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Abstract

Motivated by a real-world problem, we study a novel budgeted optimization problem
where the goal is to optimize an unknown function f(·) given a budget by requesting a
sequence of samples from the function. In our setting, however, evaluating the function
at precisely specified points is not practically possible due to prohibitive costs. Instead,
we can only request constrained experiments. A constrained experiment, denoted by Q,
specifies a subset of the input space for the experimenter to sample the function from. The
outcome of Q includes a sampled experiment x, and its function output f(x). Importantly,
as the constraints of Q become looser, the cost of fulfilling the request decreases, but the
uncertainty about the location x increases. Our goal is to manage this trade-off by selecting
a set of constrained experiments that best optimize f(·) within the budget. We study this
problem in two different settings, the non-sequential (or batch) setting where a set of
constrained experiments is selected at once, and the sequential setting where experiments
are selected one at a time. We evaluate our proposed methods for both settings using
synthetic and real functions. The experimental results demonstrate the efficacy of the
proposed methods.

1. Introduction

This work is motivated by the experimental design problem of optimizing the power output
of nano-enhanced microbial fuel cells. Microbial fuel cells (MFCs) (Bond & Lovley, 2003;
Fan, Hu, & Liu, 2007; Park & ZeikusG, 2003; Reguera, McCarthy, Mehta, Nicoll, Tuominen,
& Lovley, 2005) use micro-organisms to break down organic matter and generate electricity.
For a particular MFC design, it is critical to optimize the biological energetics and the
microbial/electrode interface of the system, which research has shown to depend strongly
on the surface properties of the anodes (Park & ZeikusG, 2003; Reguera et al., 2005). This
motivates the design of nano-enhanced anodes, where nano-structures (e.g., carbon nano-
wire) are grown on the anode surface to improve the MFC’s power output. Unfortunately,
there is little understanding of the interaction between various possible nano-enhancements
and MFC capabilities for different micro-organisms. Thus, optimizing the anode design for
a particular application is largely guesswork. Our goal is to develop algorithms to aid this
process.

Traditional experimental design, Bayesian optimization and response surface methods
(Myers, Montgomery, & Anderson-Cook, 1995; Jones, 2001; Brochu, Cora, & De Freitas,
2010) commonly assume that the experimental inputs can be specified precisely and attempt
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to optimize a design by requesting specific experiments. For example, requesting an anode
to be tested with nano-wire of specific length and density. However, these parameters are
unlike usual experimental control parameters (such as temperature) that can be easily set
at precise values. Manufacturing nano-structures is rather an art and it is very difficult
to achieve a precise parameter setting. Instead, it is more practical to request constrained
experiments, which place constraints on these parameters. For example, we may specify
intervals for the length and density of the nano-wire. Given such a request, nano-materials
that satisfy the given set of constraints can be produced at some cost, which will typically
increase with tighter constraints.

Note that a possible alternative to requesting constrained experiments would be to treat
the nano-structure manufacturing parameters as the experimental inputs. Such inputs can
be precisely specified, and hence standard methods can be used. However, this approach will
not yield a satisfactory solution for our problem. In particular, the mapping between the
manufacturing parameters and the produced nano-structures is extremely noisy. This makes
it difficult to find the manufacturing parameters that optimize the expected MFC power
output. Further, the scientists are primarily interested in learning what nano-structure
properties optimize the MFC power output, rather than knowing the specific manufactur-
ing parameters, which can vary significantly from lab to lab. Thus we focus on directly
optimizing in the space of nano-structure properties via constrained experiments.

Based on the above motivation, in this paper, we study the associated budgeted opti-
mization problem where, given a budget, our goal is to optimize an unknown function f(·)
by requesting a set of constrained experiments. Solving this problem requires careful con-
sideration of the trade-off between the cost and the uncertainty of a constrained experiment:
weakening the constraints will lower the cost of an experiment, but increase the uncertainty
about the location of the next observation. Prior work on experimental design, stochastic
optimization, and active learning do not directly apply to constrained experiments because
they typically assume precise experiments.

This problem can be formulated in the theoretical framework of partially observable
Markov decision processes (POMDPs), where the optimal solution corresponds to finding
an optimal POMDP policy. However, solving for optimal or even near-optimal policies is
computationally intractable, even in the case of traditional optimization problems. This
has led researchers to develop a variety of myopic policies in the context of traditional
optimization, which have been observed to achieve good performance, even in comparison to
more sophisticated, less myopic strategies (Moore & Schneider, 1995; Jones, 2001; Madani,
Lizotte, & Greiner, 2004; Brochu et al., 2010).

Our problem can be considered in two different settings, non-sequential and sequential.
In the non-sequential setting, which is also referred to as the batch setting, all constrained
experiments must be selected at once. This setting is appropriate for applications where
there are multiple experimental facilities and the experiments are too time consuming to
be run sequentially. In contrast, the sequential setting allows us to request one constrained
experiment at a time, and wait for the outputs of previous experiments before making the
next request. The sequential setting has the advantage that it allows us to use the maximum
available information for selecting each experiment, and is generally expected to outperform
the non-sequential setting when the total running time is not a concern. In this paper, we
study both settings.
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For the non-sequential setting, we introduce a non-decreasing submodular objective func-
tion to select a batch of constrained experiments within the given budget. For a given set of
constrained experiments, the objective measures its expected maximum output. We present
a computationally efficient greedy algorithm that approximately optimizes the proposed ob-
jective.

For the sequential setting, we build on a set of classic myopic policies that have been
shown to achieve good performance in traditional optimization (Moore & Schneider, 1995;
Jones, 2001; Madani et al., 2004; Brochu et al., 2010) and introduce non-trivial extensions
to make them applicable to constrained experiments.

We present experimental evaluations for both settings using synthetic functions and
functions generated from real-world experimental data. The results indicate that, in both
settings, our proposed methods outperform competing baselines.

The remainder of the paper is organized as follows. We will introduce the background
and related work in Section 2. Section 3 describes the problem setup. The non-sequential
setting is studied in Section 4. Section 5 introduces our proposed methods for selecting con-
strained experiments in the sequential setting. Section 6 presents the empirical evaluation
of the proposed methods. We conclude the paper and discuss future work in Section 7.

2. Background and Related Work

Given an unknown black box function that is costly to evaluate, we are interested in finding
the extreme point (minimizer or maximizer) of the function via a small number of function
evaluations. To solve this problem, Bayesian Optimization (BO) approaches have been
heavily studied (Jones, 2001; Brochu et al., 2010) and demonstrated significant promises.
There are two key components in the basic framework of Bayesian Optimization. The first
component is a probabilistic model of the underlying function that is built based on the prior
information (i.e., the existing observed experiments). Gaussian process (GP) regression has
been widely used in the literature of BO for this purpose (Brochu et al., 2010). For any
unobserved point, a GP models its function output as a normal random variable, with its
mean predicting the expected function output of the point and the variance capturing the
uncertainty associated with the prediction.

The second key component of BO is the selection criterion that is used to determine
what experiment to select based on the learned model. In the existing literature, various
selection criteria have been proposed and most of them are a combination of exploring
the unexplored input space of the function (i.e., areas of high variance) and exploiting the
promising area (i.e., area with large mean). A selection criterion can be either sequential
(Jones, 2001; Locatelli, 1997; Moore, Schneider, Boyan, & Lee, 1998; Srinivas, Krause,
Kakade, & Seeger, 2010) in which only one experiment is asked at each iteration or non-
sequential (Schonlau, 1997; Azimi, Fern, & Fern, 2010; Ginsbourger, Riche, & Carrarog,
2010) where a batch of experiments are requested at each iteration.

Below we review some of the most successful sequential selection criteria in the literature
of BO. One of the first sequential policies is based on selecting the sample with maximum
probability of improving (MPI) the best current observation, ymax (assuming we want to
maximize f), by a given margin α (Elder, 1992; Stuckman, 1988). Let the best current
observation be ymax. The goal of MPI is to select the next experiment that has the highest
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probability of producing an output no smaller than (1+α)ymax. One issue of this approach
is that the performance can often be sensitive to the value of the margin parameter α (Jones,
2001). For small values of α, MPI will focus on the most promising area at first and then
move onto unexplored areas. In contrast, for large values of α, MPI will primarily explore
and converge very slowly. Selecting a proper value for α can be challenging in practice.
The maximum expected improvement (MEI) (Locatelli, 1997) criterion avoids this issue and
selects the experiment that directly maximizes the expected improvement over the current
best observation. Heuristics based on upper-confidence bounds have also been explored
(Srinivas et al., 2010), which has been shown to be competitive with MEI given appropriate
parameter selection. However, selecting the best parameters for a particular application
empirically can be a challenge. An alternative approach that has received attention is
Thompson Sampling (Chapelle & Li, 2011), which is a randomized strategy for managing the
exploration-exploitation trade-off. This approach first samples the underlying uncertainty,
in our case the unknown function f , and then returns the experiment that maximizes the
sample. In this work, we have focused on extending the above deterministic methods for
BO to constrained experiments. Extending alternatives such as Thompson sampling is a
potentially interesting future direction.

