Journal of Artificial Intelligence Research 57 (2016) 593-620 Submitted 06/16; published 12/16

ZERO++: Harnessing the Power of Zero Appearances to Detect
Anomalies in Large-Scale Data Sets

Guansong Pang GUANSONG.PANG@QSTUDENT.UTS.EDU.AU
Advanced Analytics Institute

University of Technology Sydney

Ultimo NSW 2007, Australia

Kai Ming Ting KAIMING. TINGQFEDERATION.EDU.AU
School of Engineering and Information Technology

Federation University
Churchill VIC 8842, Australia

David Albrecht DAVID.ALBRECHT@MONASH.EDU
Clayton School of Information Technology

Monash University

Clayton VIC 8800, Australia

Huidong Jin WARREN. JINQCSIRO.AU
Data61, CSIRO, GPO Box 66}
Canberra ACT 2601, Australia

Abstract

This paper introduces a new unsupervised anomaly detector called ZERO++ which em-
ploys the number of zero appearances in subspaces to detect anomalies in categorical data.
It is unique in that it works in regions of subspaces that are not occupied by data; whereas
existing methods work in regions occupied by data. ZERO++ examines only a small number
of low dimensional subspaces to successfully identify anomalies. Unlike existing frequency-
based algorithms, ZERO++ does not involve subspace pattern searching. We show that
ZERO++ is better than or comparable with the state-of-the-art anomaly detection methods
over a wide range of real-world categorical and numeric data sets; and it is efficient with
linear time complexity and constant space complexity which make it a suitable candidate
for large-scale data sets.

1. Introduction

Anomalies are data instances that are rare and exceptional compared to the majority of
data. Anomaly detection generally refers to the process of finding anomalies. It is regarded
as one of the most important tasks in data mining due to its wide application in various
domains, such as intrusion detection, event detection, disease and adverse reaction detec-
tion (Chandola, Banerjee, & Kumar, 2009; Jin, Chen, He, Kelman, McAullay, & O’Keefe,
2010; Xu & Shelton, 2010).

In a categorical data set, anomalies are rare instances, i.e., those instances which have
combinations of values that are rare. Furthermore, in a random subsample, the probability
of having no instances in the subsample with the same values as a given test instance, on any
attribute subset (i.e., subspace), increases monotonically with a decrease in the frequencies
of the values in the full data set. Therefore, anomalies are likely to have zero appearances

(©2016 AI Access Foundation. All rights reserved.

Panag, TiNG, ALBRECHT, & JIN

in small subsamples, and also have a higher probability of having zero appearances than
normal instances in subsamples of any size (see Definitions 1 and 2 in Section 3.2 for the
formal definitions of subspaces and zero appearances).

Based on this observation, we introduce a new unsupervised anomaly detector called
ZERO++ which employs the number of zero appearances in subspaces over a set of subsamples
to identify anomalies. The challenge to harness the power of zero appearances is that
the number of subspaces is exponential to data dimensionality. As a result, examining
zero appearances in all the subspaces is computationally intractable for high dimensional
data sets. ZERO++ is an efficient and effective method because it uses a small set of low
dimensional subspaces to harness the power of zero appearances.

ZERO++ is unique in that it works in regions of subspaces that are not occupied by data;
whereas existing methods (Akoglu, Tong, Vreeken, & Faloutsos, 2012; Breunig, Kriegel,
Ng, & Sander, 2000; He, Xu, Huang, & Deng, 2005; Liu, Ting, & Zhou, 2012) identify
anomalies based on the assumption that anomalies lie in regions of low density/frequency,
i.e., in regions occupied by data.

Being the first to harness the power of zero appearances to detect anomalies, our con-
tributions are to:

e Provide analyses which underlie the power of zero appearances in subspaces and sub-
samples.

e Propose a new unsupervised anomaly detection method called ZERO++ which works on
categorical data. ZERO++ is an efficient algorithm with linear time complexity w.r.t.
data size and data dimensionality, and constant space complexity. This makes ZERO++
a suitable candidate for large-scale data sets.

e Conduct a series of experiments to evaluate the effectiveness and efficiency of ZERO++.
It is shown to detect anomalies more effectively than the state-of-the-art anomaly
detectors in real-world categorical and numeric data.

ZERO++ is a novel categorical anomaly detector in the following aspects:

1. The anomaly score used by ZERO++ is simpler than the existing frequency-based scores;
and it is a score which is sufficient to detect anomalies.

2. Frequency-based algorithms (Akoglu et al., 2012; He et al., 2005; Smets & Vreeken,
2011) need to conduct a subspace pattern searching which have time and space com-
plexities that are at least quadratic in terms of the data dimensionality. ZERO++
involves no searching; thus it runs significantly faster.

3. Frequency-based algorithms employ the anti-monotone property to reduce the search
space. ZERO++ conducts a fixed number of examinations without search.

The rest of this paper is organised as follows. Related work is discussed in Section 2.
We introduce the proposed method ZERO++ in Section 3. After an introduction to the
experimental setup in Section 4, Section 5 provides a series of our empirical results. The
conclusions and future work are provided in Section 6.

594

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

2. Related Work

Anomaly detection methods can be generally categorised into supervised methods, semi-
supervised methods and unsupervised methods. Supervised methods employ labelled in-
stances of both the normal class and the anomalous class to train detection models. Some
examples of these methods are Support Vector Machines (SVMs) and Neural Networks
(Erfani, Baktashmotlagh, Rajasegarar, Karunasekera, & Leckie, 2015). Semi-supervised
methods require labelled instances of the normal class only, in order to train their detec-
tion models, e.g., one-class classifiers (Gornitz, Kloft, Rieck, & Brefeld, 2013). Compared
to supervised methods and semi-supervised methods, unsupervised methods, which do not
require labelled instances, are more widely used in industry, because obtaining accurate
labelled data for anomaly detection often has a very high cost (Chandola et al., 2009). This
paper focuses on unsupervised methods. We refer readers to a recent survey (Chandola
et al., 2009) for related work in the other two methods.

2.1 Methods for Numeric Data

Many unsupervised anomaly detection methods are numeric data oriented, and they assume
that anomalies lie in regions of low density. Examples are distance based methods (e.g.,
kNN, see Ramaswamy, Rastogi, & Shim, 2000; LDOF, see Zhang, Hutter, & Jin, 2009),
density based methods (e.g., LOF, see Breunig et al., 2000), clustering based methods (e.g.,
CBOF, see Duan, Xu, Liu, & Lee, 2009), and isolation based methods (e.g., iForest, see
Liu et al., 2012; MassAD, see Ting, Zhou, Liu, & Tan, 2013). These methods rely on
the key characteristic of numeric data, i.e., the notion of ordering. Categorical attributes
are required to be transformed into numeric attributes in order to make these methods
applicable for categorical data, but it is difficult to find a universally effective transformation
method for different data sets (Boriah, Chandola, & Kumar, 2008). Also, many traditional
detectors, such as kNN and LOF, require O(d?) time complexity where d is the total number
of instances. Though it can be reduced to O(d log d) if an indexing scheme such as R*-tree
(Beckmann, Kriegel, Schneider, & Seeger, 1990) is employed, most indexing methods break
down with high dimensionality or categorical data.

ZERO++ uses a similar algorithmic framework as iForest, i.e., it constructs models over
subspaces and subsamples, and has similar time and space complexities; but they have
significant differences in terms of motivation, working principles and anomaly scores. ZERO++
is motivated by and operated on zero appearances; whereas iForest aims to isolate every
instance from the rest of the instances. As a result, they employ different anomaly scores.
ZERO++ is designed based on categorical data, while iForest is based on numeric data.

Some research (Wu & Jermaine, 2006; Sugiyama & Borgwardt, 2013) proposes to per-
form ENN search in one small subsample, in which the kth-NN distance is used as an
anomaly score. As anomalies normally have larger kth-NN distance and they are less likely
to be selected in a small subsample than normal instances, anomalies have high probability
of having larger kth-NN distance than normal instances in a small subsample. Contrasting
to these work which aims to improve the scalability in traditional ANN methods via sub-
sampling, ZERO++ utilises the probability of zero appearances to introduce a new anomaly
scoring measure. Also, they operate in a single subsample only and use the full dimension-
ality to compute the kth-NN distance, which can lead to unstable detection performance

595

Panag, TiNG, ALBRECHT, & JIN

and have the curse of dimensionality problem in high-dimensional data (Zimek, Campello,
& Sander, 2013a), while ZERO++ builds a set of models in a set of subsamples and subspaces.

