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Abstract

Unavoidable dead-ends are common in many probabilistic planning problems, e.g. when ac-
tions may fail or when operating under resource constraints. An important objective in such settings
is MaxProb, determining the maximal probability with which the goal can be reached, and a policy
achieving that probability. Yet algorithms for MaxProb probabilistic planning are severely under-
explored, to the extent that there is scant evidence of what the empirical state of the art actually is.
We close this gap with a comprehensive empirical analysis. We design and explore a large space
of heuristic search algorithms, systematizing known algorithms and contributing several new algo-
rithm variants. We consider MaxProb, as well as weaker objectives that we baptize AtLeastProb
(requiring to achieve a given goal probabilty threshold) and ApproxProb (requiring to compute
the maximum goal probability up to a given accuracy). We explore both the general case where
there may be 0-reward cycles, and the practically relevant special case of acyclic planning, such
as planning with a limited action-cost budget. We design suitable termination criteria, search al-
gorithm variants, dead-end pruning methods using classical planning heuristics, and node selection
strategies. We design a benchmark suite comprising more than 1000 instances adapted from the
IPPC, resource-constrained planning, and simulated penetration testing. Our evaluation clarifies
the state of the art, characterizes the behavior of a wide range of heuristic search algorithms, and
demonstrates significant benefits of our new algorithm variants.

1. Introduction

Many probabilistic planning problems contain unavoidable dead-ends (e.g. Kolobov, Mausam,
Weld, & Geffner, 2011; Teichteil-Königsbuch, Vidal, & Infantes, 2011; Kolobov, Mausam, & Weld,
2012; Teichteil-Königsbuch, 2012), i.e., no policy guarantees to eventually, under all circumstances,
attain the goal. Examples are planning under resource constraints or a limited budget, or situations
where actions may fail and we will eventually run out of options. One important objective then is
MaxProb, determining the maximal probability with which the goal can be reached (and identifying
a policy achieving that probability). MaxProb also partly underlies the International Probabilis-
tic Planning Competition (IPPC) (Younes, Littman, Weissman, & Asmuth, 2005; Bryce & Buffet,
2008; Coles, Coles, Garcı́a Olaya, Jiménez, Linares López, Sanner, & Yoon, 2012), when plan-
ners are evaluated by how often they reach the goal in online policy execution. (The time limit
in the IPPC setting mixes MaxProb with a bias towards policies reaching the goal quickly. This
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also relates to the proposals by Kolobov et al., 2012 and Teichteil-Königsbuch, 2012, asking for
the cheapest policy among those maximizing goal probability, and to the proposal by Chatterjee,
Chmelik, Gupta, & Kanodia, 2015, 2016, asking for the cheapest policy ensuring that a target state
is reached almost surely in a partially observable setting.)

We consider MDP-based probabilistic planning, with factored models (probabilistic extensions
of STRIPS) whose state spaces may be too large to build explicitly. We focus on the optimal offline
setting, i.e., solving MaxProb exactly. While this setup and objective certainly is relevant, there has
been little work towards developing solvers. The main effort was made by Kolobov et al. (2011),
which we discuss in detail below. Hou, Yeoh, and Varakantham (2014) consider several variants
of topological VI (Dai, Mausam, Weld, & Goldsmith, 2011), solving MaxProb but necessitating to
build the entire reachable state space. Other works addressing goal probability maximization do
not aim at guaranteeing optimality (e.g. Teichteil-Königsbuch, Kuter, & Infantes, 2010; Camacho,
Muise, & McIlraith, 2016).

MDP heuristic search (Barto, Bradtke, & Singh, 1995; Hansen & Zilberstein, 2001; Bonet
& Geffner, 2003b; McMahan, Likhachev, & Gordon, 2005; Smith & Simmons, 2006; Bonet &
Geffner, 2006) has the potential to find optimal policies without building the entire state space, but
Kolobov et al. (2011) are the only authors addressing optimal MaxProb through heuristic search.
Part of the reason for this lack of research on heuristic search for MaxProb are the following two ma-
jor obstacles. First, while MDP heuristic search has been successful in expected-cost minimization,
it suffers from a lack of admissible (upper-bounding) heuristic estimators of goal probability. The
best known possibility is to detect dead-ends and set their initial heuristic estimate to 0, using the
trivial upper bound 1 elsewhere. Second, MaxProb does not fit the stochastic shortest path (SSP)
framework (Bertsekas, 1995), due to 0-reward cycles. As pointed out by Kolobov et al. (2011),
MaxProb is equivalent to a non-discounted reward maximization problem, where non-goal cycles
receive 0 reward and thus improper policies do not accumulate reward −∞.

To address the second problem, Kolobov et al. (2011) devised the FRET (find, revise, elimi-
nate traps) framework, which admits heuristic search, yet requires several iterations of complete
searches. In between heuristic search iterations, FRET eliminates 0-reward cycles (traps). FRET it-
erates until no more such cycles persist. Kolobov et al.’s contribution is mainly theoretical – consid-
ering not only MaxProb but a much larger class of generalized SSPs – and their empirical evaluation
serves merely as a proof of concept. They experiment with a single domain (ExplodingBlocks), and
run only one configuration of search (LRTDP, Bonet & Geffner, 2003b), with one possibility for
dead-end detection and thus non-trivial initial heuristic estimates (SixthSense, Kolobov, Mausam,
& Weld, 2010). This does outperform value iteration (VI), but the dead-end detection is not used
in VI, and it remains unclear to what extent the improvement is due to the actual heuristic search,
rather than the state pruning itself.

In summary, heuristic search for MaxProb is challenging, and has only been addressed by
Kolobov et al. (2011), with very limited experiments. Given this:

(i) What is actually the empirical state of the art in heuristic search for MaxProb? Are there other
known algorithms, or variants thereof, that work better?

We explore a large design space of such algorithms, and show that, indeed, some variants work
much better.

(ii) What about simpler yet still relevant special cases, and weaker objectives, that may be easier
to solve?
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There are indeed practically relevant cases that do not necessitate FRET, and weaker objectives
that enable what we will refer to as early termination.

To elaborate first on (ii): If the state space of the planning task at hand is acyclic, then clearly FRET
is not needed: there are no cycles – so in particular no 0-reward cycles – and the state space is
finite, so that any execution will end in a (goal or non-goal) absorbing state; this implies that we are
within the realm of SSPs. This special case is, however, still practically relevant. As an illustration,
acyclic state spaces occur even in a standard IPPC benchmarks, namely in the TriangleTireworld
domain where moves can only be made in one direction. More importantly, planning with a limited
action-cost budget, limited-budget planning, has acyclic state spaces when action costs are non-0,
strictly decreasing the remaining budget. A similar class of scenarios is where every action con-
sumes a non-0 amount of some non-replenishable resource. Another example are recently proposed
models of simulated penetration testing, as per Hoffmann (2015). The MDP there models a network
intrusion from the point of view of an attacker. The state space is acyclic because each exploit can
be attempted at most once (trying the same exploit again on the same network configuration would
yield the same outcome). States thus need to remember the remaining action set, and every action
application strictly reduces that set.

Regarding weaker objectives: As alternatives to MaxProb, it is reasonable to ask whether the
maximum goal probability exceeds a given threshold θ, or to require computing the maximum goal
probability up to a given accuracy δ. We refer to these objectives as AtLeastProb and ApproxProb
respectively.1 For example, in penetration testing, AtLeastProb naturally assesses the level of net-
work security: Can an attacker reach a target host with probability greater than a given security
margin? E.g., can a customer data server be compromised with probability greater than 0.01?

AtLeastProb and ApproxProb allow early termination based on maintaining both, a lower (pes-
simistic) bound V L and an upper (admissible/optimistic) bound V U . This is especially promising
in AtLeastProb, where we can terminate if the lower bound already is good enough (V L ≥ θ), or if
the upper bound already proves infeasibility (V U < θ). Good anytime behavior, on either or both
bounds, translates into early termination.

Let us now elaborate on (i), exploring the state of the art and beyond. We design an algorithm
space characterized by:

(a) Search algorithm. We design variants of AO∗ (Nilsson, 1971), LRTDP (Bonet & Geffner,
2003b), and depth-first oriented heuristic searches (Bonet & Geffner, 2003a, 2006), maintaining
upper and lower bounds for early termination.

(b) FRET. We design a new variant of FRET better suited to problems with uninformative initial
upper bounds.

(c) Bisimulation reduction. We design a new probabilistic-state-space reduction method, via bisim-
ulation relative to the all-outcomes determinization (e.g. Bonet & Geffner, 2003b; Yoon, Fern,
& Givan, 2007; Little & Thiebaux, 2007).

1. AtLeastProb relates to MDP model-checking, where one typically wants to validate that a given PCTL (Probabilistic
Computation Tree Logic) formula is valid with some probability (Baier, Größer, Leucker, Bollig, & Ciesinski, 2004;
Kwiatkowska, Parker, & Qu, 2011a; Kwiatkowska, Norman, & Parker, 2011b). It also relates to Constrained MDPs
(Altman, 1999), as enforcing a minimum success probability could be expressed through a constraint on a particular
quantity. Chance-Constrained POMDPs (Santana, Thibaux, & Williams, 2016) are different from AtLeastProb as
their constraint is on the probability to remain in safe states, not to reach goal states.
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(d) Dead-end pruning method. We employ classical-planning heuristic functions for dead-end de-
tection in probabilistic planning, via the all-outcomes determinization, as previously done by
Teichteil-Königsbuch et al. (2011). This is especially promising in limited-budget planning,
where we can prune a state s if an admissible classical-planning estimate exceeds the remaining
budget in s.

(e) Node selection strategy. We design a comprehensive arsenal of simple strategies, biasing tie
breaking in action and state selection in manners targeted at fostering early termination.

We implemented all these techniques within Fast Downward (FD) (Helmert, 2006), thus contribut-
ing, as a side effect of our work, an ideal implementation basis for exploiting classical-planning
heuristic search techniques in MDP heuristic search.2

The algorithm dimensions (a) – (e) are orthogonal (excepting some dependencies, in particular
that bisimulation reduction subsumes dead-end pruning). We explore the behavior of the resulting
design space on a large benchmark suite we design for that purpose. The suite includes domains
from the IPPC, resource-constrained planning, and penetration testing, each with with a limited-
budget version and an unlimited-budget version. The suite comprises 1089 benchmark instances in
total.3 Amongst other things, we observe:

• Heuristic search yields substantial benefits, even with the trivial admissible heuristic setting
the initial estimate to 1 everywhere (+9% total coverage across all benchmarks), more so
with admissible heuristics based on dead-end detection (+12%).

• Early termination yields substantial benefits (e.g. for AtleastProb +8% with θ = 0.2 and
+7% with θ = 0.9).

• Our FRET variant yields dramatic benefits (+32% total coverage on the cyclic benchmarks).

• Bisimulation reduction yields an optimal MaxProb solver that excells in TriangleTireworld,
even surpassing Prob-PRP (Muise, McIlraith, & Beck, 2012; Camacho et al., 2016) – and
this not only in the standard version where the goal can be achieved with certainty and hence
Prob-PRP is optimal, but also in the limited-budget version where that is not so.

On the side, we discover that landmarks compilation as per Domshlak and Mirkis (2015), employed
for dead-end pruning in their oversubscription planning setting, is actually, on its own, equivalent
to pruning against the remaining budget with a standard admissible landmark heuristic. This is
relevant to our work because, otherwise, that compilation would be a canonical candidate also for
dead-end pruning in our setting (indeed this is what we started out with in our investigation).

The paper is organized as follows. Section 2 describes our model syntax and semantics, for goal
probability analysis with and without an action-cost budget limit. Section 3 specifies our search
algorithm (a) and FRET variants (b). Section 4 describes our bisimulation reduction method (c).
Section 5 describes the dead-end pruning methods (d), and Section 6 describes the node selection
strategies (e). We present our experiments in Section 7, and we conclude in Section 8. There are
two appendices giving additional technical details that we only sketch in the main text, Appendix B

2. The source code is available at http://fai.cs.uni-saarland.de/downloads/fd-prob.tar.bz2
3. The benchmark suite is available at http://fai.cs.uni-saarland.de/downloads/
ppddl-benchmarks-acyclic.tar.bz2 (acyclic cases) and http://fai.cs.uni-saarland.
de/downloads/ppddl-benchmarks-cyclic.tar.bz2 (cyclic cases).
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regarding Domshlak and Mirkis’ (2015) landmarks compilation, and Appendix A regarding depth-
first oriented heuristic searches. 4

2. MDP Models

We consider PPDDL-style models (Younes et al., 2005), more precisely probabilistic extensions of
STRIPS. We employ two formalism variants, with and without a limited action-cost budget. We
specify first the unlimited-budget version. Planning tasks are tuples Π = (F,A, I,G) consisting of
a finite set F of facts, a finite set A of actions, an initial state I ⊆ F , and a goal G ⊆ F . Each
a ∈ A is a pair (pre(a), O(a)) where pre(a) ⊆ F is the precondition, and O(a) is the finite set of
outcomes o. Each o ∈ O(a) is a tuple (p(o), add(o), del(o)) of outcome probability p(o), add list
add(o) ⊆ F , and delete list del(o) ⊆ F . We require that

∑
o∈O(a) p(o) = 1.

Given a task Π, its state space is a probabilistic transition system (S, P, I, S>). Here, S is the
set of states, each s ∈ S associated with its set F (s) of true facts. The initial state I is that of Π.
The set of goal states S> ⊆ S contains those s where G ⊆ F (s). Transitions, and the transition
probability function P : S ×A× S 7→ [0, 1], are defined as follows. Action a is applicable to state
s if pre(a) ⊆ F (s) and s 6∈ S> (goal states are absorbing, see also below). By A[s] we denote the
set of actions applicable in s. Given s, a ∈ A[s], and an outcome o ∈ O(a), by sJoK we denote the
result of outcome o in s, i.e., F (sJoK) := (F (s) ∪ add(o)) \ del(o). We define P (s, a, t) := p(o)
if a is applicable to s and t = sJoK.5 Otherwise, we define P (s, a, t) := 0 (there is no transition).
Absorbing states are those with no outgoing transitions (no applicable actions). The set of non-goal
absorbing states – lost states – is denoted S⊥.

For limited-budget planning, we extend the above as follows. A limited-budget task is a tuple
Π = (F,A, I,G, b), as above but now including also a budget b ∈ R+

0 , and associating each
action outcome o with a cost c(o) ∈ R+

0 . In addition to their true facts F (s), states s are now also
associated with their remaining budget b(s) ∈ R. States with negative remaining budget b(s) < 0
are legal and may occur, but they are lost, s ∈ S⊥, due to the following definitions of goal states,
action applicability, and transitions. The goal states s ∈ S> are those where G ⊆ F (s) and
b(s) ≥ 0, i.e., we must reach the goal with ≥ 0 remaining budget. The actions a applicable to s are
those where pre(a) ⊆ F (s) and at least one outcome fits within the remaining budget, i.e., there
exists o ∈ O(a) so that c(o) ≤ b(s). In the outcome states sJoK, the outcome’s cost is deduced from
the remaining budget, i.e., b(sJoK) := b(s)− c(o).