Recently, researchers have begun to consider non-sequential or batch Bayesian optimiza-
tion (Azimi et al., 2010; Ginsbourger et al., 2010; Desautels, Krause, & Burdick, 2014),
which selects multiple experiments at once. Non-sequential BO is considered more appro-
priate for applications where there is a need and capability to run multiple experiments
simultaneously. One non-sequential approach (Azimi et al., 2010) selects k > 1 experiments
at once by matching the behavior of executing a given sequential policy (e.g., MEI) for k
steps. In another non-sequential approach (Ginsbourger et al., 2010), the authors tried to
select a batch of experiments that will lead to the highest expected improvement. How-
ever, it was shown that the expected improvement over a set of jointly normal random
variables does not have any closed form solution when k > 2, nor it can be solved effi-
ciently using numerical methods. Instead, simple heuristics were proposed to approximate
the expected improvement and select a batch accordingly. More recently, an algorithm
based on upper-confidence bounds has also been introduced (Desautels et al., 2014), which
is computationally cheaper than prior work but requires careful parameter selection.

Note that all of the aforementioned approaches assume that the unknown function we
aim to optimize can be sampled at precisely specified points, making them unsuitable for
tasks such as our motivating nano application, where sampling the function at exact loca-
tions is impractical. The proposed sequential approaches in this paper, have been previously
presented in less detail (Azimi et al., 2010). In this paper, we provide a more complete
and formal description of the sequential approaches with additional empirical results. In
addition, we introduce and evaluate a batch selection algorithm that chooses a batch of
constrained experiments at each iteration.

3. Problem Setup

Let X ⊆ Rd be a d-dimensional input space, where each dimension i is bounded in [Ai,
Bi]. We often refer to the elements of X as experiments. We assume there is an unknown
real-valued function f (x) : X → <, which represents the expected value of the dependent
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variable after running experiment x. In our motivating application, f(x) is the expected
power output produced by a particular nano-structure x. Conducting an experiment x
produces a noisy outcome y = f(x) + ε, where ε is a noise term.

In traditional optimization settings (Jones, 2001; Brochu et al., 2010), the goal is to find
an x ∈ X that approximately optimizes f(·) by requesting a set of experiments and observing
their outcomes. Since sampling the function at exactly specified points is prohibitively
expensive in our application, we request constrained experiments, which define a subset of
experiments in X . Specifically, we define a constrained experiment as a hyper-rectangle in
X , denoted by Q = (q1,q2, · · ·,qd), where qi = (ai, bi) with Ai ≤ ai < bi ≤ Bi defines
the range of values that is considered admissible for each input dimension i. Note that
for computational reasons, in this work we consider a discretized input space, where each
input dimension is divided into equal-sized intervals. As such, a constrained experiment Q
will indicate for each dimension i the first (specified by ai) and the last (specified by bi)
intervals to be included in the hyper-rectangle. For the remainder of this paper, we will
interchangeably use the terms constrained experiment, hyper-rectangle and query.

Given a constrained experiment Q, the experimenter will first construct an experiment
x (we assume that x can be precisely measured after being produced) that satisfies the
given constraints of Q, run the experiment, and return the noisy observation of f(x). Note
that x is a random variable given Q, and we assume this conditional distribution, px(x|Q),
is known a priori as part of the problem inputs. More precisely, for any query Q, the
experimenter will return a 2-tuple (x, y), where:

• x = (x1, x2, · · ·, xd) is an experiment that satisfies the constraints of Q,

• y is the noisy observation of the function f(·) at x, y = f(x) + ε.

In practice, the cost c of fulfilling a constrained experiment can be variable depend-
ing on the size of the hyper-rectangle. In particular, higher cost will be associated with
tighter constraints or smaller hyper-rectangles. We assume that this cost is modeled by a
deterministic function fc(·), which is provided to us as part of the inputs. For example, in
our motivating application, fc(·) is dominated by the time required to produce the nano
material that satisfies the given constraints, which is inversely correlated with the size of
the constraints. In addition, we must operate within a total budget B. Thus, the objective
is to find a set of queries within budget B that leads to the best estimate of the maximizer
of the function over the input space X .

To summarize, the inputs to our problem include a set of prior experiments D (which
could potentially be empty), a budget B, a deterministic cost function fc(·) of fulfilling a
constrained experiment Q, and a conditional probability density function px(x|Q) of the
specific experiment x generated for any given constrained experiment Q.

Given the inputs, our task is to select a set of constrained experiments Q = {Q1,Q2, · ·
·,Qk} whose total cost is within budget B. Running the selected constrained experiments
will result in a set of k tuples (xi, yi)

k
i=1, with which we must determine a final output

x∗ ∈ {x1, . . . ,xk}, which is our prediction of the maximizer of f(·) among all observed
experiments. Note that we restrict ourselves to returning an experiment that was actually
observed, even in cases where we might predict some other non-observed experiment to be
better. This formulation matches the objective of our motivating application to produce a
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good nano-structure x∗ using the given budget, rather than to make a prediction of what
nano-structure might be good.

We study this problem in two different settings, non-sequential (or batch) and sequential.
In the non-sequential setting, we must decide the entire set of queries at the same time.
In contrast, the sequential setting requests constrained experiments sequentially one at a
time: only after receiving the result of the previous request, another query is selected and
presented to the experimenter. This procedure is repeated until we reach the budget limit.
In the following two sections, we will introduce our proposed solutions for both settings.

4. Non-sequential Approach

In this section, we consider the non-sequential setting, in which we must select the entire
batch of queries Q within the given budget B at once. Note that in general these batches
can be multi-sets that have repeated queries, which may be desirable in noisy settings. This
is also called the non-adaptive (Goel et al., 2006; Krause et al., 2008) or Batch (Azimi et al.,
2010) setting. This setting is commonly used in applications where we must start multiple
experiments at once and cannot wait for the outputs of the previous queries to decide the
next queries (Tatbul et al., 2003).

4.1 The Objective Function

Let QB be the set of feasible solutions such that for any Q ∈ QB the total cost of Q
is no greater than the budget B. Our goal is to find the optimal multi-set of queries
Q∗ = {Q∗1,Q∗2, · · ·,Q∗k} ∈ QB. To define what we mean by optimal, let us consider the
outcome of the queries, which are a set of tuples: (xi, yi) , i = 1, 2, . . . , k. The xi’s are the
experiments produced by the experimenter given the queries and the yi’s represent their
experimental output (i.e., the noisy observation of f(xi)). We will then select a final output
x∗ ∈ {x1, . . . ,xk} that is believed to achieve the maximal f(·) value. As such, for any
Q ∈ QB, we can measure how good Q is based on the maximal y value resulting from this
set of queries. Specifically, this is captured by:

J(Q) = E(x1,···,x|Q|)

[
E(y1,···,y|Q|)

[
max

{
y1, . . . , y|Q|

} ∣∣∣D, (x1, · · ·,x|Q|)
]]
, (1)

where the first expectation is taken over all possible values of the xi’s, which represent the
individual experiments created for each query in Q, and the second expectation is taken
over all possible yi’s, which represents the experimental outcomes of the xi’s. As mentioned
previously, the xi’s are distributed according to px(xi|Qi), which is part of the inputs. The
distribution of yi’s given the xi’s depends on the posterior distribution of f(·) given D. In
our work, we use Gaussian processes to model the distribution of f(·). Consequently, the
set of yi’s are jointly normal conditioned on all xi’s and D.

Since our input space is discretized, we can enumerate all possible constrained experi-
ments and denote them as QM = {Q1,Q2, ...,QM}, where M is the total number of possible
constrained experiments, and let c1, . . . , cM be their corresponding cost (i.e., ci = fc(Qi)).
Let S ⊆ S = {1, ...,M} be a subset of indices and QS denote the collection of queries
indexed by S, i.e., QS = {Qi : i ∈ S}. Our goal can then be stated as selecting an S such
that the corresponding QS maximizes the objective (Equation 1) subject to the constraint
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∑
i∈S ci ≤ B. Unfortunately, optimizing this objective is intractable due to the combina-

torial nature of the problem and exponentially many possible solutions to consider. Below
we will reformulate the objective to demonstrate that it is a non-decreasing submodular set
function and introduce an algorithm with an approximation guarantee.

Specifically, we will consider a slightly different but equivalent view of the querying
process. So far our view is that after S is chosen, each query Q ∈ QS will result in
an experiment x, which can be viewed as a random sample drawn from the distribution
px(x|Q) (note that in this work px is uniform within the hyper-rectangle defined by the
query). From the process point of view, it clearly does not matter whether this random
draw happens after Q is chosen, or at the very beginning of the whole process before Q is
chosen. Following this reasoning, we could assume that for every possible query in QM , a
random experiment is drawn at the very beginning of the process and the results are stored
and used later when S is selected. Let XM = {x1, . . . ,xM} denote the random variables
representing the outcome of the random draw for Q1, ...,QM respectively. The objective
can be then reformulated as:

J(S) = EXS

[
E(y1,...,y|S|)

[
max

{
y1, . . . , y|S|

} ∣∣∣D,XS]] , (2)

where XS = {xi : i ∈ S} is the subset of XM defined by S, and the yi’s are the noisy
outcomes of the xi’s in XS .

