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Abstract

The analysis and diagnosis of Alzheimer’s disease (AD) can be based on genetic vari-
ations, e.g., single nucleotide polymorphisms (SNPs) and phenotypic traits, e.g., Magnetic
Resonance Imaging (MRI) features. We consider two important and related tasks: i) to
select genetic and phenotypical markers for AD diagnosis and ii) to identify associations
between genetic and phenotypical data. While previous studies treat these two tasks sepa-
rately, they are tightly coupled because underlying associations between genetic variations
and phenotypical features contain the biological basis for a disease. Here we present a new
sparse Bayesian approach for joint association study and disease diagnosis. In this ap-
proach, common latent features are extracted from different data sources based on sparse
projection matrices and used to predict multiple disease severity levels; in return, the
disease status can guide the discovery of relationships between data sources. The sparse
projection matrices not only reveal interactions between data sources but also select groups
of biomarkers related to the disease. Moreover, to take advantage of the linkage disequi-
librium (LD) measuring the non-random association of alleles, we incorporate a graph
Laplacian type of prior in the model. To learn the model from data, we develop an efficient
variational inference algorithm. Analysis on an imaging genetics dataset for the study of
Alzheimer’s Disease (AD) indicates that our model identifies biologically meaningful as-
sociations between genetic variations and MRI features, and achieves significantly higher
accuracy for predicting ordinal AD stages than the competing methods.

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disorder (Khachaturian,
1985). In order to predict the onset and progression of AD, NIH funded the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) to facilitate the evaluation of genetic variations,
e.g., Single Nucleotide Polymorphisms (SNPs) and phenotypical traits, e.g., Magnetic Reso-
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nance Imaging (MRI). In addition to progression study, it is becoming important in medical
studies to identify the relevant pathological genotypes and phenotypic traits, and to discover
their associations. Although found in many bioinformatics applications (Consoli, Lefevre,
Zivy, de Vienne, & Damerval, 2002; Hunter, 2012; Gandhi & Wood, 2010; Liu, Pearlson,
Windemuth, Ruano, Perrone-Bizzozero, & Calhoun, 2009), association studies are scarce
and especially in need in the AD study.

Many statistical approaches have been developed to discover associations or select fea-
tures (or variables) for prediction in a high dimensional problem. For association stud-
ies, representative approaches are canonical correlation analysis (CCA) and its exten-
sions (Harold, 1936; Bach & Jordan, 2005). These approaches have been widely used
in expression quantitative trait locus (eQTL) analysis (Parkhomenko, Tritchler, & Beyene,
2007; Daniela & Tibshirani, 2009; Chen, Liu, & Carbonell, 2012). For disease diagno-
sis based on high dimensional biomarkers, popular approaches include lasso (Tibshirani,
1994), elastic net (Zou & Hastie, 2005), and group lasso (Yuan & Lin, 2007), and Bayesian
automatic relevance determination (MacKay, 1991; Neal, 1996). Despite their wide success
in many applications, these approaches are limited by the following reasons:

• Most association studies neglect the supervision from the disease status. Because
many diseases, such as AD, are a direct result of genetic variations and often highly
correlated to clinical traits, the disease status provides useful yet currently unutilized
information for finding relationships between genetic variations and clinical traits.

• For disease diagnosis, most sparse approaches use classification models and do not
consider the order of disease severity. For subjects in AD studies, there is a natural
severity order from being normal to mild cognitive impairment (MCI) and then from
MCI to AD. Classification models cannot capture the order in AD’s severity levels.

• Most previous methods are not designed to handle heterogeneous data types. The
SNPs values are discrete (and ordinal based on an additive genetic model), while the
imaging features are continuous. Popular CCA or lasso-type methods simply treat
both of them as continuous data and overlook the heterogeneous nature of the data.

• Most previous methods ignore or cannot utilize the valuable prior knowledge. For
example, the occurrence of some combinations of alleles or genetic markers in a pop-
ulation are more often or less often than that would be expected from a random
formation of haplotypes from alleles based on their frequencies, which is known as
Linkage Disequilibrium (LD) (Falconer & Mackay, 1996). To our knowledge, this
structure has not been utilized in association discovery.

To address these problems, we propose a new Bayesian approach that unifies multiview
learning with sparse ordinal regression for joint association study and disease diagnosis. It
can also conduct nonlinear classification over latent variables (Zhe, Xu, Qi, & Yu, 2014) and
find associations by incorporating the LD information as an additional prior for the SNPs
data (Zhe, Xu, Qi, & Yu, 2015) . In more detail, genetic variations and phenotypical traits
are generated from common latent features based on separate sparse projection matrices and
suitable link functions, and the common latent features are used to predict the disease status
(See Section 2). To enforce sparsity in projection matrices, we assign spike and slab priors
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(George & McCulloch, 1997) over them; these priors have been shown to be more effective
than l1 penalty to learn sparse projection matrices (Goodfellow, Couville, & Bengio, 2012;
Mohamed et al., 2012). In order to take advantage of the linkage disequilibrium, which
describes the non-random association of alleles at different loci, we employ an additional
graph Laplacian type of prior for the SNPs view. The sparse projection matrices not only
reveal critical interactions between the different data sources but also identify biomarkers in
data relevant to disease status. Meanwhile, via its direct connection to the latent features,
the disease status influences the estimation of the projection matrices so that it can guide
the discovery of associations between heterogeneous data sources relevant to the disease.