A few notes are in order regarding limited-budget planning. If c(o) > 0 for all o, then the state
space – viewed as a directed graph with an arc (s, t) whenever there is an action mapping s into t
with non-0 probability – is acyclic because every transition strictly reduces the remaining budget.
The state space is infinite due to the continuous state variable b(s), but its reachable part (which our
algorithms consider) is finite. Note further that the remaining budget is local to each state. If some
states in a policy violate the budget, other parts of the policy (even other outcomes of the same
action) can still continue trying to reach the goal. This differs from constrained MDPs (Altman,
1999), where the budget bound is applied globally to the expected cost of the policy. Also note

4. This paper is an extension of a previous conference paper (Steinmetz, Hoffmann, & Buffet, 2016). We cover a larger
space of algorithms (now including depth-first oriented heuristic searches), provide comprehensive explanations and
discussions, and present our experiments in detail.

5. We assume here that each o ∈ O(a) leads to a different outcome state. This is just to simplify notation (our
implementation does not make this assumption).
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that, while a single budget is considered here for the sake of simplicity, our framework and results
straightforwardly extend to models with multiple budget variables.

Limited-budget planning has been explored in a deterministic oversubscription setting, the ob-
jective being to maximize the reward from achieved (soft) goals subject to the budget (Domshlak
& Mirkis, 2015). A classical-planning variant would relate to resource-constrained planning (e.g.
Haslum & Geffner, 2001; Nakhost, Hoffmann, & Müller, 2012; Coles, Coles, Fox, & Long, 2013)
with a single consumed resource. Our probabilistic variant here has been previously considered
only by Hou et al. (2014). Prior work on probabilistic planning with resources (e.g. Marecki &
Tambe, 2008; Meuleau, Benazera, Brafman, Hansen, & Mausam, 2009; Coles, 2012) has often
assumed limited budgets and non-0 consumption, but has dealt with uncertain-continuous resource
consumption, in contrast to the discrete and fixed budget consumed by action costs.

Though relatively restricted, limited-budget probabilistic planning is quite natural. Decision
making is often constrained by a finite budget. Furthermore, non-0 costs are often reasonable to
assume. This applies to, for example, penetration testing. Problems asking to achieve a goal within
a given number of steps, e.g. finite-horizon goal probability maximization, are a special case.

Let us now define solutions to our planning tasks, as well as the objectives we wish these to
achieve. A policy is a partial function π : S \ (S> ∪ S⊥) 7→ A ∪ {∗}, mapping each non-absorbing
state s within its domain either to an action applicable in s, or to the don’t care symbol ∗. That
symbol will be used (only) by policies that already achieve sufficient goal probability elsewhere,
so do not need to elaborate on how to act on s and its descendants. That is, we still require closed
policies (see below), and we use ∗ to explicitly indicate special cases where actions may be chosen
arbitrarily. Formally, π(s) = ∗ extends the domain of π by picking, for every t 6∈ S>∪S⊥ reachable
from s and where π(t) is undefined, an arbitrary action a applicable in t and setting π(t) := a.

A policy π is closed for state s if, for every state t 6∈ S> ∪S⊥ reachable from s under π, π(t) is
defined. π is closed if it is closed for the initial state I . π is proper if, from every state s on which
π is defined, π eventually reaches an absorbing state with probability 1.6

Following Kolobov et al. (2011), we formulate goal probability as maximal non-discounted
expected reward where reaching the goal gives reward 1 and all other rewards are 0. The value
V π(s) of a policy π closed for state s then is:

V π(s) =


1 s ∈ S>
0 s ∈ S⊥∑

t P (s, π(s), t)V π(t) otherwise
(1)

The optimal value of state s is
V ∗(s) = max

π:π closed for s
V π(s) (2)

Observe here that, in difference to Kolobov et al. who consider problems more general than Max-
Prob, we don’t need to exclude improper π from this maximization. This is because there are no
negative rewards, i.e., policies cannot gain anything from infinite cycles.

Given a value function V (any function mapping states to R), the Bellman update operator is
defined, as usual, through maximization over actions relative to the current values given by V :

6. Keep in mind here that the absorbing states in our setting are S> ∪ S⊥, i.e., goal states and lost states. While an SSP
policy can only be considered as valid when all executions end up in a goal state – because finding a shortest path
implies that a path exists – a MaxProb policy is valid when all executions end up in an absorbing (goal or non-goal)
state – executions may fail, but need to always terminate.
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V (s) :=


1 s ∈ S>
0 s ∈ S⊥
maxa∈A[s]

∑
t P (s, a, t)V (t) otherwise

(3)

The difference between V (s) prior to the update, and its updated value according to the right-hand
side, is called the Bellman residual.

The greedy policy π on a value function V selects in each non-absorbing state an action obtain-
ing the maximum in the right-hand side of this equation (note that the greedy policy is unique only
up to tie-breaking). We will refer to the state space subgraph induced by those states reachable from
I using such a greedy policy π as the π-greedy graph. By the V -greedy graph, we will refer to
the state space subgraph induced by those states reachable from I by any greedy policy on V , i.e.,
allowing in each state to choose any action greedy on V .

For acyclic state spaces, every run ends in an absorbing state in a finite number of steps, so
we are facing an SSP problem (subject to our definition of absorbing states, cf. above) and the
Bellman update operator has the unique fixed point V ∗, which it converges to from any initial V .
For cyclic state spaces, as pointed out by Kolobov et al. (2011), the Bellman update operator may
have multiple sub-optimal fixed points, and updates from an optimistic (upper-bound) initialization
V are not guaranteed to converge to the optimum V ∗. One can either use a pessimistic (lower-
bound) initialization V , from which the updates are guaranteed to converge to V ∗; or one can use
Kolobov et al.’s FRET method described earlier.

We consider three different objectives (algorithmic problems) for goal probability analysis:

MaxProb: Find an optimal policy, i.e., a closed π s.t. V π(I) = V ∗(I).

AtLeastProb: Find a policy guaranteeing a user-defined goal probability threshold θ ∈ [0, 1], i.e.,
a closed π s.t. V π(I) ≥ θ. (Or prove that such π does not exist.)

ApproxProb: Find a policy optimal up to a user-defined goal probability accuracy δ ∈ [0, 1], i.e.,
a closed π s.t. V ∗(I)− V π(I) ≤ δ.

We now define our algorithm family addressing these problems. We cover search algorithms, bisim-
ulation reduction, dead-end pruning, and node selection strategies, in this order.

3. Search Algorithms

We use value iteration (VI) as a baseline. We design variants of AO∗ and LRTDP, as well as a family
of depth-first oriented heuristic searches, systematizing algorithm parameters underlying improved
LAO∗ (here: ILAO∗) (Hansen & Zilberstein, 2001), heuristic dynamic programming (Bonet &
Geffner, 2003a), and learning depth-first search (Bonet & Geffner, 2006). We furthermore design a
variant of FRET better suited to problems with uninformative initial upper bounds.

3.1 VI

As a pre-process to VI, we make one forward pass building the reachable state space (actually
its pruned subgraph, see Section 5). We initialize the value function pessimistically, simply as 0
everywhere. For acyclic cases, we then perform a single backward pass of Bellman updates, starting
at absorbing states and updating children before parents, thus computing the optimal value function
while updating every state exactly once.
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procedure GoalProb-AO∗

initialize Θ to consist only of I; Initialize(I)
loop do

if [MaxProb: V L(I) = 1]
[AtLeastProb:V L(I) ≥ θ]
[ApproxProb: V L(I) ≥ 1− δ or V U (I)− V L(I) ≤ δ] then
return πL endif /* early termination (positive) */

if [AtLeastProb: V U (I) < θ] then
return “impossible” endif /* early termination (negative) */

if ex. leaf state s 6∈ S> ∪ S⊥ in Θ reachable using πU then
select such a state s

else return πU endif /* regular termination */
for all a and t where P (s, a, t) > 0 do

if t not already contained in Θ then
insert t as child of s into Θ; Initialize(t)

else insert s as a new parent of t into Θ
endif

endfor
BackwardsUpdate(s)

endloop
procedure Initialize(s):

V U (s) :=

{
0 s ∈ S⊥
1 otherwise

V L(s) :=

{
1 s ∈ S>
0 otherwise

if s 6∈ S> ∪ S⊥ then πL(s) := ∗ endif

Figure 1: AO* search for MaxProb, AtLeastProb, and ApproxProb (as indicated), on acyclic state
spaces. πU is the current greedy policy on V U , πL is the current greedy policy on V L.
The BackwardsUpdate(s) procedure updates all of V U , πU , V L, πL. As states may have
several parents in Θ, we first make a backwards sweep to collect the sub-graph Θ|s ending
in s (to update V U and πU , the greedy sub-graph on V U suffices). Then we update Θ|s
in reverse topological order.

For the general/cyclic case, we assume a convergence parameter ε (likewise in all other al-
gorithms addressing this case), and compute an ε-consistent value function, where the Bellman
residual on every state is at most ε. For efficient value iteration, we employ topological VI as per
Dai et al. (2011): we find the strongly connected components (SCC) of the state space, and handle
each SCC individually, children SCCs before parent SCCs. VI on an SCC stops when every state is
ε-consistent.

Dai et al. (2011) also introduce focused topological VI, which eliminates sub-optimal actions
in a pre-process to obtain smaller SCCs. While this can be much more runtime-effective, it still
requires building the entire state space. In our experiments, runtime/memory exhaustion during this
process, i.e., during building the state space, was the only reason for VI failures. So we do not
consider focused topological VI here.

3.2 AO∗

For AO∗, we restrict ourselves to the acyclic case, where the overhead for repeated value iteration
fixed points, inherent in LAO∗ (Hansen & Zilberstein, 2001), disappears. (The ILAO∗ variant,
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where that issue has been addressed through a depth-first orientation, is covered as part of our
depth-first oriented heuristic search family introduced in Section 3.4 below.)

Figure 1 shows pseudo-code for our GoalProb-AO∗ variant. The algorithm incrementally con-
structs a subgraph Θ of the state space. The handling of duplicates is simple, identifying search
nodes with states, as the state space is acyclic. For the same reason, simple backward updating
suffices to maintain the value function. Adopting ideas from prior work (e.g. McMahan et al., 2005;
Little, Aberdeen, & Thiébaux, 2005; Smith & Simmons, 2006; Kuter & Hu, 2007), we maintain
two value functions, namely both an upper bound V U and a lower bound V L on goal probability.

For lack of heuristic estimators of goal probability, both value functions are initialized trivially,
by 1 for V U and by 0 for V L, except for absorbing states where the exact value is known. (Dead-end
detection, as a simple but non-trivial V U initialization, will be discussed in Section 5.) Nevertheless,
both bounds can be useful for search, through early termination (V L and V U ), and through detecting
sub-optimal parts of the state space (V U ). To observe the latter, note that, to refute an action a, it
may suffice to reduce V U for just one of a’s outcomes. Hence, even for trivial initialization, V U

may allow to disregard parts of the search space, in the usual way of admissible heuristic functions.
As we shall see, this kind of behavior occurs frequently in practice (as reflected by our benchmarks).

Regarding early termination, the lower bound enables positive early termination when we can
already guarantee sufficient goal probability, namely 1 (MaxProb), θ (AtLeastProb), or 1 − δ (Ap-
proxProb). The upper bound enables negative early termination in AtLeastProb, when V U (I) < θ.
In ApproxProb, clearly we can terminate when V U (I) − V L(I) ≤ δ. A relevant observation
here is that the V L(I) = 1 (MaxProb) and V L(I) ≥ 1 − δ (ApproxProb) criteria are redundant
when maintaining an upper bound, i.e., for heuristic search: If V L(I) ≥ 1 − δ, then trivially also
V U (I)− V L(I) ≤ δ. If V L(I) = 1, then there is a search branch achieving the goal with certainty,
so V U (I) = 1 there as well and search terminates regularly. In configurations not maintaining V U ,
however, these criteria can be very useful to reduce search.

The correctness of GoalProb-AO∗ is easy to establish. By the standard properties of Bellman
updates, at any point in time during the execution of the algorithm, and for any state s in Θ, we
have that V L(s) ≤ V ∗(s) ≤ V U (s), i.e., V L and V U are lower respectively upper bounds on goal
probability. Indeed, these bounds are monotone (Bertsekas & Tsitsiklis, 1996), precisely, V L and
V U are exact on absorbing states, and satisfy V L(s) ≤ maxa∈A[s]

∑
t P (s, a, t)V L(t) respectively

V U (s) ≥ maxa∈A[s]
∑

t P (s, a, t)V U (t) on non-absorbing ones. This is because V L and V U are
initialized with functions trivially satisfying these properties, and these properties are invariant over
Bellman updates on non-absorbing states (given monotonicity, V L can only grow, while V U can
only decrease). Thanks to monotonicity, with the same arguments as given for LAO∗ (Hansen &
Zilberstein, 2001), we get that V U converges to V ∗ in finite time on the πU -greedy graph.

Finally, we need to prove that, in case of early termination returning πL, the greedy policy πL

on V L actually achieves what we want, i.e., (1) πL is closed and (2) πL provides sufficient goal
probability, i.e., V πL

(I) ≥ V L(I). For (1), πL is always a closed policy, because it applies the
don’t care symbol ∗ at the non-absorbing leaf states in Θ. (Note also that ∗ is applied only by πL

and only on those states.) For (2), we show that, for all states s, we have V πL
(s) ≥ V L(s). This

claim is trivial for states s where πL(s) = ∗, as these have never been updated so V L(s) = 0. For
other states s, the claim follows by a simple inductive reasoning over the maximal distance to an
absorbing state in the πL-greedy graph. For absorbing states s, we have V πL

(s) = V L(s) = V ∗(s),
so the claim is trivially satisfied. In the induction step, we have V πL

(s) =
∑

t P (s, πL(s), t)V πL
(t)

by definition of V πL
, while, by the induction hypothesis, V πL

(t) ≥ V L(t) for all those states t
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procedure GoalProb-LRTDP
Θ := {I}; Initialize(I)
loop do

[early termination criteria exactly as in GoalProb-AO∗]
if I is not labeled as solved then

LRTDP-Trial(I)
else return πU endif /* regular termination */

endloop
procedure LRTDP-Trial(s):
P := empty stack
while s is not labeled as solved do

push s onto P
if s ∈ S> ∪ S⊥ then break endif
[cyclic: if s is ε-consistent then break endif]
for all a and t where P (s, a, t) > 0 do

if t 6∈ Θ then Initialize(t) endif
endfor
update V U (s), πU (s), V L(s), πL(s)
s := sample t according to P (s, πU (s), t)

endwhile
while P not empty do

pop s from P
[acyclic: if ¬ CheckSolved(s, 0) then break endif]
[cyclic: if ¬ CheckSolved(s, ε) then break endif]

endwhile

Figure 2: LRTDP for MaxProb, AtLeastProb, and ApproxProb, on acyclic or general (cyclic) state
spaces. πU is the current greedy policy on V U , πL is the current greedy policy on V L.
The CheckSolved(s, ε) procedure is exactly as specified by Bonet and Geffner (2003b). It
visits states t reachable from s using πU , initializing t if not previously visited, stopping
at t if not ε-consistent. It then performs updates bottom-up, labeling t as solved iff all its
descendants are ε-consistent. Our only change is to update V L and πL along with V U

and πU .

where P (s, πL(s), t) > 0, so in other words V πL
(s) ≥ ∑

t P (s, πL(s), t)V L(t). By plugging in
the definition of πL(s), and by using the monotonicity property, it is now easy to conclude that
V πL

(s) ≥ V L(s), as desired.

