
Journal of Artificial Intelligence Research 57 (2016) 621-660 Submitted 9/16; published 12/16

P-SyncBB: A Privacy Preserving
Branch and Bound DCOP Algorithm

Tal Grinshpoun talgr@ariel.ac.il
Ariel University
Ariel, Israel

Tamir Tassa tamirta@openu.ac.il

The Open University

Ra’anana, Israel

Abstract

Distributed constraint optimization problems enable the representation of many com-
binatorial problems that are distributed by nature. An important motivation for such
problems is to preserve the privacy of the participating agents during the solving process.
The present paper introduces a novel privacy-preserving branch and bound algorithm for
this purpose. The proposed algorithm, P-SyncBB, preserves constraint, topology and de-
cision privacy. The algorithm requires secure solutions to several multi-party computation
problems. Consequently, appropriate novel secure protocols are devised and analyzed. An
extensive experimental evaluation on different benchmarks, problem sizes, and constraint
densities shows that P-SyncBB exhibits superior performance to other privacy-preserving
complete DCOP algorithms.

1. Introduction

Distributed constraint optimization (DCOP) (Hirayama & Yokoo, 1997; Modi, Shen, Tambe,
& Yokoo, 2005) is a general model for representing and solving distributed combinatorial
problems, in which the variables of the problem are owned by different agents. The ability
of the model to represent real-world problems such as meeting scheduling (Modi & Veloso,
2004), sensor nets (Zhang, Xing, Wang, & Wittenburg, 2005), and vehicle routing (Léauté &
Faltings, 2011), resulted in the development of various complete DCOP algorithms. Most
of those algorithms, such as SyncBB (Hirayama & Yokoo, 1997), ADOPT (Modi et al.,
2005), NCBB (Chechetka & Sycara, 2006), AFB (Gershman, Meisels, & Zivan, 2009), and
BnB-ADOPT (Yeoh, Felner, & Koenig, 2010), are based on search. Other paradigms for
solving DCOPs include grouping of sub-problems (OptAPO, Mailler & Lesser, 2004) and
dynamic programming (DPOP, Petcu & Faltings, 2005).

One of the main motivations for solving constraint problems in a distributed manner is
that of privacy. The term privacy is quite broad, a fact that gave rise to several categoriza-
tions of the different types of privacy (Faltings, Léauté, & Petcu, 2008; Greenstadt, Grosz,
& Smith, 2007; Grinshpoun, 2012). In this paper we relate to the categorization of Léauté
and Faltings (2013) that distinguish between agent privacy, topology privacy, constraint
privacy, and decision privacy.

Most research on DCOP privacy focused on constraint privacy, which means that con-
straint information should only be known to the agents whose variables are involved in the
constraints. Some work has focused on measuring the extent of constraint privacy loss. Most

c©2016 AI Access Foundation. All rights reserved.

Grinshpoun & Tassa

notably is the work of Maheswaran, Pearce, Bowring, Varakantham, and Tambe (2006) who
proposed the VPS framework that was initially used to measure the constraint privacy loss
in SyncBB and OptAPO. Later, VPS was also applied to the DPOP and ADOPT algo-
rithms (Greenstadt, Pearce, & Tambe, 2006). Doshi, Matsui, Silaghi, Yokoo, and Zanker
(2008) proposed to inject privacy-loss as a criterion to the problem solving process. Some
previous work was also directed towards reducing constraint privacy loss. Most effort in
the development of privacy-preserving search algorithms focused on DCSP, which is the
satisfaction variant of DCOP (Nissim & Zivan, 2005; Silaghi & Mitra, 2004; Yokoo, Suzuki,
& Hirayama, 2005). The work of Silaghi and Mitra (2004) addressed both satisfaction and
optimization problems. However, the proposed solution is strictly limited to small scale
problems since it depends on an exhaustive search over all possible assignments. Several
privacy-preserving versions of the dynamic programming algorithm, DPOP, were proposed
in the past (Greenstadt et al., 2007; Silaghi, Faltings, & Petcu, 2006). Recently, Léauté and
Faltings (2013) proposed several versions of DPOP that provide strong privacy guarantees.
While these versions are aimed for DCSPs, some of them may be also applicable to DCOPs.
Considering a different aspect of constraint privacy, researchers have addressed problems
in which the nature of a constraint is distributed among the constrained agents. Solutions
to such problems include the PEAV formulation (Maheswaran, Tambe, Bowring, Pearce, &
Varakantham, 2004) and asymmetric DCOPs (Grinshpoun, Grubshtein, Zivan, Netzer, &
Meisels, 2013). Here, we restrict ourselves to the traditional symmetric DCOPs.

In the present paper we devise a novel DCOP algorithm that preserves constraint,
topology and decision privacy. The new algorithm, called P-SyncBB, is based on SyncBB
(Hirayama & Yokoo, 1997), which is the most basic DCOP search algorithm. We chose that
algorithm since the search paradigm is applicable for a large variety of problems. Contrary
to that, in DPOP (Petcu & Faltings, 2005) the size of messages grows exponentially in the
induced width of the pseudo-tree structure that DPOP uses (the base of this exponenti-
ation is the domain size); this fact hinders the applicability of DPOP for dense problems
(Gershman, Zivan, Grinshpoun, Grubshtein, & Meisels, 2008) and problems with large
domain sizes. OptAPO is also inappropriate for this purpose since it inherently involves
comprehensive information sharing throughout the problem solving process, a fact that is
counterproductive when considering privacy aspects. Moreover, OptAPO was shown to
have rather poor runtime performance (Grinshpoun & Meisels, 2008).

In the course of developing the privacy-preserving algorithm we encountered several
secure computation problems. In the main problem, a group of agents needs to compare
the sum of private inputs held by those agents against an upper bound which is held by
another agent, such that none of them learns information on neither the sum nor the private
inputs of his peers. We introduce here a novel protocol for solving that problem. In addition,
we devise a novel protocol for solving Yao’s millionaires’ problem (Yao, 1982) that does not
depend on costly public key encryption and decryption.

We conduct extensive experimental evaluation on different benchmarks, problem sizes,
and constraint densities, in order to compare the performance of P-SyncBB to the basic
SyncBB (for assessing the price of privacy) and for comparing P-SyncBB to the privacy-
preserving complete DCOP algorithm, P-DPOP(+), of Léauté and Faltings (2013). Our
experiments show that while the price of privacy is significant (the runtime of P-SyncBB

622

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

is an order of magnitude higher than that of SyncBB), P-SyncBB exhibits superior perfor-
mance to P-DPOP(+).

The plan of the paper is as follows. After some preliminaries (Section 2), the new privacy-
preserving search algorithm is presented in Section 3. Several secure protocols are invoked
during the run of the algorithm. These protocols are introduced in Section 4, along with
analysis of their privacy properties. Section 5 includes communication and computational
cost analysis of the security protocols, as well as experimental evaluation of the overall
performance of P-SyncBB. Conclusions are drawn in Section 6.

This article has evolved from a paper that was published at AAMAS conference (Grin-
shpoun & Tassa, 2014). The proposed P-SyncBB algorithm of this extended version is an
improved version of the algorithm that was presented in AAMAS. The present version of P-
SyncBB offers decision privacy (while the earlier conference version did not). In addition, it
solves the instances of the millionaires’ problem (Section 4.2.3) by invoking newly developed
and much more efficient sub-protocols. Furthermore, this extended version includes com-
plete proofs, privacy analysis, detailed evaluation of the communication and computational
costs, and a much more thorough experimental evaluation.

2. Preliminaries

Herein we provide the necessary preliminaries. Section 2.1 includes some background on
the DCOP model; in Sections 2.2 and 2.3 we discuss the security and privacy notions that
we adopt herein; and in Section 2.4 we provide the required background on probabilistic
homomorphic encryption functions, which play an important role in our algorithms.

2.1 Distributed Constraint Optimization

A Distributed Constraint Optimization Problem (DCOP, Hirayama & Yokoo, 1997) is a
tuple < A,X ,D,R > where A is a set of agents A1, A2, . . . , An, X is a set of variables
X1, X2, . . . , Xm, D is a set of finite domains D1, D2, . . . , Dm, and R is a set of relations
(constraints). Each variable Xi takes values in the domain Di, and it is held by a single
agent. Each constraint C ∈ R defines a non-negative cost for every possible value combi-
nation of a set of variables, and is of the form C : Di1 × · · · ×Dik → ΩR := [0, q] ∪ {∞},
for some 1 ≤ i1 < · · · < ik ≤ m. Constraints of infinite cost are called hard; they represent
combinations of assignments that are strictly forbidden. Constraints of a finite cost are
called soft. We assume hereinafter that q is a publicly known upper bound on the cost of
the soft constraints.

An assignment is a pair including a variable, and a value from that variable’s domain.
We denote by ai the value assigned to the variable Xi. A partial assignment (PA) is a set of
assignments in which each variable appears at most once. A constraint C ∈ R is applicable
to a PA if all variables that are constrained by C are included in the PA. The cost of a PA
is the sum of all applicable constraints to the PA. A full assignment is a partial assignment
that includes all of the variables. The goal in Constraint Optimization Problems in general,
and in DCOPs in particular, is to find a full assignment of minimal cost.

For simplicity, we assume that each agent holds exactly one variable, i.e., n = m.
We let n denote hereinafter the number of agents and the number of variables. We also
concentrate on binary DCOPs, in which all constraints are binary, i.e., they refer to exactly

623

Grinshpoun & Tassa

two variables. Such constraints take the form Ci,j : Di×Dj → ΩR. These assumptions are
customary in DCOP literature (Modi et al., 2005; Petcu & Faltings, 2005).

Consider a full assignment which is acceptable, in the sense that it does not violate any
hard constraint. Then its cost is at most

(
n
2

)
q. Hence, if we set the cost of each of the

hard constraints to q∞ :=
(
n
2

)
q + 1, there is no need to distinguish between the two types

of constraints. If the cost of the full assignment that the DCOP algorithm produces is at
most

(
n
2

)
q, then that full assignment is an acceptable solution that does not violate any of

the hard constraints. Otherwise, it is an unacceptable solution. If the DCOP algorithm is
a complete algorithm then such a finding would imply that the problem has no acceptable
solution.

2.2 Security Notions

A secure multi-party protocol is a protocol that enables several parties (or agents) to jointly
compute a function over their inputs, while keeping these inputs private. Namely, given n
agents, A1, . . . , An, where each agent Ai holds a private input xi, 1 ≤ i ≤ n, they wish to
compute a function f over those private inputs, y = f(x1, . . . , xn), where the functionality
f is publicly known, while keeping their private inputs secret. Such a protocol is considered
perfectly secure if it does not reveal to any of the agents, say Ai, any information on the
private inputs of his peers (xj , 1 ≤ j 6= i ≤ n) beyond what is implied by his own input xi
and the final output y of the protocol.1 This notion of security coincides with the disclosure
of semi-private information, a concept that was suggested in the context of distributed
constraint satisfaction (Faltings et al., 2008).

One of the earliest secure multi-party protocols was presented by Yao (1982). He con-
sidered a problem that later became known as Yao’s millionaires’ problem. In that problem
there are two players, each one holding a private integer representing his wealth. They wish
to determine which one of them is richer (i.e., holds a larger integer) without revealing the
actual private integers. There are several solutions for that problem, all of which rely on
costly operations like oblivious transfer (Rabin, 1981; Even, Goldreich, & Lempel, 1985),
or public-key encryption.

Multi-party computation was implemented in many contexts. For example, Lindell and
Pinkas (2000) showed how to securely build an ID3 decision tree when the training set is
distributed horizontally. The problem of distributed association rule mining was studied in
the vertical setting, where each party holds a different set of attributes (Schuster, Wolff,
& Gilburd, 2004; Vaidya & Clifton, 2002; Zhan, Matwin, & Chang, 2005), and in the
horizontal setting (Kantarcioglu & Clifton., 2004; Tassa, 2014). Another context is of
privacy-preserving multi-party protocols for computing k-anonymized views of distributed
datasets (Jiang & Clifton, 2006; Tassa & Cohen, 2013; Tassa & Gudes, 2012; Zhong, Yang,
& Wright, 2005). Techniques of multi-party computation were also implemented in order to
perform privacy preserving collaborative filtering over distributed data (Jeckmans, Tang, &
Hartel, 2012; Yakut & Polat, 2012). In recent years, multi-party computation was applied
also in the context of DCOPs (Grinshpoun & Tassa, 2014; Léauté & Faltings, 2013; Tassa,
Zivan, & Grinshpoun, 2015, 2016).

1. We adopt here the convention of relating to agents by the pronoun “he”.

624

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

We assume herein that the parties are semi-honest; namely, they follow the prescribed
protocol but try to glean more information than allowed from the protocol transcript. We
also assume that they do not collude. Such assumptions are common in most studies that
design secure multi-party protocols for practical problems, and in particular they were made
in all above mentioned studies. The reader is referred to the work of Jeckmans et al. (2012),
Jiang and Clifton (2006), Lindell and Pinkas (2000), Schuster et al. (2004), Zhong et al.
(2005) for a discussion and justification of those assumptions in practical applications of
multi-party computation.

We also note that when looking for practical solutions, some relaxations of the notion of
perfect privacy are usually inevitable, provided that the excess information is deemed benign
(Grinshpoun & Tassa, 2014; Kantarcioglu & Clifton., 2004; Léauté & Faltings, 2013; Tassa,
2014; Tassa & Cohen, 2013; Tassa et al., 2015; Tassa & Gudes, 2012; Vaidya & Clifton,
2002; Yakut & Polat, 2012; Zhong et al., 2005). For each of the security protocols that we
present in this paper, we bound the excess information that it may leak to the interacting
agents and explain why such leakage of information is benign, or how it may be reduced.

