
Journal of Artificial Intelligence Research 55 (2016) 1135–1178 Submitted 12/15; published 04/16

Exploiting Causality for Selective Belief Filtering in
Dynamic Bayesian Networks

Stefano V. Albrecht svalb@cs.utexas.edu
Department of Computer Science
The University of Texas at Austin
Austin, TX 78712, USA

Subramanian Ramamoorthy s.ramamoorthy@ed.ac.uk

School of Informatics

The University of Edinburgh

Edinburgh, EH8 9AB, UK

Abstract

Dynamic Bayesian networks (DBNs) are a general model for stochastic processes with
partially observed states. Belief filtering in DBNs is the task of inferring the belief state (i.e.
the probability distribution over process states) based on incomplete and noisy observations.
This can be a hard problem in complex processes with large state spaces. In this article, we
explore the idea of accelerating the filtering task by automatically exploiting causality in
the process. We consider a specific type of causal relation, called passivity, which pertains
to how state variables cause changes in other variables. We present the Passivity-based
Selective Belief Filtering (PSBF) method, which maintains a factored belief representation
and exploits passivity to perform selective updates over the belief factors. PSBF produces
exact belief states under certain assumptions and approximate belief states otherwise, where
the approximation error is bounded by the degree of uncertainty in the process. We show
empirically, in synthetic processes with varying sizes and degrees of passivity, that PSBF is
faster than several alternative methods while achieving competitive accuracy. Furthermore,
we demonstrate how passivity occurs naturally in a complex system such as a multi-robot
warehouse, and how PSBF can exploit this to accelerate the filtering task.

1. Introduction

Dynamic Bayesian networks (DBNs) (Dean & Kanazawa, 1989) are a general model for
stochastic processes with partially observed states. The topology of a DBN is a compact
specification of how variables in the process interact during transitions (cf. Figure 1). Given
the possible incompleteness and noise in observations, it may not generally be possible to
infer the state of the process with absolute certainty. Instead, we may infer beliefs about the
process state based on the history of observations, in the form of a probability distribution
over the state space of the process. This is often called a belief state and the task of calculating
belief states is commonly referred to as belief filtering.

A number of exact and approximate inference methods exist for Bayesian networks (see,
e.g., Koller & Friedman, 2009; Pearl, 1988) which can be used for filtering in DBNs, by
applying them to the “unrolled” DBN in which the t+ 1 slice is repeated for each observed
time step, or via a successive update in which the current posterior (belief state) is used

c©2016 AI Access Foundation. All rights reserved.

Albrecht & Ramamoorthy

xt1

xt2

t

xt+1
1

xt+1
2

t+ 1

yt+1
1

yt+1
2

Figure 1: Example of a dynamic Bayesian network (DBN) with two state variables and two
observation variables. The xti and xt+1

i variables represent the process states at time t and
t+ 1, respectively, while the yt+1

i variables (shaded) represent the observation at time t+ 1.
The arrows describe how the variables interact.

as the prior in the next time step (see also Murphy, 2002). However, it is clear that the
unrolled variant becomes intractable as the network grows unboundedly with time. Even
in the successive update, exact methods become intractable in high-dimensional process
states and approximate methods may propagate growing errors over time. Therefore, filtering
methods were developed which utilise the special structure of DBNs and maintain the errors
propagated over time. (We defer a detailed discussion of such methods to Section 2.)

Often, the key to developing efficient filtering methods is to identify structure in the
process which can be leveraged for inference. In this article, we are interested in the application
of DBNs as representations of actions in partially observed decision processes, such as
POMDPs (Kaelbling, Littman, & Cassandra, 1998; Sondik, 1971) and their many variants.
DBNs can be used to represent the effects of actions on the decision process, by specifying
how variables interact and what information the decision maker observes. In many cases,
decision processes exhibit high degrees of causal structure (Pearl, 2000), by which we mean
that a change in one part of the process may cause a change in another part. Our experience
with such processes is that this causal structure may be used to make the filtering task more
tractable, because it can tell us that beliefs need only be revised for certain aspects of the
process state. For example, if the variable x2 in Figure 1 changes its value only if variable x1

changed its value (i.e. a change in x1 causes a change in x2), then it seems intuitive to use
this causal relation when deciding whether to revise one’s belief about x2. Unfortunately,
current filtering methods do not take such causal structure into account.

We refer to the above type of causal relation (between x1 and x2) as passivity. Intuitively,
we say that a state variable xi is passive in a given action if, when executing that action,
there is a subset of the state variables that directly affect xi (i.e. xi’s parents in the DBN)
such that xi may change its value only if at least one of the variables in this subset changed
its value. It is worth pointing out that passivity occurs naturally and frequently in many
planning domains, especially in robotic and other physical systems (Mainzer, 2010). The
following example1 illustrates this in a simple robot arm:

1. We mark the end of an example with a solid black square.

1136

Exploiting Causality for Selective Belief Filtering in DBNs

θ1

θ2

θ3

(a) Robot arm with gripper

θ1

θ2

θ3
A

B

C

XB

XA

(b) Holding blocks B and A

Figure 2: Robot arm with three rotational joints and gripper. The variables θi represent the
absolute orientations of the corresponding joints.

Example 1 (Robot arm). Consider a robot arm with three rotational joints and a gripper,
as shown in Figure 2a. The joints are denoted by θ1, θ2, θ3 and may take any values from the
discrete set {0◦, 1◦, ..., 359◦} which indicate their absolute orientations (e.g. θi = 0◦ means
that joint i points exactly to the right, θi = 180◦ means that it points to the left). For each
joint i, let there be two actions CWi and CCWi which rotate the joint by 1◦ clockwise and
counter-clockwise, respectively. The uncertainty in this system could be due to stochastic
joint movements or unreliable sensor readings for the joint orientations.

For any action CWi or CCWi, the variable θi is not passive because its value is directly
modified by the action. However, the variables θj 6=i are passive because they change their
values only if the corresponding preceding variable θj−1 changed its value, since a changed
orientation of joint j − 1 causes a changed orientation of joint j (recall that the orientations
are absolute). Note that this also accounts for chains of such causal effects, as indicated by
the arrows: the orientation of joint 3 changes if the orientation of joint 1 changes, since joint
1 causes joint 2 to change, which in turn causes joint 3 to change.

Further examples of passivity can be seen in the context of object manipulation, such as
in the “blocks” planning domain (e.g. Pasula, Zettlemoyer, & Kaelbling, 2007). Figure 2b
shows the arm holding blocks B and A, with A on top of B. Here, the position of B (XB) is
passive with respect to the joint orientations since it will only change if any of the orientations
changed. Furthermore, there is a causal chain from the joint orientations to the position of
block A (XA), since A’s position will change if B’s position changes. �

How can passivity be exploited to accelerate the filtering task in the above example? The
fact that the state variables are passive means that some aspects of the state may remain
unchanged, depending on which action we choose. For example, if we choose to rotate joint
3, then the fact that joints 1 and 2 are passive means that they are unaffected by this action.
Thus, it seems redundant to revise beliefs for the orientations of joints 1 and 2. However,
this is precisely what current filtering methods do (cf. Section 2).

More concretely, assume we use a factored belief representation P (θ1, θ2, θ3) = P (θ1, θ2)∗
P (θ2, θ3) and choose to rotate θ3 in any direction. Then, it is easy to see that we will need
to update the factor P (θ2, θ3), since θ3 changes its value, but not the factor P (θ1, θ2), since
the variables θ1, θ2 are both passive. Since the parents of θ1, θ2 (if any) do not change their
values, we know that θ1, θ2 will not change their values either. As we will show later, skipping

1137

Albrecht & Ramamoorthy

over P (θ1, θ2) does not result in a loss of information in such cases, and similarly for chains
of such causal connections (cf. Example 1). A more complex example of a planning domain
involving passivity, and how it can be exploited, is discussed in Section 6.2.

In addition to guiding belief revision, there are several features which make passivity
an interesting example of a causal relation: First of all, passivity is a latent causal relation,
meaning that it can be readily extracted from the process dynamics without additional
annotation by an expert. (In Section 4, we give a procedure which identifies passive variables
based on their conditional probability tables.) Furthermore, passivity is not a deterministic
relation since passive variables may have any stochastic behaviour when changing their
values. Finally, passivity is a relatively simple example of a causal relation, and the idea of
exploiting passivity in order to accelerate the filtering task is intuitive. Yet, to the best of
our knowledge, this has not been formalised and explored rigorously before.

The purpose of the present article is to formalise and evaluate the idea of automatically
exploiting causal structure for efficient belief filtering in DBNs, using passivity as a concrete
example of a causal relation. Specifically, our hypothesis is that in large processes with
high degrees of passivity, this structure can be exploited to accelerate the filtering task.
After discussing related work in Section 2 and technical preliminaries in Section 3, our
contributions can be grouped into the following parts:

• In Section 4, we give a formally concise definition of passivity and discuss various
aspects of this definition. Our definition assumes a decision process which is specified
as a set of dynamic Bayesian networks (one for each action). We also discuss a non-
example of passivity, by which we mean variables which appear to be passive but really
are not passive. Finally, we give a simple procedure which can detect passive variables
based on their conditional probability tables.

• In Section 5, we present the Passivity-based Selective Belief Filtering (PSBF) method.
Following the idea outlined above, PSBF uses a factored belief representation in which
the belief factors are defined over clusters of correlated state variables. PSBF follows
a 2-step update procedure wherein the belief state is first propagated through the
process dynamics (the transition step) and then conditioned on the observation (the
observation step). The interesting novelty of PSBF is the way in which it performs
the transition step: rather than updating all belief factors, PSBF updates only those
factors whose variables it suspects to have changed, which is possible by exploiting
passivity (to be made precise shortly). Similarly, in the observation step, PSBF updates
only those belief factors which it determines to be structurally connected with the
observation, and it uses only those parts of the observation which are relevant to the
belief factor, thus allowing for a more efficient incorporation of observations. PSBF
produces exact belief states under certain assumptions and approximate belief states
otherwise. We also discuss the computational complexity and error bounds of PSBF.

• In Section 6, we evaluate PSBF in two experimental domains: We first evaluate PSBF in
synthetic (i.e. randomly generated) processes of varying sizes and degrees of passivity.
The process sizes vary from one thousand to one trillion states, and the passivity
degrees vary from 25% to 100% passivity. Our results show that PSBF is faster than
several alternative methods while maintaining competitive accuracy. In particular, our

1138

Exploiting Causality for Selective Belief Filtering in DBNs

results indicate that the computational gains grow significantly with both the degree of
passivity and the size of the process. We then evaluate PSBF in a complex simulation
of a multi-robot warehouse system in the style of Kiva (Wurman, D’Andrea, & Mountz,
2008). We show how passivity occurs in this system and how PSBF can exploit this to
accelerate the filtering task, again outperforming alternative methods.

Finally, we discuss the strengths and weaknesses of PSBF in Section 7, and we conclude
our work in Section 8. All proofs can be found in the appendix.

2. Related Work

There exists a substantial body of work on belief filtering in partially observed stochastic
processes. In this section, we review filtering methods that utilise the special structure of
DBNs and situate our work within this and other related literature.

2.1 Approximate Belief Filtering in DBNs

Several authors proposed filtering methods wherein the belief state is represented as a set of
state samples. Specifically, the probability that the process is in state s is the normalised
frequency with which the state samples correspond to s. These methods are now commonly
referred to as particle filters (PF); see the work of Doucet, de Freitas, and Gordon (2001)
for a survey. In a common variant of PF (Gordon, Salmond, & Smith, 1993), the filtering
task consists of propagating the current state samples through the process dynamics and a
subsequent resampling step based on the probabilities with which the new state samples
would have produced the observation. Two interesting features of PF are that it can be
applied to processes with discrete and continuous variables, and that the approximation
error converges to zero as we increase the number of state samples.

A known problem of PF is the fact that the number of samples needed for acceptable
approximations can grow drastically with the variance in the process dynamics (as shown
in our experiments; cf. Section 6). Rao-Blackwellised PF (RBPF) (Doucet, De Freitas,
Murphy, & Russell, 2000) was developed to address this problem. RBPF assumes that the
state variables can be grouped into sets R and X such that the distribution over X can be
efficiently calculated from R during the filtering. Hence, a sample in RBPF consists of a
sample of R and a corresponding marginal distribution over X. RBPF is useful when the
variance in R is relatively low and the variance in X is high, since this reduces the number
of samples needed for acceptable approximations.

Boyen and Koller (1999, 1998) recognised that if a process consists of several independent
or weakly interacting subcomponents, then the belief state can be represented more efficiently
as a product of smaller beliefs about these individual subcomponents. Their seminal contribu-
tion is to show that the approximation error due to this factored representation is essentially
bounded by the degree of uncertainty (or “mixing rates”) in the process. More precisely, they
prove that the relative entropy (or KL divergence; Kullback & Leibler, 1951) between two be-
lief states contracts at an exponential rate when propagated through a stochastic transition
process. Based on this observation, they propose a filtering method (BK) wherein the belief
state is represented in factored form and the belief factors are updated using an exact infer-
ence method, such as the junction tree algorithm (Lauritzen & Spiegelhalter, 1988). Since

1139

Albrecht & Ramamoorthy

the internal “cliques” used in the junction tree algorithm may not correspond to the belief
state representation of BK, a final “projection step” will typically have to be performed in
which the original factorisation is restored. The performance of this method depends cru-
cially on whether the relevant correlations between state variables can be captured in small
clusters, and whether the projection step can be performed efficiently.

Factored particle filtering (FP) (Ng, Peshkin, & Pfeffer, 2002) addresses the main draw-
backs of PF (many samples needed) and BK (small clusters required) by approximating the
belief factors using a set of factored state samples. The samples are factored in the sense
that they only assign values to the variables in the corresponding factor. This allows FP to
represent belief factors which are too large for BK, and it reduces the number of samples
needed due to the smaller number of variables in each factor. The authors provide differ-
ent methods of updating the factored state samples, but the generic idea is to first perform
a “join” operation in which full state samples are reconstructed from the factored samples,
which are then updated as in standard PF. The updated samples are then projected down
into factored form using a “project” operation. The main drawback of FP is that these join
and project operations essentially correspond to standard relational database operations,
which can be very expensive.