4.2 Approximation Algorithm

Since standard batch Bayesian Optimization is a special case of optimizing J(S), the hard-
ness of optimizing J(S) follows from NP-hardness of Bayesian Optimization. Thus, below
we will show that J(S) is a non-decreasing submodular set function and present an algo-
rithm with a bounded approximation factor.

Definition 1. Suppose S is a finite set, g : 2S → R+ is a submodular set function if for all
S1 ⊆ S2 ⊂ S and x ∈ S \ S2, it holds that g(S1 ∪ {x})− g(S1) ≥ g(S2 ∪ {x})− g(S2).

Thus, a set function is submodular if adding an element to a smaller set provides no
less improvement than adding the element to a larger superset. Also, a set function is
non-decreasing if for any set S and element x we have g(S) ≤ g(S ∪ {x}).

To show that J(S) is submodular, we will rewrite the objective function by defining
JXM

(S) to be the inner expectation of Equation 2 for a fixed realization of random variable
XM :

JXM
(S) = E(y1,...,y|S|)

[
max

{
y1, . . . , y|S|

} ∣∣∣D,XS] .
Lemma 1. For any given XM , JXM

(S), which returns the expected maximum over a set
of jointly distributed random variables, is a monotonically non-decreasing submodular set
function.

The proof is in the Appendix.
The proposed objective function, J(S) = EXM

[JXM
(S)] takes the expectation of JXM

(S)
over all possible values of XM . Because JXM

(S) is non-decreasing, it is easy to verify
that J(S) is also non-decreasing. Further note that the set of submodular functions is
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closed under expectation, we can thus conclude that the proposed objective, J(S), is a
non-decreasing submodular function.

We now present our proposed algorithm for optimizing J(S). The inputs to our algo-
rithm include the set of all possible constrained experiments, QM = {Q1, ...,QM}, their as-
sociated costs c1, ..., cM , and a total budget B, and the output is a subset S ⊆ S = {1, ...,M}
such that

∑
i∈S ci ≤ B. We first introduce a simple greedy algorithm, which begins with

an initial empty set S = ∅ and greedily adds one constrained experiment (its index) at a
time until the total cost of S reaches B. In each step, let S be the current set and C be the
total cost of S, the greedy algorithm selects an index i∗ ∈ S such that:

i∗ = argmax
i/∈S;ci≤B−C

J(S ∪ i)− J(S)

ci
. (3)

In other words, at each step, the algorithm greedily selects a new constrained experiment
that is within the budget and leads to the largest cost-normalized improvement of the
objective.

It is known that this simple greedy algorithm does not have any bounded approximation
factor (Khuller, Moss, & Naor, 1999). Previous work (Khuller et al., 1999; Krause &
Guestrin, 2005) introduced a small change to the greedy algorithm that provides us with a
bounded approximation factor. In particular, one just needs to consider, as an alternative to
the output of the greedy algorithm, the single query that is within the budget and achieves
the best objective value (denoted by Sa). By comparing this alternative with the output
of the greedy algorithm, we are guaranteed to achieve a bounded approximation factor.
The complete algorithm is summarized in Algorithm 1. The approximation bound for this
algorithm follows from the following theorem.

Theorem 1. (Khuller et al., 1999) Let J(·) be a monotonically non-decreasing submodular
set function such that J(∅) = 0, and S∗ is the output of our Algorithm 1. Suppose OPT is
the optimal solution, the following bound is guaranteed

J(S∗) ≥ 1

2

[
1−

(
1− 1

|S∗|+ 1

)|S∗|+1
]
J(OPT)

≥ 1

2

(
e− 1

e

)
J(OPT).

(4)

The dominating factor of the run time is the linear dependence on M , the number of
possible queries. Note that in the discretized setting that we consider, M will be exponential
in the number of dimensions. In the scientific application domains that motivate our work,
the number of dimensions is typically small (e.g., 2 or 3). However, when working with
a fine resolution discretization, the computation time can still be significant. To address
this issue, in the next section we describe a simple strategy for soundly pruning candidate
queries from consideration, which yields significant speedups. Problems with significantly
higher dimensions, however, will require continuous rather than discretized optimization.
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Algorithm 1 The Greedy Non-Sequential Algorithm

Input: D, B > 0, {Q1, ...,QM}, {c1, ..., cM}
Output: A set of indices S ⊆ S = {1, ...,M} such that

∑
i∈S ci ≤ B

- i∗ = argmaxi∈S,ci≤B J({i})
Sa ← {i∗}
- S ← ∅, C ← 0
while (C < B) do

Select i∗ such that: i∗ = argmax
i/∈S,ci≤B−C

J(S ∪ {i})− J(S)

ci
- C ← C + ci∗

- S ← S ∪ {i∗}
end while
if J(S) ≥ J(Sa) then

- return S
else

- return Sa
end if

Algorithm 2 Accelerated Greedy Algorithm

Input: D, B > 0, {Q1, ...,QM}, {c1, ..., cM}
Output: A set of indices S ⊆ S = {1, ...,M}, s.t.,

∑
s∈S ci ≤ B

- i∗ = argmaxi∈S,ci≤B J({i})
- Sa ← {i∗}
-S ← ∅, C = 0, δ(i) = J({i})/ci, for i = 1, . . . ,M
while (C < B) do

while true do
Set z = argmaxi:i∈S\S δ(i), ci ≤ B − C, then re-calculate δ(z) such that

δ(z) =
J(S ∪ {z})− J(S)

cz

if δ(z) ≥ maxi∈S\{S∪z} δ(i) then
Break

end if
end while
- C ← C + cz, S ← S ∪ {z}

end while

if J(S) ≥ J(Sa) then
- return S

else
- return Sa

end if
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4.3 Accelerated Greedy Algorithm

In this section, following prior applications of submodular optimization (e.g. Krause &
Guestrin, 2005), we describe an accelerated greedy algorithm, which yields significant gains
in computational efficiency. At each greedy step, let S represent the set of queries that
have been selected so far. To make another greedy selection, we need to compute the cost
normalized incremental difference δ(i) = J(S∪i)−J(S)

ci
for each candidate query i, such that

i /∈ S and ci ≤ B−C. This computation can be expensive because the number of candidate
queries is often very large. Fortunately, by carefully maintaining the normalized incremental
differences calculated in the first greedy step, we can avoid recomputing a large majority of
them in later iterations.

Specifically, the first iteration will compute the δ(i) values for all i ∈ S. We then sort
them in decreasing order based on their δ values, and select the first query and remove
it from the list. For the next iteration, we move on to the next query in the sorted list
and recompute its δ value. If the value remains the largest, we will immediately select this
query and remove it from the list, and proceed to the next iteration without recomputing
any other δ values. Otherwise, we proceed to evaluate the next query in the sorted list
until finding one whose recomputed δ value is greater than the other stored values and
select that query. The submodular property of our objective guarantees that this approach
makes the same choices as the full greedy algorithm, but effectively avoids a large number of
computations of the δ values in practice. The proposed accelerated algorithm is summarized
in Algorithm 2.

4.4 Computation of the Expected Maximum

For any given set S, to compute J(S), we need to compute the expected maximum value
of a set of jointly distributed random variables (y1, ..., y|S|). Unfortunately, the expected
maximum of a set of dependent random variables generally does not have a closed-form
solution (Ross, 2008). Instead, we use a Monte-Carlo simulation approach for computing
the expected maximum value. Specifically, given S, to compute J(S), we first sample one
experiment for each Q ∈ QS , resulting in {x1, ...,x|S|}. We then sample the yi’s from their
posterior distribution py(y1, ..., y|S||x1, ...,x|S|,D) and take the maximum of the sampled
yi’s. This is repeated l independent times and the expected maximum is then obtained
by averaging across the l results. Note that our computation of the expected maximum
value with simulation will not be exact. Denoting the simulated results by Ĵ , standard
Chernoff bounds can be used to bound the error of Ĵ(S) with high probability. Assuming
a bounded error, that is |J(S)− Ĵ(S)| ≤ ε for some ε ≥ 0, the following theorem holds for
non-decreasing submodular objective functions:

Theorem 2. (Krause & Guestrin, 2005) Let J(·) be a non-decreasing submodular function
and S∗ = maxS:c(S)≤B J(S∗) be the cost constrained optimizer of J . For any Ĵ(·) such that

|J(S)− Ĵ(S)| ≤ ε for all S, if Algorithm 1 is run using Ĵ in place of J , then the returned
set Ŝ satisfies the following approximation bound, where cmin = mini ci:

J(Ŝ) ≥ 1

2

(
e− 1

e

)
J(S∗)− 1

2

(
c(S∗)

cmin
+ |S∗|

)
ε. (5)
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5. Sequential Approach

In this section, we consider the sequential setting (Deshpande et al., 2004; Silberstein et al.,
2006) where each query is selected one at a time after the result for the previous query
becomes available. This is the most commonly studied setting for Bayesian Optimization
and is appropriate for many applications where there is only a single experimental facility
to process the queries.

The inputs to our problem remain the same, which include B, the total budget, fc(·)
the cost function, px(x|Q), the distribution of the constructed experiment x given query Q,
and D, the set of observed experiments. In the sequential setting, given the inputs we must
request a sequence (one at a time) of constrained experiments whose total cost is within
the budget.