To learn the model from data, we develop a variational inference approach (See Section
3). It iteratively minimizes the Kullback-Leibler divergence between a tractable approxima-
tion and exact Bayesian posterior distributions. We extend the proposed sparse multiview
learning model by incorporating the linkage disequilibrium information about SNPs in Sec-
tion 4. We then employ our model to the real study of AD in Section 5. The results show
that our model achieves the highest prediction accuracy among all the competing meth-
ods. Furthermore, our model finds biologically meaningful predictive relationships between
SNPs, MRI features, and AD status.

2. Sparse Heterogeneous Multiview Learning Models

In this section, we first present the notations and assumptions, and then present the sparse
heterogeneous multiview learning model.

2.1 Notations and Assumptions

First, let us describe the data. We assume there are two heterogeneous data sources: one
contains continuous data – for example, MRI features – and the other contains discrete
ordinal data – for instance, SNPs. Note that we can easily generalize our model below to
handle more views and other data types by adopting suitable link functions (e.g., a Poisson
model for count data). Given data from n subjects, p continuous features and q discrete
features, we denote the continuous data by a p × n matrix X = [x1, . . . ,xn], the discrete
ordinal data by a q× n matrix Z = [z1, . . . , zn] and the labels (i.e., the disease status) by a
n× 1 vector y = [y1, . . . , yn]>. For the AD study, we let yi = 0, 1, and 2 if the i-th subject
is in the normal, MCI or AD condition, respectively.

2.2 Spare Heterogeneous Multiview Learning Model

To link the two data sources X and Z together, we introduce common latent features
U = [u1, . . . ,un] and assume X and Z are generated from U by sparse projection. The
common latent feature assumption is sensible for association studies because both SNPs and
MRI features are biological measurements of the same subjects. Note that ui is the latent
feature for the i-th subject with dimension k. We denote the proposed Spare Heterogeneous
Multiview Learning Model by SHML. In a Bayesian framework, we assign a Gaussian prior
over U, p(U) =

∏
iN (ui|0, I), and specify the rest of the model (see Figure 1) as follows.
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Figure 1: The graphical representation of SHML, where X is the continuous view, Z is the ordinal
view, y are the labels.

2.2.1 Continuous Data Distribution

Given U, X is generated from

p(X|U,G, η) =
n∏
i=1

N (xi|Gui, η
−1I)

where G = [g1,g2, ...gp]
> is a p × k projection matrix, I is an identity matrix, and η−1I

is the precision matrix of the Gaussian distribution. For the precision parameter η, we
assign a conjugate prior Gamma prior, p(η|r1, r2) = Gamma(η|r1, r2) where r1 and r2 are
the hyperparameters and set to be 10−3 in our experiments.

2.2.2 Ordinal Data Distribution

For an ordinal variable z ∈ {0, 1, . . . , R−1}, its value is decided by which region an auxiliary
variable c falls in

−∞ = b0 < b1 < . . . < bR =∞.
If c falls in [br, br+1), z is set to be r. For the AD study, the SNPs Z take values in {0, 1, 2}
and therefore R = 3. Given a q × k projection matrix H = [h1,h2, ...hq]

>, the auxiliary
variables C = {cij} and the ordinal data Z are generated from

p(Z,C|U,H) =

q∏
i=1

n∏
j=1

p(cij |hi,uj)p(zij |cij)

where

p(cij |hi,uj) = N (cij |h>i uj , 1)

p(zij |cij) =

2∑
r=0

δ(zij = r)δ(br ≤ cij < br+1).

Here δ(a) = 1 if a is true and δ(a) = 0 otherwise.
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2.2.3 Label Distribution

The disease status labels y are ordinal variables too. To generate y, we use the ordinal
regression model based the latent representation U,

p(y, f |U,w) = p(y|f)p(f |U,w),

where f is the latent continuous values corresponding to y, w is the weight vector for the
latent features and

p(fi|ui,w) = N (fi|u>i w, 1),

p(yi|fi) =
2∑
r=0

δ(yi = r)δ(br ≤ fi < br+1).

Note that the labels y are linked to the data X and Z via the latent features U and the
projection matrices H and G. Due to the sparsity in H and G, only a few groups of
variables in X and Z are selected to predict y.

