Journal of Artificial Intelligence Research 57 (2016) 1-37 Submitted 03/16; published 09/16

Learning Continuous Time Bayesian Networks in
Non-stationary Domains

Simone Villa VILLA@DISCO.UNIMIB.IT
Fabio Stella STELLA@DISCO.UNIMIB.IT
Department of Informatics, Systems and Communication

University of Milano-Bicocca

Viale Sarca 336, 20126 Milan, Italy

Abstract

Non-stationary continuous time Bayesian networks are introduced. They allow the
parents set of each node to change over continuous time. Three settings are developed for
learning non-stationary continuous time Bayesian networks from data: known transition
times, known number of epochs and unknown number of epochs. A score function for each
setting is derived and the corresponding learning algorithm is developed. A set of numerical
experiments on synthetic data is used to compare the effectiveness of non-stationary con-
tinuous time Bayesian networks to that of non-stationary dynamic Bayesian networks. Fur-
thermore, the performance achieved by non-stationary continuous time Bayesian networks
is compared to that achieved by state-of-the-art algorithms on four real-world datasets,
namely drosophila, saccharomyces cerevisiae, songbird and macroeconomics.

1. Introduction

The identification of relationships and statistical dependencies between components in mul-
tivariate time-series, and the ability of reasoning about whether and how these dependencies
change over time is crucial in many research domains such as biology, economics, finance,
traffic engineering and neurology, to mention just a few. In biology, for example, knowing
the gene regulatory network allows to understand complex biological mechanisms ruling the
cell. In such a context, Bayesian networks (BNs) (Pearl, 1989; Segal, Pe’er, Regev, Koller,
& Friedman, 2005; Scutari & Denis, 2014), dynamic Bayesian networks (DBNs) (Dean
& Kanazawa, 1989; Zou & Conzen, 2005; Vinh, Chetty, Coppel, & Wangikar, 2012) and
continuous time Bayesian networks (CTBNs) (Nodelman, Shelton, & Koller, 2002; Acerbi,
Zelante, Narang, & Stella, 2014) have been used to reconstruct transcriptional regulatory
networks from gene expression data. The effectiveness of discrete DBNs has been investi-
gated to identify functional correlations among neuroanatomical regions of interest (Burge,
Lane, Link, Qiu, & Clark, 2009), while a useful primer on BNs for functional magnetic reso-
nance imaging data analysis has been made available (Mumford & Ramsey, 2014). However,
the mentioned applications require the time-series to be generated from a stationary dis-
tribution, i.e. one which does not change over time. While stationarity is a reasonable
assumption in many situations, there are cases where the data generating process is clearly
non-stationary. Indeed, in the last years, researchers from different disciplines, ranging from
economics to computational biology, to sociology and to medicine have become interested
in representing relationships and dependencies which change over time.

(©2016 AI Access Foundation. All rights reserved.

ViLLA & STELLA

Specifically, researchers have been interested in analyzing the temporal evolution of
genetic networks (Lebre, Becq, Devaux, Stumpf, & Lelandais, 2010), the flow over neural
information networks (Smith, Yu, Smulders, Hartemink, & Jarvis, 2006), heart failure (Liu,
Hommersom, van der Heijden, & Lucas, 2016), complications in type 1 diabetes (Marini,
Trifoglio, Barbarini, Sambo, Camillo, Malovini, Manfrini, Cobelli, & Bellazzi, 2015) and
the dependence structure among financial markets during crisis (Durante & Dunson, 2014).
According to the specialized literature on evolution models (Robinson & Hartemink, 2010),
they can be divided into two main categories: structurally non-stationary, i.e. those models
which are allowed to change their structure over time, and parametrically non-stationary,
i.e. those models which only allow the parameters’ values to change over time.

In this paper, the structurally non-stationary continuous time Bayesian network model
(nsCTBN) is introduced. A nsCTBN consists of a sequence of CTBNs which improves ex-
pressiveness over a single CTBN. Indeed, a nsCTBN allows the parents set of each node to
change over time at specific transition times and thus it allows to model non-stationary sys-
tems. To learn a nsCTBN, the Bayesian score for learning CTBNs is extended (Nodelman,
Shelton, & Koller, 2003). The nsCTBN version of the Bayesian score is still decomposable
by variable and it depends on the knowledge setting which can be: known transition times,
where transition times are known, known number of epochs, where only the number of tran-
sition times is known, and unknown number of epochs, where the number of transition times
is unknown. A learning algorithm for each knowledge setting is designed and developed.
Experiments against non-stationary dynamic Bayesian networks (nsDBNs) (Robinson &
Hartemink, 2010), i.e. the discrete time counterparts of nsCTBNs, have been performed.
The main contributions of this paper are the following;:

e definition of the structurally non-stationary continuous time Bayesian network model;
e derivation of the Bayesian score decomposition under each knowledge setting;

e the design of algorithms for learning nsCTBNs under different knowledge settings.
A novel dynamic programming algorithm for learning nsCTBNs under the known
transition times setting is described, while learning nsCTBNs under the others settings
is performed by simulated annealing, exploiting the dynamic programming algorithm;

e performance comparison between nsCTBNs and nsDBNs under all knowledge settings
for a rich set of synthetic data generated by nsCTBNs and nsDBNs;

e performance comparison between nsCTBNs and state-of-the-art algorithms on real-
world datasets, namely drosophila, saccharomyces cerevisiae and songbird,

e a nsCTBN learned on a macroeconomics dataset consisting of variables evolving at
different time granularities spanning from 1st January 1986 to 31st March 2015.

The rest of the paper is organized as follows. In Section 2 continuous time Bayesian net-
works are introduced together with their learning problem from complete data. Section 3
introduces non-stationary continuous time Bayesian networks, presents three learning set-
tings and derives their corresponding Bayesian score functions. Algorithms for learning
nsCTBNs under different learning settings are described in Section 4. Numerical experi-
ments on synthetic and real-world datasets are presented in Section 5. Section 6 closes the
paper by making conclusions and indicating directions for further research activities.

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

2. Continuous Time Bayesian Networks

Continuous time Bayesian networks combine Bayesian networks and homogeneous Markov
processes together to efficiently model discrete state continuous time dynamical systems
(Nodelman et al., 2002). They are particularly useful for modeling domains in which vari-
ables evolve at different time granularities, such as to model the presence of people at their
computers (Nodelman & Horvitz, 2003), to study reliability of dynamical systems (Boudali
& Dugan, 2006), to model failures in server farms (Herbrich, Graepel, & Murphy, 2007), to
detect network intrusion (Xu & Shelton, 2008), to analyze social networks (Fan & Shelton,
2009), to model cardiogenic heart failure (Gatti, Luciani, & Stella, 2011) and to reconstruct
gene regulatory networks (Acerbi & Stella, 2014; Acerbi, Vigano, Poidinger, Mortellaro,
Zelante, & Stella, 2016). Recently, the complexity of inference in continuous time Bayesian
networks has been studied (Sturlaugson & Sheppard, 2014).