Leveraging the extensive body of research on traditional Bayesian Optimization, we de-
sign our sequential selection policies by extending a number of well-established myopic se-
quential selection policies from the literature. Most existing policies for traditional Bayesian
Optimization can be viewed as defining a greedy heuristic that assigns a score to each can-
didate experiment x based on the current experimental state, which we denote by (Dc, Bc),
where Dc represent the current set of prior experiments, and Bc represents the current
remaining budget. As reviewed in Section 2, many of the existing heuristics have been ob-
served to perform well for traditional Bayesian Optimization problems. Unfortunately they
cannot be directly used for our problem since they select individual specific experiments
rather than constrained experiments, as we require.

5.1 Model-Free Policies

Model-free policies do not consider statistical models of the data in making the selection. In
this work we consider two model-free policies, Round Robin (RR) and Biased Round Robin
(BRR), which are motivated by previous work on budgeted multi-armed bandit problems
(Lizotte et al., 2003; Madani et al., 2004).

5.1.1 Round Robin (RR)

In the multi-armed bandit setting, the RR policy seeks to keep the number of pulls of each
arm as uniform as possible. In the context of constrained experiments, we apply the same
principle to keep the experiments as uniformly distributed as possible in the experimental
space X . Given the current experimental state (Dc, Bc), we define the RR policy to return
the largest hyper-rectangle or the least costly query Q that does not contain any previous
experiment in Dc. If the cost Q exceeds the current budget Bc, we return the constrained
experiment with cost Bc that contains the fewest experiments in Dc. Ties are broken
randomly. Note that in RR the outputs of previous queries do not have any effect in
selecting the next queries. However, the exact location of the previous experiments do have
a significant effect in the next query selection. Therefore, we can not consider RR as a
non-sequential approach.

129



Azimi, Fern, & Fern

5.1.2 Biased Round Robin (BRR)

BRR policy behaves identically to RR, except that it repeats the previously selected con-
strained experiment as long as the outcome of the constrained experiment has improved the
performance and it does not exceed the budget. In particular, given the current experimen-
tal state (Dc, Bc), the query Q is repeated as long as it results in an outcome that improves
over the current best outcome in the set Dc, and fc(Q) ≤ Bc. Otherwise, the RR policy is
followed. This policy is analogous to BRR in multi-armed bandit problems (Madani et al.,
2004) where an arm is pulled as long as it has a positive outcome.

5.2 Model-Based Policies

For model-based policies, it is assumed that a conditional posterior distribution p(y|Dc,x)
over the outcome y of each individual experiment x ∈ Q is learned from the set of currently
observed experiments Dc. Existing model-based myopic policies for traditional experimental
design typically select the experiment x that maximizes certain heuristics computed from
statistics of the posterior (Jones, 2001). The heuristics provide different mechanisms for
trading off between exploration (probing unexplored regions of the experimental space) and
exploitation (probing areas that appear promising) given Dc. Note that the experiment x
is a fixed and known point in the experimental design literature before running the real
experiment in the lab since it is assumed that we can ask for a particular fixed point.

However, in our constrained experiment application, we ask for a hyper-rectangle query
Q rather than a fixed experiment point x. Therefore the conditional posterior distribution
for each constrained experiment Q is defined as p̄(y|Q,Dc) , Ex|Q [p(y|x,Dc)]. This defi-
nition corresponds to the process of drawing an experiment x from Q and then drawing an
outcome for x from p(y|x,Dc). p̄(·) effectively allows us to treat constrained experiments as
if they were individual experiments in a traditional optimization problem. Thus, we can de-
fine heuristics for constrained experiments by computing the same statistics of the posterior
p̄(·), as used in traditional optimization. In this work we consider four such heuristics.

5.2.1 Maximum Mean (MM)

In the context of traditional optimization with individual experiments, the MM heuristic,
also known as PMAX (Moore & Schneider, 1995; Moore et al., 1998; Schneider & Moore,
2002), simply selects the experiment that has the largest expected outcome according to the
current posterior. In our constrained experiments, the MM heuristic computes the expected
outcome of a given query according to the current posterior p̄(·). The MM of any arbitrary
query Q is computed as follows:

MM(Q|Dc) = E [y|Q,Dc] , where y ∼ p̄(y|Q,Dc). (6)

MM is purely an exploitative heuristic and has the weakness that it can often be too
greedy and get stuck in a poor local maximum point before exploring the rest of the exper-
imental space.
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5.2.2 Maximum Upper Interval (MUI)

The MUI heuristic, also known as IEMAX in previous work (Moore & Schneider, 1995;
Moore et al., 1998; Schneider & Moore, 2002), attempts to overcome the greedy nature of
MM by exploring areas with non-trivial probability of achieving a good result as measured
by the upper bound of the 95% confidence interval of output prediction. Thus, the MUI
heuristic for any arbitrary constrained experiments Q is calculated as follow (assuming that
Gaussian process is used for estimating the posterior distribution of f(·)):

MUI(Q|Dc) = E [y|Q,Dc] + 1.96
√

Var [y|Q,Dc], where y ∼ p̄(y|Q,Dc). (7)

Intuitively, MUI will aggressively explore untouched regions of the experimental space
since the outcomes in such regions will have high posterior variance. However, as experi-
mentation continues for a long time and uncertainty decreases, MUI will focus on the most
promising areas and behaves like MM. Note that MUI is a specific case of a more general
heuristic GP-UCB (Cox & John, 1992, 1997), where the constant 1.96 is replaced by a
varying parameter that results in certain theoretical guarantees. Empirically GP-UCB has
been observed to perform comparatively to the MEI heuristic which we introduce later in
this section.

5.2.3 Maximum Probability of Improvement (MPI)

In the context of individual experiments, the MPI heuristic corresponds to selecting the
experiment that has the highest probability of generating an outcome y that outperforms
the best current outcome in Dc. An issue with the basic MPI strategy is that it has a
tendency to behave similar to MM and focuses on the areas that currently look promising,
rather than exploring unknown areas. The reason for this behavior is that the basic MPI
does not take into consideration the amount of improvement over the current best outcome.
In particular, it is typical for the posterior to assign small amounts of variances to the
outcomes in well explored regions. It means while there might be a good probability of
observing a small amounts of improvement, the probability of a substantial improvement
is small. Hence, it is common to consider the use of a margin α when using MPI, which
we will refer to as MPI(α). Let y∗c represent the current best outcome that was observed
in Dc, then MPIα(Q|Dc) is equal to the probability that the outcome of the constrained
experiment Q will be greater than ((1+α)y∗c ) (assuming non-negative y∗c values). The MPI
heuristic is given by:

MPIα(Q|Dc) = p (y ≥ (1 + α)y∗c |Q,Dc) , where y ∼ p̄(y|Q,Dc). (8)

The MPI(α) heuristic is sensitive to the α margin parameter. Adjusting the margin α
from small to large causes the heuristic to change its behavior from more exploitive to more
explorative.

5.2.4 Maximum Expected Improvement (MEI)

The maximum expected improvement (Locatelli, 1997) heuristic seeks to improve on the
basic MPI heuristic without requiring a margin parameter α. Rather than focus on the
probability of improvement, it considers the expected amount of improvement according to
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the current posterior. In particular let I(y, y∗c ) = max(y − y∗c , 0). Then, the MEI heuristic
is defined as:

MEI(Q|Dc) = Ey [I(y, y∗c )|Dc,x] , where y ∼ p̄(y|Q,Dc). (9)

5.3 Cost-Sensitive Policies

The above introduced sequential heuristics do not take the variable cost of a constrained
experiment into account. If only the heuristic value is used as our selection criterion, the
most costly constrained experiment might be selected. In fact, the nature of our heuristics
will typically assign the highest score to the constrained experiments that are maximally
constrained and centered around the individual experiment that maximizes the heuristic.
Unfortunately, such constrained experiments are also maximally costly. More generally,
assume that the cost of a constrained experiment Q monotonically decreases with the size
of its region of support, which is the most natural case to consider. It is easy to show
that for all of our heuristics, the value of a constrained experiment Q is monotonically
non-decreasing with respect to the cost of Q. This is true when reducing the size of a
constrained experiment would remove the points which have the heuristic values less than
the constrained experiment value.

Thus, maximizing the above defined heuristics leads to the selection of the most costly
experiments, which might consume more budget than is warranted. This suggests that
there is a fundamental trade-off between the heuristic values and the cost of the constrained
experiments that we must address. Below, we introduce two approaches that attempt to
address this trade off by defining cost-sensitive policies from the cost insensitive heuristics.

5.3.1 Cost Normalized (CN) Policies

Cost normalized policies have been widely used in budgetd optimization settings where the
costs are non-uniform across experiments, (e.g., see Krause et al., 2008; Snoek, Larochelle,
& Adams, 2012). It simply selects the constrained experiment that achieves the highest
expected improvement per unit cost, or rate of the improvement.