2.3 Privacy Notions

Léauté and Faltings (2013) have distinguished between four notions of private information
in DCSPs. Those notions are also relevant in the context of DCOPs, whence we adopt them
herein:

• Agent privacy – hiding from each agent the identity or even the existence of other
agents with which he is not constrained.

• Topology privacy – hiding from each agent the topological structures in the constraint
graph in which he is not involved. Namely, each agent should be aware of the nodes of
variables with which his variable is constrained, and the edges that connect his node
to those nodes, but nothing else on the graph structure.

• Constraint privacy – hiding from each agent the constraints in which he is not involved.
Namely, agent Ak should not know anything about Ci,j(·, ·) if k /∈ {i, j}.

• Decision privacy – hiding from each agent the final assignments to other variables.

Grinshpoun (2012) has considered two additional notions of private information in
DCOPs – domain privacy and algorithmic privacy. As for domain privacy, the standard
DCOP model usually assumes that the domains of all variables are fully known. (Agents
can always implicitly remove certain values from their domain by the use of unary con-
straints; but then the problem of recovering the essential set of possible values for their
variable becomes a problem of constraint privacy.) An exception to that is the Open COP
model (Faltings & Macho-Gonzalez, 2005), which is not in the scope of the present research.
As for algorithmic privacy, it is only relevant to algorithms that involve internal parameters
which affect their performance, such as DSA (Zhang et al., 2005). Consequently, we do not
relate to these two types of privacy.

We also note that while Léauté and Faltings (2013) only referred to decision privacy,
i.e., final assignments, other researchers also considered the privacy of assignments during

625

Grinshpoun & Tassa

the search process (Brito, Meisels, Meseguer, & Zivan, 2009). However, the work of Brito
et al. (2009) was in the context of DCSPs, in which the first assignment during the search
process that satisfies all the constraints is actually the final assignment, i.e., the decision.
So the aspiration to preserve assignment privacy in that context was actually a means to
preserve decision privacy, hence we do not explicitly relate to assignment privacy.

Out of the four privacy notions of Léauté and Faltings (2013), constraint privacy, has
drawn the most attention in past research (Silaghi & Mitra, 2004; Maheswaran et al., 2006;
Doshi et al., 2008). In fact, most of the privacy types in the categorization of Greenstadt
et al. (2007) are actually variations of constraint privacy.

2.4 On Probabilistic Homomorphic Encryption Functions

A cipher is called public-key (or asymmetric) if its encryption function E(·) of a plaintext
depends on one key, Ke, which is publicly known, while the corresponding decryption
function E−1(·) of a ciphertext depends on a private key Kd that is known only to the
owner of the cipher, and Kd’s derivation from Ke is computationally hard.

A cipher is called (additively) homomorphic if for every two plaintexts, m1 and m2,
E(m1 + m2) = E(m1) · E(m2). When the encryption function is randomized (in the sense
that E(m) depends on m as well as on a random string), E is called probabilistic. Hence,
a probabilistic encryption function is a one-to-many mapping (every plaintext m has many
encryptions m′ = E(m)), while the corresponding decryption function is a many-to-one
mapping (all possible encryptions m′ of the same plaintext m are mapped by E−1(·) to the
same m).

The semantically secure Paillier cipher (Paillier, 1999) is a public-key cipher that is both
homomorphic and probabilistic.

3. Privacy Preserving DCOP Search

Synchronous Branch-and-Bound (SyncBB, Hirayama & Yokoo, 1997) was the first com-
plete algorithm that was developed for solving DCOPs. SyncBB operates in a completely
sequential manner, a fact that inherently renders its synchronous behavior. It is also the
most basic search algorithm for solving DCOPs, and many more sophisticated DCOP search
algorithms, such as NCBB (Chechetka & Sycara, 2006) and AFB (Gershman et al., 2009),
are actually enhancements of SyncBB. Taking into account these comprehensions and con-
sidering the clear information flow within its search process, SyncBB is an ideal candidate
to serve as the basis of a new privacy-preserving DCOP search algorithm.

The objective in this context is to allow the interacting agents to solve a given DCOP
while maintaining constraint, topology and decision privacy. We first overview the original,
non-privacy-preserving SyncBB algorithm (Hirayama & Yokoo, 1997), and then proceed to
present the Privacy-preserving Synchronous Branch-and-Bound algorithm (P-SyncBB).

3.1 Synchronous Branch and Bound

The SyncBB algorithm assumes a static public ordering of the agents, A1, . . . , An. The
search space of the problem is traversed by each agent assigning a value to its variable and
passing the current partial assignment (CPA) to the next agent in the order, along with

626

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

the current cost of the CPA. After an agent completes assigning all values in the domain to
his variable, he backtracks, i.e., he sends the CPA back to the preceding agent. To prevent
exhaustive traversal of the entire search space, the agents maintain an upper bound, which
is the cost of the best solution that was found thus far. The algorithm performs continuous
comparisons between the costs of partial assignments and the current upper bound, in
order to prune the search space. Algorithm 1 presents the pseudo-code of SyncBB with
value ordering. We focus on a version of SyncBB that includes value ordering because such
ordering is also needed for the privacy-preserving algorithm that we present here, P-SyncBB.

The run of SyncBB starts by the agents initializing the upper bound B to infinity (init,
line 1). Then, agent A1 sets the cost of the (currently empty) CPA, Cost, to zero and runs
the assign CPA procedure (lines 2-4). In that procedure, A1 simply chooses a value from
his variable’s domain (assign CPA, line 14), assigns it to his variable in the CPA (line 18),
and sends a CPA MSG with the updated CPA to agent A2 (line 25; the third parameter
in that message is a cost value that always equals zero when the sender is A1).

When agent Ak, k ≥ 2, receives the CPA MSG, he first updates his data with the
received partial assignment and cost (lines 5-6). Next, he performs value ordering according
to the added cost to the CPA that is incurred by each value in his domain (lines 7-8). The
cost that Ak’s assignment adds is

xk =
k−1∑
i=1

Ci,k(ai, ak) , (1)

where ai, ak are the assignments of the variables that are governed by agents Ai and Ak,
respectively. Hence, for each v ∈ Dk, agent Ak computes xk(v) =

∑k−1
i=1 Ci,k(ai, v) and then

he orders those values so that the sequence of added costs xk(v) is non-decreasing. Note
that agent A1 never receives a CPA MSG, so he does not perform value ordering. Finally,
the agent runs the assign CPA procedure (line 9).

The assign CPA procedure begins with the agent choosing the next value from the pre-
ordered domain (line 14). In case no more values remain, the agent backtracks (lines 15-16).
Otherwise, Ak assigns to his variable Xk the next value v from his domain Dk (line 18). At
this stage, the agent reaches a pruning decision point (line 19), in which he computes the
cost of the augmented CPA (Cost+xk) and checks whether this cost is greater than or equal
to the upper bound. If so, then the pruning of this branch of the search space is achieved
by backtracking (line 20). Otherwise, if the agent is the last one (An), a new best solution
is found. In that case, the agent An broadcasts a NEW SOLUTION MSG (line 22),
and backtracks in order to continue the traversal of the search space (line 23). All agents
receive the NEW SOLUTION MSG and update the new best solution, B Solution,
and the new bound, B, accordingly (lines 12-13). Back to the assign CPA procedure, any
agent which is not the last one sends a CPA MSG to the subsequent agent (line 25).

Finally, we discuss the backtrack procedure. In the case of A1, a backtrack means
that the entire search space was traversed, and so the algorithm terminates (lines 26-27).
Any other agent just removes his variable from the CPA (line 29) and sends a BACK-
TRACK MSG to the preceding agent (line 30). An agent that receives a BACK-
TRACK MSG removes his value from the CPA (line 10) and continues the search by
assigning the next value in order (line 11).

627

Grinshpoun & Tassa

Algorithm 1 – SyncBB (executed by agent Ak)

procedure init
1: B ←∞
2: if k = 1 do
3: Cost← 0
4: assign CPA()

when received (CPA MSG,PA,PA Cost) do
5: CPA← PA
6: Cost← PA Cost
7: for each v ∈ Dk do compute xk(v)
8: order the values v ∈ Dk so that the sequence xk(v) is non-decreasing
9: assign CPA()

when received (BACKTRACK MSG) do
10: remove Xk from CPA
11: assign CPA()

when received (NEW SOLUTION MSG,Solution,Sol Cost) do
12: B Solution← Solution
13: B ← Sol Cost

procedure assign CPA
14: choose next value v in order from Dk

15: if no value exists do
16: backtrack()
17: else
18: Xk ← v
19: if Cost+ xk ≥ B do
20: backtrack()
21: else if k = n do
22: broadcast(NEW SOLUTION MSG,CPA,Cost+ xk)
23: backtrack()
24: else
25: send(CPA MSG,CPA,Cost+ xk) to Ak+1

procedure backtrack
26: if k = 1 do
27: broadcast(TERMINATE)
28: else
29: remove Xk from CPA
30: send(BACKTRACK MSG) to Ak−1

3.2 Privacy Preserving Synchronous Branch and Bound

When considering a version of SyncBB that preserves privacy, one must pay special at-
tention to the upper bound. In SyncBB, the upper bound is the most fundamental piece
of information during the problem solving process, and it is publicly known to all agents.
The effectiveness of the algorithm lies in the continuous comparisons of the costs of partial

628

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

assignments with the current upper bound, in order to prune the search space. Curious
agents may collect information on costs of partial assignments in attempt to infer infor-
mation on private constraints of other agents. This is a major source of trouble from the
perspective of constraint privacy. Following that, the most fundamental task in the design
of the privacy-preserving version, P-SyncBB, is to separate between information regarding
the costs of partial or full assignments and the upper bound, while still enabling pruning of
the search space. P-SyncBB achieves such a separation as described below.

P-SyncBB, like SyncBB, assumes a static public ordering of the agents, A1, . . . , An.
Namely, all agents know each other and the position of each agent in the selected order.
P-SyncBB allows only one agent, A1, to know the upper bound. The selection of A1 for
that purpose is made because, according to the original SyncBB algorithm, A1 never sees
the assignments of the other agents. Knowing the upper bound while remaining oblivious of
the assignments that determined that upper bound does not enable extracting information
on unknown constraint costs. As for the other agents, Ak, 2 ≤ k ≤ n, each of them receives
throughout the search process CPAs from his preceding agent; consequently, each of them
knows at each stage the assignments of the agents that precede him in the order. To prevent
those agents from extracting information on unknown constraint costs, P-SyncBB prevents
them from gaining knowledge on the costs of CPAs and on the current upper bound.

In the original SyncBB algorithm, the cost of the CPA is passed between the agents
along with the CPA. Contrary to that, in P-SyncBB the cost of the CPA must not be
known to any agent, since this cost may leak private constraint information. Consequently,
at each pruning decision point, the agent Ak that holds a CPA which corresponds to the
current assignments to X1, . . . , Xk, must compare between the cost of that CPA and the
upper bound in a secure manner, i.e., without learning neither the cost of the CPA nor
the upper bound. Such a non-trivial computational goal is achieved by restraining the
information flow in the algorithm and by introducing secure protocols for summation and
comparison.

A direct consequence of preserving constraint privacy is that P-SyncBB preserves also
topology privacy. Indeed, as the communication patterns between agents during P-SyncBB
are determined solely by the static public ordering of the agents, and not by the topology
(as is the case with other privacy-preserving algorithms, e.g. (Tassa et al., 2015), which,
consequently, need to apply specifically designed tools for hiding topological information),
and as it is impossible to distinguish between zero cost binary constraints (as is the case with
non-adjacent pairs of agents in the constraint graph) and positive cost binary constraints,
topology privacy is respected.

Finally, P-SyncBB also preserves decision privacy. The main cryptographic tool that
enables achieving that goal is the Paillier cryptosystem (see Section 2.4). Each agent Ak, 2 ≤
k ≤ n, generates a key-pair in a Paillier cryptosystem, and informs A1 of the corresponding
public key. Let Ek(·) denote the encryption function in Ak’s cipher. Ak will use that
cipher during P-SyncBB in order to store with A1 the current assignment to his variable
Xk. After A1 identifies the stage in the search where the optimal assignment was found
(while remaining oblivious of the actual assignments to all other variables in that optimal
assignment), A1 sends back to each of the other agents the assignment of that agent’s
variable in the optimal solution, encrypted with that agent’s cipher. That way, each of the

629

Grinshpoun & Tassa

agents gets, at the completion of P-SyncBB, his assignment in the optimal solution, but he
remains oblivious of the assignments of his peer agents in that optimal solution.

The pseudo-code of P-SyncBB is given in Algorithm 2 (which is broken into two boxes
due to its length) and described in detail next. The secure protocols that Algorithm 2
invokes are described in Section 4.

Algorithm 2 – P-SyncBB (executed by agent Ak) – first part

procedure init
1: if k = 1 do
2: B ←∞
3: assign CPA()

when received (CPA MSG,PA) do
4: CPA← PA
5: for each v ∈ Dk do compute xk(v)
6: order the values v ∈ Dk so that the sequence xk(v) is non-decreasing
7: ComputedCPA← false
8: assign CPA()

when received (BACKTRACK MSG) do
9: remove Xk from CPA

10: assign CPA()

when received (CHECK SOLUTION MSG) do
11: Cost← invoke Protocol 3 to securely compute the solution’s cost (i.e.,

∑n
i=2 xi)

12: if Cost < B do
13: B ← Cost
14: CurrentlyBest← true
15: else
16: CurrentlyBest← false
17: broadcast(REQUEST CURRENT ASSIGNMENT MSG)

when received (REQUEST CURRENT ASSIGNMENT MSG) do
18: zk ← Ek(Xk)
19: send(CURRENT ASSIGNMENT MSG,k,zk) to A1

20: if k = n do
21: backtrack()

when received (CURRENT ASSIGNMENT MSG,j,zj) do
22: if CurrentlyBest = true do
23: CA(j)← zj

The run of P-SyncBB starts by agent A1 initializing the upper bound B to infinity and
running the assign CPA procedure (init, lines 2-3). In that procedure, A1 simply chooses
a value from his variable’s domain (assign CPA, line 24), assigns it to his variable in the
CPA (line 31), and sends a CPA MSG with the updated CPA to agent A2 (line 32).