2.2 Methods for Categorical Data

Compared to methods for numeric data, significantly less research has been conducted for
categorical data. Most existing categorical data oriented methods are based on a general
assumption that anomalies lie in regions of low frequency (Akoglu et al., 2012; Ghoting,
Otey, & Parthasarathy, 2004; He et al., 2005; Koufakou, Ortiz, Georgiopoulos, Anagnos-
topoulos, & Reynolds, 2007; Koufakou & Georgiopoulos, 2010; Smets & Vreeken, 2011;
He, Deng, Xu, & Huang, 2006). Typical examples are frequent patterns based methods
FPOF (He et al., 2005) and infrequent patterns based methods LOADED (Ghoting et al.,
2004). FPOF and LOADED build a single model on the entire training set, and iden-
tify anomalies based on frequent patterns and infrequent patterns, respectively. KRIMP
(Smets & Vreeken, 2011) and COMPREX (Akoglu et al., 2012) also build a single model on
the entire training set using pattern-based compression techniques. KRIMP generates the
patterns based on frequent itemsets, while COMPREX employs the Minimum Description
Length (Barron, Rissanen, & Yu, 1998) principle to automatically generate patterns from
attribute groups (subspaces) with high information gain and avoid the costly frequent item-
set search. In contrast, ZERO++ records the number of appearances on a set of subspaces
and subsamples, and employs the number of zero appearances in subspaces and subsamples
to identify anomalies.

ZERO++ has much lower time and space complexities than FPOF, LOADED, KRIMP
and COMPREX. Those four methods need to search for abnormal or normal patterns
to detect anomalies, which have time and space complexities at least quadratic to data
dimensionality. In contrast, ZERO++ detects anomalies in a small set of randomised two-
dimensional subspaces, which has time complexity linear to data dimensionality and data
size. The anti-monotone property is applied in FPOF, LOADED and KRIMP to reduce
the search space, whereas ZERO++ examines a fixed number of low dimensional subspaces
only and no search is required in ZERO++.

Some computationally expensive algorithms (Ghoting et al., 2004; Koufakou & Geor-
giopoulos, 2010) require to use parallelism in order to reduce their runtime. But parallelism
does not reduce the time complexity of the base algorithm. ZERO++ can easily be applied
to parallel processors to achieve further speedup.

2.3 Exact Methods versus Probabilistic Methods

An exact method produces exactly the same outcome that satisfies the given criteria. In
contrast, probabilistic methods do not have such a guarantee.

Due to the attractiveness of exact outcomes and relatively easy implementation, most
traditional methods for numeric data and categorical data are exact methods, e.g., kNN,
LOF, FPOF and COMPREX. In practice, probabilistic methods are more desirable than
exact methods due to several reasons (see the next paragraph); that is why they have
become popular, especially the sampling based methods (Lazarevic & Kumar, 2005; Wu &
Jermaine, 2006; Liu et al., 2012; Ting et al., 2013; Zimek, Gaudet, Campello, & Sander,
2013b; Sugiyama & Borgwardt, 2013; Pang, Ting, & Albrecht, 2015).

596

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

First, many exact methods, such as kNN and LOF, suffer from the effects of mask-
ing (i.e., some anomalies are overlooked due to the presence of other anomalies) and/or
swamping (i.e., some normal instances are incorrectly reported as anomalies due to the
presence of other anomalies) because they are required to work on the entire dataset; while
probabilistic methods working on data subsets are more robust with respect to these two
effects (Liu et al., 2012; Zimek et al., 2013b; Pang et al., 2015). Second, exact methods
that work on full attribute sets can be more sensitive to irrelevant and noisy features than
probabilistic methods that work on attribute subsets (Lazarevic & Kumar, 2005; Liu et al.,
2012). Third, as discussed in the above two subsections, probabilistic methods normally
have much lower time complexity, especially for large data sets, because distance computa-
tion and/or subspace searching are not required. Most importantly, the anomaly detection
accuracy of probabilistic methods is as good as, if not better than, that produced by exact
methods (Liu et al., 2012; Sugiyama & Borgwardt, 2013; Pang et al., 2015).

Motivated by the above reasons, ZERO++ takes advantage of probabilistic methods by
building models on data subsets as well as attribute subsets. Although ZERO++ works
on low-dimensional subspaces only, our empirical results show that it works well in high-
dimensional data, which is consistent with the previous results (Lazarevic & Kumar, 2005;
Liu et al., 2012; Ting et al., 2013). Also, by working on a sufficiently large ensemble size,
ZERO++ works stably even using small subsamples only, as will be shown in Section 5.2.4.

3. Zero Appearances as a Means to Detect Anomalies

We provide our intuition of harnessing zero appearances to detect anomalies in Section 3.1,
followed by formal definitions in Section 3.2. The anomaly score is defined in Section 3.3,
and an efficient method for computing the score is provided in Section 3.4. We provide an
analysis for understanding the reason why our method can work well with small subsampling
size and ensemble size in Section 3.5, and present the algorithmic procedure in Section 3.6.

3.1 Intuition

Here we provide two intuitive examples that zero appearances can be used to detect anoma-
lies. The first example shows the fact that anomalies are more likely to have zero appear-
ances in a subsample than normal instances. The second example intuits that, using zero
appearances, only subspaces need to be examined to detect anomalies.

Example 1: Given an univariate categorical data set with 1,000 instances, and there
exists anomalies with at most 10 appearances and normal instances with at least 100 ap-
pearances. In a subset of 8 instances, randomly sampled without replacement from the
data set, the expected probability of any anomaly having zero appearances in this sub-
set is at least (100%710)/ (10800) ~ 0.9225; whereas that of any normal instance is at most
(10008_ 100) / (10800) ~ 0.4291. As a result, having sampled multiple such subsets, the anomaly

is likely to have zero appearances in significantly more subsets than normal instances.

Example 2: In a multivariate data set, the rarity characteristic of anomalies is usually
manifested as zero appearances in subspaces. In other words, test instances, which appear in
regions of subspaces that are not occupied by training instances, are likely to be anomalies.

597

Panag, TiNG, ALBRECHT, & JIN

A =0T}

A=k [15]} @

AL ® ©O)

A=i[8]}

A,=q [3] A,=r [14] A,=s [0] A,=t[13]

Figure 1: A two-dimensional data set with 30 instances, where the size of the circle indicates
the number of instances in a region; and the number in [| indicates the number of
instances in one-dimensional subspace. The categorical values in A; are {1, j, k, [}
and the values in Ay are {q,r,s,t}.

An example of the zero appearances in subspaces for a simple two-dimensional subspace
is shown in Figure 1. Given the data distribution shown in Figure 1, regions of zero ap-
pearances in one-dimensional subspaces are S4,; and 54,5 only, where Sy, denotes region
A, = y in the one-dimensional subspace of attribute A,. Any test instance having either
Ay =1 or Ay = s is likely to be an anomaly. Since instances must have zero appearances in
higher-dimensional subspaces of either A; =1 or As = s, we only need to examine regions
in these one-dimensional subspaces.

We harness the power of zero appearances in both subspaces and subsamples, described
above, to detect anomalies.

3.2 Zero Appearances in Subspaces and Subsamples

Let D be a set of d instances {1, ..., xq} with ¢ categorical attributes, and A = A; x Ay x

... X A, be a product set of the attributes; and & = (z1,...,7,)7.

Definition 1 (Subspace). A subspace is a product set of m attributes
S:AZIXAlQX...XAlm, (1)
where 1 <y <ly... <l <q.

Let NV, with n randomly selected instances (by sampling without replacement), be a
random subset of D; and Ig(x = x’) be an indicator function, which is 1 if an instance x is
identical to another instance ' in S, and 0 otherwise.

598

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

Definition 2 (Zero Appearance). An instance x has zero appearances in S giwen N, if
V' e N, Is(x = ') = 0.

For example, assume A; and A; are two attributes of D, and A; has three values a1,
az, az and A; has two values by, b, then S = A; x A; = {(a,b) : a € A; &b € A} =
{(a1,b1), (a1,b2), (a2, b1), (az,b2), (as,b1), (as,b2)}. In a subsample N of D, suppose only
{(a1,b1), (a1,b2), (az,b1), (az,b2)} occur, then (as,b;) and (a3, be) have zero appearances in
S given .

Definition 3 (Zero Appearance Indicator Function). An zero appearance indicator function
n : D — {1,0} is defined as: ns(x) = 1 if * has zero appearances in S giwven N, and
ns(x) = 0 otherwise.

Proposition 1 (Zero Appearance Expectation). The probability of ns(x) has an expected
d—7g(x)
(75)7 where TS((B) == ‘{m/ (S D : IS((I} = w/) = 1}|

value E(ns(x)) =)

Proof. There are (d_Tf; (m)) choices for sampling n instances from d instances while excluding
instances that are identical to @ in S.
On the other hand, simply sampling n instances from d instances has (g) choices. There-

fore, E(ns(x)) = "3 .

()

According to Proposition 1, the probability of instances having zero appearances in a
random subsample is inversely proportional to its frequency in the full data set. In anoma-
lous subspaces (i.e., subspaces where anomalies have significantly lower frequency than nor-
mal instances), anomalies have substantially higher probability of having zero appearances
in the subsamples compared to normal instances. On the other hand, in non-anomalous
subspaces, anomalies and normal instances often have similar occurrence frequencies, lead-
ing to similar probabilities of having zero appearances. Therefore, anomalies are likely to
have a larger number of zero appearances in subspaces than normal instances.