Murphy and Weiss (2001) propose a filtering method called factored frontier (FF). FF
uses a fully factored representation of belief states; that is, the belief state is a product of
marginals for each individual state variable. This allows for a very compact representation
of beliefs. The algorithm works by “moving” a set of state variables (the frontier) forward
and backward in the DBN topology. This requires a certain variable ordering, which can
be difficult to attain if intra-correlations between state variables (i.e. edges within the t+ 1
slice of the DBN) are allowed. The authors show that their method is equivalent to a single
iteration of loopy belief propagation (LBP) (Pearl, 1988). Thus, similar to LBP, FF can be
applied in successive iterations to improve the approximation accuracy.

None of the works discussed above explicitly address the question of how causal relations
between state variables can be exploited to accelerate the filtering task, or, alternatively, how
the filtering methods proposed therein implicitly benefit from causal structure. Our method,
PSBF, is related to BK and FP in that PSBF, too, uses a factored belief representation,
where the belief factors are defined over clusters of correlated state variables. Therefore, the
analysis of approximation errors by Boyen and Koller (1998) also applies to PSBF, as we
show in Section 5 as well as in our experiments. However, in contrast to BK and FP, PSBF
does not perform inference over the complete factorisation, but rather over the individual
factors. As a consequence, PSBF does not require a join or project operation, which is one
of the main disadvantages of BK and FP.

2.2 Belief Filtering in Decision Processes

The methods discussed in the preceding subsection can be used for belief filtering in decision
processes, including POMDPs (Kaelbling et al., 1998; Sondik, 1971). In this regard, these
methods can be viewed as “pure” filters in that they are only concerned with belief filtering
and not with the control of the decision process. This is in contrast to combined filtering
methods, which interleave the filtering and control tasks in decision processes and make
specific assumptions regarding solutions thereof. There exists a large body of literature on such

1140

Exploiting Causality for Selective Belief Filtering in DBNs

combined methods, including reachability-based methods (Hauskrecht, 2000; Washington,
1997), grid-based methods (Zhou & Hansen, 2001; Brafman, 1997; Lovejoy, 1991), point-
based methods (Smith & Simmons, 2005; Pineau, Gordon, & Thrun, 2003), and compression
methods (Roy, Gordon, & Thrun, 2005; Poupart & Boutilier, 2002).

A potential advantage of such combined methods is that they have access to additional
structure and may, therefore, utilise synergies between the filtering and control tasks. One
such synergy is the use of decision quality to guide belief filtering, rather than metrics such
as relative entropy. Poupart and Boutilier (2001, 2000) propose a filtering method, called
value-directed approximation, which chooses different approximation schemes for different
decisions so as to minimise the expected loss in decision quality (i.e. accumulated rewards).
The method assumes that the POMDP has been solved exactly and that the value function
is provided in the form of α-vectors which represent the available actions in the POMDP.
Based on the value function, their algorithm computes a “switching set” and “alternative
plans” to determine the error bounds of approximation schemes. This is used to search for
an optimal approximation scheme in a tree-based manner, where the search traverses from
approximate to exact schemes.

While the idea of using decision quality to guide belief filtering is appealing, their method
involves a series of optimisation problems and an exhaustive tree search, which can be very
costly in complex systems. The advantage of pure filtering methods, including our proposed
method PSBF, is that they can filter processes which are too complex for combined methods,
such as the multi-robot warehouse system studied in Section 6. The actual control task can
then be done via domain-specific solutions (cf. Section 6.2.1).

2.3 Substructure in Parameterisation

Bayesian networks, and hence DBNs, allow for a compact parameterisation (i.e. specification
of probabilities) and efficient inference via conditional independence relations. In addition,
there has been considerable work in identifying substructure in the parameterisation to
further simplify knowledge acquisition and enhance inference (Koller & Friedman, 2009;
Boutilier, Dean, & Hanks, 1999). The property studied in this work, passivity, is one example
of substructure in the parameterisation. Other notable examples include causal indepen-
dence (e.g. Heckerman & Breese, 1994; Heckerman, 1993) and context-specific independence
(Boutilier, Friedman, Goldszmidt, & Koller, 1996).

Causal independence is the assumption that the effects of individual causes on a common
variable (i.e. the parents of that variable) are independent of one another. This allows for
a compact parameterisation via operators such as “noisy-or” (Srinivas, 1993; Pearl, 1988),
and it can be used to enhance inference (Zhang & Poole, 1996). Note that passivity is a
conceptually much simpler property than causal independence, because passivity is neither
concerned with the strength of individual causes nor the extent to which they depend on each
other. Moreover, passivity can be read directly from the parameterisation (cf. Section 4.3)
whereas causal independence is usually imposed by the designer.

Context-specific independence (CSI) is a property which states that a variable is indepen-
dent of some of its parents given a certain assignment of values (i.e. “context”) to some of
its other parents. Non-local CSI statements follow similarly to d-separation (Geiger, Verma,
& Pearl, 1989). This can allow for a further reduction of parameters (Boutilier et al., 1996)

1141

Albrecht & Ramamoorthy

and enhancement of inference (Poole & Zhang, 2003). As we will discuss in Section 4, passiv-
ity can be viewed as a special kind of CSI applied to DBNs, in that the parents with respect
to which the variable is passive provide the context for CSI. However, in contrast to CSI,
passivity does not assume that the context is actually observed.

3. Technical Preliminaries

This section introduces the basic concepts and notation used in our work. We begin with
a brief discussion of decision processes to provide the context for our work, followed by a
discussion of dynamic Bayesian networks as the model over which we perform inference.

3.1 Decision Processes, Belief States, Exact Updates

We consider a stochastic decision process wherein, at each time t, the process is in state
st ∈ S and a decision maker, or “agent”, is choosing an action at. After executing at in st, the
process transitions into state st+1 ∈ S with probability T a

t
(st, st+1) and the agent receives an

observation ot+1 ∈ O with probability Ωat(st+1, ot+1). We assume factored representations of
the state space S and observation space O, such that S = X1× ...×Xn and O = Y1× ...×Ym,
where the domains Xi, Yj are finite. The notation si is used to denote the value of Xi in
state s ∈ S, and analogously for oj with o ∈ O. Moreover, we assume that the process is
time-invariant, meaning that T a and Ωa are independent of t. This framework is compatible
with many decision models used in the artificial intelligence literature, including POMDPs
(Kaelbling et al., 1998; Sondik, 1971) and its many variants.

The agent chooses action at based on its belief state bt (also known as information state),
which represents the agent’s beliefs about the likelihood of states at time t. Formally, a
belief state is a probability distribution over the state space S of the process. Belief filtering
is the task of calculating a belief state based on the history of observations. Ideally, the
resulting belief state should be exact in that it retains all relevant information from the past
observations (this is sometimes referred to as sufficient statistic; cf. Astrom, 1965). The
exact update rule is a simple procedure that produces exact belief states:

Definition 1 (Exact update rule). The exact update rule is defined as follows: After taking
action at and observing ot+1, the belief state bt is updated to bt+1 via

b̂t+1(s′) =
∑
s∈S

bt(s)T a
t
(s, s′) (1)

bt+1(s′) = η b̂t+1(s′) Ωat(s′, ot+1) (2)

where η is a normalisation constant.

We sometimes refer to the step bt → b̂t+1 as the transition step and to the step b̂t+1 → bt+1

as the observation step. Unfortunately, the space complexity of storing exact belief states
and the time complexity of updating them using the exact update rule are both exponential
in the number of state variables, making it infeasible for complex systems with large state
spaces. Hence, more efficient approximate methods are required.

1142

Exploiting Causality for Selective Belief Filtering in DBNs

3.2 Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) (Dean & Kanazawa, 1989) is a Bayesian network with
a special temporal semantics that specifies how a stochastic process transitions from one
state into another. DBNs can be used to model the effects of actions in a stochastic decision
process. Specifically, they are a compact representation of the transition function T a and
observation function Oa of action a:

Definition 2 (DBN). A dynamic Bayesian network for action a, denoted ∆a, is an acyclic
directed graph consisting of:

• State variables Xt =
{
xt1, ..., x

t
n

}
and Xt+1 =

{
xt+1

1 , ..., xt+1
n

}
with xti, x

t+1
i ∈ Xi,

representing the states of the process at time t and t+ 1, respectively.

• Observation variables Y t+1 =
{
yt+1

1 , ..., yt+1
m

}
with yt+1

j ∈ Yj , representing the obser-
vation received at time t+ 1.

• Directed edges Ea ⊆
(
Xt ×Xt+1

)
∪
(
Xt+1 ×Xt+1

)
∪
(
Xt+1 × Y t+1

)
∪
(
Y t+1 × Y t+1

)
,

specifying the network topology and dependencies between variables.

• Conditional probability distributions Pa(z | paa(z)) for each variable z ∈ Xt+1 ∪ Y t+1,
specifying the probability that z assumes a certain value given a specific assignment
to its parents paa(z) = {z′ | (z′, z) ∈ Ea}. For convenience, we also define pata(Z) =
Xt ∩ paa(Z) and pat+1

a (Z) = Xt+1 ∩ paa(Z), where paa(Z) = ∪z∈Z paa(z).

The edges Ea and distributions Pa define the functions T a and Ωa as

T a(s, s′) =
n∏
i=1

Pa
(
xt+1
i = s′i | paa(xt+1

i)←↩ (s, s′)
)

(3)

Ωa(s′, o) =

m∏
j=1

Pa

(
yt+1
j = oj | paa(yt+1

j)←↩ (s′, o)
)

(4)

where we use the notation paa(x
t+1
i) ←↩ (s, s′) to specify that the parents of xt+1

i in
Xt and Xt+1, respectively, assume their corresponding values from s and s′. Formally, if
xtl ∈ pata(x

t+1
i) and xt+1

l′ ∈ pat+1
a (xt+1

i), then xtl = sl and xt+1
l′ = s′l′ . Similarly, we use

the notation paa(y
t+1
j) ←↩ (s′, o) to specify that the parents of yt+1

j in Xt+1 and Y t+1,
respectively, assume corresponding values from s′ and o.

Example 2 (DBN representation of robot arm). We can represent the robot arm from Exam-
ple 1 as a set of DBNs, where we have one DBN ∆a for each action a ∈ {CWi,CCWi}. The
state and observation variables in the DBNs are Xt =

{
θt1, θ

t
2, θ

t
3

}
, Xt+1 =

{
θt+1

1 , θt+1
2 , θt+1

3

}
,

and Y t+1 =
{
θ̂t+1

1 , θ̂t+1
2 , θ̂t+1

3

}
. To make our example more realistic, let us assume that the

joint orientations are bounded relative to the orientation of the immediately preceding joint
(e.g. in the form of a cone), where the first joint is bounded relative to the ground. This
means that the joint movement depends on its own as well as the preceding joint orienta-
tion, as shown in Figure 3. Moreover, the joint orientations are correlated (i.e. edges within

1143

Albrecht & Ramamoorthy

θt1

θt2

θt3

Xt

θt+1
1

θt+1
2

θt+1
3

Xt+1

θ̂t+1
1

θ̂t+1
2

θ̂t+1
3

Y t+1

Figure 3: DBN representation of robot arm.

Xt+1) such that no joint can exceed the bound given by the preceding joint. Finally, the ob-
servation variables depend solely on the corresponding joint variable. The actions in this
example would differ in their variable distributions Pa. �

3.3 Additional Definitions

It will be useful to define the following:

• The binary order ≺ is defined over Xt ∪Xt+1 such that xti ≺ xtj and xt+1
i ≺ xt+1

j for

all 1 ≤ i < j ≤ n, and xti ≺ x
t+1
j for all 1 ≤ i, j ≤ n.

• Given a set Z ⊆ Xt∪Xt+1, we write Z≺ to denote the tuple that contains all variables
of Z, ordered by ≺.

• Given the ordered tuple Z≺ = (zi1 , ..., zi|Z|), we define the set S(Z) = Xi1 ××Xi|Z|
to contain all value tuples for the variables in Z.

• Given a value tuple sZ = (si1 , ..., si|Z|) ∈ S(Z), we use the notation Z ←↩ sZ as an
abbreviation for zil = sil for each zil ∈ Z≺ (i.e. the variables in Z assume their
corresponding values from sZ).

4. Passivity

This section introduces a formal definition of passivity, which will then be used as the basis
for the remainder of this article. We also provide a simple procedure to detect passive
variables from the process dynamics.

4.1 Formal Definition

As outlined in Section 1, a state variable xt+1
i is called passive in action a if there exists a

subset of xt+1
i ’s parents in Xt (in the DBN ∆a) such that xt+1

i may change its value only

1144

Exploiting Causality for Selective Belief Filtering in DBNs

if at least one of the variables in this subset changed its value. Conversely, xt+1
i does not

change if the variables in the subset did not change. Formally, we define passivity as follows:

Definition 3 (Passivity). Let action a be given by a DBN ∆a. A state variable xt+1
i is

called passive in ∆a if there exists a set Φa,i ⊆ pata(xt+1
i) \

{
xti
}

such that:

(i) ∀xtj ∈ Φa,i :
(
xt+1
j , xt+1

i

)
∈ Ea

and
(ii) for any two states st and st+1 with T a(st, st+1) > 0 :(

∀xtj ∈ Φa,i : stj = st+1
j

)
⇒ sti = st+1

i (5)

A state variable which is not passive is called active.

The set Φa,i corresponds to the subset of variables described above: it contains all those
variables which directly affect xt+1

i (i.e. they are parents of xt+1
i in Xt) such that xt+1

i may
change its value only if any of the variables in Φa,i changed its value. We will sometimes say
that a variable xt+1

i is passive in ∆a with respect to another variable xtj if it is the case that
xtj ∈ Φa,i. Furthermore, we will omit “in ∆a” if it is obvious from context.