The handling of a CPA MSG is exactly as in SyncBB, except that the cost of the
CPA is not passed with that message. Therefore, in line 7 Ak sets the flag ComputedCPA
to false; this flag indicates whether an agent has already computed the cost of the CPA

630

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

Algorithm 2 – P-SyncBB (executed by agent Ak) – second part

procedure assign CPA
24: choose next value v in order from Dk

25: if no value exists do
26: backtrack()
27: else if k = n do
28: Xk ← v
29: send(CHECK SOLUTION MSG) to A1

30: else if k < 4 do
31: Xk ← v
32: send(CPA MSG,CPA) to Ak+1

33: else
34: if ComputedCPA = false do
35: invoke Protocol 4 to securely compute CPA.cost (i.e.,

∑k−1
i=2 xi)

36: ComputedCPA← true
37: ShouldBacktrack ← invoke Protocol 5 to securely check whether CPA.cost+ xk ≥ B
38: if ShouldBacktrack = true do
39: backtrack()
40: else
41: Xk ← v
42: send(CPA MSG,CPA) to Ak+1

procedure backtrack
43: if k = 1 do
44: for all 1 ≤ j ≤ n do
45: CA(j) = CA(j) · Ej(0)
46: send(ASSIGNMENT IN SOLUTION MSG,CA(j)) to Aj

47: else
48: remove Xk from CPA
49: send(BACKTRACK MSG) to Ak−1

when received (ASSIGNMENT IN SOLUTION MSG,y) do
50: Xk ← E−1

k (y)
51: Terminate

that was received from his preceding agent. After that, the agent runs the assign CPA
procedure (line 8).

The assign CPA procedure begins with the agent choosing the next value from the
pre-ordered domain (line 24). In case no more values remain, the agent backtracks (lines
25-26). Any agent which is not the last one (An) skips to line 30. We will relate to
agent An (lines 27-29) later. If k < 4 then we do not perform pruning; hence, in that
case Ak just assigns to his variable Xk the next value v from his domain Dk and then
sends a CPA MSG to the succeeding agent (lines 30-32). Otherwise (k ≥ 4), Ak proceeds
as follows: if the ComputedCPA flag is false, Ak invokes a secure computation of the
CPA’s cost, i.e.,

∑k−1
i=2 xi, where xi are as in Eq. (1); namely, xi =

∑i−1
j=1Cj,i(aj , ai) is

the sum of costs of binary constraints that relate to agent Ai and his preceding agents in
the order. After completing this, the agent sets the flag to true (lines 34-36). The secure
computation in line 35 is performed by invoking Protocol 4 (Section 4.1). The outcome

631

Grinshpoun & Tassa

of this computation is that Ak holds one additive share of the CPA’s cost, while A1 holds
another share. Each of those shares is completely random and thus reveals no information
on the CPA’s cost. Hence, the actual cost is never disclosed to any single agent. A detailed
description of how this is achieved is given in Section 4.1. (We start pruning only when
k ≥ 4 since Protocol 4 is relevant only for such values of k.)

Note that the usage of the ComputedCPA flag ensures that the cost of any given CPA
(i.e., the sum of constraints incurred by assignments to X1, . . . , Xk−1) is computed only
once (Protocol 4). Whenever Ak changes his assignment to Xk, only Protocol 5 is invoked,
in order to compare the cost of the augmented CPA (involving X1, . . . , Xk−1, Xk) to the
current upper bound. Moreover, as Ak knows in advance xk for each value in Dk, then if
two consecutive values from Dk add the same cost xk, the pruning check may be avoided.
(This is discarded from the pseudo-code for clarity reasons.)

At this stage, the agent reaches a pruning decision point. In the original SyncBB, this
means checking whether the cost of the CPA combined with Ak’s added cost xk is greater
than or equal to the upper bound. In P-SyncBB, this check is performed withoutAk knowing
neither the cost of the CPA nor the upper bound. This is achieved by invoking Protocol 5
(Section 4.2) in line 37. In case the output of Protocol 5 is true, the agent backtracks
(lines 38-39). Otherwise, he assigns his variable in the CPA and sends a CPA MSG to
the subsequent agent (lines 41-42).

The backtrack procedure is exactly as in SyncBB for agents Ak, k > 1 (lines 47-49).
However, for A1 it requires a special termination procedure (lines 43-46), since a backtrack
for A1 means that the exhaustive search has finished and it is now necessary to inform each
of the agents of their assignment in the optimal solution that was found. We defer the
description of this special treatment to a later stage, as it depends on ingredients of the
algorithm that are yet to be discussed.

Now, we return to the case of the last agent An (lines 27-29). In this case, the CPA is
a full assignment, so a CHECK SOLUTION MSG is sent to agent A1. When agent A1

receives the CHECK SOLUTION MSG, he invokes Protocol 3 (Section 4.1) with k = n
in order to obtain the cost of the candidate solution (line 11). The cost of the CPA equals
the sum of the private values xk, k ≥ 2, as defined in Eq. (1), where xk is known only to
Ak. (Note that the fact that A1 computes the sum of private inputs which are held by other
agents demonstrates the information separation in the protocol.) In case the cost of the new
solution, Cost, is lower than the existing upper bound, B, the new upper bound is updated
(line 13). In addition, A1 sets a flag CurrentlyBest to indicate whether the current full
assignment is the best one that was found so far or not (lines 14 and 16). Finally, A1 sends
to all agents the message REQUEST CURRENT ASSIGNMENT MSG.

When receiving the REQUEST CURRENT ASSIGNMENT MSG message, each
agent encrypts his current assignment with his own Paillier public key (line 18), and sends it
with the message CURRENT ASSIGNMENT MSG back to A1 (line 19). In the case
of the last agent An, he also backtracks in order to proceed with the search (lines 20-21).

When A1 receives the message CURRENT ASSIGNMENT MSG from an agent
Aj , he stores the received value in the jth entry of a special array CA, but only if the
current full assignment is the best one that was found so far, and thus has the potential
of becoming, eventually, the sought-after optimal solution (lines 22-23). Otherwise (if the
flag CurrentlyBest is false), A1 ignores those messages. Note that A1 cannot decrypt

632

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

CA(j), as it is encrypted under Ej , an encryption that only Aj can decrypt. He stores those
messages only to be used at the end of the search, as we describe below. We also note that
since Ej are probabilistic encryption functions, A1 cannot even identify equalities between
the assignment values in different CURRENT ASSIGNMENT MSG messages that
are received from the same agent Aj during the algorithm.

We now return to the description of lines 43-46 in the backtrack procedure. A1 keeps
the array CA so that at the completion of the search he can forward to Aj , 1 ≤ j ≤ n, the
value CA(j) which holds an encryption under Ej of Aj ’s assignment in the optimal solution
that was found. Consequently, Aj can decrypt it and find the sought-after assignment for
his variable. If A1 had sent to Aj the value CA(j) as it was originally received from Aj ,
then Aj would have been able to recognize the stage in the search in which he generated
that encrypted value, and thus infer the assignments of all preceding agents in the optimal
solution. Indeed, such an identification is possible since Ej is a probabilistic encryption
function and, hence, every encrypted value will appear, with almost certainty, only once
in the course of the algorithm. In order to prevent Aj from making such inferences, and
relying on the fact that Ej is public-key and homomorphic, A1 multiplies CA(j) with a
fresh random encryption of 0 (line 45). Such an operation alters the ciphertext, but does
not alter the underlying plaintext since, owing to homomorphism, E−1

j (Ej(x) · Ej(0)) = x.
Then, A1 sends to each agent Aj the message ASSIGNMENT IN SOLUTION MSG
with the modified value CA(j), 1 ≤ j ≤ n (line 46). Aj , upon receiving that message,
decrypts it, assigns the resulting plaintext to his variable Xj , and then terminates (lines
50-51).

It is important to note that A1 requests the current assignments from all agents whenever
a full assignment is tested, regardless of the result of the inequality testing in line 12, in
order to prevent from Aj , j > 1, learning about PAs that could be part of the optimal
solution. Indeed, if A1 had requested the current assignments only when CurrentlyBest
is true (since he ignores the messages with current assignments otherwise, see line 22),
then every agent Aj could have created a list of all PAs (a1, . . . , aj−1, aj) that were the
CPAs when A1 sent to him a REQUEST CURRENT ASSIGNMENT MSG message.
Then, at the end of P-SyncBB, if Aj learns that the assignment to his variable Xj in the
optimal solution is say aoj , he would have been able to infer that the assignment vector to
X1, . . . , Xj−1 in that optimal solution is one of the vectors (a1, . . . , aj−1) that appears in
his list together with aoj as the Jth component. By enforcing a less efficient approach and
have A1 send REQUEST CURRENT ASSIGNMENT MSG messages even when he
knows upfront that they are useless, we limit the ability of agents Aj , j > 1, to make such
undesirable inferences.

Theorem 1 P-SyncBB is sound and complete.

Proof. The soundness of P-SyncBB depends on the correctness of selecting a new best
solution. The relevant full assignment is verified by agent A1 to have a cost lower than
that of the existing best solution. To do that, A1 invokes a secure computation of the new
upper bound (CHECK SOLUTION MSG, line 11). Since the algorithm is completely
sequential, all agents Ak have the correct assignments in their local versions of the CPA, so
they participate in Protocol 3 with correct xk values. Finally, the correctness of the Cost
computation is ensured by the correctness of Protocol 3 (see Section 4.1).

633

Grinshpoun & Tassa

The completeness of P-SyncBB follows from the exhaustive search structure. Only
partial assignments whose cost reach the upper bound are not extended and therefore it is
guaranteed that the algorithm finds an optimal solution. Termination also follows from the
exhaustive structure of the Branch-and-Bound algorithm in which no partial assignment
can be explored twice. 2

4. Secure Protocols and Privacy Analysis

In this section we present the secure protocols that are invoked by P-SyncBB, Algorithm 2.
As discussed in Section 2.1, Ci,j(ai, aj) ≤ q∞ for all 1 ≤ i < j ≤ n and ai ∈ Di, aj ∈ Dj ,
where q∞ is a publicly known upper bound on the costs of all constraints (hard and soft).
Hence, Q :=

(
n
2

)
q∞ is a publicly known upper bound on the cost of any partial or full

assignment. Since q∞ = 1 +
(
n
2

)
q, where q is the upper bound on the cost of all soft

constraints, we have

Q = q

(
n

2

)2

+

(
n

2

)
. (2)

In Section 4.1 we discuss the secure summation protocols that are invoked in
(CHECK SOLUTION MSG, line 11) and (assign CPA, line 35) of P-SyncBB, and
we analyze their privacy. Our main cryptographic contribution is given in Section 4.2:
we begin by describing our secure comparison protocol that is invoked in (assign CPA,
line 37) (Section 4.2.1); in Section 4.2.2 we analyze its privacy; and then in Section 4.2.3
we discuss efficient implementations of two steps in that protocol. Finally, we analyze the
overall privacy preservation in P-SyncBB (Section 4.3), and shortly discuss runtime attacks
(Section 4.4) and colluding agents (Section 4.5).

4.1 Secure Summation Protocols

The computational problem in (CHECK SOLUTION MSG, line 11) of P-SyncBB is
the classical problem of secure summation of private integers. It can be solved by a slight
modification of Benaloh’s (1986) protocol, which is described in Protocol 3. Here, S denotes
an arbitrary and publicly known integer which is much larger than Q (the upper bound on
the inputs and their sum).

Protocol 3 – Secure summation of private inputs

Input: Q,S ∈ Z+ such that S � Q;
Agent Ai, 2 ≤ i ≤ k, has an integer xi ∈ [0, Q], such that x :=

∑k
i=2 xi ≤ Q.

Output: A1 gets x.

1: Each Ai, 2 ≤ i ≤ k, selects xi,j ∈ ZS := [0, S − 1], 2 ≤ j ≤ k, randomly and uniformly

such that
∑k

j=2 xi,j = xi mod S.
2: Ai sends xi,j to Aj , for all 2 ≤ i 6= j ≤ k.

3: Aj computes sj :=
∑k

i=2 xi,j mod S, for all 2 ≤ j ≤ k.
4: Agents A2, . . . , Ak send s2, . . . , sk to A1.
5: A1 computes x← s2 + · · ·+ sk mod S.

634

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

Theorem 2 Protocol 3 is perfectly secure: none of the agents A2, . . . , Ak learns any infor-
mation about the inputs of his peers or the overall sum x, while A1 learns no information
on the inputs of the other agents beyond what is implied by the overall sum x.