2.2.4 Sparse Priors for Projection Matrices and Weights Vector

Because we want to identify a few critical interactions between different data sources, we
use spike and slab prior (George & McCulloch, 1997) to sparsify the projection matrices G
and H. The spike and slab priors are continuous bimodal priors to model hypervariance pa-
rameters, which controls both the selection of the variable and the effective scale of choosing
this variable. We apply the spike and slab prior over the weight vector w. Specifically, we
use a p× k matrix Sg to represent the selection of elements in G: if sgij = 1, gij is selected

and follows a Gaussian prior distribution with variance σ2
1; if sgij = 0, gij is not selected and

forced to almost zero (i.e., sampled from a Gaussian with a very small variance σ2
2). We

have the following prior over G:

p(G|Sg,Πg) =

p∏
i=1

k∏
j=1

p(gij |sijg )p(sijg |πijg )

where

p(gij |sijg ) = sijg N (gij |0, σ2
1) + (1− sijg )N (gij |0, σ2

2),

p(sijg |πijg ) = πijg
sijg (1− πijg )1−sijg ,

where πijg in Πg is the probability of sijg = 1, and σ2
1 � σ2

2 (in our experiment, we set
σ2

1 = 1 and σ2
2 = 1o−6). To reflect our uncertainty about Πg, we assign a Beta hyperprior

distribution:

p(Πg|l1, l2) =

p∏
i=1

k∏
j=1

Beta(πijg |l1, l2),

where l1 and l2 are hyperparameters. We set a diffuse and non-informative hyperprior, i.e.,
l1 = l2 = 1 in our experiments. Similarly, H is sampled from

p(H|Sh,Πh) =

q∏
i=1

k∏
j=1

p(hij |sijh )p(sijh |π
ij
h ),
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where p(hij |sijh ) = sijhN (hij |0, σ2
1)+(1−sijh )N (hij |0, σ2

2) and p(sijh |π
ij
h ) = πijh

sijh (1−πijh )1−sijh .

Sh are binary selection variables and πijh in Πh is the probability of sijh = 1. We assign Beta
hyperpriors for Πh :

p(Πh|d1, d2) =

q∏
i=1

k∏
j=1

Beta(πijh |d1, d2),

where d1 and d2 are hyperparameters. We set d1 = d2 = 1 in our experiments since we have
found that they are not sensitive to the final performance. Similarly for weights vector w,

p(w|sw,πw) =
k∏
j=1

p(wj |sjw)p(sjw|πjw)

where p(wj |sjw) = sjwN (wj |0, σ2
1) + (1− sjw)N (wj |0, σ2

2) and p(sjw|πjw) = πjw
sjw

(1− πjw)1−sjw .

sw are binary selection variables and πjw in πw is the probability of sjw = 1. We assign
Beta hyperpriors for πw:

p(πw) =
k∏
i=1

Beta(πiw|e1, e2),

where e1 and e2 are hyperparameters. We similarly set e1 = e2 = 1 in our experiments.

2.2.5 Joint Distribution

Based on all these specifications, the joint distribution of our model is

p(X,Z,y,U,G,Sg,Πg, η,C,H, H̃,Sh,Πh,Sw,Πw, f)

= p(X|U,G, η)p(G|Sg)p(Sg|Πg)p(Πg|l1, l2)p(η|r1, r2)

·p(Z,C|U,H)p(H|Sh)p(Sh|Πh)p(Πh|d1, d2)

·p(y|f)p(f |U,w)p(w|Sw)p(Sw|Πw)p(U). (1)

Different from Figure 1, we put the conjugate prior for Sw and Sg into the joint distribu-
tion. Then the next step is to estimate the distributions of the latent variables and their
hyperparemeters.

3. Model Inference

Given the model specified in the previous section, now we present an efficient method to
estimate the latent features U, the projection matrices H and G, the selection indicators Sg
and Sh, the selection probabilities Πg and Πh, the variance η, the auxiliary variables C for
generating ordinal data Z, the auxiliary variables f for generating the labels y, the weights
vector w for generating f and the corresponding selection indicators and probabilities sw and
πw. In a Bayesian framework, this estimation task amounts to computing their posterior
distributions.

However, computing the exact posteriors turns out to be infeasible since we cannot
calculate the normalization constant of the posteriors based on Equation (1). Thus, we
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resort to a mean-field variational approach. Specifically, we approximate the posterior
distributions of U,H,G,Sg,Sh,Πg,Πh, η,w,C and f by a factorized distribution

Q(θ) = Q(U)Q(H)Q(G)Q(Sg)Q(Sh)Q(Πg)Q(Πh)Q(η)Q(w)Q(C)Q(f) (2)

where θ denotes all the latent variables.

Variational inference minimizes the Kullback-Leibler (KL) divergence between the ap-
proximate and the exact posteriors

min
Q(θ)

KL (Q(θ)‖p(θ|X,Z,y)) (3)

More specifically, using a coordinate descent algorithm, the variational approach updates
one approximate distribution, e.g, q(H), in Equation (2) at a time while having all the
others fixed. The detailed updates are given in the following paragraphs.

3.1 Updating Variational Distributions for Continuous Data

For the continuous data X, the approximate distributions of the projection matrix G, the
noise variance η, the selection indicators Sg and the selection probabilities Πg are

Q(G) =

p∏
i=1

N (gi;λi,Ωi), (4)

Q(Sg) =

p∏
i=1

k∏
j=1

β
sijg
ij (1− βij)1−sijg , (5)

Q(Πg) =

p∏
i=1

k∏
j=1

Beta(πijg |l̃
ij
1 , l̃

ij
2 ), (6)

Q(η) = Gamma(η|r̃1, r̃2). (7)

The mean and covariance of gi are calculated as follows:

Ωi =
(
〈η〉〈UU>〉+

1

σ2
1

diag(〈sig〉) +
1

σ2
2

diag(1− 〈sig〉)
)−1

,

λi = Ωi(〈η〉〈U〉x̃i),

where 〈·〉 means expectation over a distribution, x̃i and sig are the transpose of the i-th

rows of X and Sg, 〈sig〉 = [βi1, . . . , βik]
>, and 〈g2

ij〉 is the j-th diagonal element in Ωi. The

computation of parameters βij and Q(πijg ) can be found in Appendices A.