2.1 Basics

The representation ability of continuous time Bayesian networks is inherent to the factor-
ization of the system dynamics into local continuous time Markov processes that depend on
a limited set of states. The continuous time Bayesian network model is defined as follows:

Definition 1. Continuous time Bayesian network (Nodelman et al., 2002). Let X be a
set of random variables X = {X1,Xs,...,Xn}. Fach X has a finite domain of values
Val(X) = {x1,x9,...,21}. A continuous time Bayesian network over X consists of two
components: the first is an initial distribution P, specified as a Bayesian network over X,
the second is a continuous time transition model specified as: a directed (possibly cyclic)
graph G whose nodes are X1, Xo,..., Xn; a conditional intensity matriz (CIM), Q;}a(x),
for each variable X € X, where Pa(X) denotes the set of parents of X in the graph G.

X)

The conditional intensity matrix Q;a(consists of the set of intensity matrices

—qx Qziz;
oy Aoy
Qggu _ Qiaty - Gugts
Y
Gy - G
where pa, ranges over all possible configurations of the parents set Pa(X), while ¢b:* =

ij . qﬁ%‘j. Off-diagonal elements of Q™. i.e. qﬁ?;;j, are proportional to the probability

that the variable X transitions from state x; to state x; given the parents’ state pa,. The
intensity matrix Q5™ can be equivalently summarized with two independent sets: gi* =
{ghi" + 1 < i < I}, i.e. the set of intensities parameterizing the exponential distributions
over when the next transition occurs, and 05 = {657 = ¢hiy, /abi" 1 <i,j < I,j # i},
i.e. the set of probabilities parameterizing the multinomial distributions over where the
state transitions. Note that the CTBN model assumes that only one single variable can
change state at any specific instant, while its transition dynamics are specified by its parents

via the CIM, and they are independent of all other variables given its Markov Blanket.

ViLLA & STELLA

2.2 Structural Learning

Given a fully observed dataset D, i.e. a dataset consisting of multiple trajectories' whose
states and transition times are fully known, the problem of learning the structure of a CTBN
has been addressed as the problem of selecting the graph G* which maximizes the Bayesian
score computed on the dataset D (Nodelman et al., 2003):

BS(G:D) =InP(G)+InP(D|G). (1)

where P(G) is the prior over the graph G and P(D|G) is the marginal likelihood.

The prior P(G) over the graph G, which allows us to prefer some CTBN’s structures
over others, is usually assumed to satisfy the structure modularity property (Friedman &
Koller, 2000), i.e. to decompose into the following product of terms:

= [P(Pa(X) = Pag(X)), (2)

a term for each parents set Pag(X) in the graph G. A uniform prior over G is often used.
The marginal likelihood P(D|G) depends on the prior over parameters P(qg, 8g|G) which
is usually assumed to satisfy the global parameter independence, the local parameter inde-
pendence and the parameter modularity properties, which are outlined below.
Global parameter independence (Spiegelhalter & Lauritzen, 1990) states that the param-
eters qiag X) and Biag (X) associated with each variable X in a graph G are independent,
thus the prior over parameters decomposes by variable as follows:

P(qg.051G) = H P(q Pag Pag(X)‘g) (3)
XeX

Local parameter independence (Spiegelhalter & Lauritzen, 1990) asserts that the param-
eters associated with each configuration pa, of the parents Pag(X) of a variable X are
independent. Therefore, the parameters associated with each variable X are decomposable
by parent configuration pa, as follows:

P(qiag(X)7 Pag(X)‘g HHP pou grav|g). (4)

pavw T;

Parameter modularity (Geiger & Heckerman, 1997) asserts that if a variable X has the same
parents Pag(X) = Pag/(X) in two distinct graphs G and G’, then the probability density
functions of the parameters associated with X must be identical:
Pag(X) pPag(X Pagi (X) L
P(arg()vGXGG()’g) _ P(arg ag]Q) (5)
Furthermore, we also assume that the sets of parameters characterizing the exponen-
tial distributions are independent of the sets of parameters characterizing the multinomial
distributions:

P(qg,06|9) = P(qg|G)P(0g|9). (6)

1. A trajectory is defined to be a sequence of pairs (¢, X (t)), where each transition time ¢ € [0,7] is
associated with the state X (¢) of all the random variables corresponding to the nodes of the CTBN.

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

A Dirichlet distribution is selected as the prior for the parameters associated with the multi-
nomial distribution, while a gamma distribution is selected as the prior for the parameters
associated with the exponential distribution, i.e.

a a Qa
P(ghi) ~Gamma (ap L Th “) , (7)
DA pa pa
P(0%") ~Dir (ax RN ,al,igl) , (8)
Dbay, pay Pay Py, . 9 .
where oy, ", Tr,) Quay s - - - Oy, are the priors’ hyperparameters. In particular, the o hy-

perparameters represent the pseudocounts for the number of transitions from state to state,
while the 7 parameter represents the imaginary amount of time spent in each state before
any data is observed. Note that the hyperparameter af;* is inversely proportional to the
number of joint states of the parents of X. Conditioning on the dataset D, we obtain the
following posteriors over parameters:

P(¢h|D) ~Gamma (apa“ + MEP* TR+ Tpa”) , (9)
P(632"|D) ~Dir (ofty, + M ... ol + MPG)., (10)

where T7;“ and Mz, are the sufficient statistics of the CTBN (Nodelman et al., 2003).
In particular, T4 is the amount of time spent by the variable X in the state z; while its
parents Pa(X) are in state pa,, while M, is the number of times that the variable X
transitions from the state z; to the state z; while its parents Pa(X) are in state pa,,?.

In the Bayesian score (1) the term P(G) does not grow with the size of dataset D.
Thus, the significant term is the marginal likelihood P(D|G). In the case of complete data,
while exploiting the parameters’ independence (6) and the global parameter independence
property (3), the marginal likelihood can be written as follows:

P(DIG) = [MLy ™ |D) ML D), (11)
XeX

where ML(qy Pag()|D) is the marginal likelihood of q derived as follows:

T (aBf® + ME™ 4 1) (o) 5" Y "
H H pau + 1) (pay Tpau)(agiu+M£;l“+1) ’ ()
pau @; T
and M L(Biag(x)ﬂ)) is the marginal likelihood of @ derived as follows:
Pau M’pau) T (agai%))

pay $1*$] xﬁé:cj

under the Bayesian-Dirichlet equivalent (BDe) metric version for CTBNs (Nodelman, 2007).
In this case, the BDe metric uses the priors (7) and (8), while the parameter modularity (5),
as well as the global (3) and the local (4) parameter independence properties are assumed
to be satisfied.

2. Please note that the number of times the variable X leaves the state z; while its parents Pa(X) are in
state pa, is computed as follows M = Zw;#ﬂcf M}Zf;j.

ViLLA & STELLA

In conclusion, the Bayesian score (1) can be computed in closed form by assuming the
structure modularity property (2) is satisfied, and using the BDe metric as follows:

BS(G:D)= Y WmP(Pa(X) = Pag(X))+In ML(q%""™|D) + m ML(6%*7™|D). (14)
XeX

Since the graph G of a CTBN does not have acyclicity constraints, it is possible to maximize
the Bayesian score (14) by separately optimizing the parents set Pa(X) for each variable
X. It is worthwhile to mention that if the maximum number of parents is set, then the
search of the optimal value of the Bayesian score (14) can be performed in polynomial time.
The search can be performed by enumerating each possible parents set or by using a greedy
hill-climbing procedure with operators to add, delete or reverse edges of the graph G.