3.3 LRTDP

Figure 2 shows pseudo-code for our GoalProb-LRTDP variant, applicable to the general case (cyclic
as well as acyclic problems). We assume that, in cyclic cases, the algorithm is run within the FRET
framework. The main change to the original version of LRTDP consists in maintaining a lower
bound in addition to the upper (optimistic) bound, and adding the same early termination criteria as
in GoalProb-AO∗. Correctness of early termination follows with the same arguments as before, i.e.,
V L(s) and V U (s) are monotone lower respectively upper bounds, and πL is always a closed policy.
Note that this is true even in the general/cyclic case, i.e., if early termination applies, then we can
terminate the overall FRET process.

The only other change we make is an additional stopping criterion for trials in the cyclic case,
namely if the current state s is ε-consistent. Kolobov et al. (2011) use this criterion to keep trials
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procedure GoalProb-DFHS
Θ := {I}
loop do

[early termination criteria exactly as in GoalProb-AO∗]
if (Label and I is not labeled as solved)

or (VI and πU changed after running VI on the πU -greedy graph) then
DFHS-Exploration(I)
clean visited-markers

else return πU endif /* regular termination */
endloop
procedure DFHS-Exploration(s):

if s 6∈ Θ then Initialize(s) endif
if s ∈ S> ∪ S⊥ or s is labeled solved then

label s solved
return ⊥

endif
flag := ⊥
if FW then

if V U (s) is not ε-consistent then flag := > endif
update V U (s), πU (s), V L(s), and πL(s)
if Consist and flag then return > endif

endif
mark s as visited
foreach t with P (s, πU (s), t) > 0 do

if t has not been visited then flag := DFHS-Exploration(t) ∨ flag endif
done
if flag or ¬FW then

if V U (s) is not ε-consistent then flag := > endif
update V U (s), πU (s), V L(s), and πL(s)

endif
if Label and ¬flag then label s solved endif
return flag

Figure 3: Depth-First Heuristic Search (DFHS) for acyclic MaxProb, AtLeastProb, and Approx-
Prob. The cyclic version is shown in Appendix A and uses Tarjan’s SCC procedure
instead of depth-first search. VI, Label, FW, and Consist are Boolean algorithm param-
eters (see text). Recall that the πU -greedy graph is the set of states reachable from I using
the current greedy policy πU . The flag returned by DFHS-Exploration is used inside the
recursion only (it is ignored in the top-level calls), to decide whether to backward-update
a state if forward-updates are in use.

from getting trapped in 0-reward (non-goal) cycles. The criterion preserves the property that, upon
regular termination, all states reachable using πU are ε-consistent.7

In the cyclic case, the V U fixed point found by LRTDP may be sub-optimal, so we have to use
FRET. In the acyclic case, we use ε = 0, and a single call to LRTDP suffices.
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3.4 Depth-First Heuristic Search

We finally consider systematic heuristic searches (not based on trials like LRTDP) with a strong
depth-first orientation. Intuitively, such an orientation is especially beneficial in our context as it is
likely to lead to absorbing states, and thus to states with a non-trivial heuristic function initialization,
quickly. We refer to such algorithms as Depth-First Heuristic Search (DFHS). Known instances are
ILAO∗ (Hansen & Zilberstein, 2001),8 heuristic dynamic programming (HDP) (Bonet & Geffner,
2003a), and learning depth-first search (LDFS) (Bonet & Geffner, 2006). Their commonality lies in
conducting depth-first searches (DFS) on the state-space subgraph defined by actions greedy on a
current upper bound V U , which is being updated backwards in DFS, until a termination criterion ap-
plies. The algorithms differ in how depth-first branches are terminated, how the overall algorithm is
terminated, and in whether or not updates are also performed in the forward direction. Here, we sys-
tematize these parameters, obtaining a DFHS algorithm family containing the previous algorithms
as family members.

Figure 3 gives a pseudo-code description of our DFHS algorithm family. For simplicity, the
figure considers acyclic problems only. For cyclic problems, instead of DFS the algorithms use
Tarjan’s depth-first SCC algorithm (Tarjan, 1972), in order to detect the SCCs at the same time
as doing the exploration and updates, as suggested by Bonet and Geffner (2003a). (Knowing the
SCCs is required for correct solved-labeling in the general case.) The pseudo-code description of
the DFHS algorithm family for the general (cyclic) case is given in Appendix A.

The algorithms search in the πU -greedy graph. A variant would be to instead search the V U -
greedy graph. That variant, employed by LDFS, is not effective for goal probability analysis because
V U is 1 everywhere initially, and the V U -greedy graph is the entire (dead-end pruned) reachable
state space. We hence omit this option, and therewith LDFS, from our DFHS family (matters may
change if better admissible heuristic functions are identified in future work, cf. Section 8).

All algorithms update values in the backward direction, when leaving a state. If the FW algorithm
parameter is true, then value updates are done also in the forward direction, when entering a state.
As that consistently yields (small) advantages empirically, we switch FW to true in all our algorithm
configurations, except in the one corresponding to the known algorithm ILAO∗ which does not use
this technique. Detecting whether the optimal solution has been found can be done in two ways: (1)
Label, maintaining solved-labels while doing the DFS; or (2) VI, running value iteration on the πU -
greedy graph after DFS has terminated. In (1), πU is optimal if the initial state is labeled solved. In
(2), one can terminate if the greedy policy did not change during VI. If we do use forward updates,
then (as we already check the Bellman residual anyway) we have the additional option Consist to
stop the search at ε-inconsistent states, as opposed to stopping only at absorbing states. Overall, we
run 5 different parameter settings for DFHS, overviewed in Table 1.

Correctness of early termination follows again with the same arguments as before. For the
correctness of regular termination, we need to show that a fixed point policy is obtained, i.e., upon
regular termination, (*) the πU -greedy graph contains no ε-inconsistent states. This holds because
all our algorithm variants fit Bonet and Geffner’s (2003a) Find-and-Revise schema on a finite state
space with a monotone optimistic bound, where (1) in each search iteration we find and update at

7. The updates during trials are, in difference to the original LRTDP formulation, not related to a trial-stopping guarantee
in goal probability maximization. They just turn out to consistently yield (small) advantages empirically, so we keep
them in here.

8. The brief description of ILAO∗ by Hansen and Zilberstein (2001) – and thus its depth-first orientation – can be subject
to interpretation. Our design here follows that of Bonet and Geffner (2005) in their mGPT tool.
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Acronym Termination FW? Cons? Known?
DFHSVI VI no no yes: ILAO∗ (Hansen & Zilberstein, 2001)
DFHSFwd

VI VI yes no no: new variant
DFHSFwdCons

VI VI yes yes no: new variant
DFHSFwd

Lab Label yes no no: new variant
DFHSFwdCons

Lab Label yes yes yes: HDP (Bonet & Geffner, 2003a)

Table 1: Depth-First Heuristic Search (DFHS) family overview. We do not include LDFS (Bonet
& Geffner, 2006) as, due to considering the V U -greedy graph rather than the πU -greedy
graph, LDFS does not work well on MaxProb (see text).

least one ε-inconsistent state, until (2) condition (*) is met. Given the depth-first search (respectively
Tarjan’s algorithm, in the general case) it is clear that (1) holds true. Regarding (2), this is obvious
when the VI termination option is used;9 it holds for the Label termination option because a state
is labeled solved only when all its descendant states in the πU -greedy graph are ε-consistent.

As done in Table 1, we will usually omit the “GoalProb-” in algorithm names. Keep in mind
though that our algorithms differ from the original ones, in particular in terms of early termination
which depends on the objective MaxProb, AtLeastProb, or ApproxProb. To study the termination
benefits of the lower vs. upper bound, we will switch each bound on and off individually. Where
X denotes one of our search algorithms, we denote by X|U and X|L the variants of X maintaining
only V U respectively only V L. We will sometimes write X|LU to make explicit that both bounds
are used. Early termination criteria involving the non-maintained bound are disabled. For X|U, this
leaves just the negative criterion V U (I) < θ in AtLeastProb; X|L still has positive criteria.

We test a version X|L only for X=AO∗, as a canonical representative of (non-VI) blind search.
In AO∗|L, all non-absorbing leaf states in Θ are open (rather than only those reachable using πU ),
and in case of regular termination we return πL.

3.5 FRET

As previously hinted, Kolobov et al.’s (2011) FRET performs an iteration of complete searches. It
starts with some upper-bound approximation V U of V ∗, which is continuously updated throughout
the FRET process. Within each FRET iteration, a heuristic search algorithm runs until termination,
i.e., until finding a fixed point policy. In between these iterations, FRET runs a trap elimination
step, which finds all traps in the V U -greedy graph. FRET forces the next search iteration to not
include these traps. FRET terminates if the V U -greedy graph does not contain a trap.

The trap elimination step works as follows. A trap is a subset T of non-absorbing states in
which any greedy policy will remain indefinitely, i.e., all outgoing transitions in the V U -greedy
graph of any s ∈ T lead to another trap state t ∈ T . A trap T is removed by collapsing T ’s states
into a single state sT . The incoming transitions of sT are those incoming to any state of T , and its
outgoing transitions are those transitions of T -states exiting T (note that these transitions are, by
construction, not contained in the V U -greedy graph).

This transformation obviously prevents T from occuring again in later iterations. It preserves
V ∗ as the trap states have identical V ∗ values: as all trap states are non-absorbing and can reach each
other, these states can reach each other with 0-reward transitions (note that this holds regardless of

9. Note that, in the acyclic case, full VI is not actually needed so the algorithm could be simplified. We leave it this way
here, as used by ILAO∗ in the general case, for simplicity of presentation.
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V U , i.e., it holds also on parts of the state space where V U has not yet converged). Because there
is only a finite number of possible traps in the state space, FRET eventually finds a V U whose V U -
greedy graph does not contain a trap. From that graph, a V U -greedy policy π is extracted, which
does not contain traps, hence is proper on the trap-collapsed state space, hence is optimal for that
state space. An optimal policy for the original task can be constructed from π by acting, within
collapsed traps, in a way so that the exit taken by π is eventually reached with certainty. (This is the
correctness argument given by Kolobov, 2013.)

Our new variant of FRET differs from the original version only in terms of the state space
subgraph considered: instead of the V U -greedy graph, we use the πU -greedy graph, i.e., we consider
only the actions selected into the current greedy policy (cf. our discussion of DFHS above). We will
refer to this design as FRET-πU , and we will refer to Kolobov et al.’s (2011) design as FRET-V U .
It is easy to see that FRET-πU is still correct. The arguments above remain intact as stated.

FRET-V U potentially eliminates more traps in each iteration, and may hence require fewer itera-
tions. Yet not all these traps may actually need to be eliminated (we might eventually find an optimal
policy not entering them), and each trap elimination step may be much more costly. In particular,
in goal probability analysis, FRET-V U is typically ineffective because, similarly as discussed above
for DFHS, in the first FRET step V U often is 1 almost everywhere, and the V U -greedy graph is
almost the entire reachable state space. As we shall see, FRET-πU clearly outperforms FRET-V U .

4. State-Space Reduction via Determinized Bisimulation

Bisimulation is a known method to reduce state space size in MDPs/probabilistic planning (e.g.
Dean & Givan, 1997). The idea essentially is to group equivalent sets of states together as block
states, and then solve the smaller MDP over these block states. Here, we observe that this ap-
proach can be fruitfully combined with state-of-the-art classical planning techniques, namely merge-
and-shrink heuristics (Dräger, Finkbeiner, & Podelski, 2009; Helmert, Haslum, Hoffmann, & Nis-
sim, 2014), which allow to effectively compute a bisimulation over the determinized state space.
Determinized-bisimilar states are bisimilar in the probabilistic state space as well, so this identi-
fies a practical special case of probabilistic bisimulation given a factored (STRIPS-like) problem
specification.

Let us spell this out in a little more detail. Given a task Π (with or without budget limit), a
probabilistic bisimulation for Π is a partitioning P = {B1, . . . , Bn} of Π’s state set S so that, for
every Bi and Bj , every action a, and every s, t ∈ Bi, the following two properties are satisfied
(Dean & Givan, 1997):

(i) a is applicable in s iff a is applicable in t; and

(ii) if a is applicable in s and t, then
∑

o∈O(a),sJoK∈Bj
p(o) =

∑
o∈O(a),tJoK∈Bj

p(o).

Dean and Givan show that an optimal solution to the bisimulation of an MDP induces an optimal
solution to the MDP itself. In other words, it suffices to work on the block states Bi.

Now, denote by Πdet the all-outcomes determinization of Π (e.g. Yoon et al., 2007; Little
& Thiebaux, 2007), with a separate action adeto for every a and o ∈ O(a), inheriting a’s pre-
condition and o’s adds, deletes, and cost. A determinized bisimulation for Π is a partitioning
P = {B1, . . . , Bn} of Π’s states so that, for every Bi and Bj , every determinized action adeto ,
and every s, t ∈ Bi, the following two properties are satisfied (Milner, 1990; Helmert et al., 2014):

(a) adeto is applicable in s iff adeto is applicable in t; and
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(b) if adeto is applicable in s and t, then sJadeto K ∈ Bj iff tJadeto K ∈ Bj .
It is easy to see that such {B1, . . . , Bn} also is a probabilistic bisimulation for Π. Since an action
adeto is applicable in a state s iff the corresponding action a of the original MDP is applicable in s,
(a) directly implies (i). From (b), we know that for every action a applicable to s, t, and for each
outcome o ∈ O(a), we have sJadeto K ∈ Bj iff tJadeto K ∈ Bj . This obviously implies (ii); it is more
restrictive than needed as it insists on the subset of outcomes being the same on both sides, rather
than only their summed-up probability being the same.

But how to compute a determinized bisimulation for Π? The naı̈ve solution is to build the state
space up front and then computing a determinized bisimulation on it. One can potentially do much
better though, by using merge-and-shrink with the widely employed shrinking strategies based on
bisimulation (Nissim, Hoffmann, & Helmert, 2011; Katz, Hoffmann, & Helmert, 2012; Helmert
et al., 2014). In a nutshell, this algorithm framework constructs an abstraction by starting with a
collection of abstractions each considering a single state variable only, then iteratively “merging”
two abstractions (replacing them with their synchronized product) until only a single abstraction is
left, and “shrinking” abstractions to a bisimulation thereof in between every merging step. As we
shall see in the experiments, this often still incurs a prohibitive overhead, but it can be feasible, and
lead to substantial state space size reductions. In some cases, it results in tremendous performance
improvements.