Proof. The perfect security of the protocol is a direct consequence of the fact that
each agent Ai, 2 ≤ i ≤ k, breaks up his private input xi to modular additive shares
xi,j ∈ ZS , 2 ≤ j ≤ k, which are chosen independently and uniformly at random. Specifically,
each of the agents Ai chooses k − 2 independent and uniformly random values xi,j ∈ ZS ,

2 ≤ j ≤ k − 1, and then sets xi,k = xi −
∑k−1

j=2 xi,j , where all arithmetic operations are
modulo S. It follows that the last share, xi,k, just like the other shares xi,j , 2 ≤ j ≤ k−1, is

also uniformly distributed on ZS . Consequently, also each sj =
∑k

i=2 xi,j mod S, 2 ≤ j ≤ k,
is uniformly distributed on ZS , since the addends in the sum that defines sj are independent
of each other. Hence, none of the shares sj in the sum x reveals any information about
either the private inputs xi or the sum x. Therefore, none of the agents A2, . . . , Ak learns
any information about the inputs of his peers, or about the overall sum x. As for A1, he
learns the value of x, but no information on the private inputs x2, . . . , xk, since any possible
tuple of values (x2, . . . , xk) is equally probable given the shares s2, . . . , sk due to the fact
that the latter distribute uniformly on ZS regardless of the private inputs. 2

Next, we discuss the secure implementation of (assign CPA, line 35) in P-SyncBB.
Here, it is needed to compute the cost of the CPA that is incurred by the assignments
a1, . . . , ak−1 of all preceding agents. That cost equals x :=

∑k−1
i=2 xi, where

xi =
∑i−1

j=1Cj,i(aj , ai) is a value that is known to Ai. While the summation in (CHECK
SOLUTION MSG, line 11) computes the cost of a full assignment, and the sum is re-
vealed only to agent A1 who does not know the actual assignments, the summation in
(assign CPA, line 35), which occurs more frequently than the previous summation, needs
to be executed for partial assignments. Revealing the resulting sum to any of the agents,
even to agent A1 who is not aware of the actual assignments, might be hazardous since it
may be used to infer information on the private inputs of other agents. Hence, instead of
letting a single agent reveal the sum x =

∑k−1
i=2 xi, Protocol 4 ends with agents A1 and Ak

sharing that sum.

Protocol 4 – Computing additive shares in the sum of private inputs

Input: Q,S ∈ Z+ such that S � Q;
Agent Ai, 2 ≤ i ≤ k − 1 (where k ≥ 4), has an integer xi ∈ [0, Q], such that
x :=

∑k−1
i=2 xi ≤ Q.

Output: A1 gets a random s2 ∈ ZS and Ak gets sk ∈ ZS so that s2 + sk = x mod S.

1: Agents A2, . . . , Ak−1 perform Steps 1-3 of Protocol 3 for x2, . . . , xk−1.
2: Agents A3, . . . , Ak−1 send s3, . . . , sk−1 to Ak.
3: Ak computes sk ← s3 + · · ·+ sk−1 mod S.
4: A2 sends s2 to A1.

Protocol 4 starts by implementing the first three steps of Protocol 3 (Step 1). Then,
agents A3, . . . , Ak−1 send their shares to Ak who adds them up to get sk (Steps 2-3), while
agent A2 sends his share to A1 (Step 4). Consequently, the two agents A1 and Ak hold two

635

Grinshpoun & Tassa

values s2 and sk that are random modular shares in the sum x. Namely, each of those values
distributes uniformly at random over ZS (as a result of the uniform selection of shares xi,j
in Step 1 of Protocol 3) and s2 + sk = x mod S.

A note on the assumption k ≥ 4: Protocol 4 is executed by a prefix-subsequence of
agents, A1, A2, . . . , Ak−1, Ak. The k−2 agents A2, . . . , Ak−1 hold private inputs; the protocol
computes shares in the sum of those private inputs, which are then given to A1 and Ak.
This problem definition is relevant only for k ≥ 3. However, the case k = 3 requires a
different treatment since then there is no need to invoke Protocol 3 for a summation of just
one element (x2). Hence, for the sake of simplicity, Protocol 4 is invoked only when k ≥ 4.

Corollary 3 Protocol 4 is perfectly secure in the sense that none of the agents A1, . . . , Ak
learns any information about the inputs of his peers or the overall sum x.

Corollary 3 follows directly from Theorem 2 and its proof since Protocol 4, which is a
small variant of Protocol 3, reveals to no single agent all of the shares in the sum (as done
in Protocol 3 with A1).

4.2 A Secure Comparison Protocol

The main computational problem occurs in (assign CPA, line 37) of P-SyncBB. There,
agent Ak needs to check whether CPA.cost+xk ≥ B where: (i) CPA.cost is the cost of the
CPA which is incurred by the assignments a1, . . . , ak−1 of all preceding agents, (ii) xk is the
cost that agent Ak’s assignment adds (see Eq. (1)), and (iii) B is the current upper bound.
We recall that, as a result of executing Protocol 4 in (assign CPA, line 35), CPA.cost
is shared by A1 and Ak that hold two modular additive shares in it, denoted s2 and sk
respectively. The value of xk is known only to Ak while B is known only to A1.

4.2.1 The Basic Protocol

Protocol 5 solves the above described computational problem. In Step 1, Ak adds xk to
his share sk in CPA.cost. As a consequence, s2 and sk (which are held by A1 and Ak
respectively) are two modular shares in the augmented sum x :=

∑k
i=2 xi that equals the

cost of the CPA due to the assignments a1, . . . , ak to X1, . . . , Xk. If we view those shares as
integers from [0, S−1], then either s2 +sk = x (Case 1) or s2 +sk = S+x (Case 2). Next,
Ak sends to A1 the value sk + r, where r is selected uniformly at random from [0, S−Q−1]
(Steps 2-3). A1 then computes the difference y = s2 + sk + r − B (Step 4). (The purpose
of adding the random mask r is to prevent A1 from inferring the difference δ := x−B.)

Our goal now is to check whether δ is negative or not. In Case 1 y = δ + r while in
Case 2 y = δ + r + S. Since x,B ∈ [0, Q] then δ ∈ [−Q,Q]. Hence, in Case 1 y − r ≤ Q
while in Case 2 we have y − r ≥ S −Q (where S −Q� Q). Therefore, in order to check
in which of the two cases we are, Ak and A1 perform a secure protocol to check whether
y ≥ S −Q+ r (Step 5): since y is known only to A1 while S −Q+ r is known only to Ak,
this is an instance of the well-known Yao’s millionaires’ problem (see Section 2.2), which
can be solved by one of many available protocols for its solution (Yao, 1982; Fischlin, 2001;
Ioannidis & Grama, 2003; Blake & Kolesnikov, 2004). If that inequality does not hold then
we are in Case 1 and y = δ + r. If, however, it does hold, then we are in Case 2 and
y = δ + r + S. In the latter case, Ak sets r ← r + S. Hence, at the completion of Step 5,

636

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

we have y = δ + r. It is important to note that only Ak needs to learn the answer to the
inequality verification; A1 learns no information about whether y ≥ S −Q+ r or not.

Next, the two agents check whether y ≥ r or not. This is again an instance of the
millionaires’ problem, since y is known only to A1 and r is known only to Ak. Since
x−B = δ = y−r then y ≥ r if and only if x ≥ B. Hence, Ak may learn from the inequality
verification whether x ≥ B or not (Step 6).

Protocol 5 – Comparing a shared sum against an unknown bound

Input: Q,S ∈ Z+ such that S � Q;
Agent A1 has s2 ∈ ZS and B ∈ [0, Q];
Agent Ak has sk ∈ ZS and xk ∈ [0, Q].
Output: Letting x := (s2 + sk + xk) modS, Ak learns whether x ≥ B.

1: Ak sets sk ← sk + xk mod S.
2: Ak generates uniformly at random an integer r ∈ [0, S −Q− 1].
3: Ak sends sk + r to A1.
4: A1 computes y = s2 + sk + r −B.
5: Ak and A1 check securely whether y ≥ S −Q+ r. If so, Ak updates r ← r + S.
6: Ak and A1 check securely whether y ≥ r. Ak infers that x ≥ B if and only if y ≥ r.

4.2.2 Privacy Analysis of Protocol 5

Protocol 5 is “almost” perfectly secure, as we prove in Theorem 5. But first, we prove the
following general purpose lemma.

Lemma 4 Let:

• X be a random variable that takes values in the domain [WX] := {0, 1, 2, . . . ,WX}.

• Y be a random variable that distributes uniformly on [WY] := {0, 1, 2, . . . ,WY }, where
WY ≥WX .

• Z = X + Y .

Then in probability 1 − WX
WY +1 , the value of Z reveals no information on the value of X.

Furthermore, in probability WX
WY +1 , the value of Z reveals either an upper or a lower bound

on X, but nothing beyond that.

Proof. The random variable Z takes values in the interval [0,WX +WY]. That interval
can be partitioned into three disjoint intervals: I1 = [0,WX − 1], I2 = [WX ,WY] and
I3 = [WY + 1,WX +WY]. Denoting the value that Z attains by z, there are three cases to
consider:

• z ∈ I1: This can happen if X = x and Y = z−x for any of the values 0 ≤ x ≤ z. The
probability of such an event is therefore

Pr(Z = z) =

z∑
x=0

Pr(X = x) · Pr(Y = z − x) =
1

WY + 1
·

z∑
x=0

Pr(X = x) , (3)

637

Grinshpoun & Tassa

where the latter equality follows from the uniform distribution of Y .

• z ∈ I3: This can happen if X = x and Y = z − x for any of the values z −WY ≤ x ≤
WX . The probability of such an event is

Pr(Z = z) =

WX∑
x=z−WY

Pr(X = x) ·Pr(Y = z−x) =
1

WY + 1
·

WX∑
x=z−WY

Pr(X = x) . (4)

• z ∈ I2: This can happen if X = x and Y = z − x for any of the values 0 ≤ x ≤ WX .
The probability of such an event is

Pr(Z = z) =

WX∑
x=0

Pr(X = x) · Pr(Y = z − x) =
1

WY + 1
·
WX∑
x=0

Pr(X = x) =
1

WY + 1
.

(5)

We will now prove that if z ∈ I2 then z reveals no information on x. By Bayes Theorem,

Pr(X = x|Z = z) =
Pr(Z = z|X = x) · Pr(X = x)

Pr(Z = z)
, 0 ≤ x ≤WX . (6)

Since Pr(Z = z|X = x) = Pr(Y = z − x) and Y distributes uniformly on [0,WY], we infer
that

Pr(Z = z|X = x) =
1

WY + 1
(7)

in this case. (Note that in this case z−x always falls in the range [0,WY].) Hence, by Eqs.
(6), (5) and (7),

Pr(X = x|Z = z) =

1
WY +1 · Pr(X = x)

1
WY +1

= Pr(X = x) ,

whence the a-posteriori information that z reveals on x is just like the a-priori knowledge
we had on x. In view of Eq. (5), the probability of z ∈ I2 is

WY∑
z=WX

Pr(z) =
WY −WX + 1

WY + 1
= 1− WX

WY + 1
.

That concludes the proof of the first claim in the lemma.
If z ∈ I1 then the value of z reveals a non-trivial upper bound on x (since then x ≤ z

where z ≤ WX − 1), while if z ∈ I3 it reveals a non-trivial lower bound on x (since then
x ≥ z −WY where z ≥WY + 1). The probability of the union of those two cases is WX

WY +1 .
In either of those cases, nothing is revealed beyond the upper or lower bound. Indeed, if
z ∈ I1 we have, by Eqs. (6) and (3),

Pr(X = x|Z = z) =
Pr(Z = z|X = x) · Pr(X = x)

Pr(Z = z)
=

=

1
WY +1 · Pr(X = x)

1
WY +1 ·

∑z
ξ=0 Pr(X = ξ)

=
Pr(X = x)∑z
ξ=0 Pr(X = ξ)

.

638

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

Therefore, the a-posteriori distribution Pr(X|Z = z) coincides with the a-priori one, after
removing the values of X beyond the upper bound which z implies and re-scaling. Similarly
if z ∈ I3. That concludes the proof of the second claim in the lemma. 2

Theorem 5 At the end of Protocol 5 agent A1 may learn a non-trivial lower or upper
bound on x, but nothing beyond that, in probability Q

S−Q , or nothing at all, in probability

1− Q
S−Q . As for agent Ak, he may learn either a lower bound on x, in probability x/S, or

an upper bound, in probability (Q− x)/S, or nothing at all, in probability 1− Q
S .

Proof. A1 learns the value y + B = s2 + sk + r (Step 4). If y + B < S he infers that
it is Case 1 and therefore y + B = x + r; otherwise he infers that it is Case 2, whence
y +B − S = x+ r. In any case, he learns the value x+ r := z. Since x takes values in the
range [Q] = {0, 1, . . . , Q} while r is chosen uniformly at random from [S −Q− 1], the first
claim in the theorem follows directly from Lemma 4. Next, we turn to discuss Ak.

Ak learns in Step 5 of Protocol 5 whether Case 1 holds (s2 + sk = x) or Case 2 does
(s2 + sk = S + x). In Case 1, Ak infers that x ≥ sk. That lower bound is non-trivial
only when sk > 0, namely, when sk ∈ {1, . . . , x}. Since sk distributes uniformly at random
over ZS (as we explain below), Ak may learn a non-trivial lower bound on x in probability
|{1, . . . , x}|/|ZS | = x/S. (Prior to Step 1 in Protocol 5 sk distributes uniformly at random
over ZS since at that point it is the sum of random ZS-shares. Hence, even after adding to
sk the value of xk it remains uniformly distributed over ZS .)

In Case 2, on the other hand, both shares s2 and sk must be strictly greater than x.
Indeed, if one of the shares, say s2, would have been less than or equal to x, then also the
other share, sk = x − s2, would have been less than or equal to x, and that is Case 1.
Hence, in Case 2 x < sk. Only when sk ≤ Q, that upper bound is non-trivial. Therefore,
Ak learns a non-trivial upper bound on x if and only if x < sk ≤ Q, namely, in probability
(Q− x)/S.