3.3 Anomaly Score
Let Pg(z|N) = W be the probability of instance x in subspace S given sub-

q
sample N/, and R be the set of all subspaces in A, i.e., |[R| = . (gL) =29 — 1. Based on

Proposition 1, we define a new anomaly score as follows:

Definition 4 (Anomaly Score). The anomaly score for x is defined as the number of zero
appearances in subspaces in R over t subsamples N;, i =1,2,--- ,t:

zero_score(x) = Z Z w(S)I(Ps(x|N;) =0) (2)

i=1 SeER

where w(S) is a subspace weighting function and I(-) is an indicator function.

599

Panag, TiNG, ALBRECHT, & JIN

The anomaly score is bounded by [0,#|R|] . Anomalies are instances having large
anomaly scores, i.e., instances having zero appearances in a large number of (highly weighted)
subspaces over a set of subsamples.

The number of subspaces in R is exponential to the data dimensionality. Therefore,
anomaly detection algorithms based on R is computationally intractable in many real-world
data sets which have hundreds of dimensions.

In addition, the function w(+) is introduced because the number of subspaces of different
sizes (i.e., subspaces spanned by different number of attributes) varies substantially and
so the importance of zero appearances in subspaces of different sizes are actually not the
same. Therefore, a proper subspace weighting scheme is required in the instantiation of the
anomaly score.

We will provide a method to solve these two issues in the next section.

3.4 Using a Smaller Number of Low Dimensional Subspaces only

Here we present a closure property of zero appearances, and then use it to simplify the
anomaly score function in Equation (2) to significantly reduce the number of subspaces
that needs to be examined while preserving its power in anomaly detection.

Let S’ be a higher-dimensional subspace containing S, denoted by S’ © S, where S =
All XA12 X ... XAlm and S,:All XA12 X ... XAlg, andg>m.

Property (Closure Property). If Ps(z|N) =0, then Ps/(x|N) =0, VS D S.

Based on the closure property, if a test instance has zero appearances in a subspace,
it must also have zero appearances in the higher dimensional subspaces of this subspace
(This property was exemplified by the second example in Section 3.1). Thus, examining
zero appearances in low dimensional subspaces is sufficient to distinguish anomalies from
normal instances, if the anomalous subspaces in low dimensions. This is often the case even
in high dimensional data, as most attributes of this data are irrelevant.

This property motivates us to approximate our anomaly score by using R, with a small
m only, where R, is the set of all subspaces having exactly m attributes only.

However, the time and space complexities of examining zero appearances in subspaces in
R, with m > 2 are at least quadratic to data dimensionality, and they are still prohibitive
for high dimensional data sets.

In this paper, ZERO++ employs the zero appearances in subspaces in R, as the default
setting, to identify anomalies. R is a subset of Ry having |R)| = ¢ such that every attribute
appears exactly twice in R). Since we work on subspaces of the same size, the weights for
the subspaces can be assigned with the same value, e.g., w(S) = 1. Thus, we have the
following anomaly scoring function.

zero_score(Z Z (Ps(z|N;) = 0) (3)

=1 SeR),

1. Note that the anomaly score for @ can also be defined as the difference between the total number of
subspaces and the number of subspaces in R having at least one appearances over t subsamples, i.e.,
—zero_score(z) = t|R| — 32 Y scr w(S)I(Ps(x|Ni) > 0). Both zero_score and —zero_score produce
the same anomaly ranking.

600

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

Specifically, R} is generated randomly as follows 2: After a random order of ¢ at-
tributes A;;, Aiy, ..., Aj, is generated, g attribute-pairs are formed by chaining the con-
secutive pair of attributes circularly until each attribute appears exactly twice, yielding
b = {Si1i2,5i2i3,...,Si(qil)iq,Siqil}, where S;; = A; x A;. Note that to produce an
anomaly score for x as shown in Equation (3), R, is generated randomly ¢ times for ¢
subsamples.

The use of RY brings about three advantages. First, using R significantly reduces
its time complexity from d2? (using R) or dq? (using R2) to dg ; Second, using R, in
an ensemble of ¢ models provides a good approximation to Ry. Third, R, covers all the
attributes and every attribute has an equal chance to be considered in R), which avoids
bias in the subspaces chosen.

These advantages can be observed in Figures 2 and 3 which show the detection accuracy
of ZERO++ using R, Ro and R, in Chess and Mushroom? with increasing sampling size n.
Note that R is too large to be used for ¢ > 20. The results show that ZERO++ using R/,
obtains comparable detection accuracy to that using Ro or R. The results further show
that it is most expensive to run ZERO++ using R, and there is almost no gain in AUC by
using Ra.

1 r‘"r'ﬁ % = !
<)
2 S
B
@257
2 Y
0.95 3 B =
20 R
3 c 2
o = B R
=) ° ?
< 4 Et5r 7
% s | F
0.9¢; 5 i
8 10 ‘I>
<
7 wo |
+R, 5P)
x-R, 0 L
R W/B_’—(
0.85 ‘ ‘ ‘ ‘ : o ‘ ‘ ‘ ‘ ‘
50 100 150 200 250 50 100 150 200 250
n n

Figure 2: AUC performance and runtime comparison between using R, Ro and R on Chess
with ¢ = 6. t = 50 is used to produce this result.

However, note that the reverse of the closure property is not necessarily true, i.e., when
Ps/(z|N') = 0, there may exist some S C 5" that Ps(x|N) # 0. As a result, using R, fails
to work in data sets having high-order feature dependence, where anomalies are detectable
in higher-dimensional subspace S’ only since they may have similar behaviours as normal
instances in all the lower-dimensional subspaces of S’. For example, in Figure 1, we would
overlook the zero appearance in the intersecting region of S4,; and S4,, in two-dimensional
subspaces if we focus on the zero appearances in one-dimensional subspaces. Similarly, we

2. We have attempted a method alternative to R5 which generates a number of (randomly selected) sub-
spaces by random sampling with replacement. However, having a number of subspaces larger than |Rj|
through this method does not seem to produce a significantly better AUC result than that from Rb5.

3. These data sets are from the UCI repository (Bache & Lichman, 2013). Section 4.2 shows their charac-
teristics.

601

Panag, TiNG, ALBRECHT, & JIN

,
+R,

/

=R,

R,

AUC

-~

Execution time (in seconds)

0.92%

0 ‘ ‘ ‘ ‘ ‘ e

50 100 150 200 250 50 100 150 260 25;0
Figure 3: AUC performance and runtime comparison between using R} and Ra on Mush-
room with ¢ = 22. t = 50 is used to produced this result. The runtime is

prohibitive using R.

may fail to detect zero appearances in subspaces of size no less than three if we only examine
appearances in subspaces of sizes one or two.

To detect anomalies which appear in anomalous subspaces more than two dimensions,
we suggest to use a parameterised version of ZERO++, where m needs to be tuned to yield
the best detection result, as follows.

Using R/, 4 with 3 < m < ¢, which has the same advantages as the use of R}, can
handle those data sets. The ‘right’ m to use mainly depends on the order of the feature
dependence in a data set. The higher the order dependence, the larger m shall be used.
Example real-world data sets with this characteristic will be given in Section 5.2.2.

In practice, m is searched in the range [2,] in order to yield the best detection result.
This is analogous to the search of an appropriate neighbourhood size in nearest neighbours-
based algorithms.

The default R is used as a trade-off between Ri and R/, with 3 < m < ¢ in all our
experiments, unless stated otherwise.

3.5 Why Does ZERO++ Work?

This section provides an analysis to explain the reasons why ZERO++ works well with small
subsampling size and a small number of subsamples. Most data sets often have significantly
different frequency distributions in different subspaces or different random subsamples, and
thus it is difficult to quantify the contribution of all the subspaces together. We simplify
the analysis by examining the contribution of single subspace.

3.5.1 STATISTICAL SUPPORT FOR ZERO APPEARANCES IN SMALL SUBSAMPLES

In data sets with different data sizes, ZERO++ works consistently well with a small subsample

size. To explain this, let Pg(x) = # be the probability of & occurring in a subspace S

4. The same process of generating R5 can also be used to generate R.,, but it should be noted that R,
with m = 1 or m = q has a different property to that of R,, with 1 < m < ¢, i.e., every attribute appears
once only in R} and R.

602

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

given D. E(ngs(x)) can also be computed as follows:

A= Ps(@) =1 d(1-Ps(x)) ~ (n—1)

E(ns(z)) = (1 - Ps(z)) x -1 X i—(n—1)

For a large d, it can be simply approximated as follows:
E(ns(z)) = (1 — Ps(x))" (4)

Based on Equation (4), given a small subsample N, if « is a rare instance in D, i.e.,
Pgs () is very small, then the probability of having zero appearances in N is very high.

S x)=0.1
x)=0.05
5(%)=0.01

—— P ()=0.005

—=-P
P

0.8 v
P

(
X
(
(

0.6

E(1g(x)

04r

0.2r

50 100 150 200 250

Figure 4: Probability of having zero appearances in subsamples w.r.t. different subsample
sizes and different Pg(x).