5. Dead-End Pruning

We refer to states s where V ∗(s) = 0, i.e., the goal cannot be reached at all from s, as dead-ends.
If one detects such s via some dead-end detection technique, then one can treat s exactly like a lost
state S⊥ (except for setting πL(s) := ∗ as we need to act on non-absorbing states). This constitutes
a pruning method in itself, useful for any search algorithm, as the state space below s needs no
longer be explored. Apart from this pruning itself, for the heuristic search algorithms, dead-end
detection provides a non-trivial initialization of V U , as we will initialize V U (s) = 0 instead of
V U (s) = 1 if we detected s to be a dead-end. This more informed initial upper bound typically
leads to additional search reductions.

But how to detect dead-ends? Kolobov et al. (2011) employ SixthSense (Kolobov et al., 2010),
which learns dead-end detection rules by generalizing from information obtained using a classi-
cal planner. Here we instead exploit the power of classical-planning heuristic functions – readily
available in our FD implementation framework – run on the all-outcomes determinization. This is
especially promising in limited-budget planning, where we can use lower bounds on determinized
remaining cost to detect states with insufficient remaining budget. Observe that this is natural and
effective using admissible remaining-cost estimators, yet would be impractical using an actual clas-
sical planner (which would need to be optimal and thus prohibitively slow). In the unlimited-budget
case, we can use any heuristic function able to detect dead-ends (returning ∞), which applies to
most known heuristics. Indeed, merge-and-shrink heuristics have recently been shown to be ex-
tremely competitive dead-end detectors (Hoffmann, Kissmann, & Torralba, 2014).

To make this concrete, consider a state s in a task Π, and denote as before by Πdet the all-
outcomes determinization of Π. Let h be a classical-planning heuristic function. If h guarantees
to return ∞ only on dead-ends, and h(s) = ∞ on Πdet , then there exists no sequence of action
outcomes achieving the goal from s, so V ∗(s) = 0. If Π is a limited-budget task, h is admissible,
and h(s) > b(s), then we cannot achieve the goal from swithin the budget, and thus also V ∗(s) = 0.
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We experiment with state-of-the-art heuristic functions, namely (a) an admissible landmark
heuristic as per Karpas and Domshlak (2009), (b) LM-cut (Helmert & Domshlak, 2009), (c) several
variants of merge-and-shrink heuristics, and (d) hmax (Bonet & Geffner, 2001) as a simple and
canonical option. (a) turned out to perform consistently worse than (b), so we will report only on
(b) – (d).

For limited-budget planning, we also considered adopting the problem reformulation by Domsh-
lak and Mirkis (2015) for oversubscription planning, which reduces the budget b using landmarks
and in exchange allows traversing yet unused landmarks at a reduced cost during search. It turns
out, however, that pruning states whose reformulated budget is < 0 is equivalent to the much sim-
pler method pruning states whose heuristic (a) exceeds the (original/not reformulated) remaining
budget. The added value of Domshlak and Mirkis’ reformulation thus lies, not in its pruning per se,
but in its compilation into a planning language and the resulting combinability with other heuristics.

We give full details in Appendix B. To get an intuition why Domshlak and Mirkis’ reformulation
is, per se, equivalent to (a), assume for simplicity that L is a set of disjoint disjunctive action land-
marks for the initial state, and assume that actions have unit costs. Say we prune s if its reduced bud-
get, b′(s), is< 0. The reduced initial budget is b′ := b−|L|. The reduced costs allow applying mem-
ber actions of yet non-used landmarks at 0 cost, where the non-used landmarks for a given search
path are those l ∈ L not touched by the path. Consider now some state s reached on path ~a. Denote
the non-used landmarks by L′. The cost saved on ~a thanks to the reformulation is exactly that of the
used landmarks, |L\L′|. Hence b′(s) = b′−(|~a|−|L\L′|) = (b−|L|)−|~a|+|L\L′| = b−|~a|−|L′|.
So s is pruned in the reformulation, b′(s) < 0, iff b − |~a| − |L′| < 0 iff b − |~a| < |L′|. The latter
condition, however, is exactly the pruning condition using the simple method (a) instead.

6. Node Selection Strategies

In all our algorithms, good anytime behavior on V L and/or V U may translate into early termination.
We explore the potential of fostering this via (1) biasing the tie-breaking in the selection of “best”
actions πU greedy with respect to V U , and (2) biasing, respectively, the outcome-state sampling
during trials (LRTDP) and the choice of expanded leaf states (AO∗). To be precise regarding the
latter: as usual, we maintain “state open” flags in AO∗, true if a state has open descendants within
the πU -greedy graph. We select the leaf state to expand by going forward from I using πU , and if
an action has more than one open outcome state t, we select a t best according to the bias (2). Note
that (2) is not as relevant in DFHS, which in every iteration of DFS explores all outcomes anyhow.
Hence, in DFHS, we use only the πU tie-breaking criteria (1) explained in what follows.

We experimented with a variety of strategies. In what follows, where a strategy specifies one
of (1) or (2) only, the other setting is as in the default strategy. That strategy corresponds to the
commonly used settings. It uses arbitrary tie-breaking for (1), but in a fixed manner, changing
πU (s) only if some other action becomes strictly better in s, as suggested by Bonet and Geffner
(2003b) for LRTDP. There is no bias (2) on outcome states in AO∗ (an open outcome state is selected
arbitrarily). Bias (2) in LRTDP is by outcome probability. We also tried this most-prob-outcome
bias strategy in AO∗, where the most likely open outcome state is selected.

The h-bias strategy prefers states with smaller h value, where the heuristic h is the same one
used for dead-end pruning.10 Specifically, for action selection tie-breaking (1), from those actions

10. We also experimented with a strategy using merge-and-shrink with determinized action costs set to the negated
logarithm of outcome probability (compare e.g. Jimenez, Coles, & Smith, 2006). This is compelling in theory
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a maximizing the optimistic expected goal probability
∑

t P (s, a, t)V U (t), we select an a mini-
mizing the expected heuristic value

∑
t P (s, a, t)h(t). The outcome-state bias (2) is obtained by

renormalizing the weighed probabilities 1
h(t) ∗ P (s, a, t), so we prefer high probability outcomes

with small h value.
Inspired by BRTDP (McMahan et al., 2005), we experiment with a gap-bias strategy, biasing

search towards states with large V U −V L gaps. Precisely, for (1) we break ties in favor of actions a
maximizing the expected gap

∑
t P (s, a, t)[V U (t)−V L(t)], and for (2) we renormalize the weighed

probabilities [V U (t)− V L(t)] ∗ P (s, a, t).
Inspired by common methods in classical planning (e.g. Hoffmann & Nebel, 2001; Helmert,

2006; Richter & Helmert, 2009), we experiment with a preferred actions strategy, which in (1)
prefers to set πU (s) to an action a participating in a delete-relaxed determinized plan for s, if such
a maximizing

∑
t P (s, a, t)V U (t) exists.

AO∗|L is a special case, as we do not maintain an upper bound and thus there is no selection
(1) of actions πU greedy with respect to V U . We apply node selection strategies for (2) directly
to the set of (all) leaf states in the current search graph Θ. The default strategy is depth-first, the
rationale being to try to reach absorbing states quickly. The h-bias strategy selects a deepest leaf
with minimal h value, the preferred actions strategy selects a deepest open leaf reachable using only
preferred actions. We furthermore experiment with a breadth-first strategy, just for comparison.

7. Experiments

We implemented all the algorithms in Fast Downward (FD) (Helmert, 2006), and ran experiments
on an extensive suite of benchmarks.11 In our evaluation we first summarize the results for acyclic
benchmarks (where FRET is not needed), and then the ones for cyclic benchmarks (where FRET is
needed).

7.1 Experiments Setup

We start with giving details of our implementation and describing the benchmark suite used for the
experiments.

7.1.1 IMPLEMENTATION

As our model pertains to goal-directed MDPs with a limited number of (explicitly listed) outcomes
per action, naturally we use PPDDL (Younes et al., 2005), rather than RDDL (Sanner, 2010; Coles
et al., 2012), as the surface-level language. FD’s pre-processes were extended to handle PPDDL,
and we added support for specifying a (numeric) budget limit.

Given the FD implementation framework in contrast to previous works on optimal probabilistic
planning, we implemented all algorithms from scratch. For FRET, we closely followed the original
implementation, up to details not specified by Kolobov et al. (2011), based on personal communi-
cation with Andrey Kolobov. (Kolobov’s original source code is not available anymore, which also
plays a role in our state-of-the-art comparison, see next.)

because, then, a bisimulation-based heuristic corresponds to the exact goal probability of the best outcome sequence
from a state. Yet, as already pointed out, computing such a heuristic is often infeasible.

11. The source code is available in an online appendix, and can be downloaded at http://fai.cs.uni-
saarland.de/downloads/fd-prob.tar.bz2
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Given the scant prior work on optimal goal probability analysis (cf. Section 1), the state of the art
is represented by topological VI, by LRTDP|U with dead-end pruning on acyclic problems, and by
FRET-V U using LRTDP|U with dead-end pruning on cyclic problems. All these configurations are
particular points in the space of configurations we explore, so the comparison to the state of the art
is part of our comparison across configurations. The only thing missing here is the particular form
of dead-end detection, which was SixthSense in the only prior work, by Kolobov et al. (2011). As
SixthSense is a complex method and advanced dead-end pruning via heuristic functions is readily
available in our framework, we did not re-implement SixthSense. Our discussion of cyclic problems
in Section 7.3 below includes a detailed comparison of our results with those by Kolobov et al., on
IPPC ExplodingBlocks which is the only domain Kolobov et al. considered.

Note that providing quality guarantees is an important property in this study. For this reason,
and for the sake of clarity, we do not compare against unbounded suboptimal approaches, such
as using an algorithm with a discounted criterion or assigning large finite penalties to dead-ends
(Teichteil-Königsbuch et al., 2011; Kolobov et al., 2012).

Furthermore, as AtLeastProb is a special case of MDP model checking, one may wonder how
probabilistic model checking tools, e.g. PRISM (Kwiatkowska et al., 2011b), would fare on that
problem in planning benchmarks. We do not investigate that question here, which would entail a
translation from PPDDL into a model checking language, which is non-trivial and makes a direct
comparison – of algorithms taking different inputs – problematic. One may speculate that, given
their focus on blind searches, model checking tools are inferior to our heuristic search approaches
where those fare well; but that remains a question for future work.

7.1.2 BENCHMARK SUITE

Our aim being to comprehensively explore the relevant problem space, we designed a broad suite
of benchmarks, 1089 instances in total, based on domains from the IPPC, resource-constrained
planning, and penetration testing (pentesting).

From the IPPC, we selected those PDDL domains in STRIPS format, or with moderate non-
STRIPS constructs easily compilable into STRIPS. This resulted in 10 domains from IPPC’04 –
IPPC’08; we selected the most recent benchmark suite for each of these.

For resource-constrained planning, we adopted the NoMystery, Rovers, and TPP benchmarks
by Nakhost et al. (2012), more precisely those suites with a single consumed resource (fuel, en-
ergy, money), which correspond to limited-budget planning.12 We created probabilistic versions
by adding uncertainty about the underlying road map, akin to the Canadian Traveler scenario, each
road segment being present with a given probability (this is encoded through a separate, probabilis-
tic, action attempting a segment for the first time). For simplicity, we set that probability to 0.8
throughout.

For pentesting, the general objective is – using exploits – to compromise computers in a net-
work, one after another, until specific targets are reached (or no action is available). We modified
the POMDP generator by Sarraute, Buffet, and Hoffmann (2012), which itself is based on a test sce-
nario used at Core Security (http://www.coresecurity.com/) to output PPDDL encodings of
Hoffmann’s (2015) attack-asset MDP pentesting models. In these models, the network configura-

12. To make the benchmarks feasible for optimal probabilistic planning, we had to reduce their size parameters (number
of locations etc). We scaled all parameters with the same number < 1, chosen to get instances at the borderline of
feasibility for VI.
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tion is known and fixed, and each exploit is callable once and succeeds (or fails) with some proba-
bility. The generator uses a network consisting of an exposed part, a sensitive part, and a user part.
It allows to scale the numbers H of hosts and E of exploits. Sarraute et al.’s POMDP model and
solver (SARSOP, see Kurniawati, Hsu, & Lee, 2008, which does not guarantee optimality) scale to
H = 6, E = 10.13 For our benchmarks, we fixed H = E for simplicity (and to obtain a number of
instances similar to the other benchmark domains). We scaled the instances from 6 . . . 20 without
budget limit, and from 10 . . . 24 with budget limit.

From each of the above benchmark tasks Π (except the pentesting ones for which we already
generated a separate limited-budget version anyway), we obtained several limited-budget bench-
marks, as follows. We set outcome costs to 1 where not otherwise specified. We determined the
minimum budget, bmin, required to achieve non-0 goal probability. For the resource-constrained
benchmarks, bmin is determined by the generator itself, as the minimum amount of resource required
to reach the goal in the deterministic domain version. For all other benchmarks, we ran FD with A∗

and LM-cut on the all-outcomes determinization of Π. If this failed, we skipped Π, otherwise we
read bmin off the cost of the optimal plan and created several limited-budget tasks Π[C], differing in
their constrainedness level C. Namely, following Nakhost et al. (2012), we set the global budget b
in Π[C] to b := C ∗bmin, so that C is the factor by which the available budget exceeds the minimum
needed (to be able to reach the goal at all). We let C range in {1.0, 1.2, . . . , 2.0}.

For AtleastProb, we let θ range in {0.1, 0.2, . . . , 1.0} (θ = 0 is pointless). For ApproxProb,
we let δ range in {0.0, 0.1, . . . , 0.9} (δ = 1 is pointless). On cyclic problems, the convergence
parameter ε was set to 0.00005 (the same value as used by Kolobov et al., 2011). All experiments
were run on a cluster of Intel E5-2660 machines running at 2.20 GHz, with time/memory cut-offs
of 30 minutes/4 GB.

7.2 Acyclic Planning

We consider first acyclic planning. This pertains to all budget-limited benchmarks, to pentesting
with and without budget limit, as well as to IPPC TriangleTireworld (moves can be made in only
one direction so the state space is acyclic). We consider the 3 objectives MaxProb, AtLeastProb,
and ApproxProb. We run all 16 search algorithm variants (VI, AO∗, LRTDP, 5 DFHS variants, with
subsets of bounds as applicable), each with up to 5 node selection strategies as explained. For dead-
end pruning, we run LM-cut, as well as merge-and-shrink (M&S) with the state-of-the-art shrinking
strategies based on bisimulation and an abstraction-size bound N ; we show data for N = ∞ and
N = 100k (we also tried N ∈ {10k, 50k, 200k} which resulted in similar behavior). We also run
variants without dead-end pruning. We use the deterministic-bisimulation (DB) reduced state space
only for VI: once (and if) a bisimulation is successfully computed, the block-state MDP is easily
solved by that simplest algorithm. Given DB, we do not require any dead-end pruning because all
dead-ends are already removed from the reduced state space.