Suppose H is our heuristic. We can define a corresponding CN policy for any heuristic
on constrained experiment Q given the current experimental state {Dc, Bc} as follows:

CNH(Dc, Bc) = argmax
Q:fc(Q)<Bc

{
H(Q|Dc)
fc(Q)

}
, (10)

where H(Q|Dc) assigns a score to constrained experiment Q given a set of observed exper-
iments Dc.

This cost normalization approach is a natural baseline and has been suggested in the
context of other optimization problems (e.g., Krause et al., 2008). However, in most such
prior work, the actual empirical evaluations involved uniform cost models and thus there
is little empirical data regarding the performance of normalization. In our setting of con-
strained experiments, a uniform cost model is not an option, since selecting among con-
strained experiments of varying variable cost is a fundamental aspect of the problem. Thus,
our empirical evaluation, in Section 6, necessarily provides a substantial evaluation of this
normalization principle.
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Unfortunately, experimental results show that the proposed cost normalized approach
can be outperformed by random policy in some cases. This prompts us to introduce a
constrained minimum cost(CMC) approach which will only select a constrained experiment
if it is expected to perform better than a random policy when spending the same amount
of budget.

5.3.2 Constrained Minimum Cost (CMC) Policies

For any heuristic on constrained experiments H(Q|Dc), which assigns a score to constrained
experiment Q given a set of observed experiments Dc, we can define an associated CMC
policy. The principle behind CMC is to select the least cost constrained experiment that
satisfies the following two conditions:

• Condition 1: It approximately optimizes the heuristic value,

• Condition 2: It has an expected improvement (EI) that is no worse than the random
policy after spending the same amount of budget.

The first condition encourages the selection of constrained experiments that look promis-
ing according to H, but it might result in the selection of an overly costly experiment. The
second condition helps to place a limit on how much we are willing to pay to achieve a
good heuristic value. Specifically, we will only be willing to pay a cost of c for a single
constrained experiment Q if its expected improvement is no worse than that achieved by a
set of random experiments whose total cost is c.

To formalize this policy, we first make the notion of approximately optimize more precise
by introducing a parameterized version of the CMC policy and then show how the parameter
will be automatically selected via condition 2. For a given heuristic H, let h∗ be the value
of the highest scoring constrained experiment that fits within the current budget. Note
that this will necessarily be one of the most constrained (i.e. most expensive) experiments
within the budget. For a given parameter α ∈ [0, 1], the CMCH,α policy selects the least-
cost constrained experiment that achieves a heuristic value of at least α · h∗. Formally, this
is defined as

CMCH,α(Dc, Bc) = argmin
Q:fc(Q)≤Bc

{fc(Q) | H(Q|Dc) ≥ αh∗} (11)

The value of α controls the trade off between the cost of Q and its heuristic value.
Smaller/larger values of α will result in less/more costly experiments, but smaller/larger
heuristic values. In our preliminary work, we experimented with the CMCH,α policy and
found that it was difficult to select a value of α that worked well across a wide range of
optimization problems, cost structures, and budgets. This motivated the introduction of
condition 2 above to help us adaptively select an appropriate value of α at each decision
point.

We now formalize the CMC class of policies. The objective is to select the largest
value of α such that the experiment suggested by CMCH,α satisfies condition 2. This will
guarantee that the selected constrained experiment will: 1) achieve a heuristic value as close
as possible to h∗, and 2) outperforms the random policy given the same cost allocation. In
the following, we define EIR(Dc, C) to be the expected improvement of a set of random
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experiments that have a total cost of C and Qα to be the constrained experiment returned
by CMCH,α. Also, let EI(Qα) be the expected improvement of constraint experiment Qα

and cα be its cost. Our parameter-free CMC policy is now defined as:

CMCH(Dc, Bc) = CMCH,α∗(Dc, Bc)
α∗ = arg max{α ∈ [0, 1] | EI(Qα|Dc) ≥ EIR(Dc, dcαe)}.

(12)

In practice we compute EIR(Dc, C) and EI(Qα) via Monte Carlo simulation. This is a
straightforward process in both cases. For EIR to compute one EIR sample, we randomly
select a set of experiments within the budget C and then sample outcomes for those exper-
iments via the Gaussian Process conditioned on Dc. The improvement of the best outcome
is taken to be the result of the EIR sample. The estimate of EIR is the average of L
EIR samples. A similar process is used for EI, except that rather than drawing random
experiments for each sample we use the experiments in Qα.

The following steps summarize the overall computational process of CMC-MEI.

1. Compute h∗ by maximizing H over constrained experiments that fall within the cur-
rent budget. Note that this only requires optimizing over the set of minimum-sized
constrained experiments that have a cost less than the budget.

2. Perform a discretized line search to find α∗ according to Equation 12.

3. Return CMCH,α∗(Dc, Bc) according to Equation 11.

6. Experimental Results

Our goal is to evaluate the performance of the proposed policies in scenarios that resem-
ble typical real-world scientific applications. In particular, the experimental domains that
motivate our work in this paper focus on low-dimensional optimization problems. This
choice is based on two reasons. First, with typical budgets the number of total experiments
is often limited, which makes optimizing over many dimensions impractical. In practice,
the scientists often have to carefully select a few key dimensions to consider. Second, in
real-world applications, such as our motivating problem, it is prohibitively difficult to sat-
isfy constraints on more than a couple of experimental variables. Thus, the most relevant
scenarios for us and many other problems are moderate numbers of experiments and small
dimensionality.

6.1 Experimental Setup

Below we describe the set up of our experiments.

6.1.1 Test Functions

We evaluate our policies using five 2-dimensional functions in [0, 1]2. The first three func-
tions: Cosines, Rosenbrock, and Discontinuous are benchmarks that have been widely used
in previous studies on stochastic optimization (Anderson, Moore, & Cohn, 2000; Brunato,
Battiti, & Pasupuleti, 2006; Azimi et al., 2010). The mathematical expressions of the
functions are listed in Table 1 and their contour plots are given in Figure 1.
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Cosines Rosenbrock

Hydrogen Fuel Cell

Discontinuous

Figure 1: Contour plots of the test functions.
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Table 1: Benchmark Functions.
Function Mathematical representation

Cosines 1− (u2 + v2 − 0.3cos(3πu)− 0.3 cos(3πv)), u = 1.6x− 0.5, v = 1.6y − 0.5

Rosenbrock 10− 100(y − x2)2 − (1− x)2

Discontinuous 1− 2((x− 0.5)2 + (y − 0.5)2) if x < 0.5, 0 otherwise

The two remaining functions are derived from real-world experimental data sets in-
volving hydrogen production and our motivating fuel cell application. For the former we
utilize data collected as part of a study on biosolar hydrogen production (Burrows, Wong,
Fern, Chaplen, & Ely, 2009), where the goal was to maximize hydrogen production of the
cyanobacteria Synechocystis sp. PCC 6803 by optimizing the pH and Nitrogen levels of the
growth media. The data set contains 66 samples uniformly distributed over the 2-d input
space. This data is used to simulate the true function by fitting a Gaussian Process (GP)
model with RBF kernel, picking kernel parameters via standard validation techniques such
as cross validation. With this model we then simulated the experimental design process by
sampling from the posterior of this GP to obtain noisy outcomes for requested experiments.
For this purpose, we used a zero-mean Gaussian noise model with variance equal to 0.01.
See Figure 1 for the contour plot.

For our motivating application (described in the introduction), we utilize data from a
set of initial microbial fuel cell experiments using anodes with different nano-enhancements.
In particular, each anode was coated with gold nano-particles under different fabrication
conditions leading to varying particle densities, shapes, and sizes. The construction of each
anode required approximately two days.1 Each anode was then installed in a microbial fuel
cell and run using pure Shewanella oneidensis bacterial cultures grown in fed-batch mode for
one week while recording the current density at regular intervals. The temporally averaged
current density was taken to be the dependent variable to be optimized by modifying the
nano-structure. To characterize the nano-structure on each anode, we captured images using
scanning electron microscopy and used standard image processing software to compute two
features: average area of individual particles, and average circularity of individual particles.
Those features were selected to be the independent variables of the design since they can
be roughly controlled during the fabrication process and appear to influence the current
density. Unfortunately, due to the high cost of running these experiments, which is precisely
the motivation for this paper, our data set currently consists of just 16 data points, which
are relatively uniformly distributed over the experimental space. Due to the sparse data,
we utilize polynomial Bayesian regression with degree 4, rather than Gaussian processes
with RBF kernels, to simulate the true function. See Figure 1 for the contour plot.

1. For this first round of experiments no constraints were provided to the scientist constructing the anodes.
Rather the goal was to generate a diverse set of anodes to provide a good set of data for seeding the
experimental design process. The construction time would likely be more than two days in the presence
of constraints since a number of growth conditions and trials would be necessary.
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6.1.2 Model Definitions

In this work, we assume that the density px(x|Q) over experiments given a query Q is
uniform over the ranges specified by Q.