Figure 4 presents E(ng(x)) w.r.t. different n, i.e., 2, 4, 8, 16, 32, 64, 128, 256, given
different Pg(x), i.e., 0.1, 0.05, 0.01, 0.005. It shows that a small subsample size, e.g.,
n < 64, can generally ensure rare instances having high probability (> 0.5) of having zero
appearances in subsamples. Particularly, for Ps(x) < 0.05, E(ng(x)) > 0.65 if n < 8. For a
relatively large Ps(x), e.g., Ps(x) = 0.1, a smaller n, e.g., 2 or 4, should be taken in order
to ensure E(ns(x)) within the range (0.5,1.0]. Considering the percentage of anomalies is
normally less than 5%, a small subsample size, e.g., n < 64, is preferred in order to ensure
that anomalies have zero appearances in a sufficiently large number of subspaces. We use
n = 8 as default in our experiments.

3.5.2 THE NUMBER OF SUBSAMPLES REQUIRED

We now use statistics to estimate a reasonable number of subsamples (¢) required in
ZERO++. Since we focus on single subspace, Equation (3) is transformed to zero_score(x)s =
St I (Ps(z|N;) = 0), which can be viewed as the total number of successes (i.e., has
zero appearance in S) out of ¢ subsamples, each drawn with replacement from the popula-
tion. Thus, zero_score(x)s could be modelled by the binomial distribution with a success
probability pg, i.e., the expected probability of zero appearances of x in a subsample.
That is, from the observation zero_score(x)g, the expected probability of zero appearances

603

Panag, TiNG, ALBRECHT, & JIN

zero_score(x)s

is estimated as ps = ——— ——>, and its confidence interval is ps £ 2,2 ﬁs(lt—ﬁs) for

t
significance level a, where z, /5 is the 100(1 — a/2)th percentile of the standard normal

distribution, according to the simple Wald method (Wallis, 2013).

To successfully detect anomalies, ZERO++ requires the subsample size ¢ large enough to
distinguish anomalies from normal instances. For a given significance level «, t needs to
be large enough to ensure that the confidence intervals for anomalies do not cover pg = 0
(which is the conservative expected probability of zero appearances for normal instances).
In other words, the lower bound of pg for an anomaly () is greater than 0.

N a=0.05
8 n - a=0.1
« a=0.2
o _|
[Te]
o |
o

N _IO()'31I

0.0 0.1 0.2 0.3 0.4 0.5

Ps

Figure 5: Reasonable number of subsamples ¢ required to identify anomalies from normal
instances for three significance levels of a.

Figure 5 illustrates the required values for ¢ when €2 = 0 for three significance levels of
a. When t > 50, we can expect ZERO++ to distinguish anomalies from normal instances
with small expected zero appearances (e.g., 0.1 or 0.05). For example, given t = 50, we
have 95% (= 1—§ as t-distribution is symmetric) confidence that the estimated probability
ps > 0 when the ‘true’ expected probability pg is 0.051 or larger. We use ¢ = 50 as the
default setting in our experiments.

3.6 ZERO++: The Algorithm

Given a data set with categorical attributes, ZERO++ builds a set of models in the training
stage, and these models can then be used to score every instance in the testing stage. The
procedures of these two stages are given below.

Training. In the training stage, t subsamples are generated by random sampling without
replacement, and ZERO++ builds a probability table from each subsample based on RY for
each model. Each table h has ¢ X 2 columns. Every two columns store the index of the
product set of a subspace and their corresponding probabilities. Note that we are interested
in entries of the subspaces having zero probabilities only, and the non-zero entries in the

604

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

Algorithm 1 CreateProbabilityTables(D, t, n)
Input: D - input data, ¢ - the number of subsamples, n - subsample size
Output: H - a set of probability tables
: Initialise H as an empty set
for i=1tot do
N; < Randomly select n instances without replacement from D
Generate a randomised subspace set R)
Initialise a probability table h; with ¢ x 2 columns, where each row stores the index
of a subspace S and its probability Pg(-|N;).
Update h; with Ps(-|N;), VS € R}
end for
H= UZ:l hi

return H

probability table are only useful in so far as to identify zero entries. The procedure to
generate the probability tables is presented in Algorithm 1.

Testing. To score a test instance x, ZERO++ computes the number of zero appearances
in the subspaces in ¢ probability tables as the anomaly score for x (as shown in Equation
3). The higher the score is, the more likely @ is an anomaly. This procedure is presented
in Algorithm 2

Algorithm 2 zero_score(x)

Input: x - a test instance

Output: score - the total number of zero appearances in subspaces of
1: score + 0
2: for 1=1totdo
3 T ZSEWQ I(Ps(x|N;) = 0), by examining h;
4: score < score +r
5: end for
6: return score

Complexity analysis. In the training stage, ZERO++ builds ¢ ¢-sized probability tables,
each using a subsample of n instances. Thus, ZERO++ has time complexity O(ntq) since
each table only needs to be updated a maximum of n entries after initialisation. During the
testing stage, for each test instance, ZERO++ needs to look up t probability tables, where each
table look up takes O(q). To score d instances in a data set, ZERO++ has time complexity
O(dtq). Since d is far larger than n, the total time complexity of ZERO++ is O(dtq). Note
that, in order to calculate the probabilities, we do not need to obtain the frequency of all
possible combinations of categorical values. We count the frequency of the values in the
subspaces in R in an incremental way, so the time complexity of ZERO++ is independent of
the number of values in each attribute.

In terms of space complexity, ZERO++ needs to store ¢ ¢-sized probability tables. Let ¢ be
the average number of values per categorical attribute. For each probability table, O(gf?) is
required to store values in its subspaces. Therefore, ZERO++ has space complexity O(tqf?).

605

Panag, TiNG, ALBRECHT, & JIN

Note that ZERO++ using R/, with 3 < m < d for handling data sets having high-order
feature dependence has the same time and space complexities as that using R, because
R, is generated using the same process.

A comparison of time and space complexities between ZERO++, FPOF (He et al., 2005),
COMPREX (Akoglu et al., 2012), iForest (Liu et al., 2012) and LOF (Breunig et al., 2000)
is provided in Table 1. Both ZERO++ and iForest have linear time complexity w.r.t. both
data size and dimensionality, and constant space complexity w.r.t. data size. FPOF and
LOF have much higher time and space complexities than ZERO++ and iForest. The time
complexity of FPOF is linear w.r.t. data size but exponential w.r.t. dimensionality, and
it is affected by the length of the itemsets considered and the minimum support threshold.
The time complexity of COMPREX is linear w.r.t. data size but quadratic w.r.t. data di-
mensionality, though it becomes near-linear w.r.t. the dimensionality when many attributes
are correlated. Though the time complexity of LOF can be reduced to O(d log(d) ¢q) from
O(d?q) when using some indexing scheme such as R*-tree (Beckmann et al., 1990), most
indexing schemes do not work on high-dimensional numeric data or data with categorical
attributes.

Table 1: Time and space complexities of ZERO++, FPOF, COMPREX, iForest and LOF.

Method Time Complexity Space Complexity
ZERO++ O(dtq) O(tql?)

FPOF O(d27) 0(29)
COMPREX O(d¢?) O(q?)

iForest O(dt) O(tn)

LOF O(d*q) O(dq)

4. Experimental Setup

Section 4.1 presents the parameter settings of ZERO++ and its contenders. It is followed by
an introduction to the evaluation method and data sets in Section 4.2. We then introduce
the significance test for comparing multiple detectors in the end.

4.1 Contenders and Their Parameter Settings

We compared ZERO++ with FPOF (He et al., 2005), COMPREX (Akoglu et al., 2012),
iForest (Liu et al., 2012) and LOF (Breunig et al., 2000). FPOF is a state-of-the-art
frequency-based method for categorical data. FPOF was selected as the frequency-based
contender over another representative method LOADED (Ghoting et al., 2004) because, as
reported in (Koufakou et al., 2007; Wu & Wang, 2013), FPOF performs more effectively
than LOADED in a range of real-world data sets, and it also has lower time complexity
than LOADED.

COMPREX was selected as a contender because it is related to ZERO++ in that both of
them operate in a set of subspaces and it is a recently proposed state-of-the-art anomaly
detector for categorical data.

LOF and iForest are state-of-the-art anomaly detection methods for numeric data. LOF
has been recognised as a state-of-the-art method in handling numeric data sets, and it is

606

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

widely used as a performance baseline in the literature (Chandola et al., 2009). iForest is
a recently proposed ensemble method for anomaly detection, and it is closely related to
ZERO++, as discussed in Section 2.

ZERO++ and its four contenders used default settings in the experiments. Both ZERO++
and iForest employed ¢t = 50 as default. The subsampling size n was 8 by default in ZERO++.
As recommended in (Liu et al., 2012), iForest employed n = 256 as the default setting.

Following (He et al., 2005), FPOF employed the minimum support threshold § = 0.1
and the maximum length of itemsets is set to 5 by default. COMPREX is a parameter-free
method. LOF often employed a small k value, e.g., k = 10 or k = 20, while we found LOF
with £ = 150 worked better in most of our data sets, as many data sets in our experiments
have a large number of instances. Thus, LOF employed & = 150 as the default setting.