Overall, this yields 577 different possible algorithm configurations. We do not actually test all
these configurations, of course, as not all of them are interesting, or needed to make the essential
observations. We instead organize our experiment in terms of three parts (1)–(3), each focusing
on a particular issue of interest. Consider Table 2, which gives an overview of the configurations
considered in each experiment. The design of the experiments is as follows:

13. For modeling/solving the entire network, that is. With their domain-dependent decomposition algorithm “4AL”,
trading accuracy for performance, Sarraute et al. scale up much further.
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Experiment Search Algorithm Pruning Node selection # Configs

(1)
MaxProb search & prun-
ing

VI, AO∗|L, AO∗|U,
LRTDP|U, DFHS|U (5),
VI on DB

ALL (4) default 37

(2)
AtLeastProb & Approx-
Prob parameters

VI, AO∗|L, AO∗|U,
AO∗|LU, LRTDP|U,
LRTDP|LU, HDP|U,
HDP|LU, VI on DB

LM-cut default 18

(3) AtLeastProb & Approx-
Prob node selection

VI, AO∗|L, AO∗|U,
AO∗|LU, LRTDP|U,
LRTDP|LU, HDP|U,
HDP|LU, VI on DB

LM-cut
ALL (1, 4, 4, 5, 3,
4, 3, 4, and 1 respec-
tively)

58

Table 2: Overview of algorithms tested on acyclic problems, Section 7.2. Numbers in brackets give
the number of options where that number is not obvious. In (2) and (3), note that the total
number of configurations gets multiplied by 2 because AtLeastProb vs. ApproxProb result
in different algorithm configurations (using different termination criteria). HDP is the
DFHSFwdCons

Lab member of our DFHS family, corresponding to Bonet and Geffner’s (2003a)
HDP algorithm.

(1) We first evaluate different search algorithms and dead-end pruning methods on MaxProb, fixing
the node selection strategy to default.

We omit here all X|LU variants, because, as explained earlier, for MaxProb heuristic search,
maintaining V L is redundant (early termination is dominated by regular termination).

Using the default node selection strategy makes sense here because node selection strategies
are relevant only for anytime performance, i.e., early termination. This plays a minor role in
MaxProb, whose only early termination possibility is the exceptional case where the initial state
lower bound becomes V L(I) = 1.

(2) We next fix the best-performing dead-end pruning method, and analyze search algorithm per-
formance in AtLeastProb and ApproxProb as a function of the parameter θ respectively δ.

We again fix the node selection strategy to default here, leaving their examination to experiment
(3).

(3) We finally let the node selection strategies range, keeping otherwise the setting of experiment
(2).

We will conclude our discussion with (4) additional data illustrating typical anytime behavior. Each
part of the experiment is described in a separate sub-section in what follows.

7.2.1 (1) SEARCH ALGORITHMS & PRUNING METHODS IN MAXPROB

Table 3 shows coverage data, i.e., the number of benchmark tasks for which MaxProb was solved
within the given time/memory limits.

Of the pruning methods, LM-cut clearly stands out. For every search algorithm, it yields the
by far best overall coverage. M&S has substantial advantages only in RectangleTireworld and
NoMystery-b. Note that, for N = ∞, overall coverage is worse than for using no pruning at
all. This is due to the prohibitive overhead, in some domains, of computing a bisimulation on the
determinized state space. And, having invested this effort, it pays off more to use the bisimulation
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DFHSVI |U DFHSFwd
VI |U DFHSFwdCons

VI |U DFHSFwd
Lab |U HDP|U

– LM M&S – LM M&S – LM M&S – LM M&S – LM M&S
Domain # N ∞ N ∞ N ∞ N ∞ N ∞

IPPC Benchmarks
TriaTire 10 9 10 10 10 9 8 8 8 10 10 10 10 9 8 8 8 10 10 10 10

IPPC Benchmarks with Budget Limit
Blocksw-b 66 24 28 24 24 24 28 24 24 24 28 24 24 24 28 24 24 24 28 24 24
Boxworl-b 18 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0
Drive-b 90 90 90 90 52 90 90 90 52 90 90 90 52 90 90 90 52 90 90 90 52
Elevator-b 90 78 86 79 33 79 86 79 33 78 86 79 33 79 86 79 33 78 86 79 33
ExpBloc-b 84 37 60 39 37 37 60 39 37 36 66 39 37 37 60 39 37 36 66 39 37
Random-b 60 36 44 36 33 36 44 36 33 36 44 36 33 36 44 36 33 36 44 36 33
RecTire-b 36 28 31 36 36 30 31 36 36 30 31 36 36 30 31 36 36 30 31 36 36
Tirewor-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriaTire-b 60 46 55 55 55 46 55 55 54 46 55 55 55 46 55 55 54 46 55 55 55
Zenotra-b 36 15 17 17 18 15 17 17 18 12 15 14 15 15 17 17 18 14 16 16 16

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 60 12 40 50 50 12 41 50 50 12 42 50 50 12 41 50 50 12 42 50 50
Rovers-b 60 25 46 36 46 25 46 36 46 25 46 36 47 25 46 36 46 25 46 36 47
TPP-b 60 19 38 27 25 19 38 27 25 20 39 27 25 19 38 27 25 20 39 27 25

Pentesting Benchmarks
Pentest-b 90 57 63 62 37 57 63 62 37 57 63 62 37 57 63 62 37 57 63 62 37
Pentest 15 9 9 9 8 9 9 9 8 8 8 8 8 9 9 9 8 9 9 9 8∑

925 575 710 660 554 578 709 658 551 574 716 656 552 578 709 658 551 577 718 659 553

VI AO∗|L AO∗|U LRTDP|U HDP|U VI
– LM M&S – LM M&S – LM M&S – LM M&S – LM M&S on

Domain # N ∞ N ∞ N ∞ N ∞ N ∞ DB
IPPC Benchmarks

TriaTire 10 4 4 4 4 4 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10
IPPC Benchmarks with Budget Limit

Blocksw-b 66 24 28 24 24 24 28 24 24 24 28 24 24 24 28 24 24 24 28 24 24 24
Boxworl-b 18 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0
Drive-b 90 90 90 90 52 90 90 90 52 90 90 90 52 90 90 90 52 90 90 90 52 52
Elevator-b 90 71 82 72 33 74 84 76 33 65 77 67 33 79 86 79 33 78 86 79 33 33
ExpBloc-b 84 32 46 38 37 32 46 38 37 39 57 39 37 38 65 39 37 36 66 39 37 37
Random-b 60 27 33 35 33 39 34 36 33 35 44 36 33 36 44 36 33 36 44 36 33 33
RecTire-b 36 30 31 36 36 30 31 36 36 30 31 36 36 30 31 36 36 30 31 36 36 36
Tirewor-b 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
TriaTire-b 60 45 52 52 52 45 52 52 52 46 55 55 55 47 57 57 57 46 55 55 55 60
Zenotra-b 36 15 16 16 18 15 16 16 18 14 16 16 17 15 17 16 17 14 16 16 16 17

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 60 11 37 43 44 11 36 42 43 12 39 47 47 12 41 50 50 12 42 50 50 51
Rovers-b 60 23 39 31 40 23 38 31 40 23 44 33 45 25 46 35 46 25 46 36 47 50
TPP-b 60 18 35 25 25 16 35 24 24 15 37 26 22 19 38 27 25 20 39 27 25 26

Pentesting Benchmarks
Pentest-b 90 57 63 62 37 57 63 62 37 57 63 63 37 57 63 63 37 57 63 62 37 37
Pentest 15 9 9 9 8 9 9 9 8 9 9 9 8 9 9 9 8 9 9 9 8 8∑

925 546 658 627 533 559 659 630 531 559 693 641 546 581 718 661 555 577 718 659 553 564

Table 3: Acyclic planning. MaxProb coverage (number of tasks solved within time & memory
limits). Best values, within each table, in boldface. Top: DFHS variants (recall that HDP
is the DFHSFwdCons

Lab member of our DFHS family; DFHSVI is ILAO∗). Bottom: remaining
search algorithms, including also the overall best DFHS variant. Domains “-b” modified
with budget limit. “#”: number of instances. “–”: no pruning; else pruning, against
remaining budget on “-b” domains, based on h = ∞ on other domains. “LM”: LM-cut;
“M&S”: merge-and-shrink, “N” size bound N = 100k, “∞” no size bound. “VI on DB”:
VI run on reduced (deterministic-bisimulated) state space. Default node selection.
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as a reduced MDP state space (“VI on DB”), rather than only for dead-end pruning. An extreme
example of the latter is TriangleTireworld. Far beyond the standard benchmarks in Table 3 (triangle-
side length 20), VI on DB scales to side length 74 in both the original domain and the limited-budget
version. For comparison, the hitherto best solver by far was Prob-PRP (Camacho et al., 2016), which
scales to side length 70 on the original domain, and is optimal only for goal probability 1, i.e., in the
presence of strong cyclic plans – which holds for the original domain but not for the limited-budget
version. (We could not actually run Prob-PRP on the limited-budget domain version, as Prob-PRP
does not natively support a budget, and hard-coding the budget into PPDDL resulted in encodings
too large to pre-process.)

Comparing the different DFHS|U variants, there is no configuration that clearly stands out.
Overall, they all perform equally well, though the FwdCons variants (cutting off the exploration at
ε inconsistent states rather than absorbing states) have a slight edge. This difference mainly comes
from TriangleTireworld, ExplodingBlocks, and TPP-b, where the FwdCons configurations solve more
instances, while in Zenotravel-b the FwdCons configurations perform slightly worse than their coun-
terparts. The termination parameter (VI vs. Label) has almost no effect on coverage. Due to the
similarity of the DFHS configurations, and because DFHSFwdCons

Lab gives the best coverage results,
we will use DFHSFwdCons

Lab as the representative of the DFHS family in the remaining discussion. As
DFHSFwdCons

Lab corresponds to HDP, for simplicity we will from now on refer to it by that name.
AO∗|L is better than VI only in case of early termination on V L = 1, when a full-certainty

policy is found before visiting the entire state space. This happens very rarely here, and AO∗|L is
dominated by VI (this changes for AtLeastProb, see Figures 5a and 7 below). All failures of VI are
due to memory or runtime exhaustion while building the reachable state space. LRTDP|U clearly
outperforms AO∗|U, presumably because it tends to find absorbing states more quickly. LRTDP|U
and HDP|U are about on par; with LM-cut they solve the exact same number of instances (though
not exactly the same instances), and otherwise HDP|U solves slightly fewer tasks than LRTDP|U.

To gauge the efficiency of heuristic search vs. blind search on MaxProb, compare LRTDP|U vs.
VI in Table 3. Contrary to the intuition that a good initial goal probability estimator is required for
heuristic search to be useful, LRTDP|U is clearly superior. Its advantage does grow with the quality
of the initialization; LM-cut yields the largest coverage increase by far. However, even without
dead-end pruning, i.e., with the trivial initialization of V U , LRTDP|U dominates VI throughout, and
improves coverage in 8 of the 16 domains.
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Figure 4: Acyclic planning. Number of states visited, for VI (x) vs. LRTDP|U (y), with no pruning
(left) respectively LM-cut pruning (right). Default node selection.

We next shed additional light on this by comparing search space sizes and runtime values.
Tables 4 and 5 provide aggregate data, Figure 4 gives a scatter plot for the canonical comparison
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VI AO∗|U LRTDP|U HDP|U
– LM M&S – LM M&S – LM M&S – LM M&S

Domain # N ∞ N ∞ N ∞ N ∞
IPPC Benchmarks

TriaTire 1 843.1 843.1 843.1 843.1 0.2 0.2 0.2 0.2 0.8 0.7 0.7 0.7 2.2 1.8 1.8 1.8
ONLY-H 4 0.4 0.4 0.4 0.4 3.5 1.7 1.7 1.7 160.3 835.4 835.4 835.4

IPPC Benchmarks with Budget Limit
Blocksw-b 18 12.7 5.8 2.8 2.8 12 5.2 2.5 2.5 12.3 5.3 2.5 2.5 11.5 4.8 2.3 2.3
Drive-b 20 4.2 2.4 1.8 1.2 4.2 2.2 1.6 1 4 2.1 1.5 1 4 2.1 1.5 0.9
Elevator-b 12 12.8 3.9 7.2 3 3.3 0.3 0.4 0.1 3.6 0.3 0.4 0.1 3.4 0.3 0.4 0.1
ExpBloc-b 18 1.1K 41.9 92.1 33.2 112.2 1.2 12.2 0.8 117.8 1.4 12.5 1.2 150.7 1.2 13.6 0.8
NON-TRIVIAL 7 4.1K 213.2 859.9 179 603.1 3.6 133.6 2.6 588 4 106.8 3.2 780.4 3.4 125.6 2.2
ONLY-H 3 2.6K 1.5 17.2 1.1 3.1K 2.1 21.3 1.6 5.2K 1.9 23.4 1.1
Random-b 21 4.5 1.7 1.7 1.7 1.9 0.8 0.8 0.8 2 0.8 0.8 0.8 1.9 0.8 0.8 0.8
NON-TRIVIAL 4 1.0K 130 127.4 127.4 42.6 6.4 6.4 6.4 43.7 6.4 6.4 6.4 34.5 5.4 5.4 5.4
ONLY-H 2 2.7K 15.9 2.2 2.2 2.9K 15.9 2.2 2.2 2.9K 15.9 2.2 2.2
RecTire-b 18 50.6 5.6 1.5 1.5 49.8 5.1 1.2 1.2 50.4 5.1 1.3 1.3 50.4 5 1.2 1.2
NON-TRIVIAL 12 81.9 8.9 2.4 2.4 81.5 8.2 1.9 1.9 81.6 8.3 2 2 81.5 8.1 1.9 1.9
TriaTire-b 17 1.4K 6.4 6.4 6.4 898.6 3 3 3 896.2 2.9 2.9 2.9 954 3.4 3.4 3.4
NON-TRIVIAL 6 4.1K 229.4 229.4 229.4 1.8K 52.5 52.5 52.5 1.6K 44.5 44.5 44.5 1.8K 67.4 67.4 67.4
ONLY-H 1 7.4K 610.3 610.3 610.3 4.6K 303.3 303.3 303.3 6.2K 634.8 634.8 634.8
Zenotra-b 14 491.5 30.2 35.8 18.2 491.3 29.9 35.2 17.9 288.2 23.6 27.1 14.1 285.1 23.6 27.4 14.2
NON-TRIVIAL 10 967.4 104.4 164.6 64 967.1 102.9 161.1 62.3 478.1 75.3 114.9 45.8 468.6 75.3 115.9 46.3

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 11 2.8K 6.9 0.5 0.5 2.6K 6.6 0.4 0.4 2.6K 6.4 0.4 0.4 2.7K 6.5 0.4 0.4
ONLY-H 1 12.4K 122.4 14.1 14.1 12.7K 122.3 16.4 16.4 12.7K 117.3 14.2 14.2
Rovers-b 21 1.1K 51.8 91.5 22.6 702.9 36.1 58.6 12.4 873.7 38.5 70.8 14.3 782.7 35.8 63.2 12.4
NON-TRIVIAL 13 2.2K 290.1 512.6 137.6 1.1K 176 281.4 65.9 1.6K 190 366.2 76.3 1.3K 173.8 318.4 65.9
ONLY-H 2 4.7K 287.1 709.7 205.2 8.3K 338.3 1.0K 242.1 5.9K 265.5 741 189.5
TPP-b 9 1.1K 49.6 265.4 10.9 660.9 33 183.3 5.7 897.2 38.5 220.7 7.6 765.4 31.3 188.1 5.6
NON-TRIVIAL 5 3.0K 178.7 894.6 36.6 1.5K 100.4 549.5 14.3 2.1K 120.1 701.9 21.5 1.8K 91.3 561.8 14

Pentesting Benchmarks
Pentest-b 28 19.7 6.3 7.8 6.3 19.5 6.3 7.7 6.3 19.7 6.2 7.7 6.2 19.7 6.2 7.7 6.2
NON-TRIVIAL 5 238.1 165.1 169.2 165.1 237.2 165.1 169 165.1 238.1 165.1 169.1 165.1 238.1 165.1 169.1 165.1
Pentest 3 74.3 66.3 66.4 66.3 74.3 66.3 66.4 66.3 74.3 66.3 66.4 66.3 74.3 66.3 66.4 66.3
NON-TRIVIAL 1 194.3 173.4 173.8 173.4 194.3 173.4 173.8 173.4 194.3 173.4 173.8 173.4 194.3 173.4 173.8 173.4

Table 4: Acyclic planning. MaxProb geometric mean search space size (number of states visited) in
multiples of 1000. “#” gives the size of the instance basis, namely those instances solved
by all shown configurations, skipping instances solved in under 1 second by all config-
urations. “NON-TRIVIAL” uses only those instances not solved by VI in < 1 second.
“ONLY-H” uses those instances commonly solved by AO∗|U, LRTDP|U, and HDP|U, but
not solved by VI. Rows with empty instance basis are skipped. Default node selection.

between VI and LRTDP|U. Data for AO∗|L is not shown as its coverage is dominated by VI (cf.
Table 3), and the same goes for its runtime and search space. We include the “NON-TRIVIAL” rows
in the tables to show behavior on the more interesting instances, where the averages are not skewed
by the many very small instances in most domains. We include the “ONLY-H” rows to elucidate the
behavior on the most challenging instances beyond reach of VI.