Clause (i) in Definition 3 requires that xt+1
i is intra-correlated with the variables in Φa,i;

specifically, that there is an edge from xt+1
j to xt+1

i for all xtj ∈ Φa,i. As an example, see

Figure 1 in which we assumed that the variable xt+1
2 was passive with respect to the variable

xt1. (We will discuss the purpose of this clause in the next subsection.) Clause (ii) defines
the core semantics of passivity by requiring that xt+1

i remains unchanged if all variables in
Φa,i remain unchanged. Note that this means that the distribution Pa for xt+1

i may specify
any deterministic or stochastic behaviour if the variables in Φa,i change their values. This
includes that xt+1

i may not change its value at all.
A state variable xt+1

i can be passive even if it has no parents in Xt, or none other than
xti. In this case, the set Φa,i would be empty and clause (i) as well as the premise in (5)
would trivially hold true. However, such a variable can only be passive if it does not change
its value under any circumstances. In other words, it would have to be a constant. In that
case, one should consider removing the variable from the state description in order to reduce
computational costs.

As noted in Section 2.3, passivity can be shown to be a special kind of context-specific
independence (CSI) (Boutilier et al., 1996) applied to DBNs. Here, the associated set Φa,i of
a passive variable xt+1

i provides the context: given any assignment of values to xtj ∈ Φa,i (i.e.

context) such that xtj = xt+1
j , xt+1

i is independent of all xtk, x
t+1
k with xtk ∈ pata(x

t+1
i) \ Φa,i

and k 6= i. However, besides this similarity, there is an important difference between passivity
and CSI, which is that passivity does not actually assume that the context is observed. Thus,
passivity can be viewed as a kind of CSI for unobserved contexts. This will become clear in
Section 5, when we describe a filtering method that exploits passivity.

4.2 Non-Example of Passivity

What is the purpose of clause (i) in the definition of passivity? After all, and as discussed
previously, clause (ii) captures the core idea of passivity, which is that a variable may only
change its value if any of the variables with respect to which it is passive changed its value.

1145

Albrecht & Ramamoorthy

xt1

xt2

xt+1
1

xt+1
2

Figure 4: Example of a process for which clause (ii) is insufficient.

However, while it may seem intuitive that clause (ii) be sufficient for passivity, there are
in fact processes in which clause (ii) alone does not suffice. In other words, clause (ii) is
necessary but not sufficient for passivity. We illustrate this in the following example:

Example 3 (Non-example of passivity). Consider a process with two binary state variables,
x1, x2, and a single action, a, shown in Figure 4. (We omit the observation variables for
clarity.) The dynamics of the process are such that xt+1

1 takes the value of xt2 and xt+1
2 takes

the value of xt1 (i.e. x1 and x2 swap their values at each time step). In this process, both
state variables satisfy clause (ii) of Definition 3: If we set x0

1 = x0
2 (i.e. same initial values),

then T a(st, st+1) is positive only for states st = st+1, and hence (5) is true. If we set x0
1 6= x0

2,
then T a(st, st+1) is positive only for states st, st+1 with sti 6= st+1

i , i ∈ {1, 2}, and hence (5)
is trivially true since its premise is false. �

Despite satisfying clause (ii), the state variables xt+1
1 and xt+1

2 from Example 3 are in
fact not passive, for the following two reasons: Firstly, passivity is a causal relation and as
such it must imply a causal order (Pearl, 2000). However, there is no causal order between
x1 and x2, because there is no edge between xt+1

1 and xt+1
2 . Secondly, passivity means that

a variable may change its value only if another variable with respect to which it is passive (a
variable in Φa,i) changed its value. In other words, whether or not a passive variable xt+1

i

may change its value depends on both the past values of Φa,i (at time t) and the new values
of Φa,i (at time t+ 1). However, the variables in Example 3 only depend on the values at
time t, hence their own values at time t+ 1 are predetermined and do not depend on whether
the variables in Φa,i change values.

The first issue, namely that of the causal order, can be addressed by adding the corre-
sponding edges in Xt+1. For instance, in Example 3 we could add an edge from xt+1

1 to xt+1
2

to establish a causal order. However, this does not generally solve the second issue, which
is that every passive variable xt+1

i must depend on both past and new values of the vari-
ables in Φa,i. In other words, xt+1

i must be both inter-correlated as well as intra-correlated
with the variables in Φa,i. The former is given by definition (since every variable in Φa,i is
a parent of xt+1

i) and the latter is precisely what is required by clause (i) in Definition 3.
Therefore, clauses (i) and (ii) together define the formal meaning of passivity.

4.3 Detecting Passive Variables

As mentioned in Section 1, passivity is a latent causal property in the sense that it can be
extracted from the process dynamics without additional information, and with no additional
assumptions regarding the representation of variable distributions. In order to determine if a

1146

Exploiting Causality for Selective Belief Filtering in DBNs

Algorithm 1 Passive(xt+1
i ,∆a)

1: Input: state variable xt+1
i , DBN ∆a

2: Output: Φa,i if xt+1
i is passive in ∆a, else false

3: Q← OrderedQueue
(
P
(
pata(x

t+1
i) \

{
xti
}))

// in ascending order of |Φa,i|

4: while Q 6= ∅ do

5: Φa,i ← NextElement(Q)

6: Q← Q \ {Φa,i}

7: for all xtj ∈ Φa,i do

8: if
(
xt+1
j , xt+1

i

)
6∈ Ea then

9: Go to line 4 // clause (i) violated

10: Ψa,i ← paa(x
t+1
i) \

(
Φa,i ∪

{
xti
})

11: Φt+1
a,i ←

{
xt+1
j |xtj ∈ Φa,i

}
12: for all sΨ ∈ S(Ψa,i), sΦ ∈ S(Φa,i), si ∈ Xi do

13: if Pa

(
xt+1
i = si | xti = si, Φa,i ←↩ sΦ, Φt+1

a,i ←↩ sΦ, Ψa,i ←↩ sΨ

)
< 1 then

14: Go to line 4 // clause (ii) violated

15: return Φa,i

16: return false

variable xt+1
i is passive in ∆a, one has to find a set Φa,i such that both clauses of Definition 3

are satisfied. A simple procedure which does this for any representation of the variable
distributions is given in Algorithm 1. The algorithm takes as inputs a variable xt+1

i and a
DBN ∆a, and checks whether xt+1

i is passive in ∆a by searching for a set Φa,i which satisfies
both clauses of Definition 3. Note that the power set P in line 3 includes the empty set ∅,
hence it also accounts for Φa,i = ∅. Lines 7 to 9 check if clause (i) is satisfied while lines
10 to 14 check if clause (ii) is satisfied. Line 13 essentially checks if (5) holds true. If both
clauses are satisfied, then xt+1

i is passive in ∆a with respect to the variables in Φa,i, and the
algorithm returns the set Φa,i. Otherwise, the algorithm returns a logical false.2

The time complexity of Algorithm 1 is exponential in the worst case, in which xt+1
i is

not passive. Specifically, the time requirements of line 4 grow exponentially with the number
of parents of xt+1

i in Xt, and the time requirements of line 12 grow exponentially with the
cardinality of Φa,i and Ψa,i. However, these time requirements can be reduced significantly
when committing to specific representations for the variable distributions Pa. For example,
if the distributions are represented in tabular form, then one can utilise arrays of indices
to perform sweeping tests of (5), i.e. line 13. Moreover, it is important to realise that the
algorithm needs to be performed only once for each state variable, prior to the start of the

2. Strictly speaking, Algorithm 1 checks for a property which is stronger than passivity because it does not
check for T a(st, st+1) > 0 (cf. clause (ii)) in line 12. However, the algorithm can be modified to include
such a check. We omit this in our exposition in order to highlight the core ideas behind the algorithm.

1147

Albrecht & Ramamoorthy

process or on demand. This is since passivity is invariant of the process states. In other
words, if a variable is passive in ∆a, then it will always be passive in ∆a. Therefore, it suffices
to check once in advance for passivity.

Note that the set Φa,i is not necessarily unique. For example, consider a variable xt+1
1

which is passive in ∆a with respect to variables xt2 and xt3, i.e. Φa,1 =
{
xt2, x

t
3

}
, and assume

that xt+1
2 changes if and only if xt+1

3 changes (i.e. they change at the same time). Then, it is
easy to verify that Φ′a,1 =

{
xt2
}

and Φ′′a,1 =
{
xt3
}

also satisfy clauses (i) and (ii), and hence
Φa,1,Φ

′
a,1,Φ

′′
a,1 are all valid sets under our definition of passivity. The guiding principle in

such cases is Occam’s razor, which, intuitively speaking, states that the simplest explanation
suffices. In our case, this means that it suffices to use the smallest set Φa,i in terms of the
cardinality |Φa,i|. (Hence, line 3 in Algorithm 1 sorts the queue Q in ascending order of
|Φa,i|.) The rationale is that if there exist multiple causal explanations for a passive variable
xt+1
i , then the one involving the fewest key variables is to be favoured since it reduces

(compared to the alternative explanations) the number of cases in which we would have to
revise our beliefs about xt+1

i . In our earlier example, if we accept Φa,1 as a causal explanation
for xt+1

1 , then we would have to revise our beliefs for xt+1
1 every time xt+1

2 or xt+1
3 may have

changed their values. However, if we accept Φ′a,1 as a causal explanation, then we would

have to revise our belief for xt+1
1 only if xt+1

2 may have changed its value. This difference
will become more obvious in Section 5.2, which explains how passivity can be exploited to
reduce computational costs.

5. Passivity-based Selective Belief Filtering

This section presents the Passivity-based Selective Belief Filtering (PSBF) method, which
exploits passivity for efficient filtering. As discussed in Section 3, we assume that the process
is specified as a set of dynamic Bayesian networks which contains one DBN ∆a for each
action a ∈ A. Therefore, whenever we refer to an action a (e.g. T a, Ωa, Pa, paa), this is
assumed to be in the context of ∆a.

PSBF follows the general two-step update procedure in which the belief state is first
propagated through the process dynamics (transition step) and then conditioned on the
observation (observation step). Thus, it is natural to divide the exposition of PSBF into
three parts: (1) the belief state representation, (2) the transition step, and (3) the observation
step. These are discussed in Sections 5.1, 5.2, and 5.3, respectively. A summary of PSBF
is given in Section 5.4. We also discuss the computational complexity and error bounds of
PSBF in Sections 5.5 and 5.6, respectively.

5.1 Belief State Representation

Recall from Section 1 that the principal idea behind PSBF is to maintain separate beliefs
about individual aspects of the process, and to exploit passivity in order to perform selective
updates over these separate beliefs. The union of all individual aspects constitutes a complete
state description of the process. Therefore, the belief state can be represented as the product
of all separate beliefs about the individual aspects.

We capture the informal notion of “individual aspects” formally in the form of clusters,
which are defined as follows:

1148

Exploiting Causality for Selective Belief Filtering in DBNs

θt1

θt2

θt3

θt+1
1

θt+1
2

θt+1
3

θ̂t+1
1

θ̂t+1
2

θ̂t+1
3

C1

C2

C3

(a) C1, C2, C3

θt1

θt2

θt3

θt+1
1

θt+1
2

θt+1
3

θ̂t+1
1

θ̂t+1
2

θ̂t+1
3

C1

(b) C1

θt1

θt2

θt3

θt+1
1

θt+1
2

θt+1
3

θ̂t+1
1

θ̂t+1
2

θ̂t+1
3

C1

C2

(c) C1, C2

Figure 5: Three clusterings for the robot arm DBN.

Definition 4 (Cluster). A clustering of Xt+1 is a set C = {C1, ..., CK} which satisfies
∀k : Ck ⊆ Xt+1 and C1 ∪ ... ∪ CK = Xt+1. We refer to the elements Ck ∈ C as clusters.

The underlying idea behind the concept of clusters is that the variables in a cluster Ck
are connected in some important sense. Specifically, if two or more variables are in a common
cluster, then there exists some relation between these variables regarding the likelihood of
values which they may assume. In other words, the variables are correlated in Xt+1.

The number K and the concrete choice of clusters Ck can be specified by the user or
generated automatically. For example, they may be specified manually by a domain expert
who is familiar with the structure of the modelled system, or generated automatically using
methods such as the ones described in Section 6.1. It should be stressed, however, that in
order to reduce computational costs, it is advisable to follow the general rule “as small
as possible, as large as necessary” when choosing clusters (see Section 5.5 for a discussion
about computational complexity). Therefore, if two variables are strongly correlated, then
they should presumably be in a common cluster, whereas if they are not or only weakly
correlated (“weakly” meaning that the correlation can be ignored safely), then they should
be in separate clusters in order to reduce computational costs. This is illustrated in the
following example:

Example 4 (Clusters in robot DBN). Recall the robot arm DBN from Example 2, specifi-
cally Figure 3. One way to cluster the state variables in Xt+1 is given by the three clusters
C1 =

{
θt+1

1

}
, C2 =

{
θt+1

2

}
, C3 =

{
θt+1

3

}
, as shown in Figure 5a. This clustering is most

efficient since it minimises the size of each cluster. However, the clusters fail to capture
the important correlation that the joint orientation θi is restricted by the preceding joint
orientation θi−1. Another way to cluster the state variables is given by the single cluster
C1 =

{
θt+1

1 , θt+1
2 , θt+1

3

}
, as shown in Figure 5b. This clustering captures all correlations

between variables. However, this is the largest possible cluster and, therefore, the least effi-
cient one. A compromise is given by the two clusters C1 =

{
θt+1

1 , θt+1
2

}
, C2 =

{
θt+1

2 , θt+1
3

}
,

which are shown in Figure 5c. This clustering captures the correlation of the joint orien-
tations with the immediately preceding joint orientations, and it is more efficient than the
previous clustering since it has smaller clusters. �

1149

Albrecht & Ramamoorthy

Given the definition of clusters, we capture the informal notion of “separate beliefs” in
the form of belief factors:

Definition 5 (Belief factor). Given a cluster Ck, the corresponding belief factor bk is a
probability distribution over the set S(Ck).

Intuitively, a belief factor bk represents the agent’s beliefs as to the likelihood of values
for the variables in the corresponding cluster Ck. An analogy to this is to view a belief factor
as a “smaller” belief state, and to view b as the “full” belief state which is a combination of
the smaller belief states. However, to distinguish the two, we refer to b simply as the belief
state and to bk as a belief factor.

Finally, given the clusters Ck and their corresponding belief factors bk, the belief state b
is represented in factored form as

b(s) =
K∏
k=1

bk(sk)

where we use the notation sk to refer to the tuple (si)xt+1
i ∈Ck . (E.g., if Ck =

{
xt+1

2 , xt+1
3

}
and s = (s1, s2, s3, s4), then sk = (s2, s3).)