We implemented ZERO++ ® in WEKA (Hall, Frank, Holmes, Pfahringer, Reutemann, &
Witten, 2009). FPOF was implemented using the Apriori algorithm in WEKA. iForest is
already in the WEKA platform, and LOF in the ELKI platform (Achtert, Kriegel, Schubert,
& Zimek, 2013) was used in the experiments. R*-tree indexing (Beckmann et al., 1990) was
used by default in LOF. COMPREX was implemented by (Akoglu et al., 2012) in MATLAB.
All the experiments were performed as a single-thread job at 2.27 GHz in a Linux cluster
with 40GB memory.

Note that iForest and LOF are numeric data oriented methods. To run these methods
on categorical data sets, the attributes were first converted into binary attributes using the
1-of-¢ transformation method (Hall et al., 2009), i.e., an attribute with ¢ values is converted
into ¢ binary attributes 6. The binary attributes were then regarded as numeric attributes
to be further processed by these two methods.

4.2 Detection Performance Measure and Data Sets

All the anomaly detectors produce a ranking based on their anomaly scores, i.e., top ranked
instances are the most likely anomalies. The area under ROC curve (AUC) was derived
based on the ranking (Hand & Till, 2001). Higher AUC indicates better detection accuracy.
We also recorded the runtime to compare their efficiency. The AUC and runtime results
were averaged over 10 runs for all randomised methods. The method that produces the
best AUC performance for each data set is underlined in all relevant tables.

Experiments were conducted on 17 real-world data sets from the UCI repository (Bache
& Lichman, 2013) and one synthetic data set having one normal cluster with two anomaly
clusters, which was generated by the Mulcross data generator (Rocke & Woodruff, 1996).
Following (He et al., 2005; Liu et al., 2012; Akoglu et al., 2012), the smallest class(es)
or a small random subset of the smallest class was used as the anomaly class against the
largest class(es) in a data set. A summary of the data sets is given in Table 2. These data

5. The code of ZERO++ is available at https://sites.google.com/site/gspangsite/sourcecode/zeroplusplus.

6. Alternative methods for the conversion includes occurrence frequency based methods and inverse oc-
currence frequency based methods (Boriah et al., 2008), but these conversion methods are designed for
detectors requiring a distance function. If a natural ordering of categorical values is available, it is possi-
ble to convert each value to an integer which obeys the order. However, most categorical attributes have
no such natural ordering. iForest does not work with these methods because it requires an ordering of all
the instances in order to build the isolation trees. The 1-of-¢ transformation method was used because
it can be easily used by different types of detectors.

607

Panag, TiNG, ALBRECHT, & JIN

sets are from different application domains (e.g., health care, network security and image
recognition) and widely used in the literature (Liu et al., 2012; Akoglu et al., 2012; Wu &
Wang, 2013; Ting et al., 2013). The first six data sets with mixed-type attributes were used
as categorical attributes only or numeric attributes only in our experiments.

We employed a commonly used performance evaluation method for unsupervised anomaly
detection techniques (Liu et al., 2012). Specifically, we trained and evaluated detection mod-
els on the same data set, but it is assumed that class labels are unavailable in the training
stage. The class labels are only used to compute the AUC in the evaluation stage.

Table 2: A summary of data sets used. #num and #cate denote the number of numeric
and categorical attributes, respectively. The Anomaly Class column presents the
anomaly class selected and its percentage in each data set. #binary is the total
number of binary attributes converted by the 1-of-¢ transformation from categor-
ical attributes.

Data Set d q #num #cate Anomaly Class #binary
Linkage 5,749,132 7 2 5 match(0.36%) 5
Census 299,285 40 7 33 50K+(6.20%) 493
CoverType 286,048 54 10 44 cottonwood (0.96%) 44
Probe 64,759 41 34 7 attack(6.43%) 83
U2R 60,821 41 34 7 attack(0.37%) 83
Arrhythmia 452 279 206 73 arrhythmia(14.60%) 73
Nursery 4,648 8 0 8 very_recom (7.06%) 26
Chess 4,580 6 0 6 zero(0.59%) 39
Mushroom 4,429 22 0 22 poisonous(5.00%) 121
SolarFlare 1,066 10 0 10 flare X(0.47%) 29
Http 567,497 3 3 0 attack(0.39%) 0
Mulcross 262,144 4 4 0 two clusters(10.00%) 0
Smtp 95,156 3 3 0 attack(0.03%) 0
Shuttle 49,097 9 9 0 classes 2,3,5,6,7 (7.15%) 0
Mammo 11,183 6 6 0 class 1(2.32%) 0
Satimage 6,435 36 36 0 crop(10.92%) 0
Isolet 730 617 617 0 class Y (1.37%) 0
Mfeat 410 649 649 0 digit 0 (2.44%) 0

4.3 Statistical Significance Tests

For our empirical results, we also report the statistical significance test results at two levels:
single and multiple data sets. For each data set, significance tests are based the average
AUC over 10 runs and its two standard errors, i.e., if the lower bound of one detector is
higher than the upper bound of another detector, then the former has outperformed the
latter at 5% significance level.

The Friedman test with a post-hoc Nemenyi test is used to conduct significance tests
over multiple data sets. The Friedman test is first used to rank all the detectors based
on their average ranks, which are defined as AR = %ZZ r; where u is the number of data
sets used and 7; is the rank of a given detector on the i-th data set. The Nemenyi test is
employed as a post-hoc test to check whether the performance of every pair of detectors,

608

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

represented by average ranks, is significantly different. The difference between two average
ranks is deemed to be statistically significant if it differs by at least one critical difference,

CD = qun/ v(zzl), where ¢, is derived from the Studentised range statistic and v denotes
the number of the detectors. o = 0.05 is used in our experiments.

5. Empirical Results

The AUC performance on categorical data and numeric data is summarised using the
Friedman-Nemenyi test in Section 5.1, followed by the detailed performance results in the
next two sections and a summary in the last section.

5.1 AUC Performance Summary

This section presents the summary of the empirical results conducted in the next two
sections in terms of the Friedman-Nemenyi test.

The Friedman-Nemenyi test result of comparing the detectors over 10 categorical data
sets is presented in Figure 6. It shows that ZERO++ and COMPREX are the top ranked
detectors and outperforms iForest significantly, and they also outperforms FPOF. There is
no significant difference among ZERO++, COMPREX and FPOF.

iForest

FPOF
ZERO++
COMPREX
| | | | | |
1 1.5 2 25 3 35 4
Rank

Figure 6: The Friedman-Nemenyi test result based on AUC performance of the four de-
tectors on the 10 categorical data sets. The horizontal line indicates the critical
difference (CD) between the average ranks. A detector outperforms another de-
tector significantly if there is no connection between the two detectors by a CD
line; otherwise there is no significant difference. LOF is excluded in this test
because there is too many missing values in its AUC results. For detectors which
have a few missing values in its AUC results, we replace the missing values with
lowest AUC in the rows before conducting the tests.

Figure 7 presents the Friedman test result on numeric data sets. It shows that ZERO++(MS)
is the top-ranked anomaly detector and performs significantly better than COMPREX,

609

Panag, TiNG, ALBRECHT, & JIN

FPOF and LOF 7. iForest ranked second, and there is no significant difference between
iForest and ZERD++.

LOF
FPOF
COMPREX
ZERO++(EW)
iForest
ZERO++(MS)
| | | | | | | | |
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Rank

Figure 7: The Friedman-Nemenyi test result based on AUC performance of the five detec-
tors on the 14 numeric data sets. MS and EW are two preprocessing methods
which transform numeric attributes to categorical attributes. See Section 5.3.1
for the details.

The above results show that ZERO++ is the only anomaly detector which works well in
both types of datasets. A numeric data based anomaly detector such as iForest works well
in numeric data but works poorly in categorical data. Similarly, categorical data based
COMPREX and FPOF work well in categorical data but work poorly in numeric data.

5.2 Results on Categorical Data

A series of experiments was conducted to evaluate ZERO++ in terms of effectiveness, the effect
of varying ZERO++’s parameter m, scalability and sensitivity on categorical data. These are
described in the following four subsections. We also tested ZERO++ on data sets without
ground truth in the fifth subsection.

5.2.1 AUC RESULTS

Table 3 shows the detection performance of ZERO++, FPOF, COMPREX, iForest and LOF
on categorical data. ZERO++ is the best performer in four data sets, with three close to
the best (having the difference in AUC less than 0.01). ZERO++ performs comparably to or
significantly better than FPOF and COMPREX in eight data sets. Note that FPOF cannot
work on the high dimensional data set, Arrhythmia, due to an out-of-memory exception
error resulting from its high space complexity, even though the data set has no more than

7. Removing all data sets in which some algorithms could not complete their runs (see Tables 3 and 4 for
details) yielded the same Friedman test results as presented in Figure 6 and Figure 7. The only exception
is that there is no significant difference between ZERO++ and COMPREX in numeric data sets.