3. Non-stationary Continuous Time Bayesian Networks

Continuous time Bayesian networks are both structurally stationary, as the graph does not
change over time, and parametrically stationary, as the conditional intensity matrices do
not change over time. These stationarity assumptions are reasonable in many situations,
but there are cases where the data generating process is intrinsically non-stationary and
thus CTBNs can no longer be used. Therefore, in this section, we extend CTBNs to become
structurally non-stationary. i.e. we allow the CTBN’s structure to change over continuous
time.

3.1 Definition

In the non-stationary continuous time Bayesian network model, the graph of the CTBN
is replaced by a graphs sequence G = (G1,Go,...,Gg), where a graph G, represents the
causal dependency structure of the model for the epoch e € {1,2,..., E}3. This model is
structurally non-stationary because of the introduction of the graphs sequence and it can
handle transition times that are common to the whole network and/or node-specific.

Following the notations and definitions used for non-stationary dynamic Bayesian net-
works, we let T = (1,...,tg—1) be the transition times sequence, i.e. the times at which
the causal dependency structure G., active at epoch e, is replaced by the causal dependency
structure Ge+1, which becomes active at epoch e + 1. An epoch is defined to be the period
of time between two consecutive transitions, i.e. the epoch e is active during the period of
time starting at t.—; and ending at t.. The graph G.41, which is active during the epoch
e + 1, differs from the graph G., which is active during the epoch e, in a set of edges that
we call the set of edge changes AG..

Figure 1 shows a graphs sequence G = (G1, Go2, G3, G4) consisting of four epochs (E = 4)
with transition times 7 = (¢1,t9,t3). Each epoch is associated with a set of edge changes.
Specifically, the graph G, differs from the graph G; by the following set of edge changes
AG = {X3 = X9, Xs /4 X3, X1 4 Xo}, the graph Gs differs from the graph G by the
following set of edge changes AGy = {X3 — X1} and the graph G, differs from the graph
Gs by the following set of edge changes AGs = { X3 — X4, Xy — X1, X7 A X4, X4 A X3},

3. It is worthwhile to mention that the first epoch, i.e. the epoch starting at time 0 and ending at time ¢;
is associated with the graph G, while the last epoch, i.e. the epoch starting at time tg_1 and ending at
time T (the supremum of the considered time interval, i.e. [0,T]) is associated with the graph Gg.

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

O OBRORORRORON 0.0
g g g g

1 2 3 4

0 t, t ty T

Figure 1: Graphs sequence G = (G1, G2, G3,G4) of a nsCTBN with four epochs, E = 4, and
three transition times, 7 = (t1, t2,t3), where the edges are gained and lost over time.

Non-stationary continuous time Bayesian networks allow each node to have its own
sequence of parents sets, each parents set being active at a given epoch. Therefore, we
introduce the concept of homogeneous interval H(X) = (hi,...,hyr) associated with node
X, which is defined as the union of consecutive epochs during which the same parents set
Pa(X) is active for the node X. Note that if each epoch is associated with a different
parents set, then M is equal to E.

A non-stationary continuous time Bayesian network is defined as follows.

Definition 2. (Structurally) non-stationary continuous time Bayesian network. Let X be
a set of random wvariables X1,...,Xn. Each X has a finite domain of values Val(X) =
{z1,...,21}. A (structurally) non-stationary continuous time Bayesian network Nys =
(B, M,5) over X consists of two components:

e an initial distribution Pf))(, specified as a Bayesian network B over X,
e a non-stationary continuous time transition model My specified as:

— a sequence of directed (possibly cyclic) graphs G = (G.)E_, whose nodes are
X1,..., XN, where E represents the number of epochs;

— a conditional intensity matriz, Q?Lflgg, VX € X, where Pag(X) denotes the

parents sets of X in G, and H(X) denotes the intervals associated with X .

Pag(X)

The conditional intensity matrix Q' HX)

consists of a set of intensity matrices

pavy pay

_qwlyhm : qmlzfzhm
DAy Dbay
yJezn — qxle,hm : qx2$17hm
X7hm ’
ygezn _ Pau
qz;azl,hm : qzl,hm

one for each configuration pa,, of each parents set Pa(X) € Pag(X) which is active during
the interval h,, € H(X).4

4. Note that the following equation ¢}*} =~ =37 Pl still holds.

Tj AT qicﬂj,hm

ViLLA & STELLA

3.2 Learning Framework

Learning a nsCTBN from a fully observed dataset D can be done using the Bayesian learning
framework taking into account the entire graphs sequence G. In the nsCTBNs case, we must
specify the prior probability over the graphs sequence G and, for each possible sequence, the
density measure over possible values of the parameters gg and 6g. Once they prior P(G)
and the likelihood P(qg,0g|G) are given, the marginal likelihood P(D|G) can be computed
and the Bayesian score can be evaluated. It is important to note that we are focused on
recovering the graphs sequence G and not on detecting possible changes of the parameters.
In fact, we identify non-stationarity in the parameters of the model, i.e. the entries of the
conditional intensity matrices, that are significant enough to result in structural changes of
the graph. Others changes are assumed to be small enough not to alter the graph structure.

3.2.1 PRIOR PROBABILITY OVER GRAPHS

Given the transition times 7, and thus the number of epochs E, we assume that the prior
over the nsCTBN'’s structure G can be written as follows:

P(G|T) = P(G1,....G6|T) = P(G1,AG1, ..., AGp_1|T) = P(G1) P(AGy, ..., AGp_1|T).
(15)
Equation (15) is justified because we assume that the probability distribution over edge
changes only is a function of the number of changes performed, which can also be defined
independently of the initial graph G;. If some knowledge about particular edges or the
overall topology is available for the initial network, then we can use an informative prior
P(G1) otherwise we can resort to a uniform distribution. As in CTBNs, P(G;) must sat-
isfy the structure modularity assumption (2), while the prior over the set of edge changes

P(AGy,...,AGr_1|T) defines the way in which edges change through adjacent epochs.

3.2.2 PRIOR PROBABILITY OVER PARAMETERS

The prior over parameters P(qg,0g|G,T) is selected to satisfy the following assumptions:
independence between the sets of parameters characterizing the exponential and the multi-
nomial distributions (6), parameter modularity (5) and parameter independence. The latter
assumption is divided into three components for nsCTBNs: global parameter independence,
interval parameter independence and local parameter independence.