5.2 Exploiting Passivity in the Transition Step

In order to perform selective updates over the belief factors bk, we require a procedure which
performs the transition step independently for each factor.3 We obtain such a procedure by
introducing two assumptions which allow us to modify the transition step (1) of the exact
update rule. The assumptions guarantee that the transition step is performed exactly, in the
sense of (1). However, as we will discuss shortly, the assumptions can be violated to obtain
approximate belief states.

The first assumption, (A1), states that the clusters must be uncorrelated (i.e. there are
no edges in Xt+1 between clusters), and the second assumption, (A2), states that the clusters
must be disjoint. Formally, these are defined as follows:

(A1) ∀a : xt+1
i ∈ Ck → pat+1

a (xt+1
i) ⊆ Ck

(A2) ∀k 6= k′ : Ck ∩ Ck′ = ∅

Note that neither assumption implies the other. That is, it may be the case that (A1)
is satisfied while (A2) is violated, and vice versa. Assuming both (A1) and (A2), we can
reformulate (1) to

b̂t+1
k (s′k) = η1

∑
s̄∈S(pat

at
(Ck))

T a
t

k (s̄, s′k)
∏
k′:[∃xt+1

i ∈Ck′ :xti∈ patat (Ck)]

btk′(s̄k′) (6)

where η1 is a normalisation constant and

T ak (s̄, s′k) =
∏

xt+1
i ∈Ck

Pa
(
xt+1
i = (s′k)i | paa(xt+1

i)←↩ (s̄, s′k)
)
.

3. This also has the advantage that the belief factors can be updated in parallel, which is a useful feature
considering that many platforms use parallel processing techniques.

1150

Exploiting Causality for Selective Belief Filtering in DBNs

This procedure performs the transition step independently for each belief factor bk, hence
they can be updated in any order and in parallel.

Assumption (A1) is what allows us to bring (1) into a form which updates the belief
factors bk independently of each other. Specifically, (A1) allows us to define the cluster-based
transition function T ak , which in turn enables the summation in (6). Assumption (A2), on
the other hand, guarantees that the product in (6) is correct. In particular, it may be the
case that |s̄k′ | < |Ck′ | (i.e. there are fewer elements in s̄k′ than in Ck′) if there are variables
in Ck′ which are not in patat(Ck) (i.e. xt+1

i ∈ Ck′ but xti /∈ patat(Ck)). In such cases, btk′ is
taken to be the marginal distribution over variables xt+1

i ∈ Ck′ with xti ∈ patat(Ck), where
(A2) guarantees that the marginalisation introduces no errors.

As mentioned previously, each assumption may be violated to obtain approximate belief
states. However, there is an important distinction between (A1) and (A2) in this regard:
If (A2) is violated, then (6) is still well-defined in the sense that it can still be executed,
except that the product in (6) may degrade the accuracy of the results. This is in contrast to
(A1), which is a structural requirement of T ak in the sense that T ak is ill-defined without (A1).
This is since, if (A1) is violated, the variables in Ck may have parents in Xt+1 which are
not in Ck, in which case paa(x

t+1
i)←↩ (s̄, s′k) would be ill-defined. Thus, if (A1) is violated,

we have to enforce it by modifying the distributions Pa of all xt+1
i ∈ Ck to marginalise out

all variables in pat+1
at (xt+1

i) which are not in Ck, for all clusters Ck. This means that each
variable has a separate distribution for every cluster which contains the variable, thereby
possibly introducing an approximation error.

Given the modified transition step (6), we can exploit passivity to perform selective
updates over the belief factors bk. Recall from Section 4.1 that a variable xt+1

i is passive
in ∆a if there exists a set Φa,i of variables such that xt+1

i may change its value only if any
of the variables in Φa,i changed its value. This causal connection can be used to decide
whether or not the values of the variables in a cluster Ck may have changed, in which case the
corresponding belief factor bk should be updated. Theorem 1 provides the formal foundation:

Theorem 1. If (A1) and (A2) hold, and if all xt+1
i ∈ Ck are passive in ∆at , then

∀s ∈ S : b̂t+1
k (sk) = btk(sk).

Proof. Proof in Appendix A.

Theorem 1 states that if the clusters C1, ..., CK are disjoint and uncorrelated, and if all
variables in cluster Ck are passive in ∆at , then the transition step for the corresponding
belief factor btk → b̂t+1

k can be omitted without loss of information.
How does Theorem 1 translate into situations in which (A1) or (A2), or both, are violated?

The key assumption is again (A1), which states that the clusters must be uncorrelated. As
discussed earlier, we can enforce this by modifying the variable distributions Pa in each cluster.
However, if a passive variable xt+1

i ∈ Ck is correlated with a (passive or active) variable
xt+1
j ∈ Ck′ , where xt+1

j ∈ pat+1
a (xt+1

i), then marginalising out xt+1
j in the distribution Pa of

xt+1
i will typically cause xt+1

i to lose its passivity, in the sense that it would no longer satisfy
the clauses in Definition 3. Consequently, we would always have to perform the transition
step for Ck, even if the unmodified variables in Ck are all passive. This is problematic not
only because of the unnecessary computations, but also because the modified distributions
will introduce an error every time the transition step is performed.

1151

Albrecht & Ramamoorthy

θt1

θt2

θt3

Xt

θt+1
1

θt+1
2

θt+1
3

Xt+1

θ̂t+1
1

θ̂t+1
2

θ̂t+1
3

Y t+1

C1

C2

Figure 6: Robot arm DBN implementing the action CW3. Dashed circles mark passive state
variables. The coloured ellipses represent the clusters C1 and C2.

To alleviate this effect, one can check if there is a chance that the unmodified variables
in the cluster would change their values. It can be shown that this is the case whenever there
is a causal path from any active variable to a variable in the cluster:

Definition 6 (Causal path). A causal path in ∆a, from an active variable xt+1
i to another

variable xt+1
j , is a sequence 〈x(1), x(2), ..., x(Q)〉 such that x(1) = xt+1

i , x(Q) = xt+1
j , and for

all for all 1 ≤ q < Q :

(i) x(q) ∈ Xt+1

(ii)
(
x(q), x(q+1)

)
∈ Ea

(iii) x(q+1) is passive in ∆a with respect to x(q)

Intuitively, a causal path defines a chain of causal effects (such as between joints 1 and 3
in Example 1): since the active variable x(1) may have changed its value and x(2) is passive
with respect to x(1), x(2) may also have changed its value; since x(2) may have changed
its value and x(3) is passive with respect to x(2), x(3) may also have changed its value, etc.
Hence, in the absence of observing these changes, the mere existence of a causal path from
x(1) to x(Q) is reason to revise our beliefs about x(Q). Therefore, as a general update rule, we
can omit the transition step btk → b̂t+1

k if all unmodified variables in cluster Ck are passive

in ∆at , and if there is no causal path from any active variable in ∆at to any variable in Ck.
This is demonstrated in the following example:

Example 5 (PSBF update rule in robot arm DBN). Let us again consider the robot arm
from the previous examples. Figure 6 shows a DBN which implements the action CW3.
This action rotates joint 3 of the robot arm by 1◦ clock-wise (i.e. the joint orientation θt+1

3

is a direct target of the action). Therefore, the variable θt+1
3 is active while the variables

θt+1
1 and θt+1

2 are passive (shown as dashed circles).

We use the clustering C1 =
{
θt+1

1 , θt+1
2

}
, C2 =

{
θt+1

2 , θt+1
3

}
for reasons given in Ex-

ample 4. Since θt+1
1 is a parent of θt+1

2 , PSBF will have to enforce assumption (A1) by

1152

Exploiting Causality for Selective Belief Filtering in DBNs

Algorithm 2 SkippableClusters(C,∆a)

1: Input: clustering C = {C1, ..., CK}, DBN ∆a

2: Output: set of clusters C∗ ⊂ C which can be skipped in transition step

3: C∗ ← C

4: Q← OrderedQueue(Xt+1)

5: while C∗ 6= ∅ ∧Q 6= ∅ do

6: xt+1
i ← NextElement(Q)

7: Q← Q \
{
xt+1
i

}
8: if ¬Passive(xt+1

i ,∆a) then

9: C∗ ← C∗ \
{
Ck ∈ C∗ | xt+1

i ∈ Ck
}

10: for all xt+1
j ∈ Q do

11: if CausalPath(xt+1
i , xt+1

j ,∆a) then

12: C∗ ← C∗ \
{
Ck ∈ C∗ | xt+1

j ∈ Ck
}

13: Q← Q \
{
xt+1
j

}
14: return C∗

marginalising θt+1
1 out of the variable distribution Pa of θt+1

2 in cluster C2. While the mod-
ified variable distribution loses the passivity property (both clauses of Definition 3 are
violated), the unmodified distribution of θt+1

1 is still passive.

When performing the transition step, PSBF has to update the belief factor b2 because
the corresponding cluster C2 contains the active variable θt+1

3 . However, since all variables
in cluster C1 are passive (there are no modified variables in C1), and since there is no causal
path from θt+1

3 to any variable in C1, PSBF can omit the update for the belief factor b1.
Intuitively, this makes sense since a change in the orientation of joint 3 cannot cause a
change in the orientations of the preceding joints. Note that this corresponds to a saving of
50% in the transition step. �

Algorithm 2 defines a procedure which utilises this rule to find clusters for which the
transition step can be skipped. The algorithm takes as inputs a clustering C and a DBN
∆a, and returns a set C∗ of skippable clusters. It essentially searches through all active
variables xt+1

i in ∆a and removes all clusters Ck from C which contain variables to which
there is a causal path from xt+1

i . The function OrderedQueue(Xt+1) returns an ordered
queue Q with all variables in Xt+1. The performance of Algorithm 2 depends on the order
of the queue. In our experiments, we obtained good performance by ordering the variables in
descending order of their number of outgoing edges. The function NextElement(Q) returns
the next element in the queue; the function Passive(xt+1

i ,∆a) is defined in Algorithm 1;
and the function CausalPath(xt+1

i , xt+1
j ,∆a) returns a logical true if and only if there is a

1153

Albrecht & Ramamoorthy

causal path from xt+1
i to xt+1

j in ∆a.4 Note that, given the invariance of passivity to process
states (cf. Section 4.1), it suffices to call Algorithm 2 only once (in advance or as needed) to
determine which of the clusters to omit in the transition step.

5.3 Efficient Incorporation of Observations

PSBF can perform the observation step similarly to the exact update rule (2), which
conditions the propagated belief state b̂t+1 on the observation ot+1 to obtain a fully updated
belief state bt+1. However, given the factored belief state representation used by PSBF, we
require a procedure which respects this factorisation in the observation step. Assuming that
(A1) and (A2) both hold, we can bring (2) into a form which updates the belief factors bk
independently of each other

bt+1
k (s′k) = η2 b̂t+1

k (s′k)
∑
s̄∈S(pat+1

at
(Y t+1)) : s̄k = s′k

Ωat(s̄, ot+1)
∏
k′ 6= k :Ck′∩ pa

t+1

at
(Y t+1) 6= ∅

b̂t+1
k′ (s̄k′) (7)

where η2 is a normalisation constant. Note that, analogously to (6), if there are variables
in Ck′ which are not in pat+1

at (Y t+1), then b̂t+1
k′ is taken to be the marginal distribution

over Ck′ ∩ pat+1
at (Y t+1). Assumption (A2) guarantees that the marginalisation introduces no

errors. If (A1) and (A2) both hold, then the transition step (6) and observation step (7)
produce exact belief states in the sense of (1) and (2), regardless of how many clusters were
skipped in the transition step (cf. Theorem 1).

The observation step (7) updates all belief states and uses all observation variables in
the process. In other words, it ignores the internal structure of the observation variables.
However, it is clear that if the variables in a cluster Ck are marginally independent of the
observation variables Y t+1 (this can be determined using d-separation (Geiger et al., 1989),
or simply by checking if there is a directed path from Ck to Y t+1), then there is no need
to perform the observation step for the corresponding belief factor bk. This is expressed
formally in Theorem 2:

Theorem 2. If all xt+1
i ∈ Ck are marginally independent of all yt+1

j ∈ Y t+1 in ∆at , then

∀s ∈ S : bt+1
k (sk) = b̂t+1

k (sk).

Proof. Proof in Appendix B.

Theorem 2 states that if the variables in Ck are independent of those in Y t+1, then the
observation step for bk can be skipped. However, even if Ck is not independent of Y t+1, it may
be the case that the variables in Ck depend only on a subset Yk ⊂ Y t+1 of the observation
variables. Clearly, in such cases, it suffices to use Yk rather than Y t+1 in the observation
step. To account for this, we first note that the variables in Y t+1 may be correlated with
each other. To preserve the correlations, we subdivide Y t+1 into clusters Ĉl ⊆ Y t+1 and
introduce the following assumptions:

(A3) ∀a : yt+1
j ∈ Ĉl →

(
paa(y

t+1
j) ∩ Y t+1

)
⊆ Ĉl

(A4) ∀l 6= l′ : Ĉl ∩ Ĉl′ = ∅

4. A simple way to implement this function is to modify a standard graph search method (such as breath-first
search) to check for (iii) in Definition 6, and to apply it to the variables in Xt+1 with edges Ea from ∆a.

1154

Exploiting Causality for Selective Belief Filtering in DBNs

Assumptions (A3) and (A4) are analogous to (A1) and (A2), respectively, and essentially
serve the same purposes for the observation step. To distinguish the clusters Ck and Ĉl,
we sometimes refer to the former as state cluster and to the latter as observation cluster.
Assuming that (A3) and (A4) both hold, we can redefine the observation step to

bt+1
k (s′k) = η2 b̂

t+1
k (s′k)

∏
l: Ĉl∩Yk 6=∅

∑
s̄∈S(pat+1

at
(Ĉl)) : s̄k = s′k

Ωat

l (s̄, ot+1)
∏
k′ 6= k :Ck′∩ pa

t+1

at
(Ĉl) 6= ∅

b̂t+1
k′ (s̄k′) (8)

where
Ωa
l (s̄, o

t+1
l) =

∏
yt+1
j ∈ Ĉl

Pa

(
yt+1
j =(ot+1

l)j | paa(yt+1
j)←↩ (s̄, ot+1

l)
)

and Yk ⊂ Y t+1 is the set of observation variables which are not marginally independent of
the variables in Ck.