To summarize, Ak learns some information on x if and only if 1 ≤ sk ≤ Q. He learns
nothing on x when sk = 0 or when sk > Q. Since sk distributes uniformly in ZS , Ak learns
no information at all in probability 1− Q

S . 2

Few comments are in order here:

1. Theorem 5 implies that the only potential leakages of information are to only two
agents – A1 and Ak.

2. Those potential leakages of information are only with respect to x =
∑k

i=2 xi (but not
with respect to xi), and only in the form of a lower or an upper bound.

3. Even though A1 plays a pivotal role in P-SyncBB, as he keeps the upper bound B, he
does not know any of the assignments to the variables that are controlled by the other
agents. Namely, even though A1 may learn (in negligible probability) lower bounds
on the CPA’s cost x, he does not know what are the assignments to X2, . . . , Xk that
determine that x.

4. Most importantly, the probability of those potential leakages ever to occur can be
made negligible by using a sufficiently large S, as stated in Lemma 6 below. Increas-
ing S does not pose a practical barrier since it has a modest toll in terms of both
communication and computational costs, as we show in Section 5.1.

639

Grinshpoun & Tassa

Lemma 6 Let ε > 0 be an arbitrarily small number and let w be an upper bound on the
number of invocations of Protocol 5 in the course of P-SyncBB. Then if S > (nw + ε)Q/ε,
it is guaranteed that none of the agents will learn in the course of P-SyncBB even a single
lower or upper bound on the cost of any partial assignment, in probability at least 1− ε.

Proof. By Theorem 5, in any single invocation of Protocol 5, the probability of each
agent not learning anything is at least 1− Q

S−Q . Hence, for any single agent, if he participates
in w invocations of Protocol 5, the probability that he learns nothing at all in all of those
invocations of the protocol is greater than 1− wQ

S−Q . Hence, the probability that none of the

n agents learns anything throughout the execution of P-SyncBB is greater than 1 − nwQ
S−Q .

It is now easy to verify that if S > (nw+ ε)Q/ε, then the latter probability is greater than
1− ε. 2

For example, assume a setting with n = 100 agents, where each of the soft binary
constraints has a cost that is bounded by q = 100. Then, by Eq. (2), Q ≈ 2.5 ·109. Assume
further a generous bound w = 108 on the number of invocations of Protocol 5. Then in
order to get a certainty of zero information leakage from this protocol in probability at least
1−ε with ε = 10−50, we should take S ≈ 2.5 ·1069. As our analysis in Section 5.1 shows that
the communication and computational costs depend only on `S := dlogSe, such a value of
S poses no practical burden (apart from the need to use multiple-precision integers in the
implementation).

4.2.3 Solving the Millionaires’ Problem

In Steps 5 and 6 of Protocol 5, agents A1 and Ak need to resolve two instances of the
millionaires’ problem. In each of those steps they need to compare two private values
without disclosing to each other the difference between the two compared values. They
may resolve these millionaires’ problems by applying Yao’s garbled circuit protocol (Yao,
1982) or any one of the many protocols that appeared later (Fischlin, 2001; Ioannidis
& Grama, 2003; Blake & Kolesnikov, 2004). However, each of those protocols invokes
costly sub-protocols for oblivious transfer (Even et al., 1985), or public-key encryption and
decryption. We therefore suggest here simpler solutions that rely on a third party, T . That
third party can be A2 (since Protocols 4 and 5 are relevant only for k ≥ 4). The third
party is non-trusted in the sense that he too must not learn the difference between the two
compared values.

The solution that we describe in each step is different.

The millionaires’ problem in Step 5. Here, A1 holds the private value y while Ak
holds the private value r. The goal is to distinguish between two possible cases. Viewing
y and r as integers (and not as residues modulo S), then, as discussed earlier, in Case 1
y ≤ Q + r, while in Case 2 y ≥ S − Q + r. If A1 and Ak had sent to T the two values
y and r, then T would have been able to distinguish between the two cases (that’s good)
but then he would be able to subsequently infer the value of δ, as δ = y− r in Case 1 and
δ = y − r − S in Case 2 (that’s bad). In order to allow T to distinguish between the two
cases, but disable him from inferring the value of δ, we suggest to implement the following
sub-protocol, [MP-Step5], which we describe informally.

640

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

Sub-protocol [MP-Step5]. Ak will choose uniformly at random an integer γ ∈ [Q+1, S−Q].
Then, A1 will send y to T while Ak will send z := γ + r to T . T will check if y ≥ z. If
y ≥ z then y ≥ γ + r ≥ Q + 1 + r, whence Case 1 cannot hold and then this is Case 2.
If, on the other hand, y < z, then y < γ + r ≤ S −Q+ r, whence Case 2 cannot hold and
then this is Case 1. Therefore, the information that A1 and Ak send to T (namely, y and
z) can enable T to distinguish between the two cases.

It remains to analyze what the third party T may learn on δ from the information it
gathers in sub-protocol [MP-Step5].

Theorem 7 At the end of sub-protocol [MP-Step5], the third party T may learn a non-
trivial lower or upper bound on δ, but nothing beyond that, in probability 2Q

S−2Q , or nothing

at all, in probability 1− 2Q
S−2Q .

Proof. The difference y− z equals δ− γ in Case 1 and δ− γ+S in Case 2. Therefore,
in either case, T may learn the value of δ−γ, where δ is an unknown integer in [−Q,Q] and
γ is uniformly distributed on the large interval [Q+ 1, S −Q]. Introducing δ′ := Q− δ and
γ′ := γ−Q− 1, we see that δ′ takes values in [2Q] = {0, 1, 2, . . . , 2Q} and γ′ takes values in
[0, S−2Q−1]. Furthermore, δ′+γ′ = −(δ−γ)−1. Hence, T learns the value of δ′+γ′. The
claims of the theorem now follow from Lemma 4 (with WX = 2Q and WY = S − 2Q− 1).
2

The millionaires’ problem in Step 6. In Step 6, y = δ + r where δ is an integer in the
range [−Q,Q]. A1 and Ak need to check whether y ≥ r in order to decide whether δ ≥ 0
or not. Here, we cannot apply the same simple strategy as we did in Step 5. What enabled
the above described solution for Step 5 was the fact that the two cases that needed to be
identified were separated by a large gap (the difference y − r was either smaller than Q or
larger than S−Q, a value which is much larger than Q). Here, there is no such gap, since if
δ = −1 the inequality verification should end with a negative result while if δ = 0 it should
end with a positive result. Therefore, a totally different strategy should be taken here.

We suggest to use a method that was presented by Tassa and Bonchi (2014). One of
the basic secure multi-party problems that was considered there was the following. Assume
that two parties, P1 and P2, are holding two private integers, a1 and a2. They wish to
allow a third party, T , to learn the quotient a1/a2 without learning the values of a1 and
a2. Protocol 3 there suggests that P1 and P2 choose a random real number ρ and then
they send to T the values ρa1 and ρa2. T can then divide those two numbers in order
to recover the correct fraction a1/a2. However, he cannot learn the values of a1 and a2,
as they were masked by the random multiplier ρ that T does not know. The main effort
in the analysis (Tassa & Bonchi, 2014, Section 4.2) is dedicated to the manner in which
the random multiplier ρ should be selected in order to minimize the information that ρai
leaks on ai, i = 1, 2. Specifically, it is shown there that if one generates a random real
number M ∼ Z, where Z is the distribution on [1,∞) with probability density function
fZ(µ) = µ−2, and then one proceeds to select r randomly and uniformly from the interval
(0,M), then the masked product rai which T receives reveals to him very little information
on ai. More specifically, even if T has an a-priori belief probability on the value of ai, the
received value of rai might enable T to draw a different a-posteriori belief probability on

641

Grinshpoun & Tassa

the value of ai, but that a-posteriori belief probability does not enable T to draw better
estimates on the original value of ai. This is shown by a detailed analysis (Tassa & Bonchi,
2014, Section 4.2) and then by experimental evaluation (Tassa & Bonchi, 2014, Section 7.2).

Our problem here is different, but it can be solved by applying the same idea. A1 and Ak
will choose a random multiplier ρ according to the distribution that was described above.
In addition, Ak will choose uniformly at random a real number θ ∈ (0, 1). Then, A1 will
send to T the product ρy while Ak will send to T the value ρ · (r−θ). Then, T will compare
the two obtained values. It is easy to see that ρy ≥ ρ ·(r−θ) if and only if δ+θ ≥ 0, namely,
if and only if δ ≥ 0. Furthermore, even though T may compute the difference between the
two values, which equals ρ · (δ + θ), then as shown by Tassa and Bonchi (2014), the usage
of the random multiplier ρ prevents T from learning the value of δ.

We introduce here the random shift θ for the following reason. In the application that
was discussed by Tassa and Bonchi (2014) the values a1 = 0 or a2 = 0 were not private (as
the final quotient a1/a2 reveals those values); therefore, it was sufficient there to multiply
ai by the random ρ, even though T may infer that if ρai = 0 then also ai = 0. In our
application, on the other hand, we consider the value δ = 0 also private. Hence, in order to
prevent it from being disclosed, we use the random shift θ.

4.3 Overall Privacy Analysis of Algorithm P-SyncBB

In the preceding sections we analyzed the privacy of each of the secure protocols that
P-SyncBB invokes; these are the only places in P-SyncBB in which the agents exchange
information that relates to their private inputs. Here we take a global look at P-SyncBB:

(1) In (CHECK SOLUTION MSG, line 11) P-SyncBB invokes Protocol 3. As shown
in Theorem 2, Protocol 3 is perfectly secure except that it reveals to A1 the solution’s cost.
However, as A1 is not aware of the assignments to any of the variables apart from his,
such leakage of information cannot be used to infer anything on private constraints of other
agents.

(2) In (assign CPA, line 35) P-SyncBB invokes Protocol 4. As shown in Corollary 3,
that protocol reveals no private information to any of the interacting agents.

(3) In (assign CPA, line 37) P-SyncBB invokes Protocol 5. As shown in Theorem 5,
after executing that protocol agent A1 may learn a non-trivial lower or upper bound on
the cost of the CPA, but nothing beyond that, in probability Q

S−Q . Protocol 5 may also
reveal to Ak non-trivial bounds on the cost of the CPA (Theorem 5). However, as shown
in Lemma 6, by choosing a sufficiently large S, it is possible to ensure that the probability
of any information leakage from Protocol 5 to any of the parties is made arbitrarily small.

So to summarize, A1 is the single agent that gets the cost of full assignments, but as
he remains oblivious of the assignments that determine those costs, he is unable to extract
information on unknown constraint costs. Agents Ak, 2 ≤ k ≤ n, on the other hand, cannot
extract information on the costs of CPAs, or on the current upper bound. Therefore, thanks
to this carefully designed separation of information, P-SyncBB maintains constraint privacy.

We note that the achieved constraint privacy is not perfect because of inherent informa-
tion leakage due to pruning. Specifically, since each of the agents Ak, 5 ≤ k ≤ n, receives
from its predecessor only CPAs that have a cost that is no larger than the current upper
bound, Ak may infer that the cost of any CPA that he did not receive is higher than the

642

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

cost of the last CPA that he did receive. The sensitivity of such information leakage de-
pends on the underlying application. In order to resolve this issue, it would be essential
to refrain from passing the CPA to the next agent and, instead, utilize secure multi-party
protocols whenever the cost of the augmented CPA needs to be computed. We leave such
modifications of P-SyncBB to future work.

A direct consequence of preserving constraint privacy is that P-SyncBB preserves also
topology privacy. Indeed, as the communication patterns between agents during P-SyncBB
are determined solely by the static public ordering of the agents, and not by the topology,
and as it is impossible to distinguish between zero cost binary constraints (as is the case with
non-adjacent pairs of agents in the constraint graph) and positive cost binary constraints,
topology privacy is respected.

Finally, P-SyncBB also preserves decision privacy. The main cryptographic tool that
enables achieving that goal is the Paillier cryptosystem (see Section 2.4). The mechanism
by which each agent Ak stores with A1 current assignments of his variable, encrypted by Ek,
and then, at the end, A1 gives back to Ak a “scrambled” version of the encrypted assignment
of Xk in the found optimal solution, ensures that each agent gets, at the completion of P-
SyncBB, his assignment in the optimal solution, but he remains oblivious of the assignments
of his peer agents in that optimal solution.

Faltings et al. (2008) presented P-DPOP, a privacy-preserving version of DPOP (Petcu
& Faltings, 2005). P-DPOP was designed for solving DCSPs (not DCOPs) while fully
preserving agent privacy and partially preserving topology, constraint, and decision privacy.
P-DPOP had a leak in topology privacy that was later fixed by Léauté and Faltings (2013).
Apart from fixing that privacy leak, Léauté and Faltings also presented a sequence of three
privacy-preserving versions of DPOP: P-DPOP(+), P3/2-DPOP(+), and P2-DPOP(+). All
three versions preserve agent privacy and partial topology privacy. The least private and
most efficient version, P-DPOP(+), preserves constraint and decision privacy only partially,
as it may leak related information. P3/2-DPOP(+) preserves decision privacy fully but it
still respects constraint privacy only partially. The last version, P2-DPOP(+) (most private,
least efficient), preserves constraint and decision privacy fully.

It is hard to compare the constraint privacy preservation of P-DPOP(+), P3/2-DPOP(+),
and P2-DPOP(+) to that of ours, since the former algorithms are designed for DCSPs. While
they can be extended for solving DCOPs, it is beyond the scope of this study to analyze
the constraint privacy leakages of such extensions.