3.2 Updating Variational Distributions for Ordinal Data

For the ordinal data Z, we update the approximate distributions of the projection matrix H,
the auxiliary variables C, the sparse selection indicators Sh and the selection probabilities
Πh. To make the variational distributions tractable, we update Q(H) in a column-wise
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way and re-denote H = [h̃1, h̃2, ...h̃k], Sh = [s1
h, s

2
h, ...s

k
h] and U = [ũ1, ũ2, ...ũk]

>. The
variational distributions of C and H are

Q(C) =

q∏
i=1

k∏
j=1

Q(cij), (8)

Q(cij) ∝ δ(bzij ≤ cij < bzij+1)N (cij |c̄ij , 1), (9)

Q(H) =
k∏
i=1

N (h̄i;γi,Λi), (10)

where c̄ij = (〈H〉〈U〉)ij , Λi =
(
〈ũi>ũi〉I+ 1

σ2
1
diag(〈sih〉)+ 1

σ2
2
diag(〈1−sih〉)

)−1
, γi = ΛiCi〈ui〉

and Ci = C −
∑

j 6=i γj〈ũj〉>. The computation of parameters in the distributions of Sh
and Πh is given in Appendices B.

3.3 Updating Variational Distributions for Labels

For the ordinal labels y, we update the approximation distributions of the auxiliary variables
f , the weights vector w, the sparse selection indicators sw and the selection probabilities
πw. The variational distributions of f and w are

Q(f) =

n∏
i=1

Q(fi), (11)

Q(fi) ∝ δ(byi ≤ fi < byi+1)N (fi|f̄i, σ2
fi

), (12)

Q(w) = N (w; m,Σw), (13)

where f̄i = (〈U〉>m)i, Σw =
(
〈UU>〉+ 1

σ2
1
diag(sw)+ 1

σ2
2
diag(1−sw)

)−1
and m = Σw〈U〉〈f〉.

The computation of parameters in the variational distributions of sw and πw can be found
in Appendices C.

3.4 Updating Variational Distributions for Latent Representation U

The variational distribution for U is given by

Q(U) =
∏
i

N (ui|µi,Σi) (14)

where

Σi =
(
〈ww>〉+ 〈η〉〈G>G〉+ 〈H>H〉+ I

)−1
(15)

µi = Σi(〈w〉〈fi〉+ 〈η〉〈G〉>xi + 〈H〉>〈ci〉). (16)

The required moments are given in Appendices D.

3.5 Label Prediction

Let us denote the training data as Dtrain = {Xtrain,Ztrain,ytrain} and the test data as
Dtest = {Xtest,Ztest}. The prediction task needs the latent representation Utest for Dtest.
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We carry out variational inference simultaneously on Dtrain and Dtest. After both Q(Utest)
and Q(Utrain) are obtained, we predict the labels for test data as follows:

ftest = 〈Utest〉>m, (17)

yitest =
R−1∑
r=0

r · δ(br ≤ f itest < br+1), (18)

where yitest is the prediction for i-th test sample.

4. Sparse Heterogeneous Multiview Learning Model with Linkage
Disequilibrium Priors

In population genetics, lLinkage Disequilibrium (LD) refers to the non-random association
of alleles at different loci, i.e., the presence of statistical associations between alleles at
different loci that are different from what would be expected if alleles were independently,
randomly sampled based on their individual allele frequencies (Slatkin, 2008). If there is
no linkage disequilibrium between alleles at different loci they are said to be in linkage
equilibrium.

Linkage Disequilibrium also appears in the SNPs, which is a measure between pairs of
SNPs and can be regarded as a natural indicator for the correlation between SNPs. This
information can be publicly retrieved from www.ncbi.nlm.nih.gov/books/NBK44495/. To
incorporate such correlation as a prior in our model, we first introduce a latent q×k matrix
H̃, which is tightly linked to H as explained later. Each column h̃j of H̃ is regularized by
the graph Laplacian of the LD structure, i.e.,

p(H̃|L) =
∏
j

N (h̃j |0,L−1)

=
∏
j

N (0|h̃j ,L−1)

= p(0|H̃,L),

where L is the graph Laplacian matrix of the LD structure. As shown above, the prior
p(H̃|L) has the same form as p(0|H̃,L), which can be viewed as a generative model – in
other words, the observation 0 is sampled from H̃. This view enables us to combine the
generative model for graph Laplacian regularization with the sparse projection model via a
principled hybrid Bayesian framework (Lasserre et al., 2006).

To link the two models together, we introduce a prior over H̃:

p(H̃|H) =
∏
j

N (h̃j |hj , λI)

where the variance λ controls how similar H̃ and H are in our model. For simplicity, we
set λ = 0 so that p(H̃|H) = Dirac(H̃−H) where Dirac(a) = 1 if a = 1 and Dirac(a) = 0 if
a = 0.