Given Theorem 2, one can see that (8) is equivalent to (7) if the observation variables
are not clustered (or, equivalently, there is a single observation cluster Ĉl = Y t+1). However,
it is important to note that if the observation variables are clustered (i.e. there are multiple
observation clusters Ĉl), then (8) is not necessarily equivalent to (7). To see this, it is helpful
to compare the abstract formulations

∏m
j=1

∑
s Ωs(oj) bs and

∑
s

∏m
j=1 Ωs(oj) bs, where the

former corresponds to (8) and the latter to (7). Therein, (o1, ..., om) ∈ O is an observation, bs
is the probability of being in state s ∈ S, and Ωs(oj) is the probability of observing yj = oj
in s. These abstract formulations are equivalent for m = 1 or if bs = 1 for some s, but in all
other cases they may not be equivalent. Nonetheless, if we fix the number of observation
variables m, then (8) approximates (7) closely as we increase the number of state variables
n. Our experiments indicate that it often suffices to use just a few more state variables than
observation variables in order to obtain good approximations.

Finally, to show that it suffices to perform the observation step for bk using only those
clusters Ĉl whose variables are not independent of the variables in Ck, we observe that (8)
is in fact a repeated application of (7) for every Ĉl, where the updated belief factor bt+1

k is

used in place of b̂t+1
k in the subsequent application. Since every application has the same

form as (7) (with Y t+1 = Ĉl), we conclude that Theorem 2 holds, and hence the observation
step can be skipped for clusters Ĉl which are independent of Ck.

5.4 Summary of PSBF

The preceding sections can be summarised as follows:

• Representation: The belief state bt is represented as a product of K belief factors btk,

such that bt(s) =
∏K
k=1 b

t
k(s). Each belief factor btk is a probability distribution over

the set S(Ck), where Ck ⊆ Xt+1 is a cluster of correlated state variables.

• Transition step: The transition step btk → b̂t+1
k is performed using (6), for all clusters

Ck which include active variables in ∆at , or to which there is a causal path from an
active variable in ∆at . All other clusters are skipped.

• Observation step: The observation step b̂t+1
k → bt+1

k is performed using (8), for all
clusters Ck which are dependent on the observation variables Y t+1, using only those
observation clusters Ĉl which are relevant for Ck. All other clusters are skipped.

1155

Albrecht & Ramamoorthy

Algorithm 3 PSBF(at, ot+1, (btk)Ck∈C | C, Ĉ, (∆a)a∈A)

1: Input: action at, observation ot+1, belief factors (btk)Ck∈C

2: Parameters: state clustering C, observation clustering Ĉ, DBNs (∆a)a∈A

3: Output: updated belief factors (bt+1
k)Ck∈C

4: // Transition step

5: C∗ ← SkippableClusters(C,∆at

)

6: for all Ck ∈ C do

7: if Ck ∈ C∗ then

8: b̂t+1
k ← btk

9: else

10: for all s′k ∈ S(Ck) do

11: b̂t+1
k (s′k)← η1

∑
s̄∈S(pat

at (Ck))

T a
t

k (s̄, s′k)
∏
k′:[∃xt+1

i ∈Ck′ :xt
i∈ pat

at (Ck)]

btk′(s̄k′)

12: // Observation step

13: for all Ck ∈ C do

14: Yk ←
{
yt+1
j ∈ Y t+1 | there is a directed path from Ck to yt+1

j in ∆at
}

15: if Yk = ∅ then

16: bt+1
k ← b̂t+1

k

17: else

18: for all s′k ∈ S(Ck) do

19: bt+1
k (s′k)← η2 b̂

t+1
k (s′k)

∏
Ĉl∈ Ĉ : Ĉl∩Yk 6=∅

∑
s̄∈S(pat+1

at (Ĉl)) : s̄k = s′k

Ωat

l (s̄, ot+1)
∏
k′ 6= k :Ck′∩ pat+1

at (Ĉl) 6= ∅

b̂t+1
k′ (s̄k′)

20: return (bt+1
k)Ck∈C

Algorithm 3 provides a procedural specification of PSBF. The algorithm takes as inputs
the action at time t, at, the subsequent observation at time t+ 1, ot+1, and the belief factors
at time t, btk. The internal parameters are the state clustering C, the observation clustering

Ĉ, and the set of DBNs (∆a)a∈A which define the process. Lines 4 to 11 implement the
transition step while lines 12 to 19 implement the observation step. Note that it suffices to
execute lines 5 and 14 once in advance (or on demand) and to remember the results for
future reference. The algorithm returns the updated belief factors bt+1

k .

1156

Exploiting Causality for Selective Belief Filtering in DBNs

5.5 Space and Time Complexity

A belief factor bk has one element bk(sk) for each sk ∈ S(Ck).
5 Thus, the total space required

to maintain K belief factors bk is
∑K

k=1 |S(Ck)|. Furthermore, the size of the set S(Ck) grows
exponentially with the number of variables in Ck, hence the dominant growth factor in the
space requirement is given by the largest cluster Ck such that |Ck| = maxk′ |Ck′ |. Therefore,
the space complexity of PSBF is in O(exp maxk |Ck|), hence the representation is feasible
for reasonably small clusters Ck.

Similarly, the number of operations required to perform the transition and observation
steps is in the order of 2

∑K
k=1 |S(Ck)| in the worst case (i.e. all clusters need to be updated

in both steps). Specifically, line 11 and line 19 in Algorithm 3 are each executed once for
every sk ∈ Ck. The dominant growth factor is again given by the largest cluster Ck, hence
the time complexity of PSBF is in O(2 exp maxk |Ck|) = O(exp maxk |Ck|). Note that this
assumes that the analysis performed by lines 5 and 14 in Algorithm 3 is done in advance.

The above time complexity is for the worst case, in which all clusters need to be updated
in the transition and observation steps. It is difficult to derive the time complexity for the
average case because it is unclear what the average case is in terms of passivity. Even if we
stipulate a certain average degree of passivity (e.g. 50% of all variables are passive), it would
still be difficult to make a general statement about time requirements since this depends
crucially on how the passive variables are distributed across the clusters. For example, even
if a process has on average 90% passivity, if there is one active variable in each cluster
then every cluster would need to be updated in the transition step. Thus, the only general
statement we can make with regards to passivity is that the time complexity of PSBF can
be refined to O(exp maxCk∈CT∪CO |Ck|), where CT and CO include only those clusters that
need to be updated in the transition and observation step, respectively.

5.6 Error Bounds

There are five possible sources of approximation errors in PSBF:

• If the clusters are correlated (i.e. (A1) or (A3) are violated)

• If the clusters are overlapping (i.e. (A2) or (A4) are violated)

• Generally in (8) if multiple observation clusters Ĉl are used

In the first two cases, the approximation error depends on the amount of correlation
and overlap. If there is only little correlation and overlap between the clusters, then the
approximation error can be expected to be small. Conversely, if the clusters are strongly
correlated and overlapping, then the approximation error can be expected to be large.

Boyen and Koller (1998) provide a useful analysis of the error bound of any filtering
method which uses a factored belief state representation. Since PSBF uses a factored
representation, their analysis applies directly to PSBF. The purpose of this section is to
restate the main result of their analysis in the context of our work.

Their analysis uses the concept of relative entropy (Kullback & Leibler, 1951) as a
measure of similarity for belief states:

5. In practice, it suffices to store only |S(Ck)| − 1 elements, but this is irrelevant in our analysis.

1157

Albrecht & Ramamoorthy

Definition 7 (Relative entropy). Let φ and ψ be two probability distributions defined over
a set X. The relative entropy from φ to ψ is defined as

KL(φ||ψ) =
∑
x∈X

φ(x) ln
φ(x)

ψ(x)

where φ(x) > 0⇒ ψ(x) > 0.

Similar to Boyen and Koller (1998), we define the approximation error incurred by PSBF
relative to the exact belief state. However, since we consider a decision process with multiple
actions a ∈ A (represented by the DBNs ∆a), we define the error for each action respectively:

Definition 8 (Approximation error). Let b be an exact belief state and b̃ be the approxi-
mation by PSBF. After taking action a, let b′ be the exact update of b (using (1) and (2))
and b̃′ be the PSBF-update of b̃ (using (6) and (8)). Furthermore, let b̌′ be the exact update
of b̃ (using (1) and (2)). We say that PSBF incurs error εa in ∆a relative to b′ if

KL(b′||b̃′)−KL(b′||b̌′) ≤ εa.

The analysis also relies on the concept of mixing rates. Intuitively, the mixing rate γa of
a DBN ∆a quantifies the degree of stochasticity in ∆a. It depends on the mixing rates γak of
the individual clusters Ck:

Definition 9 (Mixing rate). The mixing rate of a cluster Ck ⊂ Xt+1 in ∆a is defined as

γak = min
s′,s′′∈S

∑
s∈S(Ck)

min
[
T ak (s′, s), T ak (s′′, s)

]
.

If all Ck satisfy (A1) and (A2), and if all observation variables Y t+1 are in one observation
cluster, then the mixing rate of ∆a is given by γa = (mink γ

a
k/r)

q where each cluster Ck
depends on at most r and influences at most q other clusters Ck′ 6=k (Boyen & Koller, 1998).
In the worst case (that is, all (A1–A4) are violated), the minimal mixing rate is given by γak
for the single cluster Ck = Xt+1.

Finally, the main result in the work of Boyen and Koller (1998), here restated in the
context of our work in Theorem 3, essentially states that the approximation error of PSBF
(measured in terms of relative entropy) is bounded by the mixing rates of the process:

Theorem 3 (Boyen & Koller, 1998). Let bt be an exact belief state and b̃t be the approxi-
mation by PSBF using clusters Ck. Then, for any t with states ~s = (s0, ..., st) and actions
~a = (a0, ..., at−1), we have

Eo1,...,ot
[
KL(bt||b̃t)

]
≤ maxa∈~a ε

a

mina∈~a γa

where the expectation E is taken over all possible sequences of observations o1, ..., ot with
probabilities P (o1, ..., ot) =

∏t−1
τ=0 Ωaτ(sτ+1, oτ+1), and where εa and γa are defined as above.

1158

Exploiting Causality for Selective Belief Filtering in DBNs

Process size # of x vars (n) # of y vars (m) # of states (|S|) # of obs. (|O|)
S 10 3 > one thousand 8

M 20 6 > one million 64

L 30 9 > one billion 512

XL 40 12 > one trillion 4096

Table 1: Synthetic process sizes. All variables are binary.

6. Experimental Evaluation

We evaluated PSBF in two experimental domains: In Section 6.1, we evaluated PSBF in
synthetic (i.e. randomly generated) processes with varying sizes and degrees of passivity. In
Section 6.2, we evaluated PSBF in a simulation of a multi-robot warehouse system. A brief
summary of the experimental results is given in Section 6.3.

6.1 Synthetic Processes

We first evaluated PSBF in a series of synthetic processes. PSBF is compared with a selection
of alternative methods, including PF (Gordon et al., 1993), RBPF (Doucet et al., 2000), BK
(Boyen & Koller, 1998), and FF (Murphy & Weiss, 2001); see Section 2 for a discussion of
these methods. The algorithms were implemented in Matlab 7.13, where we used the Matlab
toolbox BNT (Murphy, 2001) to implement BK and FF.

6.1.1 Specification of Synthetic Processes

We generated synthetic processes of four different sizes which are specified in Table 1. Each
process was generated as follows:

First, each variable xt+1
i is chosen to be passive with probability p, in which case we

also add the edge (xti, x
t+1
i). We refer to p as the degree of passivity. To sample further

edges from Xt/Xt+1 to Xt+1, we generate a mixture of Gaussians G using Algorithm 4 (see
Appendix C). Figure 7 shows an example of G generated for a process of size M. The set
G is used to produce “areas” of correlated variables (i.e. the Gaussians), which will then
constitute natural candidates for state clusters.

Let ω be the vector of maximum densities for each Gaussian in G, and let δi be the
vector of densities at value i ∈ N. Then, for every combination of i and j, the edge (xti, x

t+1
j)

is added with probability equal to the maximum element in δiδj/ω
2, in which all operators

are point-wise. If xt+1
i was chosen to be passive, then the edge (xti, x

t+1
j) is only added if

i < j. In that case, we also add the edge (xt+1
i , xt+1

j). Edges (xt+1
i , xt+1

j) are added similarly

for each i < j,6 where we also add the edge (xti, x
t+1
j) for passive xt+1

j . To ensure that every

variable has an effect in the generated process, each xti is connected to at least one xt+1
j

(adding (xti, x
t+1
i) if necessary) and each xt+1

j has at least one parent in Xt or Xt+1 (adding

6. The condition i < j in both cases is to ensure that the resulting DBN is acyclic.

1159

Albrecht & Ramamoorthy

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
en

si
ty

i, j

Figure 7: Example of mixture of Gaussians generated for a process of size M and consisting

of three Gaussians. The closer two variables x
t/t+1
i and xt+1

j are under the peak of a common
Gaussian, the higher the probability that an edge will be added between them.

(xtj , x
t+1
j) if necessary). Finally, edges (xt+1

i , yt+1
j) are added with probability 0.1, for each

i, j, while ensuring that each yt+1
j has at least one parent in Xt+1.

All variables in the process are binary. Passive variables are assumed to be passive with
respect to all of their parents in Xt. The distributions Pa of xt+1

i ∈ Xt+1 are generated
uniformly randomly without bias. For passive variables xt+1

i , we modify Pa to satisfy clause
(ii) in Definition 3. The distributions Pa of yt+1

j ∈ Y t+1 are generated with each probability
sampled uniformly from either [0.0, 0.2] or [0.8, 1.0], to obtain meaningful observations.

Finally, every process consists of two actions. These are obtained by randomly choosing
between one and three variables xt+1

i whose distributions Pa are resampled as above and
edges from Xt added with probability 0.1 (passive variables chosen in this way are no longer
passive). During simulations, these actions are chosen uniformly randomly.