Global parameter independence asserts that the parameters associated with each node
in a nsCTBN’s graphs sequence are independent, so the prior over parameters decomposes
by variable X as follows:

P(ag,05G,T) = [] Play'sin) 0% 5019, 7). (16)

XeX

Interval parameter independence states that the parameters associated with each interval
of the active parents for each node are independent, so the parameters associated with each
X and its parents sets Pag(X) are decomposable by interval h,, € H(X) as follows:

Pag(X Pa Pa Pa
P(qugIEXg XfI(X)‘gT HP X}fm ,0 g 6. 7). (17)

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

Local parameter independence states that the parameters associated with each state of
a variable in a given interval are independent, thus the parameters associated with each X
in the interval h,, € H(X) are decomposable by parent configuration pa,, as follows:

P(q?ﬁi}() PGQ(X)‘gT HHPqpau gPu G, 7). (18)

Tihm? 7 xihm
pay x;

As in the CTBNSs case, a Dirichlet distribution is used as prior for the parameters of the
multinomial distribution and a gamma distribution is used as prior for the parameters of
the exponential distribution. The sufficient statistics are modified as follows: Tgfzm is the
amount of time spent in state X = x; while Pa(X) = pa,, in the interval H(X) = h,,, while
Mﬁ;}f] is the number of transitions from state X = x; to state X = z; while Pa(X) = pay,
in the interval H(X) = hyp. Welet M7P" =357 . Mg?;;’hm to be the number of times

X leaves state x; while its parents Pa(X) are in state pa,, during the interval H(X) = h,.

3.2.3 MARGINAL LIKELIHOOD

Given the graphs sequence G, and the transition times 7, the marginal likelihood P(D|G,T)
of the dataset D can be computed in closed form using the priors and the sufficient statistics
previously defined. To derive the Bayesian-Dirichlet equivalent metric for nsCTBNs, we
make the same assumptions as those for CTBNs. In this case, the parameter independence
assumption is divided into global (16), interval (17) and local (18) parameter independence.
Therefore, the marginal likelihood becomes:

P(DIg,T) = [ML(ay'§i)ID) MLOYE) D). (19)
XeX

The marginal likelihood of g in equation (19) can be calculated as follows:

(DAy, + MPCLu + 1 PQqy (aij?‘herl)

PQQ(X) xuhm Zihm) (a?l,h)

VHaxeo) = I (@I, M,)
b T (ot 1) (2 e) e

1' Jhom T,

(20)

while the marginal likelihood of € in equation (19) can be calculated as follows:

Ay o) QA
N - I LT
o iy T (0205, +0M2%) oy T (e,)
(21)
It is important to note that for nsCTBNs, the pseudocounts « as well as the imaginary
amount of time 7 are associated with each interval. This aspect requires a careful choice in
order not to be too biased towards these values when small intervals are analyzed.
A possible correction is to weight the CTBN’s hyperparameters by a quantity propor-
tional to the time interval width (h,, — hy,—1), where hjps denotes the total time. Thus, the
nsCTBN’s hyperparameters could be defined as follows:

— Pau (hm = him-1)

ag‘j;j,hm - a$¢xj hM 9 (22)
hm — B
ey = rgltm) 23)
M

ViLLA & STELLA

If you want to control the parameter priors using only two hyperparameters « and T,
then you can use the uniform BDe for nsCTBNs (BDeu). In this case, the hyperparameters
defined in (22) and (23) are divided by the number U of possible configurations of the
parents Pa(X) of node X times the cardinality I of the domain of X, as follows:

(hm - hm—l)

pay o
= — 24
Iiiﬁj,hm U I hM ’ ()
Pay, _ T (hm - hmfl)
Teihm = Ul hay : (25)

Equations (22) and (23) rescale the hyperparameters in such a way not to be biased with
respect to the epochs’ length, while equations (24) and (25) are based on the uniform
distribution and they have been used for performing all numerical experiments.

3.3 Bayesian Score Decomposition

The Bayesian score can be decomposed by variable based on the information available
about the transition times. In this regard, three knowledge settings are used to derive the
Bayesian score, namely: known transition times (KTT), known number of epochs (KNE)
and unknown number of epochs (UNE).

3.3.1 KNOWN TRANSITION TIMES

In this setting, the transition times 7 are known. Thus, the prior probability over the
graphs sequence P(G|7T) decomposes as in equation (15), while the marginal likelihood
decomposes by variable X according to equation (19).

Therefore, the Bayesian score BS(G : D,7T) can be written as follows:

BS(G:D,T) = InP(G)+InP(AG,...,AGg_1|T)

Pag(X Pag(X
+ I ML(gy'§) D) + In ML(OY'E) D). (26)

In such a setting the structural learning problem of a non-stationary continuous time
Bayesian network consists of finding the graph Gy active during the first epoch (e = 1) and
the E —1 sets of edge changes AGy, ..., AGgr_1 together with the corresponding parameters
values, which maximize the Bayesian score defined in equation (26).

The graphs Go,...,Gg are selected by making assumptions on the ways by which the
edges change over continuous time. A common approach (Robinson & Hartemink, 2010)
consists of assuming that the graphs sequence G = (Gi,...,Gg) depends on a parameter
which controls the number of edge changes over continuous time. This approach uses a
truncated geometric distribution, with parameter p = 1 — exp(—A\.), to model the number
of parents’ changes occurring at transition time f.1:

ce= Y |AG(X)|. (27)
XeX

The variable ¢, counts the number of edge changes between two consecutive graphs G, and
Get1, while the parameter A, controls the impact of the number of edge changes ¢, on the
score function (26).

10

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

If the edge changes AG. are assumed to be mutually independent, then the probability
for the edge changes through subsequent epochs can be written as follows:

E-1

E— Ce
P(AG, ..., AGp_y|T) = H eXIEe(xp()l())cfmij)) o [T (exp(=Ae))es, (28)

e=1

where ¢, is the truncation term. Therefore, if we assume a truncated geometric distri-
bution on the number of parents’ changes occurring at each transition times and equation
(28) holds, then the Bayesian score (26) decomposes by variable X as follows:

E-1
BS(G:D,T) = Y WP(Pa(X)=Pag (X)) — A Y ce
XeX e=1
Pa Pa (X
+ I ML(gy'§) D) + In MLOY'E) D). (29)

It is worthwhile to notice that the number of parents’ changes c. for each epoch e
penalizes the Bayesian score, and thus it discourages sudden variations in the parents set
between consecutive epochs, while the parameter A, controls the impact of such changes on
the score function (26).

3.3.2 KNOwN NUMBER OF EPOCHS

If the transition times 7 are unknown, then the Bayesian score can be written as follows:
BS(G,T :D)=WP(G,T)+WnP(D|IG,T). (30)

Assuming that P(G,7T) = P(G)P(T) the Bayesian score (30) becomes:
BS(G, T :D)=mP(G)+InP(T)+InP(D|G,T). (31)

If the number of epochs FE is known, then the prior probability P(G) over the graphs
sequence G decomposes as in equation (15), while a truncated geometric distribution can
be used on the number of parents’ changes occurring at each transition time, as in the
known transition times setting.

Any choice for P(7") can be made to include prior knowledge about the set of transition
times. However, if no information is available, a uniform prior on P(7) is used, implying
that all possible values of transition times are equally likely for a given number of epochs
E. Thus, the Bayesian score (31) can be decomposed by variable X as follows:

BS(G,T:D) = WmP(T)+ > InP(Pa(X) = Pag, (X)) — A i Ce
XeX =

+ In ML(qy g0 D) + In ML(OS)

). (32)

where c. counts the number of edge changes between two consecutive parents sets, while A,
controls the impacts on BS(G, T : D) of such edge changes, as it happens under the KTT
setting.