A clear message from Table 4 and Figure 4 is that the heuristic search algorithms, apart from
a few exceptions, visit much fewer states than VI does, even with trivial upper bound initializa-
tion where search spaces are reduced in all domains except RectangleTireworld and Pentest. For
instance, using LRTDP|U instead of VI results in a gain of around 1 order of magnitude in many
instances, and larger gains (up to 3 orders of magnitude) also occur in rare cases. By giving the
heuristic search algorithms additional information through earlier dead end detection, the differ-
ences become even larger.
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VI AO∗|U LRTDP|U HDP|U
– LM M&S – LM M&S – LM M&S – LM M&S

Domain # N ∞ N ∞ N ∞ N ∞
IPPC Benchmarks

TriaTire 1 3.5 7.4 4.1 4 0 0 0.1 0.1 0 0 0 0 0 0 0.1 0.1
ONLY-H 4 0.1 0.1 0.5 0.5 0.1 0.3 0.6 0.6 1.4 23.9 12.1 12.1

IPPC Benchmarks with Budget Limit
Blocksw-b 18 0.1 0.6 2.5 2.3 1.8 0.8 3 2.8 0.2 0.6 2.3 2.4 0.2 0.5 2 2.1
Drive-b 20 0 0.2 6.9 14 0.1 0.2 8 15.4 0 0.2 7.1 14.2 0 0.2 6.1 12.3
Elevator-b 12 0.1 0.1 1.8 4.1 0 0 2.2 4.5 0 0 1.8 4.1 0 0 1.7 3.8
ExpBloc-b 18 6 1 15.5 7.5 1.6 0 16 8 0.8 0.1 14.2 7.1 0.9 0 13.4 6.6
NON-TRIVIAL 7 25.3 4.8 36.2 45.7 11.5 0.1 33 45.9 4 0.1 29.7 42.1 5 0.1 27.2 39.6
ONLY-H 3 29.3 0.1 40.9 40.4 21.4 0.1 30.7 34.9 35.1 0.1 30.2 32.5
Random-b 21 0.5 0.6 4.8 4.8 0.3 0.3 5.2 5.2 0.3 0.3 4.7 4.8 0.2 0.3 4.4 4.4
NON-TRIVIAL 4 13.9 10.1 39.2 43.2 3 0.9 44.4 49.9 1.4 0.8 36.3 43.2 0.8 0.7 35.3 38.2
ONLY-H 2 27.8 11.3 38.1 42.9 30.3 11.1 35.4 37.4 29.8 10.8 34.8 35.2
RecTire-b 18 9 19.4 1.2 1.2 73.6 20.2 1.3 1.3 43.1 17.6 1.3 1.3 131.2 16.4 1.2 1.2
NON-TRIVIAL 12 20.4 57.3 2.3 2.3 178.9 61.8 2.4 2.4 106.8 51.4 2.3 2.3 330.1 46.5 2.3 2.3
TriaTire-b 17 10.5 0.5 0.6 0.6 14.5 0.4 0.5 0.5 9.5 0.3 0.4 0.4 8.4 0.4 0.4 0.4
NON-TRIVIAL 6 27.7 5.9 3.2 3.3 31.3 2.4 2.1 2 14.7 2 1.7 1.6 13.7 2.4 1.8 1.7
ONLY-H 1 153.2 25.4 13.6 13.6 41.5 11.9 5.1 4.4 42 18.2 6.9 7.1
Zenotra-b 14 2.7 4.9 15 9 56 5.7 18.9 11.8 13 4.3 15.9 9.2 52.5 5 16.8 9.3
NON-TRIVIAL 10 5.6 16.5 27 13.5 163.4 19.3 37.2 18.7 25.3 13.6 30.1 14.5 118.3 16.8 35.2 15.1

Probabilistic Resource-Constrained Benchmarks with Budget Limit
NoMystery-b 11 15.6 0.4 0.3 0.3 242.6 0.4 0.3 0.3 27.8 0.4 0.3 0.3 26.2 0.4 0.3 0.3
ONLY-H 1 1623.4 8.9 0.6 0.6 158.8 7.8 0.5 0.4 137.2 7.3 0.4 0.4
Rovers-b 21 9.7 2.3 11.8 17 96.2 2.3 16.5 21.7 12.8 2 11.6 16.1 10.8 1.8 9.9 14.9
NON-TRIVIAL 13 20.9 12.9 20.2 33.7 236.6 12 33.3 45.1 24.9 9.7 19.5 30.3 19.2 8.8 15.9 29.1
ONLY-H 2 751.2 19.2 76.9 151.4 127.6 18.6 44.8 126.9 85.4 14.8 34.3 105.1
TPP-b 9 8.5 1.6 14.9 69.8 63.2 1.3 24.6 70.2 12.7 1.3 16 69.1 9.6 1.1 14.3 65.1
NON-TRIVIAL 5 22.4 5.7 18.5 76.2 203.5 4.5 37.3 78.2 31.3 4.2 20.1 76.3 23.2 3.2 17.7 72.4

Pentesting Benchmarks
Pentest-b 28 0 0 6.6 16.5 0.5 0 8.2 19.8 0 0 7.3 18.2 0.3 0 6.5 16.6
NON-TRIVIAL 5 3.2 2.2 10.1 92.7 16 4.5 15 108.9 8.5 5.2 15.2 107.6 6.4 4.4 12.7 100
Pentest 3 0.9 0.7 3.2 4.4 5.9 2.3 5.7 6.5 3.8 3 5.8 6.3 2.4 2.7 5.1 6.1
NON-TRIVIAL 1 2.7 2 6.5 17.2 23 8.1 20.6 23.8 15 10.4 16.6 24.4 9.3 10.6 15.2 24.4

Table 5: Acyclic planning. MaxProb geometric mean runtime (in CPU seconds). Same setup and
presentation as in Table 4.

As previously hinted, these observations have not been made in this clarity before. While
Kolobov et al. (2011) also report LRTDP to beat VI on MaxProb, they consider only a single do-
main; they do not experiment with trivially initialized V U ; and they do not use dead-end pruning in
VI, so that LRTDP already benefits from a smaller state space, and the impact of heuristic search
remains unclear.

Even though the search space of the heuristic search algorithms is in many cases only a small
fraction of the whole (dead-end pruned) state space, this is not necessarily reflected in runtime.
On those instances solved by VI, it is typically fast, often faster than heuristic search and rarely
outperformed significantly. This is despite having larger search spaces, i.e., heuristic search does
visit less states but suffers from having to do more updates on these (recall that VI here updates each
visited state exactly once). Significant runtime advantages over VI (in the “NON-TRVIAL” rows)
are obtained by heuristic search only in ExplodingBlocks–b, Random–b, and TriangleTireworld–b.

Comparing the heuristic search algorithms, the conclusions are more fine-grained but overall
similar to what we concluded from coverage above. LRTDP|U dominates AO∗|U almost throughout.
Note that, even though the search space size of AO∗|U and LRTDP|U almost always is similar, AO∗|U
requires a lot more time than LRTDP|U. This is because it performs more updates. Across the non-
trivial commonly solved instances in the tables, the geometric mean of the number of updates done
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in AO∗|U is about 4 times higher than that in LRTDP|U. LRTDP|U and HDP|U with non-trivial
value initialization give very similar results, not only in terms of coverage, but also in terms of
runtime and search space size. LRTDP|U is, however, more effective in some of the domains (e.g.,
RectangleTireworld and Zenotravel) if no additional dead-end detection method is used. On the
other hand, HDP|U has a slight edge in the probabilistic resource-constrained domains. One notable
case where LRTDP|U consistently outperforms HDP|U is TriangleTireworld.

The impact of dead-end pruning on VI is typically moderate. The gains for heuristic search are
much more pronounced, thanks to the stronger heuristic function initialization. Especially AO∗|U
benefits a lot. LRTDP|U and HDP|U benefit as well, but to a smaller extent, partly because they
are already more effective in the first place. Comparing across different dead-end pruning methods,
although M&S withN =∞ clearly yields the largest search space reductions, and necessarily so as
it recognizes all dead-ends, the overhead of bisimulation computation outweighs the search space
reduction in all but a few cases. In terms of pruning power, M&S with N = 100k and the LM-cut
heuristic are overall roughly similar, yet LM-cut has the edge in runtime.

7.2.2 (2) ATLEASTPROB AND APPROXPROB PARAMETER ANALYSIS

We now turn to the weaker objectives, AtLeastProb and ApproxProb. We fix LM-cut for the (almost
always most effective) dead-end pruning. We examine the power of early termination for different
search algorithms and node selection strategies. This is best viewed as a function of the goal proba-
bility threshold θ in AtLeastProb, and of the desired goal probability accuracy δ in ApproxProb. VI
forms a baseline independent of θ (δ). Consider Figure 5.
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Figure 5: Acyclic planning. Total coverage for AtLeastProb as a function of θ in (a), for Approx-

Prob as a function of δ in (b). All configurations use default node selection and LM-cut
dead-end pruning.

For AtLeastProb (Figure 5a), in the interesting region of benchmark instances not feasible for
VI yet sometimes feasible for the other search algorithms, one clear feature is the superiority of
LRTDP over both AO∗ and HDP. As one can see for the smaller values of θ, LRTDP is able to
update V L much more effectively than HDP, resulting in a larger coverage of LRTDP in the region
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of smaller θ values. AO∗|L exhibits strikingly strong behavior for small values of θ, approaching
(and in one case, surpassing) the performance of LRTDP|U. Evidently, the depth-first expansion
strategy is quite effective for anytime behavior on V L and thus for termination via V L(I) ≥ θ. It
is way more effective than the heuristic search in AO∗|LU. As we shall see below (Figure 7), it is
often also more effective than LRTDP. In general, for all algorithms, using V L is a clear advantage
for small θ. For larger θ, maintaining V L can become a burden, yet V U is of advantage due to early
termination on V U (I) < θ. Algorithms using both bounds exhibit an easy-hard-easy pattern.

The spike at the left-hand side in Figure 5 (a), i.e., significantly worse performance for θ = 0.1
than for θ = 0.2, is an outlier due to the Pentest domains – without these domains, AO∗|LU,
LRTDP|LU and HDP|LU exhibit a strict easy-hard-easy pattern. This is because, in contrast to typ-
ical probabilistic planning scenarios, in penetration testing the goal probability – the chance of a
successful attack – are typically small, and indeed this is so in our benchmarks. Searches using an
upper bound quickly obtain V U (I) < 0.2, terminating early based on V U (I) < θ for θ = 0.2. But
it takes a long time to obtain V U (I) < 0.1.

For ApproxProb (Figure 5b), smaller values of δ consistently result in worse performance. We
see again the superiority of LRTDP over AO∗ and HDP, and the (relatively, compared to AO∗|LU)
strong behavior of AO∗|L in δ regions allowing aggressive early termination. Again, the key to
LRTDP beating HDP so clearly is due to LRTDP updating V L much more effectively. HDP|LU can
only improve on HDP|U by a small margin. Nonetheless, we see again the superiority of algorithms
using both bounds over those that don’t.

7.2.3 (3) NODE SELECTION STRATEGIES

Figure 6 shows different node selection strategies in AtLeastProb (the relative performance of node
selection strategies is the same in ApproxProb, so we do not include a separate figure for that).
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Figure 6: Acyclic planning. Total coverage for AtLeastProb as a function of θ, varying the node
selection strategy. All configurations use LM-cut dead-end pruning.

For readability, we show only the most competitive base algorithms, AO∗|L, AO∗|LU, LRTDP|LU,
and HDP|LU (as well as the VI baseline). For LRTDP and HDP, we show only default node selec-
tion, which consistently works basically as well as the alternatives. For AO∗|L, we see that the
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depth-first strategy is important (and way beyond breadth-first, which does worse than VI). The
h-bias strategy is marginally, but consistently, better than depth-first. For AO∗|LU, both the h-bias
and the most-prob-outcome bias are helpful, substantially improving over the default strategy. The
h-bias consistently improves a bit on default AO∗. The gap-bias and preferred-actions strategies
are not shown as they were consistently slightly worse (apparently, the gap-bias leads to a more
breadth-first style behavior, while preferred actions mainly cause runtime overhead).

7.2.4 (4) AN ILLUSTRATION OF TYPICAL ANYTIME BEHAVIOR

To conclude our discussion of acyclic planning, Figure 7 exemplifies typical anytime behavior, i.e.,
the development of the V L(I) and V U (I) bounds on the initial state value, as a function of runtime,
for LRTDP|LU and AO∗|L.
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Figure 7: Acyclic planning. Anytime behavior in LRTDP|LU (V U and V L) and AO∗|L (V L only),

as a function of runtime. Elevators instance 11, without pruning and with LM-cut pruning,
for constrainedness level C = 1.4 (a) respectively C = 1.8 (b). Default node selection.

The benefit of LM-cut pruning is evident. Observe that AO∗|L is way more effective than
LRTDP in quickly improving the lower bound. Indeed, the runs shown here find an optimal policy
very quickly. Across the benchmarks solved by both AO∗|L and LRTDP, omitting those where both
took < 1 second, in 56% of cases AO∗|L finds an optimal policy faster than LRTDP. On (geomet-
ric) average, AO∗|L takes 66% of the time taken by LRTDP for this purpose. On the downside,
unless V ∗(I) ≥ θ, AO∗|L must explore the entire state space. Its runs in Figure 7 exhaust memory
for MaxProb. In summary, heuristic search is much stronger in proving that the maximum goal
probability is found, but is often distracting for improving V L quickly.