Each process starts in a random initial state, and all algorithms are tested on the same
sequence of processes, initial states, chosen actions, and random numbers.

6.1.2 Clustering Methods

We used three different clustering methods, denoted 〈pc〉, 〈moral〉, and 〈modis〉. The methods
were applied to the variables in Xt+1 without edges involving Xt or Y t+1:

• 〈pc〉 drops the directions of the edges (i.e. for any edge xt+1
i → xt+1

j it ads the reverse

edge xt+1
j → xt+1

i) and puts all variables between which there is a (undirected) path
into one cluster. By definition, the resulting clusters satisfy all assumptions (A1–A4).

• 〈moral〉 connects all parents of a variable and drops the directions (it “moralises” the
variables) and then extracts clusters of fully connected variables (“maximum cliques”).
The resulting clusters may not satisfy any of the assumptions (A1–A4).

• 〈modis〉 is similar to 〈moral〉 but truncates the resulting clusters to make them disjoint
(clusters are removed if they become a subset of another cluster). By definition, the
resulting clusters satisfy (A2/A4), but not necessarily (A1/A3).

As an example, consider Figure 5 from Section 5.1. Here, 〈pc〉 would produce the cluster
C1 from Figure 5b, since all variables are connected by an undirected path. Furthermore,

1160

Exploiting Causality for Selective Belief Filtering in DBNs

〈moral〉 would produce the two clusters C1 and C2 from Figure 5c, which correspond to the
two maximum cliques after moralising the variables in Xt+1. Finally, 〈modis〉 would produce
the cluster C1 from Figure 5c and the cluster C3 from Figure 5a.

PSBF used the same clustering method to generate clusters of state variables (Ck)
and observation variables (Ĉl). Moreover, PSBF enforced (A1/A3) whenever necessary by
modifying the variable distributions as described in Section 5.1.

6.1.3 Accuracy

In order to compare the accuracy of the tested algorithms, we computed the relative entropy
(cf. Definition 7) from exact belief states obtained using the exact update rule (cf. Definition 1)
to the approximate belief states produced by the tested algorithms. However, since exact
belief states and relative entropy are hard to compute for large processes, we were able to
compare the accuracy of algorithms in processes of size S only. All algorithms were initialised
with uniform belief states, or uniformly sampled particles.

We first compared the accuracy of PSBF and BK, since they use the same factorisation
in their belief state representations. Figure 8 shows the relative entropy of PSBF and BK av-
eraged over 1000 processes with 0%, 20%, 40%, 60%, 80%, and 100% passivity, respectively.
The results show that PSBF 〈pc/modis〉 produced a lower relative entropy (i.e. higher accu-
racy) than BK 〈pc/modis〉, and that PSBF 〈moral〉 produced a relative entropy comparable
to that of BK 〈moral〉. This indicates that violations of (A2/A4) introduce smaller errors
than violations of (A1/A3). Note that PSBF and BK had the same convergent behaviour in
their relative entropy, which shows that the approximation error due to the factorisation was
bounded, as discussed in Section 5.6. This is interesting since PSBF and BK obtain approxi-
mation errors from the factorisation in different ways: PSBF loses accuracy by modifying
the variable distributions to ensure that the state clusters are independent (cf. Section 5.2),
while BK loses accuracy by marginalising out the original factorisation after the inference (i.e.
the “projection step”; cf. Section 2.1). Nevertheless, as shown in our results, the resulting
approximation errors were bounded in both cases, with similar convergence.

Note that the relative entropy of both methods increased with the degree of passivity in
the process. This is explained by the fact that higher passivity implies higher determinacy
and, therefore, lower mixing rates (cf. Definition 9), which are a crucial factor in the error
bounds of PSBF and BK (cf. Theorem 3). Finally, note that PSBF did not produce exact
belief states (i.e. zero relative entropy) when using 〈pc〉 clustering, despite the fact that the
clusters generated by 〈pc〉 satisfy all assumptions (A1–A4). However, as discussed in detail in
Sections 5.3 and 5.6, another possible source of approximation errors is if multiple observation
clusters are used, which was often the case when using 〈pc〉 to produce observation clusters.

To compare the accuracy of PF/RBPF with PSBF/BK, the number of samples used in
PF/RBPF was chosen automatically in each process such that they required approximately
as much time per belief update as PSBF 〈moral〉 and BK 〈moral〉, respectively. In our
experiments, this meant that PF (RBPF) was only able to process between 100 and 300 (20
and 50) samples. However, since each process has over 1000 states, this was not nearly enough
to represent a uniform belief state. Hence, PF/RBPF produced much higher relative entropy
than PSBF/BK. Moreover, the fact that the processes have very high variance means that
PF/RBPF would require many more samples to achieve the same accuracy as PSBF/BK (as

1161

Albrecht & Ramamoorthy

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

BK (pc)
BK (moral)
BK (modis)

PSBF (pc)
PSBF (moral)
PSBF (modis)

Transition

R
el

at
iv

e
en

tro
py

(a) 0% passivity

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

Transition

R
el

at
iv

e
en

tro
py

(b) 20% passivity

0 500 1000 1500 2000 2500 3000
0

1

2

3

Transition

R
el

at
iv

e
en

tro
py

(c) 40% passivity

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

Transition

R
el

at
iv

e
en

tro
py

(d) 60% passivity

0 500 1000 1500 2000 2500 3000
0

2

4

6

Transition

R
el

at
iv

e
en

tro
py

(e) 80% passivity

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

Transition

R
el

at
iv

e
en

tro
py

(f) 100% passivity

Figure 8: Accuracy results for PSBF and BK. Plots show relative entropy from exact to
algorithms’ belief states (lower is better). Results are averaged over 1000 processes of size
S (n = 10,m = 3), where on average 0%–100% of non-target variables were passive (cf.
Section 6.1.1). PSBF/BK used clustering methods 〈pc〉, 〈moral〉, and 〈modis〉.

shown in the next section). One would expect that this latter issue was alleviated by the use
of exact inference in RBPF (cf. Section 2.1). However, this is only the case if much of the
variance in the process can be captured in the marginal distributions used in the particles in
RBPF. In contrast, our synthetic processes exhibit high variance across all variables, and our

1162

Exploiting Causality for Selective Belief Filtering in DBNs

automatic grouping7 of state variables into “sampled” and “exact” variables still contained
much variance in the sampled variables. Hence, RBPF required significantly more samples
than the number it could process in the time provided.

Finally, in order to compare the accuracy of FF with PSBF/BK, the number of iterations
used in FF (more precisely, the number of iterations in loopy belief propagation; cf. Murphy &
Weiss, 2001) was chosen automatically in each process such that FF required approximately
as much time per belief update as PSBF 〈moral〉 and BK 〈moral〉, respectively. However,
while FF was often able to perform several iterations in the provided time, the resulting
relative entropy was again substantially higher than that of PSBF/BK. The problem is
that FF was designed for a specific class of DBN topologies, namely those containing no
edges within Xt+1 (called “regular” DBNs by Murphy & Weiss, 2001). This is what allows
FF to use a fully factored representation of belief states, in which each variable is its own
belief factor. However, the processes used in our experiments have high intra-correlation
between state variables (i.e. many edges in Xt+1), especially with increasing passivity. These
correlations cannot be captured in the belief state representation of FF, resulting in a
significantly higher relative entropy than PSBF/BK.

6.1.4 Timing

We measured computation times in processes of sizes S, M, L, XL with passivities of 25%,
50%, 75%, 100%, respectively. PSBF and BK used 〈moral〉 clustering, which seemed most
appropriate for a fair comparison since it produced consistently similar accuracy for both
algorithms. The number of samples used in PF was chosen automatically in each process
such that PF achieved an average accuracy approximately as good as that of PSBF and
BK, respectively, in the final 20% of the process. As this involved computing exact belief
states and relative entropies, we were able to use PF in processes of size S only. We omit
RBPF and FF in this section as they were shown in the previous section to be unsuitable
for the processes we consider. PSBF was tested with 1, 2, and 4 parallel processes, which
were allocated approximately the same number of belief factors.

Figures 9a – 9d show the times for 1000 transitions averaged over 1000 processes, and
Figure 9e shows the average percentage of belief factors that were updated in the transition
and observation steps of PSBF. The timing reported for PSBF includes the time taken to
modify variable distributions (in case of overlapping clusters) and to detect skippable clusters
in the transition and observation steps, both of which were done once in advance for each
action. The results show that PSBF was able to minimise the time requirements significantly
by exploiting passivity. First, we note that there were only marginal gains from 25% to 50%
passivity, despite the fact that PSBF updated 14% fewer clusters in the transition step. This
is because these clusters were mostly very small. However, there were significant gains from
50% to 75% passivity with average speed-ups of 11% (S), 14% (M), 15% (L), 18% (XL), and

7. It is an open question how to group state variables into “sampled” and “exact” variables (Doucet et al.,
2000). We used a simple heuristic whereby the set of sampled variables contained all variables xt+1

i that
had no parents in Xt/t+1 or none other than xti. The remaining variables in Xt+1 constituted the set of
exact variables. To ensure that the resulting grouping was valid for all actions (i.e. DBNs) in a process,
we considered edges in all involved DBNs; that is, we performed the grouping over the union of Ea for
all a. Moreover, to improve efficiency, we further subdivided the set of exact variables into clusters of
variables that were connected by undirected edges in Xt+1 without edges involving the sampled variables.

1163

Albrecht & Ramamoorthy

25% 50% 75% 100%
0

50

100

150

Passivity

Se
co

nd
s

fo
r 1

00
0

tra
ns

iti
on

s

PF:BK
PF:PSBF
BK

PSBF−1
PSBF−2
PSBF−4

(a) S (n=10,m=3)

25% 50% 75% 100%
0

50

100

150

200

Passivity

Se
co

nd
s

fo
r 1

00
0

tra
ns

iti
on

s

(b) M (n=20,m=6)

25% 50% 75% 100%
0

50

100

150

200

250
300

350

400

Passivity

Se
co

nd
s

fo
r 1

00
0

tra
ns

iti
on

s

(c) L (n=30,m=9)

25% 50% 75% 100%
0

100

200

300

400

500

600

700

Passivity

Se
co

nd
s

fo
r 1

00
0

tra
ns

iti
on

s

(d) XL (n=40,m=12)

25% 50% 75% 100%
0

20

40

60

80

100

Passivity

%
 u

pd
at

ed
 b

el
ie

f f
ac

to
rs

S (trans)
S (obs)
M (trans)
M (obs)

L (trans)
L (obs)
XL (trans)
XL (obs)

(e) Updated belief factors

Figure 9: Timing results. (a–d) Average number of seconds required for 1000 transitions
on a UNIX dual-core machine with 2.4 GHz, for sizes S, M, L, XL. Passivity of p% means
that on average p% of non-target variables were passive (cf. Section 6.1.1). PSBF and BK
used 〈moral〉 clustering. PF was optimised for binary variables and used number of samples
to achieve accuracy of PSBF and BK, respectively. PSBF was run with 1 (PSBF-1), 2
(PSBF-2), 4 (PSBF-4) parallel processes. (e) Average percentage of belief factors which
were updated in the transition and observation steps, respectively.

from 75% to 100% passivity with further average speed-ups of 11% (S), 33% (M), 46% (L),
49% (XL). This shows that the computational gains can grow significantly with both the
degree of passivity and the size of the process.

Our results show that PSBF consistently outperformed BK in all process sizes. There
are two main computational savings in PSBF relative to BK: firstly, by skipping over belief
factors in the transition and observation steps, and secondly, by not having to perform a
potentially expensive projection step to restore the original factorisation after the inference.
However, while the times of both algorithms grew exponentially in the size of the process,
we note that the relative difference between PSBF and BK decreased significantly for lower
degrees of passivity. This is an instance of “No Free Lunch” (see Section 7 for a discussion),
which means that PSBF performs best in processes with high passivity but can suffer in
performance in processes that lack passivity. Specifically, the computational overhead of
modifying variable distributions and detecting skippable belief factors does not amortise

1164

Exploiting Causality for Selective Belief Filtering in DBNs

as effectively in large processes with low passivity. Furthermore, with low passivity, PSBF
often has to perform full transition and observation steps (i.e. update all belief factors in
each step), which can be costly in large processes.

How were BK and PF affected by passivity? Not surprisingly, the performance of BK was
nearly unaffected by the increasing degrees of passivity. The junction tree algorithm used in
BK benefited marginally from an increased sparsity in the process, but the computational
gains were minimal. We were at first unable to use PF as it required too many samples
(between 10k and 200k) to achieve comparable accuracy to PSBF/BK, due to the very
high variance in the processes. In order to investigate the effect of passivity on PF, we
implemented a version of PF which was strictly optimised for binary variables. Interestingly,
we found that passivity had an adverse effect on the performance of PF, requiring it to use
exponentially more samples with increased passivity (see Figure 9a). This makes sense if we
view PF as a factored approximation method (such as PSBF and BK) which means that the
analysis in Section 5.6 applies. However, because PF puts all variables into a single cluster
(since it is not actually a factored method), the mixing rate of the process will be much lower
than for PSBF and BK (as discussed in Section 5.6) and, thus, the error bounds are less
tight. To compensate for this, PF requires significantly more samples for increased passivity.

6.2 Multi-robot Warehouse System

In this section, we demonstrate how passivity can occur naturally in a more complex system
and how PSBF can exploit this to accelerate the filtering task. To this end, we consider
a multi-robot warehouse system in the style of Kiva (Wurman et al., 2008), in which the
robots’ task is to transport goods within the warehouse (cf. Figure 10a).

6.2.1 Specification of Warehouse System

Figure 10b shows the initial state of the warehouse simulation. The warehouse consists of
2 workstations (W1, W2), 4 robots (R1–R4), and 16 inventory pods (I1–I16). Each robot
can move forward and backward, turn left and right, load and unload an inventory pod (if
positioned under the pod), or do nothing. As in Kiva, robots can move under inventory pods
unless they are carrying a pod, in which case the other pods become obstacles. The move
and turn operations are stochastic in that the robot may move/turn too far (3% chance) or
do nothing (2% chance). Each robot possesses two sensors, one telling it which inventory
pod it has loaded (if any) and one for the direction it is facing. The direction sensor is noisy
in that a random direction may be reported (3% chance).