Adopting this additional information, the new graphical model is designed as shown in
Fig. 2.
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Figure 2: The graphical representation of our model, where X is the continuous view, Z is the
ordinal view, y are the labels and L is the graph laplacian generated by the LD structure.

Based on all these specifications, the joint distribution of our model is

p(X,Z,y,U,G,Sg,Πg, η,C,H, H̃,Sh,Πh,Sw,Πw, f)

= p(X|U,G, η)p(G|Sg)p(Sg|Πg)p(Πg|l1, l2)p(η|r1, r2)

· p(Z,C|U,H)p(H|Sh)p(Sh|Πh)p(Πh|d1, d2)p(H̃|H)

· p(0|H̃,L)p(y|f)p(f |U,w)p(w|Sw)p(Sw|Πw)p(U). (19)

The inference is almost the same with the original model described in Section 2, except
the updating of the sparse projection matrix H. Given the ordinal data Z and the updates
of other variables, we update the approximate distributions of the projection matrix H, the
auxiliary variables C, the sparse selection indicators Sh and the selection probabilities Πh.
The variational distributions of C and H are

Q(C) =

q∏
i=1

k∏
j=1

Q(cij), (20)

Q(cij) ∝ δ(bzij ≤ cij < bzij+1)N (cij |c̄ij , 1), (21)

Q(H) =

k∏
i=1

N (h̄i;γi,Λi), (22)

where c̄ij = (〈H〉〈U〉)ij , Λi =
(
〈ũi>ũi〉I + L + 1

σ2
1
diag(〈sih〉) + 1

σ2
2
diag(〈1 − sih〉)

)−1
, γi =

ΛiCi〈ui〉 and Ci = C−
∑

j 6=i γj〈ũj〉>. The updating of other variables remains the same.

5. Experimental Results and Discussion

In order to examine the performance of the proposed method , we design a simulation study
and a realworld study for Alzheimer’s Disease.
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5.1 Simulation Study

We first design a simulation study to examine the basic model, i.e., our model, in terms of
(i) estimation accuracy on finding associations between the two views and (ii) prediction
accuracy on the ordinal labels. Note that a similar study can be conducted on the model
with LD priors.

5.1.1 Simulation Data

To generate the ground truth, we set n = 200 (200 instances), p = q = 40, and k = 5. We
designed G, the 40× 5 projection matrix for the continuous data X, to be a block diagonal
matrix; each column of G had 8 elements being ones and the rest of them were zeros,
ensuring each row with only one nonzero element. We designed H, the 40 × 5 projection
matrix for the ordinal data Z, to be a block diagonal matrix; each of the first four columns
of H had 10 elements being ones and the rest of them were zeros, and the fifth column
contained only zeros. We randomly generated the latent representations U ∈ Rk×n with
each column ui ∼ N (0, I). To generate Z, we first sampled the auxiliary variables C with
each column ci ∼ N (Hui, 1), and then decided the value of each element zij by the region
cij fell in—in other words, zij =

∑2
r=0 rδ(br ≤ cij < br+1). Similarly, to generate y, we

sampled the auxiliary variables f from N (0,U>U + I) and then each yi was generated by
p(yi|fi) = δ(yi = 0)δ(fi ≤ 0) + δ(yi = 1)δ(fi > 0).

5.1.2 Comparative Methods

We compared our model with several state-of-the-art methods including (1) CCA (Bach &
Jordan, 2005), which finds the projection direction that maximizes the correlation between
two views, (2) sparse CCA (Sun, Ji, & Ye, 2011; Daniela & Tibshirani, 2009), where
sparse priors are put on the CCA directions, and (3) multiple-response regression with lasso
(MRLasso) (Kim, Sohn, & Xing, 2009) where each column of the second view (Z) is regarded
as the output of the first view (X). We did not include results from the sparse probabilistic
projection approach (Archambeau & Bach, 2009) because it performed unstably in our
experiments. Regarding the software implementation, we used the built-in Matlab routine
for CCA and the code by (Sun et al., 2011) for sparse CCA. We implemented MRLasso
based on the Glmnet package (cran.r-project.org/web/packages/glmnet/index.html).

To test prediction accuracy, we compared the proposed SHML model based on the
Gaussian process prior with the following ordinal or multinomial regression methods: (1)
lasso for multinomial regression (Tibshirani, 1994), (2) elastic net for multinomial regression
(Zou & Hastie, 2005), (3) sparse ordinal regression with the spike and slab prior, (4) CCA
+ lasso, for which we first ran CCA to obtain the latent features H and then applied lasso
to predict y, (5) CCA + elastic net, for which we first ran CCA to obtain the projection
matrices and then applied elastic net on the projected data, (6) Gaussian Process Ordinal
Regression (GPOR) (Chu & Ghahramani, 2005), and (7) Laplacian Support Vector Machine
(LapSVM) (Melacci & Mikhail, 2011), a semi-supervised SVM classification method. We
used the published code for lasso, elastic net, GPOR and LapSVM. For all the methods,
we used 10-fold cross validation on the training data for each run to choose the kernel form
(Gaussian or linear or Polynomials) and its parameters (the kernel width or polynomial
orders) for our model, GPOR, and LapSVM.
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Because alternative methods cannot learn the dimension automatically for simple com-
parison, we provided the dimension of the latent representation to all the methods we tested
in our simulations. We partitioned the data into 10 subsets and used 9 of them for training
and 1 subset for testing; we repeated the procedure 10 times to generate the averaged test
results.

