zhu, Z., Manyà, F., & Simon, L. (2012). Optimizing with minimum satisfiability. Artifi-

cial Intelligence, 190, 32–44.

Liu, T., Lin, X., Wang, C., Su, K., & Xu, K. (2011). Large hinge width on sparse random hyper-

graphs. In Proc. of IJCAI-2011, Vol. 2011, pp. 611–616.

Ma, T., & Latecki, L. J. (2012). Maximum weight cliques with mutex constraints for video object

segmentation. In Proc. of CVPR-2012, pp. 670–677. IEEE.

Martins, R., Joshi, S., Manquinho, V., & Lynce, I. (2014). Incremental cardinality constraints for

maxsat. In Proc. of CP-2014, pp. 531–548. Springer.

Mascia, F., Cilia, E., Brunato, M., & Passerini, A. (2010). Predicting structural and functional sites

in proteins by searching for maximum-weight cliques. In Proc. of AAAI-2010, pp. 1274–1279.

AAAI.

Morgado, A., Dodaro, C., & Marques-Silva, J. (2014). Core-guided maxsat with soft cardinality

constraints. In Proc. of CP-2014, pp. 564–573. Springer.

Morgado, A., Heras, F., Liffiton, M., Planes, J., & Marques-Silva, J. (2013). Iterative and core-

guided maxsat solving: A survey and assessment. Constraints, 18(4), 478–534.

Östergård, P. (2001). A new algorithm for the maximum-weight clique problem. Nordic Journal of

Computing, 8, 424–436.

Östergård, P. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathe-

matics, 120, 197–207.

Östergård, P. (2010). Cliquer source code. http://users.tkk.fi/pat/cliquer.html.

Pullan, W. (2008). Approximating the maximum vertex/edge weighted clique using local search.

Journal of Heuristics, 19, 117–134.

Pullan, W., & Hoos, H. H. (2006). Dynamic local search for the maximum clique problem. Journal

of Artificial Intelligence Research, 25, 159–185.

Régin, J. C. (2003). Solving the maximum clique problem with constraint programming. In Proc.

of CPAIOR-2003, pp. 634–648.

Sghir, I., Hao, J.-K., Jaafar, I. B., & Ghédira, K. (2014). A recombination-based tabu search algo-

rithm for the winner determination problem. In Artificial Evolution, pp. 157–167. Springer.

Shimizu, S., Yamaguchi, K., Saitoh, T., & Masuda, S. (2012). Some improvements on Kumlander’s

maximum weight clique extraction algorithm. In Proc. of the International Conference on

Electrical, Computer, Electronics and Communication Engineering, pp. 307–311.

832

AN EXACT ALGORITHM FOR MAXIMUM WEIGHT CLIQUE

Shimizu, S., Yamaguchi, K., Saitoh, T., & Masuda, S. (2013). Optimal table method for finding the

maximum weight clique. In Proc. of the 13th International Conference on Applied Computer

Science, No. 12. WSEAS.

ThanhVu, H. N., & Thang, B. (2014). DIMACS benchmark. https://turing.cs.hbg.psu.

edu/txn131/clique.html.

Tomita, E., & Kameda, T. (2007). An efficient branch-and-bound algorithm for finding a maximum

clique with computational experiments. Journal of Global Optimization, 37, 95–111.

Tomita, E., & Seki, T. (2003). An efficient branch-and-bound algorithm for finding a maximum

clique. In Proc. Discrete Mathematics and Theoretical Computer Science, Vol. 2731, pp.

278–289.

Wu, Q., Hao, J. K., & Glover, F. (2012). Multi-neighborhood tabu search for the maximum weight

clique problem. Annals of Operations Research, 196, 611–634.

Wu, Q., & Hao, J.-K. (2015). Solving the winner determination problem via a weighted maximum

clique heuristic. Expert Systems with Applications, 42(1), 355–365.

Xu, K., Boussemart, F., Hemery, F., & Lecoutre, C. (2007). Random constraint satisfaction: Easy

generation of hard (satisfiable) instances. Artificial Intelligence, 171, 514–534.

Xu, K., & Li, W. (2000). Exact phase transitions in random constraint satisfaction problems. Journal

of Artificial Intelligence Research, 12, 93–103.

Xu, K. (2004). BHOSLIB: Benchmarks with hidden optimum solutions for graph problems. http:

//www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htm.

Xu, K., & Li, W. (2006). Many hard examples in exact phase transitions. Theoretical Computer

Science, 355(3), 291–302.

Yamaguchi, K., & Masuda, S. (2008). A new exact algorithm for the maximum weight clique

problem. In Proc. of ITC-CSCC-2008, pp. 317–320.

Zhang, D., Javed, O., & Shah, M. (2014a). Video object co-segmentation by regulated maximum

weight cliques. In Proc. of ECCV-2014, pp. 551–566. Springer.

Zhang, W., Nie, L., Jiang, H., Chen, Z., & Liu, J. (2014b). Developer social networks in software

engineering: construction, analysis, and applications. Science China Information Sciences,

57(12), 1–23.

Zhian, H., Sabaei, M., Javan, N. T., & Tavallaie, O. (2013). Increasing coding opportunities us-

ing maximum-weight clique. In Proc. of Computer Science and Electronic Engineering

Conference-2013, pp. 168–173. IEEE.

Zhu, Z., Li, C. M., Manyà, F., & Argelich, J. (2012). A new encoding from MinSAT into MaxSAT.

In Proc. of CP-2012, pp. 455–463. Springer.

Zuckerman, D. (2006). Linear degree extractors and the inapproximability of max clique and chro-

matic number. In Proceedings of the 38th annual ACM symposium on Theory of computing,

pp. 681–690. ACM.

833