Each robot maintains a list of tasks in the form of “Bring inventory pod I to workstation
W” (yellow area around W) and “Bring inventory pod I to position (x,y)”. How these tasks
are executed depends on the control mode, of which we use two in our simulations:8

8. Our control modes are ad hoc and often make suboptimal decisions. However, we found that current
solution techniques for (DEC-)POMDPs, including approximate methods, were infeasible in this setting.
Nonetheless, the quality of the decisions made by our control modes largely depends on the accuracy
of the belief states, hence it is important that the belief states are updated accurately. Therefore, the
control modes were sufficient for our purposes.

1165

Albrecht & Ramamoorthy

(a) Kiva warehouse system (b) Initial state of simulation

Figure 10: (a) Kiva warehouse system (image reproduced from D’Andrea & Wurman, 2008).
Robots (orange coloured) transport shelfs with goods to and from workstations. (b) Initial
state of the warehouse simulation. The warehouse consists of 2 workstations (W1, W2), 4
robots (R1–R4), and 16 inventory pods (I1–I16).

Centralised mode: A central controller maintains a belief state bt about the state of
the warehouse system. At each time t, it samples 100 states from bt and removes all
duplicate states, resulting in the set Ŝ = {ŝ1, ŝ2, ...}. It then resamples a state ŝ∗ ∈ Ŝ
with probabilities w(ŝ∗) = bt(ŝ∗)/

∑
q b
t(ŝq). Based on ŝ∗ and the current task of each

robot, it performs an A∗ search (Hart, Nilsson, & Raphael, 1968) (with Manhattan
distance) in the space of joint actions to find the optimal action for each robot. After
executing their actions, the robots send their sensor readings to the controller, and the
controller updates its belief state using the sensor readings.

Decentralised mode: Each robot maintains its own belief state and there is no communi-
cation between the robots. The only knowledge the robots have about each other are
their current tasks, communicated by the task allocation module. At each time t, each
robot samples the set Ŝ and state ŝ∗ as is done in the centralised mode. Treating the
other robots as static obstacles, it performs an A∗ search based on ŝ∗ and its current
task to find an action at. This is repeated for each other robot r in all states ŝq ∈ Ŝ,
resulting in actions ar,q which are used to obtain distributions πr : A → [0, 1] (A is
the set of all actions) with πr(a) =

∑
q : ar,q=a

w(ŝq). The robot then executes its ac-

tion at and updates its belief state using its sensor readings and the distributions πr
to average over the other robots’ actions.

The tasks are generated by an external scheduler in time intervals sampled from U [1, 10].
Each generated task is assigned to one of the robots through a sequential auction (Dias, Zlot,
Kalra, & Stentz, 2006). The robots’ bids are calculated as their total number of steps needed
to solve all of their current tasks and the auctioned task (in a simplified model in which the
other robots are removed), averaged over all states in Ŝ. The robot with the lowest bid is
assigned the task.

1166

Exploiting Causality for Selective Belief Filtering in DBNs

Figure 11: Example DBN of a smaller warehouse system consisting of only one inventory
pod (I1) and two robots (R1, R2). The DBN implements the joint action in which R1 moves
and R2 turns. Dashed circles mark passive state variables. The coloured areas represent the
state clusters C1 to C8.

6.2.2 DBN Topology and Clustering

Figure 11 shows an example DBN for a smaller warehouse with one inventory pod and two
robots. Each inventory pod I is represented by two variables, I.x and I.y, which correspond
to the x and y position of the inventory pod. Each robot R is represented by four variables:
R.x/R.y for its x/y position, R.d for its direction, and R.s for its status. The status of a
robot R is either R.s=0 (unloaded) or R.s=I (loaded with inventory pod I). Constants such
as the size of the warehouse and the positions of the workstations are omitted in the DBN.

There are four types of clusters: The I-clusters (C1–C4) preserve the correlation that if
R is loaded with I, then I must always have the same position as R (there are two I-clusters
for each (I,R) pair); The R-clusters (C5) and S-clusters (C6), respectively, preserve the
correlation that no two robots can have the same position or carry the same inventory pod
(there is one R/S-cluster for each (Ra,Rb) pair with a > b); And, finally, the D-clusters (C7,
C8). PSBF uses singleton observation clusters (i.e. one cluster for each observation variable).

There are some differences between the DBNs for the centralised and decentralised modes
(Figure 11 uses the centralised mode). In the centralised mode, there is one DBN for each
action combination of the robots. Since the controller observes all R.s noise-free, it can add
edges from R.x/R.y to I.x/I.y if R.s=I or remove them otherwise to simplify the inference
(thus, in Figure 11, R1 is loaded with I1 and R2 is unloaded). In the decentralised mode,
each robot only observes its own sensor readings, hence it can add or remove edges only for
itself, while edges for all other robots must be permanently added. This also means that the
other robots’ status variables (R.s) must be linked to all I.x/I.y and, therefore, included in
the I-clusters (to preserve the correlation that I must have the same position as R if R is
loaded with I). Moreover, since each robot only knows its own action, there is one DBN for

1167

Albrecht & Ramamoorthy

BK PSBF PF

60
80

100
120
140
160
180

Se
co

nd
s

pe
r t

ra
ns

iti
on

Centralised
Decentralised

Figure 12: Results of the warehouse simulation, using the centralised and decentralised
control modes. Timing measured on a UNIX dual-core machine with 2.4 GHz and averaged
over 20 different simulations with 100 transitions each.

each of its own actions, and all variables associated with the other robots are active (the
distributions πr defined in the previous section are used to average over their actions).

6.2.3 Results

We implemented PSBF, BK, and PF in C#, using the framework Infer.NET (Minka, Winn,
Guiver, & Knowles, 2012) to implement BK. This allowed BK to exploit sparsity in the
process and offered improved memory handling. PSBF was optimised for sparsity in (6) and
(8), respectively, by summing over states s̄ for which all btk′ / b̂t+1

k′ are positive. PF naturally
benefits from sparsity as it allows it to concentrate the samples on fewer states. The number
of samples used in PF was set in such a way that the controller decisions were invariant of
the random numbers used in the sampling process of PF. This was done to ensure that the
results were repeatable. Finally, to maintain sparsity in the process, each probability in the
belief states lower than 0.01 was set to 0. All tested algorithms were initialised with an exact
belief state, shown in Figure 10b.

Figure 12 shows the time per transition averaged over 20 different simulations with 100
transitions each. The timing reported for PSBF includes the time needed to modify variable
distributions (for overlapping clusters) and to detect skippable belief factors for the transition
and observation steps, both of which were done once on demand for every previously unseen
DBN. In the centralised mode, PSBF was able to outperform BK on average by 49% and
PF by 36%. PF needed 20,000 samples to produce consistent (i.e. repeatable) results. In
the decentralised mode, PSBF outperformed BK on average by 17% and PF by 32%. PF
now needed 45,000 samples to produce consistent results, due to the increased variance in
the process. All differences were statistically significant, based on paired t-tests with a 5%
significance level. Note that PSBF and BK were slower in the decentralised mode since the
corresponding DBNs had much higher inter-connectivity. In addition, PSBF updated more
belief factors since there were more active variables.

As expected, PSBF was able to exploit the high degree of passivity in the process to
accelerate the filtering task. In many cases, this meant that PSBF needed to update less than
half of the belief factors. Precisely how many belief factors had to be updated depends on the

1168

Exploiting Causality for Selective Belief Filtering in DBNs

performed action. To illustrate this, consider the smaller warehouse DBN shown in Figure 11
(for the centralised mode), in which R1 is moving and R2 is turning. Here, R1.x, R1.y, and
R2.d are active variables while all other variables are passive (dashed circles), corresponding
to a passivity of 70%. In this DBN, PSBF updates the belief factors corresponding to clusters
C1, C2, C5, and C8, since they each contain active variables, and it also updates the belief
factors for C3 and C4, since there are directed paths from active variables (R1.x and R1.y)
to each of them. Therefore, the only factors which are not updated are for C6 and C7. Now
consider the full warehouse in our experiment, which contains 16 inventory pods and 4 robots,
resulting in 48 variables with 128 I-clusters, 6 R-clusters, 6 S-clusters, and 4 D-clusters.
Assume a similar situation in which one robot moves with an inventory pod, say R4 with I1,
while the R1–3 turn. In this case, PSBF updates only 3 of 6 R-clusters (those containing
R4), 0 of 6 S-clusters (since no status change), 3 of 4 D-clusters (for R1–3), and 38 of 128
I-clusters (32 I-clusters containing R4 plus 6 I-clusters from R1–3 for I1), amounting to a
total saving of 69.44% of belief factors which do not need to be updated.

The number of states in the warehouse system (including invalid states) exceeded 1045

states. Therefore, we were unable to compare the accuracy of the tested algorithms in terms
of relative entropy. Instead, we compared their accuracy based on the results of the task
auctions and the number of completed tasks by the end of each simulation. This gives a
good indication of the algorithms’ accuracy, since both the outcome of the auction and the
number of completed tasks depend on the accuracy of the belief states. In the centralised
mode, the algorithms generated over 95% identical task auctions and completed 15.7 (BK),
15.5 (PSBF), and 15.2 (PF) tasks on average. In the decentralised mode, they generated
over 93% identical auctions and completed 12.1 (BK), 12.2 (PSBF), and 11.7 (PF) tasks on
average. In both modes, none of these differences were statistically significant. Therefore,
this indicates that PSBF achieved an accuracy similar to that of BK and PF.

6.3 Summary of Experimental Evaluation

The experimental results show that PSBF produces belief states with competitive accuracy:
In the synthetic processes, PSBF achieved an accuracy which on average was better or
comparable to the accuracy of the alternative methods. In the warehouse system, PSBF
was able to complete a statistically equivalent number of tasks as compared to the other
methods, which indicates that its accuracy was equivalent or comparable.

Furthermore, the experimental results show that PSBF performed the belief updates
significantly faster than the alternative methods: In the synthetic processes, PSBF using no
parallel processes outperformed BK by up to 64% in the largest process (XL), while PF took
too much time to achieve an accuracy comparable to PSBF. In particular, the results show
that the computational gains can grow significantly with both the degree of passivity and the
size of the process. In the warehouse system, PSBF outperformed the alternative methods by
up to 49%, which is a substantial saving considering the size of the state space (more than
1045 states). Furthermore, the computational gains where much higher in the centralised
control mode than in the decentralised control mode, since the latter had a significantly
lower degree of passivity. Therefore, this again shows that high degrees of passivity can bear
great potential for the filtering task.

1169

Albrecht & Ramamoorthy

7. No Free Lunch for PSBF

Our view is that no belief filtering method is generally suited for all types of processes.
Instead, each method assumes a certain structure in the process (explicitly or implicitly)
which it attempts to exploit in order to render the filtering task more tractable. Typically, the
methods are tailored in such a way with respect to this structure that they perform well if the
structure is present in the process, but suffer a significant loss in performance if the structure
is absent. For instance, PF works best in processes with low degrees of uncertainty, since
this means that fewer state samples are needed for acceptable approximations. On the other
hand, the number of samples needed for acceptable approximations can grow substantially
with the degree of uncertainty in the process (as shown in our experiments). As another
example, BK works best in processes with little correlation between state variables, since
this means that the belief factors will be small and can be processed efficiently. However, if
there are many variables which are strongly correlated, then BK typically becomes infeasible.
Therefore, these structural assumptions have to be taken into account when choosing a
filtering method for a specific process.

A formal account of this view is given by the “No Free Lunch” theorems (Wolpert
& Macready, 1997, 1995) which state that, intuitively speaking, any two algorithms have
equivalent performance when averaged over all possible instances of the problem. In other
words, if there are classes of problem instances for which algorithm A has better performance
than algorithm B, then there must be other classes of problem instances for which A has
worse performance than B. Then, the question is: for what class of problem instances (that
is, processes) can PSBF be expected to achieve good performance? This class is essentially
described by the following three criteria:

Degree of passivity — PSBF attempts to accelerate the filtering task by omitting the
transition step for as many belief factors as possible. This depends on the passivity of
the variables in the state clusters. In the ideal case, the process exhibits a high degree
of passivity such that PSBF can omit the transition step for many belief factors. In
the worst case, the process has no passive variables at all, and PSBF has to update all
belief factors in the transition step. However, as discussed in Section 5.5, a high degree
of passivity is not necessarily sufficient to infer that many clusters can be skipped
in the transition step, since the passive variables could be distributed in such a way
that no cluster can be skipped (e.g. if the passive variables are distributed uniformly
amongst the state clusters). Therefore, in an optimal case, the passivity is concentrated
on correlated state variables such that passive variables end up in the same clusters.

Size of state clusters — The space and time complexity of the belief state representation
in PSBF is exponential in the size of the largest state cluster (cf. Section 5.5). Therefore,
in the ideal case, the relevant variable correlations can be captured in small state
clusters and the cost of storing the belief factors and performing the update procedures
is small. In the worst case, large state clusters are required to retain the variable
correlations and the cost of storing and updating belief factors is large. Another reason
why the state clusters should be small is because of the way in which PSBF performs
the transition step. One pre-requisite for omitting the transition step for a belief factor
is that all variables in the corresponding cluster are passive. If there are many variables

1170

Exploiting Causality for Selective Belief Filtering in DBNs

in one cluster, then it is less likely that all variables in the cluster are passive, and,
therefore, it is less likely that the cluster can be skipped.

Structure of observations — A third criterion, though arguably less important than the
other criteria, is the structure of the observations (i.e. the way in which the observation
variables depend on the state variables) and the size of the observation clusters (Ĉl).
PSBF attempts to accelerate the observation step by skipping over all those state
clusters whose variables are structurally independent of the observation, and, if a
cluster cannot be skipped, by incorporating only those observation clusters which are
relevant to the update. Therefore, in the ideal case, only a fraction of the state clusters
depend on the observation, and the relevant correlations between observation variables
can be captured in small observation clusters. In the worst case, all state clusters
depend on the observation in some sense, and the structure of the observation does
not allow for an efficient clustering.