11

ViLLA & STELLA

3.3.3 UNKNOWN NUMBER OF EPOCHS

If the number of epochs E is unknown, then transition times 7 are unknown as well.
Under this setting, we learn a nsCTBN by exploiting what introduced under the KTT
and KNE settings. We assume that the structure of the non-stationary continuous time
Bayesian network can evolve at different speeds over continuous time. Such an assumption
is incorporated by using a truncated geometric distribution with parameter p = 1—exp(—A\¢)
on the number of epochs. In general, large values of A, encode the strong prior belief that
the structure of the nsCTBN changes slowly (i.e. few epochs exist).

Following what we presented under the K'T'T setting, the Bayesian score can be obtained
by subtracting the parameter \. times the number of epochs E. Therefore, the Bayesian
score BS(G,T : D) decomposes by variable X as follows:

E-1
BS(G,T:D) = ImP(T)=AE+ Y InP(Pa(X)= Pag, (X)) = A c
XeX e=1
Pag(X Pag(X
+ In ML(gy'§0)|D) +In MLOS) D). (33)

Note that the Bayesian score (33) contains two parameters, namely A. and A., which
encode our prior belief about the structure of the nsCTBN. Specifically, the parameter A,
regulates our prior belief about the smoothness of the edge changes (e.g. encouraging or
discouraging the edge changes per epoch), while the parameter A, regulates our prior belief
about the number of epochs (e.g. encouraging or discouraging the creation of epochs).

4. Structural Learning

The optimal structure of nsCTBNs can be found by separately maximizing the components
of the Bayesian score associated with each node. This can be achieved by using an ex-
act optimization algorithm based on dynamic programming when the transition times are
given. By contrast, when only the number of epochs is known or no information about the
transition times is available, we have to resort to approximate techniques based on Monte
Carlo or on simulated annealing. We present the exact algorithm for solving the structural
learning problem under the KTT setting. Then, we briefly outline the stochastic algorithms
to solve the structural learning problem under the KNE setting and under the UNE setting.

4.1 Known Transition Times

Under this setting the Bayesian score decomposes according to equation (29). Thus, the
optimal graphs sequence G* can be found by separately searching the optimal parents se-
quence G% for each node X. To solve the problem of finding the optimal parents sequence
G% for node X we consider a sequence consisting of M intervals H(X) = (hi,...,has) and
S possible parents, so to have Z = 2% possible parents sets. To find the optimal parents
sequence G% we must compute M x Z marginal likelihood terms associated with g and 6,
one marginal likelihood term for each possible parents set Pa.(X) and each interval h,.
Then, an optimization algorithm can be used to find the maximum of the component of the
Bayesian score associated with the node X.

12

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

An exhaustive search would be prohibitive, as it would require evaluating ZM scores,
one for each possible parents sequence Gx. Unfortunately, also a greedy search strategy
that computes the parents set which maximizes the Bayesian score for each interval is not
viable. In fact, the function that counts the parents’ changes c. in (29) binds the choice of
the subsequent parents set, i.e. it binds G, to G.11.

However, the relation between the score of the variable X associated with the parents set

Pa(X) in the interval h,,, denoted as BS;a}Ef), and the score associated with the parents set

Pa(X) in the interval h,,—1, denoted as BS;?,fle, can be defined by recursion as follows:
BSYGE) = max { BSL5)~ Aex + nML(ayy) 050 D) | (34)

where cx . = |AG.(X)|, while the marginal likelihoods of ¢ and @ are grouped together.

The score BS;ah(f), associated with the parents set Pa(X) for node X in the interval h,,, is
introduced to ciarify the recursion used in the Algorithm 1. Note that this score depends on
all the components of the score up to h,,. In particular, not only the marginal likelihoods
component is involved, but also the term cx ., which counts the parents’ changes, is included
as it binds the choice of subsequent parents sets. Equation (34) is exploited by dynamic
programming to select the optimal parents sequence G% for each node X.

Algorithm 1 takes as input the marginal likelihoods of q and 6 for each interval and
parents set, the prior probability about the initial parents set, the number of parents’
changes, and the parameter A\.. Algorithm 1 ensures the optimal parents sequence G% for
the node X and its corresponding optimal Bayesian score. Its core is the computation of
the M x Z score matrix, denoted by SC, through the dynamic programming recursion. The
dynamic programming recursion for the interval hy (m = 1) is defined as follows:

SC; = ML(qy 5™, 055 ™) D) + In P(Pa.(X) = Pag, (X)), (35)
for 1 < z < Z, while, for the intervals h,, (m =2,..., M), the recursion is:

z u Pa, (X Pa(X)
SCr, = 1r§nua§xz {SC’m,l +In ML(qX’hL), HXJ“(R |D) —)\ccx7e} :

After filling the score matrix SC, the value max,{SC[M, z]} is the optimal Bayesian score,
while the optimal parents sequence is reconstructed backwards from M to 1 by using the
index matrix IN. The cost of computing the dynamic programming recursion is O(M x Z?),
which is polynomial for a fixed maximum number of parents S.

The problem of selecting the optimal parents sequence has an interesting graph repre-
sentation. Indeed, it is possible to create a graph whose nodes are associated with marginal
likelihoods of g and @ for the interval h,,, and for the parents set Pa,(X), while each node as-
sociated with the interval h,, is linked with all the nodes associated with the interval Ay, 1.
Each arc is associated with a weight computed as the difference between the marginal like-
lihoods in the interval h,, for the parents set Pa,(X) and the cost of switching from the
parents set of the interval h,,_1 to the parents set of the interval h,,. Two special nodes
are added to represent the start and the end of the optimal parents sequence. Such a graph
does not have cycles, thus the selection of the optimal parents sequence for each node can
be reduced to the longest path problem from the start node to the end node of a directed
acyclic graph, and thus it can be solved using either dynamic or linear programming.

13

ViLLA & STELLA

Algorithm 1 LearnKTTX

Require: matrix containing the marginal likelihoods of ¢ and 8 M LX[M, Z], vector con-
taining the prior probability about the initial parents set PR[Z], matrix containing the
number of parents’ changes C[Z, Z] and the parameter for the parents’ changes A..

Ensure: score matrix SC[M, Z] and index matrix IN[M, Z].

1: Initialize SC[m, z] < —o0, IN|m, z] < 0.

2: form<«1,...,M do

3: forz+1,...,Z do

4: if (m =1) then

5: SC[m,z] + In MLX[m, z] +In PR|[z]
6: else

7 for w+ 1,...,7Z do

8: score <— SCm — 1,w] +In MLX[m, z] — A\.C|w, 2]
9: if (score > SC[m, z]) then

10: SClm, z] < score

11: IN[m, z] < w

12: end if

13: end for

14: end if

15: end for

16: end for

Learning a nsCTBN can be done following the following four steps procedure: i) use
the dataset D to compute for each variable X the sufficient statistics Tf:j,“lm and M 5?;] .
according to the given transition times 7; i7) compute the marginal likelihoods (20) and (21),
and then fill the M LX matrix; ii7) run Algorithm 1 for each node X to get the corresponding
optimal parents sequence; iv) collect the optimal parents sequence for each node X and

compute the corresponding CIMs using the sufficient statistics already computed in step).