As both parts of Figure 7 use the same base instance but with different constrainedness levels C,
we can also draw conclusions on the effect of surplus budget. With more budget, more actions can
be applied before reaching absorbing states. This adversely affects the upper bound (consistently
across our experiments), which takes a much longer time to decrease. The lower bound, on the other
hand, often increases more quickly with higher C as it is easier to find goal states.
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7.3 Cyclic Planning with FRET

We now consider cyclic planning, pertaining to the standard IPPC benchmarks, and to probabilistic
NoMystery, Rovers, TPP without budget (nor resource-) limit. We run only LRTDP and DFHS, as
AO∗ is restricted to acyclic state spaces. We use the two different variants of FRET described earlier:
FRET-V U as per Kolobov et al. (2011), and our new variant FRET-πU . We consider all 3 objectives,
and the same 4 dead-end pruning methods (as LM-cut returns∞ iff the cheaper heuristic hmax does,
we use hmax here). We do not vary node selection strategies because, like we have seen before, in
LRTDP and DFHS these do not bring a notable advantage over the default strategy. We use the
deterministic-bisimulation (DB) reduced state space with each base algorithm, as some differences
do emerge (in difference to the acyclic case) between VI and the other algorithms, which now need
to run FRET. Again, given DB we do not require any dead-end pruning.

Overall, this yields 305 different possible algorithm configurations. As before, not all of these
are interesting, and we instead organize our experiment in terms of parts focusing on issues of
interest. Specifically, we have parts (1) on MaxProb and (2) on AtLeastProb/ApproxProb as before.
As node selection strategies are not relevant here, we do not have the previous part (3) considering
these. We integrate data illustrating anytime behavior with our discussion of (2). Table 6 gives an
overview of tested configurations.

Experiment FRET variant Search Algorithm Pruning # Configs

(1)
MaxProb search & prun-
ing –, FRET-V U , FRET-πU VI, LRTDP|U, DFHS (5) ALL (4), DB 65

(2)
AtLeastProb & Approx-
Prob parameters –, FRET-V U , FRET-πU

VI, LRTDP|U,
LRTDP|LU, HDP|U,
HDP|LU

hmax 18

Table 6: Overview of algorithms tested on cyclic problems, Section 7.3. Note that VI does not re-
quire, and is hence not combined with, FRET; we denote this (not using FRET at all) by “–
”. In (2), note that the number of configurations gets multiplied by 2 because AtLeastProb
vs. ApproxProb result in different algorithm configurations (using different termination
criteria). All configurations tested use default node selection.

7.3.1 (1) SEARCH ALGORITHMS & PRUNING METHODS IN MAXPROB

Table 7 shows coverage data. As before, the DFHS family is shown at the top, and the remaining
search algorithms, including the most competitive DFHS algorithm which as before is HDP, are
shown at the bottom. We do not vary the FRET variant at the top for space reasons, and as, for
FRET-V U , there were no coverage differences at all across DFHS family members.

Similarly as in the acyclic case, the DFHS configurations stopping exploration at ε-inconsistent
states give slightly better results than those stopping only at absorbing states. The termination
parameter has almost no effect on coverage: HDP (i.e., DFHSFwdCons

Lab ) solves one more task in
ExplodingBlocks than DFHSFwdCons

VI , but otherwise the coverage is the same. Also akin to the
acyclic case, both LRTDP and HDP perform equally well, though now HDP has a slight edge in
combination with FRET-πU .

Running the search on a deterministic-bismulation state space is less effective on the cyclic
benchmarks than on the acyclic ones. It gives a clear advantage only in Rovers.
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FRET-πU

DFHSVI |U DFHSFwd
VI |U DFHSFwdCons

VI |U DFHSFwd
Lab |U HDP|U

– hmax M&S on – hmax M&S on – hmax M&S on – hmax M&S on – hmax M&S on
Domain # N ∞ BS N ∞ BS N ∞ BS N ∞ BS N ∞ BS

IPPC Benchmarks
Blocksworld 15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Boxworld 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drive 15 4 15 15 6 6 15 15 15 6 6 15 15 15 6 6 15 15 15 6 6 15 15 15 6 6
Elevators 15 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5
ExplodingBlocks 15 5 12 5 4 4 5 12 5 4 4 5 14 5 4 4 5 12 5 4 4 5 15 5 4 4
Random 15 6 6 1 0 0 6 6 2 0 0 6 6 1 0 0 6 6 2 0 0 6 6 1 0 0
RectangleTireworld 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
Tireworld 15 15 15 15 12 11 15 15 15 12 11 15 15 15 12 11 15 15 15 12 11 15 15 15 12 11
Zenotravel 15 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1

Probabilistic Resource-Constrained Benchmarks
NoMystery 10 4 4 4 4 0 4 4 4 4 0 4 4 4 4 0 4 4 4 4 1 4 4 4 4 1
Rovers 10 9 9 9 8 9 9 9 9 8 9 9 9 9 8 9 9 9 9 8 9 9 9 9 8 9
TPP 10 8 8 8 6 6 8 8 8 6 6 8 8 8 6 6 8 8 8 6 6 8 8 8 6 6∑

164 87 105 93 64 60 98 105 94 64 60 98 107 93 64 60 98 105 94 64 61 98 108 93 64 61

FRET-V U FRET-πU

VI LRTDP|U HDP|U LRTDP|U HDP|U
– hmax M&S on – hmax M&S on – hmax M&S on – hmax M&S on – hmax M&S on

Domain # N ∞ DB N ∞ DB N ∞ DB N ∞ DB N ∞ DB
IPPC Benchmarks

Blocksworld 15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Boxworld 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Drive 15 15 15 15 6 6 15 15 15 6 6 15 15 15 6 6 15 15 15 6 6 15 15 15 6 6
Elevators 15 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5 15 15 15 5 5
ExplodingBlocks 15 4 6 4 4 4 4 6 4 4 4 4 6 4 4 4 5 14 5 4 4 5 15 5 4 4
Random 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 6 6 1 0 0
RectangleTireworld 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
Tireworld 15 10 10 10 10 11 10 11 10 10 11 10 10 10 10 11 15 15 15 12 11 15 15 15 12 11
Zenotravel 15 3 3 3 1 0 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1 3 3 3 1 1

Probabilistic Resource-Constrained Benchmarks
NoMystery 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 1 4 4 4 4 1
Rovers 10 5 5 5 5 9 5 5 5 5 9 5 5 5 5 9 9 9 9 8 9 9 9 9 8 9
TPP 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 8 8 8 6 6 8 8 8 6 6∑

164 81 83 81 60 64 81 84 81 60 65 81 83 81 60 65 96 105 92 64 61 98 108 93 64 61

Table 7: Cyclic planning. MaxProb coverage. Best values, within each table, in boldface. FRET-
V U is as per Kolobov et al. (2011), FRET-πU is our modified version. Top: DFHS variants
(recall that HDP is the DFHSFwdCons

Lab member of our DFHS family; DFHSVI is ILAO∗);
showing only the dominating FRET version, FRET-πU . Bottom: remaining search al-
gorithms, varying the FRET version, and including also the overall best DFHS variant.
Dead-end pruning variants: “–” none, else based on heuristic value ∞, for hmax respec-
tively merge-and-shrink (“N” size bound N = 100k, “∞” no size bound). “on DB”: run
on reduced (deterministic-bisimulated) state space. Default node selection.

The most striking result here by far is that FRET-πU outperforms both VI and FRET-V U sub-
stantially. Note that, in all domains except ExplodingBlocks and Rovers, the advantage over VI is
obtained even without dead-end pruning, i.e., for trivial initialization of V U . This strongly confirms
the power of heuristic search even in the absence of good admissible goal probability estimators.

As before, we shed additional light on the coverage results through search space size and runtime
data. Figure 8 compares the search space sizes for VI vs. FRET-πU . The non-trivial initialization
using hmax is useful, but gains of up to 3 orders of magnitude are possible even without it.

Table 8 provides aggregate search space size and runtime data. No data is shown for the configu-
ration using FRET-V U with HDP, as that data is almost identical to that of FRET-V U with LRTDP:
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Figure 8: Cyclic planning. Number of states visited, for VI (x) vs. FRET-πU using LRTDP|U (y),
with no pruning (left) respectively hmax pruning (right).

FRET-V U FRET-πU

VI LRTDP|U LRTDP|U HDP|U
– hmax M&S – hmax M&S – hmax M&S – hmax M&S

Domain # N ∞ N ∞ N ∞ N ∞
IPPC Benchmarks

Blocksworld 4 0 0 2.8 2.7 0 0.1 2.7 2.8 0.1 0.1 3 2.8 0.1 0.1 3.1 2.9
Drive 1 0 0 6 42.8 0 0 5.8 33.1 0 0 6.1 42.8 0 0 7.2 33.5
Elevators 5 0 0 2.2 1.7 0 0 2.2 1.8 0 0 2.2 1.9 0 0 2.2 1.8
ExplodingBlocks 4 2.6 0.7 19.3 18.1 15.9 0.4 31.5 17.7 15.7 0 28.8 17.5 3.5 0 18.9 18.3
NON-TRIVIAL 2 14.2 2.7 45.1 110.4 82.2 0.8 112.4 102.6 72.9 0 104.1 110.1 14.3 0 44.4 107.1
RectangleTireworld 6 3.7 4 4.7 4.7 3.9 4 4.7 4.7 19.8 4.1 4.7 4.7 20.4 4.1 4.7 4.7
NON-TRIVIAL 4 7.2 7.9 9.1 9 7.6 7.9 9.1 9 53 8.1 9.1 9.2 55.5 8.1 9.2 9.1
Tireworld 8 7.3 10.9 14 35 60 55.3 60.2 86.4 0 0 3.8 24.7 0 0 3.8 24.9
NON-TRIVIAL 7 11 16.5 19.5 55.7 92.1 84.5 89.8 136 0 0 4.7 39.8 0 0 4.6 39.9
Zenotravel 1 55.7 49.3 96.3 283.8 7 12.6 54.3 241.1 0.2 0.2 43.5 227.4 0.2 0.2 51 233.9

Probabilistic Resource-Constrained Benchmarks
NoMystery 4 21.5 29.8 29.1 69.4 133.9 127 141.4 166.7 627.3 582.4 676.4 618.7 632.1 580.4 634.2 628.5
Rovers 5 33.1 40.2 39.1 42.7 439.8 420.3 435.2 425.1 1.8 1.3 6.2 8.3 1.8 1.3 6.1 8.3
TPP 6 11.8 14.4 20.1 44.8 140.1 125.8 136.6 156.3 32.9 18.3 63.2 71.3 32.9 18.5 64.1 70.3
NON-TRIVIAL 5 21.6 26.2 31.6 83.5 259.1 241 253.2 299.1 52.5 31.8 118.3 138.8 52.9 32.3 120.1 137.1

IPPC Benchmarks
Blocksworld 4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
Drive 1 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.2
Elevators 5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
ExplodingBlocks 4 408.5 46.5 252.3 39.9 408.5 20.1 242.2 16.9 44.3 0.2 14 0.1 44.4 0.2 14 0.1
NON-TRIVIAL 2 2.0K 152.6 2.0K 142.4 2.0K 34.6 2.0K 32.4 133.6 0.2 133.6 0.2 133.7 0.2 133.7 0.2
RectangleTireworld 6 0.7 0.2 0 0 0.7 0.2 0 0 0.7 0.2 0 0 0.7 0.2 0 0
NON-TRIVIAL 4 1 0.3 0 0 1 0.3 0 0 1 0.3 0 0 1 0.3 0 0
Tireworld 8 1.2K 1.2K 1.2K 1.2K 1.2K 974.7 974.7 974.7 0.5 0.2 0.2 0.2 2.4 0.5 0.5 0.5
NON-TRIVIAL 7 1.7K 1.7K 1.7K 1.7K 1.7K 1.4K 1.4K 1.4K 0.4 0.2 0.2 0.2 2.7 0.5 0.5 0.5
Zenotravel 1 309.3 309.3 309.3 309.3 309.3 309.3 309.3 309.3 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

Probabilistic Resource-Constrained Benchmarks
NoMystery 4 2.6K 2.6K 2.6K 2.6K 2.6K 2.6K 2.6K 2.6K 433 430.8 433 430.8 432.6 418.8 432.6 418.8
Rovers 5 2.8K 2.8K 2.8K 2.8K 2.8K 2.8K 2.8K 2.8K 15.2 14.8 15.1 14.8 15.2 14.9 15.1 14.9
TPP 6 1.3K 1.3K 1.3K 1.3K 1.3K 1.3K 1.3K 1.3K 112.6 89.2 95.7 89.2 112.6 89.2 95.7 89.2
NON-TRIVIAL 5 2.3K 2.3K 2.3K 2.3K 2.3K 2.3K 2.3K 2.3K 149.2 127.2 138.5 127.2 149.2 127.2 138.5 127.2

Table 8: Cyclic planning. Top: MaxProb geometric mean runtime (in CPU seconds). Bottom:
MaxProb geometric mean search space size (number of states visited) in multiples of 1000.
Similar setup and presentation as in Table 4: “#” gives the size of the instance basis. The
default are commonly solved instances, skipping trivial ones. “NON-TRIVIAL” uses only
those instances not solved by VI in < 1 second. (“ONLY-H” not shown, see text.)
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the search space sizes are exactly the same, and runtimes differ only by a few seconds. In difference
to Tables 4 and 5, we do not include “ONLY-H” rows, because this would not be interesting here:
FRET-V U hardly solves more instances than VI, so would have to be excluded from these rows; but
then, the data would compare only LRTDP vs. HDP, which perform very similarly anyway.

Most striking in Table 8 is the consistency with which, and the extent by which, FRET-πU visits
less states than its competitors (for both LRTDP and HDP). This advantage typically yields better
runtimes as well, with the notable exception of NoMystery, where the larger number of FRET iter-
ations results in a substantial slow-down, despite the much smaller search space: While FRET-V U

with LRTDP only requires 11 FRET iterations on average, in the NoMystery instances commonly
solved with FRET-πU and LRTDP, the latter configuration requires over 20000 iterations on aver-
age. Similarly when using HDP.

The impact of dead-end pruning is notably smaller than in the acyclic case: search spaces are
reduced substantially in only a single domain, ExplodingBlocks. In the other domains, there either
is no reduction, or a minor/moderate one only.
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Figure 9: Cyclic planning. Results on ExplodingBlocks, as shown by Kolobov et al. (2011): FRET

vs VI, (a) number of states visited, (b) runtime in CPU seconds, as a function of the
IPPC instance index. Different variants included for comparison. The data for Kolobov
et al. is taken from their paper (as this code is not available anymore), hence the runtime
comparison is modulo the different computational platforms, and should be treated with
care. All shown FRET configurations use LRTDP|U, with default node selection.