To compute the conditional posterior p(y|x,D) required by our non-sequential approach
and model-based sequential heuristics, we use Gaussian process (Rasmussen & Williams,
2006) with zero mean prior and covariance specified by RBF kernel function:

cov(xi,xj) = k(xi,xj) = σfexp(− 1

2κ
|xi − xj |2), (13)

where κ is the length scale parameter that can be considered as the distance we have to
move in the input space before the function value changes significantly, and σf is the signal
variance which specifies the maximum possible variance at each point. In this paper we
set κ = 0.02 and signal variance σf = y2

max, where ymax is an upper bound on the output
values (this is typically easy to elicit from scientists and serves to set our prior uncertainty
so that there is non-trivial probability assigned to the expected range of the output). We did
not optimize these parameters, but did empirically verify that the GP behaved reasonably
for our test functions.

6.1.3 Cost Function

In our motivating application, the cost of setting up and running a fuel cell experiment
given a constrained experiment request can be roughly considered to have two components.
The first component corresponds to the cost of setting up an experiment (producing a
nano-structure) that satisfies the given constraints, which is variable depending on the
size of the constraints. The tighter the constraints, the more costly they will be. The
second component corresponds to the cost of running the constrained experiment, which
is generally constant. This two-component cost structure is very common in real-world
applications where a portion of the experimental process can be controlled more precisely
and has uniform costs across different queries, while other portions are less controllable and
have a cost that is inversely proportional to the size of the constraints we place on them.
To capture this structure, we define the following cost function fc(·) : Q→ <+:

fc(Q) = 1 +

d∏
i=1

slope

(bi − ai)
. (14)

In this formulation, the constant of one captures the stationary part of the cost, and
the second term captures the variable portion that is inversely proportional to the size
of the constrains of query Q. The value of the slope parameter dictates how quickly the
cost increases as the size of a constrained experiment decreases. We evaluate our proposed
approaches considering three different slope values; slope = 0.1, 0.15, 0.30. Note that all of
our proposed approaches can be readily applied to other cost functions.

6.1.4 Discretizing the Input Space

As mentioned previously, our policies assume that the input space is discretized. In par-
ticular, we divide each input dimension into 100 equal-length subintervals. Note that this
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implementation is most appropriate for low dimensional optimization problems, which as
described previously is the situation we often encounter in real-world applications.

6.1.5 Evaluation Settings

In our evaluation, we test all of the proposed policies in comparison to a random policy
(i.e., a policy that always selects the entire input space as the constrained experiment).

Given a budget B and a function f(·) to be optimized, each run of a policy results in a
set of observed experiments Dc. Let x∗ be the experiment in Dc that is predicted to have
the maximum expected outcome y∗. The regret of the policy for a particular run is then
defined to be ymax − y∗, where ymax is the maximum value of f(·). For each test function
and choice of budget and cost structure (i.e., choice of slope), we evaluate each policy by
averaging the regret over 200 runs. Each run starts with n = 5 randomly selected initial
points D = {(x0, y0), ·, ·, ·(x5, y5)}, and then the policies are used to select constrained
experiments until the budget runs out, at which point the regret is measured. In order to
ease the comparison of the regret values across different functions, we report normalized
regret values, which are computed by dividing the regret of each policy by the mean regret
achieved by the random policy. A normalized regret less than one indicates that an approach
outperforms random, while a value greater than one indicates that an approach is worse
than random. In the first round of experiments, we fixed the total budget to B = 15 and
examine the effect of the cost-model slope parameter over values 0.1, 0.15 and 0.3. In later
experiments, we will consider larger budgets.

Note that our non-sequential policy can be used to consume all the experimental budget
at once. However, in practice there is typically a limit on the number of constrained
experiments that can be processed simultaneously due to limited resources. As such, in the
non-sequential setting our policy is used to select up to five simultaneous queries subject to
the budget constraint. We will repeat this process until the budget is consumed.

The run time for selecting a single experiment in the sequential setting is on the order
of minutes (generally under five) in our experiments with an un-optimized matlab imple-
mentation. The run time for selecting a batch of five or fewer queries was never more than
30 minutes.

6.2 Results and Discussions

Our results for individual functions are shown in Table 2, and their corresponding standard
deviations are shown inside the parentheses. The first row of each table presents the results
of our non-sequential greedy algorithm (NS-Greedy). Rows 2 to 6 show the performance of
the model-based sequential policies for both CMC and CN cost policies. Note that, for the
CN policy, we report the results of CN-MEI, as it performed the best among all CN policies.
In addition, it has a nice interpretation as maximizing the rate of expected improvement per
unit cost. Finally, the last row shows the performance of our model-free sequential policies.

In order to provide an assessment of the overall performance of different methods, Table 3
presents the normalized regrets for each policy averaged across our five functions. The
different columns of the table correspond to different slope values for the cost function.
Below we discuss the results of different methods in detail.
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Table 2: Normalized regrets on individual functions for varying cost models (i.e., slopes)
slope = 0.1 slope = 0.15 slope = 0.30

Cosines, Normalized Regret (95% Confidence Interval)

NS-Greedy 0.767 (±0.04) 0.838 (±0.05) 0.841 (±0.05)

CN-MEI 0.569 (±0.05) 0.714 (±0.06) 0.826 (±0.06)
CMC-MEI 0.417 (±0.04) 0.514 (±0.06) 0.794 (±0.06)
CMC-MPI(0.2) 0.535 (±0.05) 0.584 (±0.06) 0.616 (±0.06)
CMC-MUI 0.797 (±0.06) 0.804 (±0.06) 0.817 (±0.06)
CMC-MM 0.708 (±0.07) 0.767 (±0.07) 0.736 (±0.06)

RR/BRR 0.84(±0.06)/0.83(±0.06)0.86(±0.06)/0.86(±0.06)0.89(±0.06)/0.88(±0.06)

Discontinuous, Normalized Regret (95% Confidence Interval)

NS-Greedy 0.528 (±0.06) 0.690 (±0.06) 0.748 (±0.05)

CN-MEI 0.527 (±0.06) 0.497 (±0.06) 0.626 (±0.08)
CMC-MEI 0.564 (±0.06) 0.677 (±0.08) 0.779 (±0.09)
CMC-MPI(0.2) 0.954 (±0.11) 0.940 (±0.10) 0.951 (±0.11)
CMC-MUI 0.710 (±0.10) 0.709 (±0.11) 0.693 (±0.09)
CMC-MM 1.289 (±0.15) 1.225 (±0.16) 1.116 (±0.16)
RR/BRR 0.60(±0.07)/0.58(±0.07)0.61(±0.07)/0.60(±0.07)0.63(±0.08)/0.63(±0.08)

Rosenbrock, Normalized Regret (95% Confidence Interval)

NS-Greedy 0.650 (±0.05) 0.877 (±0.06) 0.930 (±0.06)

CN-MEI 0.602 (±0.06) 0.665 (±0.07) 0.736 (±0.08)
CMC-MEI 0.547 (0.35) 0.556 (0.39) 0.630 (0.47)
CMC-MPI(0.2) 0.503 (±0.05) 0.594 (±0.06) 0.608 (±0.07)
CMC-MUI 0.805 (±0.11) 0.974 (±0.16) 0.913 (±0.14)
CMC-MM 0.721 (±0.09) 0.740 (±0.10) 0.662 (±0.08)

RR/BRR 0.89(±0.12)/0.88(±0.12)0.93(±0.12)/0.92(±0.12)0.96(±0.14)/0.95(±0.14)

Hydrogen, Normalized Regret (95% Confidence Interval)

NS-Greedy 0.879 (±0.06) 0.969 (±0.08) 0.993 (±0.09)

CN-MEI 0.176 (±0.04) 0.354 (±0.06) 0.852 (±0.09)
CMC-MEI 0.129 (±0.04) 0.233 (±0.06) 0.420 (±0.07)
CMC-MPI(0.2) 0.408 (±0.09) 0.449 (±0.10) 0.613 (±0.10)
CMC-MUI 0.716 (±0.08) 0.695 (±0.08) 0.868 (±0.09)
CMC-MM 0.728 (±0.11) 0.605 (±0.10) 0.691 (±0.11)
RR/BRR 1.10(±0.09)/1.06(±0.09) 1.16(±0.10)/1.23(0.10) 1.17(±0.09)/1.14(±0.09)

Fuel Cell, Normalized Regret (95% Confidence Interval)

NS-Greedy 0.980 (±0.02) 0.985 (±0.02) 0.995 (±0.03)

CN-MEI 0.929 (±0.02) 0.950 (±0.02) 0.986 (±0.03)
CMC-MEI 0.931 (±0.02) 0.908 (±0.02) 0.940 (±0.02)
CMC-MPI(0.2) 0.932 (±0.02) 0.930 (±0.03) 0.943 (±0.03)
CMC-MUI 0.971 (±0.03) 0.973 (±0.03) 0.995 (±0.03)
CMC-MM 0.945 (±0.03) 0.963 (±0.04) 0.963 (±0.05)

RR/BRR 1.03(±0.03)/1.02(±0.03)1.04(±0.03)/1.04(±0.03)1.04(±0.03)/1.04(±0.03)
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Table 3: Normalized Overall Regrets.
slope = 0.1 slope = 0.15 slope = 0.30

NS-Greedy 0.760 0.871 0.901

CN-MEI 0.560 0.636 0.805
CMC-MEI 0.517 0.578 0.712
CMC-MPI(0.2) 0.666 0.698 0.746
CMC-MUI 0.800 0.831 0.857
CMC-MM 0.874 0.889 0.834

RR 0.897 0.925 0.944
BR 0.879 0.911 0.934

6.2.1 Non-Sequential

We will first examine the performance of our non-sequential greedy policy (NS-Greedy).
Recall that we present the normalized regret in our results, thus smaller value indicates
better performance. Further, a policy outperforms random whenever its normalized regret
is less than 1.