If we allow the intervals to differ from the transition times, i.e. they can be obtained
as one of all the possible unions of transition times; then we have to repeat the learning
procedure for all the £ x (E — 1)/2 cases. It is possible to speed up the computation
because the sufficient statistics can be aggregated through intervals. In such a way, we read
the dataset once, while the precomputed marginal likelihoods can be stored and reused for
the same intervals. Moreover, the computations can be performed in parallel for each node.

4.2 Known Number of Epochs

In this setting, we know the number of epochs, but the transition times are not given, so we
cannot directly apply Algorithm 1. However, once a tentative allocation T of the transition
times is given, we can apply Algorithm 1 to obtain the optimal nsCTBN’s structure, under
the assumption that 7 is not too different from the true transition times 7. To find an
optimal tentative allocation 7'*, i.e. an allocation that is as close as possible to T, we apply
the simulated annealing (SA) algorithm (Kirkpatrick, Gelatt, & Vecchi, 1983).

14

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

Simulated annealing is an iterative algorithm that attempts to find the global optimum
x* of a given function f(x) through a stochastic search over the feasible region. At iteration
k, when the SA algorithm is assumed to be in state xg, it samples a proposal state x’
according to some proposal distribution ' ~ P’(-|xk). Then, the SA algorithm computes the
quantity o = exp (—(f(x) — f(2'))/CT), where CT is the computational temperature. The
SA algorithm accepts the proposal state &’ with probability equal to min{1, a}. Concisely,
SA always accepts any proposal state ' where f(x’) > f(x) by setting ®g41 = @', while it
accepts the proposal state ' when f(z') < f(x) with probability « by setting xgy1 = @’
with probability o and xg41 = @ with probability (1 — «), i.e. in this case the state of
the SA algorithm does not change. The computational temperature reduces over iterations
according to a cooling schedule. It has been shown that if one cools sufficiently slowly, then
the algorithm will probably find the global optimum (Kirkpatrick et al., 1983). The design
of the cooling schedule is an important part of the SA algorithm (Bertsimas & Tsitsiklis,
1993). A possible approach is to use an exponential cooling schedule defined as follows:
CTy, = CTy x (¥, where CTy represents the initial temperature, typically set to 1.0, ¢ is the
cooling rate, usually set to be close to 0.8, while k is the current iteration (Murphy, 2012).

In the nsCTBNs case, the state of the SA algorithm @« is associated with the tentative
allocation 7, while the function f(z) is the Bayesian score (32). Algorithm 2 takes as input
the sufficient statistics, the parameters used to run Algorithm 1 and the parameters of the
SA algorithm. It solves the structural learning problem under the KNE setting for a given
variable X by ensuring the optimal tentative allocation T* and its corresponding score.

Algorithm 2 LearnKNEX

Require: sufficient statistics SuffStatsX, prior probability PR[], number of parents’
changes C[,], parameter \., tentative allocation 7', initial temperature C'Ty, cooling
rate ¢, number of iterations Iters, truncation parameter z and standard deviation o.

Ensure: optimal tentative allocation 7* and best Bayesian score bestSC.

1: Initialize k < 0, T* « 7.

2: MLX + GetMLX(SuffStatsX,T)

3: bestSC < LearnKTTX(MLX, PR[],C/[,], Ac)
4: while (k < Iters) do

5: T « TentativeAllocation(T*, z, o)

6: MLX + GetMLX(SuffStatsX,T)

7. tentSC < LearnKTTX(MLX, PRJ[],C[,], \c)
8 COT « CTy x C*

9: accProb + min {1, exp (- —(beswc&fe"tsc)) }
10: wur + UniRand()

11: if (ur < accProb) then

12: T T

13: currSC «+ tentSC

14: end if

15: k< k+1
16: end while
17: bestSC < currSC

15

ViLLA & STELLA

The simulated annealing parameters we used include the tentative allocation 7', the
initial temperature CTp, the cooling rate (and the number of iterations Iters for the
exponential cooling schedule. Moreover, the truncation parameter z and standard deviation
o are used for the selection of the new tentative allocation T’ according to the random
procedure shown in Algorithm 3. This procedure selects a transition time through a discrete
uniform distribution, UniRandDiscr(T), and perturbs it according to a truncated normal
distribution, StdNormRand(), having a standard deviation equal to o, with the addition of

point masses at z and —z, where z represents the truncation parameter.

Algorithm 3 TentativeAllocation

Require: tentative allocation 7', truncation parameter z and standard deviation o.
Ensure: new tentative allocation 7.
t < UniRandDiscr(7)
T« T\t
nr < StdNormRand()
if (nr < —z) then
nr<— —z
end if
if (nr > z) then
nr < z
end if
t<t+nrxo

: %’(—%Ut

_ =
_= O

4.3 Unknown Number of Epochs

In this setting the number of epochs is unknown; thus the structural learning algorithm
must be able to move across a different number of epochs, as well as the corresponding
transition times. Also in this case, we used a simulated annealing algorithm where the state
x is the tentative allocation 7" and the function to be optimized f (z) is the Bayesian score
shown in equation (33). The cooling schedule has been set the same as the one used under
the KNE setting. The proposal distribution differs from the one used under the KNE setting
as it uses two additional operators, namely the split and the merge operators. The split
operator allows to split a given interval [t,,; ,,+1) into two subintervals [t,,;t) and [t;{;41)
where tp,, tyi1 € 7. The merge operator allows to merge contiguous intervals [f,,_1;tm)
and [t;;tme1) to form the wider interval [ty 1;tmy1) Where f, 1, tm, tmi1 € T.

The new state is obtained by sampling the number of epochs changes ec from a multi-
noulli distribution with parameters (p1, p2, p3), where p; represents the probability that the
number of epochs of the next iteration \7’\ is decreased by one; p3 represents the probability
that the number of epochs of the next iteration |7A’] is increased by one, and ps represents
the probability that number of epochs of the next iteration \7'| does not change with respect
to the current one. If ec is equal to 2, then Algorithm 2 is invoked, if ec is equal to 1, then
the merge operator is applied before invoking Algorithm 2, while if ec is equal to 3, then
the split operator is applied before invoking Algorithm 2.

16

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

Algorithm 4 solves the structural learning problem of nsCTBN under the UNE setting
for a given node X by ensuring the optimal tentative allocation T* and its corresponding
Bayesian score. This algorithm is similar to the one used under the KNE settings, but it
uses Algorithm 5 to apply the split and merge operators. The left(t) function in Algorithm
5 returns the transition time in 7 which comes immediately before transition time t.

Algorithm 4 LearnUNEX

Require: sufficient statistics SuffStatsX, prior probability PR][], number of parents’
changes C[,|, parameter \., parameter A, tentative allocation 7', initial temperature
C'Ty, cooling rate ¢, number of iterations Iters, truncation parameter z, standard de-
viation o, split probability sp and merge probability mp.