5.1.3 Results

To estimate linkage (i.e., interactions) between X and Z, we calculated the cross covariance
matrix GH>. We then computed the precision and the recall based on the ground truth.
The precision-recall curves are shown in Figure 3. Clearly, our method successfully recov-
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Figure 3: The precision-recall curves for association discovery.

ered almost all the links and significantly outperformed all the competing methods. This
improvement may come from i) the use of the spike and slab priors, which not only remove
irrelevant elements in the projection matrices but also avoid over-penalizing the active as-
sociation structures (the Laplace prior used in sparse CCA does over penalize the relevant
ones) and ii) more importantly, the supervision from the labels y, which is probably the
biggest difference between ours and the other methods for the association study. The failing
of CCA and sparse CCA may be due to the insufficient representation of all sources of data
caused by using only one projection direction. The prediction accuracies on unknown y and
their standard errors are shown in Figure 4a and the AUC and their standard errors are
shown in Figure 4b. Our proposed SHML model achieves significant improvement over all
the other methods. It reduces the prediction error of elastic net (which ranks the second
best) by 25%, and reduces the error of LapSVM by 48%.

5.2 Real-World Study on Alzheimer’s Disease

Alzheimer’s Disease is the most common form of dementia with about 30 million patients
worldwide and payments for care are estimated to be $200 billion in 2012 (Alzheimer’s
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Figure 4: The prediction results on simulated and real datasets. The results are averaged over 10
runs. The error bars represent standard errors.

Association, 2012). We conducted association analysis and diagnosis of AD based on a
dataset from Alzheimer’s Disease Neuroimaging Initiative(ADNI) 1. The ADNI study is a
longitudinal multisite observational study of elderly individuals with normal cognition, mild
cognitive impairment, or AD. We applied the proposed method to study the associations
between genotypes and brain atrophy measured by MRI and to predict the subject status
(normal vs MCI vs AD). Note that the statuses are ordinal since they represent increasing
severity levels.

After removing missing values, the data set consists of 625 subjects including183 normal,
308 MCI and 134 AD cases, and each subject contains 924 SNPs and 328 MRI features.
The selected SNPs are those top SNPs separating normal subjects from AD in ADNI.
The MRI features measure the brain atrophies in different brain regions based on cortical
thickness, surface areas or volumes, which are obtained from FreeSurfer software 2. To test
the diagnosis accuracy, we compared our method with the previously mentioned ordinal or
multinomial regression methods. We employ the extended model with linkage disequilibrium
priors, denoted as SHML-LD, to discover the associations.

We compare both SHML and SHML-LD with the state-of-the-art classification methods.
And we used the 10-fold cross validation for each run to tune free parameters on the training
data. To determine the dimension k for the latent features U in our method, we computed
the variational lower bounds as an approximation to the model marginal likelihood (i.e.,
evidence), with various k values {10, 20, 40, 60}. We chose the value with the largest ap-
proximate evidence, which led to k = 20 (see Figure 5). Our experiments confirmed that
with k = 20, our model achieved the highest prediction accuracy, demonstrating the benefit
of evidence maximization.

As shown in Figure 6, our method achieved the highest prediction accuracy, higher than
that of the second best method, GP ordinal Regression, by 10% and than that of the worst
method, CCA+lasso, by 22%. The two-sample t test shows our model outperforms the
alternative methods significantly (p < 0.05).

1. http://adni.loni.ucla.edu/
2. http://surfer.nmr.mgh.harvard.edu
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We also examined the strongest associations discovered by our model. Firstly, the rank-
ing of MRI features in terms of prediction power for the three different disease populations
(normal, MCI and AD) demonstrate that most of the top ranked features are based on
the cortical thickness measurement. On the other hand, the features based on volume and
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Figure 7: The estimated associations between MRI features and SNPs. In each sub-figure,
the MRI features are listed on the right and the SNP names are given at the
bottom.

surface area estimation are less predictive. Particularly, thickness measurements of middle
temporal lobe, precuneus, and fusiform were found to be most predictive compared with
other brain regions. These findings are consistent with the memory-related function in
these regions and findings in the literature for their prediction power of AD. We also found
that measurements of the same structure on the left and right sides have similar weights,
indicating that the algorithm can automatically select correlated features in groups, since
no asymmetrical relationship has been found for the brain regions involved in AD.

Secondly, the analysis of associating genotype to AD prediction also generated interest-
ing results. Similar to the MRI features, SNPs that are in the vicinity of each other are often
selected together, indicating the group selection characteristics of the algorithm. For exam-
ple, the top ranked SNPs are associated with a few genes including CAPZB (F-actin-capping
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protein subunit beta), NCOA2 (The nuclear receptor coactivator 2) and BCAR3(Breast
cancer anti-estrogen resistance protein 3).