610

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

500 instances. ZERO++ outperforms iForest significantly in most data sets. ZERO++ has two
wins, one draw and two losses against LOF. Note that LOF was unable to process large
categorical data sets because the indexing method did not work in the data sets: Linkage,
Census, CoverType, Probe and U2R ®. ZERO++ performs less effective than other methods
in some data sets such as Mushroom, because some anomalies in these data sets are only
detectable in subspaces of size larger than two. A detailed analysis of this issue is presented
in Section 5.2.2.

Table 3: AUC performance of ZERO++, FPOF, iForest and LOF with the default settings
on categorical data. The best AUC in each data set is underlined.

ZERO++ FPOF COMPREX iForest LOF
Linkage 0.997340.0001 0.9972 0.9973 0.979040.0041 na
Census 0.6420£0.0056 0.6148 0.6352 0.544940.0172 na
CoverType 0.9946+0.0020 0.9965 0.9936 0.977340.0043 na
Probe 0.980240.0020 0.9867 0.9790 0.9776+0.0022 na
U2R 0.9891£0.0009 0.9156 0.9893 0.972940.0073 na
Arrhythmia 0.6588+0.0093 na 0.6848 0.68784+0.0024 0.6295
Nursery 1.0000+0.0000 1.0000 1.0000 0.9986+0.0010 1.0000
Chess 0.9774+0.0101 0.9122 0.9943 0.8606+0.0566 0.9945

Mushroom 0.9430£0.0047 0.9218 0.9359 0.91824+0.0117 0.9770
SolarFlare 0.9750£0.0052 0.9791 0.9793 0.9325+0.0070 0.9229
#na 0 1 0 0 5
ZERO++ vs. (#wins/draws/losses) 4/4/1 2/6/2 8/1/1 2/1/2

In addition to the above experiment using the default settings, we have also conducted
a search for the best parameter setting for each algorithm (except COMPREX). It is in-
teresting to note that the best AUC result for each algorithm from this experiment is not
much different from that shown in Table 3. Significant differences only occur in a few data
sets. The detailed results are shown in Appendix A.

5.2.2 THE EFFECT OF VARYING SUBSPACE SIZE m

Here we show that varying the default m = 2 can further improve the detection performance
of ZERO++ in some situations. The ‘right’ value for m mainly depends on the attribute de-
pendency in a particular data set. If the detection of anomalies relies on multiple attributes,
then a large m shall be used; if it is depended on single attributes, then m = 1 is sufficient.
Two such examples are provided in the following two paragraphs.

In Mushroom, many anomalies exhibit abnormal behaviours based on two or more at-
tributes. Figure 8 shows the AUC results using 1 < m < 22. It shows that the best
results are obtained using 7 < m < 10, and higher m values do not degrade the detection
performance significantly. But m < 6 produce significantly worse results.

In Nursery, all anomalies can be detected by examining behaviours in the Health at-
tribute. In this type of data, m = 1 produces the best result. This is because data subspace

8. For LOF, R*-tree or other indexing methods in ELKI do not work on large categorical data because there
are too many identical values in the attributes. Also, since data is pre-indexed by default in ELKI, LOF
still cannot work on those data sets even though they do not use R*-tree or other indexing methods.

611

Panag, TiNG, ALBRECHT, & JIN

Mushroom Nursery
1 ; ; 1 ; ;
0.991 0.995
0.981 0.991
0.97¢ 0.985¢
0.961 0.981
S o5 S
< 2 0.975F
0.941 0.971
0.93. 0.9651
0.927 0.961
0.91f 1 0.955¢
0.9 0.95
5 10 15 20 2 4 6 8
m m

Figure 8: AUC results using R/, with different m in Mushroom and Nursery. ZERO++ uses
t = 50 and n = 8. The results are average over 10 runs and two standard errors.

becomes sparser with increasing number of dimensions, and normal instances also become
rare instances in subspaces in R/, with m > 2. As a result, normal instances can be incor-
rectly reported as anomalies. Figure 8 shows that the AUC performance decreases quickly
with increasing m, and the results for m > 3 are significantly worse than those for m < 3.

Different data sets have different attribute dependencies of abnormal behaviours. Thus,
a search of m is required to produce the best detection result for a particular data set. This
is the same for most algorithms, e.g., LOF requires a search for a suitable k to yield the
best detection result, for the k-nearest neighbour density estimator used in the algorithm.

5.2.3 SCALABILITY TESTS

The scalability tests employ data sets with binary attributes only to ensure that both
categorical data oriented methods and numeric data oriented methods work on data sets
with the same dimensionality.

We examine the scalability of ZERO++ w.r.t. data size using seven subsets of the largest
data set Linkage. The smallest data subset contains 16,000 instances, and subsequent
subsets are increased by a factor of four, until the largest subset which contains 4,096,000
instances. The results reported in Figure 9(a). shows that ZERO++, FPOF, COMPREX
and iForest have runtime linear to the data size, and ZERO++ runs at least two orders of
magnitude faster than LOF. LOF failed to work in data sets having 64,000 or more instances.

We examine the scalability of ZERO++ w.r.t. dimensionality using synthetic data sets.
The data sets contain the same number of instances, i.e., 10,000 instances. The data set with
the lowest dimensionality contains 10 attributes, and subsequent data sets are increased by
a factor of two, until the data set with the highest dimensionality contains 320 attributes.
The results are shown in Figure 9(b). The results show that both ZERO++ and LOF have
runtime linear to the data dimensionality, and run more than four orders of magnitude faster
than FPOF. Note that the space complexity of FPOF increases quickly with increasing
dimensions, and FPOF runs out-of-memory when the dimension reaches 80. The runtime

612

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

10 2 - : -
sl (b -B-ZERO++(n=8)
(@) 10° 1 (b) -©-FPOF(5=0.1)

108 COMPREX
—_ —_ iForest(n=256)
§ -"g’ -%-LOF(k=150)
8 10? 310t
Q Q
2]]
£ £
Q 1 Q
E° £
g g a
3 10 3
£ -B-ZERO++(n=8) e
u -6-FPOF(5=0.1) wo

107 COMPREX k| J

iForest(n=256) 10
- LOF(k=150)
: |
102
16000 64000 256000 1024000 4096000 10 20 40 80 160 320
Data size Data dimensionality

Figure 9: Scaleup tests of ZERO++ using FPOF, COMPREX, iForest and LOF as baselines.
Figures (a) and (b) are the scaleup test results w.r.t. data size and dimensionality,
respectively. The runtime is the average over 10 runs for the randomised methods.

of COMPREX increases by a factor of more than 7,000 when the dimensionality increases
by a factor of 32; while that of ZERO++ increases by less than 60. Therefore, though ZERO++
and COMPREX were implemented in different programming languages, the increase in
runtime ratio indicates that ZERO++ runs significantly faster than COMPREX by a factor
of more than 110. The time complexity of iForest is constant w.r.t. data dimensionality
since it works on a few randomly selected attributes only.

5.2.4 SENSITIVITY TESTS

We investigated the sensitivity of ZERO++ w.r.t. n and ¢ in all the data sets. We used the
default setting for ¢ when conducting the sensitivity test w.r.t. n, and vice versa.

Figure 10 reports the AUC mean values and two standard error bars over 10 runs of
ZERO++ w.r.t. m in four selected data sets. The results show that although the detection
performance of ZERO++ may vary with increasing subsample size, ZERO++ normally achieves
the best performance using small subsample sizes, e.g., < 64. In data sets with complicated
model complexity (e.g., distributions with a large number of modes), it needs to use a
large subsampling size to do well. Examples are Chess and Mushroom. It should be noted
that ZERO++ performs stably as the two standard errors are very small, e.g., they are often
smaller than 0.01. Similar results can also be found in other data sets.

Figure 11 presents the sensitivity test results of ZERO++ w.r.t. t in the four selected data
sets. The results show that the AUC performance of ZERO++ converges very quickly w.r.t.
t. ZERO++ normally obtains the best performance and works stably using ¢ > 50. Similar
results can also be found in other data sets.

613

Panag, TiNG, ALBRECHT, & JIN

Linkage Chess Nursery _ Mushroom

1 1 : 1 1
-\‘\-_“ f

0.95 0.91 0.95 0.95

(@] (@] (@] (@] 4

2 09 2 09 2 09 2 09
< < << <

0.85 0.85 0.85 # 0.85

(a) (b) (c) (d)
0.8 0.8 0.8 0.8
2 8 32 256 2 8 32 256 2 8 32 256 2 8 32 256
n n n n

Figure 10: Sensitivity tests of ZERO++ (¢ = 50) w.r.t. n.

Linkage Chess Nursery Mushroom
1-8-5-5-5-5-8-5-5-5E 1 1 1B B 5-55-8-8-8E 1 1
n R
0.95
0.95
0.95 0.9 0.95 n
S S o S os g T
< < < <
0.9 0.8 0.9
0.85
0.75
(a) (b) (c) (d)
0'855 20 40 60 80 100 0'75 20 40 60 80 100 0'85 20 40 60 80 100 0'855 20 40 60 80 100
t t t t

Figure 11: Sensitivity tests of ZERO++ (n = 8) w.r.t. t.

5.2.5 APPLICATION ON DATA SETS WITHOUT GROUND TRUTH

In this section, we investigated the application of ZERO++ on two UCI categorical data sets
without ground truth, i.e., Zoo and Internet Usage. ZERO++ used ¢ = 50 and n = 8 in the
following experiments.