Ensure: optimal tentative allocation 7* and best Bayesian score bestSC.

1: Initialize k < 0, T* < 7.
2: bestSC +LearnKTTX(GetMLX (SuffStatsX, T), PR[],C[,], Ae) = e ||
3: while (k < Iters) do

4: 7:' « SplitMerge(T™*, sp, mp)
5. T < TentativeAllocation(7, z, o) A)
6: tentSC < LearnKTTX(GetMLX(SuffStatsX, T), PR[],C[,], \c) — e |T]|
7. CT «+ CTy x ¢k

. bestSC—tentSC
8 accProb <+ min {1, exp (— %)}
9:

ur < UniRand()
10: if (ur < qccProb) then

11: T« T
12: currSC « tentSC
13: end if

14: k+ k+1
15: end while
16: bestSC <+ currSC

Algorithm 5 SplitMerge

Require: tentative allocation T, split probability sp and merge probability mp.
Ensure: new tentative allocation 7.
: '7-, — '7-
p < UniRand()
if (p < mp) then
t + UniRandDiscr(7)
T« T\t
else
if (p < (mp+ sp)) then
t + UniRandDiscr(7 U T)
nt < left(t) —i—%
T« TUnt
end if
: end if

_ = =
Y 22

17

ViLLA & STELLA

5. Numerical Experiments

Numerical experiments are performed on both synthetic and real-world datasets. Synthetic
datasets are used to compare nsCTBNs to nsDBNs under the KTT, KNE and UNE knowl-
edge settings in terms of accuracy, precision, recall and £} measure. The following real-world
datasets: drosophila, saccharomyces cerevisiae and songbird, are used to compare nsCTBNs
to state-of-the-art algorithms, i.e. TSNI (a method based on ordinary differential equations),
nsDBN (Robinson & Hartemink, 2010) and non-homogeneous dynamic Bayesian networks
with Bayesian regularization (TVDBN) (Dondelinger, Lebre, & Husmeier, 2013), under the
UNE knowledge setting. Drosophila, saccharomyces cerevisiae and songbird datasets are
collected at fixed time intervals, thus we analyzed an additional real-world dataset, consist-
ing of financial/economic variables evolving at different time granularities, to exploit the
expressiveness of nsCTBNs when events occur asynchronously. Note that while the per-
formance comparison using synthetic datasets benefits from the knowledge of the ground
truth, the same does not apply to the performance comparison using real-world datasets
because the ground truth is not available. In such cases, the comparison exploits partial
and meta-knowledge available in the specialized literature.

5.1 Synthetic Datasets

Artificially generated datasets include data sampled from a rich set of nsDBN models,
i.e. nsDBN generated datasets, and a rich set of nsCTBN models, i.e. nsCTBN generated
datasets. Such nsDBN and nsCTBN models consist of five nodes associated with binary
and ternary variables. Numerical experiments concern learning the parents sets, transition
times and the number of epochs for a single node. This choice is motivated by the fact that
structural learning for nsCTBN can be performed for each single node independently from
the remaining ones. However, when transition times are unknown, having multiple parents
sets changes could make it easier to correctly identify the times of change.

5.1.1 NSDBN GENERATED DATASETS

nsDBN generated datasets were sampled from nsDBN models® associated with the following
number of epochs E € {2,3,4,5}. In particular, for each number of epochs E, 10 different
nsDBN instances were sampled to obtain a number of datasets equal to 10, each one con-
sisting of a single trajectory. Thus, 40 synthetic datasets were used to learn the structure
of nsDBN and nsCTBN (number of models =2) under the KTT, KNE and UNE settings.

Structural learning experiments were performed with A, = {1,2,4} and A\, = {5,10, 15}
for nsCTBN and A\ = {1,2,4} and with \,, = {10, 50,100} for nsDBN®. An overall number
of 1,200 experiments have been performed. In particular, we performed number of epochs -
number of datasets - number of Ac or As - number of models = 4-10-3-2 = 240 experiments
under the KTT setting, 240 under the KNE setting, while number of epochs - number of
datasets - number of Ao or As - number of \e or Ay, - number of models = 4-10-3-3-2 = 720
experiments have been performed under the UNE setting.

5. Inter-slice arcs are allowed, while intra-slice arcs are not allowed. This holds true for all nsDBN models
sampled to obtain the nsDBN generated datasets.

6. It is worthwhile to mention that the As and \,, parameters are the nsDBN counterparts of the A. and
Ae parameters for the nsCTBN.

18

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

The nsdbn jar ezecutable’ (Robinson & Hartemink, 2010) was used for structural learn-
ing of nsDBN, where we set the maximum number of proposed networks to 500,000 and
the burn-in period to 50,000 for nsDBN. nsCTBN were learned by using the following pa-
rameters setting: Iters = 1,000, CTy = 1,000, (= 0.8, =3, 0 =1, sp = 0.3, mp = 0.3,
a =1 and 7 = 0.1 using the BDeu metric. Furthermore, for nsDBN and nsCTBN we set
the maximum number of parents to 4. Only arcs that occurred in more than 90 percent
of the samples® belong to the inferred nsDBN and nsCTBN models. Accuracy (Acc), pre-
cision (Prc), recall (Rec) and F; measure (F}) achieved by nsDBN and nsCTBN learned
under the KTT, KNE and UNE settings are reported in Table 1, 2 and 3 respectively. It
is worthwhile to mention that under the KNE and UNE settings, nsDBNs and nsCTBNs
almost always identified the correct number of epochs and the location of their associated
transition times. Accuracy, precision, recall and F; measure have been computed in two
different ways. Firstly, we included all arcs of the true network for each epoch. Secondly, we
excluded the self-reference arcs, i.e. those arcs connecting the same node in two consecutive
time-slices of the true network for each epoch. In fact, while each node of a nsCTBN has the
self-reference arc by default, the same does not happen for nsDBNs. This means that in the
first case a nsDBN is required to learn arcs that a nsCTBN is not required to do. Therefore,
to ensure a fair comparison of nsCTBN to nsDBN we adopted the second case. Tables 1,
2 and 3 report the performance measure values computed by excluding self-reference arcs
from the set of arcs of the true networks for each epoch.

Table 1: nsCTBN compared to nsDBN under the KTT setting for nsDBN generated data.
Average, min (subscript) and max (superscript) performance values over 10 networks and
Ae for nsCTBN and \g for nsDBN.

Number of epochs FE
2 3 4 5
nsDBN | nsCTBN | nsDBN | nsCTBN | nsDBN | nsCTBN | nsDBN | nsCTBN
Acc | 096599 | 0.928:99 1 0.95095 | 0.928:99 | 0.95099 | 0.828:%9 | 0.94997 | 0.828:92
Prec | 0.90589 | 1.001:80 | 0.795:55 | 1.001:99 | 0.875:99 | 0.96592 | 0.855%) | 0.99589
Rec | 0.77599 | 0.855:29 | 0.678-43 | 0.86593 | 0.65092 | 0.70533 | 0.580-59 | 0.719-53
Fr 1 0.80599 1 0.915%9 1 0.719:9% 1 0.92899 1 0.730-97 | 0.80529 | 0.690-5¢ | 0.829%

According to Tables 1, 2 and 3, nsDBNs consistently achieve greater accuracy values
than those achieved by nsCTBNs under the three settings. Furthermore, for nsDBNs the
accuracy is stable with respect to the number of epochs E while the same does not happen
for nsCTBNs. Indeed, when the number of epochs F is greater than 3, nsCTBNs achieve
accuracy values which are significantly smaller than those achieved when the number of
epochs F is equal to 2 or 3. The same does not happen to nsDBNs where the accuracy is
robust with respect to the number of epochs F.