At last, biclustering of the gene-MRI associations, as shown in Figure 7, reveals inter-
esting patterns in terms of the relationship between genetic variations and brain atrophy
measured by structural MRI. For example, the top ranked SNPs are associated with a few
genes including BCAR3 (Breast cancer anti-estrogen resistance protein 3) and NCOA2, and
MAP3K1 (mitogen-activated protein kinase kinase kinase 1) which have been studied more
carefully in cancer research. The set of SNPs are associated with cingulate in negative
directions, which is part of the limbic system and involves in emotion formation and pro-
cessing. Compared with other structures such as temporal lobe, it plays a more important
role in the formation of long-term memory. For example, the association between MAP3K1
and the caudate anterior cingulate cortex has been identified. Literature has shown that
MAP3K1 is associated with biological processes such as apoptosis, cell cycle, chromatin
binding and DNA binding3, and cingulate cortex has been shown to be severely affected
by AD (Jones et al., 2006). The strong association discovered in this work might indicate
potential genetic effects in the atrophy pattern observed in this cingulate subregion.

6. Related Work

The proposed our model model is related to a broad family of probabilistic latent variable
models, including probabilistic principle component analysis (Tipping & Bishop, 1999),
probabilistic canonical correlation analysis (Bach & Jordan, 2005) and their extensions (Yu,
Yu, Tresp, Kriegel, & Wu, 2006; Archambeau & Bach, 2009; Guan & Dy, 2009; Virtanen,
Klami, & Kaski, 2011). They all learn a latent representation whose projection leads to the
observed data. Recent studies on probabilistic factor analysis methods put more focus on
the sparsity-inducing priors to the projection matrix. Among them, Guan and Dy (2009)
used the Laplace prior, the Jeffrey’s prior, and the inverse-Gaussian prior; Archambeau and
Bach (2009) employed the inverse-Gamma prior; and Virtanen et al. (2011) used the Auto-
matic Relevance Determination(ARD) prior. Despite their success, these sparsity-inducing
priors have their own disadvantages – they confound the degree of sparsity with the degree
of regularization on both relevant and irrelevant variables, while in practical settings there
is little reason that these two types of complexity control should be so tightly bounded
together. Although the inverse-Gaussian prior and the inverse-Gamma prior provide more
flexibility of controlling the sparsity, they suffer from being highly sensitive to the control-
ling parameters and thus lead to unstable solutions. In contrast, our model adopts the spike
and slab prior, which has been recently used in multi-task multiple kernel learning (Titsias
& Lázaro-Gredilla, 2011), sparse coding (Goodfellow et al., 2012), and latent factor analy-
sis (Carvalho, Chang, Lucas, Nevins, Wang, & West, 2008). Note that while our Beta priors
over the selection indicators lead to simple yet effective variational updates, the hierarchi-
cal prior in the work of Carvalho et al.(2008) can better handle the selection uncertainty.
Regardless what priors are assigned to the spike and slab models, they generally avoid the
confounding issue by separately controlling the projection sparsity and the regularization
effect over selected elements.

3. https://portal.genego.com/
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SHML is also connected with many methods on learning from multiple sources or
views (Hardoon, Leen, Kaski, & Shawe-Taylor, 2008). Multiview learning methods are
often used to learn a better classifier for multi-label classification – usually in text mining
and image classification domains – based on correlation structures among the training data
and the labels (Yu et al., 2006; Virtanen et al., 2011; Rish, Grabarnik, Cecchi, Pereira, &
Gordon, 2008). However, in medical analysis and diagnosis, we meet two separate tasks –
the association discovery between genetic variations and clinical traits, and the diagnosis
on patients. Our proposed SHML conducts these two tasks simultaneously: it employs the
diagnosis labels to guide association discovery, while leveraging the association structures to
improve the diagnosis. In particular, the diagnosis procedure in SHML leads to an ordinal
regression model based on latent Gaussian process models. The latent Gaussian process
treatment differentiates ours from multiview CCA models (Rupnik & Shawe-Taylor, 2010).
Moreover, most multiview learning methods do not model the heterogeneous data types
from different views, and simply treat them as continuous data. This simplification can
degrate the predictive performance. Instead, based on a probabilistic framework , SHML
uses suitable link functions to fit different types of data.

7. Conclusions

We have presented a new Bayesian multiview learning framework to simultaneously find
key associations between data sources (i.e., genetic variations and phenotypic traits) and to
predict unknown ordinal labels. We have shown that the model can also employ background
information, e.g., the Linkage Disequilibrium information, via an additional graph Laplacian
type of prior. Our proposed approach follows a generative model: it extracts a common
latent representation which encodes the structural information within all the data views,
and then generates data via sparse projections. The encoding of knowledge from multiple
views via the latent representation makes it possible to effectively detect the associations
with high sensitivity and specificity.