As for topology privacy, all variants of Léauté and Faltings (2013) respect it only par-
tially. The minor leaks of topology information lie in the fact that a variable might be able
to discover a lower bound on a neighboring variable’s degree in the constraint graph. In
view of our discussion above, such leaks of information do not happen in P-SyncBB.

As for agent privacy, the variants of Léauté and Faltings (2013) manage to maintain
it as their algorithm involves sending messages only between agents that are linked by a
constraint, and thanks to using codenames. The nature of SyncBB (and thus the inherited
nature of P-SyncBB) requires agents to send messages to agents that are not necessarily
linked to them by a constraint. Hence, P-SyncBB seems to be unsuitable for cases in which
agent privacy is of essence.

As emerges from our extensive experimental evaluation of Section 5.2, P-SyncBB appears
to be a most attractive alternative to (the DCOP-extensions of) any of the variants of Léauté

643

Grinshpoun & Tassa

and Faltings (2013), due to its superior performance in terms of runtime. Indeed, in almost
all cases P-SyncBB is more efficient even than the least privacy-preserving (and hence the
most efficient) variant, P-DPOP(+).

4.4 A Note on Runtime Attacks

Silaghi and Mitra (2004) pointed out that search-based algorithms, such as SyncBB, might
leak information to an outside observer through their overall runtime. Specifically, any
adversary, be it an outside observer or any one of the participating agents, may draw
conclusions from the overall runtime of the distributed protocol on the density of constraints,
since problems with dense constraints typically allow less pruning than problems with sparse
constraints, whence their solution typically takes more time. While this might be considered
as a downside of search-based algorithms (such as SyncBB and P-SyncBB), it must not be
a show-stopper for this class of algorithms, as we proceed to argue.

First, the running time could be easily hidden from an outside observer by applying
network security measures for preventing an outside network tap. As for any one of the
participating agents, they could use the overall runtime to draw such conclusions, but apart
from a very gross estimate of the constraint density, they could not learn anything about
specific constraints nor about which pairs of agents are constrained. Moreover, such a
general estimate of the constraint density is usually known upfront to the participating
agents and can hardly be considered as a breach of privacy.

Furthermore, if there are settings where such leakage of information may be considered
sensitive, we could enhance P-SyncBB by adding random noise to the runtime. Specifically,
each agent Ak will generate a secret parameter θk ∈ [0, 1] and then, after computing the
flag ShouldBacktrack (assign CPA, line 37), Ak will generate a bit b that equals true
in probability θk and false in probability 1 − θk. Then, the condition for backtracking
(line 38) will be replaced with (ShouldBacktrack and b). By selecting θk = 1 one recovers
the original P-SyncBB. By taking lower values of θk, a fraction of 1−θk of Ak’s backtracking
decisions will be ignored. Hence, such a mechanism further obfuscates the runtime to a level
of practically no use, at the price of increased runtime.

It is important to stress that in privacy there are no silver bullet solutions. In order to
fully resolve this potential problem of runtime leakage one could simply take θk = 0 for all
Ak, so that pruning is never done (in Section 5.2 we refer to that algorithm as P-Ex). Alas,
such an algorithm performs exhaustive search, whence it is impractical. Alternatively, one
may use one of the private versions of DPOP; here too, the downside is the exponential
communication and computational costs.

Therefore, the bottom line conclusion is that any privacy-preserving solution has its
advantages and drawbacks. None should be considered (or expected) to be a silver bullet
solution. Any privacy-preserving solution, be it in the context of DCOP solving or in any
other context, must identify its advantages and shortcomings, and then position itself on the
privacy shelf as yet another choice available for the practitioner. The practitioner should
then make his calculated choice based on the characteristics of his application, the available
resources, the perceived threats, and the consequences of a successful attack.

644

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

4.5 A Note on Colluding Agents

As stated in Section 2.2, our algorithm P-SyncBB assumes that the players do not collude.
Such an assumption is common in many studies that design secure multi-party protocols
for practical problems. The smallest coalitions that pose privacy problems in P-SyncBB
are coalitions between the pivotal agent A1 and another agent Ak, for some k ≥ 4. Such a
coalition may recover the cost of CPAs of the form (a1, . . . , ak), what may jeopardize the
privacy of the intermediate agents, A2, . . . , Ak−1. To solve this vulnerability, it is possible
to skip (assign CPA, line 35) which invokes Protocol 4, since that is the place where A1

and Ak get to hold shares in the cost of the CPA (a1, . . . , ak). By doing so, we keep the cost
of the CPA spread among all players A1, . . . , Ak. But then we would need to pay the price
in (assign CPA, line 37), since now the comparison of the CPA’s cost against B would
need to involve all agents A1, . . . , Ak. Specifically, we would need to design a new protocol
in which:

• A1’s private input is B.

• Ai’s private input is xi =
∑i−1

j=1Cj,i(aj , ai), 2 ≤ i ≤ k.

• The desired output to Ak is a bit which indicates whether
∑k

i=2 xi ≥ B or not.

The new protocol should be designed in a manner that provides immunity to coalitions of
size at most t, where t must be at least 2 in order to improve P-SyncBB’s immunity to
coalitions.

We leave this problem for future research. However, since that problem is a general-
ization of Yao’s millionaires’ problem (Yao, 1982), and already the solution of the latter
problem depends on costly oblivious transfer sub-protocols (Even et al., 1985), it is clear
that the advantage of increased privacy comes with a price of increased communication and
computational costs.

5. Evaluation

Here, we evaluate the performance of P-SyncBB. In Section 5.1 we analyze the communi-
cation and computational costs of our secure protocols and then in Section 5.2 we report
our experimental results with P-SyncBB.

5.1 Communication and Computational Costs

In this section we analyze the communication and computational costs of the secure pro-
tocols that we presented in Section 4. We begin with the secure inequality verifications in
Steps 5 and 6 of Protocol 5, as described in Section 4.2.3.

In Step 5, in the first round A1 and Ak send to T the values y and z that can be encoded
in `S = dlogSe and `S + 1 bits, respectively. In the second communication round T informs
Ak of the inequality verification result (1 bit). Hence, in total, the inequality verification
in Step 5 involves two communication rounds, and three messages with an overall size of
2`S + 2 bits.

In Step 6, in the first round A1 and Ak send to T two real values, which are generated by
multiplying `S-bit integers with a random real masking multiplier ρ. Let `f denote the size in
bits for representing such large real numbers (`f ≈ `S). In the second communication round
T informs Ak of the inequality verification result (1 bit). Hence, in total, the inequality

645

Grinshpoun & Tassa

verification in Step 6 involves two communication rounds, and three messages with an overall
size of 2`f + 1 bits.

The runtime of these two steps is analyzed as follows. Step 5 involves one random
generation (γ) followed by one addition (z = γ + r) and then one comparison of integers
(y ≥ z?). Step 6 involves three random number generations (M , ρ, θ), one addition and
floating point multiplication (ρ · (r − θ)), and one comparison of floating point numbers
(ρy ≥ ρ · (r − θ)?).

We proceed to illustrate the great advantage which is offered by our secure inequal-
ity verifications, in comparison to invocations of protocols for solving Yao’s millionaires’
problem. Consider, for example, one of the simplest protocols for that problem that was
presented by Blake and Kolesnikov (2004). That protocol, just like our sub-protocols for
secure inequality verifications in Steps 5 and 6 of Protocol 5, has a minimal number of
communication rounds – two. Its communication and computational costs depend on the
length of the two integers to be compared. In both Steps 5 and 6 we need to compare
integers of length `S bits. Hence, if we choose to implement the protocol of Blake and
Kolesnikov in either of those steps, its communication cost will be O(`S

2) (compared to
O(`S) and O(`f) of our sub-protocols). As for the runtime, it is dominated by the need
to execute `S 1-out-of-2 oblivious transfer sub-protocols. The most common way of im-
plementing 1-out-of-2 oblivious transfer involves four encryptions and two decryptions in a
commutative encryption scheme, like RSA (Rivest, Shamir, & Adleman, 1978). Namely, we
are looking at a total of 6`S modular exponentiations. By comparing the runtime needed
to perform those computations to the negligible runtime of our proposed sub-protocols, the
improvement is staggering.

Next, we analyze the costs of our Protocols 3, 4 and 5. Tables 1, 2 and 3 summarize
the communication costs of those protocols. Each row in those tables corresponds to one
round (or batch of rounds) in the related protocol, and the last row shows the total number
of communication rounds, messages, and transmitted bits for that protocol.

Table 1 relates to Protocol 3, which is invoked by P-SyncBB for k = n (in order to com-
pute the overall cost of some given solution). In the first round (Step 2) each of A2, . . . , An
sends a message of `S bits to all others. In the second round (Step 4), those n − 1 agents
send their shares to A1.

Table 1: Communication costs of Protocol 3
Rounds # messages # bits

Step 2 (n− 1)(n− 2) (n− 1)(n− 2)`S
Step 4 n− 1 (n− 1)`S
2 (n− 1)2 (n− 1)2`S

In Table 2, the first round (Step 1 in Protocol 4) corresponds to the exchange of additive
shares between the k − 2 agents A2, . . . , Ak−1 (as described in Step 2 of Protocol 3). The
second and third rounds correspond to Steps 2 and 4 in Protocol 4.

In Table 3, the first round corresponds to Step 3 in Protocol 5; here, the integer could
be as large as 2S − Q − 2, whence it requires `S + 1 bits. The next two rows in Table 3
correspond to the inequality verifications in Steps 5 and 6 of Protocol 5. As implied by our

646

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

Table 2: Communication costs of Protocol 4
Rounds # messages # bits

Step 1 (k − 2)(k − 3) (k − 2)(k − 3)`S
Step 2 k − 3 (k − 3)`S
Step 4 1 `S
3 k2 − 4k + 4 (k2 − 4k + 4)`S

earlier discussion, each such verification entails two communication rounds in which three
messages are sent with a total size of 2`S + 2 bits (Step 5) or 2`f + 1 bits (Step 6).

Table 3: Communication costs of Protocol 5
Rounds # messages # bits

Step 3 1 `S + 1
Step 5 (2) 3 2`S + 2
Step 6 (2) 3 2`f + 1

5 7 3`S + 2`f + 4

Next, we turn to discuss the runtimes of those protocols. It can be verified that the
runtime of Protocol 3 is dominated by 3k− 6 non-concurrent modular additions. Similarly,
the runtime of Protocol 4 is dominated by 3k − 10 non-concurrent modular additions. As
for Protocol 5, it entails a small constant number of random number generations, additions,
multiplications and comparisons.

5.2 Experiments

The performance of P-SyncBB is evaluated in three sets of experiments. The objective of
the first set is to compare the runtime performance of P-SyncBB to competing privacy-
preserving complete DCOP algorithms (Section 5.2.2). The purpose of the second set is to
demonstrate the overhead of privacy preservation by comparing the runtime and network
load of P-SyncBB to that of the regular (non-privacy-preserving) SyncBB (Section 5.2.3).
These two sets of experiments include two classes of benchmarks – unstructured random
DCOPs and graph coloring problems. The third set of experiments demonstrates the scal-
ability of the various algorithms on four classes of benchmarks – unstructured random
DCOPs, graph coloring problems, scale-free networks, and real-world meeting scheduling
problems (Section 5.2.4).

The first benchmark consists of unstructured randomly generated DCOPs on which
we perform two types of experiments. In the first type, relevant to the first two sets of
experiments, we fix the number of agents n (a different value of n is chosen for each set
of experiments), the domain sizes (we selected |D1| = · · · = |Dn| = n), and the maximal
constraint cost (q = 100), and vary the constraint (edge) density 0.3 ≤ p1 ≤ 0.9. Note
that using lower density values p1 < 0.3 results in unconnected constraint graphs. In the
second type, relevant to the third set of experiments, we demonstrate the scalability of the
algorithms by fixing the constraint density p1 and varying the number of agents n.

647

Grinshpoun & Tassa

The second benchmark consists of distributed 3-color graph coloring problems. In tra-
ditional graph coloring problems, where it is a-priory known that all constraints are binary
inequality constraints with unit costs, constraint privacy is irrelevant (though topology
privacy is relevant). Thus, we consider a variation of distributed 3-color graph coloring
problems in which each pair of equal values of constrained agents imposes a random and
private cost up to a maximum of q = 100. In such problems, both constraint and topology
privacy are of interest. The structure in these problems lies in the constraint matrix between
every pair of nodes; such matrices are diagonal, since a cost is paid only in the case where
the two assigned colors are the same (and then it depends on the color and on the pair of
nodes). We perform two types of experiments on this benchmark. In the first type, relevant
to the first two sets of experiments, we fix the number of agents n and vary the constraint
density 0.3 ≤ p1 ≤ 0.9. In the second type, relevant to the third set of experiments, we
demonstrate the scalability of the algorithms by fixing the constraint density (p1 = 0.4) and
varying the number of agents n (following the respective experiments of Léauté & Faltings,
2013).

The third benchmark consists of scale-free networks, which are structured networks
that are generated by the Barabási-Albert model (Barabási & Albert, 1999; Jackson, 2008).
An initial set of four agents is randomly selected and connected. At each iteration of the
Barabási-Albert procedure an agent is added and connected to two other agents with a
probability that is proportional to the number of links that the existing agents already
have. Every new agent is connected to just two existing agents in order to maintain the
basic structure of the scale-free network given the rather small network size (n ≤ 20).
Larger networks are not applicable for complete algorithms. The size of domains is set to
|D1| = · · · = |Dn| = 5. The significant parameter in these scale-free networks is the number
of agents n. Consequently, we use this benchmark for demonstrating the scalability of the
algorithms.