Thus, in summary, PSBF is most suitable for processes with high degrees of passivity and
in which the relevant variable correlations can be captured in small state and observation
clusters. On the other hand, PSBF may not be suitable if there is no or only low degrees
of passivity, and if large state and observation clusters are necessary to retain the relevant
variable correlations in the process.

In addition to identifying the class of processes for which a filtering method is suitable, it
is also important to justify the practical relevance of this class. In this work, we are interested
in robotic and other physical decision processes (as shown by our examples and experiments).
Such systems typically exhibit a number of features: First of all, robotic systems usually
have some causal structure (e.g. Mainzer, 2010; Pearl, 2000). Passivity, as a specific type of
causality, can be observed in many robotic systems, including the robot arm used in our
examples and the multi-robot warehouse system in Section 6.2. Furthermore, robotic systems
most typically have a modular structure, in which each module is responsible for a specific
subtask and may interact with other modules. This modular structure often allows for an
efficient clustering, in the sense that each module corresponds to a cluster of correlated state
variables. Finally, the sensors used in robotic systems typically only provide information
about certain aspects of the system, and some components of the system may not benefit
from some of the sensor information. In other words, there are independencies between state
and observation variables. These features correspond to the criteria (above) which specify
the class of processes for which PSBF is a suitable filtering method. Therefore, we believe
that this class is practically justified.

8. Conclusion

Inferring the state of a stochastic process can be a difficult technical challenge in complex
systems with large state spaces. The key to developing efficient solutions is to identify special
structure in the process, e.g. in the topology and parameterisation of dynamic Bayesian
networks, which can be leveraged to render the filtering task more tractable.

To this end, the present article explored the idea of automatically detecting and exploiting
causal structure in order to accelerate the belief filtering task. We considered a specific type of
causal relation, termed passivity, which pertains to how state variables cause changes in other

1171

Albrecht & Ramamoorthy

state variables. To demonstrate the potential of exploiting passivity, we developed a novel
filtering method, PSBF, which uses a factored belief state representation and exploits passivity
to perform selective updates over the belief factors. PSBF produces exact belief states under
certain assumptions and approximate belief states otherwise. We showed empirically, in
synthetic processes with varying sizes and degrees of passivity as well as in an example of a
complex multi-robot system, that PSBF can be faster than several alternative methods while
achieving competitive accuracy. In particular, our results showed that the computational
gains can grow significantly with the size of the process and the degree of passivity.

Our work demonstrates that if a system exhibits much causal structure, then there can
be great potential in exploiting this structure to render the filtering task more tractable. In
particular, our experiments support our initial hypothesis that factored beliefs and passivity
can be a useful combination in large processes. This insight is relevant for complex processes
with high degrees of causality, such as robots used in homes, offices, and industrial factories,
where the filtering task may constitute a major impediment due to the often very large state
space of the system.

There are several potential directions for future work. For example, it would be useful
to know if the definition of passivity could be relaxed such that more variables fall under
this definition, and such that the principal idea behind PSBF is still applicable. One such
relaxation could be in the form of approximate passivity, which allows for small probabilities
that passive variables change values even if the relevant parents remain unchanged. In
addition, it would be interesting to know if the idea of performing selective updates over
belief factors (via passivity) could also be applied to other existing methods that use a
factored belief state representation (cf. Section 2.1). Finally, another useful avenue for future
work would be to formulate additional types of causal relations which can be exploited in
ways similar to how PSBF exploits passivity, or perhaps in ways other than that.

Acknowledgements

This article is the result of a long debate on the presented topic, and in the process benefited
from a number of discussions and suggestions. In particular, the authors wish to thank
anonymous reviewers from the NIPS’12 and UAI’13 conferences as well as the Journal of AI
Research; attendees of the workshop on “Advances in Causal Inference” held at UAI’15; and
our colleagues in the School of Informatics at The University of Edinburgh. Furthermore, the
authors acknowledge the financial support of the German National Academic Foundation,
the UK Engineering and Physical Sciences Research Council (grant number EP/H012338/1),
and the European Commission (TOMSY Grant Agreement 270436).

1172

Exploiting Causality for Selective Belief Filtering in DBNs

Appendix A. Proof of Theorem 1

To prove Theorem 1, it will be useful to first establish the following lemma:

Lemma 1. If (A1) holds and all xt+1
i ∈ Ck are passive in ∆a, then

∀s, s′ : T ak (s, s′k) = 1⇔ sk = s′k.

Proof.

⇒: The fact of (A1) means that Φa,i ⊆ Ck for all xt+1
i ∈ Ck. Since all xt+1

i ∈ Ck are
passive in ∆a, it follows that all xtj ∈ Φa,i are passive in ∆a, for all Φa,i. Therefore, given
T ak (s, s′k) = 1 and clause (ii) in Definition 3, it follows that sk = s′k.

⇐: Follows directly by (A1) and the fact that all xt+1
i ∈ Ck are passive in ∆a.

Using Lemma 1, we can give a compact proof of Theorem 1:

Theorem 2. If (A1) and (A2) hold, and if all xt+1
i ∈ Ck are passive in ∆at , then

∀s : b̂t+1
k (sk) = btk(sk).

Proof.

b̂t+1
k (s′k) = η1

∑
s̄∈S(pat

at
(Ck))

T a
t

k (s̄, s′k)
∏
k′:[∃xt+1

i ∈Ck′ :xti∈ patat (Ck)]

btk′(s̄k′)

Lem1
= η1

∑
s̄∈S(pat

at
(Ck)):s̄k=s′k

T a
t

k (s̄, s′k)
∏
k′:[∃xt+1

i ∈Ck′ :xti∈ patat (Ck)]

btk′(s̄k′)

= η1 b
t
k(sk)

∑
s̄∈S(pat

at
(Ck)):s̄k=s′k

T a
t

k (s̄, s′k)
∏
k′ 6= k:[∃xt+1

i ∈Ck′ :xti∈ patat (Ck)]

btk′(s̄k′)

︸ ︷︷ ︸
(A1)
= 1

= η1 b
t
k(sk)

= btk(sk). (η1 = 1 since btk normalised)

1173

Albrecht & Ramamoorthy

Appendix B. Proof of Theorem 2

To prove Theorem 2, we first note the following proposition:

Proposition 1. If all xt+1
i ∈ Ck are marginally independent of all yt+1

j ∈ Y t+1 in ∆at , then

∀s, s′ :
(
∧k′ 6=k sk′ = s′k′

)
→ Ωa(s, ot) = Ωa(s′, ot).

This proposition follows directly by definition.

Using Proposition 1, we can give a compact proof of Theorem 2:

Theorem 2. If all xt+1
i ∈ Ck are marginally independent of all yt+1

j ∈ Y t+1 in ∆at , then

∀s : bt+1
k (sk) = b̂t+1

k (sk).

Proof.

bt+1
k (s′k) = η2 b̂

t+1
k (s′k)

∑
s̄∈S(pat+1

at
(Y t+1)) : s̄k = s′k

Ωat(s̄, ot+1)
∏
k′ 6= k :Ck′∩ pa

t+1

at
(Y t+1) 6= ∅

b̂t+1
k′ (s̄k′)

︸ ︷︷ ︸
Prop1

= constant α, independent of s′k

=
b̂t+1
k (s′k)α∑
s′′k
b̂t+1
k (s′′k)α

=
b̂t+1
k (s′k)∑
s′′k
b̂t+1
k (s′′k)

= b̂t+1
k (s′k).

1174

Exploiting Causality for Selective Belief Filtering in DBNs

Appendix C. Mixture of Gaussians

Algorithm 4 provides a simple procedure that randomly generates a mixture of Gaussians
(i.e. a set of normal distributions) for the synthetic processes in Section 6.1. The algorithm
takes as input the number n of state variables and returns a set G of Gaussians whose means
are in the set {1, ..., n}. The number of Gaussians, their means, and their variances are
chosen automatically so as to achieve good “coverage” of state variables while minimising
the (visual) overlap of Gaussians. See Figure 7 for an example.

Algorithm 4 MixtureOfGaussians(n)

1: Input: number of state variables n

2: Parameters: λ← 4, σmin ← 5
λ , σmax ← n

10

3: Output: mixture of Gaussians G

4: G← ∅

5: R← {(1, ..., n)}

6: while R 6= ∅ do

7: R← next element of R

8: R← R \ {R}

9: µ← R(drand ∗ |R|e) // rand returns random number from (0, 1)

10: β ← λ−1 min[µ−R(1), R(|R|)− µ]

11: σ ← min[σmax, max[σmin, rand ∗ β]]

12: G← G ∪
{

(µ, σ2)
}

// mean and variance of Gaussian

13: R− ← (R(1), R(2), ..., R(p)) such that R(p) < µ− σλ

14: R+ ← (R(q), R(q + 1), ..., R(|R|)) such that R(q) > µ+ σλ

15: if R− 6= ∅ then

16: R← R ∪ {R−}

17: if R+ 6= ∅ then

18: R← R ∪ {R+}

19: return G

1175

Albrecht & Ramamoorthy

References

Astrom, K. (1965). Optimal control of Markov processes with incomplete state information.
Journal of Mathematical Analysis and Applications, 10, 174–205.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research, 11 (1),
1–94.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific indepen-
dence in Bayesian networks. In Proceedings of the 12th Conference on Uncertainty in
Artificial Intelligence, pp. 115–123.

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. In
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 33–42.

Boyen, X., & Koller, D. (1999). Exploiting the architecture of dynamic systems. In Proceedings
of the 16th National Conference on Artificial Intelligence, pp. 313–320.

Brafman, R. (1997). A heuristic variable grid solution method for POMDPs. In Proceedings
of the 14th National Conference on Artificial Intelligence, pp. 727–733.

D’Andrea, R., & Wurman, P. (2008). Future challenges of coordinating hundreds of au-
tonomous vehicles in distribution facilities. In Proceedings of the IEEE International
Conference on Technologies for Practical Robot Applications, pp. 80–83.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation.
Computational Intelligence, 5, 142–150.

Dias, M., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: a
survey and analysis. Proceedings of the IEEE, 94 (7), 1257–1270.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice.
Springer Science & Business Media.

Doucet, A., De Freitas, N., Murphy, K., & Russell, S. (2000). Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, pp. 176–183.

Geiger, D., Verma, T., & Pearl, J. (1989). d-separation: from theorems to algorithms. In
Proceedings of the 5th Conference on Uncertainty in Artificial Intelligence, pp. 139–
148.

Gordon, N., Salmond, D., & Smith, A. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing), Vol.
140, pp. 107–113.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination
of minimum cost paths. In IEEE Transactions on Systems Science and Cybernetics,
Vol. 4, pp. 100–107.

Hauskrecht, M. (2000). Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research, 13, 33–94.

1176

Exploiting Causality for Selective Belief Filtering in DBNs

Heckerman, D. (1993). Causal independence for knowledge acquisition and inference. In
Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, pp. 122–
127.

Heckerman, D., & Breese, J. (1994). A new look at causal independence. In Proceedings of
the 10th Conference on Uncertainty in Artificial Intelligence, pp. 286–292.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101 (1), 99–134.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
The MIT Press.

Kullback, S., & Leibler, R. (1951). On information and sufficiency. The Annals of Mathe-
matical Statistics, 22 (1), 79–86.

Lauritzen, S., & Spiegelhalter, D. (1988). Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical
Society. Series B (Methodological), 50 (2), 157–224.

Lovejoy, W. (1991). Computationally feasible bounds for partially observed Markov decision
processes. Operations Research, 39, 162–175.

Mainzer, K. (2010). Causality in natural, technical, and social systems. European Review,
18, 433–454.

Minka, T., Winn, J., Guiver, J., & Knowles, D. (2012). Infer.NET 2.5.. Microsoft Research
Cambridge. http://research.microsoft.com/infernet.

Murphy, K. (2001). The Bayes net toolbox for Matlab. Computing Science and Statistics,
33 (2), 1024–1034. https://code.google.com/p/bnt/.

Murphy, K., & Weiss, Y. (2001). The factored frontier algorithm for approximate inference in
DBNs. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence,
pp. 378–385.

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning.
Ph.D. thesis, University of California, Berkeley.

Ng, B., Peshkin, L., & Pfeffer, A. (2002). Factored particles for scalable monitoring. In
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, pp. 370–
377.

Pasula, H., Zettlemoyer, L., & Kaelbling, L. (2007). Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research, 29, 309–352.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.

Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based value iteration: an anytime algorithm
for POMDPs. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence, Vol. 18, pp. 1025–1032.

Poole, D., & Zhang, N. (2003). Exploiting contextual independence in probabilistic inference.
Journal of Artificial Intelligence Research, 18, 263–313.

1177

Albrecht & Ramamoorthy

Poupart, P., & Boutilier, C. (2000). Value-directed belief state approximation for POMDPs.
In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp.
497–506.

Poupart, P., & Boutilier, C. (2001). Vector-space analysis of belief-state approximation
for POMDPs. In Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence, pp. 445–452.

Poupart, P., & Boutilier, C. (2002). Value-directed compression of POMDPs. In Advances
in Neural Information Processing Systems, pp. 1547–1554.

Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate POMDP solutions through
belief compression. Journal of Artificial Intelligence Research, 23, 1–40.

Smith, T., & Simmons, R. (2005). Point-based POMDP algorithms: improved analysis and
implementation. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence, pp. 542–549.

Sondik, E. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D.
thesis, Stanford University.

Srinivas, S. (1993). A generalization of noisy-or model. In Proceedings of the 9th Conference
on Uncertainty in Artificial Intelligence, pp. 208–215.

Washington, R. (1997). BI-POMDP: bounded, incremental partially-observable Markov-
model planning. In Recent Advances in AI Planning, pp. 440–451. Springer.

Wolpert, D., & Macready, W. (1995). No free lunch theorems for search. Tech. rep. SFI-TR-
95-02-010, Santa Fe Institute.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1 (1), 67–82.

Wurman, P., D’Andrea, R., & Mountz, M. (2008). Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Magazine, 29 (1), 9.

Zhang, N., & Poole, D. (1996). Exploiting causal independence in Bayesian network inference.
Journal of Artificial Intelligence Research, 5, 301–328.

Zhou, R., & Hansen, E. (2001). An improved grid-based approximation algorithm for
POMDPs. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence, pp. 707–716.

1178