Zoo: Zoo has 17 attributes and 101 instances from 7 species of animals, including
8 instances of insect, 10 instances of invertebrate, 20 instances of bird, 41 instances of
mammal, 13 instances of fish, 4 instances of amphibian and 5 instances of reptile. We ran
ZERO++ on this data set and obtained the following top three anomalies:

e Honeybee is a top ranked anomaly because it is the only animal in the data set that
is venomous and domestic.

e Scorpion is an unusual invertebrate animal because it has a breathing system and a
tail, contrasting to all the other invertebrate animals.

e Octopus is an extreme case in the data set because none of the other animals has
eight legs and is cat sized.

Internet usage: This data set comes from a survey about Internet usage in 1997.
It consists of 10,104 instances with 71 categorical attributes plus an ID attribute. Each
instance contains general demographic information about an Internet user. The top two
ranked anomalies detected by ZERO++ are:

e User 99179 is a five-year old nurse in Denmark with 1-3 years Internet usage.

e User 91839 is a nine-year old Virginia male with a college degree and has a networking
occupation but has less than six months on Internet.

614

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

5.3 Results on Numeric Data

Although ZERO++ is based on categorical attributes, here we show that it can be applied
to numeric data by first converting numeric attributes to categorical attributes using two
simple methods. The first subsection describes the discretisation methods used and the
second subsection reports the empirical results.

5.3.1 SIMPLE NUMERIC TO CATEGORICAL CONVERSION METHODS

ZERO++, FPOF and COMPREX are based on categorical data. Two discretisation methods,
i.e., the equal-width method (Liu, Hussain, Tan, & Dash, 2002) and the Z+ 3s rule method,
were used to enable them to work in numeric data. The Equal-Width (EW) method divides
instances into a fixed number of bins of equal width in each attribute. The T 4 3s rule (MS)
method is a simple subsample-based method which converts a numeric attribute into a
categorical attribute with two bins as follows. For each subsample, we compute the mean
T and the standard deviation s for each attribute. If a numeric value falls within the
range [T — 3s,T + 3s], it is assigned the categorical value ‘y’; otherwise the value ‘n’ is
assigned. ZERO++ with the EW method and the MS method are denoted by ZERO++(EW)
and ZERO++(MS), respectively. For the EW discretisation method, numeric attributes are
discretised into 10 bins by default.

We have also tested FPOF and COMPREX with both EW and MS. Note that MS used
in ZERO++ is based on T and s derived from each subsample. MS was adapted to FPOF
and COMPREX by using = and s derived from the full data set. Our results showed that
the detection performance of FPOF and COMPREX with EW was much better than that
using MS. This is because the EW method discretised data in a much smaller granularity
than the MS method. Therefore, FPOF and COMPREX with EW obtain significantly
more patterns than those using MS, which help to capture the normal behaviours more
effectively. Also, the full data set based MS discretisation can perform poorly, since T and
s derived from the full data set are sensitive to anomalies. Thus, we report the results of
FPOF and COMPREX with EW.

5.3.2 AUC RESULTS

Table 4 shows the AUC performance of ZERO++(MS), ZERO++(EW), FPOF, COMPREX,
iForest and LOF on the 14 numeric data sets. ZERO++(MS) is the best performer, which
obtains the best performance in 8 out of 14 data sets. It outperforms FPOF and LOF
significantly in eight data sets, and outperforms both COMPREX and iForest significantly
in seven data sets.

ZERO++(EW) works less effectively than ZERO++(MS). It performs comparably to or
significantly better than FPOF and COMPREX in six data sets, while it has five and six
losses against FPOF and COMPREX, respectively. It performs significantly better than
LOF in seven data sets, while has nine losses compared to iForest.

Note that we cannot obtain the results of FPOF in high dimensional data sets, in-
cluding HAR, Isolet, Mfeat and Arrhythmia, due to out-of-memory exception errors. For
COMPREX, we also cannot obtain its results in HAR, Isolet and Mfeat within two weeks.
Also, the runtime for LOF is prohibitive in the two largest data sets (i.e., Http and Linkage)
and we cannot obtain the results in two weeks.

615

Panag, TiNG, ALBRECHT, & JIN

Table 4: AUC performance of ZERO++, FPOF, COMPREX, iForest and LOF with the de-
fault settings on numeric data. COMP is for COMPREX. The best AUC in each
data set is underlined.

ZERO++(MS) ZERO++(EW) FPOF COMP iForest LOF

Linkage 0.877240.0243 0.6390+0.0233 0.5469 0.5480 0.9974+0.0000 na
Census 0.789040.0171 0.704940.0101 0.7531 0.7462 0.6659+0.0072 0.6560
CoverType 0.9198+0.0058 0.6882+0.0075 0.5793 0.8491 0.8726+0.0173 0.6287
Probe 0.990040.0003 0.9924+0.0003 0.9943 0.9917 0.9652+0.0110 0.5537

U2R 0.986340.0005 0.9774+£0.0012 0.9795 0.9801 0.9860+0.0015 0.5037
Arrhythmia 0.8137+0.0026 0.8102+0.0032 na 0.8147 0.7962+0.0104 0.8287
Http 0.998140.0012 0.9975+0.0001 0.9973 0.9978 0.9997+0.0001 na
Mulcross 0.998040.0009 0.6517+0.0632 0.9494 0.8997 0.9533£0.0085 0.5913
Smtp 0.887940.0082 0.5892+0.0000 0.5892 0.4977 0.8834+0.0058 0.8051

Shuttle 0.99844-0.0001 0.986240.0006 0.9751 0.9843 0.9957+0.0008 0.5295
Mammo 0.8386+0.0080 0.8554+0.0028 0.8537 0.8532 0.8484+0.0069 0.8645
Satimage 0.985640.0012 0.9677+0.0061 0.9756 0.9593 0.9804+0.0028 0.5896

Isolet 1.0000+0.0000 0.9987+0.0011 na na 0.9997+0.0003 1.0000

Mfeat 0.949940.0060 0.9190+0.0146 na na 0.9401£0.0124 0.9670

Zna 0 0 3 2 0 2
ZERO++(MS) vs. (#wins/draws/losses) 8/1/2 7/3/2 7/5/2 8/1/3
ZERO++(EW) vs. (#wins/draws/losses) 4/2/5 5/1/6 2/3/9 7/0/5

It is interesting to see that ZERO++ performs better than state-of-the-art numeric data
based detectors on numeric data sets, i.e., LOF and iForest. As ZERO++ is based on cate-
gorical data, a suitable discretisation method is important to enable ZERO++ to work well
in numeric data. The MS discretisation method used in ZERO++ is simple but very effective
for most data sets. This is due to the following two main reasons. First, compared to gen-
eral discretisation methods such as EW which does not take into account the application
context ?, MS is specially designed for anomaly detection and attempts to discretise nor-
mal instances and anomalies into different bins. Second, many real-world data sets follow
Gaussian distribution, which is implicitly assumed in MS.

5.4 Section Summary

We summarise the above empirical results as follows.

e ZERO++ performs stably and is the only detector that performs well in both categorical
data and numeric data using the default settings. It performs less effectively than its
contenders in a few data sets (e.g., Mushroom and Mammo) mainly due to two reasons
(i) some anomalies are detectable only when considering subspaces of size more than
two; and (ii) a large subsampling size is required to capture anomalous behaviours in
data sets with multi-modal distributions. With a search for either m or n, ZERQ++
can achieve comparable or better results compared to its contenders in those data.

9. As the characteristics of one data set often differ substantially from the other, to get the best performance
for a data set, the number of bins shall be tuned. In addition, more advanced discretisation methods are
required in order to successfully apply FPOF and COMPREX to numeric data.

616

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

e As expected, the runtime of ZERO++ is linear w.r.t. both data size and data dimension-
ality. It runs two to four orders of magnitude faster than state-of-the-art categorical
data based detectors FPOF and COMPREX.

e Among categorical data based methods, COMPREX is the most competitive con-
tender to ZERO++ in terms of performance accuracy, but it spends a significant amount
of time in searching informative subspaces. For FPOF, it is difficult to capture all the
normal patterns in a data set, especially in large data sets; so a small ¢ is normally
needed in FPOF in order to obtain a sufficient number of normal patterns.

e For numeric data based methods, LOF’s detection performance is mainly dependent
on the size of its neighbourhood set, which is strongly related to the data size. In
general, they require a large neighbourhood size to perform well in large data sets
while a small neighbourhood size is needed in small data sets. For iForest, it normally
requires a larger subsample size (n = 256) than ZERO++ in order to perform well in
large data sets mainly because it considers fewer subspaces than ZERO++.

6. Conclusions and Future Work

This is the first paper to show that the power of zero appearances can be harnessed to
detect anomalies. ZERO++ is the only anomaly detector based on zero appearances, as far as
we know. It is a simpler and more efficient non-search based anomaly detector than existing
frequency-based anomaly detectors which rely on search. As a result, ZERO++ is a suitable
candidate for large-scale data sets.