The fourth benchmark consists of distributed meeting scheduling problems, which are
highly structured real-world problems. We construct the problems similarly to the PEAV
(Private Events As Variables) formulation of Maheswaran et al. (2004), which is aimed for
scenarios where privacy is a concern. The PEAV formulation generates multiple-variable
agents, where each agent holds a variable for each meeting he participates in. For each
meeting, a hard equality constraint is imposed over the corresponding variables owned by
the participants of that meeting; this constraint enforces that the participants agree on the
time for the meeting. The preferences of agents are represented as the costs of intra-agent
binary constraints (Maheswaran et al., 2004). We follow the setting of Léauté and Faltings
(2013), in which the number of meetings m is varied, while the number of participants
per meeting is fixed to 2. For each meeting, participants are randomly drawn from a
common pool of 3 agents. The goal is to assign a time to each meeting among d = 8
available time slots. However, in our experiments we use different intra-agent constraints.
Léauté and Faltings addressed satisfaction problems, rather than optimization problems,
and therefore used simple allDifferent constraints as the intra-agent constraints, so as to
enforce that all meetings of an agent are scheduled at different times. Contrary to that,
we address DCOPs and are interested in problems with meaningful constraint information.
Thus, we consider two types of preferences – time preference (a cost of 0, . . . , 3 for each
time slot) and meeting importance (a cost of 5, . . . , 9 for each meeting). The cost of an

648

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

intra-agent binary constraint (representing two meetings of the same agent) incorporates
both types of preferences by averaging the time preferences of the two meetings and adding
the importance of the least important meeting in case of a collision between the meetings.
Such a collision means that the least important meeting will not take place. The treatment
of the actual existence of a meeting as a soft constraint, rather than a hard one, is not new
in DCOP research (Zivan, Okamoto, & Peled, 2014). The meeting scheduling benchmark
is appropriate for demonstrating the scalability of the algorithms, since the state space
(the Cartesian product of the domains of the decision variables) keeps increasing with the
number of meetings/decisions to be made.

All the evaluated algorithms were implemented in the AgentZero simulator (Lutati,
Gontmakher, Lando, Netzer, Meisels, & Grubshtein, 2014). The experiments were run on
a hardware comprised of an Intel i7-4600U processor and 16GB memory. The presented
results in all the subsequent figures are shown in a logarithmic scale and are the average
over 50 problem instances (for each setting/benchmark).

The runtime of DCOP algorithms is commonly measured by logical operations, such
as non-concurrent constraint checks (Zivan & Meisels, 2006). Since P-SyncBB includes
arithmetic operations that are not constraint checks, we follow the simulated time approach
of Sultanik, Lass, and Regli (2008) in all our runtime experiments. We report results below
a cutoff time of 15 minutes. Namely, if in a given problem setting the run over a sequence
of 50 problem instances did not complete in 12.5 hours, we do not report any result for
that setting (with the exception of the P-DPOP(+) results in Figure 2, which enables a
comparison over the full range of constraint densities in that experiment). A result for a
given problem setting is omitted also in cases where the experiment ran out of the allocated
8GB heap memory.

5.2.1 Evaluated Algorithms

We have implemented the P-SyncBB algorithm according to Algorithm 2. We set the
value of S (the size of the additive group ZS := [0, S − 1] in which we perform our secure
protocols, see Section 4.1) to S = 2256. Such a setting mandates the usage of multiple-
precision integers.

In order to faithfully comprehend the effectiveness of the P-SyncBB algorithm, we com-
pare its runtime to that of the recently proposed P-DPOP(+) algorithm, which is the most
efficient (and at the same time the least privacy-preserving) private version of DPOP that
was presented by Léauté and Faltings (2013).

DPOP (Petcu & Faltings, 2005) is an algorithm based on the dynamic programming
paradigm. It is actually a distributed version of the general bucket elimination scheme
proposed by Dechter (2003). DPOP has three phases. In the first phase it constructs
a pseudo-tree (Freuder & Quinn, 1985), which is a tree-like structure that allows links
(back-edges) between remote ancestors/descendants. The second phase consists of UTIL
messages that propagate utilities up the pseudo-tree. The UTIL messages start from the
leaves of the pseudo-tree and are passed only through the tree edges (not back-edges).
Cycles in the constraint graph, represented by back-edges in the pseudo-tree, result in
multidimensional UTIL messages. In fact, the size of messages grows exponentially in the
induced width of the pseudo-tree, where the base of this exponentiation is the domain size.

649

Grinshpoun & Tassa

The third phase is initiated when the utility propagation reaches the root agent. The root
agent chooses his best value according to the received utilities, and sends VALUE messages
to his children, informing them about his decision. VALUE messages are propagated down
the tree until all agents choose their optimal values.

The privacy-preserving version of DPOP, P-DPOP(+), uses obfuscation techniques in
order to protect the private information that could be leaked by the UTIL messages. These
techniques include codenames and addition of random numbers. The use of codenames
prevents P-DPOP(+) from joining dimensions of UTIL messages that originate from the
same agent, which in turn leads to increased induced widths of the pseudo-trees, compared
to those of the original DPOP.

Our comparison also includes a näıve privacy-preserving exhaustive-search algorithm
that we call P-Ex, which is similar to P-SyncBB except that it does not do pruning. This
is achieved by changing the command in line 30 of P-SyncBB to “else” and removing lines
33-42; other than that P-Ex coincides with P-SyncBB, including the usage of Protocol 3
and homomorphic encryption for privacy preservation.

In some of the experiments we also compare the performance of P-SyncBB and P-
DPOP(+) to their respective original, non-privacy-preserving, versions, SyncBB and DPOP.

5.2.2 Comparison Between Privacy Preserving DCOP Algorithms

In this first set of experiments we chose the maximal values of n for which P-DPOP(+) could
complete all its runs without running out of heap memory (heap size was set to 8GB). For the
random DCOPs benchmark this value was n = 6, while for the graph coloring benchmark
it was n = 9. (We note that P-DPOP(+) crashed due to lack of memory on some graph
coloring instances with n = 9 and p1 = 0.9, so these instances were excluded from the
experiment.)

Figures 1 and 2 present the runtime performance on the random DCOPs and graph
coloring benchmarks, respectively. As can be seen, the runtime performance of P-Ex is not
affected by the problem density. This is because P-Ex performs exhaustive search with no
pruning at all. In both benchmarks, the performance of P-SyncBB is superior to that of
P-Ex even in the densest problems. This indicates that the relatively low computational
costs of the proposed solutions to the millionaires’ problems (Section 4.2.3) make pruning
worthwhile.

In both benchmarks the runtime performance of P-DPOP(+) deteriorates as the prob-
lems become denser. This is a known phenomenon of the original non-privacy-preserving
DPOP algorithm, since denser problems lead to higher induced widths of the pseudo-trees
(Petcu & Faltings, 2005). As reported by Léauté and Faltings (2013), this problem is ampli-
fied in the case of P-DPOP(+), since the need to protect topology privacy results in increased
induced widths of the pseudo-trees, compared to those of the original DPOP. Indeed, the
experiments show that even the näıve algorithm P-Ex outperforms P-DPOP(+) on dense
problems.

5.2.3 The Overhead of Privacy Preservation

In the second set of experiments we examine the overhead of privacy preservation by com-
paring the performance of P-SyncBB to that of the original non-privacy-preserving SyncBB

650

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

0.1

1

10

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
im

u
la

te
d
 r

u
n

ti
m

e
(s

ec
)

Constraint density (p1)

P-SyncBB P-DPOP(+) P-Ex

Figure 1: Runtime performance on random DCOPs (n = 6, |D1| = · · · = |D6| = 6).

0.01

0.1

1

10

100

1000

10000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
im

u
la

te
d
 r

u
n

ti
m

e
(s

ec
)

Constraint density (p1)

P-SyncBB P-DPOP(+) P-Ex

Figure 2: Runtime performance on 3-color graph coloring problems (n = 9).

algorithm on larger instances of the random DCOPs (n = 9) and graph coloring (n = 16)
benchmarks. P-Ex and P-DPOP(+) were not able to solve these larger instances in reason-
able time (cutoff time of 15 minutes per problem instance) and without running out of heap
memory (8GB), and are thus omitted from this set of experiments.

Figures 3 and 4 present the runtime performance on the random DCOPs and graph col-
oring benchmarks, respectively. On both benchmarks the computation overhead of privacy
preservation is a little over one order of magnitude.

Figures 5 and 6 present the network load on the random DCOPs and graph coloring
benchmarks, respectively. We follow the common practice of measuring the network load
by the total number of messages (Mailler & Lesser, 2004; Gershman et al., 2009; Gutierrez,
Meseguer, & Yeoh, 2011). Such comparisons are not possible with algorithms of the DPOP
family, since the size of messages in these algorithms is exponential in the induced width of
the pseudo-tree (Petcu & Faltings, 2005, Thm. 1).

The communication overhead of privacy preservation is about 30 times on the random
DCOPs benchmark and about 60-70 times on the graph coloring benchmark. While the

651

Grinshpoun & Tassa

1

10

100

1000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Constraint density (p1)

P-SyncBB SyncBB

Figure 3: Runtime performance on random DCOPs (n = 9, |D1| = · · · = |D9| = 9).

0.01

0.1

1

10

100

1000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Constraint density (p1)

P-SyncBB SyncBB

Figure 4: Runtime performance on 3-color graph coloring problems (n = 16).

10,000

100,000

1,000,000

10,000,000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

er
 o

f
m

es
sa

g
es

Constraint density (p1)

P-SyncBB SyncBB

Figure 5: Network load on random DCOPs (n = 9, |D1| = · · · = |D9| = 9).

652

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

er
 o

f
m

es
sa

g
es

Constraint density (p1)

P-SyncBB SyncBB

Figure 6: Network load on 3-color graph coloring problems (n = 16).

computation and communication overhead of P-SyncBB is significant, its effect remains
almost the same as the problems become denser.

5.2.4 Scalability

In the third set of experiments we examine the scalability of P-SyncBB, and compare it to
that of SyncBB, P-DPOP(+), DPOP, and P-Ex. This experiment also shows how P-SyncBB
and P-DPOP(+) perform compared to their non-privacy-preserving counterparts.

The DPOP family of algorithms is known to be especially effective on very sparse prob-
lems, which have very low induced width. However, their performance deteriorates as the
problems become denser. Thus, in order to conduct a thorough and fair examination, we
use different benchmarks with various density levels.

Figures 7 and 8 present the scalability of runtime performance on unstructured ran-
dom DCOPs with different constraint densities. The respective experiments are on sparse
problems (p1 = 0.3, Figure 7) and dense problem (p1 = 0.7, Figure 8).

We may see that both SyncBB and P-SyncBB scale well. Contrary to that, P-DPOP(+)

does not scale well, even in the sparse problems of Figure 7, where DPOP outperforms
SyncBB. Moreover, even P-Ex scales better than P-DPOP(+). This phenomenon is ampli-
fied in the dense problems of Figure 8, due to the fact that P-Ex is completely unaffected by
the density parameter. Another interesting observation is that P-SyncBB displays similar
performance to that of P-Ex when n = 4 (Figure 8). This happens because in P-SyncBB
pruning is not performed by the first 3 agents (see Algorithm 2, lines 30-32), and conse-
quently for problems with n ≤ 4 agents P-SyncBB is exactly the same as P-Ex.

Next, we examine the scalability of runtime performance on structured problems. Fig-
ure 9 presents the results on graph coloring problems. Figure 10 presents the results on
scale-free networks.

The performance of P-DPOP(+) on graph coloring problems is consistent with the orig-
inal experiments that were conducted for this algorithm (Léauté & Faltings, 2013, Figures
7 and 8). As in all other experiments, P-SyncBB scales similarly to SyncBB. As the num-
ber of agents increases, the runtime performance of P-SyncBB even becomes comparable

653

Grinshpoun & Tassa

0.001

0.01

0.1

1

10

100

1000

6 7 8 9 10 11 12 13

S
im

u
la

te
d
 r

u
n

ti
m

e
(s

ec
)

Number of agents (n)

P-SyncBB SyncBB P-DPOP(+) DPOP P-Ex

Figure 7: Runtime performance on sparse random DCOPs (p1 = 0.3, |D1| = · · · = |Dn| =
6).

0.0001

0.001

0.01

0.1

1

10

100

1000

4 5 6 7 8 9 10 11 12

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of agents (n)

P-SyncBB SyncBB P-DPOP(+) DPOP P-Ex

Figure 8: Runtime performance on dense random DCOPs (p1 = 0.7, |D1| = · · · = |Dn| = 6).

to that of the non-privacy-preserving DPOP algorithm. It is also evident that even P-Ex
scales better than P-DPOP(+).

The experiment on scale-free networks demonstrates the runtime performance in a do-
main that clearly favors the DPOP family of algorithms. The Barabási-Albert procedure
leads to a network with few agents that are very connected. We apply a heuristic that sets
one of these agents as the root of the pseudo-tree, which leads to very efficient pseudo-
trees. We also chose to use rather small domains (|D1| = · · · = |Dn| = 5), a selection
that also helps DPOP. Indeed, as evident in Figure 10, DPOP exhibits superior perfor-
mance to SyncBB. Nonetheless, P-SyncBB outperforms P-DPOP(+) even in this domain.
Yet, P-DPOP(+) outperforms P-Ex, because the latter cannot take advantage of the special
topology of scale-free networks.

654

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

0.0001

0.001

0.01

0.1

1

10

100

1000

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of agents (n)

P-SyncBB SyncBB P-DPOP(+) DPOP P-Ex

Figure 9: Runtime performance on 3-color graph coloring problems (p1 = 0.4).