Experimental results on the ADNI data indicate that our model found biologically mean-
ingful associations between SNPs and MRI features and led to significant improvement on
predicting the ordinal AD stages over the alternative classification and ordinal regression
methods. Despite the drawbacks of the proposed framework in slow training speed and re-
quirement of careful tuning parameters, it has strong modeling power due to the Bayesian
nature. Although we have focused on the AD study, we expect that our model, as a power-
ful extension of CCA, can be applied to a wide range of applications in biomedical research
– for example, eQTL analysis supervised by additional labeling information.
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Appendix A. Parameter Update for Continuous Data

The parameter βij in Q(sijg ) introduced in Section 3.1 is calculated as βij = 1/
(
1 +

exp(〈log(1− πijg )〉 − 〈log(πijg )〉+ 1
2 log(

σ2
1

σ2
2
) + 1

2〈g
2
ij〉( 1

σ2
1
− 1

σ2
2
))
)
. The parameters of the Beta

distribution Q(πijg ) is given by l̃ij1 = βij + l1 and l̃ij2 = 1 − βij + l2. The parameters of
the Gamma distribution Q(η) are updated as r̃1 = r1 + np

2 and r̃2 = r2 + 1
2tr(XX>) −

tr(〈G〉〈U〉X>) + 1
2tr(〈UU>〉〈G>G〉).

The moments required in the above distributions are calculated as 〈η〉 = r̃1
r̃2

and

〈log(πijg )〉 = ψ(l̃ij1 )− ψ(l̃ij1 + l̃ij2 ),

〈log(1− πijg )〉 = ψ(l̃ij2 )− ψ(l̃ij1 + l̃ij2 ),

〈G>G〉 =

p∑
i=1

Ωi + λiλ
>
i ,

〈G〉 = [λ1, . . . ,λp]
>, (23)

where ψ(x) = d
dx ln Γ(x).

Appendix B. Parameter Update for Ordinal Data

The variational distributions of Sh and Πh introduced in Section 3.2 are given by

Q(Sh) =

q∏
i=1

k∏
j=1

α
sijh
ij (1− αij)1−sijh , (24)

Q(Πh) =

q∏
i=1

k∏
j=1

Beta(πij
h |d̃

ij
1 , d̃

ij
2), (25)

where αij = 1/
(
1+exp(〈log(1−πijh )〉−〈log(πijh )〉+ 1

2 log(
σ2
1

σ2
2
)+ 1

2〈h
2
ij〉( 1

σ2
1
− 1
σ2
2
))
)
, d̃ij1 = αij+d1,

d̃ij2 = 1− αij + d2, 〈sih〉 = [α1i, . . . , αqi]
>, and 〈h2

ij〉 is the i-th diagonal element in Λj .
The required moments for updating the above distributions can be calculated as follows:

〈log(πijh )〉 = ψ(d̃ij1 )− ψ(d̃ij1 + d̃ij2 ),

〈log(1− πijh )〉 = ψ(d̃ij2 )− ψ(d̃ij1 + d̃ij2 ),

〈cij〉 = c̄ij −
N (bzij+1|c̄ij , 1)−N (bzij |c̄ij , 1)

Φ(bzij+1 − c̄ij)− Φ(bzij − c̄ij)
,
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where Φ(·) is the cumulative distribution function of a standard Gaussian distribution. Note
that in Equation (26), Q(cij) is a truncated Gaussian and the truncation is controlled by
the observed ordinal data zij .

Appendix C. Parameter Update for Labels

The variational distributions of sw and πw in Section 3.3 are given by

Q(sw) =

k∏
i=1

τ
siw
i (1− τi)1−siw , (26)

Q(πw) =
k∏
i=1

Beta(πiw; ẽi1, ẽ
i
2), (27)

where τi = 1/
(
1 + exp(〈log(1 − πiw)〉 − 〈log(πiw)〉 + 1

2〈w
2
i 〉( 1

σ2
1
− 1

σ2
2
))
)
, ẽi1 = τi + e1 and

ẽi2 = 1− τi + e2.
The required moments for updating the above distributions can be calculated as follows:

〈log(πiw)〉 = ψ(ẽi1)− ψ(ẽi1 + ẽi2),

〈log(1− πiw)〉 = ψ(ẽi2)− ψ(ẽi1 + ẽi2),

〈fi〉 = f̄i −
N (byi+1|f̄i, 1)−N (byi |f̄i, 1)

Φ(byi+1 − f̄i)− Φ(byi − f̄i)
.

Note that Q(fi) is also a truncated Gaussian and the truncated region is decided by the or-
dinal label yi. In this way, the supervised information from y is incorporated into estimation
of f and then estimation of the other quantities by the recursive updates.

Appendix D. Parameter Update for Latent Representation U

The required moments 〈ww>〉, 〈G>G〉 and 〈H>H〉 introduced in Section 3.4 are calculated
as 〈ww>〉 = Σw + mm>, 〈G>G〉 =

∑p
i=1 Ωi + λiλ

>
i and

(〈H>H〉)ij =

{
trace(Λi + γiγ

>
i ) i = j

γ>i γj i 6= j
.

The other required moments have already been listed in the previous sections. The mo-
ments regarding U required in the updates of other variational distributions are 〈U〉 =
[µ1,µ2, ...µn], 〈UU>〉 =

∑n
i=1 µiµ

>
i +Σi, 〈ũi〉 = [µi1, µ

i
2, ...µ

i
n]> and 〈ũ>i ũi〉 =

∑n
j=1(µij)

2 +
(Σj)ii.
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