Our empirical evaluation shows that ZERO++ is competitive to or better than four state-
of-the-art anomaly detectors in terms of detection accuracy, and it can scale up easily to
large and high dimensional data sets, with orders of magnitude better than most existing
anomaly detectors in terms of time and space complexities. Our experiments also demon-
strate that ZERO++ discovers interesting anomalies on two real-world data sets.

Although ZERO++ is based on categorical data only, we have also shown that, with a
simple method to convert numeric attributes to categorical attributes, ZERO++ also performs
competitively to state-of-the-art numeric oriented anomaly detectors on numeric data.

ZERO++ is not suitable for data with complex feature dependency. For example, in
data where the abnormal behaviours occur in subspaces of varying sizes, ZERO++ using
subspaces with a single fixed subspace size cannot capture all zero appearances in subspaces
of different sizes according to the closure property. One possible solution is to employ a
search for different sizes of subspaces in conjunction with ZERO++ and learn appropriate
weights for the subspaces. Also, a better discretisation method is required for ZERO++ to
handle numeric data with multi-modal distribution or non-Gaussian distribution. We are
interested in addressing these two issues in future work.

617

Panag, TiNG, ALBRECHT, & JIN

Acknowledgments

This material is based upon work partially supported by the Air Force Office of Scientific
Research, Asian Office of Aerospace Research and Development (AOARD) under award
number FA2386-13-1-4043, awarded to Kai Ming Ting.

Appendix A. Best Detection Performance Results on Categorical Data

ZERO++ and its three contenders were examined with tuned parameters to obtain their best
AUC for each data set. Both ZERO++ and iForest employed ¢ = 50 as the default settings.
For both methods, the best n was searched over the range 2, 4, 8, 16, 32, 64, 128 and 256.

Following (He et al., 2005), FPOF employed 5 as the maximum length of itemsets by
default, and we searched the minimum support threshold § over the range 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, and report the best results.

For LOF, we searched k over the range 10, 20, 40, 60, 80, 150, 250, 300, 500, 1000, 2000,
3000 and 4000, and report the best results.

The best performance of ZERO++, FPOF, iForest and LOF' is shown in Table 5. ZERO++
is significantly better than FPOF in three data sets, draws in five and loses in one. ZERO++
outperforms iForest significantly in 7 out of 10 data sets, with three draws and no loss.
ZERO++ outperforms LOF significantly in three data sets, with two draws and no loss.

Table 5: AUC performance comparison between ZERO++, FPOF | iForest and LOF with the
best parameter in categorical data.

ZERO++ FPOF iForest LOF

best n best § best n best k
Linkage 0.9976+0.0002 0.9978 0.979040.0041 na
Census 0.6465+0.0053 0.6148 0.55444+0.0286 na
CoverType 0.9954+0.0021 0.9965 0.977340.0043 na
Probe 0.9820+0.0025 0.9867 0.97761+0.0022 na
U2R 0.9910£0.0010 0.9203 0.97294+0.0073 na

Arrhythmia 0.6905+0.0012 na 0.6878+0.0024 0.6295
Nursery 1.0000+0.0000 1.0000 0.9995£0.0008 1.0000
Chess 0.9981£0.0010 0.9290 0.8606+0.0566 0.9948
Mushroom 0.984240.0023 0.9400 0.9182+0.0117 0.9770
SolarFlare 0.9784+0.0011 0.9791 0.9641+0.0057 0.9778
#na 0 1 0 5
#wins/draws/losses 3/5/1 7/3/0 3/2/0

References

Achtert, E., Kriegel, H., Schubert, E., & Zimek, A. (2013). Interactive data mining with
3d-parallel-coordinate-trees. In SIGMOD, pp. 1009-1012.

Akoglu, L., Tong, H., Vreeken, J., & Faloutsos, C. (2012). Fast and reliable anomaly detec-
tion in categorical data. In CIKM, pp. 415-424. ACM.

618

ZERO-++4: HARNESSING THE POWER OF ZERO APPEARANCES TO DETECT ANOMALIES

Bache, K., & Lichman, M. (2013). UCI machine learning repository. URL
http://archive.ics.uci.edu/ml.

Barron, A., Rissanen, J., & Yu, B. (1998). The minimum description length principle in
coding and modeling. IEEE Transactions on Information Theory, 44(6), 2743-2760.

Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger, B. (1990). The R*-tree: An efficient
and robust access method for points and rectangles. In SIGMOD, pp. 322-331. ACM.

Boriah, S., Chandola, V., & Kumar, V. (2008). Similarity measures for categorical data: A
comparative evaluation. In SDM, pp. 243-254. STAM.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-
based local outliers. ACM SIGMOD Record, 29(2), 93-104.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM
Computing Surveys, 41(3), 15.

Duan, L., Xu, L., Liu, Y., & Lee, J. (2009). Cluster-based outlier detection. Annals of
Operations Research, 168(1), 151-168.

Erfani, S., Baktashmotlagh, M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2015).
R1SVM: A randomised nonlinear approach to large-scale anomaly detection. In AAAT
pp. 432-438.

Ghoting, A., Otey, M. E., & Parthasarathy, S. (2004). LOADED: Link-based outlier and
anomaly detection in evolving data sets. In ICDM, pp. 387-390. IEEE.

Gornitz, N., Kloft, M., Rieck, K., & Brefeld, U. (2013). Toward supervised anomaly detec-
tion. Journal of Artificial Intelligence Research, 46, 235—262.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The
WEKA data mining software: An update. ACM SIGKDD Ezxplorations Newsletter,
11(1), 10-18.

Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning, 45(2), 171-186.

He, Z., Deng, S., Xu, X., & Huang, J. Z. (2006). A fast greedy algorithm for outlier mining.
In PAKDD, pp. 567-576. Springer.

He, Z., Xu, X., Huang, Z. J., & Deng, S. (2005). FP-outlier: Frequent pattern based outlier
detection. Computer Science and Information Systems/ComSIS, 2(1), 103-118.

Jin, H., Chen, J., He, H., Kelman, C., McAullay, D., & O’Keefe, C. M. (2010). Signaling
potential adverse drug reactions from administrative health databases. IEEE Trans-
actions on Knowledge and Data Engineering, 22(6), 839-853.

Koufakou, A., & Georgiopoulos, M. (2010). A fast outlier detection strategy for distributed
high-dimensional data sets with mixed attributes. Data Mining and Knowledge Dis-
covery, 20(2), 259-289.

Koufakou, A., Ortiz, E. G., Georgiopoulos, M., Anagnostopoulos, G. C., & Reynolds, K. M.
(2007). A scalable and efficient outlier detection strategy for categorical data. In
ICTAI pp. 210-217. IEEE.

619

Panag, TiNG, ALBRECHT, & JIN

Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. In SIGKDD, pp.
157-166. ACM.

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data, 6(1), 3:1-3:39.

Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique.
Data Mining and Knowledge Discovery, 6(4), 393-423.

Pang, G., Ting, K. M., & Albrecht, D. (2015). Lesinn: Detecting anomalies by identifying
least similar nearest neighbours. In ICDMW, pp. 623-630. IEEE.

Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers
from large data sets. ACM SIGMOD Record, 29(2), 427-438.

Rocke, D. M., & Woodruff, D. L. (1996). Identification of outliers in multivariate data.
Journal of the American Statistical Association, 91(435), 1047-1061.

Smets, K., & Vreeken, J. (2011). The odd one out: Identifying and characterising anomalies.
In SDM, pp. 109-148. STAM.

Sugiyama, M., & Borgwardt, K. (2013). Rapid distance-based outlier detection via sampling.
In NIPS, pp. 467-475.

Ting, K. M., Zhou, G.-T., Liu, F. T., & Tan, S. C. (2013). Mass estimation. Machine
Learning, 90(1), 127-160.

Wallis, S. (2013). Binomial confidence intervals and contingency tests: mathematical fun-
damentals and the evaluation of alternative methods. Journal of Quantitative Lin-
guistics, 20(3), 178-208.

Wu, M., & Jermaine, C. (2006). Outlier detection by sampling with accuracy guarantees.
In SIGKDD, pp. 767-772. ACM.

Wu, S., & Wang, S. (2013). Information-theoretic outlier detection for large-scale categorical
data. IEEE Transactions on Knowledge and Data Engineering, 25(3), 589-602.

Xu, J., & Shelton, C. R. (2010). Intrusion detection using continuous time bayesian net-
works. Journal of Artificial Intelligence Research, 39, T45-T74.

Zhang, K., Hutter, M., & Jin, H. (2009). A new local distance-based outlier detection
approach for scattered real-world data. In PAKDD, pp. 813-822. Springer.

Zimek, A., Campello, R. J., & Sander, J. (2013a). Ensembles for unsupervised outlier
detection: Challenges and research questions. ACM SIGKDD FExplorations Newsletter,
15(1), 11-22.

Zimek, A., Gaudet, M., Campello, R. J., & Sander, J. (2013b). Subsampling for efficient and
effective unsupervised outlier detection ensembles. In SIGKDD, pp. 428-436. ACM.

620