7. We acknowledge the precious help of Alex Hartemink who let us use the nsdbn jar executable program
for learning nsDBN models. Furthermore, he also provided the drosophila and songbird datasets.
8. Samples are obtained under the same parameters values.

19

ViLLA & STELLA

Table 2: nsCTBN compared to nsDBN under the KNE setting for nsDBN generated data.
Average, min (subscript) and max (superscript) performance values over 10 networks and
Ae for nsCTBN and \g for nsDBN.

Number of epochs F
2 3 4 5
nsDBN | nsCTBN | nsDBN | nsCTBN | nsDBN | nsCTBN | nsDBN | nsCTBN
Acc | 094592 1 0.928:99 1 0.950:95 | 0.928:99 | 0.94939 | 0.815:%9 | 0.933:38 | 0.828:93
Prec | 091599 | 1.003-99 | 0.7959) | 1.005:99 | 0.860:37 | 0.95599 | 0.850:2¢ | 0.985:%9
Rec | 0.765:99 | 0.8559) | 0.689-52 | 0.86599 | 0.659-9 | 0.71592 | 0.599-58 | 0.709:92
Fy 108059 | 0.91599 [0.720-21 | 0.92599 | 0.740-32 | 0.815% | 0.70-52 | 0.819H

Table 3: nsCTBN compared to nsDBN under the UNE setting for nsDBN generated data.
Average, min (subscript) and max (superscript) performance values over 10 networks and
A¢e, Ae for nsCTBN and A4, Ay, for nsDBN.

Number of epochs F
2 3 4 5
nsDBN | nsCTBN | nsDBN | nsCTBN | nsDBN | nsCTBN | nsDBN | nsCTBN
Acc | 095592 | 0.928:99 1 0.950:95 | 0.928:99 | 093035 | 0.818:37 | 092035 | 0.819:23
Prec | 091395 | 1.003-39 | 0.80599 | 1.003-99 | 0.870:82 | 0.95593 | 0.84099 | 0.985:%9
Rec | 0.759:98 | 0.85590 | 0.669-51 | 0.86599 | 0.659-55 | 0.709:92 | 0.579-58 | 0.69955
Fy | 0.79328 | 0.915%9 | 0.70952 | 0.92899 | 0.74357 | 0.80992 | 0.680-53 | 0.819%

A different picture emerges when focusing on the task to discover positive arcs. Indeed,
in such a case nsCTBNs achieve values of precision, recall and F; measure, which are always
greater than those achieved by nsDBNs. nsCTBNs achieve precision values which are robust
with respect to the knowledge settings and the number of epochs E. The same does not
hold true for the recall performance measure. Indeed, nsCTBNs achieve a robust recall
with respect to the knowledge settings (KTT, KNE and UNE), while the recall achieved
by nsCTBNs significantly degrades when moving from 2 to 3 epochs under all knowledge
settings. The same happens to the F; measure achieved by nsCTBNs. The results of
numerical experiments suggest that nsCTBNs are more effective than nsDBNs to discover
positive arcs, even if the datasets have been generated using nsDBNs. A possible explanation
for this behavior is that learning nsDBNs is more difficult than learning nsCTBNs. In
particular, nsDBNs must learn self-reference arcs while nsCTBNs do not. Furthermore, for
each node, nsCTBNs learn locally the sequence of parents sets while the same does not
happen for nsDBNs. In fact, nsDBNs learn globally the sequence of parents sets for all
nodes, i.e. they globally learn the sequence of networks, and thus they solve a learning
problem which is more difficult than the one solved by nsCTBNs.

20

LEARNING CONTINUOUS TIME BAYESIAN NETWORKS IN NON-STATIONARY DOMAINS

5.1.2 NSCTBN GENERATED DATASETS

We generated 40 synthetic datasets with E € {2,3,4,5}, these datasets are then used to
learn the structure of nsCTBN under the three knowledge settings. The same parameters
setting is used as the one used for nsCTBN learning from nsDBN generated datasets (for
nsCTBN, we used @ = 1, 7 = 0.1 and the BDeu metric), while, in this case, we did not
perform structural learning experiments for nsDBN models®. The graphical structures of
the nsCTBN models sampled to obtain the datasets are the same as those sampled to
obtain the nsDBN datasets. The goal of these experiments is to analyze the performance
of nsCTBN structural learning algorithms under the three knowledge settings.

The analysis of data reported in Tables 4, 5 and 6 brings us to conclude that the
nsCTBN structural learning algorithms work very well under the three settings according
to the considered performance measures. Accuracy, recall and F; measure decrease slightly
when the number of epochs increases from 2 to 5. In particular, the recall measure suffers
the greatest decrease from 1 to 0.95 when the number of epochs increases from 2 to 5.
Accuracy and F] measure are very robust with respect to the number of epochs, while
precision is the most robust performance measure with respect to different datasets and
different values of the number of epochs under all knowledge settings.

Table 4: nsCTBN under the KTT setting for nsCTBN generated data. Average, min
(subscript) and max (superscript) performance values over 10 networks and ..

Number of epochs F
2 3 4 5
Ace | 1.00159 | 0.995:99 | 0.995:99 | 0.985:99
Prec | 1.001-99 | 1.001-99 | 1.001:09 | 1.001:59
Rec | 1.001-39 | 0.995:29 [0.99599 | 0.96539
Fy | 1.001-08 | 0.99599 | 0.995:99 | 0.98599

Table 5: nsCTBN under the KNE setting for nsCTBN generated data. Average, min
(subscript) and max (superscript) performance values over 10 networks and A..

Number of epochs F
2 3 4 5
Acc | 1.001:9% 1 0.985:99 | 0.995:99 | 0.975:99
Prec | 1.001:39 | 0.995:99 | 1.00599 | 1.00§59
Rec | 1.001-39 | 0.97592 [0.985:%9 | 096592
Fy | 1.003:60 | 09805 [0.995:97 | 0-980:50

9. nsCTBN generated data are asynchronous involving different time granularities, thus nsDBN cannot be
directly applied. An option is to preprocess these datasets to adapt them to nsDBNs. Given that this
would be strongly arbitrary and be penalizing for nsDBNs, we decided to learn only the nsCTBN models.

21

ViLLA & STELLA

Table 6: nsCTBN under the UNE setting for nsCTBN generated data. Average, min
(subscript) and max (superscript) performance values over 10 networks and A, and ..

Number of epochs F
2 3 4 5
Acc | 1.003:89 | 0.995:99 | 0.995:99 | 0.975:99
Prec | 1.001:99 | 1.001:89