0.001

0.01

0.1

1

10

100

1000

8 9 10 11 12 13 14 15 16 17 18 19 20

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of agents (n)

P-SyncBB SyncBB P-DPOP(+) DPOP P-Ex

Figure 10: Runtime performance on scale-free networks (|D1| = · · · = |Dn| = 5).

Finally, we examine the scalability of runtime performance on real-world distributed
meeting scheduling problems. These problems are not standard in the sense that they
consist of agents with multiple variables. For simplicity and clarity reasons, the presentation
of most DCOP algorithms assumed a single variable per agent, leaving the issue of multiple-
variable agents to the implementer. In order to avoid falling into such implementation
issues and conduct a fair comparison between the different algorithms, we follow the generic
decomposition method of Yokoo and Hirayama (2000) that turns each variable into a virtual
agent. Figure 11 reports the resulting runtime performance.

We see that in this setting both SyncBB and P-SyncBB scale much better than DPOP
and P-DPOP(+). Moreover, P-SyncBB even outperforms the non-privacy-preserving DPOP
algorithm when m ≥ 5. An interesting phenomenon is observed when the number of
meetings is small (m ≤ 2), which leads to a small number of variables (n ≤ 4) in the
corresponding DCOP problem. P-SyncBB does not conduct any pruning in these instances,
and therefore performs exactly as P-Ex. Nevertheless, as the number of meetings increases,
P-SyncBB starts to effectively prune the search space, which in turn leads to much better

655

Grinshpoun & Tassa

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13

S
im

u
la

te
d

 r
u

n
ti

m
e

(s
ec

)

Number of meetings (m)

P-SyncBB SyncBB P-DPOP(+) DPOP P-Ex

Figure 11: Runtime performance on distributed meeting scheduling problems.

scalability. Moreover, the performance of P-SyncBB actually improves when the number of
meetings increases from m = 2 to m = 3 because then some of the search space is pruned,
which in turn prevents many costly encryptions (see Algorithm 2, line 18).

6. Conclusion

We presented here P-SyncBB, a privacy-preserving version of the SyncBB algorithm for
solving DCOPs while respecting constraint, topology and decision privacy. A fundamental
ingredient in the design of P-SyncBB is the separation of information that prevents any
agent at any stage from knowing both the upper bound and the current partial assignment
(CPA). This separation is complemented by the invoking of secure multi-party protocols
for computing the costs of CPAs and comparing them to the current upper bound. To this
end, we devised special protocols that solve instances of the millionaires’ problem securely
without resorting to costly oblivious transfer sub-protocols. We then used the devised sub-
protocols in Protocol 5, that compares the cost of a CPA, which is shared between two
agents, to the upper bound which is held by only one of them.

Our extensive experimental evaluation showed that while the runtime of P-SyncBB is
significantly higher than that of SyncBB, it exhibits superior performance to P-DPOP(+)

of Léauté and Faltings (2013), which is the state-of-the-art privacy-preserving complete
DCOP algorithm.

The key operations that require security in any search-based DCOP algorithm are the
summation and comparison operations. Therefore, we believe that the secure multi-party
protocols of Section 4, together with the aforementioned separation of information, may
serve as the basis for developing additional search-based privacy-preserving DCOP algo-
rithms. However, contrary to SyncBB, algorithms such as AFB (Gershman et al., 2009) or
NCBB (Chechetka & Sycara, 2006), include asynchronicity and parallelism. Consequently,
applying the ideas of P-SyncBB in order to devise privacy-preserving versions of these algo-
rithms may not be straightforward, since the reliance of P-SyncBB on agent A1 and on the
third party T may create bottlenecks with those agents in an asynchronous/parallel envi-

656

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

ronment. Thus, we consider the development of additional search-based privacy-preserving
DCOP algorithms an interesting and challenging prospect for future work.

Another interesting direction for future research is to extend our work to the case of
asymmetric constraints (Grinshpoun et al., 2013). Finally, in view of the discussion in Sec-
tion 4.5, it would be desirable to enhance P-SyncBB so that it becomes immune against
coalitions, while minimizing the price that such enhancement entails in terms of communi-
cation and computational costs.

Acknowledgments

The authors would like to thank Vadim Levit for his help with the implementation of
P-DPOP(+), and the anonymous reviewers for their insightful comments.

References

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science,
286 (5439), 509–512.

Benaloh, J. (1986). Secret sharing homomorphisms: Keeping shares of a secret secret. In
Crypto, pp. 251–260.

Blake, I. F., & Kolesnikov, V. (2004). Strong conditional oblivious transfer and computing
on intervals. In ASIACRYPT, pp. 515–529.

Brito, I., Meisels, A., Meseguer, P., & Zivan, R. (2009). Distributed constraint satisfaction
with partially known constraints. Constraints, 14 (2), 199–234.

Chechetka, A., & Sycara, K. (2006). No-commitment branch and bound search for dis-
tributed constraint optimization. In AAMAS, pp. 1427 – 1429.

Dechter, R. (2003). Constraint Processing. Morgan Kaufman.

Doshi, P., Matsui, T., Silaghi, M. C., Yokoo, M., & Zanker, M. (2008). Distributed private
constraint optimization. In WI-IAT, pp. 277–281.

Even, S., Goldreich, O., & Lempel, A. (1985). A randomized protocol for signing contracts.
Communications of the ACM, 28, 637–647.

Faltings, B., Léauté, T., & Petcu, A. (2008). Privacy guarantees through distributed con-
straint satisfaction. In WI-IAT, pp. 350–358.

Faltings, B., & Macho-Gonzalez, S. (2005). Open constraint programming. Artificial Intel-
ligence, 161:1-2, 181–208.

Fischlin, M. (2001). A cost-effective pay-per-multiplication comparison method for million-
aires. In Topics in Cryptology - CT-RSA, pp. 457–472.

Freuder, E. C., & Quinn, M. J. (1985). Taking advantage of stable sets of variables in
constraint satisfaction problems.. In IJCAI, pp. 1076–1078.

Gershman, A., Zivan, R., Grinshpoun, T., Grubshtein, A., & Meisels, A. (2008). Measuring
distributed constraint optimization algorithms. In DCR Workshops, pp. 17–24.

Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding for dis-
tributed COPs. Journal of Artificial Intelligence Research, 34, 61–88.

657

Grinshpoun & Tassa

Greenstadt, R., Pearce, J., & Tambe, M. (2006). Analysis of privacy loss in distributed
constraint optimization. In AAAI, pp. 647–653.

Greenstadt, R., Grosz, B., & Smith, M. D. (2007). SSDPOP: improving the privacy of
DCOP with secret sharing. In AAMAS, pp. 171:1–171:3.

Grinshpoun, T., & Meisels, A. (2008). Completeness and performance of the APO algorithm.
Journal of Artificial Intelligence Research, 33, 223–258.

Grinshpoun, T. (2012). When you say (DCOP) privacy, what do you mean? - categorization
of DCOP privacy and insights on internal constraint privacy. In ICAART, pp. 380–
386.

Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., & Meisels, A. (2013). Asymmet-
ric distributed constraint optimization problems. Journal of Artificial Intelligence
Research, 47, 613–647.

Grinshpoun, T., & Tassa, T. (2014). A privacy-preserving algorithm for distributed con-
straint optimization. In AAMAS, pp. 909–916.

Gutierrez, P., Meseguer, P., & Yeoh, W. (2011). Generalizing ADOPT and BnB-ADOPT.
In IJCAI, pp. 554–559.

Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. In
CP, pp. 222–236.

Ioannidis, I., & Grama, A. (2003). An efficient protocol for yao‘s millionaires‘ problem. In
HICSS, p. 205.

Jackson, M. O. (2008). Social and Economic Networks. Princeton University Press.

Jeckmans, A., Tang, Q., & Hartel, P. H. (2012). Privacy-preserving collaborative filtering
based on horizontally partitioned dataset. In CTS, pp. 439–446.

Jiang, W., & Clifton, C. (2006). A secure distributed framework for achieving k-anonymity.
The VLDB Journal, 15, 316–333.

Kantarcioglu, M., & Clifton., C. (2004). Privacy-preserving distributed mining of associ-
ation rules on horizontally partitioned data. Transactions on Knowledge and Data
Engineering, 16, 1026–1037.

Léauté, T., & Faltings, B. (2011). Distributed constraint optimization under stochastic
uncertainty. In AAAI, pp. 68–73.

Léauté, T., & Faltings, B. (2013). Protecting privacy through distributed computation in
multi-agent decision making. Journal of Artificial Intelligence Research, 47, 649–695.

Lindell, Y., & Pinkas, B. (2000). Privacy preserving data mining. In Crypto, pp. 36–54.

Lutati, B., Gontmakher, I., Lando, M., Netzer, A., Meisels, A., & Grubshtein, A. (2014).
Agentzero: A framework for simulating and evaluating multi-agent algorithms. In
Agent-Oriented Software Engineering, pp. 309–327. Springer.

Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., & Varakantham, P. (2004).
Taking DCOP to the real world: Efficient complete solutions for distributed multi-
event scheduling. In AAMAS, pp. 310–317.

658

P-SyncBB: A Privacy Preserving Branch and Bound DCOP Algorithm

Maheswaran, R., Pearce, J., Bowring, E., Varakantham, P., & Tambe, M. (2006). Privacy
loss in distributed constraint reasoning: A quantitative framework for analysis and its
applications. Autonomous Agents and Multi-Agent Systems, 13, 27–60.

Mailler, R., & Lesser, V. R. (2004). Solving distributed constraint optimization problems
using cooperative mediation. In AAMAS, pp. 438–445.

Modi, J., & Veloso, M. (2004). Multiagent meeting scheduling with rescheduling. In DCR
Workshops.

Modi, P. J., Shen, W., Tambe, M., & Yokoo, M. (2005). ADOPT: asynchronous distributed
constraints optimizationwith quality guarantees. Artificial Intelligence, 161, 149–180.

Nissim, K., & Zivan, R. (2005). Secure DisCSP protocols - from centralized towards dis-
tributed solutions. In DCR Workshops.

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes.
In Eurocrypt, pp. 223–238.

Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization.
In IJCAI, pp. 266–271.

Rabin, M. O. (1981). How to exchange secrets by oblivious transfer. Tech. rep. TR-81,
Aiken Computation Laboratory, Harvard University.

Rivest, R. L., Shamir, A., & Adleman, L. M. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21, 120–126.

Schuster, A., Wolff, R., & Gilburd, B. (2004). Privacy-preserving association rule mining
in large-scale distributed systems. In CCGrid, pp. 411–418.

Silaghi, M. C., Faltings, B., & Petcu, A. (2006). Secure combinatorial optimization simu-
lating DFS tree-based variable elimination. In ISAIM.

Silaghi, M. C., & Mitra, D. (2004). Distributed constraint satisfaction and optimization
with privacy enforcement. In IAT, pp. 531–535.

Sultanik, E., Lass, R. N., & Regli, W. C. (2008). DCOPolis: a framework for simulating
and deploying distributed constraint reasoning algorithms. In AAMAS (demos), pp.
1667–1668.

Tassa, T. (2014). Secure mining of association rules in horizontally distributed databases.
Transactions on Knowledge and Data Engineering, 26, 970–983.

Tassa, T., & Gudes, E. (2012). Secure distributed computation of anonymized views of
shared databases. Transactions on Database Systems, 37, Article 11.

Tassa, T., & Bonchi, F. (2014). Privacy preserving estimation of social influence. In EDBT,
pp. 559–570.

Tassa, T., & Cohen, D. J. (2013). Anonymization of centralized and distributed social
networks by sequential clustering. Transactions on Knowledge and Data Engineering,
25, 311–324.

Tassa, T., Zivan, R., & Grinshpoun, T. (2015). Max-sum goes private. In IJCAI, pp.
425–431.

659

Grinshpoun & Tassa

Tassa, T., Zivan, R., & Grinshpoun, T. (2016). Preserving privacy in region optimal DCOP
algorithms. In IJCAI, pp. 496–502.

Vaidya, J., & Clifton, C. (2002). Privacy preserving association rule mining in vertically
partitioned data. In KDD, pp. 639–644.

Yakut, I., & Polat, H. (2012). Arbitrarily distributed data-based recommendations with
privacy. Data & Knowledge Engineering, 72, 239–256.

Yao, A. (1982). Protocols for secure computation. In FOCS, pp. 160–164.

Yeoh, W., Felner, A., & Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

Yokoo, M., Suzuki, K., & Hirayama, K. (2005). Secure distributed constraints satisfaction:
Reaching agreement without revealing private information. Artificial Intelligence, 161,
229–246.

Yokoo, M., & Hirayama, K. (2000). Algorithms for distributed constraint satisfaction: A
review. Autonomous Agents and Multi-Agent Systems, 3 (2), 185–207.

Zhan, J., Matwin, S., & Chang, L. (2005). Privacy preserving collaborative association rule
mining. In Data and Applications Security, pp. 153–165.

Zhang, W., Xing, Z., Wang, G., & Wittenburg, L. (2005). Distributed stochastic search
and distributed breakout: Properties, comparishon and applications to constraints
optimization problems in sensor networks. Artificial Intelligence, 161, 55–88.

Zhong, S., Yang, Z., & Wright, R. (2005). Privacy-enhancing k-anonymization of customer
data. In PODS, pp. 139–147.

Zivan, R., & Meisels, A. (2006). Message delay and DisCSP search algorithms. Annals of
Mathematics and Artificial Intelligence, 46, 415–439.

Zivan, R., Okamoto, S., & Peled, H. (2014). Explorative anytime local search for distributed
constraint optimization. Artificial Intelligence, 212, 1–26.

660