From Table 2, we observe that the proposed greedy algorithm (NS-Greedy) performs
consistently better than the random policy for all functions. Among these functions, it can
be seen that the performance advantage of NS-Greedy is more significant when the slope
parameter of the cost function is smaller. This is consistent with our expectation: with a
smaller slope, the cost of our query grows slower as we tighten the constraints. This will
allow our algorithm to more aggressively select tighter constraints based on the posterior
model of the function. In fact, if the slope is large enough, one would expect the optimal
policy to be completely random.

Comparing with sequential approaches, we first observe that NS-Greedy compared fa-
vorably to the two model-free methods. This is not surprising because RR/BRR do not
consider the posterior model of the function in selecting queries. On the other hand, we also
observe that the NS-Greedy algorithm performs significantly worse than the best model-
based sequential policies, such as CMC-MEI. This result is expected because sequential
policies allow us to update and improve the model of the function with each query. There-
fore, we generally expect sequential policies to perform better than non-sequential methods
which is a common phenomenon in the active learning literature (Azimi, Fern, Fern, Bor-
radaile, & Heeringa, 2012).

6.2.2 Sequential

In this section we examine the performance of the sequential policies, including both model-
free and model-based methods.

Model-Free Policies. From Table 3 we see that RR and BRR achieve an improvement
over random by approximately 10% across the different slopes. This shows that the heuristic
of trying to evenly cover the space pays off compared to random. BRR is also observed
to perform slightly better than RR, which indicates that the additional exploitive behavior
of BRR pays off overall. Looking at the individual results in Table 2, we see that for the
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Hydrogen and Fuel Cell functions, both BRR and RR perform worse than random. Further
investigation reveals that the reason for this poor performance is that RR/BRR have a bias
toward experiments near the center of the input space. This bias is a result of the fact
that constrained experiments (hyper-rectangles) are required to fall completely within the
experimental space and there are fewer such hyper-rectangles that contain points near the
edges and corners. The Hydrogen and Fuel Cell functions have their optimal points near
corners of the space, explaining the poor performance.

Model-Based Policies. We now focus on the performance of the proposed model-based
sequential policies. From the averaged overall results (Table 3), our first observation is that
the model-based policies in general perform better than the random policy. Specifically,
looking at the results of individual functions, we see that all model-based policies outperform
random, with the exception of CMC-MM on the Discontinuous function. This shows that
the two proposed approaches for considering cost are able to avoid catastrophic choices that
expend the budget more quickly than is warranted.

Our analysis of the poor performance of CMC-MM on the Discontinuous function re-
vealed that CMC-MM would often get stuck in poor local optima and cease to explore the
space adequately. Although at each step the CMC-MM policy determined that its selection
was better than random in the near term, this did not translate to long term improvement
over random due to the lack of exploration. The Discontinuous function is particularly
prone to elicit this behavior due to the fact that it has a large sub-optimal and nearly
uniform region, which is difficult for CMC-MM to escape from. This overly greedy perfor-
mance is consistent with prior observations of the MM heuristic and is largely addressed by
the other heuristics that provide some measure of exploratory value. In fact, CMC-MM is
highly dependent on its initial given random points. For example, if the initial given points
D have been chosen from a non-optimal region, which is more than 50% of the input space
for the Discontinuous function, the CMC-MM approach cannot give a satisfactory perfor-
mance. This can be seen by the standard deviation of CMC-MM, which is higher than
other model-based and model-free methods. It shows that the performance of CMC-MM
changes significantly in each iteration which is because of its initial points.

In addition, from Table 3, it can be seen that all of the model-based approaches out-
perform the model free approaches. This indicates that the heuristics we are considering
and our GP probabilistic model are providing useful information for effectively guiding the
constrained experiment selection.

Comparing different model-based heuristics, we see that the MEI-based methods (CN-
MEI and CMC-MEI) are the top contenders among all methods. Examining the results
for individual functions, we can see that this holds for all functions except for Rosenbrock,
where the CMC-MPI is slightly better than MEI-based methods. Upon closer examination
of the behavior of the MPI and MEI heuristics, we found that MPI often selects slightly
fewer experiments than MEI, which we believe is due to fact that the MEI heuristic tends
to be smoother than MPI over the experimental space. The smoothness of MEI allows the
CMC policy to select less constrained queries and but still achieve “approximately” optimal
heuristic value, leading to more constrained experiments. In general we recommend CMC-
MEI as the most preferable heuristic to use based on its consistently superior performance
and the fact that it is parameter free.
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Figure 2: Un-normalized regret as a function of the budget (slope=0.1).

142



Budgeted Optimization with Constrained Experiments

We are also interested in comparing the performance of the two proposed schemes for
handling the cost, namely CN and CMC. Focusing on CMC-MEI and CN-MEI, we can see
that CMC-MEI generally outperforms CN-MEI. While the differences in the behavior of
these two policies appear subtle, experimental investigation show that CN-MEI tends to
be overly conservative toward selecting costly experiments in comparison with CMC-MEI,
especially at the later stages of the experimental process.

6.3 Varying Budget

In this round of experiments, we fixed the cost model slope to 0.1 and varied the budget from
10 to 60 units in increments of 10. We are interested in examining the relative performance
of different model-based policies (including both sequential and non-sequential) compared
to the random policy as we increase the budget.

Figure 2 plots the absolute regret (rather than the normalized regret) versus budget
for the best sequential policies including CMC-MEI, CN-MEI and CMC-MPI, and the
proposed non-sequential policy (NS-Greedy). We have also plotted the performance of
random policy as a reference baseline. We use the same experimental setting as used
previously. Specifically, for sequential methods, in each iteration we select one query until
the budget is completely consumed. For the proposed non-sequential approach, we select
up to five queries in each iteration until the budget is consumed.

First, we observe that the performance of NS-Greedy continues to dominate Random as
we increase the budget. This suggests that the performance advantage of NS-Greedy over
Random is robust to the amount of experimental budget. We also observe that NS-Greedy
is generally outperformed by the lead sequential policies, such as CMC-MEI, and CMC-
MPI. This is consistent with our previous observations with fixed budget and varying slope.
Finally, we see that polices based on the MEI and MPI heuristics generally achieve the best
performance across a wide range of budgets. In particular, they consistently maintain a
significant advantage over Random. The MEI-based and CMC-MPI policies are roughly
comparable for all functions except for the Fuel Cell function. In that case CMC-MPI
slightly outperforms CMC-MEI for large budgets.

Overall, given the results from the previous experiments, CMC-MEI can still be consid-
ered as a recommended method, due to its combination of good performance, smoothness
and robustness. CMC-MEI is also preferable in that it does not require the selection of a
margin parameter.

6.4 Comparison with Precise Experiments

In this section, we compare our performance using constrained experiments to the perfor-
mance achieved using precisely specified experiments. In particular, we compare CMC-MEI
with its “precise” counterpart MEI. To do this, we use CMC-MEI to select up to fifteen
constrained experiments (with infinite budget) for each function, and at each step evaluate
the regret. This is repeated for 100 times to generate an average performance curve for
CMC-MEI as a function of the number of constrained experiments. This is done for two
different cost models with slope set to 0.1 and 0.3 respectively, resulting in two curves for
CMC-MEI. Similarly, we use MEI to select a sequence of fifteen precisely specified experi-
ments and generate the same average performance curve (over 100 random runs). Finally,
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Figure 3: Un-normalized regret as a function of the number of experiments.
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as a reference point, we also plot the performance when experiments are selected randomly.
Figure 3 shows the performance curves of MEI, CMC-MEI (with slope = 0.1 and 0.3 re-
spectively) and random.

From the figure we can see that in most cases CMC-MEI performed comparably to MEI.
For these cases, we observe no detrimental effective from the use of constrained experiments.
If we compare the efficiency of CMC-MEI with slopes 0.3 and 0.1 (larger slopes yield higher
experimental costs), we see that in most cases they are comparable. However, for the Fuel
Cell and Hydrogen functions, the smaller slope is consistently better (by a small margin).
Further, these are also the two functions where precise experiments show the most significant
advantage over CMC-MEI (in particular for slope =0.3). A likely explanation for this is
that the optimal regions for these two functions are fairly small, highly peaked and near the
boundaries. This can make it difficult to effectively explore this region using constrained
experiments, especially with larger slopes.

6.5 Comparison with Constant Window Experiments

In our final experiments, we compare the performance of the CMC-MEI approach with a
Constant Window (CW) approach, where constant constraint sizes are used throughout the
optimization process. The goal is to understand the importance of dynamically selecting
the window size as done by CMC-MEI. We consider three different window sizes, denoted
by CW5, CW20, CW50, which correspond to constraint sizes of 5%, 20% and 50% in each
dimension respectively. Thus, the cost of CW5 is significantly more than CW50 while it
has more precision and control over the final selected samples. We compare these CW
approaches against CMC-MEI. The cost model parameter is set to slope = 0.1 and the
budget is varied from 10 to 60 in denomination of 10. The results are provided in Figure 4.