ExplodingBlocks also happens to be the single domain Kolobov et al. (2011) experimented with.
Figure 9 provides a detailed comparison to Kolobov et al.’s data, which is the only state of the art
measure provided by previous work. We use here the exact runtime/search space size data reported
by Kolobov et al.; recall that their source code is not available anymore.

Kolobov et al. (2011) ran VI with no pruning vs. FRET-V U using LRTDP with pruning based
on SixthSense (Kolobov et al., 2010). They observed a coverage of 4 for the former and of 6 for
the latter, identical with our results for VI “–” vs. FRET-V U using LRTDP with hmax. To give more
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detail, Figure 9 shows the number of states visited, and the total runtime, in terms of plots over IPPC
instance index as done by Kolobov et al (2011).

Consider first Figure 9 (a), the search space size. The only difference between VI (Kolobov) and
our VI here is the different task/state representation resulting from the respective implementation
framework, the FD framework being somewhat more effective. The substantially better performance
of VI with hmax dead-end pruning shows that the omission of Kolobov et al.’s (2011) study, using
dead-end pruning in FRET but not in VI, indeed obfuscates the possible conclusions regarding the
effect of heuristic search vs. the effect of the state pruning itself: with hmax pruning, VI is almost
as effective as FRET-V U using the same pruning. Kolobov et al.’s FRET-V U also is very close to
this, except for exploring significantly less states in the large instances. The latter shows, especially
given the more effective representation in FD, that SixthSense is a stronger dead-end detector here
than hmax. That is hardly surprising, considering the information sources in SixthSense – outcomes
of (determinized) classical planning for guidance, and h2 (Graphplan) based validity tests.

On the other hand, SixthSense’s information sources are much more time-intensive than hmax,
which presumably is the reason for the runtime picture in Figure 9 (b). The latter is qualitatively
very similar to (a), except that FRET-V U (Kolobov) is significantly worse, rather than better, on the
largest instance. This last conclusion should be taken with a grain of salt though, given the different
computational environments.

Certainly, given the clarity of FRET-πU ’s advantage in both search space size and runtime, one
can conclude that this variant of FRET substantially improves over the previous state of the art.

7.3.2 (2) ATLEASTPROB AND APPROXPROB PARAMETER ANALYSIS

For the weaker objectives AtLeastProb and ApproxProb, as before we examine coverage as a func-
tion of θ respectively δ. Figure 10 shows the data.

For FRET-V U , the behavior in Figure 10 is similar to that for the acyclic case in Figure 5. In
particular, when maintaining both an upper and a lower bound, FRET-V U exhibits an easy-hard-
easy pattern due to the advantages of early termination.

For FRET-πU , though, the curves are flat over θ, and the only observation is a small advantage
of using V L in addition to V U . This is due to the scaling of benchmarks, combined with an extreme
performance loss at some point in the scaling: in each domain, there is an instance number x so
that, below x, FRET-πU can solve all instances completely (i.e., solving MaxProb), while above x
neither V L(I) nor V U (I) can be improved at all, remaining 0 respectively 1 up to the time/memory
limit. On smaller instances, we do get the expected anytime behavior. Figure 11 exemplifies this.
The easy-hard-easy pattern would thus emerge for smaller runtime/memory limits.14

8. Conclusion

Optimal goal probability analysis in probabilistic planning is a notoriously hard problem, to the
extent that the amount of work addressing it is limited. Our investigation contributes a comprehen-
sive design space of known and adapted algorithms addressing this problem, designing several new
algorithm variants along the way, and establishing an FD implementation basis supporting the tight
integration of MDP heuristic search with classical planning techniques. Our experiments clarify the

14. Figure 11 (b) considers the largest instance feasible when using hmax pruning. Figure 11 (a) considers the second-
largest instance feasible without pruning: on the largest one feasible without pruning, namely instance 05, the maxi-
mum goal probability is 1 so the anytime curve for V U is not interesting.
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Figure 11: Cyclic planning. Anytime behavior of FRET-πU with LRTDP|LUand HDP|LU, with
default node selection, (a) without pruning for ExplodingBlocks instance 04, and (b)
with hmax pruning for instance 15.

empirical state of the art, and exhibit substantial improvements thanks to new techniques and tech-
nique combinations. They furthermore showcase the opportunities arising from naturally acyclic
problems, and from early termination on criteria weaker than maximum goal probability.

We hope that these encouraging results and new implementation basis will inspire renewed
interest and research in this important problem. There are many promising future directions, of
which we would like to emphasize:

• Advanced admissible goal probability estimators. These could be obtained, e.g. from ab-
stractions interpreted as bounded-parameter MDPs (Givan, Leach, & Dean, 2000). A promis-
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ing approach is to extend state-of-the-art classical-planning abstraction techniques – pattern
databases (Edelkamp, 2001; Haslum, Botea, Helmert, Bonet, & Koenig, 2007), merge-and-
shrink (Helmert et al., 2014), Cartesian abstractions (Seipp & Helmert, 2013, 2014) – to the
probabilistic setting.

• Hybrids of heuristic search with Monte-Carlo tree search. This appears a promising option
to improve anytime behavior, with respect to the upper and/or lower bound, and thus foster
early termination. Inspiration could be taken here from existing such hybrids, geared toward
other purposes (Keller & Eyerich, 2012; Bonet & Geffner, 2012; Keller & Helmert, 2013).

• Exploiting dominance relations. Goal probability can only be higher in dominating states,
raising the opportunity to prune dominated regions and/or transfer upper/lower bounds across
states. State domination is ubiquitous in limited-budget planning (and resource-constrained
planning). More general domination relations have been shown to exist also in many other
classical planning problems (Torralba & Hoffmann, 2015), and the transfer of these tech-
niques to the probabilistic case, via all-outcomes determinization, should be straightforward.

Last but not least, simulated penetration testing is an application worth algorithms research in its
own right. The basic idea is to exploit the particular structure of such models, specifically their
partially delete-relaxed behavior. A characterizing property of simulated penetration testing is that
any action, once applicable, remains applicable until it is first executed (once the attacker gets into a
position enabling an exploit, that exploit remains enabled). Hence, like in delete-relaxed planning,
to find an optimal solution, naı̈vely we will branch over that same action at every state ever after. To
combat this, there are at least three interesting directions. Following Pommerening and Helmert’s
(2012) methods for computing h+, different branching schemes might apply, the challenge being
to maintain value function correctness. Following Gefen and Brafman’s (2012) methods for com-
puting h+, partial-order reduction could be adapted, the challenge being to deal with the action
interference entailed by a shared budget. Finally, methods specific to the probabilistic setting may
apply: intuitively, to preserve optimality, certain actions need to be attempted only if an alternate
goal path failed. This suggests to identify, and branch at, only particular “critical points” along any
search path.
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Appendix A. Depth-First Heuristic Search for Cyclic Problems

The pseudo-code of the family of depth-first heuristic search algorithms (DFHS) for general (cyclic)
probabilistic planning problems is shown in Figure 12.
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procedure GoalProb-DFHS
Θ := {I};
loop do

[early termination criteria exactly as in GoalProb-AO∗]
if (Label and I is not labeled as solved)

or (VI and πU changed after running VI on the πU -greedy graph) then
index := 0
DFHS-Exploration(I)
set IDX of visited states to∞
clean stack and visited

else return πU endif /* regular termination */
endloop
procedure DFHS-Exploration(s):

if s 6∈ Θ then Initialize(s) endif
if s ∈ S> ∪ S⊥ or s is labeled solved then

label s solved
return ⊥

endif
flag := ⊥
if FW then

if V U (s) is not ε consistent then flag := > endif
update V U (s), πU (s), V L(s), πL(s)
if Consist and flag then return > endif

endif
s.IDX := index; s.lowlink := index
push s onto stack; mark s as visited
index := index+ 1
foreach t with P (s, πU (s), t) > 0 do

if t.IDX =∞ then
flag := DFHS-Exploration(s) ∨ flag
if t.IDX <∞ and t.lowlink < s.lowlink then s.lowlink := t.lowlink endif

else if t is on stack and t.IDX < s.lowlink then s.lowlink := t.IDX endif
done
if flag or ¬FW then

if V U (s) is not ε-consistent then flag := > endif
update V U (s), πU (s), V L(s), and πL(s)

endif
if Label and ¬flag and s.IDX = s.lowlink then

while forever
t := stack.pop()
label t solved
if t = s then break endif

done
endif
return flag

Figure 12: Depth-First Heuristic Search (DFHS) for general (cyclic) MaxProb, AtLeastProb, and
ApproxProb.

Appendix B. Landmarks Pruning: Admissible Heuristic vs. Budget Reduction

As stated, Domshlak and Mirkis’ (2015) problem reformulation, pruning states based on a global
budget reduced using disjunctive action landmarks, is equivalent, regarding the states pruned by
the method on its own, to the much simpler method using the same landmarks for pruning against
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the remaining original budget. We now give this argument, previously made only for unit costs
and pairwise disjoint landmarks, for the general setting. We assume a classical planning setup for
simplicity. The arguments in probabilistic and oversubscription setups are essentially the same.

Assume a STRIPS planning task Π = (F,A, I,G), with action costs c(a) and with a global
budget b. We use a notation following admissible landmark heuristics as per Karpas and Domshlak
(2009). Let L be a set of disjunctive action landmarks for I , i.e., for every l ∈ L and every
action sequence ~a leading from I to the goal, ~a touches l (there exists a ∈ l used on ~a). Let
furthermore cp : A × L 7→ R+

0 be a cost partitioning, i.e., a function satisfying, for each a ∈ A,
that

∑
l∈L c(a, l) ≤ c(a). Denote h(l) := mina∈l cp(a, l), and for a subset L′ ⊆ L of landmarks

denote h(L′) :=
∑

l∈L′ h(l). Intuitively, each landmark l ∈ L is assigned a weight h(l) via cp, and
the admissible heuristic value h(L) for I is obtained by summing up these weights.

We now describe Domshlak and Mirkis’ (2015) pruning technique in these terms. Domshlak
and Mirkis’ formulation is in terms of a compilation into a planning language, which is more com-
plicated, but is equivalent to our formulation here as far as the pruning is concerned.

Domshlak and Mirkis’ technique maintains the “non-used” landmarks as part of states. Namely,
for a state s reached on path~a, l ∈ L is non-used in s iff~a does not touch l. We denote the set of non-
used landmarks in s by L(s). Obviously, the l ∈ L(s) are landmarks for s. Note also that, as L(s)
is part of the state, even if two search paths lead to the same end state but use different landmarks,
their end states are considered to be different. This restriction arises from the compilation approach,
where the book-keeping of landmarks must happen inside the language, i.e., inside states. One
could formulate the pruning technique without this restriction; we get back to this below.

The pruning technique now arises from the interplay of a reduced global budget and reduced
action costs depending on non-used landmarks. Define the reduced global budget as b′ := b−h(L).
For any action a, denote by L(a) the set of landmarks a participates in, i.e., L(a) := {l | l ∈ L, a ∈
l}. For any state t during search, and an applicable action a, the transition from t to t[[a]] has a
reduced cost, namely the cost c(a) − h(L(a) ∩ L(t)). In words, we reduce the cost of a by the
(summed-up) weight of the non-used landmarks a participates in.

Consider now some state s during search. Denote the remaining reduced budget in s by b′(s).
Say that we prune s iff b′(s) < 0.15 Consider any path ~a ending in s. As non-used landmarks
are part of the state, all these paths must touch the same subset of landmarks from L, namely
L \ L(s). Denote the actual cost of ~a by c(~a) :=

∑
a∈~a c(a). Relative to this cost, the cost saved

thanks to the cost reduction is exactly h(L\L(s)), the weight of the touched landmarks. Therefore,
b′(s) = b′ − (c(~a) − h(L \ L(s))) = (b − h(L)) − c(~a) + h(L \ L(s)). By definition of h,
this equals (b −∑

l∈L h(l)) − c(~a) +
∑

l∈L\L(s) h(l), which equals b − c(~a) −∑
l∈L(s) h(l) =

b− c(~a)−h(L(s)). Thus, s is pruned, b′(s) < 0, iff b− c(~a) < h(L(s)). The latter condition is the
same as b(s) < h(L(s)), which is exactly the pruning condition resulting from using h(L(s)) as an
admissible heuristic function pruning against the remaining budget.

In a non-compilation setting, one could, as is indeed customary in admissible landmark heuris-
tics, handle landmarks in a path-dependent manner. That is, non-used landmarks are maintained as

15. Domshlak and Mirkis (2015) do not maintain the remaining budget as part of the state, but instead prune if g(s) >
b′. This is, obviously, equivalent, except that duplicate detection is more powerful as it compares states based on
their facts F (s) only. For the purpose of our discussion here, this does not make a difference. Note that, in the
probabilistic setting, we do have to distinguish states based on both F (s) and b(s), as goal probability depends on
both so maintaining only the best way of reaching F (s) does not suffice to compute the exact goal probability of the
initial state.
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annotations to states rather than as part of them, and multiple search paths may end in the same state
s but use different landmarks. The set of remaining landmarks L(s) for s then is the union over
those for each individual path; that is, l ∈ L is non-used in s iff there exists at least one path that
does not touch l. This still suffices to show that l is a landmark for s. The landmark heuristic ap-
proach as per Karpas and Domshlak (2009) does this kind of book-keeping, and uses the admissible
heuristic value h(L(s)).

If one were to apply Domshlak and Mirkis’ (2015) reformulation technique without maintaining
landmarks as part of state, then the notion of transition-cost reduction would have to become more
complicated (lest one loses information). This is because, if s is reached on ~a1 with a reduced
cost due to touching landmark l1, but later on we find another path ~a2 to s that does not touch l1,
then l1 actually still is a valid landmark for s, and therefore there was no need to reduce the cost
on ~a1. To account for this, we would have to revise path costs posthoc, every time a new path
to s becomes available. After these revisions, the cost reduction on each path ~a to s is exactly
h(L \ L(s)): the weight of the non-used landmarks L(s) is no longer subtracted, and the weight of
the other landmarks L \ L(s) is subtracted on every ~a because, by definition, every ~a touches every
l ∈ L \ L(s). So the cost saved on every path ~a to s, relative to ~a, is exactly h(L \ L(s)), from
which point the same arguments as above apply to show that the pruning is equivalent to pruning
via b(s) < h(L(s)). (This is a stronger pruning method than what we would get without posthoc
path cost revision.)

In summary, s based on reduced remaining budget b′(s) < 0 is equivalent to pruning s based on
original remaining budget vs. the landmark heuristic b(s) < h(L(s)). It should be noted, though,
that such pruning is not the only benefit of Domshlak and Mirkis’ (2015) reformulation technique.
The technique allows to compute another, complementary, admissible heuristic h on the reformu-
lated task Π′ (and this is what Domshlak and Mirkis point out as part of the motivation, and what
they do in practice). From our perspective here, the landmark heuristic and h are used additively
for admissible pruning against the remaining budget, where additivity is achieved with a method
generalizing cost partitionings: in Π′, the cost-reduced variant of each action can be applied only
once. So if h does not abstract away this constraint, and if h uses an action twice, then it employs
the reduced cost only once, yet pays the full cost the second time. Exploring this kind of generalized
cost partitioning in more detail is an interesting research line for future work.
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