First, we observe that the best performing CW approach varies significantly across
benchmarks and budgets. This indicates that choosing the window size for a particular
application is non-trivial. Second, we see that CMC-MEI, which adaptively selects the
window size, performs the best or is competitive with the best CW approach. This is
another indication that CMC-MEI is an effective strategy for choosing window sizes. Further
analysis of these experiments indicates that CMC-MEI tends to select experiments close to
CW50 at the beginning and then decreases the window size after several experiments.

7. Summary and Future Directions

Motivated by a real-world application, this paper introduced a novel framework for bud-
geted Bayesian optimization with constrained experiments. In this framework, instead of
asking for samples of the unknown function at precisely specified inputs, we ask for a con-
strained experiment and the cost of the constrained experiments is variable depending on
the tightness of the constraints. We studied this problem in two different settings.

In the non-sequential setting, multiple constrained experiments are selected at once. For
this setting, we introduced a non-decreasing submodular objective function and presented a
greedy algorithm for approximately optimizing the proposed objective. Empirical evaluation
indicates that the proposed non-sequential algorithm consistently outperforms a baseline
random policy across different budget and cost configurations.
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Figure 4: CMC-MEI performance versus constant window size experiments.
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In the sequential setting of the problem, one constrained experiment is selected in each
iteration. We extended a number of classic Bayesian optimization and experiment design
heuristics for constrained experiments. Direct use of such heuristics to select constrained
experiments will select overly tight constraints and consume all of the budget at once. Thus,
we introduced two general cost policies, namely CN and CMC, to achieve a balance between
moderating the cost of the experiments and optimizing the heuristics. The experiments show
that sequential policies generally outperform the non-sequential policy, and the proposed CN
and CMC cost policies are effective at dispensing the budget rationally. Overall we found
that CMC used with the MEI heuristic (CMC-MEI) demonstrated robust performance and
is parameter-free, making it a recommended method.

The work described here focused on methods for optimizing low-dimensional functions,
which is typical of the types of scientific and engineering applications that motivated this
work. Extending our methods to higher dimensions requires optimizing the selection criteria
over continuous rather than discrete input spaces. There are a number of straightforward
approaches to doing this and future work could include evaluating those approaches and
designing more sophisticated ones. The most interesting direction for future work is to
continue enriching the cost and action models supported by Bayesian Optimization methods
to more closely match the needs of real-world applications. Solutions for these extended
models will require a tighter integration of planning and scheduling techniques with the
ideas developed so far for traditional Bayesian Optimization.
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Appendix A. Proof of Lemma 1

Lemma 1. Let XM = {x1, . . . ,xM} denote the random variables representing the outcome
of the random draw for QM = {Q1, ...,QM} respectively where QM is the set of all possible
queries. For any given XM , JXM

(S), which returns the expected maximum over a set
of jointly distributed random variables, is a monotonically non-decreasing submodular set
function.

Proof. Suppose S is a finite set. Then g : 2S → R+ is a submodular set function if for all
S1 ⊆ S2 ⊂ S and x ∈ S \ S2, it holds that g(S1 ∪ {x}) − g(S1) ≥ g(S2 ∪ {x}) − g(S2). In
addition a set function g(·) is called monotonically non-decreasing if g(S1) ≤ g(S2).

We first prove that E[max(·)] is monotonic function and then we show that it is a
submodular objective function.

Assume that S1 = {x1,x2, · · ·,xp} with p ≤ k. We need to prove that

E
[
max (y1, y2, · · ·, yp, · · ·, yk)

∣∣∣D] ≥ E
[
max (y1, y2, · · ·, yp)

∣∣∣D] . (15)
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We use the definition of the expectation to prove the result.

E
[
max (y1, y2, · · ·, yp, · · ·, yk)

∣∣∣D]
=

∫
· · ·
∫

max (y1, y2, · · ·, yp, · · ·, yk) py1,y2,···,yp,···,yk|Ddy1dy2 · · · dyp · · · dyk

≥
∫
· · ·
∫

max (y1, y2, · · ·, yp) py1,y2,···,yp,···,yk|Ddy1dy2 · · · dyp · · · dyk

=

∫
· · ·
∫

max (y1, y2, · · ·, yp)
(∫
· · ·
∫
py1,y2,···,yp,···,yk|Ddyp+1 · · · dyk

)
dy1dy2 · · · dyp

=

∫
· · ·
∫

max (y1, y2, · · ·, yp) py1,y2,···,yp|Ddy1dy2 · · · dyp

= E
[
max (y1, y2, · · ·, yp)

∣∣∣D] .
(16)

This shows that E[max(·)] is a nondecreasing monotonic function.

To prove the submodularity property, We need to show that

E
[
max (y1, y2, · · ·, yp, y∗)

∣∣∣D]− E
[
max (y1, y2, · · ·, yp)

∣∣∣D]
≥ E

[
max (y1, y2, · · ·, yp, · · ·, yk, y∗)

∣∣∣D]− E
[
max (y1, y2, · · ·, yp, · · ·, yk)

∣∣∣D] . (17)

To prove this, we start from the right hand side of the inequality and the basic definition
of the expectation.

E
[
max (y1, y2, · · ·, yp, · · ·, yk, y∗)

∣∣∣D]− E
[
max (y1, y2, · · ·, yp, · · ·, yk)

∣∣∣D]
=

∫
· · ·
∫

max (y1, y2, · · ·, yp, · · ·, yk, y∗) py1,y2,···,yp,···,yk,y∗|Ddy1dy2 · · · dyp · · · dykdy∗

−
∫
· · ·
∫

max (y1, y2, · · ·, yp, · · ·, yk) py1,y2,···,yp,···,yk|Ddy1dy2 · · · dyp · · · dyk

=

∫
· · ·
∫

max (y1, y2, · · ·, yp, · · ·, yk, y∗) py1,y2,···,yp,···,yk,y∗|Ddy1dy2 · · · dyp · · · dykdy∗

−
∫
· · ·
∫

max (y1, y2, · · ·, yp, · · ·, yk) py1,y2,···,yp,···,yk,y∗|Ddy1dy2 · · · dyp · · · dykdy∗

=

∫
· · ·
∫

[max (y1, y2, · · ·, yp, · · ·, yk, y∗)−max (y1, y2, · · ·, yp, · · ·, yk)]
(18)
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py1,y2,···,yp,···,yk,y∗|Ddy1dy2 · · · dyp · · · dykdy∗

≤
∫
· · ·
∫

[max (y1, y2, · · ·, yp, y∗)−max (y1, y2, · · ·, yp)]

py1,y2,···,yp,···,yk,y∗|Ddy1dy2 · · · dyp · · · dykdy∗

=

∫
· · ·
∫

[max (y1, y2, · · ·, yp, y∗)−max (y1, y2, · · ·, yp)] py1,y2,···,yp,y∗|Ddy1dy2 · · · dypdy∗

=

∫
· · ·
∫

max (y1, y2, · · ·, yp, y∗) py1,y2,···,yp,y∗|Ddy1dy2 · · · dypdy∗

−
∫
· · ·
∫

max (y1, y2, · · ·, yp) py1,y2,···,yp|Ddy1dy2 · · · dyp

= E
[
max (y1, y2, · · ·, yp, y∗)

∣∣∣D]− E
[
max (y1, y2, · · ·, yp)

∣∣∣D]
(19)

Notice that the inequality holds if we can prove:

max (y1, y2, · · ·, yp, · · ·, yk, y∗)−max (y1, y2, · · ·, yp, · · ·, yk)
≤ max (y1, y2, · · ·, yp, y∗)−max (y1, y2, · · ·, yp)

(20)

There are two possible cases as follows:

max (y1, y2, · · ·, yp, · · ·, yk, y∗) =

{
y∗

max (y1, y2, · · ·, yp, · · ·, yk) .
(21)

1. In the first case, if max (y1, y2, · · ·, yp, · · ·, yk, y∗) = y∗,
then we also have max (y1, y2, · · ·, yp, y∗) = y∗. Hence,

max (y1, y2, · · ·, yp, · · ·, yk, y∗)−max (y1, y2, · · ·, yp, · · ·, yk)
= y∗ −max (y1, y2, · · ·, yp, · · ·, yk)
≤ y∗ −max (y1, y2, · · ·, yp)
= max (y1, y2, · · ·, yp, y∗)−max (y1, y2, · · ·, yp)

(22)

2. In the second case, if max (y1, y2, · · ·, yp, · · ·, yk, y∗) = max (y1, y2, · · ·, yp, · · ·, yk),then
we have

max (y1, y2, · · ·, yp, · · ·, yk, y∗)−max (y1, y2, · · ·, yp, · · ·, yk)
= 0

≤ max (y1, y2, · · ·, yp, y∗)−max (y1, y2, · · ·, yp)
= max (y1, y2, · · ·, yp, y∗)−max (y1, y2, · · ·, yp)

(23)

Notice that max (y1, y2, · · ·, yp, y∗)−max (y1, y2, · · ·, yp) is always non-negative.
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